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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The behavior of a complex engineering system is frequently described by a computational 

model that is designed to replicate reality as closely as possible. From these models, analysts 

make decisions about the design and operation of the system, most commonly with respect to a 

set of decision variables (e.g. material and system configuration/properties in the design phase or 

the inspection/maintenance interval in the operational phase). However, these decisions are 

complex because engineering systems are designed and operated under a wide range of 

uncertainty sources. In the presence of uncertainty, systems are never perfectly reliable, so there 

is a nonzero probability of system failure for any decision. Each failure event has a 

corresponding risk that depends on the consequence of the failure. The risk has classically been 

addressed by applying safety factors based on empirical knowledge, but this practice often makes 

the mitigation strategy economically inefficient and is difficult to apply to new systems with no 

experience. The proposed research seeks instead to address risk systematically by properly 

accounting for all known sources of uncertainty and then reducing them when it is possible and 

economically feasible to do so.   

In the reliability analysis literature, the sources of uncertainty have commonly been grouped 

into two basic categories: aleatory uncertainty (i.e. natural variability) and epistemic uncertainty 

(i.e. lack of knowledge) [36, 50, 64, 72, 74]. For aleatory sources, probabilistic methods for 

characterizing and propagating uncertainty are well-developed [32]. Since this uncertainty source 
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is considered irreducible, engineering system designs must account for it properly, but its 

contributions cannot be eliminated by any design decision. On the other hand, risk mitigation 

may be achieved through epistemic uncertainty reduction, by collecting information and 

improving the understanding of the system. The two main classes of epistemic uncertainty that 

are considered in this dissertation are data uncertainty and model uncertainty. Data uncertainty 

arises because economic factors prevent analysts from collecting as much empirical data as is 

needed (i.e. sparse data) and because human error and instrumentation limitations lead to 

inaccurate and/or imprecise measurements. Model uncertainty exists because models can always 

be improved (according to decisions made by the developers), but they are never perfect. The 

underlying governing equation does not describe the physics of reality completely, and in many 

cases, the governing equation cannot be solved exactly. 

Furthermore, even for a given computational model, many of its inputs are uncertain, and 

they cannot be measured directly in an experiment. These inputs parameterize the model, and 

they must be inferred by an inverse problem [3] in which outputs of interest are observed in an 

experiment. In this dissertation, Bayesian methods [89] are used to handle this inference 

problem, but the presence of data uncertainty leads to an epistemic probability distribution for 

these uncertain parameters even when they are deterministic quantities in reality. This parameter 

uncertainty is critical to system risk assessment and management, especially when the 

parameters (e.g. material properties) that are calibrated in a simplified domain are common to the 

usage condition of the model where a prediction is made. Understanding these parameters well 

can greatly improve the quantification of uncertainty in the system prediction, and the only way 

to improve understanding is to collect better experimental output data (i.e. larger quantity of data 

points and/or greater measurement precision). Improving measurement precision may not always 
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be possible, but collecting a larger quantity of data is a feasible option though it will be subject to 

some economic constraints. 

Within this context, the topic of interest in this dissertation is how to perform these activities 

efficiently by effectively allocating resources to the various uncertainty quantification (UQ) 

tasks. A comprehensive framework for UQ that includes model calibration, model validation, 

and uncertainty propagation is proposed. Then, activities such as model selection and test 

selection are explored in order to improve the accuracy of the computation and minimize the 

uncertainty in a prediction of interest. 

1.2 Research objectives 

This work explores resource allocation with the fundamental objective of quantifying and 

reducing prediction uncertainty in order to enable credible reliability analysis and risk 

assessment. For each of the two primary epistemic sources that were previously mentioned (data 

uncertainty and model uncertainty), there is a tradeoff decision of cost vs. value. Data 

uncertainty reduction requires the tangible expense of performing additional experiments or 

using more expensive methods and instruments to increase measurement precision. Model 

uncertainty reduction typically requires additional time and effort for the development of more 

sophisticated models and/or evaluation of more expensive simulations with higher fidelity and 

resolution.  

This dissertation systematically addresses these tradeoff decisions through several key 

objectives. To address the evaluation time of expensive simulations, the objective of model 

selection for uncertainty propagation is considered because efficient uncertainty propagation is 

needed for both model validation and prediction. Then, to address data uncertainty, test selection 
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for prediction uncertainty reduction is considered. However, to perform this objective for both 

calibration and validation tests, a more formal understanding of how the model validation results 

affect the prediction is needed; therefore, the connection of model validation to prediction is 

considered first. Finally, the overall UQ framework must be connected to risk assessment in 

order to consider the economic efficiency of the entire approach. These objectives are 

summarized as follows: 

(1) Model selection for uncertainty propagation 

(2) Connecting model validation to prediction 

(3) Test selection for prediction uncertainty reduction 

(4) Risk-based resource allocation 

 To address the first objective, a methodology to select among available modeling options in 

order to maximize prediction accuracy within a limited computational budget is proposed.  The 

proposed approach takes advantage of sparse and imprecise information about the prediction 

quantity to improve the decision-making.  The second objective explores the effect of epistemic 

uncertainty on model validation and examines how different types of validation data impact the 

prediction of interest. The proposed approach accomplishes this objective by separating the 

contributions of aleatory and epistemic uncertainty sources and then quantifying the relevance to 

prediction of different validation tests. The third objective takes advantage of these results to 

address the test selection problem from the perspective of prediction uncertainty reduction. The 

proposed method expands test selection methods for model calibration to also include validation 

experiments in a joint framework.  The fourth and final objective explores how the combination 

of data uncertainty and model uncertainty affects risk assessment. This objective provides 
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insights about how the cost/benefit analysis of the entire resource allocation framework proposed 

in this dissertation can be used for decision-making.  

1.3 Organization of the dissertation 

The subsequent chapters of this dissertation are organized to address the research objectives 

described in Section 1.2. Chapter 2 provides some useful background information about existing 

UQ frameworks and provides fundamental details of model calibration, model validation, and 

uncertainty propagation. Chapter 3 proposes a model selection approach for efficient uncertainty 

propagation in the context of scalar-input systems as well as spatially and temporally varying 

problems. Chapter 4 explores the separation of uncertainty sources in model validation and 

proposes an approach to explicitly connect the model validation input conditions to the 

prediction of interest. Chapter 5 explores the effect of data uncertainty on prediction and 

proposes an optimization approach to select among available testing options and/or input 

conditions for calibration and validation. Chapter 6 approaches the resource allocation problem 

from the perspective of risk and proposes formulations for optimization problems that select an 

appropriate budget for the UQ problem. Chapter 7 concludes the dissertation and suggests 

opportunities for future work.  
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CHAPTER 2 

BACKGROUND 

This chapter describes some fundamental aspects of a comprehensive UQ framework. 

Existing frameworks in the UQ literature [39, 92, 95, 98, 107] make predictions on stochastic 

outputs of interest by performing several key activities: (1) characterization of input uncertainty, 

(2) model verification, (3) model calibration, (4) model validation, and (5) uncertainty 

propagation (i.e. prediction). Input uncertainty is typically quantified by repeated tests to explore 

natural variability, and it can then be characterized by well-established methods of constructing 

probability distributions. This step provides the input ranges over which existing models should 

be verified by benchmarking against analytical solutions, and errors pertaining to the numerical 

solution process can be quantified. Since some additional model parameters cannot be measured 

directly, they must be inferred from experimental data obtained for measureable output quantities 

in the calibration process. Since data is sparse and/or imprecise, correct deterministic parameter 

estimates cannot be obtained confidently, so these model parameters are instead described with 

uncertainty stemming from lack of knowledge about their values. Calibrated models are then 

compared with an independent set of experimental data in order to assess the predictive 

capability of the models. The result of this process, known as model validation, indicates 

whether the model should be taken forward and used for prediction. If the model is deemed 

valid, input and parameter uncertainty can be propagated through it to make a prediction for a 

quantity of interest in the form of a probability distribution. 

There are two basic types of model inputs: (1) those which can be measured directly in an 

experiment, as either a deterministic value or a known aleatory distribution, henceforth denoted 
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by   and referred to simply as inputs and (2) those which are not measureable and must be 

inferred from observed outputs, henceforth denoted by   and referred to as parameters. For the 

remainder of this dissertation, note that upper case variables denote random variables while 

lower case variables represent particular samples from their distributions. Bolded variables are 

vectors, matrices, or jointly distributed sets of random variables, and variables in plain text are 

scalar quantities or single random variables. 

This chapter explains how these two classes of inputs are treated in model calibration 

(Section 2.1) and model validation (Section 2.2). Since uncertainty propagation (Section 2.3) is 

required when performing model validation with stochastic quantities, and model calibration 

requires solving an inverse problem, both of these activities require a large number of model 

evaluations. Surrogate models are often needed in order to improve efficiency; therefore, one 

surrogate modeling approach (Gaussian process modeling) is described in Section 2.4. 

2.1 Bayesian model calibration 

Bayesian calibration [7, 39, 47, 63, 98] is an approach for inferring unmeasured parameters   

by observing particular values of the outputs    and corresponding inputs  . As opposed to 

deterministic parameter estimation, which results in only a single value for the parameters, 

Bayesian calibration results in a posterior probability distribution that represents the subjective 

probability of each value in the domain. Note that the assumption implicit to this approach is that 

the parameter values are deterministic in reality, but the values cannot be inferred precisely due 

to data uncertainty in the observations as well as model errors that may bias the results. 

Therefore, the posterior distribution represents epistemic uncertainty, not aleatory uncertainty.  
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The posterior is obtained by applying Bayes’ theorem, which states that the posterior 

probability of the parameters          is proportional to the product of the likelihood function 

     (i.e. the probability of observing the data    given a particular parameter set  ) and the 

prior density      . 

          
         

            
 (2.1) 

To construct the likelihood function, it is typically assumed that the difference between a 

particular observation    
 and the prediction    at input   is due to measurement noise in the 

observation    
. This noise is typically assumed to be zero-mean Gaussian white noise, and the 

standard deviation of the error    may either be computed from the observed data or calibrated 

along with   when the observation data is sparse.  

            
    

 (2.2) 

              (2.3) 

The likelihood function is constructed jointly across all observations. It is commonly assumed 

that the measurement errors associated with the set of observations are independent. In this 

scenario, the likelihood values for the set of observations can be combined by a product. If there 

are    observations at   different input conditions (each denoted   ), the likelihood function is 

given by  

      ∏ ∏
 

  √  
   { 

[   
(    )     

]
 

   
 }

  

   
 
    (2.4) 
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The likelihood function in Eq. (2.4) includes all of the calibration data from all of the 

measured input conditions. Since the posterior distribution of   obtained from Eq. (2.1) cannot 

be normalized and inverted easily, it is difficult to draw samples from the posterior distribution 

using traditional Monte Carlo Simulation (MCS) [32]. Therefore, samples are typically drawn 

from the posterior distribution using a function that is proportional to the posterior density. This 

problem has been solved by applying Markov chain Monte Carlo (MCMC) sampling methods 

[27, 35, 66, 71], which do not require inversion of the CDF of the posterior distribution. 

Note that the relationship given in Eq. (2.2) does not account for model inadequacy. Since 

model inadequacy is often a leading source of the difference between prediction and observation, 

many researchers [13, 38, 54] add a stochastic, input-dependent model discrepancy term to the 

model prediction. The goal of this approach, commonly referred to as the Kennedy-O’Hagan 

framework [47], is to reduce the bias in the parameter estimates; bias is introduced when 

parameters are used to fit an inadequate model form to the observed data. However, since the 

mathematical form of the model inadequacy is always unknown, an additional set of parameters 

must be introduced to define a stochastic model inadequacy function, and these parameters must 

be inferred jointly with  . This expansion of the calibration problem leads to some additional 

difficulties, including selection of a proper discrepancy formulation [58] and unique 

identifiability of the expanded parameter set [7, 58, 88]. Therefore, in this dissertation, no model 

discrepancy term is included in the proposed methods, and the potential model inadequacy is 

accounted for through model validation within the prediction framework that will be described in 

Chapter 5.   
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2.2 Model validation methods 

After the parameters are calibrated, the resulting distributions are propagated through the 

model, and the output is compared against the validation data in order to assess the predictive 

capability of the model. The validation data should be independent of the calibration data, and if 

possible should be data collected in a regime outside the calibration domain. Since this is not 

practically possible in all cases, data in one regime is sometimes partitioned for calibration and 

validation. In the presence of both aleatory and epistemic uncertainty, the validation assessment 

is performed in the probability space by comparing the model prediction (stochastic due to 

parameter uncertainty) and the observation data (stochastic due to measurement uncertainty). 

Several methods for performing a stochastic assessment can be found in the literature [57, 59]; 

available methods include classical hypothesis testing [25, 34, 41], Bayesian hypothesis testing 

[73, 86, 87, 108], the area metric [22, 23, 95], and the model reliability metric [85, 97]. In 

particular, the area metric and the model reliability metric are explored in detail in Chapter 4. 

Brief explanations of these two approaches are provided in Section 2.2.1 and Section 2.2.2 

respectively. 

2.2.1 Area validation metric 

The area metric [22, 23] measures the difference between the cumulative distribution 

functions (CDF) of model output and experimental data, and is defined as 

  (   
    

)       
       

      
 

  
 (2.5) 
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Here,    
    is the CDF of the model output, and    

    is the empirical CDF of the 

experimental data. This metric is inherently designed for a stochastic prediction and observation, 

but it can also be applied when the model prediction    is deterministic. In this scenario, the 

model prediction CDF is a step function such that    
      for     , and    

      for 

    . One useful feature of the area metric is that the physical unit of   is the same as the unit 

of  . Therefore, the area metric value has a direct interpretation that is physically meaningful. 

The result is nonnegative, but unbounded, since the difference between two cumulative 

distribution functions can be arbitrarily large.  

Since validation tests may be conducted for many different input conditions (i.e. input 

vectors   ), an important property of a validation metric is how it combines information from 

different points in the domain. The area metric incorporates different input conditions by 

applying a “u-pooling” procedure (i.e. a transformation from physical space to probability 

space). This approach is particularly useful for validating models with sparse data on multiple 

experimental combinations [59]. For a particular input condition   , let     
 be the CDF of the 

model output   , and let    
 be the corresponding observation. Then, a  -value,        

    
 , 

can be computed for each input condition. Based on the probability integral transform theorem 

[6], the  -values would follow the standard uniform distribution,       , if the observations    
 

were random samples from the probability distribution of    
. Therefore, if the distributions of 

the model output and the observation are equal to each other at each input condition, the 

empirical CDF of the collection of  -values should match the CDF of the standard uniform 

random variable. Thus, the difference between the two empirical CDF curves can be thought of 

as the disparity between model outputs and experimental observations across the entire domain 
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of the inputs. Further, the area metric in the transformed space [23] follows similarly from Eq. 

(2.5) as  

                    
 

 
 (2.6) 

where    is the empirical CDF obtained from the  -values and    is the standard uniform CDF. 

As in Eq. (2.5), small values of   represent good agreement between prediction and observation, 

and large values represent disagreement. However, in the probability space the metric is no 

longer unbounded; in fact, it is bounded on the interval        . Therefore, the metric value can 

no longer be interpreted in terms of the physical unit of the output quantity. 

To address this issue, the area metric computed by Eq. (2.6) can be transformed back to 

physical space to retrieve its physical interpretation. Using the CDF of the model output    at 

some particular input condition, the  -values can be transformed back by inverting the CDF, 

     
      . The empirical CDF values    can be used to construct an empirical CDF that can 

then be compared to    as in Eq. (2.5). The result of this computation will again have the same 

physical unit as  . Thus, transforming back to the physical space makes it easier to set a 

tolerance threshold for the acceptance of the model. However, it should be noted that the value of 

the area metric that is obtained after the transformation depends on which value of   is selected 

for performing the back-transformation.  

2.2.2 Model reliability metric 

The model reliability metric   [85] is a direct measure of model prediction quality, computed 

by assessing the distribution of particular values of the difference between a stochastic prediction 
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and observation. It is defined as the probability of the difference ( ) between observed data (  ) 

and model prediction (  ) being less than a given tolerance limit   

             ,         (2.7) 

Note that the model reliability is computed separately for each input condition, and    and    

are both functions of  . This fact will be discussed in detail in Chapter 4, but it is mentioned here 

to point out that all the stochasticity in    is attributed to uncertainty in   at a particular input 

condition. Therefore, in Eq. (2.7), experimental observation is treated as a random variable due 

to measurement error, and the model output is a distribution resulting from the propagation of 

posterior parameter uncertainty from calibration. Since it is the difference between two random 

variables,   is also a random variable, and the probability distribution of   can be obtained from 

the probability distributions of    and   . Then, the model reliability metric is computed by 

integration of the distribution of  . 

      
 

  
                   (2.8) 

For instance, if the model prediction,         
    

  , and the corresponding observation, 

        
    

  , are independent, the distribution of the difference can be computed analytically, 

       
    

    

     

  . For the sake of simplicity, let    √   

     

 . In this scenario, 

the model reliability metric   can be computed by evaluating the standard normal CDF   as 

    [
  (   

    )

  
]   [

   (   
    )

  
] (2.9) 
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Since the result of this computation is a probability, the model reliability is considered to be a 

probabilistic validation metric. Note that Bayesian hypothesis testing generally leads to a single 

scalar result known as the Bayes factor [46, 73, 76], but the Bayes factor may also be converted 

to a probability measure. Thus, the methods that are developed in this dissertation for 

probabilistic validation metrics are also applicable to Bayesian hypothesis testing although they 

are only illustrated for the model reliability metric. 

As mentioned, separate computations of model reliability are performed at each input 

condition since the distributions of    and    are dependent on where validation experiments are 

conducted. The set of reliability values at different    provides information about the predictive 

capability of the model as a function of location in the input domain. The suitability of any 

model for prediction depends on the prediction scenario of interest. Models are often useful in 

some regions of the domain, but not in others. This fact is used to develop the model selection 

methodology in Chapter 3, and in Chapter 4, an approach for connecting the validation input 

conditions to the prediction of interest is proposed. 

2.3 Uncertainty propagation techniques 

When solving an inverse problem by applying MCMC methods as described in Section 2.1, a 

large number of function evaluations are needed to solve the parameter estimation problem, and 

then the resulting posterior distribution must be propagated back through the model for 

prediction. In addition, stochastic approaches to model validation, as described in Section 2.2, 

require the propagation of parameter uncertainty through the model at each validation input 

condition. This propagation is typically performed via MCS, which again requires a large 
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number of model evaluations. When the computational model is expensive, it is often 

unaffordable to use the computational model for every function evaluation. 

