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CHAPTER I 

 

INTRODUCTION 

 

Lipoxygenase catalysis 

Widely expressed in plants, fungi, and animals, lipoxygenases (LOX) are a family 

of non-heme iron dioxygenases that catalyze the hydroperoxidation of polyunsaturated 

fatty acids (1). The hydroperoxide product (or its reduced hydroxy derivative) could be 

the end product in a pathway or act as an intermediate leading to the formation of other 

bioactive secondary metabolites (2-4). 

All lipoxygenases are a single polypeptide of 75-105 kD with one iron atom. The 

hydroperoxidation reaction catalyzed by lipoxygenase depends on the presence of this 

non-heme iron. The ferric state of the non-heme iron Fe
3+

 accounts for the oxygenation 

activity, while as the lipoxygenase is isolated the enzyme contains predominantly the 

ferrous iron Fe
2+

. It is the non-enzymatic oxidation of the substrate and the enzymatic 

oxidation catalyzed by a small amount of initially existing Fe
3+

 that forms fatty acid 

hydroperoxide which oxidizes the Fe
2+ 

to Fe
3+

 and activates the enzyme (5,6). The same 

catalytic mechanism is proposed for all non-heme iron lipoxygenases (7). Briefly, the 

active form Fe
3+

, covalently linked with one of its six ligands, a hydroxide ion, abstracts a 

hydrogen atom from the fatty acid substrate, forming a Fe
2+

-H2O complex and a fatty 

acid radical. The fatty acid radical then combines with a triplet O2 to form a peroxy 

radical. Finally, the peroxy radical obtains the hydrogen atom back from the Fe
2+

-H2O 
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complex, forming the hydroperoxide product and regenerating the ferric enzyme, thus 

completing a catalytic cycle (Figure 1). 

 

 

 

 

 

Figure 1: The catalytic cycle of lipoxygenase reaction 

 

A remarkable feature of lipoxygenase catalysis is that the incorporation of 

molecular oxygen is regio- and stereo- specific (8). The suitable substrates for 

lipoxygenase catalysis contain at least one 1Z,4Z-pentadiene unit. Lipoxygenase initiates 

a stereoselective hydrogen abstraction from the methylene carbon of a selected 1Z,4Z-

pentadiene unit (9). In the second step, out of the four available positions around the 

1Z,4Z-pentadiene, region-selective oxygen addition occurs on the opposite face of the 

substrate (relative to the abstracted hydrogen), thus forming a single optically active 

hydroperoxide product after acceptance of a hydrogen. To accomplish these catalytic 

specificities, lipoxygenase has two levels of control: (1) Lipoxygenase-substrate 

interaction holds the substrate in a position that only one selected bis-allylic hydrogen is 

in proximity to the non-heme iron and thus accessible for abstraction. In this respect, 

soybean lipoxygenase-1 is a “clean” 15-lipoxygenase, which, at low enzyme 

concentrations, only abstracts 13L hydrogen and forms 15S-HPETE from arachidonic 

acid. By contrast, human reticulocyte 15-LOX (15-LOX-1) is not a “pure” 15-
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lipoxygenase. It forms a mixture of 12S-HPETE and 15S-HPETE after abstracting the 

10L and 13L hydrogen respectively (10). In the case of human 15-LOX-1, a carbon chain 

frame shift is allowed within the enzyme active site. (2) Lipoxygenase controls the 

molecular oxygen to the one of four available carbon positions (8,11,12). There are 

debates on how molecular oxygen access is controlled. Different mechanisms have been 

proposed, including steric shielding of oxygen by amino acid residues that ensures only 

one of the active pentadienyl radical is accessible and oxygen channeling that directs the 

molecular oxygen to the desired position (8). 

 

Secondary metabolism of fatty acid hydroperoxides by lipoxygenases 

In addition to polyunsaturated fatty acids, lipoxygenase enzymes also react with 

fatty acid hydroperoxides, the products from their own oxygenation reactions. Secondary 

conversion of fatty acid hydroperoxide is initiated by either the ferric or ferrous enzyme. 

Ferric enzyme starts the secondary oxygenation on the mono-hydroperoxide product by 

abstracting a different methylene hydrogen in a different 1Z,4Z-pentadiene unit. Ferrous 

enzyme, by catalyzing the homolytic cleavage of the hydroperoxide group, initiates the 

reaction cycle acting as a hydroperoxide isomerase or a hydroperoxide peroxidase. In 

order for the secondary metabolites to be significantly formed, the secondary 

transformation needs to be a self-propagating catalytic reaction rather than a single 

turnover, i.e. the ferric and ferrous enzyme need to cycle between each other constantly. 

For example, the typical dioxygenase activity of lipoxygenase enzymes involves 

activation of the resting ferrous enzyme to the ferric form. The ferrous enzyme is 

activated by a trace amount of fatty acid hydroperoxides present in the starting substrate. 
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Once the ferrous enzyme is oxidized to the ferric form, it will no longer react with the 

fatty acid hydroperoxide. Due to this single turnover nature of the reaction, the product 

during this activation phase is not formed in sufficient amounts for detection and 

identification (13). 

Possible secondary metabolic routes of fatty acid hydroperoxides by lipoxygenases 

include:  

1) Leukotriene pathway: 5S-HPETE is transformed by 5-lipoxygenase to 

conjugated triene-containing allylic epoxide leukotriene A4 which is further 

enzymatically converted to bioactive leukotriene family members (3).  

2) Epoxyalcohol synthesis: the hydroperoxide isomerase (epoxyalcohol synthase) 

activity of epidermal lipoxygenase-3 (eLOX-3) converts 12R-HPETE (the natural 

product by 12R-LOX, another lipoxygenase expressed in skin) to 8R,11R,12R-

epoxyalcohol (14). Epoxyalcohols are chemically unstable and will be hydrolyzed to 

trihydroxy hydrolysis products either non-enzymatically or by the epoxide hydrolase 

(15,16).  

3) Short chain aldehyde formation: the secondary hydroperoxide cleavage is well 

investigated and occurs in higher plants and animals as well as in algae (2,17,18). 

Whereas in higher plants the formation of cleavage products requires the combined action 

of lipoxygenase and hydroperoxide lyases (HPL) (19,20), in animals and algae the 

specific lipoxygenase alone is sufficient (21).  

4) Double oxygenation, i.e. a second oxygenation on the primary hydroperoxide 

product: the dihydroperoxide is readily reduced to the dihydroxide in a physiological 

environment in which the hydroperoxide peroxidases are abundant. The first identified 
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anti-inflammatory lipoxins also originate from the sequential oxygenation by two 

different lipoxygenase followed by LTA-type reaction (3,22).  

5) Keto derivative formation: it is well established that 5-HETE (reduced form of 

5-HPETE) is oxidized to 5-oxo-ETE (5-oxo-eicosatetraenoic acid) by 5-

hydroxyeicosanoid dehydrogenase (23). Our studies show that keto derivative could be 

directly produced from fatty acid hydroperoxide by lipoxygenase. Instead of being 

involved in metabolic inactivation, the keto derivative of a fatty acid hydroperoxide could 

function as a highly potent chemoattractant (24) or an electrophile which is to adduct 

with the nucleophilic amino acid residues in the biologically important proteins (25,26). 

There is competition between the different secondary metabolic routes of fatty acid 

hydroperoxide. Several lines of evidence suggest that access of molecular oxygen within 

the lipoxygenase active site is an important determinant of the metabolic fate of 

hydroperoxides (13). If present, molecular oxygen reacts readily with radical 

intermediates, thus intercepting and blocking hydroperoxide isomerase or hydroperoxide 

peroxidase cycling. Furthermore, molecular oxygen promotes enzyme activation to the 

ferric form, also inhibiting other metabolic routes initiated by the ferrous enzyme (27,28). 

Based on the product profiles with fatty acid and fatty acid hydroperoxides, it is proposed 

that epidermal lipoxygenase-3 (eLOX-3) represents one end of a spectrum among 

lipoxygenases where oxygen concentration within active site is low, favoring 

hydroperoxide isomerase cycling, with the opposite end represented by soybean LOX-1 

which has high active site oxygen concentration and favors dioxygenation reactions. 

Following this line of thinking, it is possible to manipulate the lipoxygenase reaction 

outcome with fatty acid hydroperoxide substrates by controlling the molecular oxygen 
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concentration within the reaction environment. By making the reaction conditions 

anaerobic, soybean LOX-1, which mainly catalyzes dioxygenation reactions, will 

produce instead ketones, aldehydes, fatty acid dimers (29) and products formed through 

transformation to allylic epoxides (30).  

 

Leukotriene biosynthesis 

The leukotrienes (LTs) are a family of lipid mediators implicated in host defense 

and pathophysiological conditions such as inflammation and immediate hypersensitivity 

(31,32). The term “leukotriene” was chosen because they were first discovered in the 

incubation of arachidonic acid with rabbit peritoneal polymorphonuclear leukocytes 

(PMNL) and their common structural feature is a conjugated triene (33-36). Based on 

whether they are conjugated with a peptide as well as their biological effects, leukotrienes 

can be sub-divided to the dihydroxy leukotriene LTB4 and the cysteinyl leukotrienes 

LTC4, LTD4 and LTE4. Concerning their biological activity, LTB4 specifically stimulates 

a number of leukocyte functions, including the adhesion of leukocytes to the endothelium 

in blood vessels and the infiltration of leukocytes to the tissue (3,37). Furthermore, LTB4 

increases microvascular permeability that facilities the emigration of leukocytes from the 

bloodstream (3). On the other hand, cysteinyl leukotrienes (LTC4, LTD4 and LTE4), also 

known as slow-reacting substance of anaphylaxis (SRS-A), primarily target smooth 

muscle and other cells with contractile ability. When acting on airway smooth muscle, 

they potently induce airway constriction and cause asthma. When given systemically, 

they increase permeability in postcapillary venules (3,32). 
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Around 1980, extensive studies were performed on the structural elucidation of 

LTB4 and LTC4 as well as an appreciation of their formation through the epoxide LTA4 

(38-41). The biosynthetic pathway of leukotriene family is now well-established. 

Arachidonic acid is first released from membrane phospholipids by cytosolic 

phospholipase A2 (cPLA2) upon cell stimulation. Once released, arachidonic acid is 

converted to an extremely short-lived intermediate LTA4 which is enzymatically 

converted by hydration to the dihydroxy acid LTB4 and by addition of glutathione to 

cysteinyl LTC4 (Figure 2). LTC4 is metabolized to LTD4 and LTE4 by successive 

elimination of a -glutamyl residue and glycine (3,4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Leukotriene pathway 
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It was not self-evident that it is the unstable allylic epoxide LTA4 that leads to the 

formation of stable bioactive lipids in the metabolism of arachidonic acid. First, an 

intermediate in the transformation was proposed with the aid of isotopic oxygen, and it 

was shown that the oxygen of the alcohol group at C5 of LTB4 originated from molecular 

oxygen, whereas the oxygen of the alcohol group at C12 was derived from water (42). 

The epoxide identity of the intermediate was further established by trapping the 

intermediate with excess alcohol and analysis of the obtained derivatives showed that 

they carried hydroxyl groups at C5 and isomeric methoxy groups at C12 (42). It is now 

known that the enzymatic transformation from LTA4 to stable end products bears the 

nature of nucleophilic attack on the unstable allylic epoxide by either the water or the 

cysteinyl group of a peptide. 

The extreme instability in the aqueous solution at physiological pH is the major 

hurdle preventing studies on LTA4. Its half-life in physiological buffer at pH 7.4 is 

estimated as approximately 3 s at 25 C and 18 s at 4 C (43). In the aqueous reaction 

systems especially those with an acidic pH, LTA4, once formed, readily reacts with water 

and gives the formation of two 5S,12-dihydroxy-6,8,10-trans,14-cis-eicosatetraenoic 

acids, epimeric at C12 and two 5S,6-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic 

acids, epimeric at C6. Unlike the enzymatic conversion to LTB4, the non-enzymatic 

hydrolysis of LTA4 is through a common carbonium ion intermediate. These hydrolysis 

products have a characteristic UV chromophore which is distinct from that of LTB4 (35). 

Even nowadays, due to the high instability of LTA epoxide, detection of its hydrolysis 

products becomes a reliable and acceptable way demonstrating the formation of LTA 

epoxide. Despite its instability, LTA4 was still detected as an evanescent intermediate in 
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short-term incubations of arachidonic acid with human leukocytes (44). This was 

achieved by subjecting the isolation under alkaline conditions and in an aprotic solvent 

which were expected to increase the LTA epoxide stability. Furthermore, to explain its 

persistence as an intact allylic epoxide in a physiological environment, there were studies 

showing that albumin could stabilize LTA4 by providing a hydrophobic and alkaline 

microenvironment (43).  

Extensive efforts were directed towards the total synthesis of LTA4 and its closely 

related 5,6-epoxide isomers after its pivotal role was realized (45,46). By comparison of 

the reactions of natural LTA4 and synthetic LTA4 and related isomers in transformation 

to the stable LTB4 and LTC4, the structure of LTA4 was defined unequivocally as 5S,6S-

trans-epoxy-eicosa-7E,9E,11Z,14Z-tetraenoic acid (40). It is important to recognize here 

that the stereochemistry of LTA epoxide has never been characterized directly from a 

natural LTA product. Performing comparison with synthetic standards is a classic 

approach, which researchers in the field still employ, to determine the stereoconfiguration 

of the natural eicosanoid product. 

 

Lipoxygenase and LTA-type epoxides 

The understanding of the leukotriene pathway took another leap forward when it 

was appreciated that 5-lipoxygenase (5-LOX) catalyzes not only the conversion of 

arachidonic acid to 5S-hydroperoxyeicosatetraenoic acid (5S-HPETE) but also the further 

transformation to the pivotal epoxide in the pathway LTA4. Before 5-lipoxygenase was 

demonstrated to have LTA4 synthase activity (epoxide synthase activity), it was noticed 

that LTA syntheses share some mechanistic features with lipoxygenase reactions (47,48). 
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1) Both reactions entail a stereospecific hydrogen removal. In the case of LTA4 formation 

by human leukocytes, the DR hydrogen is stereoselectively removed from the prochiral 

center at C10 of arachidonic acid (49). In the formation of 14,15-LTA4, an analogue of 

LTA4, the LS hydrogen at C10 of arachidonic acid is abstracted (47). Importantly, the 

10LS hydrogen abstraction is also the initial event of the platelet 12-lipoxygenase 

catalysis that leads to the formation of 12S-HPETE with arachidonic acid as the substrate 

(50). 2) Both reactions entail a radical migration that leads to formation of new trans 

double bond(s). In the case of LTA formation, the radical, which is generated after 

hydrogen abstraction, undergoes a [1,5] migration which leads to the formation of two 

trans double bonds. In a lipoxygenase dioxygenation reaction, the radical undergoes a 

[1,3] migration that leads to the formation of one trans double bond. Based on these 

similarities, both this lab and the group from the Karolinska Institute made the 

assumption that leukotriene epoxide biosynthesis bears a lipoxygenase-like mechanism. 

The lipoxygenase nature of leukotriene epoxide synthase was finally established with the 

native 5-lipoxygenase isolated from potatoes, murine mast cells and human leukocytes as 

well as the expression of the recombinant 5-lipoxygenase in various biological systems 

(48,51-53). 

With an appreciation of leukotriene biosynthesis as a model, several other 

pathways of leukotriene biosynthesis were established. The second leukotriene pathway 

was discovered in porcine leukocytes that proceeds from 15S-HPETE via an analogue of 

LTA4 (54,55), 14,15-LTA4 which is now named eoxin A4, precursor of the 

proinflammatory eoxins (EXC4, EXD4, EXE4) of human eosinophils in asthma (56,57). 

Theoretically, a proper combination of fatty acid hydroperoxide substrate and 
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lipoxygenase catalyst could possibly generate a stereo- and regio- selective LTA epoxide 

product. However, in practice, whether such a reaction proceeds as expected depends on 

a number of factors that will be discussed in the later sections. Furthermore, testing 

reactions of different combinations of fatty acid hydroperoxides and lipoxygenase 

enzymes not only helps to identify novel bioactive lipid mediators but could further our 

understanding of LTA biosynthetic mechanism as well as the lipoxygenase biochemistry. 

Since the epoxide configuration of LTA4 derived from 5S-HPETE was established 

as trans, it has become one of the tenets of leukotriene biosynthesis that the S-

configuration hydroperoxide substrate is converted to an LTA type trans-epoxide. Other 

possibilities, i.e. other combinations of fatty acid hydroperoxide and lipoxygenase 

enzyme might generate a cis-epoxy LTA product, have not been well studied. This is 

probably because that the S-configuration hydroperoxides are the dominant form 

occurring in vivo and the role of the three human lipoxygenases (5-LOX, 12-LOX and 

15-LOX) in leukotriene pathways has been well established. 

In the late 1980’s, E.J. Corey’s group investigated the reactions of 5S-HPETE with 

two different sources of lipoxygenase enzyme (58) (Figure 3). Importantly, the two 

lipoxygenase enzymes, potato “5-LOX” and coral “8R-LOX”, abstract the different 

hydrogen at C10 from 5S-HPETE. It is predicted that potato “5-LOX” abstracts the 10R 

hydrogen (48) and coral “8R-LOX” removes the 10S hydrogen (59-61). They showed 

that potato “5-LOX” produced trans-epoxy LTA4 and coral “8R-LOX” produced the cis-

epoxide isomer of LTA4 (6-epi-LTA4). The epoxide structure was inferred indirectly 

based on the different pattern of hydrolysis products and comparison with that of 

synthetic standards. This important study, which has not been widely quoted, showed, for 
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the first time, the possible formation of cis- or trans- epoxy LTA product from a 

lipoxygenase reaction and demonstrated a relationship between the hydrogen abstraction, 

an inherent property of lipoxygenase catalysis, and the configuration of the resulting LTA 

epoxide.  

 

Figure 3: Formation of trans- or cis- LTA4 by different lipoxygenases 

 

Dual role of lipoxygenase iron in LTA biosynthesis 

The two oxidation states of the non-heme iron play different roles in lipoxygenase 

reactions and there are debates concerning their respective role in LTA epoxide 

biosynthesis. The transformation from fatty acid hydroperoxide to LTA epoxide involves 

two crucial steps, hydrogen abstraction and hydroperoxide cleavage. From a purely 

chemical perspective, either state of the LOX iron could initiate the LTA formation and 

the key difference of the two pathways is the order of those two steps. The pathway 

initiated by the ferric (Fe
3+

) enzyme involves hydrogen abstraction followed by peroxide 

cleavage, while the ferrous (Fe
2+

) pathway employs the same two steps in the reverse 

order. In practice, it is more conceivable and also widely accepted that the ferric iron 

accounts for the LTA formation. The ferrous iron pathway was originally proposed for 
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the leukotriene formation in fatty acid autoxidation (62) and in hemoglobin-catalyzed 

transformation of fatty acid hydroperoxide (63,64) and its actual involvement in 

lipoxygenase-catalyzed LTA formation is lacking experimental support. 

Early studies in this lab showed that the conversion of [10R-
3
H]5-HPETE to LTA4 

is associated with an enrichment in the specific activity of the unreacted substrate, 

interpreted as a primary isotope effect (49,65,66). This provides critical evidence 

identifying the 10pro-R hydrogen abstraction as the first irreversible step in leukotriene 

A4 biosynthesis. In turn, this implicates the ferric iron (hydroxide) in 5-LOX as the active 

species catalyzing the first step of the transformation. Another piece of evidence comes 

from the use of lipoxygenase inhibitor in LT formation. Nordihydroguaiaretic acid 

(NDGA), an effective lipoxygenase inhibitor acting by reducing the active ferric iron to 

the ferrous form (67), blocks both the dioxygenase reaction and LTA synthesis from 

HPETEs (48,55). This provides further support for involvement of the ferric iron in 

catalyzing the initial hydrogen abstraction. 

Recent results in this lab implicate that the ferrous iron of lipoxygenase is actively 

involved in the hydroperoxide cleavage step of LTA formation (30) (Figure 4). In the 

anaerobic reactions of 15S-HPETE with soybean LOX-1, a novel arachidonic acid 

epoxide with a cyclopropyl ring was produced, together with the 14,15-LTA4 formation. 

To account for the formation of the cyclopropyl ring-containing epoxide, a dual role of 

the lipoxygenase iron was proposed. Key to the proposal is the involvement of first the 

ferric enzyme and then the ferrous species in activating the hydrogen abstraction and 

hydroperoxide homolytic cleavage sequentially, followed by intramolecular coupling of 

two radicals to give an unstable epoxide, in the case of 15S-HPETE with soybean LOX-1 
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the cyclopropyl ring-containing epoxide being formed. The mechanism entails a cycle 

between the two oxidation states of lipoxygenase iron. Testing this mechanism becomes 

the center of the thesis project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Evidence for a dual role of lipoxygenase iron in epoxide synthesis. Anaerobic 

reaction of soybean 15-LOX with 15S-HPETE produces a cyclopropyl-containing 

epoxide, which provides evidence for lipoxygenase iron-catalyzed H-abstraction and 

hydroperoxide O-O bond cleavage. 
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Anti-inflammatory and pro-resolution lipid mediators 

Inflammation is a biological response and protective attempt by the host organism 

to remove harmful stimuli, such as pathogens, damaged cells, or irritants (68). The 

classical signs of inflammation are pain (dolor), heat (calor), redness (rubor), swelling 

(tumor), and loss of function (functio laesa) (68). Inflammation can be classified as either 

acute or chronic inflammation (69). Acute inflammation involves initial and local 

recruitment of leukocytes and maturation of immune response targeting the injurious 

stimuli within the damaged tissue. Two opposite outcomes might follow depending on 

whether acute inflammation is limited and timely resolved. The successful resolution of 

inflammation involves the exit of inflammatory machinery from the inflammatory site 

and leads to the healing and homeostasis of the tissue. On the other hand, if not 

terminated appropriately, acute inflammation develops to prolonged/chronic 

inflammation which causes chronic destruction of host tissue and finally results in 

chronic diseases including cardiovascular disease, cancer and Alzheimer’s disease (70). 

Just as acute inflammation requires constant stimulation to be sustained, the 

resolution phase of inflammation is also an active process which is promoted by a 

number of cellular and molecular factors. Different lipid mediators participate in either 

term of inflammation, with leukotriene family members being potent pro-inflammatory 

mediators  (32) and several other similar lipid molecules acting with a dual role, anti-

inflammation and pro-resolution, during the resolution phase of inflammation (69,71). 

Interestingly, those anti-inflammatory and pro-resolution lipid molecules share very 

similar structural features with leukotrienes (stereochemistry of conjugated double bond 

system and hydroxyl groups). In fact, the biosynthetic pathways leading to those novel-
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functional lipid molecules were established based on the leukotriene pathway, with each 

step exactly parallel among each other. It is still an open question as to how the two kinds 

of molecules with similar structure play opposite roles. With identification of the 

corresponding G protein coupled receptor (GPCR) each lipid mediator acts on (72-76), 

the detailed investigation of lipid-receptor interaction could provide some clue to this 

question.  

 

Figure 5: Bioactive lipid mediators derived from polyunsaturated fatty acids (PUFAs) 

 

Lipoxins (lipoxin A4 and lipoxin B4) are the first group of lipids identified to be 

anti-inflammatory (3,22). They are a class of eicosanoids that are formed through the 

sequential metabolism of arachidonic acid by two different lipoxygenases, 5-LOX and 

15-LOX. Different from LTB4, lipoxins are trihydroxytetraene-containing structure. 

