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CHAPTERI

INTRODUCTION

A Brief Historical Perspective of Phylogenetic I ncongruence

In his famous work, “On the Origin of Species’, which is considered as the foundation of
evolutionary biology, Charles Darwin introduces the ideaof “...the great tree of life”, asa
metaphor that explains how all life on earth is evolutionarily related*. However, in his magnum
opus, Darwin did not provide an actual phylogenetic tree drawn from real data, but rather a

conceptual tree-like branched diagram.

One of thefirst phylogenetic trees from actual data was published in 1865 by St. George Mivart,
which provided a reconstruction of primate evolutionary history based on the axial skeleton, or
spinal column (fig. 1.1a) 2. Interestingly, in 1867, Mivart published a second phylogeny of
primates (fig. 1.1b), this time using data from the appendicular skeleton or limbs, which differed
from the first topology®. Thus, the birth of phylogenetics goes in hand with phylogenetic
incongruence. In 1870, not being able of reconciling the observed topological differences, and in
line with his growing and strong opposition to Darwin’s theory, Mivart writesto Darwin “...1
have really expressed no opinion asto Man'sorigin...Pro. Z. Soc. expresses what | believe to be
the degree of resemblance as regards the spinal column only. The diagram in the Phil.

Trans. expresses what | believe to be the degree of resemblance as regards the appendicular

skeleton only...” (Darwin Correspondence Project letter 7170).


http://www.darwinproject.ac.uk/entry-7170�

Figure 1.1. The reconstruction of primate evolution history by SG Mivart in 1865 and 1867,
depicting conflicting topologies based on &) axial skeleton or spina column and b) appendicular
skeleton or limbs.

Figure 1
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Contrary to Mivart’ s rgjection of the Darwin’s theory of evolution, evolutionary biologists have
been trying ever since to identify heritable traits that may reveal and resolve the evolutionary
rel ationships between organisms. Although phylogenetics as afield has existed since Darwin, its
major growth came with the molecular biology revolution and its integration with evolutionary
biology. The ensuing dramatic increase of characters led several researchersto try to generate
new classifications of organisms, and different schools of phylogenetic thought developed. For
example Cladistics, also later known as phylogenetic systematics, originated with the work of
entomologist Willi Hennig*. Hennig advocated for the reconstruction of evolutionary history
based on the analysis of certain types of informative characters. On the other hand, Phenetics,
influenced by the work of Peter Sneath and Robert Sokal®, supported the construction of
dendrograms using similarity matrices of numerous characters, without necessarily invoking an
evolutionary scenario. These two schools of thought were engaged in a severe philosophical
battle during the 1960s and 1970s, with cladistics eventually becoming the dominant school of
thought.

In the mid 80’ s and 90’ s, the development of powerful and robust computational algorithmsin
the presence of numerous and continuously increasing number of phylogenetic characters-
enabled the emergence of computational phylogenetics, dueto their ability to account for
complex evolutionary models, while providing support for the inferred topologies in an explicit
statistical framework. Proposed methods for estimating phylogenetic trees like Maximum
Likelihood (ML)® and Bayesian Inference (Bl)’, were established as dominant in the field of
phylogenetics®®. However, even nowadays, in the presence of extremely large data sets and
complex evolutionary models, phylogenetic incongruence continues to confound evolutionary

biologists by providing studies with conflicting results, across the “great Tree of Life”.



Phylogenetic Incongruencein the Modern Era Using Yeastsasa Model Clade
The modern era of phylogenetics
Advances in sequencing technologies have enabled the whole-genome sequencing of hundreds
of prokaryote and eukaryote genomes providing researchers with large amounts of biological
data™®, especialy in the field of phylogenetics. However, using molecular data, researchers often
focused their interest on resolving large taxonomic groups, resulting in the use of few genes with
insufficient phylogenetic information, and consequently the inference of weakly supported
topologies™*2. Moreover, high levels of phylogenetic incongruence were reported across very
diverse clades (Primates, fruit flies, yeasts, arthropods, metazoan phyla)™>2.

In a 2003 study, aimed at benchmarking the identification of phylogenetic incongruence, Rokas
et a. reveaed ahigh degree of phylogenetic incongruence, as well as the ability to obtain highly
supported clades using concatenation, the analysis of all genesin adataset asasingle
supermatrix. This study, together with several others (e.g. see references %), signified the
beginning of the “phylogenomic era’, an erainitially greeted as the “end of incongruence” .
Since then, studies that use concatenation approaches have become commonplace and are
commonly portrayed to have resolved several vexing ancient divergences with a high degree of
confidence®*’. Consequently, concatenation analysis became the standard approach for
reconstruction of the major and deep branches of the ToL?**2*®*°_ However, despite the progress
that the advent of concatenation has brought, its use has not eliminated

26,28,34,44,48

incongruence (Fig. 1.2), suggesting that it might not be as robust as confidence indices

purport it to be.



Figure 1.2. The use of concatenation on datasets with hundreds of genes provide conflicting
topologiesin @) the evolution of mollusks and b) the evolution of early metazoa
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In their 2003 study, Rokas et al. constructed a matrix of 106 widely distributed orthologous
genes from 8 species and showed that data sets consisting of single or a small number of
concatenated genes have a significant probability of supporting conflicting topologies, although
occasionally supported with high bootstrap values'’*®. Those findings combined with re-analyses

50-52

of the same data matrix aswell as with studies on other genome-scale yeast data

matrices®:°3>

suggested that the problem of incongruence in yeasts was not simply a problem of
statistical efficiency and low support for different clades. Instead, the lack of accuracy in

phylogenetic inference has resulted in different studies with conflicting placements of severa



species™ . The presence of (&) unresolved clades, (b) factors that affect the phylogenetic
accuracy and information, combined with (c) the large number of fully sequenced genomes that
are publicly available, has rendered the fungal class Saccharomycetes as an excellent model for
the study of phylogenomics. More analytically:

a) The presence of unresolved clades

A number of studies™

produced conflicting results concerning the placement of several yeast
taxaincluding Eremothecium gossypii, Saccharomyces castellii, Candida glabrata,
Kluyveromyces lactis and K. waltii. For example, while E. gossypii and K. lactis appeared to be
sister taxain studies from Jeffroy et al. (2006), Kurtzman and Robnett (2003) and Scannell et al.
(2006), in Hittinger et a. (2004) the sister taxon for E. gossypii is K. waltii (fig. 1.3). At the same
time, even more puzzling was the phylogenetic topology of Saccharomyces castellii and
Candida glabrata, when compared to Saccharomyces cerevisiae. Contrary to all known studies
based on molecular data, in the work of Scannell et a. (2006), Candida glabrata was presented
as more closely related to Saccharomyces cerevisiae than Saccharomyces castellii, based on
syntenic characters derived from the loss of genes after awhole genome duplication (WGD)>*.
At the same time, different topol ogies have been obtained as the result of using different
optimality criteria and sequence data types (nucleotides vs amino acids)*”*. In Rokas, Williams
et a study, the topology of K. lactis could not be resolved. Maximum likelihood analysis placed
K. lactis as the first species to diverge, while parsimony analysis suggested an aternative
placement. Both topol ogies were supported with a high bootstrap value. In the second case, the

placement of E. gossypii differed significantly when nucleotide sequence data were used instead

of amino acid data.



Figure 1.3. Conflicting topologies between 4 phylogenetic studies in yeast. Taxa with various
topologies are shown in blue
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b) The presence of factors that affect the accuracy and phyl ogenetic information
Several different analyses on the yeast clade have shown the existence of factors that affect
phylogenetic inference'”*°. Exploring those factors using the 8-taxon data matrix of 106 gene

alignments, Rokas et a. (2003) tested whether clade support could be explained by or correlated



with the number of variable sites, number of parsimony-informative sites, gene size, rate of
evolution, nucleotide composition, base compositional bias, genome location, or gene ontol ogy.
Interestingly, their results showed a significant correlation between clade support and the number
of variable sites, the number of parsimony -informative sites and gene size for some of the
branches. Subsequent analyses of the data matrix by Phillips et al. (2004), further established the
presence of systematic error in the yeast phylogeny. By using minimum evolution as their
optimality criterion, the authors inferred a different topology. Moreover, this topology was
mainly attributed to the existence of nucleotide compositional bias as the recoding of nucleotides
to purines and pyrimidines rendered the original phylogeny. Similarly, Collins et al.
demonstrated that the use of stationary genesin their dataset provided on average more accurate
results®, while other groups demonstrated how the influence of long branch attraction frequently
resulted in misplacements for some of the eight taxain some single gene analyses™*®.

¢) Theincreasing availability of fully sequenced genomes

The original data matrix constructed by Rokas et al. (2003) used data from the 8 then available
yeast genomes. Currently, more than 20 yeast genomes have been fully sequenced, which
enables the construction of much bigger data matrices from many more taxa. Moreover, the
recent development of databases such as the Y east Genome Order Browser (Y GOB)* and
Candida Gene Order Browser (CGOB)® provides valuable information concerning the
identification and validation of orthologous groups of genes from many of those genomes,

rendering this data set a model dataset for future functional and phylogenetic analyses.



What isthe Source for Phylogenetic | ncongruence?

In general, the reasons for observing phylogenetic incongruent data sets may be characterized as
either analytical or biological. In biological reasons potential incongruence in a dataset may exist
by genes that have different histories than their respective species and stem from historical
events. This type of incongruence includes events such as partial or whole genome duplication,
introgression, lineage sorting of ancestral polymorphisms or horizontal transfer®.

In analytical reasons, we find two main types of error that may explain the presence of
incongruence; sampling and systematic®. Sampling error arises when the sampleis not
representative of the whole population. Factors that may increase sampling error are the number
and appropriateness of included genes, and the phylogenetic information of the inferred
alignment®. Systematic error may result from a misspecification of the selected evolutionary
model**®*. Example of factors that contribute to systematic error are base composition and
branch length"®*,

One factor that deserves special mention is ortholog determination, because its accurate
determination is fundamental to evolutionary analyses. The identification of orthologsis not
aways straightforward because genetic (e.g., gene duplications and losses) and population-level
(e.g., hybridization and speciation) events can yield complex gene histories®®®’. For example,
gene duplication, especially when it affects many genes as in the case of whole genome
duplications and is followed by extensive gene loss, can generate large numbers of single-copy
paral ogs, which complicate ortholog determination®"°. The difficulty in accurately determining
orthology, combined with the utility of orthology in many different applications and disciplines
and the need for high-throughput pipelines for prediction, have led to the development of severa

different algorithms for ortholog-based prediction™.



In chapter 11, | present an evaluation of different graph-based a gorithms that define orthology
between genesin a phylogenetic dataset, including the performance of clustering Reciprocal Best
Hit (cCRBH), a clustering algorithm for reciprocal best hit ortholog identification that | devel oped
using custom perl scripts. Analysis of 4 algorithms showed that cRBH algorithm outperformed
all other three algorithmsin almost all of my comparisons. Even though all agorithms seem to
deal well with paralogy in most data sets, their performance seems to decrease dramatically in
data sets with high levels of paralogy, especialy when the orthologous genes have been lost.

In chapter 1V, where | construct a data matrix from 23 yeast species some of which underwent a
whole genome duplication®®, the construction of orthogroups was accomplished by retrieving
information from two high quality databases —Y GOB®' and CGOB®— where orthology is
determined based on syntenic information, sequence similarity and manual curation. This,
enabled the construction of a premium dataset of orthogroups that is essentially free of paralogy.
However, in constructing data matrices from Metazoans and V ertebrates, lineages for which high
quality databases of syntenic orthologs are lacking, | was able to apply my cRBH agorithm to

infer orthology.

M easuring data incongruence

Handling and quantifying incongruent data sets has confounded systematists since the beginning
of evolutionary biology’?"*. In general, methods that have been developed for the quantification
of incongruence can be classified into two main categories: a) methods that identify character-
based incongruence”® and b) methods that cal culate incongruence between trees®®°. In the
first group, the identification of incongruence is achieved by examining how well the data set fits

agiven phylogenetic tree. In contrast, the second group of methods attempt to calculate the

10



difference between two distinct trees®”. In general, even though several of these methods are
extremely useful, in practice, they tend to lack generality, as they depend either on a particular

77881 or clade support measure™®®.

optimality criterion
Given the increasing number of available genes for phylogenetic analysis, an interesting group of
tree-based methods for measuring incongruence and summarizing conflict are consensus
methods™®. Since each internode in a phylogenetic tree can be represented by a bipartition of two
sets of taxa, a set of trees can be potentially also summarized into a consensus tree by including
only those bipartitions that are “representative of the set”. A very popular and widely-used
particular form of consensus methods is the Mg ority Rule Consensus (MRC) tree method which
summarizes the shared bipartitions across all treesin a set, in order to provide asingle tree with a
value for each internode that corresponds to either the number or percentage of individual
phylogenetic trees. However, although very useful, this value does not differentiate between the
presence of a strong secondary conflicting signal on the specific internode or simply
phylogenetic noise. For example, when a MRC tree reports that 51 out of 100 phylogenetic trees
contain a specific bipartition, whether the rest of the bipartitions strongly support a secondary
signa remains unknown.

In chapter 111, | present four novel measures based on information theory and Shannon’s entropy
to quantify phylogenetic incongruence. Each internal branch (or internode) in a phylogenetic tree
can a so be represented by the bipartition of two digoint sets of taxa (partitions). Consequently,
using the prevalence of conflicting bipartitions, | calculate the level of support for each internode
aswell asthelevel of conflict. Specifically, Internode Certainty (1C) and Internode Certainty All
(ICA) measure the level of certainty for a specific internode either by selecting either the two

most prevalent conflicting bipartitions (1C) or all prevalent conflicting bipartitions (ICA),

11



respectively. Furthermore, the sum of all 1C or ICA vaues on agiven phylogeny provides alevel
of support and conflict for that phylogeny, which is captured by the measures Tree Certainty

(TC) and Tree Certainty All (TCA), respectively.

Available High-Profile Practices That Decrease Phylogenetic I ncongruence

To reduce data incongruence and improve phylogenetic inference, different phylogenomic
studies have relied upon the use of several practices; these include the removal of rogue
(unstable or fast evolving) taxa®**®, the trimming and exclusion of ambiguous columns from
the gene alignments*?°*4°, the use of only the slow-evolving and highly conserved genes?®**,
the use of ‘good-marker’ genes identified based on whether these genes recover internodes that
are widely considered as known?, or finaly the use of certain types of characters that are thought
to be more informative, such as conserved amino acid (aa) substitutions™ or indels™. Although
their effect and magnitude of impact has not been systematically evaluated, these -highly
popular- practices are being generously applied, despite different empirical and simulation
studies that have argued for their utility®*>*.

In chapter 1V, by analyzing a dataset of 1,070 high-quality orthologous groups from 23 yeast
genomes, as well as two additional data sets of 1,086 orthogroups from 18 vertebrates species
and 225 groups from 21 metazoan species, | show that selecting genes with strong phylogenetic
signal reduces incongruence and allows the more accurate reconstruction of ancient divergences.
Additionally, using IC and TC (as presented in chapter 111) | demonstrate that widely used
methods that intend to reduce incongruence, have little or no significant effect on the yeast
phylogeny. Finally, | propose two novel methods that dramatically decrease the level of

incongruence in the dataset. However, even with achieving a significant decrease of

12



incongruence, | was unable to resolve certain very short internodes at the base of the yeast
species phylogeny, suggesting that conflict in the genes’ phylogenetic signal is strong or that
phylogenetic signal for these internodes has been almost lost. Perhaps one of the most surprising
results of my thesis was that the 1,070 inferred gene trees differed with the species phylogeny, as

well aswith each other.

Evaluating Phylogenetic Properties and Functional Factorsthat I nfluence Phylogenetic
I ncongruence

Despite significant effortsin accurately reconstructing the tree of life™, the phylogeny of
different evolutionary clades still remains unresolved™ 4618202149 Contradicting results on
whether more genes or more taxa need to be included in order to minimize phylogenetic
incongruence®2%% ' has opened the discussion of which genes should be considered
appropriate and informative. In my comparison of 1,070 yeast gene trees against the species
phylogeny, | discovered great differences among the gene trees, as well as between the gene
trees and the species phylogeny. This begged the question what are the factors that drive these
large amounts of incongruence. As mentioned previously (see“ Yeast as a model clade’, section
‘b’), intheir 2003 study, Rokas et al. (2003) tested whether the clade support could be explained
by or correlated with the number of variable sites, number of parsimony-informative sites, gene
size, rate of evolution, nucleotide composition, base compositional bias, genome location, or
gene ontology.