There are two basic classes of approaches available to manage computationally intractable 

UQ problems; either the number of samples required can be reduced in an intelligent way, or the 

model being evaluated can be simplified so that less time is needed for each sample. Methods of 

efficient stochastic simulation with respect to the number of samples have been explored in 

studies on reliability analysis and design optimization. One inexpensive way of propagating 

input variability and/or parameter uncertainty through a system model is a first-order Taylor 

series expansion, which requires only     function evaluations for   uncertain variables. This 

method is referred to as a first-order second moment (FOSM) approach in the reliability analysis 

literature [32]. Other reliability analysis approaches take advantage of the idea that sometimes 

only a particular point on the distribution of the output quantity of interest (QoI) is needed for the 

computation (e.g. probability that stress or deformation exceeds a particular value). This type of 

analysis typically uses Newton-like optimization methods to search in an equivalent uncorrelated 

standard normal space for the most probable point (MPP) on a limit state related to the QoI [82, 

93]. The failure probability is then approximated via the first-order reliability method (FORM) or 

the second-order reliability method (SORM) [32]. 

Alternatively, within the context of MCS for reliability analysis, methods such as importance 

sampling modify the sampling distribution to ensure that more samples fall within a region of 

interest, thereby reducing the total number of samples needed for the analysis. For example, 

Harbitz’s importance sampling approach [33] creates a sampling distribution centered at the 

MPP; adaptive methods are also available to update the importance sampling distribution after 

ever few samples [17, 110]. Because each of the aforementioned approaches searches only in a 
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region of interest, they can be restrictive if the goal of the analysis is to determine the entire 

distribution of the QoI. To calculate the entire distribution, these methods may be applied at 

several regions of interest and interpolated (note: interpolation introduces additional error and 

uncertainty), or the analyst must revert to a full MCS. 

If a full MCS is to be performed, it may be infeasible to evaluate a high-fidelity physics 

model (e.g. nonlinear finite element analysis with a very fine mesh) for every Monte Carlo 

sample, so the class of approaches aimed at reducing computation time per sample is utilized 

instead. Cheaper models (in terms of CPU time per evaluation) which may be in the form of 

mathematical surrogate models (also referred to as response surfaces or meta-models), reduced 

order models, or reduced physics models have been pursued in this regard. Common surrogate 

models include simple regression models, Gaussian process (GP) or Kriging models [16, 96], 

polynomial chaos expansion models [111], support vector machines [78], and neural networks 

[62]. Since additional error is introduced to the system prediction by these surrogates, the 

uncertainty associated with surrogate modeling is considered in subsequent chapters of this 

dissertation. In particular, GP surrogate models are used for efficiency throughout the proposed 

UQ framework. Therefore, the GP modeling approach is described in detail in Section 2.4. 

2.4 Gaussian process surrogate modeling 

Because of the computational challenges described in Section 2.3, the computational model 

is commonly replaced by a surrogate model to improve the efficiency of both the calibration and 

uncertainty propagation activities. GP surrogate models [84] are used in this dissertation because 

they provide a natural way of quantifying the uncertainty due to the discrepancy between the 
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surrogate and the original computational model. The contribution of this uncertainty can then be 

incorporated into the validation assessment and the prediction, as will be described in Chapter 4. 

Suppose that a GP surrogate model will be used to replace a computational model      ). 

By evaluating the computational model at an arbitrary number of input points   , a matrix of 

training points    and training values    can be generated. Then, the GP model will be used to 

predict at a new set of input points    within the same domain of interest. The GP model has two 

basic parts: a mean function, which typically isolates a simple polynomial trend relationship 

between input and output, and a Gaussian process which describes the random variability over 

the input space. It is assumed that the combination of these two components describes the true 

response function   [16] as shown in Eq. (2.10). The mean function is represented by    ) and 

the GP by     . 

                (2.10) 

The mean function can usually be a simple low-order polynomial, and even a constant value 

over the entire input space may be sufficient [96]. The GP is typically assumed to be stationary 

with zero mean, which implies that the correlation between prediction point and training point is 

only a function of the distance between them. The choice of the correlation function may be 

problem specific, and there are many available options depending on the desired properties of the 

correlation structure. One form that is frequently chosen is the squared-exponential function, 

which represents the correlation between two input points in the domain as in Eq. (2.11). 

               ∑
   

    
   

  

 
     (2.11) 
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The dimension of the input space is given by d, and each    defines the length scale in the 

corresponding dimension. Each length scale represents the rate of decay of correlation when 

moving in the corresponding spatial dimension. The covariance between input points is given by 

a product of the correlation function and process variance   
  as in Eq. (2.12). 

              
          (2.12) 

The combination of Eq. (2.11) and (2.12) is used to compute the covariance between each pair of 

input points in    to obtain the covariance matrix    . It can also be applied to obtain the 

covariance matrix between training and prediction points.  

The mean function coefficients may be estimated along with the parameters of the covariance 

function; however, when the mean function is taken as a constant, it is typically chosen to equal 

the mean of the training values across the available training points. In this situation, there are 

then     parameters of the GP remaining to estimate: one length scale for each dimension and 

the process variance. Either Bayesian inference or maximum likelihood estimation (MLE) may 

be used to compute the parameters. In this dissertation, only single deterministic estimates of the 

GP parameters are used, as obtained from MLE. To obtain the MLE values, a global 

optimization problem must be solved, and the shape and smoothness of the likelihood function 

often make gradient-based approaches ineffective. Therefore, the problem is typically solved 

using the DIRECT algorithm [24] or the simulated annealing algorithm [49]. Since inversion of 

the covariance matrix     is required when computing the likelihood, numerical instabilities may 

arise, and the search algorithms may be costly when the size of     is large (corresponding to a 

large number of training points). Some improvements to the efficiency and numerical stability of 

the estimation process can be found in the literature [31, 63, 81].  
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Once the parameters are determined, the resulting GP model is used to make predictions at a 

new set of input points within the space. An important property of the model is that it gives an 

estimate of uncertainty in addition to the mean prediction at particular input point. In particular, 

the set of prediction values    at prediction points    are jointly Gaussian distributed according 

to the following set of equations: 

                   
    

  

   
             

             

    
           

     
  (2.13) 

Here,    
 is the mean vector of prediction values,    

 is the covariance matrix of the prediction 

values,     is the covariance matrix of prediction points, and     is the covariance matrix 

between training and prediction points.  

The uncertainty in the prediction values is zero at the training points, and it increases as the 

distance from the training points increases. As the variance increases, the GP surrogate model 

becomes a less suitable replacement for the underlying computational model. The prediction 

variance can typically be reduced by adding more training points and reconstructing the 

surrogate. If the underlying function is smooth and well-behaved, the prediction variance is a 

good predictor of the observed bias, and training points should be added in the regions of the 

domain with maximum prediction variance. However, when modeling more challenging 

functional behaviors, an adaptive approach to bias minimization may be implemented [42]. 
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2.5 Summary 

This chapter describes some of the fundamental components of a UQ methodology for 

prediction (Bayesian calibration, probabilistic model validation, and uncertainty propagation) 

that are widely used across engineering applications. Additional features of a comprehensive UQ 

framework are developed in subsequent chapters; in particular, the effect of model uncertainty 

and data uncertainty on these activities is considered. The proposed methods of this dissertation 

use the UQ framework to perform forward propagation of uncertainty. Efficient uncertainty 

propagation techniques (Chapter 3) are needed to perform model validation in the context of 

prediction (Chapter 4). Then, based on the solution approaches for the forward problem, the 

inverse problem of test selection in Chapter 5 can be developed, and risk-based resource 

allocation can be explored (Chapter 6). 
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CHAPTER 3 

MODEL SELECTION FOR UNCERTAINTY PROPAGATION 

3.1 Introduction 

This chapter proposes an efficient approach to uncertainty propagation since it is often 

prohibitively expensive to evaluate computational models repeatedly. Uncertainty propagation is 

required in order to obtain the distributions of model output that are needed in both model 

validation and prediction. This propagation is performed by stochastic simulation that includes 

both aleatory and epistemic uncertainty in the prediction of an output quantity of interest (QoI). 

Often, the computational models are hierarchically composed, such that some aspects of the 

physics are modeled separately from others (leading to individual outputs of each component 

that are inputs to the prediction of interest). These component models are combined together to 

make an overall prediction that properly accounts for contributions from the sources of 

uncertainty that are present in each of the individual component models. 

As described in Section 2.3, standard uncertainty propagation techniques, such as MCS, are 

available to propagate aleatory uncertainty in the model inputs. The presence of epistemic 

uncertainty sources that are considered in this dissertation makes the simulation procedure more 

challenging. Data uncertainty arises from sparse, imprecise, missing, subjective, or qualitative 

data, and also from measurement and data processing errors. Model uncertainty may arise due to 

model form assumptions, model parameters, and solution approximations. As described in 

Section 2.1, data uncertainty also affects the estimation of model parameters. If the various types 

of epistemic uncertainty are represented in a probabilistic format, the model prediction is 
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stochastic at a particular input condition. The additional sources of uncertainty increase the 

number of model evaluations that are needed for accurate propagation, which likely makes it 

infeasible to include the full physics fidelity of the computational model in every simulation. 

The situation explored in this chapter is one in which a stochastic simulation is performed for 

UQ and reliability analysis. A comprehensive analysis should accurately predict the full 

distribution of the output QoI by including all the sources of uncertainty. It is assumed that a 

high fidelity computational model already exists, but it is too expensive to evaluate at every 

sample point. Once cheaper models are developed (with respect to spatial resolution and/or 

physics complexity), the high fidelity model is still available, but the analyst must decide when 

to use it in order to obtain results of desired accuracy within an allowable amount of time. With 

this goal in mind, this chapter proposes a multi-fidelity model selection methodology that 

combines the use of both efficient simulation and surrogate modeling. The proposed framework 

uses surrogate models to inform the model selection decision at each random sample of the MCS 

(or each spatial location or time step, depending on the problem) and then executes a single 

selected model combination at this input. In this way, the framework can account for the 

possibility that different models may be adequate in different domains (including cheaper vs. 

expensive models, and even models with competing physical hypotheses). The proposed 

methodology accommodates different types of information about the QoI (such as actual 

observations, expert opinion etc.).   

To develop a methodology for model selection, it must first be clear whether the ranking of 

fidelities among candidate models is consistent over the entire domain or whether it may change 

as a function of the inputs. In some situations, such as the comparison of a mathematical 

surrogate model with a physics-based computational model, it is obvious that the physics-based 
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model is of higher fidelity. On the other hand, there are also instances in which multiple 

competing physics-based models are available for the same prediction, but it is not obvious 

which of them represents reality more accurately for the application of interest. For example, one 

physical phenomenon may be more dominant in one region of the input space than another. This 

situation has been addressed by quantifying the discrepancy between the model prediction and 

some performance benchmark [43]. Since it is not clear which model is providing the better 

estimate of reality, this benchmark must come from an additional piece of information, most 

commonly a physical observation, known exact solution, or expert opinion. After a benchmark is 

selected, the decision is a tradeoff of accuracy vs. computational expense. 

Once the appropriate ranking of the fidelities among the candidate models is considered, the 

goal is to select among available models in an intelligent and efficient manner. Given these 

various scenarios, the general model selection problem can be posed as a decision based on one 

or more of the following criteria: (1) parsimony vs. accuracy in regression, (2) discrepancy 

compared to a benchmark, and (3) computational expense. The problem of selecting among 

multiple regression models has frequently been addressed by considering the first of these 

criteria. In several existing metrics based on information theory, accuracy is indicated by the sum 

of squares of residuals or the maximum likelihood with respect to training data, and parsimony is 

indicated by the number of terms in the model. Both of these components are included within 

Mallows’ Cp statistic [61], the Akaike information criterion [1] based on information entropy 

[14], the Bayesian information criterion [102], and the minimum description length [28]. Each of 

these is addressing the tradeoff between bias and variance in available models, since additional 

complexity will reduce the residuals (i.e. variance) but also risks “overfitting,” which may 
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increase bias. Typically, the outcome of this problem is the choice of a single model from a set, 

or possibly a new model which averages a set of available models.   

When the models are not statistical regression models, but rather physics-based models, these 

metrics, based on the accuracy vs. parsimony criterion, can be difficult and inappropriate to 

employ for a couple of reasons. First, the forms of these models may be complex and in some 

cases impossible to write in an analytical form, so it will be difficult to define the parsimony of 

the model. Second, different physical hypotheses may attribute different physical mechanisms as 

causes for the observed behavior, which makes the associated models difficult to compare with 

respect to parsimony, and they cannot be combined in a natural way. Therefore, it is more 

appropriate to look only at model discrepancy and computational expense when addressing this 

selection scenario. 

The tradeoff between accuracy (w.r.t. a benchmark) and computational effort in physics-

based models has been addressed in the system design literature. It is possible to develop a more 

accurate model by introducing additional phenomenological features (i.e. improve the model 

form) and/or by improving the quality of the numerical approximation to the solution (e.g. 

discretization refinement). Available methods [65, 83, 90] assign utilities to the candidate models 

based on expected performance and explore the tradeoff between utility and the associated costs 

(both model building cost and execution cost). The use of multiple models with varying degrees 

of fidelity is also studied in the design optimization literature; this is referred to as model 

management [2]. Lower fidelity models to evaluate the objective and constraints include 

surrogate models or reduced-order models [4, 80]. 

Within this context, this chapter develops a model management framework for UQ, based on 

model discrepancy and computational effort, in the presence of both aleatory and epistemic 
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uncertainty. Model discrepancy is probabilistically quantified for different model choices and 

traded off against computational effort to develop an optimization-based model selection 

criterion (instead of information theoretic metrics). Note that model choice is different for 

different samples of the input (or spatial location or time step), thus taking advantage of all the 

available models selectively at each point rather than making a single decision for all points in 

the input domain. 

A simple mathematical example is first implemented to demonstrate a situation in which no 

prior information is available about the appropriate ranking of fidelities among candidate 

models. In such a case, additional information about the QoI is needed in order to define the 

relative accuracies in terms of a discrepancy. Otherwise, an informed decision cannot be made 

based on computational effort alone. Next, a richer engineering example is used to demonstrate 

the proposed methods for a more complicated simulation where inputs vary both spatially and 

temporally. Additionally, this second example establishes the model selection approach for a 

case where the ranking of fidelities among the candidate models is known a priori. 

3.2 Model selection methodology 

Consider a problem of the form given in Figure 3.1. A total of   subsystem models are 

needed, where each describes a physical phenomenon that produces an output that feeds into a 

full system model. For each subsystem  , a total of    competing models are available; these 

competing models are denoted     (  denotes a model choice; j = 1 to   ); they take the same 

inputs    but require a different set of parameters    . Each subsystem model produces the same 

intermediate output quantity of interest    and the system-level QoI   is a function of these 
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subsystem outputs. These general relationships (for an example case where     and    

    ) are summarized by Eq. (3.1) to (3.3) below.   

                 or                 (3.1) 

                 or                 (3.2) 

              (3.3) 

 

Figure 3.1: Example problem structure given by Eq. (3.1) - (3.3) 

The possible model choices in this problem result in four model combinations to be 

considered, as shown in Figure 3.1:  

    - model     for    and model     for     

   
 - model     for    and model     for     

    - model     for    and model     for    

    - model     for    and model     for     
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In this chapter, a superscript   denotes a particular model combination that propagates a total 

of   input vectors         through the corresponding subsystems to obtain        . All 

subsystem outputs are then propagated through the system model   to obtain  . For    possible 

model choices for the respective subsystems, the total number of possible model combinations is 

denoted by  , where   ∏   
 
   . 

3.2.1 Model selection within Monte Carlo simulation 

Experimental data may be available at various levels of the system hierarchy. However, one 

underlying assumption of this work is that data at the subsystem level is cheaper to procure and 

therefore more abundantly available than at the full system level. As such, data on the subsystem 

outputs    is treated in a different manner from data on system output   in this work. Subsystem 

level data is utilized in Bayesian calibration (described in Section 2.1) to provide updated 

distributions of each parameter set    . Each competing model within a subsystem can be 

calibrated from the same subsystem output data   , but a separate calibration must be performed 

for each model option for each subsystem, requiring at total of, ∑   
 
   , Bayesian calibrations. 

Depending on the computational expense of each subsystem model, surrogate models may be 

necessary for each of them to improve the efficiency of the calibration. 

Since the goal of the model selection procedure is to efficiently approximate the distribution 

of   as closely as possible without direct regard for accuracy in each   , available data on   is 

used to inform system-level surrogate models that predict errors and uncertainties in   as a 

function of  . These surrogates are then used for online decision making at each sample of the 

input uncertainty. The surrogate model evaluations represent a trivial increase in the 

computational expense of the MCS. In particular, the GP surrogate models (described in Section 
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2.4) can be evaluated in a time on the order of      to      seconds depending on the number 

of training points and the number of prediction points. This evaluation time is negligible 

compared to any realistic engineering simulation where high-fidelity MCS is intractable. The 

system-level data that is used in surrogate model training and decision-making may be sparse, 

imprecise, or in some cases completely unavailable; these three situations are individually 

addressed below. 

3.2.2 Case 1: Available sparse system-level data 

If data can be obtained on the QoI, either by experiment or by some maximum fidelity 

(reliable) simulation, this data can be used to train error quantification models for the existing 

model combinations. In this chapter, GP surrogate models are constructed and used for decision 

making. Since the available output data is assumed to be well-characterized, i.e. measured values 

of the corresponding inputs are also available, all possible model combinations can be evaluated 

at these input values and compared with the given output data. However, since the parameters of 

each model are calibrated using a Bayesian method, posterior PDFs for the model parameters are 

available, and each model prediction is stochastic for a given set of input values. Therefore, an 

uncertainty propagation procedure is needed to account for parameter uncertainty in the 

surrogate model training. Because it requires a small number of model evaluations, a first order 

second moment (FOSM) approach is selected in this illustration to compute an approximate 

mean prediction for each model combination at each input value. The FOSM approach utilizes a 

first-order Taylor series expansion to calculate this mean value, and only one evaluation (at the 

parameter means) of each model combination is required to perform this calculation as in Eq. 

(3.4).  
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      (         
 )    

                      , for         (3.4) 

The calculated mean prediction is subtracted from the experimental value at the 

corresponding input to give a mean error associated with each model combination. The 

computed mean errors and corresponding input values are used to train   GP surrogate models, 

each predicting a mean error in   as a function of   input vectors        .   

 This surrogate model structure is important because it provides a direct mapping from the 

input space to the QoI. Since the decision is based on information predicted at the system level, it 

implicitly accounts for two important factors: (1) the amount of error associated with each model 

combination at the inputs of interest and (2) the sensitivity of the QoI to errors made in each 

subsystem-level prediction. Once training of these models is complete, suppose a full MCS over 

the input space is to be conducted to approximate the corresponding distribution of the QoI. A 

model combination is selected at each input sample that minimizes two objectives: cost and 

mean error. In the context of the model selection problem, the cost is the amount of computer 

time   required to evaluate the selected model combination at the particular input. The available 

budget is the amount of time available for the entire MCS. In this illustration, the error and time 

objectives are combined by a simple product of the two because a product formulation attributes 

equal weighting to both objectives regardless of the scaling of the quantities. For example, a 10 

percent reduction in expected error will have the same impact on the combined objective as a 10 

percent reduction in computation time. Other complicated bi-objective formulations can also be 

explored if there is a reason to attribute more weight to one objective than to the other. 
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For each iteration of the MCS, a sample of the inputs is taken, and the mean error of each 

model combination is predicted via an evaluation of the corresponding GP at that input sample. 