Other than lipoxins, other anti-inflammatory and pro-resolution lipids, resolvins (Rv) 

(77), protectins (PD) (78) and maresins (79), are derived from the essential omega-3 fatty 
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acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Previous studies 

have shown that administration of essential omega-3 fatty acids has beneficial effects in 

many inflammatory diseases,  cancer and human health in general (80). The discovery of 

those novel anti-inflammatory and pro-resolution lipids partly explains the molecular 

basis of omega-3 fatty acid action (although how much those novel lipids account for the 

omega-3 fatty acid action is an open question). The biosyntheses of resolvins, protectins 

and maresins are proposed exactly based on the leukotriene and lipoxin pathways. The 

defining experimental data about the mechanism of the transformations and the enzymes 

involved are lacking. 

 

Our hypotheses about LTA-type epoxide formation 

Since the LTA-type epoxide was established as a lipoxygenase product, the 

possible formation of LTA epoxide was investigated from reactions of different 

combinations of lipoxygenases and fatty acid hydroperoxides. It is recognized that the 

ability to produce LTA-type epoxide varies among different lipoxygenases. For the same 

lipoxygenase, the reaction outcome varies towards different fatty acid hydroperoxide 

substrates as well as under different reaction conditions. On the other hand, although the 

leukotriene pathways originating from arachidonic acid were established decades ago, the 

novel bioactive lipids derived from omega-3 fatty acids (DHA and EPA) were discovered 

recently and are now receiving more and more research interest recently. Their formation 

was proposed with leukotriene biosynthesis as a model. Hence it becomes necessary to 

establish a coherent mechanism about LTA-type epoxide biosynthesis which 

encompasses different lipoxygenase reactions with fatty acid hydroperoxides. 
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We propose that the mechanism of LTA-type epoxide biosynthesis requires a 

combination of the following factors: alignment and orientation of the fatty acid 

hydroperoxide in the lipoxygenase active site, absolute configuration of the 

hydroperoxide group, stereospecificity of the H-abstraction, and exclusion of oxygen 

within the active site. With the role of active site molecular oxygen well established, we 

focus efforts to test the relationship between stereochemistry of LTA epoxide (product 

specificity) with absolute configuration of the hydroperoxide group (substrate property) 

and the H-abstraction (catalyst property).  

The central hypothesis is that transformation of the fatty acid hydroperoxide to 

LTA epoxide depends on participation of the lipoxygenase non-heme iron in catalyzing 

both the initial hydrogen abstraction and in facilitating cleavage of the hydroperoxide 

moiety (dual role of lipoxygenase iron). This postulate implies that the hydrogen 

abstracted and the hydroperoxide lie in suprafacial relationship, which in turn, dictates 

that the cis or trans epoxide configuration of the LTA product depends on the pro-R or 

pro-S chirality of the H-abstraction (an inherent property of the specific lipoxygenase) 

and the R or S chirality of the HPETE substrate. 

Figure 6 illustrates the established lipoxygenase-catalyzed LTA formation with the 

substrate-enzyme-product relationship explained by our hypothesis. In achieving the 

suprafacial relationship between the hydrogen abstraction and the hydroperoxide moiety, 

5S-HPETE (the natural enantiomer) must assume the transoid conformation at the 5-

carbon, thus dictating the natural trans-epoxy configuration of LTA4 (the bottom 

reaction). With the cisoid conformation taken at the 5-carbon, 5S-HPETE is not 

converted to LTA-type product (the middle reaction). The top reaction illustrates the 
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result reported by E. J. Corey and coworkers (58), in which an 8R-LOX activity, which 

catalyzes pro-S hydrogen abstraction from C-10, converted 5S-HPETE to the cis epoxide, 

6-epi-LTA4. The deduced opposite tail-to-head orientation for 5S-HPETE binding in 8R-

LOX (60,81) requires the cisoid conformation taken at the 5-carbon, thus dictating the 

cis-epoxy configuration of the resulting LTA product. 

 

 

Figure 6: Hypothesis of the mechanistic basis for formation of cis or trans LTA epoxides 
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Overall objectives of the dissertation study 

There are three overall objectives of this dissertation study: 

1) Develop the methods in biosynthesis, isolation and direct structural analysis of 

the LTA-type epoxides from lipoxygenase reactions. 

2) Utilize the methods developed in Objective 1 to investigate the reactions of 

different combinations of fatty acid hydroperoxides (R or S configuration) and 

lipoxygenase catalysts (which hydrogen is abstracted) and in turn to test our hypothesis 

about the LTA-type epoxide biosynthesis. 

3) Investigate the novel bioactive lipid mediator biosynthetic pathways by 

conducting the in vitro enzymological studies and directly analyzing the LTA-type 

epoxides in these novel pathways.  
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CHAPTER II 

 

BIOSYNTHESIS, ISOLATION, AND NMR ANALYSIS OF 

LEUKOTRIENE A EPOXIDE 

 

Introduction 

The leukotrienes are a family of lipid mediators derived from arachidonic acid and 

implicated in the pathogenesis of asthma and other inflammatory diseases (31,32). The 

biosynthetic pathway, unraveled three decades ago, is a model for related transformations 

to anti-inflammatory mediators, including the lipoxins, eoxins, resolvins, protectins and 

maresins (3,77-79). The establishment of leukotriene A4 as the pivotal intermediate is a 

crucial event in the understanding of the leukotriene pathway. Since LTA4 was first 

proposed and discovered in the early 1980s, extensive efforts were directed towards the 

determination of its exact chemical structure as well as its formation mechanism via a 

sequential lipoxygenase transformation (45-48).  

LTA4 is highly unstable in the physiological buffer at pH 7.4, with a half-life 

estimated as approximately 3 s at 25C and 18 s at 4C (43). Although LTA4 was 

detected and isolated as an evanescent intermediate in short-term incubations of 

arachidonic acid with human leukocytes (44), the amount LTA4 was isolated from a 

biological system is low and thus affords it impossible for a direct structural analysis. A 

smart, yet indirect, method was then developed to address the structural determination. 

Thanks to the contributions chemists made to the field, LTA4 and closely related 5,6-

epoxide isomers became available through total chemical synthesis. The stereochemistry 
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of the natural LTA4 product was then deduced based on study of the reactions of synthetic 

LTA4 and related isomers in transformations to the stable, bioactive leukotrienes, LTB4 

and LTC4 (40).  

The first aim of my thesis project is to develop methods to biosynthesize, isolate 

and directly NMR analyze leukotriene A epoxide from a lipoxygenase reaction. This 

fundamental issue has been rarely touched, not to say been achieved, with the leukotriene 

pathway having already been established for 3 decades. The successful fulfillment of this 

aim could not only fill a blank in the leukotriene study but also provide a strong tool for 

study of other leukotriene-related pathways.  

The ability to isolate and structurally characterize the unstable epoxides by 

biosynthesis is a strength of Brash lab. Using the biphasic synthesis and simultaneous 

extraction methods which will be discussed in the later part of this chapter, the lab 

successfully isolated and achieved structural analyses of allene epoxides which have a 

half-life of 15~30 s at 0C at pH 7.4 and are harder to handle than LTA epoxides because 

even the methyl esters are exceptionally unstable (82,83). Using the same approach, this 

lab has isolated and NMR analyzed LTA-type epoxides prepared by reactions of fatty 

acid hydroperoxides with a catalase/peroxidase-related hemoprotein (84,85). In this 

chapter I will apply the methods to the lipoxygenase reactions and aim to biosynthesize 

and isolate the LTA epoxides in sufficient amounts for NMR analysis. 

I set out the project by testing human 15-LOX-1 in producing NMR-sufficient 

amount of LTA epoxide. For quite a long time, it was believed that LOXs in general and 

15-LOX in particular might not occur in animal tissues. However, in 1975, a 15-LOX 

was discovered in rabbit reticulocytes, which was capable of oxidizing phospholipids and 
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biomembranes (86). Later the human orthologue of the rabbit 15-LOX was demonstrated 

and purified from human eosinophils (87). In mice (88) and other mammalian species, a 

leukocyte-type 12-LOX was identified and considered the functional equivalent of the 

reticulocyte-type 15-LOX in rabbits and human. Hence these enzymes are designated 

12/15-LOXs. 12/15-LOXs from different origins share similar enzymatic properties, 

including the substrate specificity and the product profiles.  The primary products of 

12/15-LOX towards arachidonic acid are 15S-HPETE and 12S-HEPTE, with 15S-HPETE 

dominant by the rabbit and human enzyme (10) and 12S-HPETE by the mouse enzyme 

(88). Importantly, the dual positional specificity renders 12/15-LOX capable of producing 

the LTA-type epoxide as is discussed in Chapter I. In 1997, a second type of 15-LOX 

was cloned from human hair roots (89). This enzyme, which is now known as epidermis-

type 15-LOX or 15-LOX-2 (with the reticulocyte-type 15-LOX named as 15-LOX-1), 

shares a low degree of homology with the reticulocyte-type 15-LOX and differs strongly 

with the latter isoform with respect to the enzymatic properties (90).  

The methods developed in this chapter will be further applied to the reactions of 

other lipoxygenase enzymes and fatty acid hydroperoxides. By directly analyzing the 

structure of the LTA products from different reaction combinations, our hypothesis about 

the LTA-type epoxide biosynthetic mechanisms will be tested. 
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Experimental procedures 

 

Materials 

Arachidonic acid was purchased from NuChek Prep Inc. (Elysian, MN). Soybean 

LOX-1 (lipoxidase, type V) was purchased from Sigma. 15S-HPETE was synthesized by 

reacting soybean LOX-1 with arachidonic acid followed by SP-HPLC purification. 

 

Biphasic reaction conditions for preparation of LTA epoxides  

Enzyme reactions were performed at 0 °C, with the 15S-HPETE substrate initially 

in hexane (5 ml, bubbled for 30 min prior to use with argon to decrease the O2 

concentration, and containing ~200 μM 15S-HPETE) layered over the recombinant 

human 15-LOX-1 (1-2 mg, ~20 nmol) in 400 μl of Tris buffer (pH 7.5 optimal for human 

15-LOX-1). The reaction was initiated by vigorous vortex mixing of the two phases. 

After 1.5 min, the hexane phase was collected and scanned from 200 to 350 nm in UV 

light by using a Perkin-Elmer Lambda-35 spectrophotometer. Then the hexane phase was 

evaporated to about 2 ml under a stream of nitrogen, treated with ethanol (20 μl) and 

ethereal diazomethane for 10 s at 0 °C and then rapidly blown to dryness and kept in 

hexane at -80 °C until further analysis. 

 

Acid-induced hydrolysis of 14,15-LTA4 methyl ester 

Acid-induced hydrolysis was performed with the purified 14,15-LTA4 methyl ester 

in a solvent of CH3CN/H2O/HAc (50/100/0.1, by volume) at room temperature for 2 
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hours. The hydrolysis products were extracted by methylene chloride and then analyzed 

by RP-HPLC. 

 

HPLC analyses 

Aliquots of the methylated hexane phase were analyzed by RP-HPLC using a 

Waters Symmetry column (25 x 0.46 cm), using a solvent of MeOH/20mM triethylamine 

pH 8.0 (90/10 by volume), at a flow rate of 1ml/min, with on-line UV detection (Agilent 

1100 series diode array detector). Further purification was achieved by SP-HPLC with a 

silica guard column (0.46 × 4.5 cm) using a solvent of hexane/triethylamine (100/0.5) run 

at 0.5 ml/min. 

 

NMR analysis 

1
H NMR and 

1
H,

1
H COSY NMR spectra were recorded on a Bruker AV-III 600 

MHz spectrometer at 283 K. The parts/million values are reported relative to the residual 

nondeuterated solvent (δ = 7.16 ppm for C6H6). Typically, 1024 scans were acquired for a 

1-D spectrum on ~20 μg of the LTA epoxide. 
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Results 

 

Expression and purification of human 15-LOX-1  

The cDNA of human 15-LOX-1 was subcloned into the pET3a vector (with an N-

terminal His6 tag) and the protein was expressed in BL21 cells. A typical preparation of a 

100-ml culture was carried out as follows: 100 ml of 2XYT medium containing 100 

μg/ml ampicillin was inoculated with a single colony of human 15-LOX-1-His in BL21 

cells and grown at 37 °C at 250 rpm till OD600 reached 0.8. IPTG (0.5 mM) was then 

added to the culture which was grown at 16 °C, 220 rpm for 4 days.  

 

Figure 7: Coomassie Blue staining of cell homogenates and purified human 15-LOX-1. 

M, protein marker. D, cell homogenates at the different days of expression. E, purified 

human 15-LOX-1. 
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At Day 4, the cells were spun down at 5000 g for 20 min in a Beckman Avanti J-

25I centrifuge, washed with 40 ml of 50 mM Tris, pH 7.9, pelleted again at 5000 g for 20 

min, and resuspended in 10 ml of 50 mM Tris, pH 8.0, 500 mM NaCl, 20% glycerol and 

100 M PMSF. The spheroplasts were then sonicated 5 times for 10 s using a model 50 

Sonic Dismembrator (Fisher Scientific) at a setting of 5. CHAPS detergent was added at 

a final concentration of 1% (w/w) and the sample kept on ice for 20 min. The resulting 

membranes were spun down at 5,000 × g for 20 min at 4 °C. The human 15-LOX-1 

activity was present in the supernatant. The supernatant was loaded on a nickel-NTA 

column (0.5 ml bed volume, Qiagen) equilibrated with 50 mM Tris buffer, pH 8.0, 500 

mM NaCl. The column was then washed with the equilibration buffer and the nonspecific 

bound proteins were eluted with 50 mM Tris buffer, pH 8.0, 500 mM NaCl, 50 mM 

imidazole. The human 15-LOX-1 was then eluted with 50 mM Tris buffer, pH 8.0, 500 

mM NaCl, 250 mM imidazole. Fractions of 0.5 ml were collected and assayed for the 

LOX activity. The positive fractions were dialyzed against 50 mM Tris buffer, pH 7.5, 

150 mM NaCl. The purity of the enzyme preparations was determined by SDS-PAGE 

and Coomassie Blue staining; the prominent band of h15-LOX-1 accounted for about 

80% of the total protein (Figure 7). 
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RP-HPLC of reaction of arachidonic acid with human 15-LOX-1 

To check the catalytic activity of the purified recombinant human 15-LOX-1 in 

producing 14,15-LTA4, I incubated arachidonic acid with human 15-LOX-1 and analyzed 

the reaction by RP-HPLC (Figure 8). 

 

Figure 8: RP-HPLC of the reaction of arachidonic acid with human 15-LOX-1.  

Arachidonic acid was incubated with human 15-LOX-1 at room temperature in 50 mM 

Tris buffer (pH 7.5) containing 150 mM NaCl. The sample was extracted using a C18 

cartridge and analyzed by RP-HPLC using a Waters Symmetry column (25 × 0.46 cm), a 

solvent of MeOH/H2O/HAc (80/20/0.01, by volume), at a flow rate of 1 ml/min, with on-

line UV detection. 

 

 

RP-HPLC analysis demonstrated the formation of 8,15-diHETEs (14,15-LTA4 

hydrolysis products), 8,15-diHPETE (double oxygenation product) (8,15-diHETEs and 

8,15-diHPETE eluted as a mixture at 5-7 min), epoxy alcohol product (with weak UV 

absorbance at 205 nm and eluted at 9.7 min) and the mono-oxygenation product 15S-
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HPETE (eluted at 16.2 min with 12S-HPETE eluted just before it). 8,15-diHETEs and 

8,15-diHPETE can be further resolved using a more polar mobile running solvent and be 

easily differentiated based on their characteristic UV chromophore (35). 

 

Method development, preparation, and analysis of 14,15-LTA4  

 

Figure 9: UV analysis of LTA epoxide formation under biphasic reaction conditions 

The UV spectrum of 15S-HPETE substrate (40 g/ml) in 5 ml hexane was recorded 

before reaction, and after vortex mixing for 90 s at 0 – 4 C with 1.5 mg 15-LOX-1 

enzyme in 400 l 0.1 M Tris, pH 7.5. 

 

To prepare and isolate 14,15-LTA4 epoxide, I used the biphasic reaction system, 

kept at 0C, with the 15S-HPETE substrate dissolved in hexane and the purified 

recombinant human 15-LOX-1 enzyme in aqueous buffer. Upon vigorous mixing, the 

more polar hydroperoxide will partition into the aqueous phase, react with enzyme, and 
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the less polar epoxide product will instantly back-extract into the hexane and thereby be 

protected from hydrolysis. In optimizing the conditions, I used a 12.5-fold excess of 

hexane over the aqueous phase (pH held at 7.5), and a mixing time of 90 s at 0 C.  

Comparison of the UV spectrum of the hexane phase before and after vortex 

mixing provided a quick feedback on the extent of reaction. In the example shown in 

Figure 9, a new conjugated triene chromophore typical of an LTA-type epoxide (max 

280 nm) is evident after mixing. The substrate concentration has diminished markedly 

and is only partially replaced by the conjugated triene. Hydrolysis of the epoxide will 

produce 8,15- and 14,15-dihydroxy derivatives that will not extract into hexane, 

especially at the elevated pH of 7.5, and the same applies to any dioxygenation products 

or epoxyalcohol derivatives (55). Overall, about 60% of the starting 15S-HPETE was 

consumed, with an estimated recovery of LTA-type epoxide under the above reaction 

conditions of 10-15% (taking into account the molar absorbance of the conjugated trienes 

is about 1.5 - 2 times the value for a conjugated diene), with the balance of products 

being accounted for mainly by the non-extractable more polar derivatives. 
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Figure 10: RP-HPLC analysis of the reaction of 15-LOX-1 with 15S-HPETE 

RP-HPLC analysis used a Waters Symmetry C18 column (0.46 × 25 cm), a flow rate of 1 

ml/min, and a solvent system of methanol/20 mM triethylamine pH 8.0 (90/10, by 

volume) with UV detection at 270 nm. 

 

After preparing the methyl esters of the hexane extract by brief reaction with 

diazomethane at 0 C, the remaining 15S-HPETE and its products were analyzed on RP-

HPLC using conditions suitable for LTA-type epoxides (43,91).  Figure 10 illustrates 

RP-HPLC analysis with UV detection at 270 nm. The unreacted 15S-HPETE (at 7.2 min 

retention time, the largest peak on the chromatogram but weakly detected at 270 nm) is 

immediately followed by a minor keto derivative (at 7.6 min retention time, a conjugated 

dienone, max 281 nm), and then by a well-resolved peak of the putative LTA-type 

epoxide (conjugated triene, max 280 nm).  
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This product 14,15-LTA4 was purified from SP-HPLC runs with a solvent of 

hexane containing 0.5% triethylamine (Figure 11). 

 

 

 

 

Figure 11: SP-HPLC analysis of the reaction of 15-LOX-1 with 15S-HPETE 

SP-HPLC analysis used a silica guard column (0.46 × 4.5 cm), a flow rate of 0.5 ml/min, 

and a solvent system of Hexane/triethylamine (100/0.5, by volume) with UV detection at 

270 nm. 

 

The pooled aliquots of LTA epoxide methyl ester (~ 20 g) were subsequently 

analyzed by 
1
H-NMR in d6-benzene (Figure 12). The 2-D COSY spectrum (below) 

helps confirm the proton assignments. The expanded regions for the olefinic protons (5.0 

– 6.5 ppm) and the epoxide protons (2.6 – 3.1 ppm) illustrate the splitting of individual 

signals and associated coupling constants from which the stereochemistry can be derived. 

These provide the configuration of the double bonds, in particular identifying the 

conjugated triene as 8Z,10E,12E, and on the epoxide protons the 2 Hz coupling between 

H14 and H15 identifies the epoxide configuration as trans. Based on these analyses, and 

with the reasonable assumption that the original 15S configuration is retained, the 



 

 33 

structure of the epoxide product can be defined as 14S,15S-trans-epoxy-eicosa-

5Z,8Z,10E,12E-tetraenoate. This confirms the structure originally proposed for this 

intermediate, now named eoxin A4, precursor of the pro-inflammatory eoxins of human 

eosinophils in asthma. 
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Figure 12:  NMR analysis of 14,15-LTA4 methyl ester. Spectra were recorded in d6-

benzene at 283 K using a Bruker 600 MHz spectrometer.  
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RP-HPLC analysis of the aqueous phase of the biphasic reaction 

To have a complete view of the biphasic reaction between 15S-HPETE and human 

15-LOX-1, I analyzed the non-extractable more polar metabolites from the aqueous phase 

after the biphasic reaction (Figure 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: RP-HPLC analysis of the aqueous phase from the biphasic reaction between 

15S-HPETE and human 15-LOX-1 

RP-HPLC analysis used a Waters Symmetry column (25 × 0.46 cm), a solvent of 

MeOH/H2O/HAc (80/20/0.01 by volume), at a flow rate of 1 ml/min, with on-line UV 

detection. 

 

Analysis of the aqueous phase revealed the presence of dihydro(pero)xy derivatives 

(prominently with all-trans conjugated trienes, max 269 nm, typical of LTA epoxide 

hydrolysis products, but including dihydroperoxides), as well as a mixture of more polar 

derivatives with trans-trans conjugated dienes (not identified, but possibly epoxyalcohols 

formed from conjugated triene-containing dihydroperoxides). 
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Acid-induced hydrolysis of 14,15-LTA4 methyl ester 

In an aqueous system at acidic pH, the LTA epoxide readily reacts with water and 

gives two pairs of dihydroxy products, each pair epimeric at one carbon position. In 

optimizing the conditions for the hydrolysis of the LTA epoxides, different conditions 

were performed with the hydrolysis products analyzed by RP-HPLC. Basically with the 

purified 14,15-LTA4 methyl ester in hand, the hydrolysis is carried in a one-phase 

mixture of the organic solvent and the water in the presence of a strong inorganic acid. 

Use of methanol as the solvent of LTA methyl ester turns out that the main products are 

the methoxy derivatives due to the nucleophilc attack on the epoxide ring by methanol. 

Switch to the solvent CH3CN helps to get a “clean” hydrolysis product profile with the 

four hydrolysis products well resolved on RP-HPLC (Figure 14). The four hydrolysis 

products, 8,15-diHETEs (t,t,t) and 14,15-diHETEs (c,t,t), were identified based on the 

comparison with the authentic standards about their UV chromophore and retention time 

on RP-HPLC. 
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Figure 14: RP-HPLC of the acid-induced hydrolysis of 14,15-LTA4 methyl ester 

14,15-LTA4 methyl ester is dissolved and put in a mixture of CH3CN/H2O/HCl 

(100/100/0.1, by volume) for 2 h at room temperature. After extraction by DCM, the 

hydrolysis sample was analyzed by RP-HPLC, using a Waters Symmetry column (25 × 

0.46 cm), a solvent of MeOH/H2O (80/20, by volume), at a flow rate of 1 ml/min, with 

on-line UV detection at 270 nm. 