In chapter V, | explore a set of different functional factors (including the percentage and variance
of GC content in genes, percentage of variable sites, branch length, number of physical and

genetic interactions, level of gene expression, codon adaptation and codon bias'%) together with

103 104

aset of phylogenetic gene properties (including Tree Certainty —, Average Bootstrap Support™,

13



Robinson-Foul ds'® mean distance(mRF)and Robinson-Foulds gene variance) in order to
examine to which degree these factors or properties are driving phylogenetic incongruence.
Rokas et a., showed a correlation between clade support and many of these factors. In my new
dataset, | explored the impact of several of the factors tested by Rokas et al. as well as new ones
on adata set that included ten times as many orthogroups and three times as many taxa.
Moreover, using data mining and statistical techniques such as regression, principal component
analysis and neural networks, | measure the predictability of each gene's phylogenetic behavior
based on its functional factors. Overall, | show that approximately 15-20% of gene-tree
incongruence can be directly attributed to gene factors like the percentage of GC content, codon
bias, codon adaptation, percentage of variable sites, and distorts the gene' s topology away from
the species phylogeny. However, even though these functional factors may provide extremely
useful insights on the evolutionary behavior of genes, their impact on reducing data
incongruence appears to be small, especially for resolving short internodes at the base of the
phylogeny. Thus, selecting genes based on their phylogenetic properties such as gene Tree
Certainty, average bootstrap support or mean Robinson Foulds distance (the best-performing

measure), remains the best way to select genes for phylogenetic inference.
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ABSTRACT

Background

Accurate identification of orthologsis crucial for evolutionary studies and for functional
annotation. Severa agorithms have been developed for ortholog delineation, but so far,
manually curated genome-scale biologica databases of orthologous genes for algorithm
evauation have been lacking. We evaluated four popular ortholog prediction algorithms
(MULTIPARANOID; and ORTHOMCL; RBH: Reciprocal Best Hit; RSD: Reciprocal Smallest
Distance; the last two extended into clustering algorithms cRBH and cRSD, respectively, so that
they can predict orthologs across multiple taxa) against a set of 2,723 groups of high-quality
curated orthologs from 6 Saccharomycete yeasts in the Y east Gene Order Browser.

Results
Examination of SENSITIVITY [TP/(TP+FN)], SPECIFICITY [TN/(TN+FP)],

and ACCURACY|[(TP+TN)/(TP+TN+FP+FN)] across a broad parameter range showed

that CRBH was the most accurate and specific agorithm, whereas ORTHOM CL was the most
sensitive. Evaluation of the algorithms across a varying number of species showed that CRBH
had the highest ACCURACY and lowest FALSE DISCOVERY RATE [FP/(FP+TP)], followed
by CRSD. Of the six speciesin our set, three descended from an ancestor that underwent whole
genome duplication. Subsequent differential duplicate loss events in the three descendants
resulted in distinct classes of gene loss patterns, including cases where the genes retained in the
three descendants are paralogs, constituting ‘traps’ for ortholog prediction algorithms. We found
that the FALSE DISCOVERY RATE of al agorithms dramatically increased in these traps.
Conclusions

These results suggest that simple agorithms, like CRBH, may be better ortholog predictors than

more complex ones (e.g.,, ORTHOMCL and MULTIPARANOID) for evolutionary and
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functional genomics studies where the objective is the accurate inference of single-copy
orthologs (e.g., molecular phylogenetics), but that al algorithmsfail to accurately predict

orthologs when paralogy is rampant.

INTRODUCTION

Orthologous genes are homologs that originated by speciation events, whereas paralogs are
homologs that originated by gene duplication events[1]. Accurate determination of orthologs
and paralogs is fundamental to molecular evolution analyses, the first step in any comparative
molecular biology study, and incredibly useful for functiona prediction and

annotation [2], [3],[4], [5], [6]. However, identifying orthologs and distinguishing them from
paralogs is not always straightforward because genetic (e.g., gene duplications and losses) and
population-level (e.g., hybridization and speciation) events can yield complex gene
histories[2], [7].

The difficulty in accurately determining orthology, the utility of orthology in many different
applications and disciplines, and the abundance of genomic data necessitating high-throughput
pipelines for prediction, have led to the development of severa different types of ortholog
prediction agorithms [8]. For example, a number of graph-based algorithms use similarity
searches, such as BLAST [9], to predict groups of orthologous genes (orthogroups), either in
pairwise (between two taxa) or clustering (between multiple taxa)

fashion [3], [6], [10], [11],[12], [13], [14], [15], [16], [17]. In contrast, tree-based a gorithms
predict orthogroups using explicit phylogenetic criteria[18], [19], [20], [21], [22], [23].
Although all these different types of ortholog prediction algorithms are widely used, studies that

evaluate ortholog prediction algorithm performance for molecular phylogenetic purposes are not
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available. Furthermore, large-scale studies that evaluate the relative performance of awide
variety of different ortholog prediction algorithms have yielded contradictory

results [10], [24],[25], [26]. For example, whereas Alexeyenko and co-workers [10] found that
the graph-based MULTIPARANOID clustering algorithm produced the fewest errors, a different
anaysis showed that ORTHOMCL, another graph-based clustering a gorithm, had the best
balance of SENSITIVITY and SPECIFICITY [27]. In contrast, Hulsen and co-

workers [24] found that the INPARANOID pairwise algorithm outperformed ORTHOMCL in
predictions of orthologous gene pairs. Furthermore, Altenhoff and Dessimoz [25] found that the
graph-based OMA clustering algorithm [16] had the highest SPECIFICITY (together with the
homolog prediction algorithm HOMOLOGENE [28]), and that certain tree-based al gorithms
were occasionally outperformed by graph-based pairwise algorithms. Unfortunately, several
differences in agorithm design make many of the above comparisons hard to interpret. For
example, it is unclear how to interpret comparisons between pairwise and clustering ortholog
prediction algorithms (e.g.,[24]), or between algorithms that predict orthologs and paral ogs
(e.g., [25]), or how the results should be interpreted when the objective is not functional
prediction but phylogenetic inference (e.g., [24]).

One potential explanation for these contradictory results might be that each one of the efforts to
evaluate ortholog prediction algorithms makes assumptions likely to be

violated [10], [24], [25],[27]. For example, severa studies evaluated algorithms using functional
similarity as aproxy for orthology [24], [25], whereas others evaluated al gorithms against sets of
orthologs identified by phylogenetic analysis [10], [25]. However, orthologous genes are not
aways functionaly similar [2], and single-gene phylogenies frequently yield erroneous

results [29], [30].
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The contradictory results in studies of ortholog prediction agorithm performance and the range
of evaluation approaches developed suggest that there is a clear need for reliable reference
genome-scal e orthol og databases. One such high-quality reference database of homologous gene
groupsisthe Y east Gene Order Browser (YGOB) [31]. The YGOB is an excellent reference
dataset for evaluating different ortholog prediction algorithms (e.g., [19], [32]) for two reasons.
First, it contains genomes of varying evolutionary distances, and the homology of several
thousand of their genes has been accurately annotated through sequence similarity, phylogeny,
and synteny conservation data [31], [33]. Second, approximately 100 million years ago, a subset
of speciesin the clade underwent a single round of whole genome duplication (WGD) (Figure
2.1A) [34]. Subsequent differential loss of gene duplicates originating from the WGD event
resulted in groups of different gene retention pattern where in some cases the duplicates retained
are paralogs [35] (Figure 2.1B), constituting ‘traps’ for ortholog prediction algorithms (e.g.,
Class 111 gene retention patternsin Figure 2. 1C). Importantly, the Y GOB database contains
accurate ortholog annotations from species that predate and postdate the WGD event, as well as
an accurate annotation of hundreds of such ‘trap groups', allowing us to compare algorithm

performance against orthogroup sets that are much more challenging to decipher.

27


http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Byrne1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Wapinski1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Akerborg1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Byrne1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Gordon1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone-0018755-g001�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone-0018755-g001�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Wolfe1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Scannell1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone-0018755-g001�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone-0018755-g001�

Figure 2.1. The generation of thefive distinct classes of geneloss patternsfollowing the
yeast whole genome duplication (WGD).

(A) Approximately 100 million years ago, the common ancestor of S. cerevisiae, C. glabrata,
and N. castellii underwent WGD, resulting in the doubling of chromosomes. Segments that
correspond to the two chromosome sets are known as tracks A and B. (B) An example of how
the loss of paralogs from different tracks, if undetected, can generate an incorrect speciestree. In
the example, C. glabrata haslost a paralog from track A, whereas S. cerevisiae and N.

castellii have lost paralogs from track B, ‘trapping’ ortholog prediction algorithmsin incorrectly
grouping the three post-WGD paralogs in an orthogroup. (C) In the aftermath of WGD,
extensive loss of paralogs within homologous gene groups resulted in different gene loss
patterns, known as classes 0 — IV [35]. Class 0 consists of groups that have not lost any paralogs.
Groupsin classes | and Il have lost one and two paralogs, respectively. Finally, al groupsin
classes Il and IV havelost three paraogs, however, al paralogslost in class IV groups were on
the same track (A or B).

A B
Candida glabrata A
Whole‘gerjome _E Saccharomyces cerevisiae A
duplication Naumovia castellii A

Candida glabrata B
|_|: Saccharomyces cerevisiae B
L Naumovia casteliii B

Whole genome
duplication ¢

S. cerevisiae A
N. castellii A
C. glabrata B

Al

K. lactis

Kluyveromyces lactis
_E Eremothecium gossypii {E. gossypii
Lachancea waltii L. waltii
C
x x x
x x
x
IE = E
x *® x
I_—% E
x %
x x
x x
x x Y
I__% x x x
®
x Eé
Class 0 Class 1 Class 11 Class 111 Class IV

(210 orthogroups) (149 orthogroups)

(188 orthogroups)

28

(219 orthogroups) (1

,957 orthogroups)


http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Scannell1�

Here, we evaluated the performance of four commonly used ortholog prediction agorithms —
MULTIPARANOID [10], ORTHOMCL [3], RBH [4], [6], [12], [13], and RSD [14] in
predicting orthogroups in six yeast proteomes by comparing their results against reference
orthogroups retrieved from the Y GOB database. To ensure that we evaluated all algorithms for
their performance in detecting orthogroups across multiple species, we extended RBH and RSD
into clustering algorithms (CRBH and CRSD, respectively). We selected these four algorithms
among the several different ones available [8], based on their popularity, availability as
standalone algorithms, and that they are not tree-based, which allows their implementation for
downstream molecular phylogenetic analyses. We assessed the performance of each agorithm
under arange of parameters and conditions, including in ‘traps’, as well as using varying
numbers of species. We found that CRBH almost always outperformed al other algorithms,
suggesting that simpler algorithms may often perform better than more complex onesin
identifying orthologs across species, but that the FALSE DISCOVERY RATE of al agorithms
was dramatically increased when groups of paralogs stemming from the WGD event were

examined.

METHODS

The Test Dataset

The test dataset consists of 31,012 proteins from the proteomes of the following six
Saccharomycete yeasts. Saccharomyces cerevisiae, Candida glabrata (also known
asNakaseomyces glabrata [36]), Naumovia castellii (also known as Saccharomyces
castellii[36]), Lachancea waltii (also known as Kluyveromyces waltii [36]), Eremothecium

gossypii (also known as Ashbya gossypii [36]), and Kluyveromcyes
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lactis [37], [38], [39], [40], [41]. A common ancestor of three of these six yeast species (S
cerevisiae, C. glabrata, and N. castellii) underwent a single round of WGD (Figure 2.1A) [34].
Although the quality of annotations differs between the six speciesincluded in this study [31], it
isunlikely to influence significantly our results. Thisis so because in our analyses we test all
four algorithms on exactly the same data, and we have no reason to think that annotation quality
differences would differentially affect the performance of ortholog prediction algorithmsin our

study.

Constructing ‘Gold Groups, a Reference Set of Orthogroups

The Y east Genome Order Browser (Y GOB) database is a manually curated homol og database of
Saccharomycete proteins [31] from species that predate the WGD event (K. lactis, L.

waltiiand E. gossypii) aswell as from species that postdate the WGD event (S. cerevisiae, C.
glabrata, and N. castellii). Thus, for every chromosomal segment in the three pre-WGD species
(L. waltii, E. gossypii, and K. lactis), assuming no loss, there are two corresponding
chromosomal segments (known as track A and B) in the three post-WGD species. As aresult,
each homol ogous gene group in the Y GOB database, assuming no gene loss, containsasingle
ortholog from each pre-WGD species, and two paralogs from each post-WGD species, one from
track A and one from track B.

To construct areference dataset of orthogroups deprived of paralogy we first retrieved all 2,723
annotated homol ogous gene groups from the Y GOB (note that this set is afraction of the total set
of true orthogroups) and split each group into two subgroups. The first subgroup contained all
ortholog genes from pre-WGD species together with all orthologs from post-WGD species found

on track A, whereas the second subgroup contained the same orthologous genes from pre-WGD
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species together with al orthologs from post-WGD species found on track B. To avoid the
double counting of orthologs from pre-WGD species in our assessment of ortholog predictions,
we evaluated each prediction only against the subgroup that had the best match. We used these
orthogroups, from here on referred to as ‘gold groups', as the reference set to evaluate the

performance of ortholog prediction algorithms.

Ortholog Prediction Algorithms Tested

The MULTIPARANOID agorithm [10] is an extension of the graph-based

INPARANOID clustering agorithm [11], [42] for identifying orthologs and inparal ogs across
multiple species. INPARANOID uses bi-directional best BLAST [9], [43] to identify putative
orthologs and a clustering algorithm to identify their inparalogs. To do so,

INPARANOID assumes that any sequences from the same species that are more similar to the
predicted ortholog than to any sequence from other species are inparalogs [11], [42].
MULTIPARANOID generates multi-species orthogroups by merging all pairwise
INPARANOID predictions, while minimizing the number of internal conflicts. Furthermore, the
algorithm uses a‘ cut-off’ parameter based on the distance of candidate inparalogs to the
predicted target ortholog to filter out weakly supported candidates. MULTIPARANOID was
obtained from http://multiparanoid.sbc.su.se and INPARANOID (version 3beta) was obtained
upon request from inparanoi d@sbc.su.se.

The ORTHOMCL algorithm aso builds upon the INPARANOID algorithm [11], [42] by using
the Markov Cluster (MCL) agorithm for predicting orthogroups across multiple species based

on their sequence similarity information [3]. The algorithm uses an ‘inflation rate’ parameter, to
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regulate the ‘tightness’ of the predicted orthogroups. ORTHOMCL (version 1.4) was obtained
from http://orthomcl.org/common/downl oads/software/v1.4/.

The Reciprocal Best Hit (RBH) algorithm [4], [6], [12], [13] relieson BLAST [9], [43] to
identify pairwise orthologs between two species. According to the RBH algorithm, two

proteins X and Yfrom species x and y, respectively, are considered orthologs if protein X isthe
best BLAST hit for protein Y and protein Y is the best BLAST hit for protein X. We integrated a
‘filtering’ parameter r that enabled us to avoid constructing orthogroups that contained distant
homologs by considering the degree by which the two proteins differed in sequence length or

BLAST aignment [44], [45]. Thus, putative orthogroups are retained if:

__ BLAST length or sequence length of putative ortholog A = 1

"= BLAST length or sequence length of putative ortholog B = ¢’

where 0 <r<1.

From the above equation, it follows that r values closeto 1 are likely to filter out alarger number
of putative orthologs, whereasr values closeto O are likely to include all putative orthologs. The
default mode of the algorithm does not use the filtering parameter r.

The Reciprocal Smallest Distance (RSD) agorithm [14] generates globa sequence alignments
for asmall number of top BLAST hits against a query gene X from species x. RSD then
calculates the maximum likelihood evolutionary distance between X and itstop BLAST hits,
identifying the gene with the smallest evolutionary distance from X (e.g., gene Y from speciesy).
If the RSD search using gene Y from speciesy as the query also identifies gene X from

species x asits closest relative, then proteins X and Y are considered orthologs [14], [15]. In
RSD, the user can modify the shape parameter a of the gamma distribution, a key determinant of
the estimated evolutionary distance between genes. The RSD algorithm was obtained

fromhttp://roundup.hms.harvard.edu/site/.

32


http://orthomcl.org/common/downloads/software/v1.4/�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Bork1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Tatusov1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Bork2�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Tatusov2�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Altschul1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Altschul2�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Salichos1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Grossetete1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Wall1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-Wall1�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone.0018755-DeLuca1�
http://roundup.hms.harvard.edu/site/�

Extending the Pairwise RBH and RSD Algorithmsinto Clustering Algorithms cRBH and
cRSD

To directly compare the clustering performance of all four ortholog prediction algorithms we
extended the pairwise algorithms RBH and RSD into clustering algorithms CRBH and CRSD,
respectively. CRBH and CRSD construct orthogroups from more than two species as follows
(see also [46]). Considering all pairwise BLAST similarity searchesfor genes A, B, C,..., N-1,
N from species a, b, c,..., n-1, n to form an orthol ogous gene group, gene B must be the
reciprocal best hit to gene A, gene C the reciprocal best hit to gene B or gene A, ..., and

geneN the reciprocal best hit to any gene ¢[A, B, C,..., N-1]. In cases such as when gene A from
species a isthe reciprocal best hit to gene B from species b and to gene C1 from species ¢, but
gene B isthereciprocal best hit to gene C2 from species c, the algorithm drops species cfrom the

orthogroup.

Evaluating the Performance of Ortholog Predictions

We used a BLASTP cut-off E-value of < 1e-5in all orthogroup predictions made with all four
algorithms. We run the MULTIPARANOID algorithm using arange of cut-off parameter values
(cut-off ={0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ; 0.0 is the default value), the
ORTHOMCL agorithm using arange of inflation rate parameter values (inflation rate = { 0.1,
05,1.0,15, 20,25, 3.0, 35,5, 7.5, 10.0, 100.0} ; 1.5 isthe default value), the CRBH algorithm
by ranging the values assigned to the filtering parameter r (r ={nor, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9}; nor isthe default option), and the CRSD algorithm by ranging the values of the
shape parameter a (a={0.1, 0.4, 0.5, 0.6, 0.7, 1.0, 1.5, 2.0, 2.5, 5.0} ; 0.5 isthe default value).