The model combination   with the minimum product of mean error    and computation time    

is selected and executed to calculate a sample of  . Figure 3.2 gives the pseudo-code for the 

procedure in Case 1: 

 

Figure 3.2: Algorithm 1 for model combination selection 

3.2.3 Case 2: Available imprecise system-level data 

Frequently, system-level data cannot be collected directly, but some imprecise data may be 

available in the form of an interval (range of values) for  , such as from expert opinion. In such a 

case, it is not possible to build error models for the particular model combinations. Instead, the 

FOSM procedure is again utilized, but two GP models can be trained for each model 

combination: one for the mean prediction and one for the variance of the prediction. Since no 

particular input values are known, they must now be generated in a way that covers the input 

space in order to effectively train the surrogates. For this purpose, a Latin hypercube sampling 
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technique can be employed. Since the number of samples selected consumes a specified 

percentage of the total allowable simulation budget, further improvements to the training 

procedure may be made by utilizing more advanced approaches such as optimal symmetric Latin 

hypercube sampling, bias-minimizing training techniques [42], and expected improvement 

functions [11].  The FOSM training procedure now requires     evaluations of each model 

combination at each input point where   is the number of parameters associated with the 

particular model for which the surrogate is being trained.  The additional   evaluations give 

gradient information at the mean values which is used to calculate the first-order variance in Eq. 

(3.5) in conjunction with Eq. (3.4). 

        ∑ (
  

   
 )
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 )  ∑ ∑ (

  

   
 ) (

  

   
 )       

    
   

   
 
   

 
    for         (3.5) 

Once the mean and variance GP models are trained for each model combination, the 

procedure is similar to that in Case 1. At each MCS sample, the mean and variance GP models 

are evaluated for all model combinations. For example, suppose the distribution of the prediction 

for each model combination is assumed to be normal with mean and variance predicted by the 

GP. From this distribution, the probabilities of the prediction falling inside and outside the expert 

opinion interval [     ] can be calculated. The procedure continues as in Case 1, except that the 

“error” to be minimized is now defined by the probability of the prediction falling outside the 

expert interval, and the objective is again to minimize the product of computation time and 

“error”. With this objective in mind, MCS samples are taken, and the optimal model combination 

is chosen at each sample until the computation budget is expended as demonstrated in the 

pseudo-code in Figure 3.3. 
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Figure 3.3: Algorithm 2 for model combination selection 

3.2.4 Case 3: No system-level data available 

The decisions in Case 3 are the most difficult since no information about the QoI is available. 

Therefore, there is no available measure of error, and it is difficult to quantify. Furthermore, 

when no model combination is clearly superior to the others based on physical intuition, there is 

no obvious benchmark for accuracy. In this case, the proposed procedure begins exactly as it did 

in Case 2 with the construction of mean and variance GP models for each model combination 

over a Latin hypercube input sample. The assumption of a normal distribution of the prediction is 

again made at each MCS sample point. To select among the   possible model combinations, an 

average distribution is created by taking a simple arithmetic mean of the GP predictions 

corresponding to each combination. The underlying assumption of the proposed approach for 

this situation is that the consensus prediction of all possible model combinations is the best 
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indication of the true QoI when no data is directly available. This model averaging approach may 

not be appropriate in some situations, and it is particularly dangerous when there is substantial 

difference among the available model predictions. If averaging is not appropriate, the analyst 

must insist upon additional information on the QoI or some assertion about the ranking of 

fidelities of the candidate models. Additional information about the QoI would allow admit the 

proposed methods of Case 1 or Case 2 of this section, or an assertion about the ranking of 

fidelities would admit the approach presented in Section 3.4. 

For cases where an averaging approach is reasonable, an “error” measure can be based on 

information theory via the Kullback-Leibler (KL) divergence [55] (Eq. (3.6) below), which is 

calculated between the average distribution and the distribution predicted by each individual 

model combination. If there is reason to give preference to one or more model combinations over 

the entire domain, the average distribution can be a weighted average rather than a simple 

arithmetic average. 

                 
    

    
    (3.6) 

The KL divergence is not symmetric, so the distance from the average distribution to the 

particular distribution of a given model combination, is used here as the error measure. The 

objective function for this case is a product of the computation time and this new error measure. 

The MCS again continues until the budget is reached as shown in the pseudo-code in Figure 3.4. 
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Figure 3.4: Algorithm 3 for model combination selection 

The proposed methods make several simplifying approximations, which are summarized 

here. First, the mapping from inputs         to the system-level QoI   is described by a GP 

model. Obviously, models of different types of physical phenomena will behave differently, but 

GP models have been shown to provide a robust and flexible tool for representing a wide range 

of processes. In most applications, these surrogates will provide a good approximation so that an 

appropriate model selection can be made. Second, the propagation of parameter uncertainty, 

which is necessary to train these surrogates, is performed by the FOSM method. The first-order 

Taylor series approximation may not be sufficient for complex parameter relationships, and a 

higher order approximation may be necessary. Finally, in the model selection step, the output 

QoI   is assumed to have a normal distribution (whose mean and variance are predicted by the 
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corresponding GP models), only in order to compute error measures. This assumption is 

primarily made for illustration, since in general other distributions could be chosen to suit a 

given problem if more information about   is available. Note that this assumption is only for the 

sake of model selection; the predicted distribution of   after the simulation could be of any form; 

only numerical kernel density fits are in fact reported. 

3.3 Illustrative example 

To demonstrate the proposed model selection methodology, an illustrative problem of the 

form given in Figure 3.1 with simple analytical models and a known “reality” to generate data is 

utilized. Both    and    are assumed to follow a uniform distribution over the interval       .  

The “reality” is the cubic model in Eq. (3.7) which connects    to    and the cubic model in Eq. 

(3.8) which connects    to   . The outputs    and    are used in the system model given by Eq. 

(3.9) to predict the system-level QoI Z. 

             
     

 
 (3.7) 

             
    

 
 (3.8) 

          (3.9) 

Now, assume that the actual functions in Eqs. (3.7) and (3.8) are not known. Instead, for each 

subsystem, a linear and a quadratic model are available. The two models for    have the forms of 

Eq. (3.10) and (3.11) respectively and are calibrated to available subsystem data.   

            
   

    
   

   (3.10) 
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 (3.11) 

Similarly, two available computational models for    are calibrated to a subsystem level data 

set. For such simplistic analytical models, the computation time needed to evaluate them is 

obviously negligible on modern machines, but to exercise the methodology the models were 

assigned costs based on the number of floating point operations required (two for the linear and 

five for the quadratic models). Therefore, four model combinations are available with 

computational times 4, 7, 7, and 10 units respectively.   

3.3.1 Case 1 

Noisy system-level data generated from the “reality” (Eqs. (3.7) and (3.8)) was utilized to 

construct the GP error models for Case 1. The analysis proceeded in four steps: (1) generate an 

input sample    and   , (2) select a model combination using the surrogate error models; (3) 

sample a realization of vector    from the corresponding calibrated joint parameter distribution 

to account for parameter uncertainty in the selected model combination; and (4) calculate the 

output  . These four steps are repeated multiple times (as allowed by the computational budget) 

to construct the predicted distribution of the QoI  . The “true” distribution of   (computed from 

exhaustive sampling of the known “reality”) is computed, and shown along with the predicted 

distribution (based on the proposed model selection strategy) in Figure 3.5. Three results of 

model selection are shown for budgets of 1000, 10000, and 100000 units of computational time 

are shown. (Note that the selected model combination is different for each Monte Carlo sample 

of the input and is chosen using Algorithm 1 in Figure 3.2). 
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 (a) 1,000 units of computational time (b) 10,000 units of computational time 

 
(c) 100,000 units of computational time 

Figure 3.5: Improvement in accuracy with computational budget 

As the allowable budget for the computation increases, the predicted distribution converges 

toward the true distribution. With a budget of 100,000 computational units, the prediction 

demonstrates good agreement with the unknown truth. When compared to just blindly evaluating 

the same model combinations everywhere, the method gives a good prediction much more 

quickly. For example, suppose 50,000 MCS samples are used. If only the linear model was 

selected for both    and    for all of the 50,000 MCS samples (corresponding budget = 200,000 

units, the least expensive option), the resulting model prediction is given in Figure 3.6a. If 

instead the quadratic model was selected for both    and    for all of the 50,000 MCS samples 

(corresponding budget = 500,000 units, the most expensive option), the resulting model 

prediction is given in Figure 3.6b. The quadratic models are able to describe the population from 

the cubic model fairly well after a large number of samples, whereas the linear model 

combination is not sophisticated enough to capture the behavior of the true system for any 
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number of samples since a linear transformation of a uniform input distribution still behaves like 

a uniform distribution. However, the linear model may be adequate in some regions where the 

actual system behavior is not too non-linear. The proposed method is able to exploit this 

property, i.e., linear models are adequate for both subsystems in some regions, quadratic models 

are necessary for both subsystems in some regions, and linear model for one subsystem and 

quadratic model for another subsystem are adequate in some regions. Of course, GP surrogate 

models are used to make this selection; therefore the accuracy of the prediction is also dependent 

on the accuracy of the GP models. 

   
 (a) Linear models only (b) Quadratic models only 

Figure 3.6: Effect of fixed model choices for all samples 

3.3.2 Case 2 

In this case, an expert opinion interval is assumed to be available in order to demonstrate the 

impact of the quality of the expert opinion given. No data from the reality is assumed to be 

available to guide the model selection. A Latin hypercube sample is taken over the input space in 

order to train mean and variance GP models for each model combination. The FOSM procedure 

is utilized at each sample point to propagate parameter uncertainty and obtain first-order mean 

and variances, which correspond to GP training values. When the MCS is conducted, the mean 

and variance are predicted at each sample using the GP models, and the assumption of a normal 
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distribution enables a simple calculation of the probability of falling outside the expert’s interval. 

The model combination that minimizes the product of this probability and the computational 

time is chosen at each input sample.  The results for three different expert intervals for   are 

given in Figure 3.7. In each case, a budget of 10,000 units was expended. 

   
 (a) Expert’s range 10 to 25 (b) Expert’s range 10 to 40 

 
(c) Expert’s range 10 to 60 

Figure 3.7: Impact of expert opinion quality 

The results demonstrate that the range given by an expert will impact the model selection 

algorithm, and poor information may cause the algorithm to select a model with insufficient 

fidelity outside the range. As the interval becomes wider, the probability of falling outside of it 

may be correspondingly smaller for all possible model combinations. If the integrals of the 

distributions predicted by all the models are close to unity over the range given by the expert, 

then the cheapest model is always selected. Only on the edges of the interval does the algorithm 

begin to discriminate between the model combinations well. As shown in Figure 3.7a, the 
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optimized solution describes the true solution well in the small interval that was selected         

and will choose the cheaper model when both model predictions are likely to fall outside the 

interval. 

3.3.3 Case 3 

For Case 3, no observation data or expert opinion is available. Since no a priori information 

about the quality of the model options is available, the model combinations are all given equal 

weights. For the sake of illustration, it is assumed that the model predictions can be logically 

combined into an averaged form. The consensus prediction of the four model combinations is 

treated as the best idea of the true behavior, and the KL distance metric to the average 

distribution (weighted by computational expense) becomes the selection criterion. If some 

information about the quality of the models were available upfront, benchmarking off the best 

available model or assigning unequal weights to the distributions would also be viable alternative 

methods. Results for the equally weighted case with budgets of 1,000 units, 10,000 units, and 

100,000 units are shown in Figure 3.8. 
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 (a) Case 3: Budget of 1,000 (b) Case 3: Budget of 10,000 

.  

(c) Case 3: Budget of 10,0000 

Figure 3.8: Effect of increasing budget with unknown reality 

The results for Case 3 converge reasonably well toward the true distribution in some regions 

of the distribution. The model selection algorithm has no knowledge of the underlying truth at all 

except via the subsystem data used to calibrate the subsystem model parameters. Treating the 

linear and quadratic models as equally valid in the weighting process did not skew the result in 

regions of the domain where the discrepancy was large, but it is clear from Figure 3.6 that 

choosing both quadratic models is most accurate over the entire domain. Therefore, even when 

there are small discrepancies between the linear choices and the consensus prediction, it is not 

optimal to select the linear models, and this selection will cause some prediction errors. Some 

prior information on the ranking of the fidelities of the models would help to solve this problem 

by helping to select appropriate weights. 



42 

 

3.4 Simulation over time 

The previously described methodology considers a problem where each random input sample 

of a MCS requires only evaluating a model combination once to predict the QoI. In contrast, 

many problems vary over space and time and may require repeated calls to a model even for a 

single input sample. In this case, some input samples may correspond to realizations of random 

process or random field quantities in the system. For example, a particular input may define a 

random process cyclic loading on a system, and the output of one cycle becomes an input to the 

next cycle of the simulation. In such a case, potential frameworks may (1) select a model 

combination at each cycle of the simulation, (2) perform temporal discretization of the load 

process and select a model combination for each discrete block load, or (3) select a model 

combination for the entire load history. The second case is considered here (model selection for 

each load block). Consider a realization of the input random process   and cyclic output 

response history   related at cycle   by 

                      (3.12) 

Note that this will require an initial value    in order to evaluate the first input. This initial 

value is itself a random input to the system. If the entire realization   and the initial value    are 

sampled,   is discretized into blocks of   cycles, and the system can be approximated by Eq. 

(3.13). 

                            (3.13) 
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For this situation, the temporal discretization becomes an additional decision variable, and 

the problem can be posed in two different contexts: (1) optimize cost and discrepancy jointly 

(Section 3.4.1) or (2) specify an allowable computational budget and minimize the uncertainty in 

the prediction within that budget (Section 3.4.2).   

3.4.1 Minimizing the product of cost and error  

Suppose   (       ) is a possible model combination that predicts the output for a single 

cycle of a given input. The FOSM procedure (as in Section 3.2) can be applied to account for the 

uncertainty in    by taking a Latin hypercube sample of    and      values and propagating the 

distribution of    through all possible model combinations at each pair          . A GP 

surrogate model is trained for the mean prediction and the variance of the prediction over the 

input space for each model combination. One advantage of the GP is that its efficiency allows 

the model to be evaluated on a cycle-by-cycle basis without discretizing into blocks as is 

necessary for the higher fidelity models. Thus, starting from cycle  , the mean output after   

cycles can be approximated for each of the model combinations as 

      
  ∑     

    
    

        
         for         (3.14) 

The variance for each model combination can also be accumulated under the normality 

assumption. Therefore, the standard deviation of   after   cycles have passed starting from 

cycle   can be approximated for each of the model combinations as 

      
  √∑     

    
    

        
         for         (3.15) 
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Frequently, there may be reason to assume that a particular model combination is more 

accurate than the others if, for example, it uses a finer spatial resolution or a more sophisticated 

physics model. In Sections 3.2 and 3.3, no such assumption was made (though it could be 

included by introducing weights as was previously mentioned), and hence all models were given 

equal weights in constructing the average distribution. A similar approach could be utilized in 

the time-dependent problem if no information were available about the ranking of fidelities 

among the candidate models. However, in some cases, it might be obvious that one model should 

be trusted more than the others because this maximum fidelity model includes all of the physics 

described by its competitors in addition to incorporating additional physical complexity or 

providing higher resolution. Even so, it might not be necessary to use the maximum fidelity 

model for every realization or for every instant and location in order to meet a given accuracy 

target. Since this scenario poses a tradeoff decision between accuracy and complexity, the 

methodology that follows here is a technique for selecting the model (among several cheaper 

models and the highest fidelity model) to evaluate over each block discretization of the input by 

considering the expense of a model and its discrepancy from the highest fidelity choice. A 

normal distribution can be constructed for the output of each model combination with the mean 

and standard deviation estimated by Eq. (3.14) and (3.15). The highest fidelity model 

combination   (among the possible candidates  ) is assumed to be the maximum fidelity model 

for each subsystem. 

Given that the most accurate (and expensive) model is known, the analyst must decide how 

much deviation from this model is acceptable. From a decision maker’s perspective, it is often 

possible to establish some acceptable error bars on the prediction (e.g. based on the precision of 

experimental instrumentation or the width of the maximum fidelity model’s uncertainty). 
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Therefore, a tolerance   for the discrepancy between the most accurate (and expensive) 

combination and the other combinations is introduced. Given that the computation time   

associated with each model combination is known, the optimal model combination   can then be 

selected by taking the model combination with the lowest product of computational time and 

probability of discrepancy greater than the specified tolerance as shown in Eq. (3.16)  and (3.17).   

      (  
    

 )     (3.16) 

               (3.17) 

The implication of this treatment is that a less expensive model combination will be selected 

when its mean prediction agrees strongly with the mean prediction of the highest fidelity model 

and the variance of the prediction is small. Once a model combination is selected, it cannot be 

evaluated cycle-by-cycle as the GP was, so only one input value    can be chosen for the entire 

duration of the block   . Since the GP corresponding to the selected combination has already 

been evaluated at all   between    and      
, Eq. (3.13) can be applied to guide the selection 

decision. In particular, the discrete input point   
  from that range with mean GP prediction, i.e. 

     

        
    

    
  , closest to the accumulated mean GP prediction for the maximum 

fidelity model combination,      

  should be selected. 

This selection procedure continues until the number of cycles that have been discretized and 

analyzed is equal to the desired total simulation length  .  This procedure can then be repeated 

for many realizations of the input   and initial output values   . From these samples, the 

distribution of interest will describe   , the final value of the output for each realization. 
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3.4.2 Variance minimization for a fixed simulation time 

If instead of simultaneously considering time and discrepancy there is a fixed time to perform 

a simulation of a given number of realizations, the corresponding time for a single realization of 

the random process can be specified. The temporal discretizations required to achieve the desired 

simulation time follow directly from the time required for one cycle of each model combination. 

Model combinations with more computational expense must be discretized more coarsely in 

order for them to run within the specified budget. Once all model combinations are forced to take 

the same amount of time, they can be compared on the basis of error alone. Given a number of 

cycles    to simulate over total time    and a vector   of computational times for one evaluation 

of each model combination  , a vector   of the temporal discretization for each combination can 

be computed with Eq. (3.18), and   is calculated as the largest value of   as in Eq. (3.19).  

   
   

  
 (3.18) 

           (3.19) 

Then, starting from cycle  , the mean output after   cycles can be approximated for each of 

the model combinations as in Eq. (3.14). However, the variance for each model combination is 

only accumulated for the number of cycles for the particular temporal discretization required.  