 

One potential of studying the hydrolysis of the LTA epoxide is to determine the 

epoxy configuration of the LTA epoxide based on comparison with standards with 

respect to the hydrolysis product pattern. However, there are several limits about this 

application. 1) In addition to the LTA epoxide, a lipoxygenase reaction generates other 

products. The RP-HPLC chromatogram of a lipoxygenase reaction is usually far more 

complex than as is shown in Figure 14 which is directly generated from the purified LTA 

epoxide. This makes it difficult to calculate the accurate ratio among different hydrolysis 

products. 2) The hydrolysis conditions (i.e. pH and solvent used) affect the hydrolysis 

product patterns. 3) Figure 14 demonstrates the hydrolysis of the LTA methyl ester 

rather than the free acid. Esterification of the carboxyl group eliminates the effect of the 

carboxyl ion on the stability of the LTA epoxide and is expected to affect the hydrolysis 

outcome as well.  
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Discussion 

In this chapter, I developed the biphasic synthesis and simultaneous extraction 

method to biosynthesize and isolate the unstable LTA-type epoxide from a lipoxygenase 

reaction. The resulting LTA-type epoxide is purified and structurally characterized by 

NMR analysis (Figure 15). 

Figure 15: Overview of the biphasic synthesis and simultaneous extraction method. 

 

There are several requirements and special reaction conditions for the successful 

application of the above method to other lipoxygenase reactions in generating the LTA-

type epoxides: 

1) The lipoxygenase enzyme needs to be highly active in making the LTA epoxide 

from the fatty acid hydroperoxide. The high catalytic activity here means not only the 

efficient consumption of the fatty acid hydroperoxide substrate but also the high yield of 

the LTA product, which is to ensure the production of the LTA epoxide in the sufficient 

amount for NMR analysis. On the one hand, mammalian 5-LOX is not a good candidate 
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as it is not very active towards its substrate 5S-HPETE even though the majority of 

conversion goes to the LTA4 production. 5-LOX activity is well regulated inside the 

cells, and the regulation mechanism is not completely understood (92). On the other 

hand, soybean LOX-1 is not a good candidate either, since it makes mainly double 

oxygenation products from its substrate 15S-HPETE even if the substrate consumption is 

efficient. 

2) The anaerobic environment is made to optimize the yield of LTA product. In 

Chapter I I reviewed the competition among different secondary metabolic routes of fatty 

acid hydroperoxides and the important role of molecular oxygen in determining the final 

reaction outcome. There are several approaches to reduce the oxygen level in the 

solvents. In the study demonstrating the LTA synthase activity of soybean LOX-1, the 

anaerobic condition was generated inside an N2-inflated Aldrich Atmosbag (30). In 

another study identifying the novel substrates for orphan P450s, they removed air by 

subjecting a manifold device to several cycles of alternate vacuum and Ar purging (93). 

In the method developed in this chapter, bubbling the reaction solvent with Ar is utilized 

to reduce the oxygen concentration. 

3) The pH of the aqueous phase of the biphasic system needs to be optimized, 

which often requires a compromise between the enzymatic activity, the back extraction 

efficiency and the stability of the resulting LTA product. Lipoxygenase enzymes differ in 

their pH optima, and for instance the soybean LOX-1 requires an alkaline condition to 

achieve its best catalytic activity, whereas the human 12R-LOX, which plays important 

roles in generating the skin barrier, is optimal at pH 6 (94). The pH of the aqueous phase 

has a significant effect on the partition of LTA products. As the measured pKa of linoleic 
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and arachidonic acids is pH 7 - 8 (95,96), the likely pKa of the epoxide derivatives is 

probably around pH 6 - 7. Accordingly a change in environmental pH in this range would 

shift the equilibrium between the ionic and non-ionic forms, thus changing the partition 

of LTA products between the two phases. Thirdly, the stability of LTA products is 

another factor that needs to be considered. Although alkaline conditions are generally 

helpful in stabilizing LTA epoxides, the ionization of the carboxyl group may also be a 

determinant of stability, especially in the range of pH around the pKa. (LTA4 methyl 

ester is considerably more stable than the free acid). Although the half-life of LTA4 is 

reported as about 18 s at 4 C at pH 7.4, lowering the pH will suppress ionization of the 

carboxyl which may have a protective effect, countering the effects of acid-induced 

hydrolysis. In my experiments, I found the optimal recoveries of LTA epoxides in 

reactions conducted at pH 6.5, which may be explained in part by this stabilizing factor. 

4) Optimized reaction temperature and reaction time. To prevent the degradation of 

the unstable LTA products, the reaction temperature needs to be low and the reaction 

time being short.  
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CHAPTER III 

 

BIOSYNTHETIC MECHANISMS OF LEUKOTRIENE A EPOXIDE 

DUAL ROLE OF LIPOXYGENASE IRON 

 

Introduction 

The formation of a cis-epoxy leukotriene A in a biological system and from a 

lipoxygenase reaction in particular was first demonstrated by E.J. Corey and his 

colleagues in 1989 (58). Their study demonstrated a relationship between the hydrogen 

abstraction, an inherent property of lipoxygenase catalyst, and the configuration of the 

resulting LTA epoxide, i.e. with 5S-HPETE as substrate, potato “5-LOX” (abstracting 

10R hydrogen) produced trans-epoxy LTA4 and coral “8R-LOX”  (abstracting 10S 

hydrogen) produced the cis-epoxide isomer of LTA4 (6-epi-LTA4). This important study 

has not received much research interest, which is reflected by its moderate citation 

number. However, we decided to extend their work aiming to investigate 1) whether the 

formation of the cis-LTA epoxide is unique for coral 8R-LOX or it could occur with a 

proper combination of the substrate (fatty acid hydroperoxide) and the enzyme catalyst 

(lipoxygenase) and 2) whether we can develop a LTA biosynthetic mechanism that can 

reconcile and explain the LTA formation from reactions of different fatty acid 

hydroperoxide substrates and different lipoxygenase enzymes. The classical leukotriene 

biosynthetic pathway regains wide research interest and clinical potential due to the 

recently discovered anti-inflammatory and pro-resolution pathways which are proposed 

with the leukotriene pathway as a model. The successful fulfillment of our aim could not 
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only advance our knowledge on leukotriene formation but also guide the research on 

those novel potent anti-inflammatory and pro-resolution lipid mediators. 

As is discussed in Chapter I, the central hypothesis of our proposed LTA 

biosynthetic mechanism is that transformation from the fatty acid hydroperoxide to the 

LTA epoxide depends on participation of the lipoxygenase non-heme iron in catalyzing 

both the initial hydrogen abstraction and in facilitating cleavage of the hydroperoxide 

moiety (a dual role of the lipoxygenase iron). This postulate implies that the hydrogen 

abstracted and the hydroperoxide moiety lie in a suprafacial relationship, which in turn, 

dictates that the cis or trans epoxide configuration of the LTA product depends on the 

pro-R or pro-S chirality of the H-abstraction (an inherent property of the specific 

lipoxygenase) and the R or S chirality of the HPETE substrate. 

To test this hypothesis I plan to investigate the LTA epoxide formation from 

reactions of different enantiomeric fatty acid hydroperoxides (with different 

hydroperoxide position and chirality) and different lipoxygenase enzymes (holding the 

fatty acid hydroperoxides in different orientations and abstracting different hydrogens 

from substrates). Our focus is the epoxy configuration of the resulting LTA product (cis 

or trans). One method in determining the epoxy configuration is to compare with the 

synthetic LTA standards in transformation to their stable hydrolysis products. With the 

methods developed in Chapter II for biosynthesis, isolation and direct NMR analysis of 

the LTA epoxide, I will determine the epoxy configuration of LTA product by isolating 

and directly NMR characterizing the LTA product structure. 
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Figure 16: Summary of reactions of the enantiomeric fatty acid hydroperoxides with 

different lipoxygenases 

 

The reactions to be performed (substrates, enzymes, and expected LTA epoxide 

products) are listed in Figure 16. The top four reactions are on 5-HPETE (R or S), and 

the bottom four are on 15-HPETE (R or S). Four lipoxygenase enzymes in the list are 

representative in holding the fatty acid hydroperoxides in different orientations (head-first 

or tail-first) and abstracting the stereospecific hydrogen (10D or 10L) from arachidonate 

hydroperoxides. 
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In entries 1 and 2, 5S-LOX is used to react with 5-HPETE (R or S). Mammalian 5-

LOX is the enzyme accounting for the production of the bioactive leukotrienes. Recently 

the collaborator of Brash lab has obtained the crystal structure of human 5-LOX (97). In 

human, 5-LOX is expressed primarily in various leukocytes, including 

polymorphonuclear leukocytes (neutrophils and eosinophils), monocytes/macrophages 

and etc (98). In resting cells, 5-LOX resides in the cytosol. Upon cell stimulation, 5-LOX 

is targeted to the nuclear membrane where it acquires its substrate arachidonic acid 

liberated from the membrane by the action of the cytosolic phospholipase A2 (98). The 

process requires the participation of several other factors, including Ca
2+

, membrane 

containing phosphatidylcholine and the transmembrane protein FLAP (five-

lipoxygenase-activating protein), all of which are also necessary for the enzyme to 

achieve the optimal catalytic activity in vitro (92).  

Plant 9-LOX is another option to be utilized as an arachidonate 5-LOX. The 

abundance of linoleic acid (C18.26) and linolenic acid (C18.36) in higher plants 

makes them the natural substrates for the multiple plant lipoxygenases. The term plant 9-

LOX comes from their catalytic activity in the highly specific hydroperoxidation at C9 of 

linoleic acid. When arachidonic acid is used as substrate, plant 9-LOX tend to form a 

mixture of chiral hydroperoxides. Potato 9-LOX gives 5S-HPETE as the major 

hydroperoxide (99). Arabidopsis thaliana AtLOX1 and tomato LOXA form 11S-HPETE 

and 5S-HPETE (100). The substrate binding orientation and the stereospecificity of the 

hydrogen abstraction were investigated in 1972, and it was shown that corn 9-LOX binds 

linoleic acid in a head/carboxyl-first manner and stereospecifically abstracts the 11DR 

hydrogen (9). The head/carboxyl-first binding orientation is also shown by the work of 
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this lab on the study of Arabidopsis thaliana AtLOX1 and tomato LOXA (100). In 

addition to the 5S-lipoxygenation activity, plant 9-LOX could function as a LTA synthase 

towards fatty acid hydroperoxide. Potato 5-LOX, one of their homologues, is capable of 

LTA epoxide synthesis and has been used as a model for the study of 5-LOX-catalyzed 

leukotriene synthesis in earlier studies (48,99,101). 

In entries 3 and 4, 8R-LOX is used to react with 5-HPETE (R or S). In 1986 Bundy 

and colleagues studied the coral Pseudoplexaura porosa and uncovered 8R-lipoxygenase 

activity, the first known existence of an R-specific lipoxygenase (59). 8R-LOX was 

subsequently found to be widespread in corals including in P. homomalla (102) as well as 

in many marine invertebrates, and a 12R-LOX is highly conserved and functionally 

essential in mammals (94,103). In the late 1990s this lab achieved the purification of a 

native 8R-LOX (60) and the expression of recombinant 8R-LOX from AOS-LOX fusion 

protein from P. homomalla (61). In contrast to the head/carboxyl-first binding within 5-

LOX, it is deduced that the substrate enters 8R-LOX in a tail/methyl-first manner (104).  

In entries 5 to 8, two different 15-LOX are used to react with 15-HPETE (R or S). 

The reactions of the two enzymes with 15-HPETE differ mainly in two aspects: 1) The 

reaction of 12/15-LOX with 15S-HPETE leads to both 14,15-LTA4 and double 

oxygenation products, 8S,15S-diHPETE and 5S,15S-diHPETE (55). Soybean LOX-1 

converts 15S-HPETE exclusively to 8S,15S-diHPETE and 5S,15S-diHPETE (105). The 

formation of the LTA-type product by soybean LOX-1 can be achieved in the anaerobic 

conditions (30). 2) The substrate orientation. Because there are no X-ray structures 

available for a LOX with the bound fatty acid substrate (and the fatty acid 

hydroperoxide), there has always been debate on the route of substrate access to the LOX 
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catalytic domain (106,107). The reactions using fatty acids esterified in 

phosphatidylcholine and the investigations about the stereoselective H-abstraction 

provide clues to the modeling of the lipoxygenase-substrate interaction. It is well 

accepted that fatty acid (linoleic acid or arachidonic acid) is bound in the tail/methyl-first 

orientation in both 12/15-LOX and soybean LOX-1. When it comes to the reactions with 

the fatty acid hydroperoxide (15S-HPETE), the substrate binding orientations differ in the 

two enzymes. The formation of 8S,15S-diHPETE and 5S,15S-diHPETE (rather than 

8R,15S-diHPETE and 5R,15S-diHPETE) from the further oxygenation of 15S-HPETE 

implies that 15S-HPETE binds soybean LOX-1 in the head/carboxyl-first orientation (as 

is shown in entry 7) (108), the reversed orientation of arachidonic acid binding. This is 

based on the thinking that the substrates (arachidonic acid and 15S-HPETE) need to be 

exposed to the same open ligand position of the active site iron (1). Alternatively in the 

transformation of 15S-HPETE to 14,15-LTA4 by 12/15-LOX, the stereoselective 

hydrogen abstraction from 10L position implies that the 15S-HPETE binds in the 

tail/methyl-first orientation in 12/15-LOX during its transformation to the LTA product 

(47). 

 

  



 

 47 

Experimental procedures 

 

Materials 

Arachidonic acid and its methyl ester were purchased from NuChek Prep Inc. 

(Elysian, MN). Soybean LOX-1 (lipoxidase, type V) and α-tocopherol were purchased 

from Sigma.  

 

Expression and purification of Arabidopsis thaliana AtLOX1 and coral 8R-lipoxygenase 

The cDNA of Arabidopsis thaliana AtLOX1 were subcloned into the pET14b 

vector (with an N-terminal His6 tag). The protein was expressed in E. coli BL21 (DE3) 

cells and purified by nickel affinity chromatography. 

The cDNA of the 8R-LOX domain of the P. homomalla peroxidase/lipoxygenase 

fusion protein was subcloned into the pET3 vector (with an N-terminal His4 tag), and the 

protein was expressed in E. coli BL21 (DE3) cells and purified by nickel affinity 

chromatography. 

 

Biphasic reaction conditions for preparation of LTA epoxides  

Enzyme reactions were performed at 0 °C, with the HPETE substrate initially in 

hexane (5 ml, bubbled for 30 min prior to use with argon to reduce the O2 concentration, 

and containing ~200 μM HPETE) layered over the recombinant LOX enzyme (1-2 mg, 

~20 nmol) in 400 μl of Tris buffer (pH 7.5 for human 15-LOX-1 and pH 6.0 for 

AtLOX1). The reaction was initiated by vigorous vortex mixing of the two phases. After 

1.5 min, the hexane phase was collected and scanned from 200-350 nm in UV light by 
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using a Perkin-Elmer Lambda-35 spectrophotometer. Then the hexane phase was 

evaporated to about 2 ml under a stream of nitrogen, treated with ethanol (20 μl) and 

ethereal diazomethane for 10 s at 0 °C and then rapidly blown to dryness and kept in 

hexane at -80 °C until further analysis. 

 

HPLC analyses 

Aliquots of the methylated hexane phase were analyzed by RP-HPLC using a 

Waters Symmetry column (25 x 0.46 cm), using a solvent of MeOH/20mM triethylamine 

pH 8.0 (90/10, by volume), at a flow rate of 1ml/min, with on-line UV detection (Agilent 

1100 series diode array detector). Further purification was achieved by SP-HPLC using a 

silica guard column (0.46 × 4.5 cm), using a solvent of hexane/triethylamine (100/0.5, by 

volume) run at 0.5 ml/min. 

 

NMR analysis 

1
H NMR and 

1
H,

1
H COSY NMR spectra were recorded on a Bruker AV-III 600 

MHz spectrometer at 283 K. The parts/million values are reported relative to residual 

nondeuterated solvent (δ = 7.16 ppm for C6H6). Typically, 1024 scans were acquired for a 

1-D spectrum on ~20 μg of LTA epoxide. 

 

 

GC-MS analysis of 5-oxo-ETE  

The methoxime derivative was prepared by treatment with methoxylamine 

hydrochloride (10 mg/ml in pyridine) at room temperature for 16 h. The trimethylsilyl 
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(TMS) ester derivative was prepared using bis(trimethylsilyl)-trifluoroacetamide/pyridine 

(12 μl, 5:1, v/v) for 2 h at room temperature. Analysis of the trimethylsilyl ester 

methoxime derivative was carried out in the positive ion electron impact mode (70 eV) 

using a Thermo Finnigan Trace DSQ ion trap GC-MS with the Xcalibur data system. 

Samples were injected at 150 °C, and after 1 min the temperature was programmed to 

300 °C at 20 °C/min. The spectrum was recorded by repetitive scanning over the range of 

m/z 50-500. 
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Results 

The reactions of 15S-HPETE with 15-LOX-1in the presence of 13S-HPODE or NDGA 

In Chapter 1, it was proposed that the non-heme lipoxygenase iron plays a dual role 

in leukotriene A epoxide biosynthesis, with the ferric iron in catalyzing the initial 

hydrogen abstraction and the ferrous iron in catalyzing the subsequent hydroperoxide 

homolytic cleavage. To show that both states of the lipoxygenase iron are necessary for 

the LTA formation in the reaction of 15S-HPETE with human 15-LOX-1, I performed 

the reaction in the presence of excess 13S-HPODE or NDGA. 13S-HPODE is not a 

substrate for human 15-LOX-1 oxygenation reaction. However, the ferrous lipoxygenase 

iron cleaves the hydroperoxide bond of 13S-HPODE and is converted to the ferric state. 

In the presence of excess 13S-HPODE, the lipoxygenase iron is kept at the ferric state. 

On the other hand, NDGA, an effective lipoxygenase inhibitor acting by reducing the 

ferric iron to the ferrous form, keeps the lipoxygenase iron in the ferrous state. 

 

Figure 17: RP-HPLC of reactions of 15S-HPETE with human 15-LOX-1 

Incubations were performed in a 1 ml reaction buffer (pH 7.5) at room temperature using 

15S-HPETE (10 g/ml) and recombinant human 15-LOX-1 (10 g/ml) (left) in the 

presence of excess 13S-HPODE (50 g/ml)(middle) or NDGA (10 M)(right). The same 
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aliquots of the reaction were analyzed by RP-HPLC using a Waters Symmetry column 

(25 × 0.46 cm), using a solvent of MeOH/H2O/HAc (80/20/0.01, by volume), at a flow 

rate of 1 ml/min, with on-line UV detection at 270 nm.  

 

 

In the presence of excess 13S-HPODE or NDGA, the formation of the LTA 

epoxide was significantly diminished, which was reflected by the decreased formation of 

8,15-diHETE(t,t,t), 14,15-LTA4 non-enzymatic hydrolysis products. This indicates that 

both states of the lipoxygenase iron are indispensable for the LTA formation. As the 

ferric iron is the active species in catalyzing the oxygenation reaction, excess 13S-

HPEDE significantly increased the formation of 8,15-diHPETE(t,c,t), the double 

oxygenation product. The formation of 8,15-diHPETE(t,c,t) was almost completely 

abolished by NDGA (Figure 17). The identification of the non-enzymatic hydrolysis 

products 8,15-diHETE (t,t,t) and the double oxygenation product 8,15-diHPETE (t,c,t) is 

based on co-chromatography with authentic standards and their characteristic UV spectra 

(105). 

 

Synthesis and purification of enantiomeric fatty acid hydroperoxides 

5-HPETE (R or S) and 15-HPETE (R or S) are the fatty acid hydroperoxides used in 

the reactions listed in Figure 16. For the purpose of producing LTA products in sufficient 

amounts for NMR analysis, the fatty acid hydroperoxide substrates need to be in the 

milligram quantities. Preparing the pure enantiomeric fatty acid hydroperoxides is an 

expertise of this laboratory. The desired hydroperoxide can be produced via the 

controlled autoxidation or the enzymatic synthesis followed by HPLC purification. 
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1) Preparation of 5S-HPETE, 5R-HPETE and 15R-HPETE 

Racemic hydroperoxides were prepared by vitamin E-controlled autoxidation 

(109). Arachidonic acid methyl ester (500 mg) was transferred to a 2 L round-bottomed 

flask, mixed with 10% (w/w) -tocopherol, evaporated to dryness, and the flask filled 

with oxygen, capped and placed in an oven at 37 °C. The oxygen was replenished daily. 

After 3 days, the lipid was dissolved in 10 ml of methylene chloride and stored at -30 °C. 

The autoxidation sample was first fractionated and partly purified using a 5 g silica Bond-

Elut (Varian) with the solvents of hexane/ethyl acetate (three fractions of 10 ml of 95/5, 

followed by three of 10 ml of 90/10, and then three of 10 ml of 85/5, v/v); the HPETE 

methyl esters eluted in fractions 6 through 9. Racemic 5-HPETE and 15-HPETE methyl 

esters were then separated from other positional HPETE isomers by SP-HPLC using a 

semi-preparative Beckman Ultrasphere 10 silica column (25 x 1 cm) with a solvent 

system of hexane/isopropanol (100/1, by volume) run at a flow rate of 4 ml/min. Finally 

the enantiomeric HPETE methyl esters were resolved using a semi-preparative Chiralpak 

AD column (Chiral Technologies Inc.), 25 x 1 cm, with a solvent system of 

hexane/methanol (100/2, by volume) run at a flow rate of 4 ml/min (110). 
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Figure 18: Chiral HPLC of purified 5R-HPETE. Chiralpak AD column (Chiral 

Technologies Inc.), 25 x 0.46 cm, with a solvent system of hexane/methanol (100/2, by 

volume) run at a flow rate of 4 ml/min. 

 

To prepare the corresponding free acids, the purified HPETE methyl esters (1 mg) 

in 2 ml methanol/methylene chloride (10/1, by volume) were brought to room 

temperature, an equal volume of 1M KOH was added, mixed and the sample kept at 

room temperature under an atmosphere of argon with occasional sonication in a water 

bath. After 20 min, the sample was acidified to pH 4.5 and extracted with an equal 

volume of methylene chloride. The organic phase was washed twice with water and then 

evaporated to dryness under a stream of nitrogen. The dried sample was redissolved in 

methanol (for 15-HPETE) or acetonitrile (for 5-HPETE, long-time storage of 5-HPETE 

in the alcohol solvent produces 5-HPETE ethyl ester) and stored at -30 °C. HPETEs were 

quantified based on the conjugated diene chromophore at 236/237 nm,  = 25,000 (10 

g/ml = 0.75 AU).  
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2) Enzymatic preparation of 15S-HPETE 

15S-HPETE is prepared by the reaction of arachidonic acid with the commercially 

available soybean LOX-1 followed by SP-HPLC purification (hexane/IPA, 100/2, by 

volume). 

 

Reactions of 5-HPETE (R or S) with 5-LOX  

In reactions 1 and 2 (Figure 16), 5-HPETE (R or S) is reacted with 5-LOX. 

Considering the requirement that the LOX enzyme used in the biphasic reactions should 

have a very high catalytic activity (which our available preparations of mammalian 5-

LOX do not), I switched to the use of recombinant plant 9-LOX, Arabidopsis thaliana 

AtLOX1 and tomato LOXA, as the arachidonate 5-LOX. 

To test the LTA synthase activity of AtLOX1 and tomato LOXA, arachidonic acid 

was incubated with these two enzymes separately and the reactions were monitored by 

UV spectrometer. Both enzymes showed a strong activity catalyzing the mono-oxidation 

of the arachidonic acid substrate, which was reflected by the rapid appearance of a 

chromophore with the maximal absorbance at ~237 nm. However, while AtLOX1 further 

converted the mono-hydroperoxides to the secondary metabolites, tomato LOXA showed 

little secondary transformation (data not shown). 