For each algorithm and its range of parameter values, we calculated
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itsACCURACY,SENSITIVITY, SPECIFICITY, and FALSE DISCOVERY RATE using the

ACCURACY =
True Positives { TP+ True Negatives (TN)
following equations; True Positives ( TF)+ True Negatives (TV)+ False Positives (FF)+ False Negatives (FN)

SENSITIVITY = —&
‘ ~ TP+FN
SPECIFICITY = —
‘ - TN+ FP
FALSEDISCOVERYRATE (FDR) = i
‘ ) - FP4+TP

Finally, we graphically plotted
the RECEIVER OPERATING CHARACTERISTIC (ROC curve) of

SENSITIVITY versus (1 — SPECIFICITY).

The Evaluation Pipelinefor Test Orthologous Genes and Orthogroups

We evaluated the ability of each ortholog algorithm to predict orthogroups by comparing their
predictions against the reference gold groups. According to our evaluation pipeline (Figure 2.2
and Text S2.1), each predicted orthogroup was first compared against the set of gold groups to
identify, if any, its corresponding gold group. If atest group shared at least two genes with a
reference gold group, the test group was characterized as a‘defined’ test group. In al other

cases, the test group was considered ‘ undefined'.
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Figure 2.2. The pipeline used to evaluate the perfor mance of the ortholog prediction
algorithms.
The pipeline evaluates al gorithm performance by comparing their predictions on six yeast
proteomes against a high-quality reference set of orthologs (gold groups) constructed from the
Y GOB [31]. The pipeline first compares each test group against the set of gold groups. If the test
group matches with a corresponding gold group, the test group is characterized as ‘ defined’ and
the two groups are further compared on a gene-by-gene basis. If there is no match, the test group
is characterized as ‘undefined’. For the ‘defined’ groups, genes present in both the test and the
gold groups are considered true positives (TP), whereas genes present only in the test group or
only in the gold group are considered as false positive (FP) and false negative (FN), respectively.
Fromthe TP, FP, and FN valuesfor al ‘defined’ groups we then estimated the true positives
(TP*), false positives (FP*), and false negatives (FN*) for the ‘undefined’ set of groups. Finally,
by adding the values obtained from the analysis of ‘defined’ and ‘undefined’ groups we
calculated the total number of true positive (tTP), false positive (tFP), false negative (tFN), and
true negative (tTN) genesfor all test groups, and used them to estimate each
agorithm's SENSITIVITY, SPECIFICITY , ACCURACY and FALSE DISCOVERY RATE (See
Methods and Text S2.1).
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For the defined orthogroups, we considered all genes shared between the test group and its
corresponding gold group as true positive (TP), and any genes in the test group that did not also
belong to the gold group as false positive (FP) (Figure 2.2 and Text S2.1). FP genes could belong
to adifferent gold group or to be absent from the set of corresponding gold groups. Finally, we
considered all those genes present in gold groups that did not belong to any test groups as false
negative (FN).

Given that the number of reference gold groups is much smaller than the total number of true
orthogroups in our dataset, we expect that a significant number of test orthogroups will not have
corresponding gold groups, and hence will be undefined. Because we wanted to calculate values
that were representative for the entire dataset, we estimated the number of true positive (TP*),
false positive (FP*), and false negative (FN*) for the undefined orthogroups by multiplying the
number of TP, FP, and FN calculated from the defined groups with the ratio of the number of
undefined genes on the number of defined genes (Figure 2.2 and Text S2.1). For example, TP* is
the product of the TP value multiplied by the ratio of the number of undefined genes on the
number of defined genes. Finally, by calculating the total number of true positive (tTP=TP +
TP*), fase positive (tFP = FP + FP*), and false negative (tFN = FN + FN*) genes, we were able
to estimate the number of total true negative genes (tTN = total number of genes—tTP —tFP —
tFN) in our dataset (Figure 2.2 and Text S2.1).

To ensure that the calculated TP, FP, and FN values for proteins that belonged to ‘ defined’
groups were also representative of the remainder of the proteins (i.e., those that belong to the
‘undefined’ groups) (Figure 2.2), we tested whether S. cerevisiae genes that belong to * defined’
and ‘undefined’ groups differed significantly in evolutionary rate (measured by the dN/dSratio),

number of paralogs in genome, and codon adaptation index. We obtained the data for
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evolutionary rate and codon adaptation index calculations from the study of Wall et al. [47]. We
calculated the number of S cerevisiae paralogs per protein using BLASTP [9]. To evaluate
whether the evolutionary and functional properties of genes that belong to the ‘ defined’ and
‘undefined’ groups were statistically significant, we performed atwo-tailed t-test (assuming

unequal variance and unequal sample size) [48].

Evaluating Algorithm Performance for Varying Numbers of Species

To evaluate the performance of each agorithm across varying numbers of species, we examined
all possible combinations for three, four, and five yeast proteomes and cal cul ated each
algorithm's ACCURACY and FDR. All algorithms were run using the parameter values that

yielded the highest ACCURACY in orthogroup prediction on the six yeast proteomes dataset.

Evaluating Algorithm Perfor mance against Different Classes of Gene L oss Events

Our reference dataset contains orthogroup classes where some of the homologs retained are
paralogs. To investigate how each algorithm performed in these ‘trap groups', we divided the
2,723 gold groups into the five classes described by Scannell et al. [35] (Figure 2.1C) and
calculated the ACCURACY and FDR for each algorithm. All algorithms were run using the
parameter values that yielded the highest ACCURACY in orthogroup prediction on the six yeast

proteomes dataset.

RESULTS
We evauated the performance of four different algorithms (MULTIPARANOID,

ORTHOMCL,CRBH and CRSD) in predicting orthogroups against a manually curated, high-
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quality database of ortholog groups (gold groups), by

estimating SENSITIVITY, SPECIFICITY, ACCURACY and FDR across different parameter
values, using avarying number of species and across different gene loss classes (Figures
2.3,24,25,2.6and Table S2.1). S cerevisiae genes that belong to ‘defined’ and * undefined’
groups did not differ significantly in evolutionary rate, number of paralogsin genome, and codon
adaptation index (all p-values for all measures across all algorithms were larger than 0.05). Thus,
the *defined’ and ‘undefined’ orthogroups do not differ significantly. Therefore, our estimation
of the number of true positive (TP*), false positive (FP*), and false negative (FN*) for the
undefined orthogroups based on the number of TP, FP, and FN calculated from the defined
groups seems to be valid and our results should be representative of the entire population of

orthogroups present in the six yeast genomes under study.
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Figure2.3. The ACCURACY and RECEIVER OPERATING CHARACTERISTIC (ROC)
curvefor each ortholog prediction algorithm across a range of parameter values.

(A) The ACCURACY [(TP+ TN)/(TP+ TN + FP + FN)] of each ortholog prediction algorithm
(shown on the Y -axis) is plotted against the range of algorithm-specific parameter values (shown
on the X-axis). Values for MULTIPARANOID are for the ‘ cut-off’ parameter, values for
ORTHOMCL arefor the ‘inflation rate’ parameter, values for CRBH are for the ‘filtering
parameter r’, and values for CRSD are for the * shape parameter a'. (B) The ROC curve for each
ortholog prediction agorithm shows SENSITIVITY [TP/(TP + FN)] (on the Y-axis) plotted
against 1 — SPECIFICITY [1—(TN/(TN + FP))] (on the X-axis). Optimal values and
distributions reside on the top left of the graph. All values depicted in the graphs are shown

in Table S2.1.
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Figure 2.4. The ACCURACY and FDR of ortholog prediction algorithms using varying
numbers of species.
(A) The ACCURACY of ortholog prediction algorithms (shown on the Y -axis) is plotted against
varying numbers of species (shown on the X-axis). (B) The FDR of ortholog prediction
algorithms (shown on the Y-axis) is plotted against varying numbers of species (shown on the X-
axis). Each algorithm was run using the parameter value yielding the highest ACCURACY . All
values depicted in the graphs are shown in Table S2.1.
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Figure2.5. The ACCURACY and FDR of ortholog prediction algorithms across five
orthogroup classes with different generetention patterns.

The five classes are described in Figure 2.1. (A) The accuracy of ortholog prediction algorithms
(shown on the Y -axis) is plotted against the five classes (shown on the X-axis). (B) The FDR of
ortholog prediction agorithms (shown on the Y -axis) is plotted against the five classes (shown
on the X-axis). Each agorithm was run using the parameter value yielding the

highest ACCURACY . All values depicted in the graphs are shown in Table S2.1.
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Figure 2.6. Examples of the behavior of thefour algorithmsin predicting orthogr oups from
gold groups belonging to three different classes.

(A) Construction of gold groups (gold groups A and B) from the set of homol ogous gene groups
from the Y GOB. Each test group is evaluated against only against the gold group that had the
best match. (B) The orthogroups for three different gold groups belonging to classes 0, 111 and IV
predicted by the four different algorithms. The gold group is shown on the left-most column.
The S cerevisiae gene name for each of the three gold groups is shown on the left. Genes
correctly predicted as belonging to each orthogroup (true positives) are shown in green, genes
incorrectly predicted as belonging to each orthogroup (false positives) are shown in red, whereas
genes present in agold group that were not predicted to belong to this or any other test group
(false negatives) are shown in grey.
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Comparing Algorithm Perfor mance acr oss Different Parameter Values

Ranging the cut-off parameter value of the MULTIPARANOID algorithm had minor effects on
its performance. All analyses with cut-off values >0 yielded identical results with
higherSENSITIVITY and ACCURACY, but lower SPECIFICITY relative to the default cut-off
value of zero. The ORTHOMCL algorithm did not exhibit any clear trade-off

between SENSITIVITY andSPECIFICITY with increasing inflation rate values. Specifically,
predictions using inflation rate values > 3.5 had both lower SENSITIVITY and SPECIFICITY.
The algorithm had almost equa SENSITIVITY for values < 3, with the

best SPECIFICITY and ACCURACY obtained when the inflation rate was 1.5. The CRBH
algorithm had the highest SENSITIVITY and ACCURACY when r was 0.3, although similar
values were obtained when r was not set (default) or when r was 0.4. In general, r values greater
than 0.4 decreased the SENSITIVITY of the agorithm by excluding increasing numbers of
putative orthologs, but increased its SPECIFICITY .

For CRSD,SENSITIVITY and ACCURACY remain largely stable and optimal for a values>
0.4. SENSITIVITYwas highest a a = 0.4, whereas ACCURACY and SPECIFICITY were both
highest at a = 1.5. In general, the algorithm produced alimited number of false positives, which
resulted in both highACCURACY and low FDR.

The performance of al ortholog agorithms across different parameter valuesis summarized in
Figure 2.3. Our results suggest that CRBH is the most accurate algorithm. Specifically, CRBH
had the highest ACCURACY (0.934, for r = 0.3), followed by CRSD (0.921, for a= 1.5),
MULTIPARANOID (0.912, for any cut-off >0) and ORTHOMCL (0.909, for inflation rate =
1.5) (Figure 2.3). Higher SENSITIVITY istypically associated with either higher numbers of

true positives or lower number of false negatives. Across the range of all parametersfor all
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algorithms, ORTHOMCL showed the highest SENSITIVITY (inflation rate = 1), followed

by CRBH (r = 0.3), MULTIPARANOID (for cut-off >0) and CRSD (for a = 0.4) (Figure 2.3). In
contrast, higherSPECIFICITY istypically associated with lower numbers of false positives.
Across therange of all parametersfor al algorithms, CRBH has the

highest SPECIFICITY (for r = 0.9), followed byCRSD (for a=0.1), MULTIPARANOID (for

cut-off = 0) and ORTHOMCL (for inflation rate = 1.5) (Figure 2.3).

Comparing Algorithm Performance Using a Varying Number of Species and Across
Different Gene L oss Classes

To evaluate the performance of each algorithm under a varying number of species, we ran the
algorithms for all possible combinations of three, four and five species (Figure 2.4). Once
again,CRBH had the highest ACCURACY (Figure 2.4A) and the lowest FDR across al taxon
numbers (Figure 2.4B), followed by CRSD.

To investigate how the existence of ‘trap’ gold groups affected the performance of the four
ortholog prediction algorithms, we compared their ACCURACY and FDR across the five
different gold group classes (Figure 2.1C). Overadl, all four algorithms had higher FDR vauesin
paral og-containing classes (classes 0 through 111) than in paralog-lacking classes (class V)
(Figure 2.5).CRBH had the highest ACCURACY and the lowest FDR values across al classes.
However, not al algorithms exhibited the same behavior across the five classes. For example,
whereas CRBH and CRSD had their highest FDR valuesin class 11l, ORTHOMCL and
MULTIPARANOID had their highest FDR valuesin class O, due to the larger number of

paralogs (Figures 2.5, 2.6). Finally, note that in class IV, where all paralogs from the same track
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(track A or B) have been lost, all agorithms perform well, but CRBH still showed the

highest ACCURACY and the lowest FDR.

DISCUSSION

More than twenty orthology prediction algorithms and databases have been devel oped, which
can be divided into three main groups. graph-based (orthology isinferred from sequence
similarity), tree-based (orthology is inferred from phylogeny), and hybrid-based (orthology is
inferred from both phylogeny and sequence similarity) [8]. In this study, we compared the
performance of four popular graph-based clustering algorithms (MULTIPARANOID,
ORTHOMCL,CRBH and CRSD) that predict orthogroups for use in molecular phylogenetics.
We did not include tree-based and hybrid a gorithms because ortholog prediction on large
datasets typically requires faster a gorithms, and because the reliance of these agorithms on
knowledge of the gene family (e.g., [18]) or species phylogeny (e.g., [19]) can render them
inappropriate for downstream phylogenetic studies (but see [49]). Furthermore, the use of Y GOB
as our reference dataset required the availability of standalone algorithms that could make
predictions on user-provided datasets.

For the mgjority of orthogroup predictions, all methods showed high ACCURACY and

low FDR(Figures 2.3, 2.4, 2.5), afinding consistent with their similarity in algorithm
construction and popularity in the literature. However, our results also suggested that CRBH
outperformed all other three algorithmsin almost all of our comparisons (Figures 2.3, 2.4, 2.5).
These results directly pertain to on-going debates about the choice of ortholog prediction
algorithms for downstream evolutionary, genomic and functional

analyses[8], [10], [24], [25], [26]. However, the selection of the optimal ortholog prediction
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algorithm for inferring orthologous genes and groups across such a remarkably wide range of

fields and applicationsis acomplex problem that islikely to be influenced by many parameters.

Curated Ortholog Databases as Gold Standardsfor Algorithm Evaluation

Severa different benchmarks have been used to assess the ACCURACY of ortholog prediction
algorithms [8]. However, the lack of ‘gold’ standard reference datasets has made interpretations
of relative performance challenging. For example, several recent comparative studies have
yielded contradictory results [10], [24], [25], [26], but the degree to which thislack of common
high-quality reference sets contributes to these conflictsis largely unknown. To circumvent these
issues, we employed a highly accurate genomic database of homologs to evaluate directly
ortholog prediction algorithms (see also [19], [32]). We think that our gold group set has strong
potential to become one such ‘gold’ standard for the evaluation of ortholog prediction
algorithms. Of course, our dataset stems from species inhabiting a single small twig of the tree of
life. Thus, it remains an open question whether these results hold across branches of the tree of
life, or whether ACCURACY in ortholog prediction in different branches will require several
different approaches. As more genomes from several clades of thetree of life are

sequenced[50] we anticipate that highly accurate homolog databases, like the Y GOB [31], will
become commonplace and more densely populated with orthologs from several additional
species (e.g.,[51]), thus greatly facilitating algorithm evaluation and testing the generality (or
not) of findings such as those reported in this study.

One potentia limitation of such reference databases is that their construction might be possible
only from genomes of closerelatives. Thisis so, because accurate annotation of orthologs

between distantly related speciesis much more challenging; at greater evolutionary distances
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protein homology is frequently reduced to homology between domains [52], domain shuffling is
commonplace [53], and independent data, such as synteny conservation, that are highly
informative for accurate annotation of orthologs between closely related species, become less
useful [54]. Nevertheless, our findings (see also [19], [32]) suggest that eval uation approaches
against high-quality ‘gold standard’ databases [31], [51] arelikely to be avery useful addition to
existing benchmarks [8], [24], [25] in the quest to accurately infer orthologs on a genome-wide

scale.