Therefore, the standard deviation of   at   cycles after cycle   can be approximated for each of 

the model combinations as 

      
  √∑     

    
     

        
         for         (3.20) 
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The result of this treatment is that the standard deviations of the predictions of the faster 

(cheaper) models are smaller than their more expensive counterparts because of the finer 

temporal discretization. Since time is no longer a consideration (all models are allotted equal 

computational time), only the discrepancy needs to be considered in the decision, and the optimal 

combination c can be selected in a similar manner to Section 3.4.1 as 

            (  
    

 )     (3.21) 

If none of the alternative model combinations can meet this tolerance criterion with a high 

confidence (e.g. 95%), then the benchmark model combination itself should be executed. The 

simulation then proceeds exactly as shown in the previous section. 

3.5 Numerical example 

To demonstrate the methodology developed in Section 3.4 for time-dependent analysis, an 

engineering example problem is developed here. The problem under consideration is a cantilever 

beam with a planar fatigue crack at a small distance from the fixed support. The randomness in 

the beam’s elastic modulus ( ) is described by a random field along the length of the beam. A 

random process cyclic loading   is applied to the free end of the beam for a period    equal to 

100,000 cycles. Random process and random field variation have been accounted for by several 

available approaches in the literature such as ARMA methods [67], spectral representation 

methods [103], Karhunen - Loeve (K-L) expansion [26], and wavelet representations [29]. The 

K-L expansion approach is utilized here for the sake of illustration, and as a result, the random 

process   and random field   are represented by a small number of random variables to be 

sampled within MCS. The beam model and a single realization of the load process are illustrated 
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in Figure 3.9.  The structure is analyzed by the commercial finite element method (FEM) solver 

ANSYS. 

   

Figure 3.9: Example problem structure 

The goal of the problem is to determine the predicted distribution of the final crack size    at 

the end of 100,000 cycles. This distribution could then be utilized within a reliability framework 

to easily estimate the probability of the beam deflection exceeding an allowable deformation. To 

solve a problem of this form, the stochastic simulation has to be performed at two levels: (1) an 

outer loop in which the problem inputs and parameters common to an entire load process are 

sampled and (2) inner loop cyclic simulations in which the model combinations are selected and 

the uncertain crack growth parameters needed for each load block are sampled. The main 

distinction between these two sources of uncertainty is that the outer loop captures aleatory 

variability in the uncertain inputs to the system while the inner loop captures epistemic 

uncertainty about the precise value of the crack growth parameters, which are in reality 

deterministic for a given material specimen. The outer loop variables are the random variables 

that define the random load process  , the material properties of the beam, and the initial crack 

size   
 . The inner loop samples of the model parameters   and   define the Paris law [75], a 

simple power law commonly used for fatigue crack growth as shown in Eq. (3.22), based on 
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linear elastic fracture mechanics. The stress intensity factor    is a function of the current crack 

geometry and applied load, and it is used to predict the rate of crack growth during the cycle (
  

  
) 

as 

 
  

  
        (3.22) 

Data is assumed to be available at two subsystem levels: (1) an axial test used to calibrate the 

parameters of the random field   and (2) a simple mode I fracture test used to calibrate   and  .  

Two potential modeling choices are made within the context of this example: (1) linear vs. 

nonlinear material behavior and (2) coarse vs. fine mesh around the crack tip. The linear material 

model requires only the random field elastic modulus  . The nonlinear material model assumes 

bilinear isotropic hardening which requires   in addition to the yield stress    and the tangent 

modulus   which defines the stress-strain relationship above the yield stress. Two mesh 

refinements around the crack tip    and    are considered for each of these material models 

leading to four possible model combinations that may be selected:  

    – linear model with coarse mesh  

   
 – linear model with fine mesh 

    – nonlinear model with coarse mesh 

    – nonlinear model with fine mesh   

A diagram of the test problem structure is provided in Figure 3.10. 
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Figure 3.10: Crack growth test and simulation system diagram 

Parameter uncertainty in   and   is propagated using FOSM over a Latin hypercube sample 

of the inputs for all available competing models. Here    is equal to    and      is equal to      

in Eq. (3.12). The first order means and variances of each model combination prediction at each 

input sample are used to train GP surrogate models that predict crack growth in a single cycle 

given a current load step and geometry. The MCS begins by sampling a realization of the 

random field  , random process  , and initial crack size   
  (uniform distribution between 0.36 

and 0.42 inches).   

3.5.1 Stochastic simulation results considering both cost and time 

simultaneously 

A simulation for    = 100,000 cycles is to be performed for each of 1,000 input realizations.  

The computational time vector   (here [0.7703, 0.8251, 1.0804, 1.0720] seconds for the four 

aforementioned model combinations) is calculated by the average times required for evaluations 

of each model combination during training. A block size of 4,000 cycles was fixed for this 

portion of the study, so 25 blocks were required for each realization. Utilizing Eq. (3.14) and 
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(3.15), the mean and variance is predicted for each model combination for each load block of 

each realization. Using model combination 4 as the benchmark, the probability of agreement 

within the tolerance is determined and weighted by the computation time as in (3.16) and (3.17) 

to select an appropriate model combination for each block. Alternative models will only be 

selected when they provide a significant time savings and agree well with the benchmark.  Since 

the times for all the model combinations are very close to one another in this example (causing 

the benchmark itself to be predominantly selected), the effectiveness of the proposed procedure 

is illustrated by artificially increasing the expense of the benchmark model (combination 4) to 

five times and ten times its actual duration. A comparison of the results for these two cases and 

the unscaled case is shown in Figure 3.11.  

 

Figure 3.11: Effect of full fidelity model expense 

Table 3.1 demonstrates the amount of utilization of each model combination as a function of 

the relative expense of the high-fidelity model combination. Each simulation requires a total of 

25,000 model decisions (25 blocks for each of 1,000 realizations). Table 3.2 compares the total 

simulation times for each of these three levels of high-fidelity model expense. 
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Table 3.1: Model combination utilization for three levels of high-fidelity model expense 

Model 

Comb. 

Material 

Model 
Refinement 

% of Calls 

Unscaled Time 

% of Calls 

Five Times 

Scaled 

% of Calls 

Ten Times 

Scaled 

1 Linear Coarse 0.30 0.88 0.92 

2 Linear Fine 15.51 57.92 69.00 

3 Nonlinear Coarse 0.26 0.50 0.46 

4 Nonlinear Fine 83.92 40.70 29.62 

 

Table 3.2: Total simulation times for three levels of high-fidelity model expense 

High-Fidelity Time Per Evaluation 

(sec) 

% of Calls to High 

Fidelity 

Total Simulation Time 

(hr) 

1.07 (unscaled) 83.92 14.28 

5.35 (5 times scaled) 40.70 18.47 

10.7 (10 times scaled) 29.62 25.97 

*Note: The simulation times for the scaled cases were calculated from the assumed run times. 

These results demonstrate that the efficiency of the proposed methodology is closely tied to 

the expense of the high-fidelity model. The time savings is substantially improved when the 

benchmark model is substantially more costly to evaluate than its alternatives (a common 

situation in engineering problems). For example, when the high-fidelity model expense increases 

by a factor of 10 (i.e. 1000%), the total simulation time only increases by about 80%.  As shown 

in Figure 3.11, the effect on the overall accuracy of the distribution of the QoI is minimal since 

the algorithm does not allow for an alternative model to be selected when it deviates strongly 

from the benchmark. If the demand on accuracy is even more stringent, the proposed 

methodology allows the analyst to make a tradeoff decision by adjusting the tolerance in Eq. 

(3.21). A tighter tolerance will cause the simulation to run slower but with greater accuracy and 

vice versa.  
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3.5.2 Stochastic simulation results for fixed time 

The desired time    for a single realization is selected to be 50 seconds for    = 100,000 

cycles. The computational time vector   (as in Section 3.5.1) is used in Eq. (3.18) to compute the 

vector   (here [1541, 1650, 2161, 2144] cycles) of discretizations required for each model 

combination. For the first temporal discretization block, the mean predicted crack growth is 

calculated for   (here 2161, given by Eq. (3.19)) cycles. This is done for each model 

combination using the mean GP models as in Eq. (3.14), and the corresponding variance of the 

predicted crack growth is calculated for    cycles using the variance GP models as in Eq. (3.20). 

The criterion in Eq. (3.21) is utilized to select the optimal model combination for the load block, 

and the selected model is evaluated at      with    selected to match the highest fidelity model 

most closely at cycle    . This process is again repeated until   equal to    is obtained, and 

the final value    is determined for each realization. The distribution of    shown in Figure 3.12 

is again obtained for 1,000 realizations of the inputs. Table 3.3 gives the number of calls to each 

of the four model combinations during the full simulation (100,000 cycles x 1,000 realizations). 

 

Figure 3.12: PDF of final crack size,    
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Table 3.3: Comparison of calls for various model combinations 

Model 

Combination 
Material Model 

Mesh 

Refinement 

Number of 

Calls 

% of 

Total 

1 Linear Coarse 662 1.20 

2 Linear Fine 43728 79.42 

3 Nonlinear Coarse 237 0.43 

4 Nonlinear Fine 10430 18.94 

 

3.5.3 Discussion 

Both of the treatments explored here (Sections 3.5.1 and 3.5.2) show that model combination 

2 (linear model, fine mesh) was selected most frequently by the algorithm. The physical 

interpretation of this is that there was not much nonlinear behavior in a large portion of the input 

domain being considered, so the mesh refinement was a much more critical factor. Exploiting 

this type of information is the main objective of the methods in this chapter, and the proposed 

strategy is seen to satisfy this objective by selecting cheaper simulation options where they are 

adequate. The discretization error can have a large effect on the numerical calculation of the 

stress intensity factor (and therefore the crack growth), so this result is reasonable. As the load 

grows, the nonlinear effect on the result becomes more pronounced, so it is important to use the 

nonlinear model for some cycles. For such cycles, model combination 4 was typically selected 

because none of the other three could closely replicate this behavior. The result of the simulation 

is a synthesis of all the modeling options used selectively throughout the domain. This treatment 

improves efficiency, and it is protected from deviating significantly from the physics of the 

highest fidelity model by the tolerance choice in Eq. (3.16). A tighter tolerance can be chosen to 

ensure a close match with the high-fidelity model at the cost of spending more computation time.   
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Only 25 function calls (i.e. load blocks) were used for each realization of the load process in 

Section 3.5.1, and an average of 55 blocks were needed for the analysis in Sec. 3.5.2. The 

amount of computational time saved through temporal discretization is obviously enormous. The 

entire simulation of 1,000 realizations ranged from 15 to 35 hours to perform on a single 

processor of a PC while a cycle by cycle simulation of the highest fidelity combination would 

require about 70,000 hours (clearly intractable). Both proposed approaches select the model 

combination that minimizes the prediction variance (when mean predictions agree well), and it 

may therefore lead to only a negligible error with respect to the cycle by cycle case as is shown 

in the verification example that follows. It is clear that the proposed approach is most efficient 

when there is a substantial difference in the runtimes associated with the candidate models (in 

particular when the highest fidelity model is prohibitively expensive). 

The proposed decision-making strategy provides this reduction in the computational expense 

of the simulation with only a minimal increase in expense coming from the model selection 

method itself. Some additional evaluations of the computational models are needed to train the 

GP surrogates; in this example, those calls represent less than 1% of the total evaluations. 

However, once the surrogates are built, the GP surrogate-based selection process is very fast 

(less than 0.1% of the expense of an evaluation of the computational models). The only 

substantial addition to the computational cost comes from the overhead in communicating with a 

driver program that makes the decisions and calls the computational models. In particular, the 

example crack growth analysis is performed by ANSYS FEM models that were driven by 

MATLAB scripts. The overhead associated with these two programs did increase the expense by 

as much as 50% in some cases. However, that increase seems large because the models in this 

example are substantially faster than would be expected in most applications; thus, the overhead 
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represents a larger portion of the total expense. The benefit of the proposed approach would be 

much more dramatic for more expensive simulations since the overhead is only related to 

communication time between MATLAB and ANSYS and is independent of how long the 

ANSYS code takes to run. Furthermore, if the amount of overhead is significant, the model can 

be implemented in a generic programming language where the driver scripts are also 

implemented, and the overhead expense can be avoided altogether. 

The proposed selection approach is intended to be non-invasive (i.e. the models can be 

treated as black boxes). This method is applicable to the crack growth example presented here 

because this problem is solved by a series of static analyses. At any cycle, only the output 

information from the previous cycle is necessary, not the details of the analysis in the previous 

cycle. The choice of linear vs. nonlinear model, or coarse vs. fine mesh, is based on load value 

and current crack size in any cycle. The error incurred by the low-fidelity model grows as the 

stress intensity factor grows larger, and the large stress intensity factor could be due to either a 

large load value or a large crack size. Since each cycle actually has a separate analysis, the 

selections can be made independently without causing any physical inconsistencies among the 

available models. 

Since some expert judgment is needed to make decisions about how to define the parameters 

of the formulation (e.g.  ), there is no analytical proof that the proposed approach is “optimal.” 

However, the proposed method provides a systematic way of dealing with practical simulation 

constraints. This approach will never be slower than the brute force approach of calling the 

highest fidelity model every time, and it will be much faster when the lower-fidelity alternatives 

offer acceptable accuracy (i.e. the expected differences between high fidelity and low fidelity are 

small). In fact, the frequency with which lower fidelity models are called gives a clear indication 
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of the quality of the lower fidelity options. Furthermore, the tolerance parameter gives an upper 

bound on how much error could be admitted into the problem by model selection decisions that 

are forced by computational time constraints.  

3.5.4 Verification example 

To demonstrate the efficiency of the proposed approach, a cycle-by-cycle simulation of a 

single set of input realizations was performed using the maximum fidelity model choice 

(combination 4). The initial crack size was sampled from the given distribution as 0.4122 inch, 

and crack growth was simulated for 25,000 cycles (because of time constraints). In this period 

the high fidelity model evaluated cycle-by-cycle predicted a final crack length of 0.4438 inch. 

Using the same initial crack size as well as the same load random process and material random 

field realization, the proposed approach predicted a final crack length after 25,000 cycles of 

0.4428 inch. Thus, the error produced is only 0.23% while the computation time is reduced from 

15 hours to 30 seconds. Note that in this problem, the computation time reduction is primarily 

due to the load block discretization since all the competing models have similar computational 

expense. 

3.6 Conclusion 

In the literature, model selection decisions are typically made only once at the beginning of 

the simulation and the choice is fixed for the rest of the simulation. This chapter proposes that 

this practice can be improved by taking advantage of local information about the system. 

Surrogate models that map the input space to the QoI are very useful as a decision making tool 

since they can serve to help the analyst understand how errors in subsystem level model 
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predictions impact the system level QoI. Considering these factors serves to reduce the 

computational expense required to perform large-scale simulations with only a marginal loss in 

accuracy, and the decision-making method itself represents a very small component of the total 

simulation expense. In addition, tracking which sample points lead to which model selection 

decisions may provide useful information to isolate physics-based deficiencies in low-fidelity 

models. 

This work considers two basic situations: (1) the ranking of model fidelities is known for the 

entire domain because of expert opinion from model developers and (2) competing models 

(representing different physical hypotheses) may have a different (unknown) ranking of fidelity 

in different regions of the domain. These two scenarios are handled in two different ways; the 

second case is demonstrated by the illustrative example in Section 3.3 while the first is 

investigated in Section 3.5. In the second case, selecting models appropriately during the 

simulation is difficult if no information on the QoI is available, so whenever possible, 

independent data should be collected to validate the results and improve the decision-making 

tools. 

Within this framework, model decisions can be fully automated and thus more easily applied 

to problems with highly sophisticated computational architectures. Further work is needed to 

integrate this approach with a dynamic computing resource allocation methodology, and with 

decisions about future model improvements and data collection. A complete orchestration of the 

UQ process for complicated problems with many component simulations will need algorithms to 

schedule the selected simulations and take advantage of parallelization in order to further reduce 

the computational effort while achieving the desired accuracy and precision. 
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The proposed methods of this chapter are important to a comprehensive framework for UQ. 

Efficient uncertainty propagation is important to both model validation and prediction activities 

since both aleatory and epistemic uncertainty are typically accounted for via MCS. Specifically, 

uncertainty propagation produces the probability distribution of a stochastic output of interest. 

Such a distribution is needed when performing quantitative model validation by comparing 

against observed data, and obtaining the distribution itself accurately is the singular goal of the 

prediction phase. The predicted distribution can then be used to perform reliability analysis and 

risk assessment by considering failure thresholds and failure consequences respectively. Each of 

these activities is discussed subsequently in this dissertation. 
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CHAPTER 4 

CONNECTING MODEL VALIDATION TO PREDICTION 

4.1 Introduction 

This chapter demonstrates how models are validated in the presence of uncertainty that is 

propagated through computational models as described in Chapter 3. Model validation can be 

defined as the process of assessing the adequacy of a computational model for an intended 

prediction application. As described in Section 2.1, computational models are calibrated by 

updating parameter distributions to match the model output with observation data. However, a 

calibrated model should not be trusted for prediction without evidence that it is a good 

representation of reality in other input scenarios, both in terms of the inferred parameters and the 

underlying form of the model. This evidence should come from additional independent 

observations, preferably in a different input domain that is closer to the application of interest. 

The new experimental data that is used for model validation is inherently stochastic in the 

presence of measurement uncertainty. Since the model prediction is also stochastic once input 

and parameter uncertainty are propagated through it, quantitative model validation requires the 

comparison of probability distributions for prediction and observation.   

As mentioned in Section 2.2, most recent quantitative validation methods are designed 

precisely for this purpose. Validation methods that have been developed in the literature include 

classical hypothesis testing [25, 34, 41], Bayesian hypothesis testing [73, 86, 87, 108], the area 

metric [22, 23, 95], and the model reliability metric [85, 97]. The connections between these 

various metrics as well as their strengths and weaknesses have also been explored [57, 59]. Each 
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of these existing approaches assesses the agreement between model prediction and validation 

observation, but they differ in how they are applied. One view, as is usually taken with the area 

metric (see Section 2.2.1), is to look at the set of validation observations collectively and 

compare the distribution of the prediction over the entire input domain against the distribution of 

the observation data. When the input and corresponding output are measured for each validation 

experiment (with corresponding stochastic predictions for each input), a synthesis across the 

domain is accomplished via the “u-pooling" approach defined earlier in Eq. (2.6). An alternate 

view, as taken with the model reliability metric (see Section 2.2.2), is to perform a series of point 

comparisons, one for each validation input condition, and assess the predictive capability of the 

model as a function of the location in the input domain. Both classical and Bayesian hypothesis 

testing may be cast in a way that is consistent with either of these views by choosing different 

hypotheses. The proper interpretation depends largely on the type of data that is available to the 

analyst. This chapter investigates different validation scenarios where one of these two views 

(ensemble validation vs. point-by-point validation) is more suitable. 

A further distinction between these methods is in the interpretation of the results. 