Further investigations were performed on the conversions of enantiomeric 5-

HPETEs by AtLOX1 (Figure 19). RP-HPLC of the reaction with 5S-HPETE 

demonstrated that AtLOX1 mainly generated 5,12-diHETE (t,t,t), the non-enzymatic 

hydrolysis products of LTA4. With 5R-HPETE as substrate, AtLOX1 also demonstrated 

LTA synthase activity. In addition, 5-oxo-eicosatetraenoic acid (5-oxo-ETE) was 



 

 55 

generated and was further converted to 5-oxo-12-hydroperoxy-ETE which absorbs UV at 

320 nm. 

 

Figure 19: RP-HPLC of Arabidopsis thaliana AtLOX1 incubations with 5S-HPETE or 

5R-HPETE. Waters Symmetry column (25 x 0.46 cm), MeOH/H2O/HAc:80/20/0.01 (by 

volume), 1 ml/min. 

 

Since AtLOX1 demonstrated LTA synthase activity towards both 5S-HPETE and 

5R-HPETE, I applied the biphasic reaction system developed in Chapter 2 to the 

reactions of AtLOX1 with the enantiomeric 5-HPETE (Figure 20).  
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Figure 20: UV spectrum of 5S-HPETE (top) and 5R-HPETE (bottom) in hexane before 

and after vortex mixing with 5-LOX enzyme (AtLOX1). 

 

After vortex mixing of AtLOX1 with 5S-HPETE at 0 °C, UV spectroscopy of the 

hexane phase showed a decrease in substrate and appearance of a new chromophore with 
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max at 280 nm, characteristic of LTA4 epoxide. Incubation of the 5R enantiomer of 5-

HPETE with 5-LOX was performed under the same conditions. UV spectroscopy of the 

hexane phase after vortex mixing showed the appearance of a less well-defined spectrum 

in the 280 nm region, comprised of a mixture (Figure 20). 

 

Figure 21: RP-HPLC analyses of the product methyl esters from 5S-HPETE (top) and 

5R-HPETE (bottom). Column: Waters Symmetry C18, 25 x 0.46 cm; solvent, 

methanol/20mM triethylamine pH 8.0 (90/10, by volume); flow rate, 1 ml/min, UV 

detection at 270 nm. 
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After methyl esterification with diazomethane, the products were analyzed by RP-

HPLC (Figure 21). Incubation of 5S-HPETE with AtLOX1 mainly generated LTA4, 

whereas two products were derived from 5R-HPETE incubation. The major product from 

5R-HPETE exhibited a dienone chromophore with max in MeOH/H2O (90:10) at 281 

nm. Its structure was identified as 5-oxo-eicosatetraenoic acid (5-oxo-ETE) by GC-MS 

analysis of its TMS ester methoxime derivative (Figure 22), and by reduction with 

NaBH4 to 5-hydroxyeicosatetraenoic acid (5-HETE), identified by comparison to an 

authentic standard. 

 

Figure 22: GC/MS analysis of 5-oxo-ETE TMS ester methoxime derivative. 
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The complete structures of LTA products from 5S- and 5R-HPETE were then 

established by 1H-NMR (Figure 23). 

 

 Chemical Shift (ppm)  Coupling Constants (Hz) 

Protons LTA4 Me 5-epi-LTA4 Me J LTA4 Me 5-epi-LTA4 Me 

2 2.05 2.05 J 2,3 7.4 7.3 

3 1.31 1.31 J 3,4   

4 1.59 1.58 J 4,5 5.6 6.1 

5 2.53 2.75 J 5,6 1.8 4.3 

6 2.91 3.19 J 6,7 7.9 7.6 

7 5.29 5.4-5.5 J 7,8 15.2 15.2 

8 6.33 6.37 J 8,9 11.0 10.9 

9 6.11 6.11 J 9,10 14.8 14.8 

10 6.56 6.54 J 10,11 11.2 11.2 

11 6.05 6.03 J 11,12 11.2 11.2 

12 5.4-5.5 5.4-5.5 J 12,13 6.1 6.3 

13 2.95 2.94 J 13,14 6.1 6.3 

14 5.4-5.5 5.4-5.4 J 14,15   

15 5.4-5.5 5.4-5.4 J 15,16   

16 2.03 2.03 J 16,17   

17 1.2-1.3 1.2-1.3 J 17,18   

18 1.2-1.3 1.2-1.3 J 18,19   

19 1.2-1.3 1.2-1.3 J 19,20   

20 0.88 0.88    

 

Figure 23: Proton chemical shifts and coupling constants for LTA4 methyl ester and 5-

epi-LTA4 methyl ester in C6D6. 

 

Most importantly, this confirmed the 5,6-trans configuration of the epoxide derived 

from 5S-HPETE (J5,6 = 2 Hz) and the 5,6-cis configuration of the epoxide derived from 

5R-HPETE (J5,6 = 4 Hz), thus identifying the product from 5S-HPETE as the 5S,6S trans 
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epoxide, LTA4 and the product from 5R-HPETE as the 5R,6S cis epoxide, 5-epi-LTA4 

(Figure 24). 

 

Figure 24: Partial 
1
H-NMR spectrum (2.45 – 3.25 ppm) of the trans-LTA epoxide 

product from 5S-HPETE (top) and the cis-LTA epoxide product from 5R-HPETE 

(bottom). 
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Comparison of the NMR spectra 

of LTA4 and its 5-epimer also defined 

their identical double bond 

configurations as 7E,9E,11Z,14Z 

(Figure 25). Their UV spectra are 

almost superimposable, with the 

difference only discernable with the 

two overlaid. 

 

 

 

 

Figure 25: Spectral comparison of 

LTA4 and 5-epi-LTA4 

A, NMR spectra of the olefin protons 

in LTA4 and 5-epi-LTA4 methyl 

esters. B, overlay of the UV spectra of 

LTA4 and (5R,6S) 5-epi-LTA4. Top: 

detailed view. Below: full spectra, 

200-350 nm. (LTA4 has max as 280 

nm and 5-epi-LTA4 has max as 281 

nm.)  
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Reactions of 5-HPETE (R or S) with 8R-LOX  

In reactions 3 and 4 (Figure 16), 5-HPETE (R or S) is reacted with 8R-LOX. To 

test the LTA synthase activity of 8R-LOX, the incubation was first performed on the 

racemic 5-HPETE by the recombinant 8R-LOX from AOS-LOX fusion protein from P. 

homomalla. RP-HPLC analysis of the incubation demonstrated that the major products 

are double oxygenation products 5,12-diHPETEs and 5,8-diHPETEs, with the second 

hydroperoxidation on either C8 or C12 position (Figure 26). 5,8-diHPETEs are the bis-

allylic hydroperoxides with a relatively high max at 242 nm. It is notable that detection of 

this type of bis-allylic fatty acid hydroperoxides is uncommon especially from a room-

temperature incubation. This implies that there is a highly efficient hydrogen donor 

within the 8R-LOX active site. 

 

Figure 26: RP-HPLC of incubation of the racemic 5-HPETE with 8R-LOX. Column: 

Waters Symmetry C18, 25 x 0.46 cm; solvent, CH3CN/H2O/HAc (45/55/0.01, by 

volume); flow rate, 1 ml/min. 
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As the indicator of the LTA epoxide formation, the non-enzymatic hydrolysis 

products 5,12-diHETEs (t,t,t) were not significantly detected from the RP-HPLC analysis 

(Figure 26). The similar product profile was obtained when the native 8R-LOX purified 

from P. homomalla was used in the incubation. 

 

Reactions of 15-HPETE (R or S) with 12/15-LOX 

In reactions 5 and 6 (Figure 16), 15-HPETE (R or S) is reacted with 12/15-LOX. In 

Chapter 2, reaction 5 (incubation of 15S-HPETE with 12/15-LOX) is the model reaction 

based on which the biphasic synthesis and instantaneous extraction method was 

developed to produce the LTA epoxide in the amount sufficient for NMR analysis. To 

investigate the significance of substrate chirality to the LTA epoxide formation, I 

examined the reaction of human 15-LOX-1 with the mirror image substrate, 15R-HPETE 

(Figure 27). 

 

Figure 27: RP-HPLC analysis of the product methyl esters from the biphasic reaction of 

15R-HPETE with human 15-LOX-1. Column: Waters Symmetry C18, 25 x 0.46 cm; 

solvent: methanol/20mM triethylamine pH 8.0 (90/10, by volume); flow rate: 1 ml/min, 
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UV detection at 270 nm. Right: RP-HPLC chromatogram over the range of LTA epoxide 

products. 

 

Similar to the reaction of 5R-HPETE with AtLOX1, RP-HPLC analysis of the 

reaction between 15R-HPETE and human 15-LOX-1 showed that the predominant 

product was 15-oxo-ETE. The yield of the LTA epoxides is low and NMR analysis of 

their stereochemistry becomes difficult. In addition, there are three LTA products 

resolved on RP-HPLC. By comparison to the standard, peak 3 is the 14,15-LTA4. 

According to that 5-epi-LTA4 (cis-epoxide) elutes earlier than LTA4 (trans-epoxide) on 

this RP-HPLC system, peak 1 or peak 2 is likely to be the 15-epi-14,15-LTA4. 

 

Reactions of 15-HPETE (R or S) with soybean LOX 

In reactions 7 and 8 (Figure 16), 15-HPETE (R or S) is reacted with soybean LOX-

1. Soybean LOX-1 is generally considered as the prototypical LOX enzyme. Unlike 

mammalian 5-LOX which transforms its primary product 5S-HPETE almost exclusively 

to LTA4, soybean LOX-1 normally produces no detectable leukotrienes. Instead soybean 

LOX-1 further oxygenates its primary product 15S-HPETE to 5,15-diHPETE and 8,15-

diHPETE. It is reasoned that the high availability of molecular oxygen within the LOX 

active sites results in this reaction outcome. 

In this lab, it has been demonstrated that under anaerobic conditions soybean LOX-

1 converted 15S-HPETE partly to a pair of 8,15-diHETEs with all-trans-conjugated 

trienes, the non-enzymatic hydrolysis products of the 14,15-LTA4 epoxide. However, by 

applying the biphasic reaction system to the reaction of 15S-HPETE with soybean LOX-

1, no significant LTA epoxide formation was detected. 
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In the original paper showing the LTA synthase activity of soybean LOX-1, the 

incubation time required to produce 8,15-diHETEs (t,t,t) was relatively long (2 hours) 

and the anaerobic conditions were achieved by using an N2-inflated Aldrich Atmosbag. 

The short reaction time (a compromise between the substrate consumption and the 

product stability) and the incomplete oxygen exclusion from the reaction environment 

(molecular oxygen is excluded by bubbling the reaction solvent with argon for 20 min) 

may constitute two factors that prevent the biphasic reaction system being applied to the 

soybean LOX-1 reactions. 
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Discussion 

The two purposes of this project were to enable the direct structural analysis of the 

unstable LTA-type epoxides from lipoxygenase reactions and to further the 

understanding of factors that control their precise stereochemistry. In Chapter II, methods 

were developed to isolate and directly NMR characterize 14,15-LTA4 from the reaction 

of 15S-HPETE with human 15-LOX-1. In this chapter, the methods were applied to a list 

of reactions of different enantiomeric fatty acid hydroperoxides and lipoxygenase 

enzymes. The reactions listed in Figure 16 reflect the combinations of different factors 

that might contribute to the stereochemistry control of the resulting LTA products. The 

factors include 1) the chirality of the substrate hydroperoxide group, 2) the stereo-specific 

hydrogen abstraction by the lipoxygenase enzyme and 3) the substrate binding orientation 

within the enzyme active site. 

Isolation and direct NMR analysis of LTA products were achieved in three 

reactions listed in Figure 16. They are the reactions of 5S-HPETE with AtLOX1, 5R-

HPETE with AtLOX1 and 15S-HPETE with human 15-LOX-1. The application of the 

biphasic system to the other five reactions led to the minimal production of LTA 

products. In these “failed” reactions other products dominate. Soybean LOX-1 and coral 

8R-LOX turn out to be poor LTA synthases, the most significant secondary products 

being the double oxygenation products. In the reaction of 15R-HPETE with human 15-

LOX-1, the major product is the keto derivative, 15-oxo-eicosatetraenoic acid (15-oxo-

ETE). In the reaction of 5R-HPETE with AtLOX1, the major product is 5-oxo-ETE 

which is much more prominent than 5-epi-LTA4. The biosynthesis of keto derivatives 

from the fatty acid hydroperoxides is both biologically and mechanistically interesting. 
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Instead of being involved in the metabolic inactivation, the keto derivative could function 

as a highly potent chemoattractant or act an electrophile which is to adduct with the 

nucleophilic amino acid residues in the biologically important proteins (26). 

Mechanistically, it has been well established that 5-HETE (reduced form of 5-HPETE) is 

oxidized to 5-oxo-ETE by 5-hydroxyeicosanoid dehydrogenase. My results here show 

that the keto derivative could be directly produced from the fatty acid hydroperoxide by a 

specific lipoxygenase. The lipoxygenase transformation from the fatty acid 

hydroperoxide to the corresponding keto derivative is supposed to be initiated by the 

homolytic cleavage of the hydroperoxide group which is catalyzed by the ferrous non-

heme iron (Figure 28). 

 

Figure 28: Dehydration of fatty acid hydroperoxides to keto derivatives by lipoxygenase 

 

In order to understand the relationship between the control factors and the resulting 

product stereochemistry, I focused on the reactions of the enantiomeric 5-HPETE with 

AtLOX1 in which the biphasic system was successfully applied and the structures of the 

resulting LTA products were unequivocally established by NMR analysis. The structure 
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of the classic 5-lipoxygenase product, LTA4, was confirmed directly from the reaction of 

5S-HPETE with the recombinant 5-LOX, AtLOX1. More importantly, incubation of 5R-

HPETE with AtLOX1 produced 5R,6S cis epoxide, 5-epi-LTA4. 

To explain the observations that enantiomeric 5-HPETEs produced trans- or cis- 

LTA epoxide by the same lipoxygenase enzyme, we developed a conceptual model 

underlying the mechanistic basis of the LOX-catalyzed transformation of HPETE 

precursor to LTA-type epoxide (Figure 29). The non-heme iron in the LOX active site 

must be involved in the initial hydrogen abstraction from the HPETE substrate, and 

cleavage of the hydroperoxide moiety. Key to our thinking, therefore, is that the 

hydrogen and hydroperoxide should exhibit a suprafacial relationship. As the conversion 

of [10R-
3
H]5-HPETE to LTA4 is associated with a primary isotope effect resulting in an 

enrichment in the specific activity of the unreacted substrate (49,65,66), this provides 

critical evidence identifying the 10pro-R hydrogen abstraction as the first irreversible step 

in leukotriene A4 biosynthesis. In turn, this implicates the ferric iron (hydroxide) in 5-

LOX as the active species catalyzing the first step of the transformation from 5-HPETE. 

The observation that reducing inhibitors of the lipoxygenase that leave the active site iron 

in the ferrous state block both the dioxygenase reaction and LTA synthesis provides 

further support for involvement of the ferric iron in catalyzing the initial hydrogen 

abstraction: 
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Further reaction will entail homolytic cleavage of the hydroperoxide, thus cycling 

the lipoxygenase ferrous iron back to ferric, as radical recombination produces the 

epoxide product: 

 

It follows from this that the iron must have access to the initial hydrogen 

abstracted, as well as the hydroperoxide, i.e. the two are on the same face of the substrate. 

In achieving this, 5S-HPETE (the natural enantiomer) must assume the transoid 

conformation at the 5-carbon, thus dictating the natural trans-epoxy configuration of 

LTA4 (Figure 29A). The enantiomeric substrate, 5R-HPETE, on the other hand has to 

assume the cisoid conformation, which results in its transformation to 5-epi-LTA4, now 

established experimentally (Figure 29B). 

 

 

 

 

 

 

 

 

 

 

Figure 29: Lipoxygenase-catalyzed transformations to LTA epoxides involve a dual role 

of the lipoxygenase non-heme iron. 
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To complete the picture with related transformations, Figure 29C illustrates the 

result reported by E. J. Corey and coworkers, in which an 8R-LOX activity, which 

catalyzes pro-S hydrogen abstraction from C-10, converted 5S-HPETE to the cis epoxide, 

6-epi-LTA4; by contrast, 5S-LOX, which abstracts the 10pro-R hydrogen produced trans-

epoxy LTA4 from 5S-HPETE, as expected. The epoxides were identified indirectly based 

on a difference in pattern of the hydrolysis products in comparison to hydrolysis of the 

synthetic standards. As it is now known that R and S lipoxygenases are closely related 

enzymes and that substrate is exposed to the same open ligand position of the active site 

iron, we deduce that the 5S-HPETE substrate binds in an opposite head-to-tail orientation 

in 5S-LOX and 8R-LOX in order to present the appropriate C-10 hydrogen for 

abstraction by the non-heme iron. Accordingly the substrate is shown in the reversed 

orientation in the 8R-LOX reaction illustrated in Figure 29C.  

The concepts developed here on the determinants of cis or trans LTA4 epoxide 

configuration establish a rational mechanism underlying the structures of these key 

biosynthetic intermediates. The concepts can be applied to the enzymatic formation of 

novel LTA-type epoxides postulated as intermediates in biosynthesis of the resolvin, 

protectin and maresin lipid mediators from eicosapentaenoic (20:5ω3) and 

docosahexaenoic (22:6ω3) fatty acids. In fact, because S-lipoxygenases predominate in 

higher animal biology, and are implicated in the synthesis of the 

resolvin/protectin/maresin mediators, it is very likely that novel transformations 

involving the LTA-type epoxides in higher animals follow the same relationships as in 

the 5S-LOX pathway to the leukotrienes. Isolation and identification of these 

intermediates are presented in Chapter IV.  
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CHAPTER IV 

 

SYNTHESIS AND STRUCTURAL ANALYSIS OF NOVEL EPOXIDES 

IN LIPOXYGENASE PATHWAYS OF  

DHA AND EPA METABOLISM 

 

 

Introduction 

 

-3 fatty acid-derived bioactive lipid mediators 

The beneficial effects of omega-3 polyunsaturated fatty acids (PUFAs) on human 

health have been debated for years. One example is that treatment with marine derived 

omega-3 fatty acids for the prevention of major cardiovascular adverse outcomes has 

been supported by a number of randomized clinical trials (RCTs) and refuted by others 

(111,112). One of the best approaches to address this issue is to directly investigate the 

functional basis of omega-3 PUFA on human health and disease. In most experimental 

systems, where the actions of omega-3 fatty acids were assessed, the concentrations 

required to evoke beneficial effects are usually in the high range (from high microgram to 

high milligram). One reasonable conclusion is that administration with the high dose of 

omega-3 PUFA diverts the in vivo fatty acid metabolism away from transformation of 

omega-6 fatty acid arachidonic acid, thus decreasing the production of pro-inflammatory 

prostaglandins and leukotrienes, the “bad guys” in promoting inflammation. On the other 

hand, multiple studies emerged during the last decade supporting the important roles 
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played by the potent local bioactive mediators derived from omega-3 PUFA.  The term 

“specialized pro-resolving mediators” (SPM) was chosen for this class of mediators due 

to their dual anti-inflammation and pro-resolution role. 

Almost all the original studies on these novel bioactive lipid mediators are from the 

laboratory of Dr. C. N. Serhan at Harvard University (Figure 30 and Figure 31). The 

SPMs produced from EPA were first isolated from resolving exudates of mice which 

were pre-injected with TNF-and treated with EPA and aspirin. The exudates proved to 

contain 18R-hydroxy-eicosapentaenoic acid (18R-HEPE) (113). The first bioactive 

product isolated from exudates, coined Resolvin E1 (RvE1, “E” for EPA), reduced 

inflammation and blocked human PMN trans-endothelial migration. Its complete 

structure was established as 5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-

eicosapentaenoic acid, an analogue of arachidonic acid-derived lipoxins (75). The most 

likely human pathway was reconstructed in vitro, demonstrating that the sequential 

actions of firstly vascular endothelial cells and then PMNs are involved in RvE1 

formation (113). A second bioactive member of the E series Resolvins that is produced 

during RvE1 biosynthesis was identified as 5S,18R-dihydroxy-EPA (114). Recently the 

same lab presented evidence for new 18S series resolvins (115). Aspirin increased 

formation of 18S-HEPE compared with 18R-HEPE, and 18S-HEPE was further 

converted to 18S-resolvin E1 by human recombinant 5-lipoxygenase and recombinant 

LTA4 hydrolase.  
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Figure 30: Biosynthesis of novel SPMs from EPA 

 

 

Figure 31: Biosynthesis of novel SPMs from DHA 

 

Figure 31 lists the novel bioactive mediators synthesized from DHA. The in vivo 

oxygenation biomarkers of DHA include 17S-hydroperoxide-DHA (17S-HP-DHA) (116) 

and 14S-hydroperoxide-DHA (14S-HP-DHA) (79) which are biosynthesized via the 

LOX-catalyzed mechanisms. 17S-HP-DHA is further converted to bioactive D series of 

Resolvins by a different lipoxygenase or protectin D1 (PD1) by the same lipoxygenase. 
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In addition, in the presence of aspirin, DHA is converted to a 17R-alcohol-containing 

series of Rvs (AT-Rvs) (77). In another pathway, 14S-HP-DHA is converted to bioactive 

Maresin 1 via a 13,14-LTA epoxide intermediate (79). 

Of these many fine studies on biosynthesis of the novel lipid mediators nearly all 

utilize cells, which establish the physiological relevance to some extent. However, in 

terms of defining the mechanism of the transformations and the enzymes involved, there 

is no substitute for the defining data that come from enzymological studies with purified 

enzymes. With the leukotriene and lipoxin pathway as the models, it is not difficult to 

propose the biosynthetic routes for leukotriene and lipoxin analogues, resolvin (Rv), 

protectin (PD) and maresin. Relevant to this thesis is that one can reproduce the pathways 

by in vitro enzymatic assays and therefore provide experimental support for these 

pathways which are only proposed “on paper”. 

 

The followings summarize the proposed biosynthetic pathways to the novel SPMs 

derived from -3 fatty acids: 

RvE1 – (5,12,18-triOH-EPA)  

Typical 5-LOX to LTA to LTB except using 18R-HEPE as substrate 

RvD1 – (7,8,17-triOH-DHA)   

Typical LXA synthesis except on 17S-H(P)DHA, or 15-LOX on 7,8-LTA epoxide 

RvD2 – (7,16,17-triOH-DHA)  

Typical LXB synthesis, except on 7S-H(P)DHA 

RvD3 – (4,11,17-triOH-DHA)  

C-4 oxygenation of 17S-H(P)DHA, to LTA epoxide, and non-enzymic hydrolysis 
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RvD4 – (4,5,17-triOH-DHA)  - 

The 4,5 diol formed along with RvD3 

AT-RvD1  

AT = aspirin-triggered, similar to RvD1 except the substrate is 17R-HDHA 

PD1 –  (10,17-diOH-DHA)  

Equivalent to the 14,15-LTA pathway, except on 17S-HPDHA and giving LTB-like 

10R,17S-diol 

Maresin 1 - (7,14-diOH-DHA)  

Analogous reactions to PD1, except starting with 14S-HPDHA and giving a LTB-like 

7R,14S-diol 

 

Some enzymological studies are reported, notably with the use of recombinant 

human 5-LOX to study resolvin E synthesis (114), and soybean LOX-1 to characterize 

double dioxygenation reactions on DHA (117).  To expand on this, I will use our 

expressed LOX enzymes to establish their catalytic activities with DHA and EPA and 

their hydroperoxides, and subsequently compare with the “in cell” metabolism.  