Simpler Algorithms Can Sometimes Be Better

The usefulness of ortholog identification in several downstream genomic, molecular and
evolutionary analyses, coupled with the abundance of genomic data from diverse organisms, has
spurred the development of severa ortholog prediction algorithms[8]. Thus, we were surprised
to find that CRBH, a conservative clustering version of the simplest and earliest-devel oped of the
four algorithms tested that drops instead of resolving inconsistencies [4], [6],[12], [13], [55], was
consistently (e.g., across severa parameter values and varying numbers of species) the best
ortholog predictor. In agreement with our results, arecent phylogenetic and functional
assessment of ortholog prediction agorithms and databases also found that RBH performed well
and its predictions were, in severa instances, better than those of more complex algorithms[25].
The superior performance of CRBH and CRSD may be partially explained by the fact that
ORTHOMCL and MULTIPARANOID are designed to also include inparalogs in their
orthogroup predictions (Figure 2.6). Using our evaluation pipeline, this design can raise
significantly the number of false positives, thus decreasing the

algorithms' ACCURACY and SPECIFICITY, but increasing the algorithms FDR
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and SENSITIVITY. However, when the algorithms were tested on class IV orthogroups, which
comprise the mgority of gold groups (1,957 orthogroups or ~70%) and have lost all paralogs
from the same track (Figure 2.1C), CRBH still performed better by showing avery low FDR,
high ACCURACY and SPECIFICITY and aimost equal SENSITIVITY as ORTHOMCL, the
most sensitive algorithm (Figure 2.3). Although this difference in performance could be due to
the inclusion of other paralogs that did not originate through the WGD, the existence of other
paralogsis unlikely to account fully for it. For example, analysis of a dataset that contained only
genes belonging to class 1V gold groups, an inparalogs-free dataset, also showed that CRBH
and CRSD have the highest ACCURACY and lowest FDR. Finally, the set of single-copy
orthogroups obtained from ORTHOMCL and MULTIPARANOID is much smaller than the total
number of predicted orthogroups and shows much lower SENSITIVITY and ACCURACY. This
suggests that the popular approach of using these algorithms for orthogroup prediction in
molecular phylogenetic studiesis less accurate than the use of algorithms designed to predict
orthogroups that contain a single gene from each species, like CRSD and CRBH.

When tested on the class 111 groups (Figure 2.1), in which the pattern of gene loss forced all
algorithms to place single-copy paraogs in the same orthogroup, all agorithms showed very
high FDR values (Figures 2.1, 2.5). CRBH was again the best performing algorithm, partly due
to the effect of the filtering parameter r in dropping putative orthogroups composed of distantly
related paralogs. Note that the lack of a‘gold’ reference dataset or the adoption of an evaluation
strategy based on mgjority-rule predictions would have not permitted us to identify the failing of
these algorithms for class 111 orthogroups, and would have instead considered most of them as

likely true.
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Choosing the Right Algorithm for Orthologous Gene Group Prediction

Our results suggest that simpler agorithms, like CRBH and CRSD, might be better choices for
many downstream evolutionary analyses than more complex onesin cases where the objectiveis
to identify orthogroups and that the trend of several studiestoward using more complex ortholog
prediction strategies is not aways justified. One of the criteriaused in our selection of algorithms
was for ones whose orthogroup predictions would be appropriate for use in phylogenetic
analyses. Thus, we did not evaluate tree-based or hybrid-based agorithms. However, such
algorithms could be much more appropriate for orthogroup prediction in several other contexts,
e.g., for functional annotation. For example, the SYNERGY agorithm [19], [56], which
integrates information from similarity searches, gene trees, and synteny in its orthogroup
predictions has been shown to be more accurate than RBH [19], and likely to be a much better
choice for evolutionary genomics and functiona studies. Similarly, because RBH, RSD and their
clustering extensions are limited to finding orthogroups that contain a single gene from each
species, they will fail to detect the presence of inparalogs, and in contrast to algorithms such as
SYNERGY [19], [56], MULTIPARANOID [10] and ORTHOMCL [3], are probably of no use

for studying gene family evolution.
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Table S2.1. The ACCURACY, SENSITIVITY, SPECIFICITY and FDR values of ortholog
prediction algorithms across arange of parameter values (S2.1A), using varying numbers of

species (S2.1B), and across five orthogroup classes with different gene retention patterns

(S2.10).

Table S2.1A. Figure 2.3 Raw Data

ORTHOMCL
'inflation rate' parameter value 010 050 100 150 200 250 300 350 5.00 750 10.00 100.00
ACCURACY 090 09 09 091 091 09 090 090 090 090 0.90 0.90 Data for Figure 3A
SENSITIVITY 097 097 097 097 097 097 097 096 095 096 094 0.94 .
Data for Figure 3B
SPECIFICITY 042 042 042 043 042 042 042 039 037 039 035 0.35
MULTIPARANOID
'cut-off' parameter value 000 001 005 010 020 >03
ACCURACY 090 091 091 091 091 091 | Datafor Figure3A
SENSITIVITY 095 09 09 096 09 0.96 Data for Figure 38
SPECIFICITY 059 058 058 058 058 0.58
CcRBH
'r' parameter value 000 010 020 030 040 050 060 070 080 090
ACCURACY 093 093 093 093 093 092 092 09 089 083 Datafor Figure 3A
SENSITIVITY 095 095 094 09 094 094 093 090 08 081 .
Data for Figure 3B
SPECIFICITY 082 082 08 083 084 083 08 08 087 0.89
cRSD
'o parameter value 010 040 050 060 070 100 150 200 250 5.00
ACCURACY 091 092 092 092 092 092 092 092 092 0.92 Data for Figure 3A
SENSITIVITY 093 094 094 094 094 094 094 094 094 094 )
Data for Figure 3B
SPECIFICITY 081 083 084 084 083 084 08 084 084 083
Table 2.1B. Figure 2.4 Raw Data
Number of Species |
3 4 5 6
ACCURACY species species species species
MULTIPARANOID 0.94 0.93 0.92 0.91 |
ORTHOMCL 0.92 0.92 091 091 Datafor Figure 4A
CRBH 0.95 0.95 0.94 0.93
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CRSD 0.94 0.93 0.92 0.92
3 4 5 6
FAL SE DISCOVERY RATE species species species species
MULTIPARANOID 0.03 0.04 0.05 0.06
ORTHOMCL 0.06 0.06 0.07 0.07 Data for Figure 4B
CRBH 0.02 0.03 0.03 0.03
CRSD 0.02 0.03 0.03 0.03
Table 2.1C. Figure 2.5 Raw Data
Classes
ACCURACY 0 | 11 11 [\
MULTIPARANOID 086 085 084 085 098
ORTHOMCL 073 072 083 0.83 096 Data for Figure 5A
CRBH 076 079 082 083 09
CRSD 072 074 070 064 084
FALSE DISCOVERY RATE 0.00 | 11 11 [\
MULTIPARANOID 022 018 015 017 0.02 |
ORTHOMCL 027 026 014 017 0.02 Data for Figure 58
CRBH 005 0.08 007 0.16 0.00
CRSD 006 009 009 019 0.00

Text S2.1.Analytical description of the evaluation algorithm. For the ‘defined’ predicted

orthogroups (‘ defined’ test groups), a gene that was present in both the test group and its

corresponding gold group was considered as true positive (TP), whereas a gene that was only

present in the test group, but not in the corresponding gold group, was considered as false

positive (FP). In general:

(All genes used in the comparison) =FP+ TP+ FN + TN

(D)

We distinguished FP genesinto those that are found in the set of corresponding gold groups

(FPin) and those that are not found in the set of corresponding gold groups (FPou):
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FP = FPy, + FPoy )

In addition, we distinguished FN genes to those genes belonging to gold groups that are absent
from their corresponding test groups (FNr,) and to those genes belonging to gold groups that

were not matched by any test group (FNnm). Thus:

FN = FNm + FNpm (3)

We calculated TP, FP;,, FPo, and FN, values by comparing test groups with their corresponding
gold groups. Furthermore, in cases where an algorithm predicted fewer test groups than expected
based on the number of gold groups (2,723 for al classes, 210 for Class 0, 149 for Class |1, 188
for Class 11, 219 for Class 111, 1,957 for Class 1V), we estimated the FN,,, value using the

eguation:

FNmm = (‘number of gold groups’ —‘number of defined groups’) x ‘ average number of genes per

gold group’ 4

We then used the TP, FP and FN values for the ‘ defined’ test genesto estimate true positive

(TP*), false positive (FP*), and false negative (FN*) values for the ‘undefined’ test genes

according to:

TP* = TP x (number of ‘undefined’ test genes/ number of ‘defined’ test genes) )
FP* = FP x (number of ‘undefined’ test genes/ number of ‘defined’ test genes) (6)
FN* = FN x (number of ‘undefined’ test genes/ number of ‘defined’ test genes) @)
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Finally, we estimated the numbers of total true positive (tTP), total false positive (tFP), total fase

negative (tFN) and total true negative (tTN) genes according to:

tTP=TP+ TP* (8)
tFP = FP + FP* 9)
tFN = FN + FN* (10)
tTN = ‘number of genesin proteome set’ —tTP —tFP —tFN (11)
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ABSTRACT

Phylogeniesinferred from different data matrices often conflict with each other necessitating the
development of measures that quantify thisincongruence. Here, we introduce novel measures
that use information theory to quantify the degree of conflict or incongruence among al non-
trivial bipartitions present in a set of trees. The first measure, Internode Certainty (1C), calculates
the degree of certainty for a given internode by considering the frequency of the bipartition
defined by the internode (internal branch) in a given set of treesjointly with that of the most
prevalent conflicting bipartition in the same tree set. The second measure, IC All (ICA),
calculates the degree of certainty for agiven internode by considering the frequency of the
bipartition defined by the internode in a given set of treesin conjunction with that of all
conflicting bipartitions in the same underlying tree set. Finally, the Tree Certainty (TC) and Tree
Certainty All (TCA) measures are the sum of 1C and ICA values across all internodes of a
phylogeny, respectively. IC, ICA, TC, and TCA can be calculated from different types of data
that contain non-trivial bipartitions, including from bootstrap replicate trees, gene trees or
individual characters. Given a set of phylogenetic trees, the IC and ICA values of agiven
internode reflect its specific degree of incongruence, and the TC and TCA values describe the
global degree of incongruence between treesin the set. All four measures are implemented and

freely available in version 8.0.0 and subsequent versions of the widely-used program RAXML.

INTRODUCTION
Phylogenetic trees constructed from different genes frequently contradict each other, giving rise
to incongruence™?. For example, several recent studies examining hundreds of genesin fungi®*,

plants® and mammals® found that the vast majority of gene trees are not topologically congruent
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either with each other or with the species phylogeny. This incongruence can be due to analytical
factors stemming from either inadequate sample sizes""® or the misfit between data and

9,10

evolutionary models™™ or due to biological factors such as horizontal gene transfer, lineage

sorting, introgression, and hybridization™2,

Although the challenge of detecting and appropriately handling incongruence has vexed
systematists for decades”'**°, the recent realization that alarge number of gene trees will
typically disagree with the species phylogeny has highlighted the importance and value of
measures that capture and quantify incongruence®. Incongruence tests can be broadly classified®
into tests that assess incongruence between characters'”* and tests that assess incongruence
between trees”2’. Note that both character-based and tree-based incongruence tests rely on
phylogenetic trees; however, in character-based tests, the assessment of incongruence is focused
on the differences between how the distinct data sets fit the trees, whereas in tree-based tests, the
assessment of incongruence focuses on the difference between the trees™®. For example, the
character-based measure developed by Shimodaira and Hasegawa (1999) relies on bootstrap
resampling of characters to identify whether any one or more of a set of trees best explains the
data, whereas Rodrigo’ s topology-based measure relies on the distribution of tree distances
among bootstrap replicate trees to examine the degree of incongruence between sets of
characters™. Although several of these measures are extremely useful in practice, they frequently

19,22,28

lack generality because they depend on a particular optimality criterion or clade support

measure™%,
A particularly interesting group of tree-based methods for handling incongruence and
summarizing conflict are consensus methods™. Because each internode (or internal branch) in a

phylogenetic tree represents a bipartition that separates two sets of taxa (e.g., Fig. 3.1 shows a
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bipartition a, b, ¢, d, e|[f, g, h, i, ] that divides the internode between nodes 1 and 5 into taxon
sets{a, b, c,d, e} and{f, g, h, i, j}), aset of trees can be effectively summarized into a consensus
tree that depicts only those bipartitions that are ‘ representative’ of the set. For example, the
majority-rule consensus (MRC) approach® calcul ates the shared bipartitions across all treesin a
set and displays only those shared by the mgjority of the trees. Consequently, each internode in
the MRC tree has a value that corresponds to either the number or the percentage of individual
phylogenetic trees that contain the bipartitions created by splitting up the tree at this internode.
Although consensus methods have been extremely useful and very popular in summarizing
agreement and incongruence, they do not provide information on the next most prevalent
conflicting bipartition, or more generally, on the distribution of conflicting bipartitions. For
example, when a MRC tree reports that 51 out of 100 phylogenetic trees contain a specific
bipartition, whether the second most prevalent, yet conflicting bipartition, is supported by the
remaining 49 phylogenetic trees or by only 5 of these is not known. Information about the
distribution of conflicting bipartitions, however, can be informative because the first type of
conflict in the previous example (51% ver sus 49%) shows that both bipartitions receive almost
identical support, whereas the second type (51% versus 5%) suggests that the first bipartition
represents the sole strongly supported bipartition. Although phylogenetic inference programs
typically report the distribution of bipartitions from a set of trees, including those That do not

30,31
ee

appear inthe MRC tr , and several methods have been developed to visualize the

32-34
e

phylogenetic conflict on each internod , measures that also incorporate conflicting

bipartitions to quantify incongruence have so far been lacking.
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We introduce four related measures that, given a set of trees or characters defining bipartitions,
can be used to quantify the degree of incongruence for a given internode, or for an entire tree.
The quantification of incongruence or conflict in al four measures is based on Shannon’s
entropy, acommon uncertainty measure for arandom variable®. The first two measures,
Internode Certainty (IC) and Internode Certainty All (ICA), quantify the degree of certainty for
each individual internode by considering the two most prevalent conflicting bipartitions (IC) or
all most prevalent conflicting bipartitions (ICA), by providing the log magnitude of their
difference. The other two measures, Tree Certainty (TC) and Tree Certainty All (TCA), arethe
sums of 1C and ICA values, respectively over al internodes in a phylogeny. In this study, we
present the theory of the four measures and illustrate by example how they can be applied to
different types of data and biological questions. Finally, we describe how they have been

implemented in the widely-used program RAXML.

Four Novel Measuresthat Use Information Theory to Quantify I ncongruence
Phylogenetic trees that represent evolutionary relationships among different genes or taxa are
acyclic connected graphs that consist of nodes connected by edges or branches. Each internal
branch (or internode) in a phylogenetic tree can also be represented as a bipartition or split that
divides the taxainto two digoint partitions (Fig. 3.1). Therefore, any measure that quantifies
internode support will also represent the support for the given bipartition. By considering each
internode as a bipartition, any unrooted fully bifurcating phylogenetic tree with k taxa will
contain k=3 non-trivial bipartitions (i.e., k=3 bipartitions, each of which dividesthek=m+n
taxain the tree into two partitions of m and n taxa, respectively where m> 2 and n > 2). If two

phylogenetic trees with the same number of taxak are topologically identical, then the total
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number of unique non-trivia bipartitionsis still only k=3 because the union of the set of
bipartitions induced by this second tree with the set of bipartitions induced by the first shows that
there are no unique non-trivial bipartitions that are only present in one tree but absent from the
other. In contrast, if two phylogenetic trees are incongruent, then the set of phylogenetic trees
will contain more than k-3 bipartitions, where each of the additional bipartitions represent
bipartitions that conflict with one or more of the k-3 bipartitions.

Figure 3.1. Compatible and conflicting bipartitions. Bipartition A={a, b, ¢, d, e|f, g, h, i, |} is
composed of the partitions A;={a, b, ¢, d, €} and A,={f, g, h, i, |}, wherea, b, c, d, e f, g, h,i,
and j aretaxa. BipartitionB={a, b, c|d, e f, g, h, i, j} iscomposed of the partitions B;={a, b, c}
and B,={d, ¢ f, g, h, 1, ]}, and bipartition C={a, b, c,d, g | & f, h, i, j} iscomposed of the
partitions C;={a, b, ¢, d, g} and C,={e, 1, h, i, j}. Bipartitions A and B are compatible because
one of the intersections of their bipartition pairs (A2 N B1) is empty. Bipartitions B and C are
compatible for the same reason (B; N C, isempty). In contrast, bipartition C conflictsor is
incompatible with bipartition A because none of the four intersections (Az N Cy, A1 N Cp, Ao N
C1, Ao N Cy) isempty.

f

A:{ﬂ, b,f, d,e|j;g, ht fs‘f} B:{ﬂ, b,CId, e!j;g! h, Itj} ('rz{as b; C, dsgle!j; h, Iu”

R Compatible X
bipartitions

conflicting ¥
bipartitions

Compatible and Conflicting Bipartitions
Two bipartitions A = X; | X; and B = Y | Y2 from the same taxon set are compatible if and only if

at leastone of the intersections of the four bipartition pairs (X3 N Y1, X1 N Yz, Xo N Y1, Xo N Y2) IS
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29,34

empty~>~". If this condition is not met, then the bipartitions are said to be incompatible or

incongruent or to conflict with one another.