Conventionally, model validation has resulted in a single positive or negative result that indicates 

whether the model should be used in prediction or not. By choosing thresholds for the 

quantitative results, any of the previously mentioned methods could be interpreted in this 

manner. Alternatively, Bayesian hypothesis testing and the model reliability metric enable the 

result to be interpreted as a probability of agreement between prediction and observation. Thus, 

the result is not a single pass/fail decision, but a degree of validity. This dissertation focuses 

primarily on these probabilistic approaches because they enable other ongoing research efforts 
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that are aimed at including the validation result in the subsequent prediction of a quantity of 

interest in the usage condition [40, 92, 98]. 

An important aspect of this discussion is the distinction between aleatory and epistemic 

uncertainty sources as introduced in Section 1.1. Aleatory uncertainty is unavoidable and must 

be accounted for in prediction models; however, it is not directly pertinent to decisions about risk 

and uncertainty reduction because its contribution cannot be eliminated. The primary focus of 

this dissertation is epistemic uncertainty since resource allocation decisions are aimed at 

reducing its contributions to the prediction. In the literature, epistemic uncertainty has been 

modeled in a number of different ways, including Bayesian probability [74], interval analysis 

[45], evidence theory [101], possibility theory [19], fuzzy logic [94], and generalized information 

theory [51]. Regardless of the approach to epistemic uncertainty characterization, researchers 

have become increasingly aware of the importance of separating aleatory and epistemic 

uncertainty sources [36, 50, 72]. Therefore, the focus of this chapter is the impact of epistemic 

uncertainty on model validation. The proposed methods demonstrate how to separate the 

contributions of aleatory and epistemic uncertainty when the available data permits. 

Within this context, this chapter aims to address three issues that impact the validation 

assessment: (1) the type of input-output measurements that are made in validation experiments, 

(2) the “proximity" of the validation tests to the prediction regime of interest, and (3) the use of 

surrogate models for uncertainty propagation. The first issue is addressed in Section 4.2 where 

three different types of validation data scenarios are explored, and appropriate validation 

approaches are identified. The second issue is addressed in Section 4.3, where a method for 

weighting validation results by the relevance to the prediction is proposed. The third issue is 

addressed in Section 4.4, which quantifies the effect of surrogate model uncertainty on the 
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validation result. The proposed methods are demonstrated with a numerical example of a 

microelectromechanical system (MEMS) device in Section 4.5. 

4.2 Aleatory and epistemic uncertainty in model validation 

In a probabilistic framework, both prediction and observation are treated as stochastic 

variables that are described by probability distributions. These distributions, which represent 

aleatory and/or epistemic uncertainty sources, may be compared by comparing the moments, the 

shapes, or the samples of the distributions. In the area metric and KL divergence [55] 

comparison approaches, the shapes of the distributions themselves are compared directly. In the 

model reliability metric approach, the distance between sampled realizations of prediction and 

observation is evaluated. Hypothesis testing methods (i.e. classical hypothesis testing and 

Bayesian hypothesis testing) may be cast in different ways by choosing different hypotheses (e.g. 

equality of moments or distribution parameters, equality of prediction and observation samples, 

or allowable distance between prediction and observation samples).  

A key factor in the choice of comparison is the stochastic dependence between the prediction 

and observation. As noted in [22], samples cannot be uniquely generated without some 

knowledge of the dependence, so it is only possible to compare samples if the dependence 

information (i.e. the correlation structure) is known. In such a scenario, a comparison of sampled 

differences can make a stronger statement about the agreement between prediction and 

observation. For example, positive correlation between prediction and observation may suggest 

better predictive capability than negative correlation. This section discusses how the separation 

of uncertainty sources in point-by-point validation enables dependence information to be 

isolated, such that independent samples can be drawn. However, this separation may not always 
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be possible, and when no such dependence information is known, a shape-based comparison can 

be performed in order to bypass this requirement. The result can then be bounded for different 

possible dependence structures [22]. 

The focus of this chapter is the area metric and the model reliability metric comparison 

approaches, which were previously described in detail in Section 2.2. The applicability of these 

approaches depends on the type of information that is available to the analyst. 

4.2.1 Validation with fully, partially, or uncharacterized experimental data 

Validation observations always include data on output quantities of interest, but the 

corresponding inputs are not always measured precisely (or at all). Three possible scenarios exist 

with respect to input measurements: (1) fully characterized (i.e., all the input variables of 

individual experiments and corresponding outputs are measured and reported as point values), 

(2) partially characterized (i.e., some inputs and/or outputs of individual experiments are not 

measured or are reported as intervals), or (3) uncharacterized (i.e., experiments are performed on 

multiple input combinations, but these input combinations are not measured or are reported as a 

single interval). In the cases of partially characterized or uncharacterized validation data, the 

input   is treated as a random vector due to the lack of measurements or the imprecision of the 

measurements. The reported intervals and expert opinion (if available) are needed to construct a 

probability distribution of  . Note that in the Bayesian approach, the lack of knowledge 

(epistemic uncertainty) is represented through a probability distribution (subjective probability). 

This point is critical to the discussion that follows later in this section; the implication is that the 

“true" output of a single experiment is not a probability distribution, but a single value that 

cannot be precisely observed. Likewise, the corresponding model prediction would also be a 
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single deterministic value for each experiment if all inputs and parameters were precisely known. 

The non-probabilistic approaches that were mentioned in Section 4.1 have also been proposed to 

handle the epistemic uncertainty; this dissertation focuses only on probabilistic methods. 

Table 4.1: Input-output data for three different types of validation experiments 

Fully Characterized 
Input            

Output    
    

      
 

Partially Characterized 
Input    

       
         

    

Output    
    

      
 

Uncharacterized 
Input       

Output    
    

      
 

For partially characterized validation data, input distributions are assigned to different 

experiments separately, and these distributions    
    (        for   validation input 

conditions) represent input data uncertainty in each individual experiment. For example, suppose 

experiments were conducted at   different nominal load values, but each of the load values is 

only known up to an interval            . For uncharacterized validation data, a single 

distribution is assigned to the variable over multiple experiments, and this distribution       

represents the uncertainty due to both natural variability and input data uncertainty. For example, 

suppose the same   experimental outputs are available; however, there is not a nominal load 

value for each individual experiment, but rather a single interval that encompasses the load 

values for all experiments        . Table 4.1 shows a typical format of input-output data 

collected from the three types of experiments. Fully characterized data is preferred for the 

purpose of model validation; however, partially characterized and/or uncharacterized data may 

still be used when no fully characterized data is available.  
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4.2.2 Ensemble vs. point-by-point validation 

As mentioned in Section 4.1, there are two possible views of validation. The data can be 

viewed collectively and compared against the overall distribution of the model prediction across 

the input domain, or the data can be viewed individually and compared against a separate 

stochastic prediction at each input condition. If the validation assessment is performed only once 

over the collection of data (i.e. ensemble validation), it is difficult to separate the contributions of 

aleatory and epistemic uncertainty sources to the validation result. Once the model prediction has 

been corrected for solution approximation errors and/or calibrated for bias (often referred to as 

model discrepancy [47]), the distributions of both the prediction and observation are a result of 

aleatory uncertainty (input variations) and epistemic uncertainty (parameter uncertainty in the 

prediction and measurement uncertainty in the observation).  

There is no reasonable expectation that the epistemic uncertainty contributions to the total 

uncertainty in the prediction and observation should be similar to each other because the two 

sources are independent. In particular, parameter uncertainty is related to the quantity and quality 

of available calibration data. As more calibration data is collected, parameter uncertainty can be 

reduced via Bayesian updating. Since the validation data set should be separate from the 

calibration data in order to make a proper assessment of the model's predictive capability, the 

measurement uncertainty in the validation data is generally different from the calibration 

measurement uncertainty. Furthermore, even if the distributions of the measurement errors in the 

calibration data and the validation data are similar, there is still no reason to expect correlation 

between particular samples of measurement error. Therefore, the only uncertainty contribution 

that is common to both the prediction and observation is the aleatory uncertainty in the input.  
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In the collective view of validation, one option for separating the aleatory and epistemic 

contributions is the p-box approach [95]. In this treatment, epistemic uncertainty is expressed as 

an interval while aleatory uncertainty is expressed with probability distributions. Such a 

treatment is particularly suitable for uncharacterized data because the data quality does not 

enable point-by-point separation. However, when the dominant effect is epistemic uncertainty, 

rather than aleatory uncertainty, comparing observations to a p-box may not be very informative 

since the epistemic uncertainty gives a wide window of acceptance for the model [22, 95].  

In many problems, the epistemic contributions are, in fact, large since economic constraints 

in realistic applications often lead to very sparse/imprecise data. For this reason, the model 

reliability approach is aimed at epistemic uncertainty in both the observation and the prediction. 

Note again that parameter uncertainty in this dissertation refers to the subjective probability 

description of a deterministic parameter value, not aleatory uncertainty. It is possible that 

parameters may also be affected by aleatory variability across experiments, but this issue is 

addressed in this chapter by localizing calibration to particular experimental configurations. The 

parameter uncertainty is expressed by a subjective probability distribution separately for each 

test, and it is then reduced via Bayesian updating with replicate testing as seen in the example in 

Section 4.5. Aiming the assessment at epistemic uncertainty leads directly to decisions about 

what improvements are most necessary (either in the data or the model) in order to improve the 

predictive quality of the model. 

Therefore, when information is available about the particular input condition associated with 

each data point (either fully or partially characterized data), the use of individual comparisons at 

each location with the model reliability metric is proposed. The metric is computed for a 

stochastic prediction and an uncertain observation, but the metric is not maximized when the 
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spreads in the two distributions are the same. This behavior occurs because the metric is not a 

shape-based comparison; it comes from sampling the distributions to compute the distribution of 

the difference   (see Section 2.2.2).  

As mentioned in the opening of this section, the distribution of   can only be obtained if the 

stochastic dependence between prediction and observation is known. However, the correlation 

between these two variables only occurs through aleatory uncertainty that is common to both, 

and the epistemic uncertainty sources are independent. Therefore, at a particular input condition, 

since the stochastic prediction and observation are only sampled over epistemic uncertainty 

sources, the samples are conditionally independent. Since   is simply the distribution of bias 

between deterministic samples of prediction and observation, the maximum reliability metric 

occurs when the distributions of prediction and observation are unbiased from each other, and 

each has minimum uncertainty (see Figure 4.1). This behavior agrees with our intuition about 

how to improve the result if the validation agreement is poor. By reducing measurement 

uncertainty or reducing parameter uncertainty, the validation result at each input can be 

improved. For the shapes of the distributions to agree, both the measurement uncertainty and the 

parameter uncertainty must be reduced in order to improve the agreement. It is an unnecessary 

requirement that the shapes agree since they are representing only independent epistemic 

uncertainty sources. Both collecting more calibration data (to reduce parameter uncertainty) and 

collecting more precise data (to reduce data uncertainty) should individually improve confidence 

in the model if the model is actually predicting well. 
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(a) Measurement uncertainty and  

parameter uncertainty are similar (Model 

reliability = 0.86) 

 
(b) Zero measurement uncertainty with 

the same parameter uncertainty as in 

4.1(a) (Model reliability = 0.95) 

Figure 4.1: Decreasing measurement uncertainty for the same stochastic prediction improves the 

confidence in the model if the observation is unbiased 

For these reasons, shape-based comparisons are not intended for purely epistemic 

uncertainty-based comparisons. They should not be used for this purpose because it is possible 

for the contributions of one or both of the uncertainty sources to increase and improve the 

comparison. For example, the point comparison shown in Figure 4.1 poses two scenarios, both 

with the same stochastic prediction. Figure 4.1(b) gives an idealized scenario where the 

observation data is “perfect" (i.e. no measurement uncertainty). In this scenario, clearly the 

shapes of the two distributions are not the same, and the distributions will actually match more 

closely (improving a shape-based measure) by injecting more uncertainty into the observation as 

in Figure 4.1(a). This result does not occur with the model reliability approach because the 

metric is lower for larger uncertainty in the observation (i.e. there is less confidence in the 

assessment because the observation data is not adequate). Since, at a single known input point 

(fully or partially characterized), the uncertainty sources are completely epistemic, both the 

prediction and observation would be deterministic values if no epistemic uncertainty existed. 
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Thus, the scenario shown in Figure 4.1(b) (where ideal quality observation data is available) is 

actually preferable because there is a higher probability that the deterministic prediction and 

observation would agree if both were known precisely. 

An additional advantage of point-by-point comparison is that it demonstrates the quality of 

the model as a function of input condition. This information may be very useful in determining 

whether the model will be appropriate in its intended use, and it may also help isolate potential 

systematic errors arising from model form inadequacy. For example, if the model is consistently 

performing poorly for large values of some input (e.g. loading), this may be evidence that the 

model does not capture some higher order physical behavior (e.g. nonlinearity) that is activated 

by extreme conditions. Additionally, if different values of model reliability are computed at 

different inputs, the weighting approach that is presented in Section 4.3 becomes possible, and 

preferences for particularly important regions of the input domain based on the intended 

application can be incorporated.  

In summary, this section concludes that ensemble validation is best suited for 

uncharacterized data scenarios, and point-by-point validation is preferable when information is 

known about the corresponding input conditions (partially or fully characterized validation data 

scenarios) for the following reasons: 1) distributions of prediction and observation can only be 

expected to agree when the dominant uncertainty source is aleatory variability that is common to 

both distributions; 2) point-by-point comparisons with the model reliability metric separate 

aleatory and epistemic uncertainty and penalize large epistemic uncertainty (from any source) by 

returning a lower validation result; 3) point-by-point comparisons allow systematic error trends 

to be isolated in the model; and 4) a set of point-by-point comparisons can be weighted based on 

relevance to the intended use of the model. 
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4.3 Integration of model validation results from multiple input 

conditions 

By utilizing the model reliability approach, a value for the validation metric can be computed 

for each validation input condition. This information is itself useful for decision making about 

the model adequacy since developers can look at regions of the input domain that perform poorly 

in validation and investigate potential model improvements. However, the ultimate goal of the 

validation activity is to assess the current model's prediction capability, and recent research [40, 

92, 98] has the additional goal of performing this assessment quantitatively so that it may be 

included in the prediction. In some applications, including the validation result in a prediction 

framework may require a single overall measure of the model quality across the entire domain of 

interest. This measure should be representative of the quality of the model in its intended 

application condition where the prediction will be made.  Thus, the method given by Eq. (4.1) is 

proposed. 

                      (4.1) 

Here,      is the value of the validation metric at a particular point in the validation domain, 

represented by the  -dimensional input vector   and      is the  -dimensional joint probability 

density of the point   in the prediction domain. This distribution comes from the best available 

knowledge of the input conditions that will be encountered in the intended application of the 

model; the distribution may describe both aleatory and epistemic uncertainty. Effectively, the 

joint density becomes a weighting function for the importance of each validation result according 

to how likely that input condition is in the prediction scenario. In evaluating the integral in Eq. 
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(4.1), note that      is only available at some discrete values of  . Therefore, the integral may be 

approximated by a weighted sum taken over a set of   validation tests as 

          
∑        

 
   

∑   
 
   

 (4.2) 

The computation of the weight    is straightforward for fully characterized validation data; it 

is obtained by computing      , which is a single value for each validation experiment. When 

input measurement uncertainty exists, the validation data is considered to be partially 

characterized, and    is not a point value, but rather a random variable. In this scenario, the 

weighting for the intended application can be obtained for each validation test by taking the 

expected value over the distribution of the corresponding input measurement uncertainty    
   . 

            
      (4.3) 

Once all the weights are computed, Eq. (4.2) results in a single deterministic measure of the 

probabilistic performance of the model over the expected prediction domain. It is an 

approximation since the set of validation input conditions generally does not cover the full 

prediction domain of interest; therefore, the summation must be normalized in order to obtain a 

valid probability. In fact, in some cases the prediction scenario may be for values of   that are 

not close to the validation domain. In this situation, the validation input conditions fall in the tail 

of the distribution for the intended application, and       is small for all the validation points. 

This would imply that none of the validation experiments are in the regime that is most relevant 

to the intended application, and the prediction represents a significant extrapolation of the model. 

Such extrapolation scenarios can be dangerous applications of the model, but they are often 

unavoidable in practice. Additional conservatism is needed for this situation, and the analyst 
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should be especially aware of any trends in the point-by-point validation results that suggest that 

model inadequacy will be magnified in the prediction regime. Ongoing research efforts are 

exploring quantitative methods of setting boundaries for the extrapolation of the model and 

applying additional conservatism to the extrapolation scenarios when they are practically 

necessary [40, 44, 92, 95, 98].  

The proposed integration approach has been described for situations where a single 

probabilistic value can be obtained from the model reliability metric at each input condition. 

When additional epistemic uncertainties exist, the validation metric uncertainty can be described 

by a probability distribution at each validation input, and the overall metric will also be a 

probability distribution accounting for these additional uncertainties. One example is a stochastic 

model discrepancy term as in the Kennedy-O'Hagan approach to model calibration [47]. If the 

discrepancy term is used as a correction for the model prediction, different realizations of the 

stochastic discrepancy yield different validation results. As another example, when surrogate 

models are used to generate the distribution of the model output that is used in the validation 

assessment, different realizations of the surrogate model prediction also lead to different 

validation results. A final example is model validation in the presence of sparse data, leading to 

uncertainty about the distribution of   . These additional uncertainty sources should also be 

accounted for. Thus, the surrogate model scenario is explored in Section 4.4, and the sparse 

validation data scenario is explored later in Section 5.2. Though it is not explored in this 

dissertation, note that the mathematics of treating stochastic model discrepancy would follow 

similarly to the other two examples that are demonstrated. 
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4.4 Inclusion of surrogate model uncertainty in validation 

Probabilistic approaches to model validation, as described in Section 2.2, require the 

propagation of parameter uncertainty through the model at each validation input condition. This 

propagation is typically performed via Monte Carlo sampling, which requires a large number of 

model evaluations. When the computational model is expensive, it is often replaced by a 

surrogate model to improve the efficiency of the propagation. Ultimately, the goal of the 

validation assessment is to make a statement about the adequacy of the physics-based, original 

computational model and not the surrogate, since the former will be used for prediction. Since 

the surrogate model is not a perfect representation of the original computational model, 

additional uncertainty is added to the validation result. In this dissertation, GP surrogate models 

as described in Section 2.4 are used for this purpose because they provide a natural way of 

quantifying the uncertainty due to the discrepancy between the surrogate and the original 

computational model. This uncertainty then propagates to uncertainty in the validation 

assessment.  

When GP surrogate models are available, they can be used for affordable uncertainty 

propagation. The issue with this approach is that it creates an additional source of uncertainty in 

validation. The validation result must apply to the physics-based computational model (not the 

surrogate model) since it will be used in the prediction domain. To make this assessment, the 

additional uncertainty stemming from the uncertain fit of the surrogate to the computational 

model must be accounted for. Using a GP model, denoted here as   ̂, to replace the underlying 

physics model as a function of input   and parameters   provides a Gaussian distribution at a 

prediction point arising from surrogate uncertainty as     ̂             
    

 . This 
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represents a family of distributions for different values of  . This family of distributions may be 

collapsed by employing the auxiliary variable approach [99] in which the dependence on the 

distribution parameters    
 and    

 can be mapped to a dependence on only the CDF value of 

the distribution   as in Eq. (4.4). 