 

Roles of 12/15-lipoxygenase in inflammation 

It is becoming increasingly clear that mammalian 12/15-LOX and its products play 

important roles in inflammation. However, despite much work in this area, the 

biochemical mechanisms by which 12/15-LOX regulates the inflammation process are 

not fully understood. This is partly due to its complex expression pattern which is 

species-specific, tissue-specific and highly regulated (118). In humans the 12/15-LOX 
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(15-LOX-1) is constitutively expressed at high levels in immature red blood cells during 

anemia, in eosinophils and in airway epithelial cells (119,120). Lower expression levels 

have been reported for polymorphonuclear leukocytes (PMN), alveolar macrophages, 

vascular cells etc (121). In addition, the expression of 12/15-LOX is inducible. Peripheral 

blood monocytes do not express 12/15-LOX in the circulation. Instead, its induction can 

be achieved in vitro in human monocytes (122) and in elicited murine macrophages 

(123). In human neutrophils, induction of 15-LOX-1 can be achieved by PGE2 via cAMP 

elevation (124). It is proposed that 12/15-LOX induction in neutrophils may initiate the 

lipid mediator class switching during acute inflammation and therefore contribute to the 

resolution of inflammation. 

12/15-LOX is implicated in the biosynthesis of several lipid mediators, either pro-

inflammatory or anti-inflammatory. 12/15-LOX alone is proposed to be responsible for 

the production of precursors to the pro-inflammatory eoxin and anti-inflammatory 

protectin and maresin. When combined with 5-LOX, 12/15-LOX is capable of producing 

precursors to lipoxins and resolvins. The missing here is the in vitro enzymatic evidence 

which can substantiate the proposed pathways. In this chapter I will use the highly 

catalytically active recombinant human 15-LOX-1 and the methods developed in Chapter 

II to fill this blank. 

 

Cellular metabolism of -3 fatty acids 

Cellular incubations with fatty acids and fatty acid hydroperoxides led to the 

discovery of bioactive lipid mediators. In this chapter the study is conducted in a different 

order. The capabilities of human 15-LOX-1 in producing bioactive lipid mediator 
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precursors, 16,17-LTA6 and 14,15-LTA5, are first established by utilizing the purified 

recombinant enzyme. The comparison between the enzyme incubations and ex vivo 

cellular metabolism on product profiles and reaction rates is then conducted, which helps 

substantiate the physiological relevance of the enzymatic study.  

It has been shown that -3 fatty acids (DHA and EPA), like arachidonic acid, can 

be incorporated into cell membrane phospholipids (125) and upon stimulation be released 

and utilized by lipoxygenases to yield bioactive lipids. In the presence of exogenous 

EPA, 5-lipoxygenase activity of mouse mastocytoma cells produced LTB5 and LTC5, the 

analogues of LTB4 and LTC4 (126). 5- and 15-lipoxygenase activities of porcine 

leukocytes converted 15-HP-EPA to di- and tri-hydroxyeicosapentaenoic acid derivatives 

(127), suggesting the formation of LTA intermediates. Concerning the transformation of 

DHA, the conversion from 17S-HP-DHA to the bioactive protectin D1 has been 

demonstrated in incubations using murine brain and human leukocytes (116). 

In this chapter mouse resident peritoneal macrophages are to be used for the 

incubations with omega-3 fatty acid hydroperoxides. Mouse macrophages are a valid 

experimental system to test the transformation of fatty acids. Incubations of mouse 

macrophages with 14S-HP-DHA led to the discovery of bioactive maresin, and this 

conversion is proposed to be catalyzed by the prominent 12/15-LOX activity of the cells 

(79). Mouse 12/15-LOX is the functional equivalent of human reticulocyte 15-LOX-1. 

Thus mouse macrophage incubations are good reflections of fatty acid metabolism by 15-

LOX activity in cells. 
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Specific Aims in Chapter IV 

Specific aim 1: Analyze the metabolism of omega-3 fatty acid (DHA and EPA) 

hydroperoxides by the purified recombinant lipoxygenases. This could help to establish 

the mechanisms underlying the transformation, identify the enzymes involved in the 

biosynthesis, and guide the discovery of new metabolites that have potential bioactivities. 

Specific aim 2: Isolation and characterization of the LTA-type epoxides from EPA 

and DHA. These intermediates could be the direct analogues of the arachidonic acid 

epoxides studied in Chapter 2 and Chapter 3. More specifically, in this part the isolation 

and characterization of the LTA epoxide intermediates in formation of the 10,17-diol 

protectins and 8,15-diol EPA-derived mediator will be performed. The achievement of 

this aim could help the studies in detecting the specific hydrolases that metabolize these 

LTA epoxides to the bioactive lipid mediators. 

Specific aim 3: Analyze metabolism of omega-3 fatty acid (DHA and EPA) 

hydroperoxides by mouse macrophages and conduct comparison with the enzymatic 

metabolism in Specific aim 1. 
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Experimental procedures 

Materials 

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were purchased 

from NuChek Prep Inc. (Elysian, MN). Soybean LOX-1 (lipoxidase, type V) was 

purchased from Sigma. C57BL/6NCrl mice (6-8 weeks) were purchased from Charles 

River Laboratories. Zymosan A was purchased from Sigma. 

 

Synthesis and purification of enantiomeric fatty acid hydroperoxides 

15S-hydroperoxide-EPA (15S-HP-EPA) and 17S-hydroperoxide-DHA (17S-HP-

DHA) were prepared by the reaction of EPA or DHA with the commercially available 

soybean LOX-1. 14S-hydroperoxide –DHA (14S-HP-DHA) was prepared by the reaction 

of DHA with mouse platelet-type 12S-LOX. The purification of fatty acid 

hydroperoxides was achieved by SP-HPLC (hexane/IPA, 100/2, by volume). 

 

Biphasic reaction conditions for preparation of LTA epoxides  

Enzyme reactions were performed at 0 °C, with the fatty acid hydroperoxide 

substrate initially in hexane (5 ml, bubbled for 30 min prior to use with argon to decrease 

the O2 concentration, and containing ~200 μM substrate) layered over the recombinant 

LOX enzyme (1-2 mg, ~20 nmol) in 400 μl of Tris buffer (pH 7.5 for human 15-LOX-1). 

The reaction was initiated by vigorous vortex mixing of the two phases. After 1.5 min, 

the hexane phase was collected and scanned from 200-350 nm in UV light by using a 

Perkin-Elmer Lambda-35 spectrophotometer. Then the hexane phase was evaporated to 

about 2 ml under a stream of nitrogen, treated with ethanol (20 μl) and ethereal 
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diazomethane for 10 s at 0 °C and then rapidly blown to dryness and kept in hexane at -

80 °C until further analysis. 

 

HPLC analyses 

Aliquots of the methylated hexane phase from the biphasic reaction were analyzed 

by RP-HPLC using a Waters Symmetry column (25 x 0.46 cm), using a solvent of 

MeOH/20mM triethylamine pH 8.0 (90/10 by volume), at a flow rate of 1ml/min, with 

on-line UV detection (Agilent 1100 series diode array detector). Further purification was 

achieved by SP-HPLC using a silica guard column (0.46 × 4.5 cm), using a solvent of 

hexane/triethylamine (100/0.5) run at 0.5 ml/min. Aliquots of the room temperature 

incubation of human 15-LOX-1 with omega-3 fatty acid hydroperoxides were analyzed 

by RP-HPLC using a Waters Symmetry column (25 x 0.46 cm), using a solvent of 

CH3CN/H2O/HAc (45/55/0.01 by volume), at a flow rate of 1ml/min. Aliquots of mouse 

macrophage incubations were analyzed by RP-HPLC using a Waters Symmetry column 

(15 x 0.21 cm), using a solvent of CH3CN/H2O/HAc (50/50/0.01 by volume), at a flow 

rate of 0.2 ml/min. 

 

NMR analysis 

1
H NMR and 

1
H,

1
H COSY NMR spectra were recorded on a Bruker AV-III 600 

MHz spectrometer at 283 K. The parts/million values are reported relative to residual 

nondeuterated solvent (δ = 7.16 ppm for C6H6). Typically, 1024 scans were acquired for a 

1-D spectrum on ~20 μg of LTA epoxide. 
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Mouse peritoneal resident macrophage incubations 

Mouse peritoneal resident macrophages were collected by lavage from naive mice 

(6-8 week old C57BL/6NCrl mice; Charles River Laboratories). All animal studies were 

approved and performed in accordance with guidelines provided by the Vanderbilt 

Medical Standing Committee on Animals. 

After centrifugation at 400 g and addition of (DMEM+10%FBS), macrophages (5 x 

10
6
 cells/ml) were incubated with zymosan A (200 g/ml) and fatty acids or fatty acid 

hydroperoxides (20 g/ml) at 37 °C for 30 min. Incubations were stopped with 2 vol of 

cold methanol. After cells were removed by centrifugation at 10,000 rpm, the supernatant 

was added 3 vol of water and the apparent pH was adjusted to approximately pH 3. The 

products were extracted by C18 cartridge and analyzed by RP-HPLC. 

 

Isomerization of 10S,17S-diOH-DHA (t,c,t) to 10S,17S-diOH-DHA (t,t,t) 

A solution of 10S,17S-diOH-DHA (t,c,t) in argon-bubbled isopropanol (1 mg/ml) 

was placed in a quartz cuvette. Then, 2-mercaptoethanol (1 mg/ml) was added, and the 

solution was irradiated by low-pressure mercury lamp for 10 min. The isomerization was 

checked by injecting aliquots of the irradiated sample on RP-HPLC. 
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Results 

Reaction of 17S-HP-DHA with human 15-LOX-1 

One of the oxygenation biomarkers of DHA in vivo is 17S-hydro(pero)xy-DHA, 

which is further converted to protectin D1 via a 15-LOX-catalyzed LTA intermediate. 

The incubation of 17S-HP-DHA with human 15-LOX-1 was performed to check the 

possible metabolites (Figure 32). 

 

Figure 32: RP-HPLC analysis of the reaction of 17S-HP-DHA with human 15-LOX-1. 

Column: Waters Symmetry C18, 25 x 0.46 cm; solvent, CH3CN/H2O/HAc (45/55/0.01, 

by volume); flow rate, 1 ml/min, UV detection at 270 nm and 235 nm.  

 

At retention times of 16-19 min, the significant formation of 10,17S-diOH-DHAs 

(t,t,t) was detected, implicating a potential 16,17-LTA6 intermediate in the pathway. To 

further specify the identities of the two peaks, the 10S,17S-diOH-DHA (t,t,t) standard 

was prepared from 10S,17S-diOH-DHA (t,c,t) using the method in which UV irradiation 

and thiyl radical exposure are used to isomerize the conjugated double bond 
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configuration in fatty acids (128). By comparing the chromatographic mobility with the 

standard on HPLC, the first eluting peak was established as 10R,17S-diOH-DHA (t,t,t) 

and the second as 10S,17S-diOH-DHA (t,t,t). This elution order is consistent with the fact 

that 8R,15S-diOH-AA (t,t,t) elutes earlier than 8S,15S-diOH-AA (t,t,t) on RP-HPLC (54).  

The double oxygenation products eluted after 30 min, and include 10S,17S-diOOH-

DHA(t,c,t), 7S,17S-diOOH-DHA, and 10R,17S-diOOH-DHA(t,t,t). The first two 

products are direct analogues of 8S,15S-diHPETE(t,c,t) and 5S,15S-diHPETE formed in 

the reaction of 15S-HPETE with soybean LOX-1. The formation of 10R,17S-diOOH-

DHA(t,t,t) is consistent with a bis-allylic C14-peroxyl radical formed as an intermediate 

(See the following scheme). 

 

 

 

 

 

 

 

 

 

 

 

Scheme: Proposed mechanism of formation of 10R,17S-diHP-DHA(t,t,t)  
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Reaction of 15S-HP-EPA with human 15-LOX-1 

Human 15-LOX-1, at low concentrations, oxygenates EPA to 15S-HP-EPA and 

12S-HP-EPA, which upon further enzyme exposure are converted to secondary 

metabolites. It has been demonstrated that 15-lipoxygenase activity in eosinophils 

metablizes arachidonic acid to eoxin A4, precursor to the pro-inflammatory eoxins. Here I 

analyzed the incubation of 15S-HP-EPA with human 15-LOX-1 by RP-HPLC and 

checked the production of secondary metabolites (Figure 33). 

 

Figure 33: RP-HPLC analysis of the reaction of 15S-HP-EPA with human 15-LOX-1. 

Column: Waters Symmetry C18, 25 x 0.46 cm; solvent, CH3CN/H2O/HAc (45/55/0.01, 

by volume); flow rate, 1 ml/min, UV detection at 270 nm and 235 nm. 

 

Similar to the reaction of 17S-HP-DHA with human 15-LOX-1, 8,15-diOH-EPAs 

(t,t,t) are the prominent products of the reaction of 15S-HP-EPA with human 15-LOX-1, 

suggesting the formation of 14,15-LTA5.  
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In addition to the formation of 8,15-diHP-EPA and 5,15-diHP-EPA, a bis-allylic 

dihydroperoxide 12,15-diHP-EPA was detected. 12,15-diHP-EPA showed a unique UV 

chromophore with a smooth profile (as opposed to the angular shoulders on a typical 

conjugated diene) and a relatively high max at 243 nm. The arachidonate analogue 12,15-

diHPETE was detected as the product of reaction of 15S-HPETE with human 15-LOX-1 

or mouse platelet-type 12S-LOX, and 8,11-diHPETE was formed from the reaction of 

8R-HPETE with the recombinant 8R-LOX. Importantly, these bis-allylic 

dihydroperoxides, under the catalysis of the lipoxygenase enzymes, are cleaved and then 

converted to 4-hydro(pero)xy-alkenal products (see Chapter VI). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme: Proposed mechanism of formation of 12S,15S-diHP-EPA  
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Biosynthesis, isolation, and characterization of 16,17-LTA6 

The next step is to apply the biphasic reaction system developed in Chapter II to 

the reactions of 3 fatty acid hydroperoxides with human 15-LOX-1. After vortex 

mixing of human 15-LOX-1 with 17S-HP-DHA at 0 °C, UV spectroscopy of the hexane 

phase showed a decrease in substrate and appearance of a new chromophore with max at 

280 nm, characteristic of a LTA-type epoxide (Figure 34).  

 

 

 

 

 

 

 

 

Figure 34: UV analysis of LTA epoxide formation from 17S-HP-DHA with human 15-

LOX-1 under biphasic reaction conditions.  

 

After preparing the methyl esters of the hexane extract by brief reaction with 

diazomethane at 0 C, the remaining 17S-HP-DHA and its products were analyzed on 

RP-HPLC using conditions suitable for the LTA-type epoxide.  Figure 35 illustrates RP-

HPLC analysis with UV detection at 270 nm. The product profile is similar with that 

from the reaction of 15S-HPETE. The unreacted 17S-HP-DHA is immediately followed 

by a minor keto derivative (a conjugated dienone, max 281 nm), and then by a well-

resolved peak of the putative LTA-type epoxide (conjugated triene, max 280 nm).  
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Figure 35: RP-HPLC analysis of the reaction of 15-LOX-1 with 17S-HP-DHA. RP-

HPLC analysis used a Waters Symmetry C18 column (0.46 × 25 cm), a flow rate of 1 

ml/min, and a solvent system of methanol/20 mM triethylamine pH 8.0 (90/10, by 

volume) with UV detection at 270 nm. 

 

The pooled aliquots of LTA epoxide methyl ester were subsequently analyzed by 

1
H-NMR and COSY in d6-benzene (Figure 36). The expanded regions for the olefinic 

protons (5.0 – 6.7 ppm, top spectrum) and the epoxide protons (2.65 – 3.10 ppm, middle 

spectrum) illustrate the splitting of individual signals and associated coupling constants 

from which the stereochemistry can be derived. The top spectrum of the olefinic region, 

which is more complicated than that of 14,15-LTA4 methyl ester due to two additional 

double bonds, provides the configuration of the double bonds, in particular identifying 

the conjugated triene as 10Z,12E,14E. On the epoxide protons, which is illustrated in the 

middle spectrum, the 1.8 Hz coupling between H16 and H17 identifies the epoxide 

configuration as trans. Between H16 and H17 are two methylene protons, H6 and H9, 
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which display triplet splitting patterns. Based on these analyses, and with the reasonable 

assumption that the original 17S configuration is retained, the structure of the epoxide 

product can be defined as 16S,17S-trans-epoxy-docosa-4Z,7Z,10Z,12E,14E,19Z-

hexaenoate. This confirms the structure originally proposed for this intermediate, 

precursor of the pro-inflammatory protectin D1. 
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Figure 36:  NMR analysis of 16,17-LTA6. 
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Biosynthesis, isolation, and characterization of 14,15-LTA5 

The same methods used in synthesis, purification and NMR characterization of 

16,17-LTA6 were utilized in the study of 14,15-LTA5 from the reaction of 15S-HP-EPA 

with human 15-LOX-1. 

Biphasic incubation of 15S-HP-EPA with human 15-LOX-1: 

Enzyme reactions were performed at 0 °C, with the 15S-HP-EPA substrate initially 

in hexane layered over the recombinant human 15-LOX-1 in Tris buffer (pH 7.5 for 

human 15-LOX-1). After vortex mixing of human 15-LOX-1 with 15S-HP-EPA at 0 °C, 

UV spectroscopy of the hexane phase showed a decrease in substrate and appearance of a 

new chromophore with max at 280 nm, characteristic of a LTA-type epoxide (Figure 37). 

 

 

 

 

 

 

 

 

Figure 37: UV analysis of LTA epoxide formation from 15S-HP-EPA with human 15-

LOX-1 under biphasic reaction conditions. 
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SP-HPLC purification of 14,15-LTA5 methyl ester: 

RP-HPLC analysis of the organic phase after the vortex mixing demonstrated that 

in addition to the unreacted 15S-HP-EPA substrate, a new peak with the UV absorbance 

at ~280 nm was detected (data not shown). The new peak was further purified by SP-

HPLC (Figure 38). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: SP-HPLC analysis of the reaction of 15-LOX-1 with 15S-HPETE. SP-HPLC 

analysis used a silica guard column (0.46 × 4.5 cm), a flow rate of 0.5 ml/min, and a 

solvent system of Hexane/triethylamine (100/0.5, by volume) with UV detection at 270 

nm. 

 

NMR analysis of 14,15-LTA5 methyl ester: 

The pooled aliquots of the LTA epoxide methyl ester were subsequently analyzed 

by 
1
H-NMR and COSY in d6-benzene (Figure 39). The expanded regions for the olefinic 

protons (5.1 – 6.6 ppm, top spectrum), the epoxide protons (2.65 – 3.10 ppm, middle 

spectrum) and the full COSY spectrum (bottom) are shown. The top spectrum of the 

olefinic region provides the configuration of the double bonds, in particular identifying 

the conjugated triene as 8Z,10E,12E. On the epoxide protons, illustrated in the middle 

spectrum, the 1.8 Hz coupling between H14 and H15 identifies the epoxide configuration 
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as trans. Based on these analyses, and with the reasonable assumption that the original 

15S configuration is retained, the structure of the epoxide product can be defined as 

14S,15S-trans-epoxy-eicosa-5Z,8Z,10E,12E,17Z-pentaenoate. This structure has never 

been reported before and could potentially lead to the production of a family of novel 

lipid mediators. 
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Figure 39:  NMR analysis of 14,15-LTA5. 
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Mouse peritoneal macrophage incubations with omega-3 fatty acid hydroperoxides 

Mouse resident peritoneal macrophages were isolated using the method adapted 

from a published protocol (129). The macrophage incubations were conducted with 

DHA, 17S-HP-DHA and 15S-HP-EPA as substrate. Cellular inflammation is induced by 

Zymosan A, or Ca-ionophore A23187 is used to enhance LOX activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: RP-HPLC analysis of the incubation of DHA (top) and 17S-HP-DHA (below) 

with mouse resident peritoneal macrophages. Column: Waters Symmetry C18, 15 x 0.21 

cm; solvent, CH3CN/H2O/HAc (50/50/0.01, by volume); flow rate, 0.2 ml/min, UV 

detection at 270 nm and 235 nm. The assignment of each peak identity was based on the 
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comparison of the UV chromophore and the retention time on HPLC with the authentic 

standards as well as the assumption that the stereochemistry and the position of the 

hydroperoxide group of the substrate are retained. 

 

Incubation of DHA with mouse macrophages led to the formation of mono-

oxygenation products 14S-HP-DHA and 17S-HP-DHA which appeared as their reduced 

form 14S-OH-DHA and 17S-OH-DHA due to the presence of cellular peroxidases. 

Different from the enzymatic incubations in which double oxygenation products are 

detected prominently, the macrophage incubations further converted 17S-HP-DHA and 

14S-HP-DHA to LTA-type epoxides which were manifested by the production of LTA 

non-enzymatic hydrolysis products, 10,17-diOH-DHAs(t,t,t) and 7,14-diOH-DHAs(t,t,t). 

Incubations with 17S-HP-DHA confirmed the secondary transformations in the pathway. 

It is noted that mouse macrophages transformed DHA to 14S-HP-DHA and 17S-HP-

DHA in a ratio of ~2:1, whereas the secondary transformations to LTA epoxides are 

more efficient for 17S-HP-DHA than for 14S-HP-DHA. This is consistent with the 

hydrogen abstraction occurring at C12 of DHA by mouse 12-LOX.  

 

 

 

 

 

 

 

 

 

Figure 41: RP-HPLC analysis of the incubation of 15S-HP-EPA with mouse resident 

peritoneal macrophages. Column: Waters Symmetry C18, 25 x 0.46 cm; solvent, 
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CH3CN/H2O/HAc (50/50/0.01, by volume); flow rate, 1 ml/min, UV detection at 270 nm 

and 235 nm. 

 

Figure 41 demonstrates the products derived from the incubation of 15S-HP-EPA 

with mouse macrophages. In addition to some dienone products which probably result 

from the carbon chain cleavage of the substrate, the non-enzymatic hydrolysis products, 

8,15-diOH-EPAs (t,t,t) were detected, which suggests the production of 14,15-LTA5. 

The bioactive end-products, protectin D1 derived from 16,17-LTA6 and maresin 1 

from 13,14-LTA6 with their unique cis,trans,trans-conjugated triene configuration, were 

not detected in the macrophage incubation. One explanation for the failure in detecting 

protectin D1 is that mouse macrophages do not express the specific LTA hydrolase. On 

the other hand, maresin 1 was detected from the mouse macrophages in the work leading 

to its discovery, implying that the incubation conditions utilized here were not optimal for 

the corresponding LTA hydrolase activity. The original work utilized a preparation of 

purified peritoneal macrophages, which may have enriched this enzymatic activity. 
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Discussion 

In this chapter the biosynthetic pathways of LTA-type epoxides from omega-3 fatty 

acids EPA and DHA are investigated by using the recombinant human 15-LOX-1 and 

mouse resident macrophages. 14,15-LTA5 and 16,17-LTA6 were unequivocally 

established as the 15-LOX products of EPA and DHA by direct biosynthesis, isolation 

and NMR analysis. The non-enzymatic hydrolysis products of both epoxides were 

detected from the mouse macrophage incubations with the corresponding omega-3 fatty 

acids, providing strong evidence for their existence in a physiological environment. 