Example. Let us consider the bipartition A={a, b, c, d, e|f, g, h, i, j}, comprised by the
partitionsA; ={a, b, ¢, d, e} and A, ={f, g, h, i, |}, wherea, b, c,d, g f, g, h,i and| aretaxon
names. Let us also consider a second bipartition from the same set of taxaB={a, b, c|d, e f, g,
h, i, ]}, comprised by the partitions B;={a, b, ¢} and B, ={d, e, f, g, h, i, j} (Fig. 3.1). Bipartition
B does not conflict with bipartition A because A, N By isempty. In contrast, bipartition C ={a, b,
c,d, glef hi,j}, comprised by the partitionsC; ={a, b, ¢, d, g} and C, ={e, 1, h,1i,j},
conflicts or isincompatible with bipartition A because none of the four intersections (A; N Cy, Aq

NCyA2NCy, AN Cz) is empty (Flg 31)

Shannon’s Entropy and I nternode Certainty

Shannon'’ s entropy measures the amount of uncertainty in random variables®. For two equally
probable events, for example “head or tails’ in afair coin toss, the amount of uncertainty is equal
to 1. However, if the coin is not fair the uncertainty of the outcome decreases proportionally to
the coin’s ‘unfairness'. In general, for arandom variable X with a set of n possible values { Xy,

Xa...Xn} Shannon’s entropy H(X) is defined as
HIX|==2 P(X,|log|P(X,]
n=1 ' a

where P(X,) isthe probability of outcome X, . Inits simplest form, if variable X consists of

only two possible outcomes X; and X,, Shannon’s entropy is equal to



2
H(X|=-) P|X,|log,|P|X,]
n=1
In phylogenetics, let us consider variable H(X) as the entropy that measures the amount of
uncertainty of support for a given internode with the set of possible values being the values of
the two most prevaent conflicting bipartitions (n = 2) for that internode (i.e., X = { Xy, X2} ), with
X1 being the frequency of support for the bipartition that defines the internode. For these two

bipartitions X; and X, we define H(X) as the Internode Uncertainty:

2
Internode Uncertainty =— Z P (_X,?) logg( P (:X;?'J]

n=1

P(X |log,(P| X ||+ P(X,|log, [P[X,)
where P(X1) = X1/ (X1 + Xp), P(X2) = Xo / (X1 + X2), and P(Xy) + P(X) = 1.

Because internode support measures typically quantify the degree of support for a given
internode, rather than the lack thereof, we reverse the sign of the equation and add log2

(n) to it so that the measure corresponds to certainty rather than uncertainty. Thus, we define

Internode Certainty (IC) as
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IC=log,(n|+), P|X,| logz(P(X,;)]

n=1

1+P( X |log,| P[X,]]+P|X,)log, P X ||

where P(Xy) = X1/ (X1 + X2), P(X2) = Xz / (X1 + X2), and P(Xy) + P(Xp) = 1.

For agiven internode, |C values correspond to the magnitude of conflict between the bipartition
that defines the internode and the most prevalent conflicting bipartition in the given tree set. For
example, IC values at or close to 1 indicate the absence of conflict for the bipartition defined by
agiven internode, whereas IC values at or close to 0 indicate equal support for both bipartitions
and hence maximum conflict.

So far, we have assumed that the frequency of the bipartition that defines the internode is equal
or higher than the frequency of the most prevalent bipartition, that is, P(X;) > P(Xz). However, in
some cases it may happen that we need to calculate the IC of an internode that was included in
the consensus tree (depending on the type of consensus tree constructed, see below) whose
bipartition frequency is actually smaller than the frequency of a conflicting bipartition, that is
P(X1) < P(Xy) . To distinguish between cases where P(X;) > P(X;) from cases where P(X;) <
P(X2), wereverse the sign of the IC value for all cases where P(X;) < P(X;). Thus, negative IC
values indicate that the internode of interest conflicts with a bipartition that has higher frequency,
and IC values at or close to —1 indicate an almost compl ete absence of support for the bipartition
defined by the given internode and an almost absol ute support for the conflicting bipartition. The

behavior of the IC measure for arange of different values of X; and X; isshown in Fig. 3.2.
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Examples. Let us consider a set of 100 gene trees, from which 62 gene trees support
bipartition X3, which appears on the MRC tree, and 6 gene trees support the conflicting
bipartition X2 (which does not appear on the MRC tree). In this case,

P(X1) =X/ (X1 + X2) =62/ (62 + 6) = 0.91, and P(Xz) = Xo/ (X1 + X) =6/ (62 + 6) = 0.09.
Thus,

|C=1+ P(X1) logz ((P(X1))+ P(X2) l0gaP(X2))=1+0.91x10g,(0.91)+0.09 * l0g,(0.09 ) =0.57

If X;= 52 gene trees and the conflicting bipartition X, = 29 gene trees, then

P(Xy) = Xq/ (X1 + X2) =52/ (52 + 29) = 0.64, and P(X2)= Xof (X1 + X2) =29/ (52 + 29) = 0.36.
Thus,

|C=1+ P(Xy) logz (P(X1))+ P(X2)logz (P(X2))=1+0.64* l0g,(0.64)+0.36 *10g,(0.36) =0.06

Finally, if an internode is defined by a bipartition X; supported by 5 gene trees and the
conflicting bipartition X, is support by 55 gene trees, then
P(X1) = Xa/ (X1 + Xz) =5/ (5 + 55) = 0.08, and P(X)= Xz / (X1+ X3) =55/ (5 + 55) = 0.92. Thus,

IC=1+ P(X1) l0ga(P(X1))+ P(X2)l0gs(P(X2))=1+0.08+0g(0.08)+0.92 * 10g»(0.92 )= —0.59
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Fig. 3.2. Visualizing I C for thetwo most prevalent conflicting bipartitions of a given
internode. The default curve represents the case of only two conflicting bipartitions for one
internode (only two partitions: { X, 100 — X} ). Out of 100 total trees, when 60 trees recover the
first bipartition, the remaining 40 will support the second and conflicting bipartition. In the
presence of three conflicting bipartitions for a given internode (e.g., { 65, 30, 5}), when the two
most prevalent bipartitions are considered, the percentage of trees supporting the first bipartition
isequal to 65/ (65 + 30), whereas the percentage of trees supporting the second conflicting
bipartition is equal to 30/ (65 + 30). The reason that we do not include the number of trees
containing the third bipartition is that we want 1C to measure the magnitude of certainty
conveyed by the two most prevalent bipartitions. Thisway, IC will be zero when the two most
prevalent conflicting bipartitions have equal frequencies.

/
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Internode Certainty (I1C)
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Frequency of bipartition X

2 conflicting bipartitions with support frequencies X and 100 - X

3 conflicting bipartitions with frequencies X, 95 - X, and 5 of which only the two highest are used to calculate IC
3 conflicting bipartitions with frequencies X, 85 - X, and 15 of which only the two highest are used to calculate IC
3 conflicting bipartitions with frequencies X, 75 - X, and 25 of which only the two highest are used to calculate IC
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Extending IC to Include All Prevalent Conflicting Bipartitions

The IC can be extended to consider all n prevalent conflicting bipartitions for a given internode,
that is X = { Xy, Xz... Xp}. This measure, which we name Internode Certainty All (ICA), can be
calculated using

ICA=logn(n)+ P(X1) logn (P(X2))+ P(X1) l0gn (P(X1))+...+ P(Xn) 10gn(P(Xn))

WhereP(X1)=X1/(X1+X2+ .t Xn), P(Xz): Xz/(X1+X2+ ..t Xn), ey

P(Xn) = Xn ! (X1 + Xo + .4 X0), and P(Xy) + P(X2)+ ...+ P(Xy)= 1.

Because the number of bipartitions that conflict with a given internode in large phylogenetic tree
sets can be high, as well as because conflicting bipartitions whose frequency is very low have
little impact on the certainty value of a given internode, we restrict the ICA to consider only
bipartitions whose frequency is> 5% because this represents a reasonable trade-off between
speed and accuracy. To distinguish between cases where P(X3) is greater than or equal to each
single one of the frequencies for al conflicting bipartitions from cases where P(X;) is lower than
one or more conflicting bipartitions, we reverse the sign of the ICA for all cases where P(X3) is
lower. Thus, ICA values at or near 1 indicate the absence of any conflict for the bipartition
defined by a given internode, whereas ICA values at or near 0 indicate that one or more
conflicting bipartitions have almost equal support. Negative ICA vauesindicate that the
internode of interest conflicts with one or more bipartitions that exhibit a higher frequency and
ICA values at or near 1 indicate the absence of support for the bipartition defined by a given
internode. The behavior of the ICA measure for arange of different values of X, Xy, ..., X, is

shown in Fig. 3.3.
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Fig. 3.3. Visualizing I CA for all the most prevalent conflicting bipartitions of a given
internode. For simplicity, calculations were performed using a 2-variable system (X : Y ... Y)
with the number of conflicting bipartitions increasing. For example, the open triangle line on the
graph illustrates the behavior of ICA when the frequency of the most strongly supported
bipartition for a given internode is 80, with the remaining 20% equally divided among all
conflicting bipartitions (e.g., if there is one conflicting bipartition it will have afrequency of
20%, if there are two conflicting bipartitions each one will have a frequency of 10%, etc.).
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Examples. Let us consider a set of 100 gene trees, from which 80 gene trees support
bipartition X3, 6 gene trees support the conflicting bipartition X,, and 5 gene trees support the
conflicting bipartition Xs. In this case,

P(X1) =X/ (X1 + X2+ X3) =80/ (80 + 6 + 5) = 0.88,

P(X2) =X/ (X1 + X2+ X3) =6/ (80 + 6 +5) =0.07, and

P(X3) = X3/ (Xy+ X2+ X3) =5/ (80 + 6 + 5) = 0.05. Thus,

ICA=1+ P(Xy1) logs (P(X1)) + P(X2) logs (P(X2)) + P(X3) log3 (P(Xs)) =

=1+0.88+ logs (0.88) +0.07+ logs (0.07) +0.05+l0gs (0.05) = 0.59

If X; =52 gene trees and the conflicting bipartitions X, = 29 gene trees and X3 = 19 gene trees,

then

P(Xy) = Xo/ (Xg + Xo + X3) =52/ (52 + 29 + 19) = 0.52,

P(X2) = Xao/ (X2 + Xo+ X3) =29/ (52 + 29 + 19) = 0.29, and

P(X3) = X3/ (X1 + Xo+ X3) =19/ (52 + 29 + 19) = 0.19. Thus,
ICA=1+ P(Xy) log3 (P(X1)) + P(X2) logs (P(X2)) + P(X3) logs (P(X3)) =
=1+0.52 *logs (0.52) +0.29+ logs (0.29) + 0.19* logs (0.19) = 0.08
Finally, if X; =5 gene trees and the conflicting bipartitions X, = 15 gene trees and X3 = 11 gene
trees, then

P(X1) = X¢/ (X1 + %o + X5) =5/ (5 + 15 + 11) = 0.16,

P(X2) = Xo/ (X3 + Xz + X3) =15/ (5 + 15 + 11) = 0.48, and

P(X3) = X3/ (Xg + X2+ X3) =11/ (5+ 15+ 11) = 0.36. Thus,

ICA=1+ P(Xy) logs (P(X1)) + P(Xz) logs (P(X2)) + P(X3) logs (P(Xs)) =

=1+0.16 *l0gs (0.16) + 0.48+ l0gs (0.48) + 0.36% logs (0.36) = 0.08
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However, because P(X;) < P(X;) and P(X;) < P(X3), the sign of the ICA valueisreversed to

-0.08.

Tree Certainty

Given that empirical examinations of the support frequencies of internodes in a phylogeny
suggest that they are generally independent from each other®, it is reasonable to assume that the
mutual information or dependence between internodes in a phylogenetic treeis very small. Thus,
the sum of all 1C or ICA values across a phylogeny can be used to quantify changes in the degree
of incongruence produced by the phylogenetic analysis of a given data set when analyzed with a
variety of protocols or methods. Thus, for the complete set of k — 3 internodes (internal branches)
in a phylogeny, where k is the number of taxa, we define the Tree Certainty (TC) as

i=k—3

TC= Y IC,

i=1
and Tree Certainty All (TCA) as

i=k—3
TCA= Y ICA,
i=1
The maximum TC or TCA valueisequal to k— 3 and indicates a comprehensive absence of
conflict in the phylogeny. When comparing phylogenies with different taxon numbers, a
normalized value of TC or TCA can aso be obtained by dividing the TC value by k — 3, the

number of internodes in the phylogeny.
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Applicationsof IC, ICA, TC, and TCA

All four measures can be used to quantify incongruence on any dataset that contains bipartitions,
including from bootstrap replicate trees, gene trees or individual characters (e.g., from
morphology, from large-scale and rare genomic changes, or from individual sitesin a sequence
alignment). To demonstrate the utility of the four measures, we discuss three commonly used

datatypes here where one can deploy IC, ICA, TC, and TCA to quantify incongruence.

IC, ICA, TC, and TCA Can Quantify Incongruencein Setsof Trees

The most straightforward use of the four measures is for quantifying incongruence on a set of
trees (Fig. 3.4); often, this set is comprised of the gene trees obtained from analysis of several
different genes collected from the same set of taxa. In this case, calculation of the four measures
will be based on the frequency values of the bipartitions present in the entire set of gene trees;
note that, the frequency value of abipartition is also known as gene support frequency or GSF
and reflects the percentage of gene trees that contain the bipartition®. When quantifying
incongruence in a set of genetrees, the IC and ICA values of a given internode will reflect the
degree of incongruence for that internode in the set of gene trees, and the TC and TCA values
will reflect the degree of incongruence between the individual gene trees across the entire
phylogeny. When applied to a dataset of 1,070 gene trees from 23 taxa, the IC and ICA values
revealed high levels of incongruence in several internodes of the extended majority-rule
consensus phylogeny and enabled us to distinguish between internodes that have similar GSF
values but very different degrees of conflict (Fig. 3.4D). Specifically, the placement of
Saccharomyces bayanus and of Zygosaccharomyces rouxii received 52% and 62% GSF, whereas

their 1C values were 0.05 and 0.59 and their ICA values were 0.14 and 0.47, respectively (Fig.
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3.4D). This marked difference between the GSF and the IC / ICA values of the two internodesis
aresult of the absence of well-supported bipartitions that conflict with the placement of Z. rouxii

and the presence of well-supported bipartitions that conflict with the placement of S bayanus®*.

Fig. 3.4.1C,ICA, TC, and TCA can quantify incongruence in any set of treesor
bipartitions. Given a set of trees (panel A) that defines a set of bipartitions (panel B), one can
use the four measures to quantify incongruence (panel C). For example, examination of 1,070
gene trees revealed the presence of extensive incongruence in a phylogeny of 23 yeast taxa
(panel D) (values near internodes correspond to GSF/ IC / ICA values).

A B C

_ Trees Bipartition: GSF Consensus bipartition: {a,b | ¢,d,e}
((a,b),c,(d,€)); {a,b | c,d,e}: 8/10 Conflicting bipartitions: {a.d | b,c,e}
((a,b),c,(c,d)); {aabsc | d','e}: 5/10 {a,d,e I b,C}
((a,b),c,(d,e)); {awd | c,b,e}: 2/10 IC=0.28 ICA=028 {b,e | a,(.',d}
((a,b),c.(d,e)); {a,b.e | c,d}: 2/10 c
((a,b),e5(c,d)); {a,b,d| c,e}: 1/10 a d
((a,b),d,(c,e)); {a.d,e | byc}: 1/10 TC = 0.41
((a,d),c,(b,e)); {b,e | a,c,d}: 1/10 TCA=0.48 5
((a,b),c\(d,e)); e
((a,d),e(byc)); Consensus bipartition: {@,b,c | d,e}
((a,b),c,(d,e)); Conflicting bipartitions: {a,d | b,c,e}

{a,b,e | c,d}

{a,bd | c,e}

be | a,c.
IC = 0.14, ICA = 0.09 the| acdy
D
99/0.97/0.97 Kiwyveromvees waltii (Kwal)
Khwveromyvees thermotolerans (Kthe)
Saccharomyees kluvveri (Sklu)
Kiwyveronvees lactis (Klac)
red, Eremothecinm gossypii (Egos)
Zvgosachavomyvees rowxii (Zrou)
Kluvveromyvees polvsporus (Kpol)
Candida glabrata (Cgla)
Saccharomyees castellii (Scas)
Saccharomyees bavanus (Shay)

99/0.97/0.97 2803971057 r Saccharomyees kudriavzevii (Skud)

52/0.05/0.18 Saccharomyees mikatae (Smik)

0.2 60/0.31/0.27, .\':rr'r'.l’m.wun_rr'r'.\' peu'urfr:\'m (Spar)
77/0.56/0.56 Saccharomyces cerevisiae (Scer)
TC=8.40 Candica fusitaniae (Clus)

TCA = 8.40 G8/0.95/0.95 Candide dubliniensis (Cdub)
9w|_c( ‘andida albicans (Calb)
1 87/0.75/0.75 i

', Candida tropicalis (Ctro)
48/0.11/0.11 _I— Candida parapsilosis (Cpar)
GSF/IC/ICA 9/0.76/0.76 Lodderomyees elongisporus (Lelo)
110 04|2“0 o Pichia stipitis (Psti)
’ : “andida guilliermondii (Cgui)
28/0.02/0.07 Debarvomyees hansenii (Dhan)
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When analyzing phylogenetic trees from a single gene or set of genes (multiple genesin
supermatrix), it is standard practice to cal culate the robustness of support for each internode of
the gene tree via bootstrapping®. One can thus use the set of bootstrap replicate trees for a given
geneto calculate IC, ICA, TC, and TCA. In this case, calculation of the measures will be based
on the frequency values of the bipartitions present in the entire set of bootstrap replicate trees,
which are better known as bootstrap support values. When quantifying incongruence in a set of
bootstrap replicate trees from a single gene, the IC and ICA vaues of a given internode will
reflect the degree of incongruence for that internode in the set of bootstrap replicate trees, and
the TC and TCA values will reflect the degree of incongruence between the individual bootstrap
replicate trees across the entire gene phylogeny. For example, in our recent study® we ranked
1,070 genes from 23 yeast species based on their TC value as calculated from each gene's
bootstrap trees. Interestingly, concatenation analysis of the 131 genes with the highest TC placed
C. glabrata in aposition that is also supported by several distinct rare genomic changes®™, a
result that contradicts both the analysis of all 1,070 genes aswell as previously published

phylogenomic anal yses****.