      
(  |   

    
)      

( |   
    

)  
  

  
 (4.4) 

Since this auxiliary variable represents a CDF value,                 , the model 

reliability   becomes a random variable itself and can be written as a function of the random 

variables  ,  , and  . As shown in Eq. (4.5), the model reliability metric at input   can be 

computed for any   by integrating over the distribution of   as in Eq. (2.8). Then, the model 

reliability at any   is weighted by the pdf of   in the prediction domain (as in Eq. 4.1) to obtain 

the overall distribution of the metric as a function of the surrogate model uncertainty as shown in 

Eq. (4.6). 

                                 
         

 (4.5) 

                           (4.6) 

The resulting distribution of the validation metric can be computed by sampling the auxiliary 

variable to demonstrate the contribution of the GP uncertainty to the validation result. The spread 

in this distribution is the cost of using the surrogate model for propagation. This uncertainty may 

be reducible by improving the surrogate model by adding additional training points. 
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The proposed approach formalizes the validation assessment when using surrogate models 

for uncertainty propagation. When possible, it is preferable to use the original computational 

model directly, but constraints on computational effort often make such an approach 

unaffordable. When surrogates are necessary, the additional uncertainty can be included via the 

method described above. An alternative approach is to apply the uncertainty propagation 

approach proposed in Chapter 3 to select between the GP and the original computational model 

across the domain. The need to use the original computational model in some portions of the 

domain will then depend on the quality of the GP surrogate, which is dependent upon the amount 

of training data as well as the smoothness of the original computational model’s response. 

4.5 Numerical example 

4.5.1 Validation of MEMS device simulation 

To demonstrate the proposed validation methodology, a microelectromechanical system 

(MEMS) example is introduced. The radio frequency (RF) MEMS switch, shown in the 

conceptual diagram in Figure 4.2, is subjected to electrostatic loading that causes the membrane 

to deform. The mechanical properties of the membrane resist the deformation, but at some 

voltage, known as the pull-in voltage, the electrostatic force pulls the membrane into contact 

with the substrate. At a voltage level known as the pull-out voltage, the membrane can then be 

released from contact with the substrate. The pull-in and pull-out voltages are predicted by 

device simulation, and they are also measured in validation experiments (20 replicate tests on 

each of six devices).   
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Figure 4.2: RF MEMS switch 

Five variables, membrane thickness  , gap between one end of the membrane and the 

substrate   , gap between the other end of the membrane and the substrate   , Young's modulus 

 , and contact height    are identified as inputs to the model and experiments. Due to the 

imprecision of the measurement techniques, the geometry parameters    and    are described by 

distributions that represent input measurment uncertainty for each of the six devices. Direct 

measurements of   and    are not available, but the ranges of these two variables are obtained 

via multi-scale simulation [48, 53]. The thickness of the membrane   cannot be measured 

accurately, so it is treated as a calibration parameter. Using the pull-in voltage measurements, the 

membrane thickness is estimated separately for each device via Bayesian inference. Then, the 

predictive simulation is validated using the pull-out voltage measurements. The measurement for 

each device corresponds to a combination of the input set               , each with associated 

uncertainty. Thus, the validation measurements are partially characterized. 

In a partially characterized data scenario, input measurement uncertainty can be treated in the 

same manner as parameter uncertainty when performing the validation assessment. For a single 

device, each of these inputs has a single value in reality, but it cannot be measured precisely. 

Aleatory uncertainty is only present in the form of device-to-device variation. Therefore, the 
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source of the uncertainty in the prediction for a particular device (i.e. a particular input 

condition) is completely epistemic. The uncertainty in the observation is attributed to output 

measurement uncertainty, which is also epistemic. Therefore, a point-by-point comparison for 

each device using the model reliability metric can be performed.  

  

(a) Comparison of model prediction and 

observation with associated epistemic 

uncertainty. 

 
(b) Computation of model reliability using 

the difference between prediction and 

observation. For   = 5, the difference   is 

integrated over the interval (-5, 5) as 

shown 

Figure 4.3: Computation of model reliability for partially characterized validation data 

For example, Figure 4.3 demonstrates the model reliability metric computation for one of the 

six devices. The tolerance   is set to 5 volts, and the distribution of the difference between 

prediction and observation   is integrated over the interval (-5, 5) to obtain a model reliability of 

0.74. The prediction distribution shown in Figure 4.3(a) is generated by propagating input 

measurement uncertainty through the prediction model. Since the computational model that 

predicts the pull-out voltage is expensive (approximately 6 hours per evaluation) and a large 

number of Monte Carlo samples of the input measurement uncertainty are needed in order to 

converge the output distribution (10,000 were used in this illustration), using the computational 



79 

 

model for propagation is unaffordable. Therefore, GP surrogate models are constructed to 

improve the efficiency of the computation. For illustration, the surrogate uncertainty is not 

included in the result shown in Figure 4.3; only the mean prediction from the GP model is used. 

If the computational model were not expensive, the uncertainty propagation could be performed 

without constructing a surrogate model, and the computation of the model reliability would 

proceed exactly as shown, resulting in a single value of the model reliability for each device. 

However, as mentioned, a surrogate model is needed for this example, and this uncertainty must 

also be included in the assessment. As a result, the model reliability is instead described by a 

distribution for each device. This consideration is demonstrated in Section 4.5.2. 

4.5.2 Inclusion of surrogate uncertainty 

The framework in Section 4.4 is applied to the validation assessment for each of the six 

devices. For each device, the model prediction is made for a set of samples of the input 

uncertainty. By sampling the auxiliary variable, many realizations of the GP model are taken; 

each of these is a candidate prediction of the underlying computational model. The set of 

realizations produces a family of predictions that represents the possible outcomes for the 

validation assessment that could be obtained if the computational model were used directly. Note 

that these realizations are obtained by sampling the auxiliary variable and using the covariance 

function of the GP model, so the outputs at different samples of the input uncertainty are highly 

correlated. This correlation may result in a family of predictions with greater uncertainty than the 

standard deviation at a single prediction point would indicate. For each candidate model 

prediction, Eq. (4.5) is applied to obtain a value for the model reliability metric. This set of 
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values for the model reliability is used to construct a histogram for the validation result for each 

device. The histograms are normalized to obtain the frequency diagrams shown in Figure 4.4.  

 

 

Figure 4.4: Frequency diagrams of model reliability for each of 6 devices 

For several of the devices, the mean model reliability is very low because the mean 

prediction and mean observation were substantially biased from each other. This result may 

occur due to inadequacies in the model and/or inconsistencies in the observed data. As described 

in Section 4.2, both input and output measurement uncertainty may also contribute to the poor 

performance of the model (input measurement uncertainty increases the spread in the prediction 

while output measurement uncertainty increases the spread in the observation). Additionally, the 

spread in the potential outcomes of the model reliability indicates that the GP uncertainty is 

significant. By obtaining more training data, this particular source of epistemic uncertainty can 

be reduced, and the model reliability would be expected to converge toward the single value that 

would be obtained by performing the propagation with the computational model directly.  
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For most applications, the validation results shown in Figure 4.4 would not provide sufficient 

confidence to use the model going forward in prediction. Either the model form should be 

improved, or the quality of the observation data should be thoroughly evaluated, and if necessary 

additional validation data should be collected. However, for illustration, the approach for 

integrating these results from different devices into a single result is demonstrated in Section 

4.5.3 below. 

4.5.3  Integration of validation results from multiple devices  

Once individual validation results have been obtained for several different devices, it is 

useful to determine which of the results is most relevant to the prediction of interest. For 

example, if the beam thickness   is an input of particular interest, it is helpful to assess to the 

predictive capability of the model as a function of what thickness will be encountered. The 

validation tests that were conducted for thicknesses similar to those in the prediction scenario are 

most relevant. The calibrated thickness distributions for each of the six devices are shown in 

Figure 4.5.  
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Figure 4.5: Input uncertainty for the thickness of the 6 devices 

Table 4.2: Weights for two different prediction scenarios 

 Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 

                  1.18e-4 0.114 1.11e-4 0.244 0.642 1.57e-5 

                  0.328 4.08e-10 0.323 9.56e-3 2.71e-5 0.339 

 

Suppose the model will be used for two different prediction scenarios in which the 

thicknesses will be            and            respectively. By applying Eq. (4.3) and 

normalizing the weights, the weights for the 6 devices are shown for the two scenarios in Table 

4.2. It is clear from this table that device 5 is most relevant to the first prediction scenario while 

device 4 and device 2 are also somewhat relevant, and the other three devices are not. The 

second scenario has three device tests that are of nearly equal relevance (devices 1, 3, and 5), and 

the other three have negligible weight. By using these weights in Eq. (4.2), the integration in Eq. 

(4.6) can be approximated to produce the distributions for          shown in Figure 4.6. 
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(a) Distribution of          for a 

prediction scenario with 

                 

 
(b) Distribution of          for a 

prediction scenario with 

                  

Figure 4.6: The model is expected to perform much better for the first scenario since device 5 is 

the most relevant and also the best performer in the validation assessment. 

This validation assessment has shown that there is low confidence in the model in general, 

but this comparison shows that the model is much more adequate for the first prediction scenario 

than the second. Since only device 5 gave reasonable prediction quality in the validation 

assessment, it is reasonable to conclude that if the model is used in prediction at all, it should 

only be for input scenarios that are similar to the measured inputs of device 5. Therefore, the 

predictive capability of the model is very limited, which again emphasizes the need to improve 

both the model and the observation data. 

4.6 Conclusion 

This chapter presents a model validation methodology for handling different data scenarios. 

When validation data is uncharacterized (corresponding inputs are not measured for each 

experiment), an ensemble validation approach is suitable. However, when inputs are also 

measured in validation tests (either fully or partially characterized data), it is preferable to 



84 

 

perform validation individually for each input scenario. This enables aleatory and epistemic 

uncertainty sources to be separated from one another, which aids in decision making for 

uncertainty reduction when the model performance is inadequate. Additionally, understanding 

the reliability of the model as a function of the input may help to identify systematic 

inadequacies in model form. The individual metric values can be integrated into a single metric 

by weighting each value with the probability of observing the corresponding input in the 

prediction domain (i.e. relevance to the intended application of the model). When the 

computational expense of the model causes uncertainty propagation to be intractable, surrogate 

models are needed to obtain the distribution of the model prediction. This approach adds 

additional uncertainty into the assessment that should also be included in the analysis. With a GP 

surrogate model, the surrogate uncertainty can be readily obtained from the covariance structure 

of the model, and this uncertainty results in the model reliability metric itself being treated as a 

random variable with epistemic uncertainty. Once the model reliability metric is obtained (either 

a single value or a distribution), the metric can be interpreted probabilistically; this allows the 

validation result to be incorporated into the prediction. 

The model validation methodology proposed in this chapter provides the framework for 

connecting the validation activity to the prediction of interest. The weighting approach 

demonstrates that there may be large differences in the importance of the various validation 

experiments for different prediction scenarios. This knowledge is fundamental to the test 

selection methodology that is proposed in Chapter 5, and it emphasizes the importance of 

understanding the intended use of the model when performing validation. 
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CHAPTER 5 

TEST SELECTION FOR PREDICTION UNCERTAINTY 

REDUCTION 

5.1 Introduction 

It is often possible to collect many different types of data for both model calibration and 

model validation. Options may include material, component, and subsystem tests, and it may 

also be possible to conduct some or all of these types of tests at a variety of different input 

conditions. When many different types of data are available, all of the information must be 

integrated toward the prediction goal. The previous chapters of this dissertation have shown how 

information is integrated toward prediction UQ by performing model calibration, model 

validation, and uncertainty propagation. Then, in Chapter 4, a method for explicitly connecting 

model validation to the prediction was demonstrated. The proposed UQ framework is used as a 

foundation for making test selection decisions among many possible options. 

 Within this context, the experimental data that is collected for calibration and validation is 

critical to the prediction quality, but not every piece of information has the same impact. For 

example, in many applications the data that most closely replicates the system usage conditions 

is the most valuable, but also the most expensive. Furthermore, even if the important types of 

tests and associated input conditions can be identified, it is typically not sufficient to perform 

only a single experiment for each test scenario; instead, replicates are needed, due to data 

uncertainty. The number of replicates that are needed may vary across different test scenarios 

depending on the relative magnitudes of the sources of uncertainty that are present. Therefore, 
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the goal of the test selection problem posed in this chapter is to determine the number of 

replicate tests that should be conducted at a discrete set of candidate testing scenarios. Since the 

decision of what data to collect is closely tied to budget constraints, a constrained optimization 

approach for addressing the cost vs. value tradeoff is proposed. To formulate the approach, the 

value of each test is quantified in terms of prediction uncertainty reduction. 

Test selection decisions are focused on two different categories of experiments (calibration 

and validation) and their impact on the prediction. Model calibration is performed via Bayesian 

methods (see Section 2.1), and model validation is performed with the model reliability metric 

(see Section 2.2.2). The collection of calibration data is motivated by parameter uncertainty 

reduction while the collection of validation data is motivated by data uncertainty reduction. Each 

of these individual epistemic uncertainty reductions results in overall uncertainty reduction for 

the prediction quantity of interest.  

The problem of which tests to perform has been addressed in the literature in terms of 

information theory [60] and decision theory [10, 68]. Design of experiment has been explored for 

both classical [9, 20, 79] and Bayesian formulations [12, 79, 104, 106]. Many of these 

approaches use Kullback-Leibler divergence [55] to compare the support for the various 

modeling options and make selection decisions, but these decisions are typically made from the 

perspective of the prior or posterior parameter distributions. Parameter uncertainty alone is not a 

sufficient indicator of the resulting prediction uncertainty since the sensitivity of the prediction 

quantity to the parameters must also be considered. Therefore, the proposed formulation instead 

addresses the selection decision from the perspective of the prediction for the usage condition. In 

addition, this chapter extends these methods which have primarily focused on calibration tests to 

a joint formulation for both calibration and validation tests. 
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In summary, this chapter proposes a test selection methodology that includes the following 

key features: (1) integration of experimental data from multiple input conditions for both 

calibration and validation toward prediction, (2) treatment of data uncertainty (sparse/imprecise 

data), and (3) a joint optimization formulation for prediction uncertainty reduction that accounts 

for both calibration and validation activities. The framework for the integration of sparse 

experimental data toward prediction builds upon the UQ framework developed in previous 

chapters. Some additional considerations that are particularly relevant to test selection are 

detailed in Section 5.2. Then, Section 5.3 demonstrates how this framework is used to formulate 

an optimization problem for test selection. In Section 5.4, the methodology is demonstrated for 

the MEMS numerical example that was introduced in Chapter 4, and the chapter is concluded in 

Section 5.5. 

5.2 Prediction uncertainty quantification 

The goal of the prediction methodology is to obtain the distribution of a stochastic output of 

interest by incorporating both aleatory and epistemic uncertainty sources. Of the three types of 

experiments described in 4.2.1, only fully characterized and partially characterized tests are 

considered. Since tests are being selected and have not yet been performed, uncharacterized 

experiments should be avoided. By restricting to these two types of tests, particular values    or 

test-dependent aleatory distributions    for the inputs are known for each test, and the aleatory 

uncertainty in   across different experiments does not affect calibration or validation at a 

particular input condition. Therefore, the important uncertain inputs for prediction UQ are the 

components of   that are common to the calibration and validation experiments and the 

prediction. Thus, the result of calibration and validation activities is carried through  . The 
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proposed methodology consists of three key activities: (1) calibrate   from the calibration 

observations , (2) validate the model and the inferred distribution of   with additional 

independent observations, and (3) modify the distribution of   to incorporate the validation 

result. 

5.2.1 Model validation in the presence of data uncertainty 

General methods for model calibration (Section 2.1) and model validation (Section 2.2 and 

Chapter 4) have previously been described in this dissertation. The fundamentals of these 

methods are not repeated here. Instead, these methods (specifically model validation methods) 

are expanded to account for the existence of data uncertainty when performing the assessment. 

Data uncertainty leads to a stochastic validation assessment taken over replicates at each input 

condition. The separate assessments are then combined with the integration approach across 

input conditions that was proposed in Section 4.3. The combined treatment is similar to the 

approach proposed in Section 4.4. 

5.2.1.1 Validation uncertainty for sparse observation data 

Validation observations may be made at different input conditions, but there should also be 

replicates at each input condition. These replicates are necessary because there is always 

measurement error in any experimental observation (e.g. zero mean Gaussian white noise). For a 

finite number of observations, the distribution of    is approximated empirically. One approach 

is to construct a discrete probability mass function with equal weights attributed to each 

observation and then evaluate the model reliability with discrete sampling. With this approach, it 

will be shown that the expectation of the computed reliability is not sensitive to the number of 
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validation points that are collected. Rather, the impact of the sparseness of the validation data is 

the uncertainty about the model reliability assessment. To observe this effect, trial computations 

of the model reliability are conducted for various lengths of the observation vector   . Assuming 

that the observations are coming from an unknown true value, polluted by Gaussian white noise, 

the model reliability is computed for 1,000 trials of six different lengths of the observation vector 

(1, 10, 100, 1000, 10000, and 100000) to demonstrate the uncertainty in the assessment (see 

Figure 5.1). In all cases, the mean model reliability taken over the 1,000 trials is equal, but it is 

clear that the uncertainty in the computation due to the noise in the data is much more severe for 

sparser sample sets. 

   

 a) 1 observation b) 10 observations c) 100 observations 

   

 d) 1,000 observations e) 10,000 observations f) 100,000 observations 

Figure 5.1: Uncertainty in model reliability computation for sparse validation data sets 
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In order for test selection decisions to properly account for the importance of replicate 

validation tests, the validation assessment must account for the uncertainty arising from data 

sparseness. If only a single deterministic computation is performed, the computed value may 

significantly underestimate or overestimate the actual model reliability. In reality, the model 

reliability is a single deterministic value (i.e. the converged result from many observations as in 

Figure 5.1f), but this value can only be obtained confidently with a large number of replicate 

tests.  Furthermore, since the expected value of the computation is the same for all sample sizes, 

a deterministic calculation provides no evidence that the computed result may actually be biased 

from the true value. Therefore, a stochastic assessment that directly incorporates this uncertainty 

is needed. 

5.2.1.2 Stochastic assessment of model reliability 

Since it is obviously not possible to conduct many trials of a fixed number of validation tests 

(as in the numerical demonstration of Figure 5.1) in realistic problems, a stochastic assessment 

approach that gives an estimate of the uncertainty in the computation for only a single set of 

observations is desirable. Note that only the converged deterministic value of the model 

reliability is of interest for prediction purposes. If there were no measurement error, only a single 

observation would be needed to obtain this value. In the presence of measurement error, the 

mean observation corresponds to the desired reliability value as long as the measurement error 

has zero mean. Therefore, the collection of replicate data can be viewed as a way to estimate the 

mean observation (i.e. the true observation that is not polluted by noise) accurately.  