The conversions from the LTA-type epoxides to the “specialized pro-resolving 

mediators” (SPM) were not studied in this chapter due to the unavailability of the 

corresponding LTA-type epoxide hydrolase enzymes. Efforts were made to detect the 

SPMs, which have the characteristic conjugated-triene configuration, from the mouse 

macrophage incubations with omega-3 fatty acids. However, only the non-enzymatic 

hydrolysis products were detected. This is probably because mouse macrophages do not 

express the required hydrolase enzyme or the incubation conditions are not optimal for 

the hydrolase activity. Another possible explanation is that the work leading to the 

discovery of SPMs utilized a preparation of purified peritoneal macrophages, which may 

have enriched this enzymatic activity, while in my experiments the macrophages were 

prepared without further enrichment. 

In a recent study, 13,14-LTA6, the intermediate to maresin, was demonstrated to 

inhibit the LTA hydrolase activity and shift the macrophage phenotype (130). The paper 

suggests that other than serving as the intermediate to the bioactive end products, the 

LTA-type epoxides may provide direct regulatory effects to various physiological events. 
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The study in this chapter has successfully isolated 14,15-LTA5 methyl ester and 16,17-

LTA6 methyl ester in the amount sufficient for NMR analysis. The corresponding LTA 

free acids, which can be obtained by alkaline-induced hydrolysis of the methyl esters, can 

be further used to test their bioactivity. 

Another significance of this study is that the proposed pathways of omega-3 fatty 

acid metabolism have been substantiated by a series of in vitro enzymatic assays 

conducted in this chapter. Compared with the many fine studies utilizing cell incubations, 

the enzymological studies with the purified enzymes provide a clear view about each step 

of the pathways. This could be especially necessary when it comes to the discovery of 

inhibitors or inducers of the pathway. 
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CHAPTER V 

 

8R-LIPOXYGENASE-CATALYZED SYNTHESIS OF  

A PROMINENT CIS-EPOXYALCOHOL  

 

Introduction 

In the late 1960’s and early 1970’s, high concentrations of prostaglandin esters 

were identified in the Caribbean sea whip coral Plexaura homomalla (131). Attempts 

were made to investigate the putative non-cyclooxygenase pathway of prostaglandin 

biosynthesis and it turned out that cyclooxygenase accounts for the biosynthesis (132). 

Research into polyunsaturated fatty acid metabolism in coral extracts still uncovered 

other interesting biochemistry. Bundy and colleagues studied the related coral 

Pseudoplexaura porosa and uncovered 8R-lipoxygenase activity, the first known 

existence of an R-specific lipoxygenase (59). 8R-LOX was subsequently found to be 

widespread in corals including in P. homomalla, as well as in many marine invertebrates 

(133), and a 12R-LOX is highly conserved and functionally essential in mammals (94). A 

second novel activity detected in coral extracts was allene oxide synthase (134), which 

transforms the 8R-LOX product, 8R-HPETE, to an allene epoxide, a proposed 

intermediate in biosynthesis of cyclopentenones, and that hydrolyzes in vitro to an -

ketol derivative. 

The work described in this chapter concerns an unexpected difference we observed 

in the metabolism of arachidonic acid (20:46) and dihomo--linolenic acid (20:36) in 

extracts of P. homomalla; a prominent, relatively polar, product is formed specifically 
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from 20:36. This difference had been noted before in work from the E. J. Corey 

laboratory, but the detailed assignments of the polar product was not completed. 

Although the naturally-occurring prostaglandin products in P. homomalla are all 2-series 

derived from arachidonic acid, we included a study of the metabolic fate of 20:36 

because it was originally reported as a substrate for the enzymatic activity in the coral 

(135). The work was initiated in the early 1990’s, prior to the cloning of P. homomalla 

cyclooxygenases and lipoxygenases. With the availability of cloned recombinant 

enzymes from P. homomalla, we recently returned to the issue of the origin of this extra 

product from 20:36. The novel product we characterize herein is formed specifically by 

8R-lipoxygenase metabolism, and its unusual stereochemistry may represent a feature of 

the secondary reactions of R- as opposed to S-lipoxygenases. 
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Experimental procedures 

Materials 

Arachidonic (C20:4ω6) and dihomo--linolenic acids (C20:3ω6) were purchased 

from NuChek Prep Inc. (Elysian, MN). [1-
14

C]20:4ω6, and [1-
14

C]20:3ω6 were 

purchased from Perkin Elmer Life Sciences. Plexaura homomalla was collected in the 

Florida Keys and placed on dry ice until long-term storage in the laboratory at -70C.  

 

Incubation with coral extracts  

Frozen P. homomalla was cut into small pieces with scissors then placed in 10 

volumes of 50 mM Tris, pH 8, containing 1M NaCl on ice and homogenized using a 

Polytron blender (Brinkmann) in ten second bursts. The homogenate was allowed to 

settle under gravity for up to 30 min; aliquots of the supernatant were diluted ten-fold 

into fresh buffer for incubations with fatty acid substrates (100 M), typically for 5 min 

at room temperature. Products were extracted by addition of 1M KH2PO4 plus sufficient 

1N HCl to give pH 4 followed by extraction with 2 volumes of ethyl acetate. The organic 

phase was collected, washed with water to remove traces of acid and taken to dryness 

under nitrogen. The extracts were redissolved in a small volume of MeOH prior to HPLC 

analysis. 

 

HPLC analyses  

Typically, aliquots of the extracts were analyzed initially by RP-HPLC using a 

Beckman ODS Ultrasphere 5 column (25 x 0.46 cm) or Waters Symmetry column (25 x 

0.46 cm), using a solvent of MeOH/H2O/HAc (80/20/0.01, or 75/25/0.01 by volume), at a 



 

 102 

flow rate of 1ml/min, with on-line UV detection (Agilent 1100 series diode array 

detector) and radioactive monitoring (Radiomatic Flo-One). Larger amounts (0.5-1 mg of 

total fatty acids) were injected for collection of products, or a semi-preparative column 

(Beckmann Ultrasphere ODS, 25 x 1 cm) was used for larger quantities. Further analysis 

and purification was achieved by SP-HPLC using an Alltech 5 silica or Beckmann 

Ultrasphere 5  silica column using a solvent of hexane/isopropanol/glacial acetic acid 

(100/2/0.1 for H(P)ETE free acids and 100/1 for methyl esters; 100/5/0.1 and 100:3 for 

more polar derivatives and their methyl esters) run at 1 or 2 ml/min. 

  

Expression and purification of 8R-lipoxygenase  

cDNA of the 8R-LOX domain of the P. homomalla peroxidase-lipoxygenase fusion 

protein was subcloned into the pET3a vector (with an N-terminal His4 tag), and the 

protein was expressed in E. coli BL21 (DE3) cells and purified by nickel affinity 

chromatography according to a previously published protocol (61). 

The second P. homomalla 8R-lipoxygenase tested here was the soluble enzyme 

purified in 1996 (60); aliquots from the original purification were stored at -70C and 

these retained sufficient activity for use 15 years later. This enzyme is referred to here as 

the soluble 8R-LOX. 

 

Incubation with enzymes  

Side-by-side incubations were performed at room temperature in 1 ml of 50 mM 

Tris pH 8.0 containing 500 mM NaCl, 2 mM CaCl2 and 0.01% Emulphogene detergent 

using [
14

C]20:36 or [
14

C]20:46 fatty acids (each 25g/ml and 300,000 CPM) and 
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recombinant 8R-LOX (10 g in 1 ml) or soluble 8R-LOX. Under these conditions the 

recombinant enzyme completely metabolized 50 M 20:46 or 20:36 substrate within 

1 min, while 50 l (~ 50 g) of the soluble 8R-LOX converted 50 M 20:46 or 20:36 

to the corresponding 8R-hydroperoxide in 5 min; an additional 20 l enzyme was added 

to promote further metabolism of the 8R-hydroperoxide. Incubations were conducted in a 

1 ml quartz cuvette and the rate of reaction monitored by repetitive scanning from 350-

200 nm using a Lambda-35 spectrophotometer (Perkin-Elmer). Reactions were stopped 

by addition of 500 l MeOH and the solution placed on ice. After addition of 3 ml of 

water, 100 l 1M KH2PO4, and 40 l 1N HCl to give pH ~4.5, the samples were 

extracted using C18 Oasis cartridge and eluted with MeOH and analyzed by HPLC as 

described above. 

 

LC-MS analysis of 
18

O incorporation in product from 8R-LOX  

[
18

O2]8R-HPETrE was prepared using recombinant 8R-LOX (from the P. 

homomalla fusion protein) reacted with C20.3ω6 (20 g/ml) in pH 8.0 Tris buffer (5 ml) 

under an atmosphere of 
18

O2; (the 100 ml bulb of oxygen gas contained about ~35% of 

normal air (
16

O2), because it had been used three times previously for 
18

O syntheses). The 

[
18

O2]8R-HPETrE labeled in the hydroperoxy group was purified by SP-HPLC and 

reacted with recombinant 8R-LOX under a normal atmosphere to produce the 

corresponding epoxyalcohol. The 
18

O content of the 8R-HPETrE and its corresponding 

epoxyalcohol product (which share the same molecular weight, 338 for the unlabeled 

species) were measured by negative ion electrospray LC-MS using a ThermoFinnigan 

TSQ Quantum instrument by rapid repetitive scanning over the mass range encompassing 
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the M-H anions (m/z 330-350, 5 scans/sec). 20-30 scans over the HPLC peaks were 

averaged to obtain the partial mass spectra of labeled and unlabeled epoxyalcohol and 

8R-HPETrE. 

 

NMR analysis  

1
H NMR and 

1
H,

1
H COSY NMR spectra were recorded on a Bruker 400 MHz or 

Bruker DRX 500 MHz spectrometer at 298 K. The parts/million values are reported 

relative to residual non-deuterated solvent (δ = 7.16 ppm for C6H6, 7.26 ppm for CDCl3). 
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Results 

Metabolism in extracts of P. homomalla  

When arachidonic acid (20:46) is incubated with extracts of P. homomalla, the 

fatty acid is rapidly metabolized by 8R-LOX and the resulting 8R-HPETE is further 

transformed by allene oxide synthase, leading to the appearance of -ketol and 

cyclopentenone end products (Figure 42, lower panel). Metabolism of dihomo--

linolenic acid (20:36) is similar, except for the appearance of a prominent more polar 

product that is absent (or present in insignificant amounts) in the arachidonic acid 

incubations (Figure 42). 

 

 

 

 

 

 

Figure 42: RP-HPLC analysis of products formed from 20:36 and 20:46 in 

homogenates of P. homomalla. Right: structures of -ketol and cyclopentenone. 
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Identification of the novel 20:36 product  

The structure was established based on GC-MS (Figure 43) and NMR data (next 

page).  

 

 

 

 

 

 

 

 

 

 

Figure 43: GC-MS of the epoxyalcohol 8,9-epoxy-10-hydroxy-eicosadienoic acid 

(Obtained by Dr. Brash). 

 

The purified polar product displayed only end absorbance in the UV, indicating no 

conjugated double bonds. A quantity of ~100 g was prepared and the proton NMR and 

COSY spectra were recorded in CDCl3. These results indicated the presence of an 8,9-cis 

epoxide, (H8, dd, 3.03 ppm; H9, dt, 2.92 ppm; J8,9 = 4 Hz; cf. cis epoxides 4-5 Hz, trans 

epoxides ~ 2 Hz), with -hydroxyl at C-10, and two cis double bonds at 11,12 and 14,15 

(NMR data see next page). So far this established the covalent structure as 8,9-cis-epoxy-

10-hydroxy-eicosa-11Z,14Z-dienoic acid, an epoxyalcohol of the hepoxilin B-type, yet 

distinctive in being a cis-epoxide.  
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Chemical 

shift 

(ppm) 

Multiplicity Proton(s) 

[carbon no.] 

Coupling constants 

(Hz) 

 
0.9 
 

t 
 

H20 
 

J19,20 = 7 
 

1.26-1.44 
 

m 
 

H4,5,6,17,18,19 
  

1.6-1.8 
 

m 
 

H3,7 
  

2.06 
 

dt 
 

H16 
 

J15,16 = 7.3, J16,17 = 7.3 
 

2.32 
 

t 
 

H2 
 

J2,3 = 7.5 
 

2.89 
 

m 
 

H13 
 

J13a, J13b 
 

2.96 
 

dd 
 

H9 
 

J8,9 = 4, J9,10 = 7 
 

3.03 
 

dt 
 

H8 
 

J7,8 = 5.5, J8,9 = 4 
 

3.68 
 

s 
 

-OCH3 
  

4.47 
 

dt 
 

H10 
 

J10,11 = 2, J9,10 = 8 

 
5.34 
 

dt 
 

H14 
 

J13,14 = 7.3, J14,15 = 11 
 

5.44 
 

dt 
 

H15 
 

J14,15 = 11, J15,16 = 7.3 
 

5.56 
 

dd 
(unresolved) 
 

H11 
 

J10,11 ≤ 2, J11,12 = ~10 

 

5.65 
 

dt 
 

H12 
 

J11,12 = 11, J12,13 = 7.7 
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Determination of the C-10 hydroxyl configuration 

To establish the relative stereochemistry of the epoxide to the C-10 hydroxyl, two 

saturated analogs of the natural product were prepared by Dr. Jin K. Cha of Wayne State 

University by total chemical synthesis as outlined in the published paper (136). These 

synthetic standards, 8R,9S-cis-epoxy-10-hydroxy-eicosanoates with the 9,10 erythro and 

threo relative configurations, were compared with the hydrogenated natural product in 

the respect of GC-MS (EI mode) retention time, pattern of GC-MS ion fragments and 

NMR spectra (Figure 44). The erythro standard had an indistinguishable mass spectrum, 

retention time and NMR spectrum to the hydrogenated epoxyalcohol product of P. 

homomalla. These data confirmed the erythro relative configuration at 9,10 in the natural 

product. As P. homomalla exhibits only 8R-LOX activity, the cis epoxide moiety can be 

assigned as the 8R,9S enantiomer. Thus, the complete structure of the novel product from 

20:36 is established as 8R,9S-cis-epoxy-10S-hydroxy-eicosa-11Z,14Z-dienoic acid. 
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Figure 44: Partial 
1
H-NMR spectra of the hydrogenated P. homomalla product from 

C20:36 with erythro and threo fatty acid standards.  
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Metabolism in the coral extracts is summarized in Figure 45. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Biosynthesis from 20:46 and 20:36 in P. homomalla 

 

Lack of product using allene oxide synthase 

There are several precedents for the transformation of fatty acid hydroperoxides to 

epoxyalcohols catalyzed by allene oxide synthase (AOS) and related enzymes 

(83,137,138), and it seemed possible that this might account for formation of the 20:36-

derived epoxyalcohol.  However experiments with the expressed AOS domain of the P. 

homomalla AOS-LOX fusion protein produced only allene oxide as product (detected as 

the major -ketol hydrolysis product and cyclopentenone) from either 8R-HPETE or 8R-

HPETrE. 
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Formation of epoxyalcohol by 8R-LOX enzymes 

To investigate the mechanistic origin of the 20:36-derived epoxyalcohol, the 

recombinant LOX domain of the AOS-LOX fusion protein and the purified soluble 76 

kD 8R-LOX from P. homomalla were used for the reaction with 20:36 or 20:46. 

When sufficient enzyme is used to quickly transform (< 1 min) all the fatty acid to the 

corresponding 8R-hydroperoxide, further reaction proceeded to generate secondary 

products. When observed by repetitive scanning in the UV, the rapid appearance of the 

conjugated diene at 237 nm is followed by the gradual decrease in intensity at this 

wavelength, with the appearance of a new chromophore characteristic of a conjugated 

triene(s) centered on ~ 270 nm, and a weaker broad absorbance in the area of 300-350 

nm. (See below – the main product of the 20:36 reaction absorbs relatively weakly, at 

205 nm, and is not detected by UV scanning). In side-by-side incubations monitored in 

the UV it was apparent that the 20:36-derived 8R-HPETrE disappeared more quickly 

than the corresponding arachidonic acid-derived 8R-HPETE. These side-by-side 

reactions were also conducted using 
14

C-labeled fatty acid substrate, and after extraction 

of these samples using C18 cartridges, RP-HPLC analysis showed distinctly different 

profiles of products (Figure 46A). The results confirmed the more extensive metabolism 

of the 20:36-derived 8R-HPETrE (less remaining compared to 8R-HPETE), and more 

significantly, the prominent appearance of a polar product unique to 20:36 metabolism. 

This distinctive peak at ~10 min is the most abundant secondary product from 20:36, 

detected at 205 nm in the UV. In larger scale incubations, this polar product from 20:36 

was prepared in sufficient amounts for structural analysis by 
1
H-NMR. On the basis of 
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these data, the 8R-LOX product was shown to be identical to the coral epoxyalcohol, 

8R,9S-cis-epoxy-10S-hydroxy-eicosa-11Z,14Z-dienoic acid. 

I also tested the soluble 76 kD 8R-LOX from P. homomalla. It reacted very 

similarly to the recombinant 8R-LOX from the AOS-LOX fusion protein. 20:46 and 

20:36 were comparable substrates for oxygenation to the corresponding 8R-

hydroperoxide; however, 8R-HPETrE was converted to further products at over twice the 

rate of 8R-HPETE. When reactions with identical amounts of enzyme were analyzed and 

stopped at the same time (with half of the 20:36 hydroperoxide consumed), subsequent 

RP-HPLC analysis confirmed the more extensive metabolism of 8R-HPETrE and the 

appearance of a single prominent more polar peak detected at 205 nm, with no 

comparable prominent product from 8R-HPETE (Figure 46B). This polar product from 

20:36 was identified as the same epoxyalcohol identified earlier by its identical UV 

profile and co-chromatography on both RP-HPLC and SP-HPLC with the epoxyalcohol 

formed by the recombinant 8R-LOX. 
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Figure 46: RP-HPLC analysis of products formed from 20:36 and 20:46 by two 

purified 8R-lipoxygenases. (A) Reactions with the recombinant LOX domain of the 

AOS-LOX fusion protein. (B) Reactions with soluble 76 kD 8R-LOX from P. 

homomalla. 

 

Retention of hydroperoxy oxygens in the epoxyalcohol 

When 8R-HPETrE containing a ~1:2 mixture of 2
16

O and 2
18

O in the 

hydroperoxide group was reacted with the recombinant 8R-LOX, the 
18

O contents of the 

substrate and epoxyalcohol product were almost indistinguishable (Figure 47). Close 

inspection indicated 98% retention of both hydroperoxy oxygens in the epoxyalcohol, 

pointing to a mechanism involving close control of the transformation by the 8R-LOX 

enzyme. 
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Figure 47: Mass spectrometric analysis of 8R-LOX-catalyzed transformation of [
18

O]8R-

HPETrE to epoxyalcohol. Epoxyalcohol formed by recombinant 8R-LOX from 
18

O-

labeled 8R-HPETrE (comprised of a ~1:2 ratio of 2
16

O to 2
18

O). The ion abundances 

were measured by LC-MS (details in Methods) for the unlabeled species (on the left), the 

hydroperoxy substrate (middle), and epoxyalcohol product (right side).  
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Discussion 

Hydroperoxide isomerase activity  

The typical dioxygenation reaction catalyzed by the lipoxygenase enzymes is 

initiated by the ferric form of the non-heme iron abstracting the hydrogen from 

polyunsaturated fatty acid substrates. In the present study, the hydroperoxide isomerase 

activity of 8R-LOX which catalyzes the epoxyalcohol biosynthesis is initiated by the 

ferrous iron catalyzing the homolytic cleavage of the hydroperoxide O-O bond. Several 

lines of evidence suggest that a lack of access of molecular oxygen within the active site 

will promote hydroperoxide isomerase activity (13). If present, molecular oxygen will 

react readily with radical intermediates, thus intercepting and blocking hydroperoxide 

isomerase cycling, and furthermore, molecular oxygen promotes enzyme activation to the 

ferric form, also inhibiting isomerase activity (27). Therefore, one can deduce that the 

8R-HPETrE is an acceptable substrate for interaction with the ferrous iron, and that O2 is 

excluded from intercepting the radical intermediates. With the arachidonic acid-derived 

8R-hydroperoxide, the overall rate of reaction is comparatively sluggish, and very little 

epoxyalcohol product is formed. The main products are dihydroperoxides or leukotriene 

A-related diols, both of which are products of the ferric enzyme. This suggests that the 

selective reaction with the 20:3 8R-hydroperoxide is facilitated by exclusion of O2 within 

a critical part of the active site, and that this does not occur with binding of the 

arachidonate analog. 
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Proposed catalytic cycle  

Reaction is catalyzed and controlled by the active site iron, which must first cleave 

the hydroperoxide and subsequently catalyze an oxygen rebound and hydroxylate the 

intermediate epoxyallylic radical, while both hydroperoxy oxygens are retained in the 

epoxyalcohol product (Figure 48). This is easy to conceptualize for the reactions of S-

configuration fatty acid hydroperoxides, because all steps occur on the same face of the 

reacting molecule, allowing formation of a trans epoxide and threo alcohol (Figure 48, 

box). Our results with the R-configuration hydroperoxide indicate, not only formation of 

a cis-epoxide, which itself presents no conceptual problem, but also the erythro 

configuration of the alcohol. Assuming the iron is in control, this necessitates either a 

9,10 bond rotation prior to hydroxylation, or flipping over of the reacting epoxyallylic 

radical intermediate (Figure 48, right and left options). Perhaps the 8R-hydroperoxide 

sits partly turned away from square, so that the epoxyallylic intermediate, when formed, 

further rotates to expose the opposite face of the intermediate for hydroxylation. We note 

too that the formation of cis-epoxides may be a characteristic of 8R-LOX, because the 

activity in P. homomalla extracts was shown to convert 5S-HPETE, not to the well-

known trans-epoxy leukotriene A4, but to cis-epoxy LTA4 instead (58). Although the 

mechanisms of epoxyalcohol and LTA4 synthesis differ, the reactions being initiated by 

the ferrous and ferric enzymes, respectively, the substrate conformation that predisposes 

to cis-epoxide formation will be dictated by binding in the active site and thus could be 

dictated in similar fashion by an enzyme that favors R versus S oxygenation. 

 



 

 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Mechanism of 8R-LOX-catalyzed epoxyalcohol synthesis from 8R-HPETrE 
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CHAPTER VI 

 

A POTENTIAL ROUTE TO HNE-LIKE ALDEHYDES 

VIA LIPOXYGENASE-CATALYZED SYNTHESIS OF A BIS-ALLYLIC 

DIHYDROPEROXIDE INTERMEDIATE 

 

 

 

Introduction 

4-Hydroxy-alkenals are a class of cytotoxic aldehydes that play significant roles in 

various injurious and disease states involving cellular oxidative stress (139). Their 

toxicity resides on the -unsaturated carbonyl moiety which is highly electrophilic and 

adducts with biological nucleophiles to exert toxic potential (26,140,141). The 

prototypical 4-hydroxy-alkenal is 4-hydroxy-nonenal (HNE), representing the tail-end 

nine carbons of the common polyunsaturated lipids, linoleic and arachidonic acids. In the 

cellular environment this results in the release of a diffusible cytotoxin. As most fatty 

acids exist in esterified form in cellular membranes, 4-hydroxy-alkenals generated via 

lipid peroxidation may also remain attached in complex membrane lipids. This has 

negative consequences through protein or DNA adduction and a resulting cellular toxicity 

(142,143). 
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One of the intriguing issues in the lipid peroxidation field is the mechanistic origin 

of HNE and the related 4-hydroxy-alkenals. Multiple mechanistic proposals have 

appeared over the years, their most common feature being the involvement of a 

polyunsaturated lipid hydroperoxide. Beyond this step, there are several highly plausible 

potential pathways, and based on the current evidence there seems little doubt that there 

are diverse synthetic routes to HNE-related aldehydes. Over two decades ago, 

hypothetical pathways to HNE were suggested by Pryor and Porter (144), and these 

remain valid proposals. Indeed, experimental evidence appeared recently supporting one 

of their schemes involving a pseudo-symmetrical diepoxy carbon radical intermediate 

(145). Among other potential routes, this lab advanced alternate pathways via the 

intermediacy of fatty acid radical dimmers (see experimental studies in Chapter VII) 

(146), and provided experimental support for the concept (147). Convergence of the 

activities of 5-lipoxygenase (5-LOX) and cyclooxygenase provides yet another route to 

these short-chain aldehydes (148). 