IC, ICA, TC, and TCA Can Quantify Incongruencein Sets of Bipartitions

The four measures can also be calculated from a set of partially resolved trees or even directly
from bipartitions (Fig. 3.4B, C). For example, the bipartitions present in each gene tree rarely
receive equal support; the bootstrap consensus tree of virtually every gene shows that certain
internodes receive higher bootstrap support or IC / ICA values, indicating that the degree of
congruence of phylogenetic signals as well as the degree of “noise” from a given gene differs

widely across internodes. Thus, it may frequently be desirable to use only agenes’ highly
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supported bipartitions in the inference of consensus phylogenies (one can easily select the highly
supported bipartitions in the bootstrap consensus tree of a given gene by “collapsing” all
internodes with bootstrap support values below a certain threshold using software such as the
CONSENSE program in the PHY LIP package™). In this case, calculation of the four measures
will be exclusively based on the frequency values of those bipartitions that received high support
(e.0., high bootstrap support) or present low conflict in the entire set of gene bootstrap consensus
trees. Thus, the IC and ICA vaues of agiven internode in the consensus tree will reflect the
degree of incongruence for that internode among only the group of highly supported bipartitions
present in the set of gene trees, whereas the TC and TCA values will reflect the degree of
incongruence between highly supported bipartitions across the entire phylogeny. Note that, the
use of 1C or ICA overcomes potential issues when only asmall number of highly supported
bipartitions are associated with a given internode by measuring the degree of incongruence
independently of the number of bipartitions taken into consideration. For example, both the IC
and the ICA value for the sister group Saccharomyces cerevisiae and S. paradoxus cal culated
from an analysis of 1,070 gene trees from 23 yeast taxais 0.56 (Fig. 3.4D). In contrast, both the
IC and ICA values calculated using only those bipartitions that received> 80% bootstrap support
inindividual gene analyses of the same 1,070 genes are 0.85, suggesting that most of the
observed incongruence in the resolution of this internode stems from conflict among weakly

supported bipartitions.

IC, ICA, TC, and TCA Can Quantify Incongruencein Sets of Individual Characters
Because the four measures can be applied to any dataset that contains taxon bipartitions one can

extend their use to quantifying the level of phylogenetic conflict on any character in which the
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distribution of character statesis such that it splits the taxon set into two non-trivial bipartitions
(Fig. 3.5). Assuming a character with two states O and 1 from a set of k = m + n taxa, where m>
2 and n> 2, any site with a character state distribution of (01...0m, 15...1,) corresponds to the
bipartition { mtaxa} / {n taxa}. Thus, one can use IC or ICA to quantify the degree of
incongruence for a given bipartition defined by a character across a set of characters by
considering the number of characters supporting that bipartition jointly with the number of
characters supporting the most prevalent bipartition that conflicts with it (1C) or jointly with the
numbers of characters supporting all most prevalent bipartitions that conflict with it (ICA). Note
that, much like GSF reflects the frequency of bipartitionsin aset of trees, the frequency value of
a bipartition defined by a character reflects the percentage of characters that support the
bipartition, which we denote as character support frequency (CSF). Examples of characters that
can be used to define bipartitions include rare genomic changes™, indels, sites that contain a
single substitution between amino acids that differ radically in their physicochemical
properties*, binary morphological characters, as well as any other binary characters. For
example, analysis of 20,289 sites that contain single radical substitutions (defined as
substitutions with a blosum62 matrix score < —3), from the dataset of 1,070 genes from 23 yeast
taxa, also known as RGC_CAMs*, showed that the bipartitions defined by such sites were more

incongruent than the bipartitions present in the 1,070 gene trees.

77



Fig. 3.5.1C, ICA, TC, and TCA can quantify incongruence in any set of charactersthat
define bipartitions. Given a set of characters (panel A) that defines a set of bipartitions (panel
B), one can use the four measures to quantify incongruence (panel C). For example, examination
of 20,289 sites that contain single radical substitutions (defined as substitutions with a blosum62
matrix score < —3), from the dataset of 1,070 genes from 23 yeast taxa showed that the
bipartitions defined by such sites not only lacked information about several internodes of the

yeast phylogeny but also displayed considerable levels of incongruence.

A B C
Characters Bipartition: CSF Consensus bipartition: {a,b | ¢,d.e}
abcdefghij {ab | cide}: 4/10 Contlicting bipartitions: {b,c,d | ae}
Taxon a 1010011101 {b.cd|a.e}: 1/10 {ad | b,c,e}
Taxon b 1010011110 {cd |a,b,e}: 1/10 IC =028, ICA=021
Taxon ¢ 0111110110 ({ad |b,c,e}: 1/10 R T
Taxon d 0111110100 TC =028 \
Taxon e 1111110111 TCA = 0.21 v
b Y
]
\l
Consensus bipartition: {¢,d | a,b.e}
Conflicting bipartitions: {a.d | b,c,e}
IC =0.00, ICA=0.00
D 0.85/0.85 Kluyveromyces waltii (Kwal)
‘O-ME Kluyveromyces thermotolerans (Kthe)
-0.05/-0.05 Saccharomyces kiuyveri (Skiu)
L’O.Dl: Kluyveromyces lactis (Klac)
Eremothecium gossypiil (Egos)
[ Zygosaccharomyces rouxi (Zrou)
005005 I Kluyveromyces polysporus (Kpol)
’ '_0 5070.20| [ Candida glabrata (Cgla)
e 05T Saccharomyces castelli (Scas)
T o ooO oo Saccharomyces bayanus (Sbay)
" oooool I Saccharomyces kudravzevi (Skud)
0.98/0.98 Ry Saccharomyces mikatae (Smik)
A _Iml_: Saccharomyces paradoxus (Spar)
-0.74/-0.74 Saccharomyces cerevisiae (Scer)
Candida lusitaniae (Clus)
IC/CA  0.86/0.86 Candida dubliniensis (Cdub)
OME Candida albicans (Calb)
0.46/0.46 Candida tropicalis (Ctro)

0.00/0.00 w: Candida parapsilosis (Cpar)
Lodderomyces elongisporus (Lelo)
- Pichia stipitis (Psti)
0.00/0.00 0.00/0.00 — Candida guilliermondii (Cgui)

L—— Debarnyomyces hansenii(Dhan)

Using TC and TCA to Evaluate the Impact of Different Practicesin Data Analysis
Summing the IC or ICA vaues across al internodes of a phylogeny amounts to the phylogeny’s
TC or TCA, respectively. One useful application of the TC and TCA measuresis for comparing
the relative impact of different analytical practices on incongruence. For example, one could

calculate the TC and TCA values of the extended MRC phylogeny constructed from the gene
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trees estimated from analysis of 100 genes with only those sites that do not contain missing data
and compare it with the TC / TCA measured from the eMRC phylogeny constructed from
analysis of the same 100 genesin which only sites with more than 50% data missing are
excluded. In this case, the practice with the highest TC / TCA value will be that one that displays
the lowest degree of incongruence among the 100 gene trees. In contrast, a high decreasein TC/
TCA may indicate that a particular data filtering approach increases incongruence across the
phylogeny. For example, examination of the TC of the trees from the 100 slowest-evolving genes
in adata matrix comprised of 1,070 genes from 23 yeast taxa showed that they had a

substantially lower TC than the TC calculated by considering all 1,070 gene trees’.

Calculating IC, ICA, TC, and TCA using the RAXML software

We implemented the score calcul ations of the four measuresin RAXML* (version 7.7.8,
available via https.//github.com/stamatak/standard-RAXML), taking advantage of already
available efficient data structures for performing calcul ations on bipartitions®. For afull
description of the commands for calculation of the four measures and an example, please see the
manual (Supplementary Text File) and test dataset (Supplementary Datafile). Given a set of gene
trees, RAXML can directly calculate aMRC as well as an eMRC tree on this set that is annotated
by the respective IC and ICA values. The particularly compute-intensive inference of eMRC
trees (finding the optimal eMRC treeis, in fact, NP-hard*") relies on the fast paralle
implementation presented in Aberer et al.*. It can also compute stricter MRC trees with arbitrary
threshold settings that range between 51 and 99%. Furthermore, we have implemented an option
that allows for drawing IC scores onto a given, strictly bifurcating reference tree (e.g., the best-

known ML tree).
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Note that, the IC and ICA values are represented as branch labels, since, asis the case for
bootstrap support values, information associated to bipartitions of atree dways refersto its
internodes (internal branches) and not its nodes. Each tree viewer (e.g., Dendroscope®) that can
properly parse the Newick tree format is able to display these branch labels. The rationale for not
providing IC values as node labels is that some tree viewers may not properly rotate the node
|abels when the user reroots the tree, leading to an erroneous internal branch-to-1C-value
association.

When calculating the IC and ICA values on extended MRC trees or onto a given reference tree it
may occur that, the bipartition that has been included in the tree has lower support than one or
more conflicting bipartitions (see also above). In this case, RAXML will display awarning to the
user and annotate the internode with a negative IC value. Note that, thisis not only atheoretical
possibility when using extended MRC trees, but a frequent observation for bipartitions that have
low frequency in a gene tree set or that have low bootstrap support in a set of bootstrap replicate
trees.

RAXML also calculates the TC and TCA values as well as their relative values that are
normalized by the maximum possible TC / TCA values for a given phylogeny. Finally, we have
implemented a verbose output option that allows usersto further scrutinize particularly
interesting conflicting bipartitions. In verbose mode RAXML will generate two types of output
files: one set of files containing the bipartition included in the MRC tree and its corresponding
conflicting bipartitions in Newick format and an output file listing all bipartitions (included and

conflicting) with their IC and ICA valuesin a PHY LIP-like format.
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DISCUSSION

To tackle gene incongruence, phylogeneticists often resort to creating concatenated data matrices
comprised of tens or hundreds of genes™*>!, Because the vast mgjority of concatenation studies
assesses robustness in inference using bootstrapping, an extremely useful measure of robustness

of inference when data are limited® but one that in the presence of large amounts of datawill

3,10,41

nearly always result in 100% support numerous studies purport to have resolved long-

standing phylogenetic problems. However, different phylogenomic studies focused on the same
internodes sometimes provide contradicting, but equally robustly supported, answers®®>°2>3
suggesting that incongruence is not ameliorated, but rather masked, by these practices.
Consequently, accurate phylogenetic inference requires not only large amounts of data and

absol ute bootstrap support, but also demonstration that the data do not contain substantial
amounts of conflicting phylogenetic signal®. Thus, accurate inference requires methods that
identify and quantify conflicts in phylogenetic signal.

To quantify the degree of incongruence present in phylogenomic data matrices, we devel oped
two novel measures, IC and ICA, which quantify the degree of conflict on each specific
internode of a phylogeny and two novel measures, TC and TCA, which quantify the degree of
conflict for the whole tree. All four measures can be used for awide variety of different
phylogenetic markers, from individual characters to gene trees to genomic characters (Figs. 4
and 5) and are meant to provide simple, fast and intuitive measurements that identify the
presence of incongruence in a phylogenomic data matrix rather than to elucidate the root cause(s)
of the observed incongruence. Even though the absolute values of our measures are not aimed to

provide statistical significance, the degree of certainty calculated derives from the amount of

information on each internode. For example, in the case of I1C the degree of certainty corresponds
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to the ratio between the most prevaent and the next most prevalent, but conflicting, bipartition
(Fig. 2). If the most prevalent bipartition is supported by 95% of the data and the next most
prevalent conflicting bipartition is supported by the remaining 5%, then the value of the IC
measure will be approximately 0.71, whereas if the two most prevalent conflicting bipartitions
have the same frequency of support, then IC will equal zero.

Compared to the very popular incongruence length difference test®®, our measures can easily be
applied to the study of a single internode or the whole tree, to study one or many data partitions,
and are not dependent on a particular optimality criterion. Compared to topology constraint tests,
such as the Kishino-Hasegawa (K H) test™®, the Shimodaira-Hasegawa (SH) test?®, and the
Approximately Unbiased (AU) test™, thereis no need for a priori tree selection and multiple
internodes can be examined simultaneously very quickly. The price of this speed and flexibility,
however, isthat our tests are not designed to test specific phylogenetic hypotheses or provide
estimates of statistical significance; in many ways, our measures are designed to quickly identify
incongruence in phylogenomic data matrices, enabling users to further explore its causes using
more custom methods.

Our IC, ICA, TC, and TCA measures do not distinguish whether alow degree of certainty isthe
result of strong conflicts in phylogenetic signal, or random noise due to be absence of any signal.
In other words, incongruence between trees does not necessarily indicate conflicting support,
because incongruent trees are aso the null expectation when a data matrix contains no
phylogenetic signal (although, differences between IC and ICA values may aert for the presence
of more than two signals). In such cases, users are advised to examine whether the tree distance
distribution of observed trees deviates significantly from randomness by using atree distance

method**, such as the Robinson-Foulds tree distance™, prior to inferring that the low degree of

82



certainty in adata matrix is the result of strong conflictsin phylogenetic signal. Other
aternatives include employing the more computationally-intensive topology constraint KH, SH,
or AU tests®%*,

One potential drawback when applying the IC, ICA, TC, and TCA measuresis their values may
not be representative when small numbers of characters or gene trees are used. Although thisisa
genera problem that influences all measures, including bootstrap support (BS) and gene support
frequency (GSF), our measures are likely to be most informative when applied to large amounts
of data (e.g., hundreds of characters or dozens of genes or hundreds of bootstrap replicates). Our
TC and TCA measures also assume that the support frequencies of internodesin a phylogeny are
independent from each other. Even though this is an approximation, previous results suggest that
the application of avariety of standard practices aimed at reducing incongruence, such as
removal of unstable or fast-evolving taxa, do not affect IC and ICA values across the entire
phylogeny; rather, their effects are largely localized on one particular internode®. It should be
noted that such afocus on asingle internode or a small, local neighborhood of an internode
represents acommon approximation in phylogenetics and is frequently used to design search
heuristics or statistical tests such asthe aL RT test™.

Finaly, IC, ICA, TC, and TCA measures, as currently implemented in RAXML, cannot be
applied on datasets with missing data (for example when some genes are missing from certain
taxa), because dealing with trees that only contain subset of the overall taxon set is
computationally substantially more challenging and requires the appropriate adaptation and/or
extension of supertree methods. Hence, the solution to this problem is not straightforward, but

we hope to address this challenging issue in the near future.
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SUPPLEMENTARY MATERIAL

Manual for calculating Internode Certainty (IC), Internode Certainty All (ICA), Tree
Certainty (TC), and Tree Certainty All (TCA) in RAXML [Provided as Supplementary Text
Fileto: Salichos, L., A. Stamatakis, and A. Rokas (2013). Novel | nformation Theory-Based

Metricsfor Quantifying Incongruence among Phylogenetic Trees. Manuscript under review]

Disclaimers
Score calculations of the IC, ICA, TC, and TCA metrics have been implemented in the widely-used

program RAXML (version 7.7.8, available via https://github.com/stamatak/standard-RAxML) (Stamatakis

2006). RAXML users are strongly encouraged to always check for and use the latest RAXML version on
GITHUB. User support is provided via the following Google group:

https://groups.google.com/forum/?hl=de#!forum/raxml. Users should avoid contacting the authors

directly with inquiries about the code, but to post their question on the RAXML Google group. Users are

encouraged to examine past answers to questions, which can be easily searched via keywords.
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Users of the IC, ICA, TC, and TCA metrics are kindly requested to cite the following papers when using
them:

Salichos, L., and A. Rokas (2013) Inferring ancient divergences requires genes with strong phylogenetic
signals. Nature 497: 327-331

Stamatakis, A. (2006) RAXML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with
Thousands of Taxa and Mixed Models. Bioinformatics 22: 2688-2690

Salichos, L., A. Stamatakis, and A. Rokas (2013). Novel Information Theory-Based Metrics for
Quantifying Incongruence among Phylogenetic Trees. Manuscript under review

Manual

The implementation of the IC, ICA, TC, and TCA metrics relies on the efficient data structures that are

already available in RAXML for performing calculations on tree bipartitions/splits [2].