This goal motivates the use of Student’s t-distribution [105] to describe the mean observation 

in the presence of sparse data. By definition, the t-distribution is used to describe the uncertainty 
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in the mean of an underlying normally distributed population. Since the measurement error is 

typically assumed to be zero-mean and normally distributed, the observation mean can often be 

described by a t-distribution exactly. In order to construct the t-distribution, three pieces of 

information are needed: 1) sample mean, 2) sample variance, and 3) degrees of freedom. From 

the set of validation observations, a sample mean  ̅ and sample standard deviation   can be 

computed as long as there are at least two observations at a particular input condition. The 

number of degrees of freedom   is simply the number of observations minus one. Given these 

pieces of information, the t-value for the unknown mean   is obtained as 

   
 ̅  
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 (5.1) 

and the probability density function is given by 
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Figure 5.2: Student’s t-distribution of the mean observation for sparse observation sets 
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The resulting distribution has diminishing uncertainty as the number of validation samples 

increases. This behavior is demonstrated for different numbers of observations in Figure 5.2.  

From this distribution, possible values of the mean observation can be sampled, and the model 

reliability can be computed for each candidate sample. Taken together, these computed reliability 

values represent the uncertainty in the validation assessment that results from sparse validation 

observations. The distribution of the model reliability   may have any form depending on the 

shape of the distribution of   . This t-distribution approach is applied to each validation input 

condition where replicate samples are available. By sampling the mean observation at each input 

condition a distribution of the model reliability    is obtained for each    or   . Collecting 

additional replicates at a particular input condition reduces the variance of the t-distribution, 

which in turn reduces the uncertainty in   . The distributions for different input conditions can 

be combined into an overall distribution by applying the approach in Section 5.2.1.3. This overall 

distribution is then used to incorporate the result into the prediction as shown in Section 5.2.2. 

5.2.1.3 Combination of validation results from different input conditions 

By applying the stochastic assessment approach for the model reliability, a distribution for 

the reliability metric is obtained for each validation input condition. To include the validation 

result in the prediction framework that will be discussed in Section 5.2.2, a single overall 

measure of the model quality across the entire domain of interest is necessary. Therefore, the 

integration approach proposed in Section 4.3 is applied to this situation. Since the model 

reliability metric is a distribution at each input condition, the approach follows similarly from the 

method proposed in Section 4.4. By drawing samples from the distributions of each    
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corresponding to the validation input conditions, sample vectors (henceforth denoted with 

superscript  )    are generated. Then, Eq. (4.2) is applied to obtain 

         
 

 
∑   

 
  

 
   

∑   
 
   

 (5.3) 

The weights are computed from Eq. (4.3), and the set of samples         
 

 represent the 

distribution of         . This distribution is the overall measure of the probabilistic performance 

of the model over the expected prediction domain. The overall measure is used to include the 

result of validation in the prediction by applying weights to the prior and posterior distributions 

of the parameters that were obtained during model calibration. This methodology is described in 

the following section. 

 

5.2.2 Inclusion of the validation result in prediction 

In the model calibration description of Section 2.1, the model parameters were calibrated 

jointly with calibration data from multiple input conditions. The posterior parameter distributions 

were then propagated through the model to validate the calibrated models against some 

additional data. Since the validation result is a probability, it can be used to modify the posterior 

parameter distributions to add additional conservatism to the prediction and account for the 

possibility that the model is not adequate. The underlying assumption of the proposed approach 

is that parameters calibrated using imperfect models should not be fully trusted when they are 

propagated forward to the prediction stage.  Therefore, the probabilistic validation result is 
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treated as a weight for the posterior distribution, and the remaining weight is given to the prior 

distribution.  

In general, lack of support for the posterior distribution does not imply support for the prior 

distribution. However, the posterior distribution has added information and generally less 

uncertainty than the prior distribution. The calibration data effectively reduces the subjective 

probability of some parameter values that were considered possible in the prior distribution. By 

adding weight back to the prior when the posterior distribution is invalidated, the possibility that 

the posterior distribution may have been overconfident and biased is accounted for. Therefore, a 

wider range of parameter values should be considered, and the method given by Eq. (5.4) is 

applied to achieve this result.  

Using the distribution of          from Section 5.2.1.3, a candidate parameter distribution for 

prediction is obtained for each sample of the overall model reliability as 
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  ( |  

 )             
 

       (5.4) 

Here,        
   is the posterior distribution obtained with the full set of calibration 

observations   
 ,       is the prior distribution, and   

 
     

    
   is a particular predictive 

parameter distribution corresponding to a particular sample of the overall model reliability. This 

predictive parameter distribution is now conditioned on the validation observations   
  in 

addition to the calibration observations. Each predictive distribution is obtained by discrete 

sampling of the prior and posterior, weighted by the particular sample of the validation result. 

Each of them is then propagated through the model at the prediction input conditions to obtain a 

stochastic prediction on the output of interest. Taken together, they form a family of predictions 

in which the variance across distributions is the result of the uncertainty in the distribution of 



95 

 

        , and the spread in each individual prediction is the combined result of aleatory 

uncertainty in the inputs and the parameter uncertainty in the particular predictive parameter 

distribution. Thus, the prediction uncertainty is naturally separated into these two components. 

This information is used to construct the test selection optimization formulation proposed in 

Section 5.3. 

5.3 Test selection optimization methodology 

The primary goal of this chapter is to construct a joint optimization formulation for selecting 

experiments by applying the prediction framework described in Section 5.2. The proposed 

methods extend previous work [100], which focused only on calibration, to include a 

combination of validation and calibration testing options. One challenging aspect of the 

combined calibration/validation test selection problem is that calibration and validation 

information tend to contribute to the prediction in opposing ways. The calibration information 

reduces the uncertainty in the posterior distributions of the parameters, which in turn reduces the 

uncertainty in the prediction. Since all models are imperfect and never perform perfectly in 

validation, validation information tends to decrease the reliance on the calibrated posterior 

distributions since they may be overconfident. When applying the framework described in 

Section 5.2, the validation assessment results in giving more weight to the prior distributions for 

the parameters, which are independent of model quality. This treatment results in an expansion 

of the prediction uncertainty because of model inadequacy. Thus, the goal of calibration is to 

reduce prediction uncertainty, but the goal of validation is to maintain conservatism in the 

prediction (increased prediction uncertainty).  
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If viewed in this way, there is not an immediately obvious way to combine these two 

competing objectives. Therefore, the way the problem is viewed must be altered slightly. Rather 

than trying to mathematically motivate the idea of validation itself, the proposed formulation 

aims to mathematically motivate improvements to the quality of the assessment. In other words, 

the objective function is not constructed to demonstrate the value of performing model validation 

at all. Rather, it is constructed to demonstrate the value of performing model validation more 

accurately. As was shown in Section 5.2.1, reducing validation data uncertainty reduces the 

uncertainty in the assessment, which leads to higher confidence in the prediction. In this context, 

calibration data can be viewed as a means to reduce the uncertainty in the prediction while 

validation data can be viewed as a means to reduce the uncertainty about the prediction. 

5.3.1 Objective formulation 

Once the two objectives are both viewed in terms of uncertainty reduction, it is more natural 

to combine them into a single objective function that can be minimized over the feasible set of 

the number of tests of each type. The set of available testing options typically includes many 

different possible input conditions for both calibration and validation. The methodology 

described in Section 5.2 is used to motivate the test selection activities so that the value of each 

available option can be quantified. By sampling over the uncertainty in the overall model 

reliability metric, a different predictive parameter distribution is obtained for each sample. Then, 

each distribution    is propagated through the model   along with the aleatory uncertainty in the 

prediction inputs    to obtain a stochastic prediction   . 

          
   (5.5) 
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The set of distributions for   collectively represent a family of predictions. An example of 

this family of distributions in CDF form is given in Figure 5.3. The overall goal is to minimize 

prediction uncertainty within budget constraints. To make decisions, this goal must be written in 

the form of an objective function; therefore, variance is used to quantify the prediction 

uncertainty. The variance of a family of predictions can be expressed using the law of total 

variance [109], which states 

                                (5.6) 

for two general random variables   and  . In the context of the prediction problem, the variance 

of   is of interest, and each prediction is conditioned on a particular sample of the overall model 

reliability. Therefore, Eq. (5.6) can be applied to express the prediction variance in terms of the 

validation result. 

                 
                             

                (5.7) 

The importance of this variance decomposition is that these two terms correspond to the 

effects of calibration and validation respectively. In particular, the goal of calibration, expressed 

by the          
                 , is to minimize the uncertainty in a single prediction by 

reducing parameter uncertainty in the posterior distribution that contributes to the predictive 

parameter distribution. On the other hand, the goal of validation, expressed by the 

           
               , is to reduce the uncertainty about the prediction by driving a family 

of uncertain predictions toward a single prediction that is not biased by measurement errors. The 

total variance should be minimized over the set of decision variables (numbers of each type of 

test). 
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Figure 5.3: Family of CDF predictions 

To make the assessment, some synthetic data must be generated to represent expected 

outcomes of the experiment. In the absence of any prior knowledge about the experiment, the 

only way that these expected outcomes can be produced is by evaluating the model at the input 

conditions of the experiment and then adding measurement noise to the data. The distribution of 

the noise is obtained from the best available information about the instrumentation accuracy. If 

some historical data is available on closely related experiments, a data-driven model can be 

created independently of the physics-based model to more accurately estimate the potential 

outcomes. A data-driven model could also be generated once some tests have been conducted 

and then improved adaptively. With any of these approaches, the expected outcomes are 

stochastic, so even at a fixed input condition, many realizations of experimental data can be 

generated from the model due to the presence of the estimated measurement noise. Therefore, the 

proposed formulation of the objective function takes an expectation over many realizations of 

synthetic experimental data. 

The decision variables in the optimization problem are the numbers of tests of each type to 

conduct. In this chapter, a finite set of testing options is considered. Thus, the decision variables 

are denoted as vectors    (length    for    different calibration input conditions) and    
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(length    for    different validation input conditions). Once the decision variables are 

selected, an arbitrary number of data realizations (limited by computational expense) are 

generated with observation vector lengths equal to the values of the decision variables.  Then, for 

each realization of the data vector,      
    

  , the entire integration procedure described in 

Section 5.2 is performed, resulting in a family of predictive parameter distributions each denoted 

as in Eq. (5.5). Within this context, the following formulation for the optimization problem is 

proposed. 

         
              

          
      

      (5.8) 

The constraint function for the decision variables is given by Eq. (5.8) where the total cost is 

constrained by a total testing budget  . The row vectors    and    of lengths    and    

respectively contain the costs of the calibration and validation tests at each available input 

condition, and the superscript   denotes a vector transpose. The formulation of Eq. (5.8) can be 

further decomposed by applying Eq. (5.7) and taking advantage of the linearity of the expected 

value operator. 

               {         
                   }    {           

                 }  (5.9) 

The first term is improved by collecting calibration data since narrowing the posterior 

distribution of   will also tend to reduce the average prediction variance. The second term is 

improved by collecting validation data since this data will converge the distribution of          

toward a deterministic value at the limit (i.e. infinite data). A deterministic value of          
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implies that the            
                  is zero for any  . These two terms in Eq. (5.9) can 

be expanded to 

   {         
                   }  ∬                           

             (5.10) 

   {           
               }              

[                 ]         (5.11) 

The goal of the optimization problem is to minimize the sum of the two integrals given in Eq. 

(5.10) and (5.11). Note that weights could be applied to these two terms if there were reason to 

preference one over the other. However, the weighted sum would not reflect the overall 

prediction uncertainty precisely.  

Each of these integrals is evaluated by Monte Carlo sampling since the density function for 

         is not known analytically, and the data model       may not have an analytical form 

either. Since they are evaluated by sampling, the objective function value is inherently stochastic. 

In addition, the decision variables are discrete quantities, and a relaxation to the continuous space 

is not possible since fractional tests are meaningless. These two factors (stochasticity and 

discreteness) significantly limit the available options for solving the optimization problem, which 

leads to the solution strategy that follows.   

5.3.2 Solution approach for the joint optimization problem 

As mentioned, the stochasticity and discreteness of the formulation make the selection of an 

efficient algorithm non-trivial. However, the focus of this section is not optimization methods, 

but the problem formulation. The use of a simulated annealing algorithm [49] is proposed 

because it is suited to handle stochastic discrete problems [55] even though it is not a particularly 

efficient search algorithm. Any other algorithm that is capable of handling discrete, stochastic 
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problems could be substituted. The simulated annealing algorithm starts from an initial guess and 

then takes random walks in the domain in all dimensions simultaneously. In a discrete problem, 

these random walks can be made with a continuous proposal density function, but the iterate 

must be rounded to the nearest discrete value in all dimensions since the objective function 

cannot be evaluated with numbers of tests that are not integers. Any iterate that improves (i.e. 

decreases) the objective function value is accepted, and any point that increases the objective 

function value is accepted with probability   given by 

        
  

 
  (5.12) 

Here,    is the change in the objective function from the previous iterate, and   is the current 

value of the temperature parameter that governs how tight the acceptance criterion should be. 

The reason for accepting points that do not improve the objective function is to attempt to 

explore the entire space and reduce the opportunity to stop at a local minimum. As the algorithm 

proceeds, the threshold for acceptance becomes tighter, so only decreases and very small 

increases to the objective function can be accepted. This threshold tightening is governed by a 

reduction to the temperature parameter as 

     (  
 

    
)
 

 (5.13) 

where    is the user-defined starting temperature,   is the current iteration number,      is the 

total number of allowable iterations, and   is an exponent that determines the rate of temperature 

decrease. Once the total number of allowable iterations is expended, the iterate, among all 

candidate points, with the lowest objective function value is selected.  Selecting a point that is 
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not at or near the constraint boundary may be evidence that the search routine should be 

conducted again locally to ensure that the solution is fully converged. 

Applying this method to the objective formulation in Eq. (5.8) produces the optimal number 

of tests to perform for calibration and validation at each available input condition for a given 

budget. Once the number of tests of each type is selected, the tests can be conducted. Once some 

real experimental data is available, it should be used to validate the synthetic data generation 

models that were used in the optimization problem. If significant bias exists, it may be useful to 

update the data models and perform the analysis again. 

It is noted here that the proposed formulation may be quite computationally expensive to 

solve. The stochasticity of the objective function value can only be reduced by taking a larger 

number of Monte Carlo samples when performing the necessary variance and expected value 

computations. The large number of model evaluations that are required for calibration and 

validation is likely to make using the physics-based model unaffordable. Therefore, surrogate 

models should be trained from the physics-based model in order to perform the uncertainty 

propagation efficiently. In the example demonstration of Section 5.4, GP surrogate models are 

used. 

5.4 Numerical example 

To demonstrate the proposed methodology, the RF MEMS example of Section 4.5 is 

explored further. The pull-in and pull-out voltages are predicted by device simulation, and 6 

different devices are available for testing. The pull-in voltage measurements will be used for 

calibration, and the pull-out voltage measurements will be used for validation. Therefore, the 

goal of the test selection problem is to determine how many replicate calibration and validation 
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tests to perform on each device. The lengths of the vectors    and    are each 6, and there are a 

total of 12 decision variables. 

The same 5 input variables                as in Section 4.5 are considered. In this 

illustration, the geometry parameters   ,   , and   are described by known aleatory distributions 

for each of the six devices. Direct measurements of    are not available, but an aleatory range for 

the variable is obtained via multi-scale simulation [48, 53]. These simulations also provide a 

prior distribution for  , but this variable is treated as the calibration parameter since the material 

properties are common to all devices for the purposes of calibration, validation and prediction. 

Therefore, within the framework of Section 5.2, the inputs   ,   ,  , and    are the components 

of    for each device, and the   of interest is  .  

In the prediction scenario of interest, no information is known about the particular values of 

  ,   , and   . However, suppose the distribution of   in the prediction scenario is expected to 

be                  , and the thickness value is known to be particularly important to the 

model prediction. Therefore, the suitability of the model for prediction is judged with respect to 

this expected thickness input condition, and the relevance of the available device validation input 

conditions is determined according to their proximity to this condition. Note that the weights 

obtained from the method of Section 4.3 are not dependent on the output observations of the 

experiments. Therefore, the weights for the validation results can be obtained by applying Eq. 

(4.2) when only the aleatory distributions for   for each available device are known. The 

thickness distributions for the experiments are the same as those used in Section 4.5 (see Figure 

4.5), and the associated weights are therefore the same as well (see Table 4.2). 

Given these scenarios for calibration, validation, and prediction, the optimization problem is 

formulated as in Eq. (5.8). For this particular problem, some calibration and validation 
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observations had been made prior to this analysis; these observations were used to perform the 

validation assessment in Section 4.5. Obviously, this scenario would never actually exist when 

applying the proposed methods because the budget has already been spent, and solving the test 

selection problem after the fact is not very useful. However, for the sake of illustration, the 

available measurements are used to compute a sample mean and sample variance to construct the 

synthetic data generation models that are needed in the formulation. Using only the statistics of 

the observations (and not the observations themselves) many data realizations can be generated 

for fixed lengths of the observation vectors.  

Suppose that a pull-in voltage experiment (i.e. a calibration test) requires 1 cost unit, a pull-

out voltage experiment (i.e. a validation test) requires 2 cost units, and a budget of 80 cost units 

is available for testing. To bound the problem, a maximum of 10 tests of each type is allowed, so 

it is possible to conduct 0 to 10 calibration tests on each device and 2 to 10 validation tests on 

each device. (Note that a limitation of the proposed methods is that it is not possible to 

stochastically assess the model reliability for 0 or 1 validation test.) A full grid search of this 12-

dimensional design space would require approximately 900 billion evaluations of the objective 

function. Even using surrogate models, the objective function in this example still requires about 

20 minutes per evaluation (this will vary greatly depending on implementation) due to the 

expense of the nested Monte Carlo sampling, especially the MCMC routines for calibration. 

Many of the candidate points do not satisfy the budget constraints, but even the remaining 

feasible design space is clearly unaffordable to explore fully.  

Therefore, the simulated annealing algorithm described in Section 5.3.2 is executed. As a 

starting point for the optimization algorithm, the budget is divided equally across the 12 

available testing options (i.e. 4 calibration and validation tests on each device, expending 72 cost 
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units). The algorithm is allowed to run for a maximum of 200 iterations, and it is constrained 

such that only feasible points are evaluated. Then, starting from the best point that is found 

during the initial run, a second run of the algorithm is conducted with reduced temperature (i.e. a 

stricter acceptance criterion) is allowed to run for 100 iterations. The goal of this approach is to 

explore the space globally in the first run and then refine the solution locally in the second run. 