Among the many possibilities for the synthesis of HNE-related aldehydes during 

lipid peroxidation, of direct relevance to the present study is the postulated intermediacy 

of a bis-allylic fatty acid dihydroperoxide (Figure 49).  

 

 

 

 

 

 

Figure 49: Bis-allylic fatty acid hydroperoxide and its cleavage to a 4-hydro(pero)xy-

alkenal 
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This pathway was invoked by this lab to account for retention of the hydro(pero)xyl 

chirality in the transformation of 13S-H(P)ODE to 4S-H(P)NE (149,150). It was 

subsequently proposed also as a potential intermediate in diverse biochemical 

transformations (151,152). In following up on these observations this lab had prepared 

model linoleate dihydroperoxides (diHPODEs) by singlet oxygen treatment of linoleic 

acid and examined their stability. Disconcertingly, it was found that the purified 

diHPODEs, in the absence of any catalyst, show little propensity to degrade to HNE-

related aldehydes when allowed to stand in air at 37C (153). By comparison, the mono-

hydroperoxides of linoleate do form H(P)NE upon standing in air with no added catalyst. 

Conversion of the diHPODEs to H(P)NE was induced by treatment with acid, in line with 

the much-invoked Hock cleavage, an acid-catalyzed reaction. This, however, does not 

mimic the neutral environment under which HNE was formed using our autoxidation 

conditions. If diHPODEs or the corresponding dihydroperoxides of arachidonate 

(diHPETEs) are involved in formation of HNE, then some other catalyst has to be active. 

In earlier experiments using the P. homomalla 8R-LOX (Chapter V) we noticed the 

formation of polar products from arachidonic acid, prompting our investigation of their 

structures and mechanism of formation. This led to the present report in which we 

identified a bis-allylic dihydroperoxide pathway to an HPNE-related aldehyde with a 

lipoxygenase (LOX) enzyme promoting the transformations. 
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Experimental procedures 

Materials  

Arachidonic acid was purchased from NuChek Prep Inc. (Elysian, MN). [1-
14

C] 

C20.4ω6 was purchased from Perkin Elmer Life Sciences. 9E,11Z,14Z-20:3ω6 was 

synthesized by Dr. Jin K. Cha, Wayne State University, as described previously (27). 

Nordihydroguaiaretic acid (NDGA) was purchased from Cayman Chemical Co. (Ann 

Arbor, MI). Triphenylphosphine (TPP) was purchased from Sigma. 

 

Expression and purification of 8R-lipoxygenase 

cDNA of the 8R-LOX domain of the P. homomalla peroxidase-lipoxygenase fusion 

protein was subcloned into the pET3a vector (with an N-terminal His4 tag), and the 

protein was expressed in E. coli BL21 (DE3) cells and purified by nickel affinity 

chromatography according to a previously published protocol (61). For clarity, this 8R-

lipoxygenase is referred to here as the recombinant 8R-LOX. 

 

Enzymatic incubation   

Incubations were performed at room temperature in 1 ml of 50 mM Tris, pH 8.0, 

500 mM NaCl, 2 mM CaCl2 and 0.01% Emulphogene detergent using recombinant 8R-

LOX (10 g/ml) and fatty acid substrates, arachidonic acid (25 g/ml) or purified 

8R,11R-diHPETE (5 g/ml). Incubations were conducted in a 1 ml quartz cuvette, 

monitored by repetitive scanning from 350-200 nm using a Lambda-35 

spectrophotometer (Perkin-Elmer) and stopped by acidification to pH ~4.5. After 

extraction using C18 Oasis cartridges the samples were further analyzed by HPLC. 
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HPLC analyses  

Aliquots of the extracts were analyzed by RP-HPLC using a Waters Symmetry 5 

column (25 x 0.46 cm) at a flow rate of 1 ml/min with CH3CN/H2O/HAc (45/55/0.01, by 

volume). Peaks were monitored using on-line UV detection (Agilent 1100 series diode 

array detector). Further purification was achieved by normal-phase HPLC using a 

Beckmann Ultrasphere 5 silica column using a solvent of hexane/isopropanol/glacial 

acetic acid (100/2/0.1, by volume) at 1 ml/min. For chiral analysis, the enantiomers were 

resolved using a Chiralpak AD column (25 x 0.46 cm) with a solvent system of 

hexane/methanol (100/2, by volume) run at 1 ml/min. 

 

Preparation of 8R,11R-diHPETE  

Arachidonic acid (100 g/ml) in Tris enzyme buffer (pH 8.0, 500 mM NaCl, 2 mM 

CaCl2 and containing 0.01% Emulphogene detergent) was reacted with 8R-LOX (10 

g/ml) for 30 min on ice, with the reaction monitored by scanning UV spectroscopy. The 

reaction was stopped by acidification using 1M KH2PO4 and 1N HCl to give pH 4 and 

the sample applied to an Oasis C18 cartridge, which was washed with water and the 

products eluted with methanol. The 8R,11R-diHPETE was subsequently purified by RP-

HPLC followed by methylene chloride extraction from the HPLC solvent. The organic 

phase was washed with water and then blown to dryness under a nitrogen stream. The 

purified 8R,11R-diHPETE in ethanol was quantified by UV spectroscopy assuming an 

extinction coefficient of 25,000 at 242 nm, and stored at -30 °C prior to use. 
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Compound Derivatization  

Catalytic hydrogenations were performed in 100 µL of ethanol using about 1 mg of 

palladium and bubbling with hydrogen for 2 min at room temperature. The hydrogenated 

products were recovered by the addition of water and extraction with ethyl acetate. 

Methyl esters were prepared using ethereal diazomethane in methanol. Methoxime 

derivatives were prepared by treatment with 5 l of methoxylamine hydrochloride in 

pyridine (10 mg/ml) overnight at room temperature. Trimethylsilyl (TMS) ether 

derivatives were prepared using bis(trimethylsilyl)-trifluoracetamide (10 µL) at room 

temperature for 2 hour. PFB esters were prepared using 10% diisopropyl ethanolamine in 

acetonitrile (l) and 10% pentafluorobenzylbromide (40 l) at 37 °C for 15 min. 

 

GC-MS analyses  

Analyses of product derivatives were performed in the positive ion electron impact 

mode (70 eV) using a Thermo Finnigan Trace DSQ ion trap GC-MS. The RTX-1701 

fused silica capillary column, 17 m x 0.25 mm internal diameter, was programmed from 

150 °C to 300 °C at 20 °C /min. The samples were subjected to rapid repetitive scanning 

over the mass range of 50-500 a.m.u. covering the major fragment ions. 

 

NMR analyses  

1
H NMR and COSY spectra were recorded on a Bruker 600 MHz spectrometer at 

298 K. Chemical shifts are reported relative to tetramethylsilane (0.0 ppm), using the 

residual non-deuterated NMR solvent as the lock signal (δ = 7.16 ppm for C6D6, 7.26 

ppm for CDCl3).  
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Results 

Metabolism of arachidonic acid by recombinant 8R-LOX 

Recombinant 8R-LOX from the P. homomalla AOS-LOX fusion protein 

oxygenates arachidonic acid specifically to 8R-HPETE, and then on further exposure to 

the enzyme the 8R-HPETE is slowly transformed to secondary products via multiple 

oxidative pathways. After extraction using a C18 cartridge, RP-HPLC analysis with 

diode-array detection at multiple wavelengths shows a complex mixture of products 

(Figure 50). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: RP-HPLC analysis of reaction of arachidonic acid with 8R-LOX. Waters 

Symmetry column (25 x 0.46 cm), a solvent of CH3CN/H2O/HAc (45/55/0.01, by 

volume), at a flow rate of 1 ml/min, with diode array detection. 
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The peaks labeled 1-4 each exhibit a smooth UV chromophore typical of a 

conjugated enone, while the later-eluting groups of products (mainly 8,15-diH(P)ETEs) 

exhibit the characteristic UV chromophore of a conjugated triene. After further 

chromatography, the main components of peak 1 were separated and identified by NMR 

as a mixture of a C7 keto acid, 5-oxo-hept-6-enoic acid (Figure 51), and C7 aldehyde 

acid, 7-oxo-hept-5E-enoic acid (Figure 52). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51: 
1
H-NMR spectrum of 5-oxo-hept-6-enoic acid (one of the two main 

components of peak 1 in Figure 50). The spectrum was recorded in d6-benzene at 298K 

using a Bruker 600 MHz spectrometer. 

 

The molecular weight of the peak “5-oxo-hept-6-enoic acid” was confirmed as 142 by 

LC-MS (Q-TOF, negative-ESI, [M-H]
-
 ion, predicted 141.0552, found 141.0557, 

C7H9O3. 
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Figure 52: COSY NMR spectrum of 7-oxo-hept-5E-enoic acid (the second main 

component of peak 1 in Figure 50). The spectrum was recorded in d6-benzene at 298K 

using a Bruker 600 MHz spectrometer. 

 

7-oxo-hept-5E-enoic acid. 
1
H-NMR, 600 MHz, CDCl3, 283K, d, 1H, H7, 

J6,7 = 7.8 Hz; 6.81, dt, 1H, H5, J4,5 = 6.7 Hz, J5,6 = 15.7 Hz; 6.13, dd, 1H, H6, J5,6 = 15.7 

Hz, J6,7 = 7.8 Hz; 2.38-2.44, m, 4H, H2, H4; 1.86, p, 2H, H3, J2,3 = 7.4 Hz, J3,4 = 7.4 Hz. 
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Figure 53: GC-MS and NMR analyses of 8R-hydroperoxy-11-oxo-undeca-5Z,9E-dienoic 

acid. 

A. Mass spectrum of the methyl ester TMS ether methoxime derivative of TPP-reduced 

2.  B. 
1
H-NMR spectrum of 2. 

  



 

 128 

It turns out that the peak 2 in Figure 50 is directly relevant to the bis-allylic 

dihydroperoxide pathway to HNE-related aldehydes. 2 exhibits a UV chromophore 

(max 218 nm) similar in character to the spectrum of HPNE. Treatment of the extracts 

with triphenylphosphine converted 2 to a slightly more polar derivative (max 221 nm) 

consistent with reduction of the hydroperoxy analogue to its hydroxy counterpart. The 

hydroxy analogue of 2 was analyzed by GC-MS as the methyl ester TMS ether 

methoxime derivative, Figure 53A. Structurally diagnostic ions were observed at m/z 

values of 327 (M
+

, 1% abundance), 312 (M-15, 2%), 296 (M-31, 2%), 186 (C8-C11, 

100%) and 155 (16%), compatible with the methyl ester of a C11 fatty acid containing an 

8-hydroxyl and C11 aldehyde. The proton NMR spectrum of the parent 2 defined the 

structure, Figure 53B. Thus, the doublet at 9.6 ppm in Figure 53B represents the 

aldehyde proton (J10,11 = 7.7 Hz), with coupling to the doublet of doublets at 6.3 ppm 

(H10, J = 7.7 and 16.0 Hz), the 16.0 Hz J value indicating a trans double bond with H9 

(dd at 6.8 ppm, J = 16.0 and 6.0 Hz), next to the C8 proton geminal with the 

hydroperoxide (C8, q, J = 6 Hz), with further clear couplings through to H2. Consistent 

with the conjugated enone chromophore and GC-MS analysis, and taking into account its 

formation from 8R-HPETE, the 2 was identified as 8R-hydroperoxy-11-oxo-undeca-

5Z,9E-dienoic acid. This HPNE-like aldehyde is formed by cleavage of the C20 precursor 

between C11 and C12. The yield of 2, estimated from an experiment using [1-
14

C]8R-

HPETE as substrate, was approximately 8% of the recovered radioactive products. 

Other prominent products shown in Figure 50 are outlined as follows: the several 

compounds with UV spectra characteristic of all-trans or trans-cis-trans conjugated 

trienes were readily identified as 8,15-diHETEs or 8,15-diHPETEs based on the 
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availability of synthetic standards, and the change in chromatographic mobility of the 

hydroperoxides on reduction with triphenylphosphine;. Peak 3 eluting at 15 min with 

max at 272 nm exhibits a conjugated dienone chromophore, and was identified by GC-

MS and 
1
H-NMR as the C11 aldehyde 6-hydroperoxy-(2E,4E)-undecadienal. Peak 4 at 24 

min retention time has the UV absorbance characteristic of a conjugated trienone (max 

316 nm), and was identified as the C13 aldehyde, 8-hydroperoxy-(2,4,6)-tridecatrienal. 

Experiments using [1-
14

C]arachidonic acid as 8R-LOX substrate confirmed that the C7 

keto and aldehyde acids in peak 1 and the HPNE-related 2 retain the 1-
14

C label, and for 

example, that the C11 and C13 aldehydes from the methyl end of the fatty acid were 

unlabeled. The radioactivity also facilitated the detection of two additional polar products 

that are resolved using RP-HPLC solvent containing 90% water. LC-MS analysis 

indicated that these extra products, which absorb very weakly near 200 nm in the UV are 

C7 hydroxy acids (M-H ion at m/z 143), likely 5-hydroxy-hept-6-enoic acid and 7-

hydroxy-hept-5-enoic acid, expected as -cleavage products from 8-HPETE or 8,15-

diHPETE. 

 

Trapping the intermediate to the HNE-like aldehyde 

To aid in the isolation of unstable or rapidly metabolized intermediates, the 

incubation of arachidonic acid with 8R-LOX was repeated at ice-cold temperature. RP-

HPLC of the on-ice incubation showed a relative decrease in formation of all cleavage 

products, including those in peaks 1 - 4, with increased recovery of the 8,15-diH(P)ETEs 

and, eluting just after the 8,15-diHPETEs, a prominent new peak that was hardly detected 

in the incubation at room temperature (Figure 54). 
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Figure 54: RP-HPLC analysis of on-ice incubation of arachidonic acid with 8R-LOX 

Recombinant 8R-LOX (10 μg/ ml) was reacted with arachidonic acid (50 μM) in 50 mM 

Tris pH 8 containing 500 mM NaCl, 2 mM CaCl2 plus 0.01% Emulphogene detergent for 

15 min at the ice-cold temperature. An aliquot of the reaction was analyzed by RP-HPLC 

using a Waters Symmetry column (25 x 0.46 cm), a solvent of CH3CN/H2O/HAc 

(45/55/0.01, by volume), at a flow rate of 1 ml/min, with diode array detection. The peaks 

labeled 1-4 correspond to those in Figure 50. The different wavelengths are on the same 

scale and are offset for clarity. 

 

The new peak showed an unfamiliar UV chromophore with a smooth profile (as opposed 

to the angular shoulders on a typical conjugated diene) and a relatively high max at 242 

nm (Figure 55).  
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Figure 55: Overlay of the UV spectra of 8R-HPETE and 8,11-diHPETE. 

 

After hydrogenation to remove the double bonds, GC-MS analysis of the TMS 

ester TMS ether derivative showed diagnostic ions at m/z values of 545 (M-15, 1% 

abundance), 455 (M-90, 1%), 359 (C8-C20, 7%), 343 ([C1-C11]-90, 92%), 303 (C1-C8, 

97%), 269 ([C8-C20]-90, 89%) and 229 (C11-C20, 73%)  (Figure 56). The major -

cleavage fragment ions define the position of the two hydroxyl groups at C8 and C11. 

The parent 8,11-diHPETE (5Z,9E,12E,14Z) exhibits a distinctive conjugated diene 

chromophore (12E,14Z) modulated mainly by the presence of the nearby 9E double bond. 
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Figure 56: GC-MS analysis of the TMS ester TMS ether derivative of the TPP-reduced 

hydrogenated 8,11-diHPETE. 
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Conversion of purified 8,11-diHPETE to the aldehydes in peaks 1 and 2 

To examine the relationship between 8,11-diHPETE and the secondary cleavage 

products, purified 8,11-diHPETE was incubated with 8R-LOX and formation of the 

cleavage products was checked by RP-HPLC (Figure 57). The conversion was minimal 

using 8R-LOX alone, but upon co-incubation with NDGA, a reductant of the LOX iron, 

8,11-diHPETE was completely consumed, and accompanied by production of the C7 

aldehyde acid of peak 1 and the HPNE-related C11 acid 2. Control experiments examining 

the conversions of 8,15-diHPETEs by 8R-LOX with or without added NDGA established 

that neither condition produced peaks 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57: Conversion of purified 8,11-diHPETE to peaks 1 and 2 

Reactions of recombinant 8R-LOX (10 μg/ml) with purified 8,11-diHPETE (5 μg/ml) 

were conducted in 50 mM Tris pH 8 containing 500 mM NaCl, 2 mM CaCl2 plus 0.01% 
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Emulphogene detergent for 15 min at room temperature without (top) or with (below) 

adding 5 μM NDGA. Aliquots of the reaction were analyzed by RP-HPLC with diode 

array detection as outlined above. The UV profiles at 220 nm are illustrated. 

 

 

Determination of the C11-hydroperoxyl configuration 

Formation of 8,11-diHPETE by 8R-LOX appears to involve a secondary 

oxygenation via a “frame-shift” along the carbon chain of the 8R-HPETE substrate, in 

which case formation of an 11R hydroperoxy moiety is predicted. To provide support for 

this proposed biosynthetic mechanism, I examined the 8R-LOX metabolism of 

9E,11Z,14Z-eicosatrienoic acid, a synthetic C20 fatty acid containing a conjugated diene 

in the same position as in 8-HPETE, but lacking the 8-hydroperoxyl (Figure 58).  

 

 

 

 

 

 

 

Figure 58: Scheme of 8R-LOX reactions with 9E,11Z,14Z-C20:3. 

 

The incubation of 9E,11Z,14Z-eicosatrienoic acid with 8R-LOX was conducted at 

the ice-cold temperature. RP-HPLC analysis of the reaction products demonstrated, in 

addition to the formation of two conjugated triene-containing products (presumably 

oxygenated at C9, thus extending the conjugation to 10,12,14), a more prominent product 
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exhibiting a UV chromophore similar in profile to that of 8,11-diHPETE, except with the 

max 4 nm lower, at 239 nm. GC-MS analysis of the TPP-reduced and hydrogenated 

product as the TMS ester TMS ether derivative unequivocally established the position of 

the hydroxy at C11 (Figure 59). The parent is therefore 11-hydroperoxy-eicosa-9,12,14-

trienoic acid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59: GC-MS analysis of TMS ether TMS ester of TPP-reduced hydrogenated 11-

hydroperoxy-C20:3 

 

To determine the stereochemistry at C11, the hydrogenated derivative was 

converted to the PFB ester and compared by chiral column HPLC with the PFB esters of 

hydrogenated 11R-HETE and 11RS-HETE. The chiral phase-HPLC analysis showed 
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mainly the 11R enantiomer (Figure 60), and therefore by direct analogy, the structure of 

the 8,11-diHPETE generated from arachidonic acid is expected to be 8R,11R-diHPETE. 

 

Figure 60: Chiral phase-HPLC analysis of PFB 

ester of TPP-reduced hydrogenated 11-

hydroperoxyl C20:3 using a Chiralpak AD 

column with a solvent system of hexane/methanol 

(100/2, by volume) at a flow rate of 1 ml/min. The 

UV profile at 205 nm is illustrated. 

 

 

 

 

 

 

 

 

Formation of bis-allylic dihydroperoxides and HPNE from the reactions of 15S-HPETE 

with mammalian 15-LOX 

 

Since detection of such bis-allylic dihydroperoxides is uncommon, I investigated the 

capability of mammalian lipoxygenase enzymes in producing this type of compounds. 

Mouse platelet-type 12S-LOX and human 15-LOX-1 are chosen because they are capable 

of oxygenating both C12 and C15 with arachidonic acid as substrate. The concept is that 

if these two enzymes can oxygenate C12 at 15S-HPETE, which is the mono-oxygenation 

product of human 15-LOX-1 from arachidonic acid, bis-allylic 12,15-diHPETE can be 

produced. Although 12,15-diHPETE has not been reported as a lipoxygenase product, it 

could be simply because it is not looked for in lipoxygenase reactions. In addition, the 

instability of bis-allylic hydroperoxides during typical acid extraction conditions limits 

the prospects of their detection by chance. 
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Figure 61: RP-HPLC analyses of room temperature reactions of 15S-HPETE with mouse 

platelet-type 12S-LOX (top) and human 15-LOX-1 (below). Column: Waters Symmetry 

C18, 25 x 0.46 cm; solvent, CH3CN/H2O/HAc (45/55/0.01, by volume); flow rate, 1 

ml/min; on-line diode array detection. (The retention time difference between the two 

chromatograms is due to the use of different columns). 
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Figure 61 demonstrated the product profile of room temperature reactions of 15S-

HPETE with mouse platelet-type 12S-LOX and human 15-LOX-1. The peak, which has a 

very similar UV chromophore with 8,11-diHPETE (Figure 62), was detected within the 

region of diHPETEs from both reactions. Based on these observations and the 

understanding of the catalytic properties of these two lipoxygenases, this peak was 

assigned as 12S,15S-diHPETE. Interestingly, HPNE was detected as a significant product 

from both reactions. It is very likely that in these reactions HPNE is formed via 12,15-

diHPETE as an intermediate. 

 

 

 

 

 

 

 

 

 

Figure 62: Overlay of the UV spectra of 8R,11R-diHPETE and 12S,15S-diHPETE  
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Discussion 

Herein we establish that 8R-LOX forms 8R,11R-diHPETE as one of the 

transformation products of 8R-HPETE, and that this bis-allylic dihydroperoxide is further 

converted in the course of the ongoing enzymatic reactions, forming the 4-hydro(pero)xy-

alkenals, compounds 1 and 2, as products of this pathway. Considering initially the 

generation of 8,11-diHPETE, it is notable that detection of such bis-allylic fatty acid 

hydroperoxides is uncommon, for several reasons. At the top of the list is that, until the 

year 2000, bis-allylic hydroperoxides remained undiscovered as products of lipid 

peroxidation (154) and therefore they were simply not looked for in lipoxygenase 

reactions. Secondly, the instability of bis-allylic hydroperoxides during typical acid 

extraction conditions, (most extensively studied with the corresponding bis-allylic 

hydroxy derivatives e.g. refs.(155,156)), limits the prospects of their detection by chance. 

Thirdly, aside from the fungal enzyme manganese-lipoxygenase that forms 11-

hydroperoxy-linoleate as a major product (157), the initial reaction of lipoxygenases with 

polyunsaturated fatty acids forms the bis-allylic hydroperoxides as very minor products 

(≤1% abundance) (61,158). By comparison, bis-allylic dihydroperoxides are more 

prominent products of lipoxygenase secondary reactions, as evidenced here by their 

detection using the P. homomalla 8R-LOX (Figure 54), the mouse platelet-type 12S-

LOX, and human 15-LOX-1 (Figure 61). 