Given a set of gene trees, RAXML can directly calculate a majority rule consensus (MRC; MR in RAXML
terminology) as well as an extended MRC tree (MRE in RAXML terminology) on this set that has every
internode (that is, internal branch) annotated by their respective IC and ICA scores. For instance, to

compute the IC, ICA, TC, and TCA scores for a given set of gene trees on a MRC tree you would type:

-/raxmlHPC -L MR -z 1070_yeast_genetrees.tre -m GTRCAT -n T1

where -L MR specifies that the scores will be displayed on the MRC tree computed by RAXML, -z
1070 _yeast_genetrees. tre specifies the filename that contains the set of gene trees (which are
the maximum likelihood trees from the 1,070 yeast genes analyzed by Salichos, and Rokas 2013, and
which are provided as supplementary data to this manuscript), -m GTRCAT is an arbitrary substitution

model (this will have no effect whatsoever, but is required as input to RAxML), and -n T1 is the run ID
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that is appended to output files. RAXML will automatically build the MRC tree, annotate it with the IC
and ICA scores, and report both in an output file named

RAXML_MajorityRuleConsensusTree_I1C.T1, which will ook like this:

(Scer,Spar, (Smik, (Skud, (Sbay, (Scas, (Cgla, (Kpol, (Zrou, ((Clus, ((Psti, ((C
tro, (Calb,Cdub):1.0[0.95,0.95]):1.0[0.77,0.77],(Cpar,Lelo):1.0[0.76,0.
76]1):1.0[0.75,0.75]):1.0[0.11,0.11],(Cgui ,Dhan):1.0[0.02,0.07]):1.0[0.
02,0.08]):1.0[0.97,0.97], ((Sklu, (Kwal ,Kthe):1.0[0.97,0.97]):1.0[0.32,0
.23], (Agos,Klac):1.0[0.08,0.08]):1.0[0.04,0.10]):1.0[0.59,0.47]):1.0[0
.02,0.02]):1.0[0.11,0.11]):1.0[0.02,0.02]):1.0[0.97,0.97]):1.0[0.05,0.

147):1.0[0.30,0.27]):1.0[0.54,0.54]);

For each internode or internal branch of the constructed MRC tree, RAXML will assign an
length[Xx,y]branch label, where length corresponds to the branch’s length (because this is a MRC
tree, all internal branch lengths have been arbitrarily set to 1.0 by default), X corresponds to the IC

score and Y to the ICA score.

RAXML will also calculate the TC and TCA scores for the MRC tree, as well as the relative TC and TCA
scores that are normalized by the maximum possible TC and TCA scores for a fully bifurcating tree from
the same number of taxa. The scores are displayed in the terminal output and in the
RAXML__info.runlD standard output file associated with the run (in this case RAXML_info.T1)

and will look like this:

Tree certainty for this tree: 7.642240

Relative tree certainty for this tree: 0.382112
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Tree certainty including all conflicting bipartitions (TCA) for this
tree: 7.580023
Relative tree certainty including all conflicting bipartitions (TCA)

for this tree: 0.379001

Given a set of gene trees, RAXML can also directly calculate an extended MRC tree on this set that has
every internode (that is, internal branch) annotated by their respective IC and ICA scores. The
particularly compute-intensive inference of extended MRC trees (finding the optimal extended MRC tree
is, in fact, NP-hard; Phillips, and Warnow 1996) relies on RAXML's fast parallel implementation
(presented in Aberer, Pattengale, and Stamatakis 2010). Thus if you use the PThreads version of RAXML,

this part will run in parallel. To compute IC, ICA, TC and TCA scores on an extended MRC tree you would

type:

-/raxmlHPC -L MRE -z 1070_yeast_genetrees.tre -m GTRCAT -n T2

RAXML can compute MRC and extended MRC trees, using both fully bifurcating and partially resolved /
multifurcating trees as an input. RAXML can also compute stricter MRC trees with arbitrary threshold

settings that range between 51 and 100%. For instance, by typing

/raxmlHPC -L T 75 -z 1070_yeast genetrees.tre -m GTRCAT -n T3

RAxML will display IC, ICA, TC and TCA scores on a MRC tree that only includes those bipartitions that

have = 75% support.
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We have also implemented an option (-F 1) that allows the user to calculate and display IC, ICA, TC
and TCA scores onto a given, strictly bifurcating reference tree (for example, the best-known ML tree).
This is analogous to the standard —F b option in RAXML that draws bootstrap support values from a set

of bootstrap trees onto a reference phylogeny. The option can be invoked by typing

/raxmlHPC -f 1 -t yeast_concatenationtree.tre -z

1070_yeast _genetrees.tre -m GTRCAT -n T4

Note that, the tree contained in file yeast_concatenationtree. tre needs to be strictly
bifurcating and contain branch lengths. In this example, the yeast concatenationtree. tre file
is the best-known maximum likelihood tree recovered by concatenation analysis of the 1,070 yeast
genes (Salichos, and Rokas 2013). Using this command, RAXML will annotate the tree in
yeast_concatenationtree.tre with the IC and ICA scores, and report both in an output file

named RAXML__1C_Score_BranchLabels_T4, which will look like this:

(((((((Clus:0.47168135428609103688, ((((Lel0:0.30356174702769450624 ,Cpa
r:0.25490874239480920682) :0.13023178275857649755[0.76,0.76] , (Ctro:0.18
383414558272206940, (Calb:0.04124660275465741321, Cdub:0.042908015883968
32289):0.14526604486383792869[0.95,0.95]) :0.12355825028654655873[0.77,
0.77]):0.17335821030783615804[0.75,0.75] ,Psti:0.42255112174261910685) :
0.07862882822310976461[0.11,0.11], (Cgui :0.45961028886034632768 ,Dhan:0.
28259245937168109286) :0.05586015476156453580[0.02,0.07]) :0.08116340505
230199009[0.02,0.08]) : 1.03598510402913923656[0.97,0.97] , ((Agos:0.53332
956655591512440 ,Klac:0.47072785596320687596) : 0.08132006357704427146[0.

08,0.08], ((Kthe:0.17123899487739652203,Kwal :0.17320923240031221857) :0.
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25620117495110567019[0.97,0.97],Sklu:0.24833228915799765435) :0.0564699
2617871094550[0.32,0.23]):0.05236306187235122145[0.04,0.10]) :0.1068651
7691208799463[0.59,0.47],Zrou:0.41307833685563782877) :0.03792570537296
727218[0.02,0.02],Kpol :0.43287284049576529865) :0.04560341693136910068[
0.11,0.11],Cgla:0.49584136365135367264) :0.04363310339731014259[0.02,0.
02],Scas:0.37212829744050218705) :0.29362133996280515014[0.97,0.97] , (Sk
ud:0.06926467973344750673, (Smik:0.06535810850036427588, (Scer:0.0428584
8856634000975, Spar:0.03030513540244994877) :0.02506719066056842596 [0 . 54
,0.54]) :0.02459323291555862850[0.30,0.27]) :0.02524223867026276907[0.05

,0.14],Sbay:0.06506923220637816918) ;

For each internode or internal branch of this output tree RAXML will assign a length[Xx,y]branch
label, where length corresponds to the branch’s length, X corresponds to the IC score and y to the
ICA score. RAXML will also display the TC and TCA scores of this tree both in the terminal output and in
the RAXML__info.T4 output file associated with the run.

It should further be noted that the IC and ICA scores are represented as branch labels, since, as is the
case for bootstrap support values, information associated to splits/bipartitions of a tree always refers to
branches and not nodes. Each tree viewer (e.g., Dendroscope; Huson, and Scornavacca 2012) that can
properly parse the Newick tree format is able to display these branch labels. The rationale for not
providing IC and ICA scores as node labels is that, some viewers may not properly rotate the node labels
when the tree is re-rooted by the user, which will lead to an erroneous branch-IC/ICA-score association.
When calculating IC and ICA scores on extended MRC trees or when drawing IC and ICA scores onto a
given reference tree it may occur that the bipartition that has been included in the tree has lower
support than one or more conflicting bipartitions. In this case, RAXML will report IC and ICA scores on

the inferred tree with negative signs.
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Finally, we have implemented a verbose output option that allows users to further scrutinize particularly
interesting conflicting bipartitions. Verbose mode is activated by adding the —C command line switch to
any of the above examples. In verbose mode RAXML will generate two types of output files: One set of
files containing one included bipartition and the corresponding conflicting bipartitions in Newick format
(called RAXML_verboselC.runID.0 .. RAXML_verboselC.runlID.N-1, where N is the
number of bipartitions in the tree) and an output file that lists all bipartitions (included and conflicting)

in a PHYLIP-like format (called RAXML_verboseSplits.runlD).

For example, by adding —C to the previous command

./raxmlHPC -f i -t yeast concatenationtree.tre -z

1070_yeast_genetrees.tre -m GTRCAT -n T5 -C

will produce 20 files (one for each of the 20 bipartitions present in the
yeast_concatenationtree.tre) named RAXML_verboselC.T5.0,

RAXML_verboselC.T5.1, .., RAXML_verboselC.T5.19

For example, the RAXML_verbosel C.T5.0 file will look like this:

((Cpar, Lelo),(Scer, Smik, Skud, Cgla, Kpol, Zrou, Kwal, Kthe, Agos,
Klac, Clus, Cgui, Psti, Ctro, Calb, Cdub, Dhan, Sklu, Scas, Sbay,
Spar));
((Cpar, Ctro, Calb, Cdub),(Scer, Smik, Skud, Cgla, Kpol, Zrou, Kwal,
Kthe, Agos, Klac, Clus, Cgui, Psti, Lelo, Dhan, Sklu, Scas, Sbhay,
Spar));
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where the first Newick string represents the bipartition that was included in the
yeast_concatenationtree.tre and all following Newick strings represent the corresponding
conflicting bipartitions in descending order of their frequency of occurrence. In the case of the
RAXML_verboselC.T5.0 file the first bipartition, which is included in the
yeast_concatenationtree.tre conflicts with only one other bipartition, which is listed as the

second bipartition.

Analogously, the output file that lists all bipartitions (included and conflicting) in a PHYLIP-like format

(RAXML_verboseSplits.T5), looks like this:

1. Scer
2. Smik
3. Skud
4. Cgla
5. Kpol
6. Zrou
7. Kwal
8. Kthe
9. Agos
10. Klac
11. Clus
12. Cgui
13. Psti
14. Cpar
15. Lelo
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16. Ctro
17. Calb
18. Cdub
19. Dhan
20. Sklu
21. Scas
22. Sbay
23. Spar

partition:

partition:
__Fxkk Kkkkhkkk Khkkhkkkhk Kkk

**

_Ex_FAhk KExEAEAA KhkAkAkAk KAhkKk

partition:

_KxkxIxkh Khkkkkhk Khkkhkkhk Kkk

*x KX

* Kk X

*x Kk

956/89.345794/0.761406

39/3.644860/0.761406

1051/98.224299/0.949483

6/0.560748/0.949483

641/59.906542/0.303620
148/13.831776/0.303620

114/10.654206/0.303620

825/77.102804/0.545775
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CAF e _wx 87/8.130841/0.545775

Here each block that starts with the partition keyword contains a specific bipartition and all
corresponding conflicting bipartitions in descending order. The X/y/z scores correspond to the
frequency of the bipartition (X), the support percentage (also known as gene support frequency; y), and

the IC score (2).
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ABSTRACT

To tackle incongruence, the topological conflict between different gene trees, phylogenomic
studies couple concatenation with practices such as rogue taxon removal or the use of slowly
evolving genes. Phylogenomic analysis of 1,070 orthologues from 23 yeast genomes identified
1,070 distinct gene trees, which were all incongruent with the phylogeny inferred from
concatenation. Incongruence severity increased for shorter internodes located deeper in the
phylogeny. Notably, whereas most practices had little or negative impact on the yeast phylogeny,
the use of genes or internodes with high average internode support significantly improved the
robustness of inference. We obtained similar results in analyses of vertebrate and metazoan
phylogenomic data sets. These results question the exclusive reliance on concatenation and
associated practices, and argue that sel ecting genes with strong phylogenetic signals and
demonstrating the absence of significant incongruence are essentia for accurately reconstructing

ancient divergences.

INTRODUCTION

Concatenation, the compilation and analysis of hundreds of genes as a single dataset, has become
the standard approach for inferring deep branches of the tree of life'>. However, incongruence
stemming from either analytical errorsin gene history reconstruction®’ or the action of biological
processes’, evidenced by disagreements between phylogenomic studies®*, argues that the
histories of some lineages are better depicted by or more closely resemble networks of highly
related trees™ and that concatenation might not be as robust as confidence indicesindicate. To
tackle incongruence, studies have adopted several practices, such as removing unstable taxa">,

which although useful are not aways effective’®*.
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The Saccharomyces and Candida yeasts are excellent for examining phylogenomic practicesin
the presence of incongruence, due to the presence of conflicting gene trees*°, and the
availability of two synteny databases®? for genome-wide identification of high-quality
orthologs, minimizing the risk of incongruence from hidden paralogy®*?® and horizontal gene
transfer®®. Importantly, levels of sequence divergence between yeasts are intermediate to those
observed between vertebrates and animals, making them an appropriate model for the study of
ancient divergences.

Analyses on 1,070 genes from 23 yeast genomes showed that although concatenation resolved
the species phylogeny, several internodes of the extended majority-rule consensus (eMRC)
phylogeny of the 1,070 underlying gene trees (GTs) were weakly supported. None of the 1,070
GTs agreed with each other, with the concatenation phylogeny or with the eM RC phylogeny. By
developing a novel measure to quantify the observed incongruence and eva uate standard
practices aimed at reducing it, we found that such practices had little impact. In agreement with

theory9,16,25,26

, iIncongruence was more severe for shorter internodes deeper on the phylogeny.
Remarkably, the selection of genes whose bootstrap consensus trees had high average clade
support, or of highly supported internodes, significantly reduced incongruence, arguing that

inference in deep time critically depends on identifying molecular markers with strong

phylogenetic signal.

All Gene Trees Differ From Species Phylogeny
We assembled a dataset of 1,070 groups of orthologous genes (orthogroups) from 23 yeast
genomes?®#+# (Methods and Supplementary Table 1). Maximum likelihood analysis of the

concatenation of al 1,070 orthogroups yielded a species phylogeny where all 20 internodes
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exhibited 100% bootstrap support (BS) (Fig. 4.1a); we obtained identical results using one other
maximum likelihood and one other Bayesian inference software (Supplementary Fig. 4.1).
Remarkably, all 1,070 GTs were topologically distinct and none matched the topology inferred
by concatenation analysis (Fig. 4.1b). However, the average tree distance between the 1,070 GTs
was much lower (normalized Robinson-Foulds tree distance” = 0.52, i.e., two GTs differed on
average in 10.4 out of their 20 bipartitions) than that between randomly generated trees of the
same taxon number (0.99, i.e., two trees differed on average on 19.8/20 bipartitions), indicating
that the yeast GTs have similar evolutionary histories.

Summarizing the 1,070 GTsinto an eMRC phylogeny yielded atopology identical with the
concatenation phylogeny (Fig. 4.1a). However, athough 11/20 internodesin the eMRC
phylogeny had >50% gene support frequency (GSF), 5 of the remaining 9 internodes had GSF
<30% (Fig. 4.14a). Furthermore, the most prevaent conflicts to most of these weakly supported
internodes had substantial GSF values (Supplementary Table 2). Take, for example, the relative
placement of C. glabrata, S castellii, and the Saccharomyces sensu stricto clade where 5
unigquely shared chromosomal rearrangements and a substantially higher number of uniquely
shared gene losses between C. glabrata and S. cerevisiae indicate that S. castellii divergence
preceded that of C. glabrata from the Saccharomyces sensu stricto clade®. Even though
concatenation provided 100% BS for the apparently incorrect grouping of S. castellii with the
sensu stricto species (Fig. 4.1a), only 311/1,070 GTs (29%) favored it, whereas 214 (20%)

inferred the C. glabrata — Saccharomyces sensu stricto one.
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Figure4.1 | The yeast species phylogeny recovered from the concatenation analysis of 1,070
genes disagrees with every single genetree, despite absolute bootstrap support. a, The
yeast species phylogeny recovered from concatenation analysis of 1,070 genes using maximum
likelihood. Asterisks (*) denote internodes that received 100% bootstrap support by the
concatenation analysis. Values near internodes correspond to gene support frequency and
internode certainty, respectively. b, The distribution of the agreement between the bipartitions
present in the 1,070 individual gene trees and the concatenation phylogeny, as well asthe
distribution of the agreement between the bipartitions present in 100 randomly generated trees of
egual taxon number and the concatenation phylogeny, measured using the normalized Robinson-
Foulds tree distance. Average distances between the 1,070 gene trees and the concatenation
phylogeny, between the 1,070 gene trees with each other, and between 100 randomly generated
gene trees of equal taxon number with each other, are aso shown. The phylogeny of the 23 yeast
species analyzed in this study is unrooted and contains 20 non-trivial bipartitions; because the
divergence of Saccharomyces and Candida lineagesiswell established, the mid-point rooting of
the phylogeny is shown for easier visualization.

a 99/0.96 P Kluyveromyces waltii (Kwal)
41/0.32 . Kluyveromyces thermotolerans (Kthe)

31/0.04 Saccharomyces kluyveri (Sklu)

*

Kluyveromyces lactis (Klac)
_| *

/- 36/0.09 Eremothecium gossypii (Egos)

Zygosacharomyces rouxii (Zrou)

62/0.59

* Kluyveromyces polysporus (Kpol)
Candida glabrata (Cgla)