After both runs have been completed, the minimum objective function value that is discovered is 

assumed to be the optimum. The result for this problem is given in Table 5.1. Since the objective 

function is stochastic, and the simulated annealing algorithm itself is also stochastic, there is no 

theoretical guarantee that this result is the global optimum. However, the result provides some 

very valuable insights about the value of the different testing options. 

Table 5.1: Optimal test selection result 

Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 

  
    

    
    

    
    

    
    

    
    

    
    

  

0 2 6 6 0 2 9 9 0 10 3 2 

 

To illustrate the methodology further, the evaluation of the objective function at the optimum 

is demonstrated. For a particular realization of all the calibration data (i.e. pull-in voltage 

measurements), the posterior distribution for  , shown in Figure 5.4a, is obtained by updating 

the uniform prior distribution with Eq. (2.1). This posterior distribution is then propagated 

through the model at each validation input condition. The particular realization of the validation 

data (i.e. pull-out voltage measurements) is used to construct a t-distribution for the mean 

observation for each device. Samples from this t-distribution are taken and compared against the 

stochastic model output to obtain the distributions    for each of the 6 devices. By applying the 

weights in Table 4.2 in Eq. (5.3), samples from the distributions are combined to obtain the 
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distribution for          as shown in Figure 5.4b. Each sample          is used as a weight for the 

posterior distribution in Eq. (5.4), and then the resulting predictive distribution is propagated 

through Eq. (5.5) to obtain a single prediction distribution. The set of samples produces a family 

of distributions; the family is shown in PDF form in Figure 5.5a and in CDF form in Figure 5.5b. 

The first part of the objective function, given by Eq. (5.10), is obtained by taking the variances of 

the individual distributions and averaging them. The second part, given by Eq. (5.11), is obtained 

by looking at the variance across the means of the individual distributions. These two together 

represent the overall prediction uncertainty, which is averaged over the data realizations to obtain 

the objective function value. 

   

 a) Sample calibration of   b) Distribution of the overall model reliability 

Figure 5.4: Parameter uncertainty for a particular data realization 
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 a) Sample PDF family b) Sample CDF family 

Figure 5.5: Family of predictions for a particular data realization   

In this particular problem, the optimization result shows that the most valuable testing option 

is validation tests on device 5. This result is not surprising since device 5 has the largest weight 

in the overall model reliability. On the other hand, validation tests on devices that are not 

relevant to the prediction (e.g. devices 1, 3, and 6) provide very little benefit. This fact 

emphasizes that it is very important to know how a model will be used in prediction in order to 

validate it efficiently. Since the weights can be computed prior to the test selection analysis if the 

available validation input conditions are known, validation conditions that are not relevant to the 

prediction can potentially be ignored in the analysis altogether. 

Since all of the calibration tests are taken jointly within the proposed framework, it is more 

important how many total tests are conducted than on which device they are conducted. The 

overall magnitude of the first part of the objective function given in Eq. (5.10) is significantly 

larger than the second part of the objective given in Eq. (5.11). This result is obvious when 

looking at the family of distributions in Figure 5.5. However, in this problem, the parameter 

uncertainty can be reduced more rapidly than the uncertainty in the validation result. After a few 

calibration tests have been performed, the majority of the parameter uncertainty reduction has 
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been achieved, and additional tests give diminishing improvement. The uncertainty in the 

validation result converges more slowly; therefore, there is more value in doing a larger number 

of replicate validation tests than calibration tests. This result is evident in the validation result 

since there are a larger number of total validation tests even though they are twice as expensive.  

5.5 Conclusion 

This chapter provides a test selection methodology that combines validation and calibration 

activities. The proposed optimization framework employs a methodology for integrating 

calibration and validation data probabilistically to make a prediction. By performing Bayesian 

calibration and a stochastic validation assessment, both calibration and validation data collection 

are motivated by prediction uncertainty reduction. The prediction uncertainty can be decomposed 

into two components: one which is improved by adding calibration data and one which is 

improved by adding validation data. Since model calibration is performed jointly over multiple 

input conditions, the total number of tests may be more important than which particular test is 

performed as long as the parameters that are calibrated are common to the different tests. On the 

other hand, it is very important which validation tests are conducted. The proposed framework 

weights the validation input conditions according to their relevance to the intended usage 

condition. Therefore, the tests at the relevant input conditions provide much more value than 

those at less relevant conditions. For both calibration and validation, uncertainty reduction is 

fastest with the first few test samples, and then the relative improvement to the prediction 

decreases as more data is collected. However, in the example shown, this diminishing 

improvement occurred more rapidly for calibration than validation. The methodology in this 

chapter is aimed at achieving minimum prediction uncertainty for a fixed budget. Since the value 
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of the tests decreases as more tests are conducted, future work will aim to determine how many 

tests are enough and what budget is appropriate. 
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CHAPTER 6 

RISK-BASED RESOURCE ALLOCATION 

6.1 Introduction 

The preceding chapters of this dissertation are aimed at predicting a stochastic output of 

interest accurately and efficiently. Within the UQ framework that is established, the goal of the 

proposed resource allocation methods in the previous chapters is to solve the inverse problem of 

reducing the uncertainty in this prediction by collecting additional data. For a given stochastic 

prediction, the probability distribution may be compared against a threshold failure criterion 

(either a deterministic or stochastic value) to compute a failure probability. For example, suppose 

a failure occurs if the prediction quantity of interest   exceeds its maximum allowable value 

    . Then, the probability of failure    is defined as 

              (6.1) 

Since the prediction for   is typically obtained via MCS methods, it is only necessary to 

count the number of failures (i.e. the number of points in a set of samples that do not pass the 

given threshold)    and divide by the total number of samples   to calculate the probability of 

failure   . 

    
  

 
 (6.2) 



111 

 

The complement of the failure probability is the system reliability, i.e., the reliability is defined 

by       . As mentioned in Section 2.3, MCS and efficient simulation techniques have been 

developed from the perspective of reliability analysis (i.e. computing or approximating  ) [32, 

33, 82, 93]. Once the reliability estimate is computed, it is connected to risk by the consequence 

of the failure event. 

Risk assessment is an important extension of reliability analysis. Risk (not reliability) is 

commonly the motivating factor in design and management decisions because it has a more 

direct economic interpretation (e.g. expected dollars lost). Classically, the risk of an event (e.g. 

system failure) has two key components: (1) the probability of the event and (2) the 

consequences of the event [37].  These two components have a simple, logical relationship, in 

which the risk   is a product of the consequence of an event   and the probability of the event 

    .   

          (6.3) 

Within this context, risk can be viewed as the expected value of the cost of a particular 

failure scenario.  For some systems, a relatively large failure probability does not pose a great 

risk because the failure event will not result in any particularly severe consequences. Therefore, 

the events of greatest concern are those that have both high probability and extreme consequence 

(e.g. human life loss and major property destruction). In many applications, there are many 

different potential failure modes, and the overall system risk    is the summation of all of   

discrete risk scenarios.  

    ∑        
 
    (6.4) 
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In the design and management phases, the goal is to minimize the total system risk, so all of 

the failure modes should be considered; multiple modes may be affected by a single decision. 

System risk minimization is directly connected to reliability analysis and stochastic prediction. 

Designers and decision-makers have little control over the consequences of an event, so risk 

minimization is significantly enabled by minimizing prediction uncertainty while maintaining 

prediction accuracy (i.e. low bias).  Thus, risk minimization and prediction uncertainty reduction 

are directly aligned, and the resource allocation framework developed in this dissertation could 

also be motivated by risk reduction, rather than prediction uncertainty reduction. Although these 

two formulations are not precisely equivalent, the analyst should reasonably expect that either 

formulation would lead to a similar conclusion. However, from an economic perspective, it is not 

logical to spend large resources on UQ without also considering the total benefit of the analysis. 

Since risk can be directly interpreted as a cost, it provides a convenient space to analyze design 

and management decisions.  

6.2 Failure risk vs. development risk 

Two types of risk are considered in this chapter: failure risk and development risk. While it is 

obvious that system failure carries a cost, and therefore a risk, system development has not 

classically been viewed as a risk in UQ analysis. In some applications it may be possible to 

reduce epistemic uncertainty to an arbitrarily small value by collecting large quantities of data 

(of high quality) and/or dedicating large resources to computational model improvement. In such 

a scenario, it is possible to perform too much UQ analysis from an economic perspective. 

Exhaustive UQ techniques may lead to very accurate model predictions, but when failure 

probabilities are very low, these techniques may be more conservative than is necessary.  
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Recent research has the goal of determining how far the UQ process should go. Romero [91] 

refers to “model builder’s risk” as the risk associated with rejecting a valid model and compares 

this risk against the “model user’s risk,” which is associated with making predictions with an 

invalid model (i.e. failure risk). Decision-makers must determine how to effectively balance 

these two types of risk. Development costs and other UQ expenses (i.e. development risk) are 

spent with 100% probability once improvement decisions are made. On the other hand, system 

failure typically has a very low probability, but a very high consequence. These types of events 

have been compared in the literature by using risk matrices [15]. Failure risk is low probability 

and high consequence while development risk is high probability and low consequence (i.e. the 

cost of the development activities must in general be much lower than the cost of failure). 

Typically, decision makers have been biased toward the system failure risk over the development 

risk, which is ethically correct since the system decisions often have broader impacts that cannot 

easily be quantified with a monetary value. 

6.3 Economic considerations for uncertainty quantification 

Within the context of these two types of risk (the development risk    and the failure risk 

  ), the overall goal is to minimize the total risk   , defined in Eq. (6.5).  

         

          

          (6.5) 

where    is the total cost of UQ development activities,    is the system failure probability, and 

   is the consequence of system failure. It is assumed that    is a constant that the analyst cannot 
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control, and    is fully controlled by the analyst. Therefore, the goal of the minimization 

problem is to decide how much money should be spent on UQ activities. Note that the failure 

probability is a dependent variable, and it is an unknown function of    as 

          (6.6) 

This unknown function depends upon how the available resources are allocated to the various 

UQ activities. Effectively,    can be viewed as the budget for UQ.  

In Chapter 3, a budget for uncertainty propagation was assumed, and then model selection 

decisions were made to mximize prediction accuracy subject to that budget. In Chapter 5, a 

testing budget was assumed, and then tests were selected among the available test scenarios in 

order to minimize prediction uncertainty subject to that budget. These two sets of activities could 

be decided jointly subject to total budget   . 

6.3.1 Combined model selection and test selection 

To solve the joint optimization problem of model selection and test selection with a total 

fixed budget   , the first step is to quantify the cost of computational time. For example, suppose 

the cost of each unit of computational time is  . Then, the total cost of the computational 

simulations    is given by  

       (6.7) 

Recall from Chapter 5 that  

         
      

    (6.8) 
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Therefore, the joint optimization problem is constrained by the combined total cost of the two 

sets of activities,            . Since the goal of the optimization is to minimize risk, that 

goal can be simplified to a minimization of    since the remainder of the variables in the 

problem are constants. Thus, the combined test selection and model selection problem is 

formulated as 

   
       

   

          
      

            (6.9) 

Here,   is the vector of model combination selections that are made,    is the column vector of 

computational times required for the selected models, and   is the column vector of   values 

repeated to match the length of   . Recall that    and    define the number of replicate tests to 

perform at each of the candidate calibration and validation input conditions. Note that    is not 

deterministic when there are a family of predictions as demonstrated in Chapter 5 (i.e. each 

prediction yields a single   ). Therefore, the    that is used in Eq. (6.9) may be an expectation 

taken over a set of predictions. In this context, the variance on the    should also be considered. 

Solving this problem requires the application of the UQ framework for model calibration, 

model validation, and uncertainty propagation that has been explored in this dissertation. The 

problem can then be solved by a nested optimization formulation consisting of the following: (1) 

an outer loop that takes the total budget    and divides it between the test selection and model 

selection activities and (2) an inner loop which solves two separate and independent optimization 

formulations that have been addressed in Chapter 3 and Chapter 5 respectively. Since a nested 

optimization formulation can be quite expensive to solve, the efficiency of the solution approach 

can be improved by applying a single-loop decoupling strategy [112]. 
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6.3.2 Risk minimization 

Solving the joint model selection and test selection problem repeatedly for different total UQ 

spending    provides discrete observations of the functional relationship between    and    that 

define the relationship in Eq. (6.6). These pairs of values for    and corresponding    could be 

used to train a GP surrogate model for the relationship, which will improve the efficiency of 

solving the risk minimization problem. The risk minimization problem is then formulated as 

      
   (6.10) 

Note that this is a continuous unconstrained optimization problem. Any amount of spending from 

      is possible. Of course, there may be some practical budget constraints on this spending, 

but this formulation is constructed to determine what the budget itself should be.  

Even without supplying any practical constraints, the solution of the problem is still bounded 

because increasing    from any starting point has both a positive and negative effect on   . The 

cost    is equal to   , which is added to    directly, thereby making the objective function value 

increase. However, increasing    is also expected to reduce   , which in turn, reduces    and 

decreases the objective function value. Thus, the formulation is a natural way of exploring the 

economic tradeoff between development spending and reduction of   . The optimal solution 

depends on problem specific variables and relationships, most notably the consequence of failure 

   and the unknown function   in Eq. (6.6) that defines how much    decreases with additional 

spending. 
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6.4 Conclusion 

Earlier chapters of this dissertation were focused entirely on prediction uncertainty 

quantification and reduction. This chapter introduces the context of risk, which can be used to 

motivate the general UQ framework. Optimization problems that can be used to guide resource 

allocation decisions are formulated. The overall goal of any UQ framework is risk reduction, but 

the framework itself should not cost more than the risk reduction that it achieves. Thus, the risk 

minimization problem is solved from the perspective of how much UQ spending is economically 

efficient. In order to solve the risk minimization problem, it must first be clear how the UQ 

activities are reducing the system failure probability. Answering this question requires solving 

another joint optimization problem for the combination of model selection and test selection for 

many different spending budgets. 
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CHAPTER 7 

CONCLUSION 

7.1 Summary of accomplishments 

This dissertation explores a comprehensive framework for UQ in the context of model 

calibration, model validation, and uncertainty propagation for prediction. Some of the key 

features of the forward propagation problem are first discussed, and then the UQ framework is 

used to solve resource allocation problems. Methods of separating aleatory and epistemic 

uncertainty sources are proposed, and then epistemic uncertainty reduction strategies are 

explored and optimized. New techniques that account for data uncertainty in model validation 

and connect the model validation results to the prediction are proposed. Then, resource allocation 

strategies for model selection and test selection are proposed from the perspective of prediction 

uncertainty quantification and reduction. Finally, the concept of risk is discussed and used to 

motivate UQ and suggest how much is sufficient. 

In the model selection framework of Chapter 3, the proposed approach uses GP surrogate 

models for decision-making and takes advantage of local fidelity preferences by making input-

dependent selection decisions. The decision-making methods themselves are very fast to 

develop, and they can significantly improve the efficiency of the underlying multi-fidelity 

simulation. The tradeoff decision of accuracy vs. computational expense is considered explicitly 

by introducing a tolerance on the simulation result. Two different strategies are considered 

depending on whether the ranking of fidelities is constant across the domain or locally specific.  
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A model validation methodology for connecting different data scenarios to the prediction of 

interest is proposed in Chapter 4. Three types of experiments are considered: uncharacterized, 

partially characterized and fully characterized. The proposed methods enable aleatory and 

epistemic uncertainty sources to be separated from one another, which aids in decision making 

for uncertainty reduction when the model performance is inadequate. The individual metric 

values can be integrated into a single metric by weighting each value with the probability of 

observing the corresponding input in the prediction domain (i.e. relevance to the intended 

application of the model). The weighting approach demonstrates that there may be large 

differences in the importance of the various validation experiments for different prediction 

scenarios. 

The proposed test selection methodology in Chapter 5 combines validation and calibration 

activities. The proposed optimization framework employs a methodology for integrating 

calibration and validation data probabilistically to make a prediction. The prediction uncertainty 

can be decomposed into two components: one which is improved by adding calibration data and 

one which is improved by adding validation data. The test selection methodology is then aimed 

at achieving minimum prediction uncertainty for a fixed budget. The validation tests at the input 

conditions that are relevant to the prediction provide much more value than those at less relevant 

conditions. The value of both calibration and validation tests decreases as more tests are 

conducted.  

In Chapter 6, the concept of risk is introduced and used to motivate spending in the general 

UQ framework. Risk minimization problems that can be used to guide resource allocation 

decisions are formulated. Thus, they are solved from the perspective of how much UQ spending 

is economically efficient. In order to solve the risk minimization problem, it must first be clear 
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how the UQ activities are reducing the system failure probability. Answering this question 

requires solving another joint optimization problem for the combination of model selection and 

test selection for many different spending budgets. 

7.2 Future needs 

More work is needed to extend and demonstrate the proposed framework. In particular, the 

impact of many of the parameters that guide the resource allocation decisions needs to be 

considered carefully. For example, the model selection approach that has been proposed requires 

an allowable tolerance on the prediction accuracy of lower fidelity (e.g. reduced-order, reduced-

physics, or more coarsely refined) models to be chosen. Similarly, the model validation approach 

requires an acceptable threshold for the difference between prediction and observation to be 

selected. Future work will explore methods for determining these parameters within the risk 

reduction formulation by considering how these parameters change the system reliability.  

Further work is also needed to integrate the model selection approach with a dynamic 

computing resource allocation methodology, and with decisions about future model 

improvements. A complete orchestration of the UQ process for complicated problems with many 

component simulations will need algorithms to schedule the selected simulations and take 

advantage of parallelization in order to further reduce the computational effort while achieving 

the desired accuracy and precision. 

In this dissertation, sparse validation data has been incorporated by applying a t-distribution 

methodology. While this approach is fitting for Gaussian noise (a common scenario), more 

general forms of this distribution could also be considered. Future work will explore more 
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general formulations such as the Johnson distribution family that can be combined with Bayesian 

updating methods for the distribution parameters. 

The proposed model validation methods have only been demonstrated for the model 

reliability metric since it can be interpreted probabilistically. More work is needed to 

demonstrate the compatibility of the proposed methods with other validation metrics including 

Bayesian hypothesis testing and the area validation metric. The importance of the probabilistic 

treatment of validation is that it can be used to directly incorporate the validation result into the 

prediction. In this context, future work will also explore the effect of extrapolation on the system 

failure risk. The proposed integration approach incorporates the “proximity” of the validation 

tests to the prediction regime, but the result is then normalized across the available conditions. 

Therefore, an important issue to address is how far away from the validation regime the tests still 

retain relevance. 

Additional work is also needed to demonstrate the risk minimization and combined test and 

model selection formulations that are proposed on a realistic example. Important issues to 

address in this demonstration are robustness and efficiency of the optimization approach. In 

particular, many of the optimization formulations that are proposed in this dissertation are 

stochastic because they require nested sampling to propagate uncertainty each time the objective 

function is evaluated. The effect of this stochasticity on the convergence of the optimization 

methods should be carefully considered, and for efficiency, methods for determining how many 

samples can be afforded during each uncertainty propagation step should be explored. 
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