The transformation from arachidonic acid to the aldehyde fragments involves a 

dual catalytic activity of the lipoxygenase active site iron. The dioxygenase activity by 

the ferric iron oxygenates C8 and C11 in a sequential manner and produces 8R,11R-

diHPETE. (While 8R-HPETE is the prominent mono-oxygenation product from 
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arachidonic acid by 8R-LOX, 11R-HPETE is not detected as a product from the reaction.) 

If the oxygenation proceeded efficiently, then ferric iron would be regenerated in each 

catalytic cycle and free ferrous iron would not become available. Although the first 

oxygenation to 8R-HPETE is fast and efficient, the secondary reactions by 8R-LOX are 

slow, and they produce a complex mixture of products. Therefore, the primary product, 

8R-HPETE, can be considered as a poor substrate of the 8R-LOX, and the weak 

secondary reactions may not be well controlled. For instance, with 8R-HPETE in the 

enzyme active site there may be, in effect, a low concentration of suitably-positioned 

molecular oxygen available to intercept the LOX-generated radicals (cf. refs.(13,27,30)), 

and/or radical intermediates may escape the active site (13,27). Either possibility will 

leave the non-heme iron in the ferrous state, now available to catalyze reductive 

transformations. Indeed there is ample evidence from our product analyses to establish 

that reduction to alkoxyl radicals is catalyzed by the 8R-LOX enzyme. This reaction is 

involved in synthesis of each of the aldehydic products detected (cf.(159)). Using 

8R,11R-diHPETE as substrate, the ferrous iron catalyzes a homolytic cleavage of the 11-

hydroperoxide and generates an alkoxyl radical at C11. The subsequent carbon chain 

cleavage between C11 and C12 is promoted by -cleavage of the alkoxyl radical and 

gives the HPNE-like aldehyde, peak 2 (Figure 63). These reductive reactions were 

inhibited significantly by the use of ice-cold temperatures during the enzyme incubation, 

likely by improving the efficiency of the oxygenation reactions, allowing recovery of the 

bis-allylic dihydroperoxide. 
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Figure 63: Proposed routes of formation of compound 2 

 

As noted in Figure 63, the C11-C12 carbon chain cleavage should also produce 

3Z-nonenal, although this fragment was not detected in our experiments. Our prior 

experience with 3Z-nonenal is that it chromatographs very poorly on RP-HPLC, and with 

its weak UV absorbance (end absorbance only) such a product is difficult to detect. 

Although it might isomerize to 2E-nonenal or oxidize to HPNE, which chromatograph 

nicely and are more readily detectable, I checked using authentic standards for 

comparison and neither was present on the chromatograms. 

The use of NDGA in the 8R-LOX-catalyzed transformation from 8,11-diHPETE to 

HNE-related aldehydes is required. The reduction from the bis-allylic dihydroperoxide to 

the alkoxyl radical leaves the LOX iron in the oxidized state, and addition of NDGA 

helps promote ferric-to-ferrous recycling and thus is required for the accumulation of 
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HNE-related aldehydes. By contrast, as noted above, the cycling occurs fairly efficiently 

in the complex mixture of reactions starting from arachidonic acid. 

Carbon chain cleavage leading to aldehydes was recognized four decades ago as a 

secondary lipoxygenase activity (promoted under anaerobic conditions) (160). This well-

recognized reaction occurs via alkoxyl radical formation then carbon chain cleavage at 

the C(O)-CH2 bond distal to the conjugated diene. The resulting products are akin to the 

C11 and C13 aldehydes from the methyl end of the molecule identified in the present 

study. A similar cleavage activity by lipoxygenase that is not reliant on anaerobic 

conditions was established more recently (161), although mechanistic studies postulate a 

lack of oxygen availability in the LOX active site as a predisposing factor (27). The 

formation of a bis-allylic dihydroperoxide as observed here appears to offer an alternative 

option for carbon chain cleavage. Formation of compounds 1 and 2 occurs with 

fragmentation at the C(O)-conjugated diene bond, thus creating the 4-hydro(pero)xy-

alkenal.  

One property that makes the current reaction plausible in a physiological context is 

the fast enzymatic turnover via the bis-allylic dihydroperoxide intermediate. 8R,11R-

diHPETE was almost not detected in the room-temperature incubation but accumulated 

when the secondary cleavage reaction was intercepted by the on-ice incubation. Based on 

our proposed mechanism, the bis-allylic hydroperoxyl group at C11, but not the 

hydroxyl, is required for the secondary cleavage reaction to proceed. The fast enzymatic 

turnover ensures that the secondary cleavage reaction occurs once the dihydroperoxide 

intermediate is formed and minimizes the possibility that the dihydroperoxide diffuses 

out of the active site and exposes to the peroxidases which are abundant in vivo.  
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CHAPTER VII 

 

PARTIALLY RESOLVED ISSUES AND OPEN QUESTIONS 

 

 

1. Dimeric peroxides and novel pathways of lipid peroxidation 

Lipid peroxidation is the process in which the starting lipids, usually the 

polyunsaturated fatty acids (PUFAs), undergo a series of free radical chain reactions and 

result in various hazards to the host cells. Free radicals generated in lipid peroxidation 

form not only lipid hydroperoxides as primary products but also reactive aldehydes as 

secondary products. The formation of reactive aldehydes is of wide research interest 

because of their toxicity as well as their implication in lipid peroxidation mechanisms.  

                        A 

                             

 

 

 

                                 B 

 

 

 

 

Figure 64: Reactive aldehyde formation in lipid peroxidation. (A) the monomeric lipid 

hydroperoxides directly give aldehyde formation; (B) the dimeric peroxides are formed 

and generate aldehyde products. 



 

 144 

Figure 64 shows the reactive aldehyde formation in lipid peroxidation. Figure 64A 

shows the classic view of lipid peroxidation in which the monomeric lipid 

hydroperoxides directly give aldehyde formation; Figure 64B shows a proposed view of 

lipid peroxidation in which the dimeric peroxides are formed and generate aldehyde 

products. To test the hypothesis in Figure 64B is the major aim of this project. 

 

Preparation of dimers 

For each preparation, 5 mg of 13S-HPODE is placed in a 1.5 ml Eppendorf tube 

and blown to dryness under a stream of nitrogen. The resulting thin lipid film is subjected 

to autoxidation under O2 atmosphere at 37 °C for 2 hr. The autoxidation sample is 

subsequently analyzed by thin layer chromatography (TLC) and gel filtration separation 

(Figure 65). 

A                                                         B                           

                                                                            
 

 

Figure 65: Dimer formation in lipid autoxidation. A, Thin layer chromatography analysis 

before and after autoxidation of 13S-HPODE at 37 °C for 2 hr. Solvent: 

Hex/EtOAc/HAc:60/40/0.1; B, Gel filtration analysis before and after autoxidation of 

13S-HPODE at 37 °C for 2 hr. Column: LH 20 column, 1.5 x 100 cm. Solvent: MeOH. 
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Identification of dimers 

A  

   

 

 

 

 

 

 

 

 

 

B      

 

 

 

 

 

 

 

 

 

Figure 66: LC-MS analyses of dimeric fractions of LH 20 column separation of 13S-

HPODE autoxidation sample (A) before and (B) after TPP treatment. 
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Figure 66 demonstrated the LC-MS analysis of the dimeric fractions collected 

from gel filtration separation. The dimers formed in lipid peroxidation consist of a series 

of compounds with similar structures. The selective ion chromatograms indicate that the 

different species in dimeric fractions vary in the oxidation states of the 

hydroxyl/hydroperoxyl groups as well as the type of linkage that bridges the two 

monomers (-O- or –O-O-). 

 

Production of H(P)NE from dimeric fractions and pure 13S-HPODE 

In order to investigate whether the dimers function as intermediate in the 

conversion from the polyunsaturated fatty acid to H(P)NE, I used LC-MS to 

quantitatively compare the H(P)NE production from the dimers and the pure 13S-

HPODE.  

(1) Development of quantification methods 

To develop the H(P)NE quantification method using LC-MS, d3-HNE was added 

to the sample as the internal standard and HNE (or HPNE after TPP treatment) was 

derivatized using 2,4-Dinitrophenylhydrazine (DNPH) to improve the detection by mass 

spectrometry.  

To generate the standard curve relating the signal intensities with the HNE amount 

in the sample, 100 ng of d3-HNE were added to 10 ng, 20 ng, 30 ng, 40 ng, 50 ng of 

HNE standards (or 10 ng, 20 ng, 30 ng, 40 ng, 50 ng HPNE after TPP treatment). After 

conversion to HNE-DNP derivatives, the samples were analyzed by LC-MS. The ratios 

of the peak areas of HNE standard (or HPNE after TPP treatment) over d3-HNE standard 
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were obtained and plotted against the amount of HNE (or HPNE after TPP treatment) 

(Figure 67). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 67: Standard curve of HNE/HPNE quantification by LC-MS 

 

(2) Comparison of H(P)NE production from dimers and pure 13S-HPODE 

13S-HPODE was prepared by the soybean lipoxygenase reaction with linoleic acid 

followed by SP-HPLC purification. Dimers were prepared by autoxidation of 13S-

HPODE followed by gel filtration separation. The same amount of dimers and 13S-

HPODE (based on UV absorbance at 237 nm) were subjected to autoxidation at 37 °C for 

0, 20, 40, 60 and 120 min. After addition of d3-HNE, the autoxidation samples were 
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reduced with TPP and derivatized using DNPH. The H(P)NE (HNE+HPNE) amount in 

the autoxidation samples was obtained by comparing the ion intensities with the standard 

curves generated in Figure 67. 

 

 

 

 

 

 

 

 

 

Figure 68: H(P)NE production from autoxidation of dimers and pure 13S-HPODE 

 

Figure 68 demonstrates that the H(P)NE formation during autoxidation of both 

dimers and 13S-HPODE reach the highest amount at ~1 hr and diminished afterwards. 

Dimers have a higher amount of H(P)NE at the starting time point but do not show a 

significantly higher H(P)NE generation rate than that of 13S-HPODE during 

autoxidation.  

To further test the role of dimers in H(P)NE formation during lipid autoxidation, 

assays using the diluted lipids were performed. These assays use the same protocol as 

what were performed in Figure 68 except that the starting dimers and 13S-HPODE are 

mixed with an excess amount of oleic acid. The concept is that by being diluted with 
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excess other lipids, 13S-HPODE cannot generate dimers and thus cannot make H(P)NE if 

the dimers are the intermediate to H(P)NE. On the other hand, the H(P)NE formation 

initiated from dimers will not be affected by the dilution with oleate.  

 

 

 

 

 

 

 

 

 

Figure 69: H(P)NE production from autoxidation of dimers and pure 13S-HPODE in the 

presence of excess oleic acid. 

 

Figure 69 shows the time course of H(P)NE production from autoxidation of the 

dimers and the pure 13S-HPODE in the presence of excess oleic acid. Under these 

conditions the H(P)NE production from both starting substrates was inhibited. 

 

HPNE distribution in LH20 column fractions  

In Figure 68 and 69, the dimer samples started with a significantly higher amount 

of H(P)NE than the pure 13S-HPODE (0.15 versus 0.02, mass spectrometry peak area 

ratios of H(P)NE over d3-HNE). In Figure 66 it was shown that the dimer fractions 

collected from LH20 column separation consist of a series of compounds with similar 
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structures. To explain the higher starting HPNE detection in the dimer samples as well as 

the autoxidation results that the dimers do not show a higher HPNE generation capacity 

than monomer, I propose that the “unstable” dimers degrade to HPNE during the LH20 

column separation, while the left-over dimers degrade to monomers during autoxidation, 

thus showing the same HPNE generation ability as that of monomer. To test this, the 

concentration of HPNE was determined in the LH20 fractions collected across the dimer 

and monomer peaks from the 13S-HPODE autoxidation (Figure 70).  

 

 

 

 

 

 

 

 

 

Figure 70: HPNE and 13S-HPODE distribution on LH20 column 
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The dimer and monomer-eluting region on the LH20 column was divided into 9 

fractions. Each fraction was injected on HPLC to determine the amounts of HPNE and 

13S-HPODE. 13S-HPODE (monomer) exhibited a symmetrical distribution with the peak 

center between fractions 5 and 6. The HPNE peak center was located at fraction 8. 

However, there is a significant increase in HPNE detection in fractions 1, 2, 3 and 4 

which correspond to the dimer-eluting region of the chromatogram. This distribution of 

HPNE with a higher abundance in the dimer fractions provides strong evidence that 

during the LH20 column separation the “unstable” dimers degrade to HPNE. 

In summary, in this part a method of quantitatively analyzing HNE production has 

been developed. The hypothesis that during lipid peroxidation dimeric peroxides are 

formed and serve as the intermediate to H(P)NE production was tested. My data showed 

that dimer fractions from LH20 column do not show a significantly higher H(P)NE 

generation rate than that of the fatty acid hydroperoxide monomer during autoxidation. 

However, further analyses on HPNE distribution in the dimer fractions of LH20 column 

led to another hypothesis that there exist two types of dimers, “stable” and “unstable” 

dimers, and during the LH20 column separation the “unstable” dimers degrade to HPNE. 
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2. 15-lipoxygenase as a 5,6-LTA4 synthase 
 

15-LOX was first demonstrated to have a 5,6-LTA4 synthase activity by the Dr. 

Robert C. Murphy laboratory. They showed that inhibition of cytosolic 5-lipoxygenase 

from human blood granulocytes inhibited the LTA4 synthase activity by only 47%. 

Incubation of 5S-HPETE with the recombinant mammalian 15-LOX resulted in the 

formation of 6-trans-LTB4 and 6-trans-12-epi-LTB4, the LTA4 non-enzymatic hydrolysis 

products. They proposed that the formation of LTA4 by 15-LOX involves removing the 

pro-R hydrogen atom at C10 of 5S-HPETE which is antarafacial to the hydroperoxy 

group (120).  

 

 

Figure 71: LTA synthase activity of 

15-LOX proposed by R. C. Murphy. 

(A) 14,15-LTA4 formation. (B) 5,6-

LTA4 formation. 

This figure was originally published 

in Journal of Biological Chemistry. 

MacMillan et al. Eosinophil 15-

lipoxygenase is a leukotriene A4 

synthase. J. Biol. Chem.. 1994; 

269:26663-8. © the American 

Society for Biochemistry and 

Molecular Biology. 
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The mechanisms presented in Figure 71 differ from our proposed mechanisms of 

LTA epoxide formation (Chapter 3). In Figure 71A, 15S-HPETE binds to 15-LOX with 

the abstracted 10L hydrogen antarafacial to the 15S-hydroperoxide. The carbon chain at 

C13-16 thus adopts a cis conformation, which should lead to formation of a cis-epoxide 

product. By contrast, our proposal invokes a suprafacial relationship of the abstracted 

hydrogen and hydroperoxide moieties, correctly predicting trans-epoxy 14,15-LTA4 as 

product (Figure 12). In Figure 71B, 5S-HPETE is drawn to bind the enzyme in the 

reversed orientation and the above argument applies to the antarafacial relationship of the 

10D hydrogen abstraction and 5S-hydroperoxide. The predicted outcome gives cis-LTA4 

as product, whereas LTA4 is a trans-epoxide (Figure 29). 

 Our proposed mechanisms of LTA epoxide formation predict the reactions of 5-

HPETE with 12/15-LOX to proceed as follows: 

 

 

 

 

 

As illustrated, the suprafacial relationship of the hydrogen abstraction and the 

hydroperoxide moiety leads to the conclusion that 12/15-LOX will convert 5S-HPETE to 

cis-LTA4 (top) and the enantiomeric 5R-HPETE to (5R) trans-LTA4 (below). This 

prediction is not incompatible with the earlier experimental results, which based the 

synthesis of LTA epoxide on detection of the characteristic products of LTA-type 
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epoxide hydrolysis. cis-LTA4 is hydrolyzed to the same major 5,12-dihydroxy products 

as trans-LTA4 (58). 

Using the biphasic synthesis and simultaneous extraction methods developed in 

Chapter 2, I was able to directly analyze the LTA epoxide products from the reactions of 

the enantiomeric 5-HPETEs with human 15-LOX-1. The optimal pH for the recombinant 

human 15-LOX-1 activity is ~7.5. Here I lowered the aqueous phase pH to 6.5 based on 

two concepts: (1) the ionic form of the carboxyl group would hurt the stability of the 

LTA type epoxides especially 5,6-LTA4; (2) acidic pH would help the back extraction of 

the LTA epoxide products to the organic phase. Another problem with 5-HPETE, which 

was also met in Chapter 3, is the lactone formation after it is stored in alcohol solvents for 

a period of time. To avoid the lactone formation, purified enantiomeric 5-HPETEs are 

stored in acetonitrile before further usage.  
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Figure 72: RP-HPLC analyses of the organic phase of biphasic reactions of enantiomeric 

5-HPETEs with human 15-LOX-1. A, 5S-HPETE; B, 5R-HPETE. 
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The composition of LTA products (cis/trans-LTA ratio) is analyzed by comparing 

the areas underneath individual LTA product peaks on RP-HPLC (Figure 72). With 

human 15-LOX-1 as catalyst, by comparison with the authentic standards 5S-HPETE 

generated cis- and trans- LTA4 in a ratio of 1:7 (Figure 72A) and 5R-HPETE generated 

cis- and trans-LTA4 (5R) in a ratio of 1:11 (Figure 72B). Based on our proposed LTA 

formation mechanisms, 5S-HPETE metabolism by 15-lipoxygenase is predicted to 

generate cis-LTA4 and 5R- to generate trans-LTA4 (5R). The former is out of line with 

our hypothesis. The inconsistency in the case of 5S-HPETE metabolism may be due to 

the following two reasons: (1) The recovery of LTA4 was low in these experiments 

(especially from 5S-HPETE).  The low yield may indicate that the enzymatic control of 

LTA formation in these reactions is poor and the product pattern might be modified by 

the non-enzymatic synthesis (2) Secondly, the LTA4 epoxides are converted by human 

15-LOX-1 to lipoxin-like products (which are not extracted into the hexane phase), and 

the relative efficiency of conversion of cis- and trans-LTA4 is unknown. It is possible 

that a higher conversion of cis-LTA results in its lower detection. 
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CHAPTER VIII 

 

SUMMARY 

 

Around 1980, the structural elucidation of LTB4 and LTC4 and an appreciation of 

their biosynthesis through the epoxide LTA4 established the importance of this pathway 

of arachidonic acid metabolism in inflammation research. The relationship between the 

leukotriene formation and the lipoxygenase catalysis was then established when it was 

appreciated that 5-lipoxygenase (5-LOX) catalyzes not only the conversion of 

arachidonic acid to 5S-HPETE but also the further transformation to the pivotal epoxide 

in the pathway, LTA4.  

Our understanding of lipoxygenase biochemistry took a great leap in the ensuing 

years, yet the mechanistic basis of the LOX-catalyzed LTA epoxide synthesis has not 

been completely understood. Currently there is no proper understanding of the 

relationships between the fatty acid hydroperoxide structure and the LTA epoxide 

produced, no understanding of why some LOX enzymes form an LTA epoxide, others 

not, and very little experimental basis for understanding the metabolism of these unstable 

intermediates. My Ph.D. projects aim to clarify these issues and put the synthesis of 

leukotriene-related products on a more solid conceptual foundation. 

The first breakthrough in my Ph.D. study is the successful development of methods 

for the biosynthesis, isolation and NMR structural analysis of the LTA-type epoxides. 

The elegant “biphasic synthesis and simultaneous extraction” system allows the LTA 

product, once formed, instantly extracted out of the aqueous phase, therefore getting 
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protected against hydrolysis. By applying the methods first on the reaction of 15S-

HPETE with human 15-LOX-1, 14,15-LTA4, the proposed intermediate to the pro-

inflammatory eoxin family, was isolated in the amount sufficient for NMR analysis. This 

is the first time the LTA-type intermediate was isolated and subjected to a structural 

analysis directly from a lipoxygenase reaction. 

Critical to my Ph.D. projects is a paper of E. J. Corey’s group published in Journal 

of the American Chemical Society in 1989. They used two different sources of LOX 

enzyme to demonstrate (1) the existence of a cis-LTA epoxide from a biological source 

and (2) a relationship between the hydrogen abstraction from 5S-HPETE and the 

configuration of the resulting LTA epoxide. We proposed to follow up and extend 

Corey’s work on LTA epoxide biosynthesis and hypothesized a mechanism illustrating 

the relationships between the fatty acid hydroperoxide structure, the lipoxygenase 

catalyst and the LTA epoxide produced. Central to our hypothesis is that transformation 

of the fatty acid hydroperoxide to LTA epoxide depends on participation of the 

lipoxygenase non-heme iron in catalyzing both the initial hydrogen abstraction and in 

facilitating cleavage of the hydroperoxide moiety. 

In order to test our hypothesis, the biphasic reaction system was applied on 

reactions of different combinations of the fatty acid hydroperoxide substrates and the 

lipoxygenase enzymes. It was successfully demonstrated that the enantiomeric 5-

HPETEs, when reacting with Arabidopsis LOX1, are transformed separately to the LTA 

product with either trans- or cis-epoxy. The results are consistent with what our 

hypothesis predicts, thus providing strong experimental support.  
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The establishment of mechanistic basis of the classical leukotriene pathway is also 

directly relevant to the understanding of related transformations that are biochemically 

less well defined, namely biosynthesis of the resolvin, (neuro)protectin and maresin anti-

inflammatory mediators, all of which are derived from omega-3 fatty acids.  By applying 

the biphasic reaction system on the omega-3 fatty acid metabolism, two LTA-type 

epoxides in the omega-3 fatty acid pathways, 16,17-LTA6 from DHA and 14,15-LTA5 

from EPA, were isolated and analyzed structurally. Further in vitro metabolism using 

recombinant LOX enzymes and ex vivo metabolism using cells helped to substantiate the 

enzymatic basis of these novel pathways. 

Another research focus of my Ph.D. study is the mechanistic origin of HNE and the 

related 4-hydroxy-alkenals, i.e. the mechanism of the carbon chain cleavage reaction 

leading to the aldehyde fragment. The carbon chain cleavage is not a chemically facile 

step and needs to be promoted by extra activation. Multiple mechanistic proposals have 

appeared over the years to account for this activation, two of which were tested in my 

Ph.D. study. One of the very first projects after I joined the Brash lab was to test the 

intermediate role of the dimeric peroxides in HNE formation during lipid peroxidation. 

The formation of dimeric peroxides were demonstrated by different analytical approaches 

and preliminary experimental data support there exist two types of dimers, “stable” and 

“unstable” dimers, and the “unstable” dimers degrade to HPNE. A more complete and 

rigorous investigation was conducted on the bis-allylic dihydroperoxide pathway. 

Through a series of unequivocal chemical studies, I demonstrated the HNE-related 

aldehyde formation via lipoxygenase-catalyzed synthesis of a bis-allylic dihydroperoxide 

intermediate. The transformation was first discovered in the coral 8R-LOX reaction and 
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then extended to the reactions with mouse platelet-type 12S-LOX, and human 15-LOX-1, 

indicating its possible application in different species.  

In sum, in my Ph.D. study I investigated lipoxygenase reactions catalyzing the 

transformations from polyunsaturated fatty acids to their various types of primary and 

secondary oxidation products. The unique and precise control of the lipoxygenase 

enzymes ensures the production of biological important lipids with their specific 

structures and stereochemistry.  
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