Saccharomyces castellii (Scas)

24/0.02 "
29/0.12] *

29/0.02] * 99/0.97
95/0.90 *r— Saccharomyces kudriavzevii (Skud)

*

— Saccharomyces bayanus (Sbay)

Saccharomyces mikatae (Smik)
Saccharomyces paradoxus (Spar)

0.2 60/0.30

77/0.54 Saccharomyces cerevisiae
Candida lusitaniae (Clus)

98/0.95 ECandida dubliniensis (Cdub)
90/0.78 * - Candida albicans (Calb)

L — 86/0.76 — Candida tropicalis (Ctro)

*

45/0.11 I N Candida parapsilosis (Cpar)
* 89/0.77 Lodderomyces elongisporus (Lelo)

297001 * Pfchzc.l stlpzf.zs FPstl) ) '
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29/0.02 Debaryomyces hansenii (Dhan)
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A Novel Measure That Considers I ncongruence
To quantify incongruence we devel oped Internode Certainty (IC), which evaluates support for a

given internode by considering its frequency in agiven set of treesjointly with that of the most
prevalent conflicting bipartition in the same set of trees. Like phylogenetic network methods
developed for visualizing phylogenetic conflicts™, IC relies on the bipartitions present in trees,
each of which isasplit of the taxainto two mutually exclusive non-empty groups. Compared to

other incongruence measures®®, |C is not character-based®*!, it does not depend on an

2931 or clade support metric®, and can be applied to any set of trees. For

optimality criterion
example, if the entire set of GTsis used, the IC of agiven internode will reflect the amount of

information available for that internode in the set of GTs by considering the internode’ s GSF
jointly with the GSF of the most prevalent bipartition that conflicts with the internode. If the set

of bootstrap replicate trees for a given geneis used, then IC will be calculated based on BS
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values. IC values near O indicate the presence of an amost equally supported bipartition that
conflicts with the inferred internode, whereas values near 1 indicate the absence of conflict.
Examination of the eMRC phylogeny showed 9/20 internodes with 1C <0.3, which corresponds
to a<4:1 ratio between the support for the inferred internode to that of its most preval ent
conflicting bipartition, and 7/20 with IC <0.1 (<7:3 ratio) (Fig. 4.1a and Supplementary Fig. 4.2).
Because |C measures the degree of conflict for every internode, it is more informative than GSF.
For example, whereas the placement of S. bayanus and the placement of Z. rouxii received 52%
and 62% GSF, their ICs were 0.06 and 0.59, respectively (Fig. 4.1a). This marked differencein
|C values of the two internodes despite similar GSF values is because there was strong secondary
signal only in the case of S bayanus™ (29% GSF for grouping S. bayanus with S. kudriavzevii),
but not in the case of Z. rouxii (Supplementary Table 2). Furthermore, comparison of the sums of
|C values across trees of a given taxon number (Tree Certainty; TC) can be used to quantify

changes in the degree of incongruence between trees inferred using different datasets or methods.

Standard Practices Do Not Reduce I ncongruence
To test whether we could decrease incongruence, we evaluated the effect of several standard
phylogenomic practices purported to do so on the inference of the yeast phylogeny (Fig. 4.2).
Specifically, we tested the effect of:

(1) removing sites containing gaps as well as of “rogue’ genes producing alignments of bad

quality (Supplementary Fig. 4.3),
(2) removing unstable and fast-evolving species (Supplementary Figs 4.5, 4.6, and 4.7),
(3) using only genes that recover a particular internode widely regarded as known or well

established from prior data (Supplementary Figs 4.6 and 4.7),
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(4) using only slowly evolving genes (Supplementary Fig. 4.8), and

(5) using conserved amino acid substitutions or indels (Supplementary Fig. 4.9).
Whereas the first three practices did not have a substantial effect on the inference and support of
the yeast phylogeny, the use of slowly evolving genes and conserved sites increased
incongruence across many internodes of the yeast phylogeny (Fig. 4.2). Furthermore, the
removal of unstable or fast-evolving species from the Saccharomyces lineage had no effect on,
often highly ambiguous, internodes in the Candida lineage and vice versa (Supplementary Figs
4.5 and 4.6), arguing that the impact of removing “rogue’ taxa was not only minimal but also

highly localized.
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Figure 4.2 | The effect of phylogenomic practices on the inference of the yeast phylogeny.
Thefirst column (Treatment) indicates the specific phylogenomic practice tested, the
second (avGSF) the average gene support frequency of the internodes of the yeast phylogeny,
the third (TC) the tree certainty of the yeast phylogeny, the fourth (#1 | | GSF) the numbers of
internodes of the yeast phylogeny where GSF increases or decreases by more than 3%, and the
fifth (# 1 | | IC) the numbers of internodes of the yeast phylogeny where IC increases or
decreases by more than 0.03. Because the maximum value of IC for agiven internodeis 1, the
maximum value of TC for a given phylogeny is the number of internodes, which will equal K-3,
where K is the number of taxa used. In the analyses concerned with the removal of poorly
aligned genes, only genes whose alignment length after gap removal is>x% of original one were
used. In the analyses concerned with the use of bipartitions, only those bipartitions that displayed

BS>60%, >70%, or >80% in the bootstrap consensus trees of the 1,070 genes were used to
construct eMRC phylogenies, which were then compared with the default analysis.

Support depends on internode length and depth

) Average | Tree GSF GSF IC Ic Average Tree
Treatment Treatment detalls GSF | certainty |increases|decreases | increases | decreases| | GSF certainty
£ i Default analysis 60.02 8.35 - - -
'22:12;3:10 5:955 All sites with gaps are excluded 58.17 7.91 0 5 0 7
9 9ap: All sites with =50% gaps are excluded 60.04 8.23 0 0 1 2
Removal of poorly Default analysis (x = 50%; 1,070 genes) 60.00 8.35 - - - -
aligned genes Poor alignments removed (x = 70%; 374 genes) | 60.24 8.42 2 1 4 3
C. lusitaniae (unstable) 62.22 8.15 1 0 2 2
S. castellii (unstable) 62.08 8.20 1 0 1 1
. ) K. polysporus (fast and unstable) 63.30 8.33 3 0 1 1
Removal of quickly evolving E. gossypii (fast and unstable) 61.93 7.98 2 0 0 4
or unstable species C. glabrata (fast and unstable) 63.10 8.30 3 0 1 2
K. lactis (fast and unstable) 61.86 7.99 2 1 0 3
E. gossypii, K. lactis 63.91 7.88 1 1 0 3
E. gossypii, C. glabrata, K. lactis 7.88 3 0 1 3
(C. glabrata, S. bayanus, S. kudriavzevii,
S. mikatae, S. cerevisiae, S. paradoxus) 65.88 9.47 4 1 6 3
Selection of genes that (Z. rouxii, K. polysporus, C. glabrata,
recover specific bipartitions S. bayanus, S. castellii, S. kudriavzevii, 63.34 8.62 3 0 0 4
S. mikatae, S. cerevisiae, S. paradoxus)
(C. tropicalis, C. dubliniensis, C. albicans) 61.20 8.62 1 0 0 0
Selection of the most The 100 slowest evolving genes 52.20 6.76 1 10 2 9
slowly evolving genes
Selection of genes whose bootstrap Genes with average BS = 60% (904 genes) 62.17 8.59 4 0 2 0
consensus trees have high Genes with average BS = 70% (545 genes) 65.68 9.18 14 0 12 0
average BS Genes with average BS = 80% (131 genes) 70.56 15 0 14 0
Selection of genes whose bootstrap | Using only the 904 genes with the highest TC 62.26 8.72 6 0 2 0
consensus trees have high Using only the 545 genes with the highest TC 66.06 9.37 13 0 12 0
tree certainty Using only the 131 genes with the highest TC . 16 0 12 1
Selection of bipartitions with high BS Using only bipartitions that have >60% BS - - 14 0
in the bootstrap consensus trees Using only bipartitions that have >70% BS 16 0
of genes Using only bipartitions that have 280% BS 15 0

Examination of whether the degree of incongruence, as measured by low GSF, correlated with

internode length and depth, as measured by branch lengths, showed that incongruence was

stronger in early divergent and short internodes (Fig. 4.3), in agreement with theoretical
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expectations”'®®?_ To test if this relationship holds in other lineages, we generated a dataset of
1,086 orthogroups from 18 vertebrate species, which has higher sequence similarity than the
yeast one (61% vs 44% average pairwise aa similarity, respectively), and a dataset of 225
orthogroups from 21 metazoan species, which has lower sequence similarity (29% average
pairwise aa similarity). The vertebrate genes yielded 299 distinct GTs (average normalized
Robinson-Foulds tree distance = 0.42). Concatenation analysis inferred an absolutely supported
species phylogeny; however, this phylogeny was topologically identical to 15 GTsand eMRC
analysis showed that 4/15 internodes had GSF <50% and 1C <0.3 (Supplementary Fig. 4.10a-c).
Similarly, the 225 metazoan genes yielded 224 distinct GTs (average normalized Robinson-
Foulds tree distance = 0.72). Concatenation analysis inferred 14/18 internodes with 100% BS
despite that it was not topologically identical to any of the 225 GTs and that 10/18 internodes
had <50% GSF and <0.1 IC (Supplementary Fig. 4.10d-f). Interestingly, incongruence was
significantly correlated only with short internodes in the (less divergent) vertebrates, nearly
equally significantly with both internode length and internode depth in yeasts, and more
significantly with internode depth than with internode Iength in the (more divergent) metazoans

(Fig. 4.3).
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Figure 4.3 | Incongruenceis more prevalent in shorter internodes|ocated deeper on the
phylogeny. The correlation (Pearson’sr) between a measure of internode support (gene support
frequency or GSF) with internode length and depth was measured for each internode present in
three datasets that show lower (vertebrates, 1,086 genes), intermediate (yeasts, 1,070 genes) and
higher (metazoans, 225 genes) levels of sequence divergence. a, GSF is positively correlated
with internode length in yeasts and metazoans. b, GSF is positively correlated with the root to
internode length in al three lineages, indicating that internodes placed deeper in the phylogeny
typically have lower GSF. ¢, GSF is positively correlated with the product of internode length
and root to internode length in all three lineages.
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Strong Signal Reduces I ncongruence

To test whether the selection of genes with stronger phylogenetic signal reduced incongruence,
we analyzed three datasets comprised of genes whose bootstrap consensus trees showed average
BS across al internodes> 60% (904 genes), > 70% (545 genes), or > 80% (131 genes),and three

datasets comprised of the 904, 545, or 131 genes whose bootstrap consensus trees had the
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highest TC. Selecting genes with high average BS or high TC significantly reduced incongruence
across many, but not all, internodes (Fig. 4.2, and Supplementary Figs4.11 and 4.12).
Concatenation analysis of the sets of genes with average BS> 60%, and > 70% (and of the 904
and the 545 genes with the highest TC) yielded the same species phylogeny as when all genes
were analyzed. Remarkably, analysis of genes with average BS> 80%, as well as of the 131
genes with the highest TC, yielded the correct placement of C. glabrata (Supplementary Fig.
SA.11c,f), aresult that, to our knowledge, has not been observed in any concatenation-based

yeast phylogenomic analysis™***’

, suggesting that high BSis agood indicator of agene's
phylogenetic usefulness, but also that concatenating genes with high BS reduces incongruence
and improves resolution.

We also tested whether selecting internodes with high BS decreased incongruence by extracting
only those bipartitions that displayed BS values> 60%, > 70%, and > 80% from every one of the
1,070 genes’ bootstrap consensus trees and then using them to construct new eMRC phylogenies
(Supplementary Figs 4.12 and 4.13). One advantage of working with taxon bipartitions, rather
than genes, is that we can quantify a given internode’ s IC from only the subset of bipartitions
that highly support or conflict with that internode. This practice significantly increased IC values
for > 14 internodes relative to the phylogeny of Figure 4.1a and showed the highest TC of all our
analyses (Fig. 4.2). Interestingly, while IC for most internodes increased when we increased the
BS threshold, this was not the case for several of the most difficult to resolve internodes
(Supplementary Fig. 4.13d), suggesting that those few genes that show high BS for short
internodes deep in the phylogeny strongly conflict with each other. We obtained similar results

when we performed the same anal yses on the vertebrate and metazoan datasets (Supplementary

Fig. 4.14).
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Standard Practices Can Mislead

Aiming to infer the yeast phylogeny, we constructed and analyzed 1,070 yeast genes. Had we
relied solely on concatenation and standard phylogenomic practices we would have recovered an
absolutely supported phylogeny similar to those obtained by major phylogenomic studies™
11121819 However, examination of the signal in GTs showed that concatenation masked the
considerable incongruence present in severa internodes. Thus, while analyses of ~20% of the
genes typically present in ayeast genome definitively support many internodes of the yeast
phylogeny, the topology of a considerable number of others remains uncertain (Supplementary
Figs4.15 and 4.16).

Our finding that incongruence correlates with early divergent and short internodes indicates that
analytical factors are major contributors; however, it islikely that biological factors have aso
contributed. “ Species tree” methods use coal escent theory to estimate the species phylogeny
from the individual GTsallowing for lineage sorting, a common biological explanation for GTs
incongruent with the species phylogeny®. Unfortunately, many such methods assume that
analytical errorsininference are minimal, avalid assumption for most shallow clades but one
that is untenable for the deeply divergent clades of the yeast phylogeny. For example, analysis of
our dataset with the average unit-ranking method™® yielded a species phylogeny where all the
internodes with very low GSF and IC values were extremely short, largely because all
incongruence was considered to be due to variation in coalescent depth across GTs
(Supplementary Fig. 4.17a). Not surprisingly, these coal escent unit-based branch lengths were
highly correlated with internodes’ GSF and IC values (Supplementary Fig. 4.17b). Furthermore,
bootstrapping of this dataset inferred a highly supported species phylogeny (Supplementary Fig.

4.17a), again contradicting our findings of extensive conflict in certain internodes.
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PERSPECTIVE

These results argue that elimination of the observed incongruence between phylogenomic
studies3*2 will require three fundamental revisions to current practices. First, we should
abandon using BS on concatenation analyses of large datasets. Developed at a time when high-
throughput sequencing was unimaginable, the bootstrap is an extremely useful measure of
sampling error, that is the robustness in inference when data are limited®, such aswhen asingle
geneis analyzed. Given the availability and ease of generating genome-scale data™, relying on
bootstrap to analyze phylogenomic datasets is misleading, not only because sampling error is
minimal but also because its application will, even in the presence of significant conflict® or
systematic error®®, almost always result in 100% values™ %%,

The second critical revision necessary is that we carefully examine the signal present in
individual genes'®®3%% and their trees™. Our resultsindicate that the subset of genes with
strong phylogenetic signal is more informative than the whole, arguing for a conditiona
combination approach than atotal evidence one™. Preferably, such analyses should be combined
with internode-specific approaches™ because the latter can uncover internodes that harbor
multiple conflicting phylogenetic signals. As the |C measure shows (Supplementary Fig. 4.2),
the amount of information for a given internode supported by 50% of GTs with the other 50%
being uninformative is far greater from that when the other 50% of the GTs harbors significant
support for two or three alternative conflicting topologies. Whereas in the first case the gene
trees strongly suggest that the internode is resolved, in the second there is reason to be cautious.
Finally, we need to begin explicitly identifying internodes that, despite the use of genome-scale
datasets, robust study designs, and powerful algorithms, are poorly supported. We argue that the

on-going debate around phylogeniesinferred in different phylogenomic studies™ concerns
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internodes that are poorly supported by individual GTs. Identifying these internodes and
distinguishing them from ones supported by a significant fraction of genes and lack conflicts will
go way beyond helping pinpoint challenging internodes, allowing usto identify the broad
contours of the network of highly related gene histories that is the tree of life. Perhaps most
importantly, it will focus the attention of researchers to develop novel phylogenomic approaches
and markers to more accurately decipher the most challenging ancient branches of life's

genealogy from the DNA record.

METHODS SUMMARY

Using synteny and orthology information present in the Y GOB? and CGOB?* databases from 23
yeast genomes™#?" we constructed an initial dataset of 2,651 orthogroups, which following
guality control (see Methods), was reduced to the final 1,070. We also used the complete gene
sets from 18 vertebrate and 21 metazoan species and used the cRBH algorithm? to identify
1,086 vertebrate and 225 metazoan orthologous groups of genes. Orthogroups wer e aligned
using MAFFT®, the best fit evolutionary model was inferred using ProtTest*, and the maximum
likelihood tree was estimated using RAXML*. Extended majority rule consensus trees were
inferred using PHYLIP* and custom per| scripts. A series of different datasets were constructed

using custom per| scripts. Internode Certainty (1C), was calculated according to:

xl xl xz xz
IC =1log,(2) +p (x1 n xz) log; | p <x1 n xz> +p <x1 n xz) log, | p (x1 n xz)

where x; and x, are the frequencies of the first and second most prevalent conflicting

bipartitions for a given internode.
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METHODS

Data Matrix Construction

We used the complete sets of annotated genes from 23 yeast genomes?®??"4’ (Supplementary
Table S1) and, using the synteny and orthology information present in the Y GOB® and CGOB*
databases, we constructed an initial dataset of 2,651 orthologous groups of genes that had
representativesin al 23 genomes. This reliance on two highly accurate and manually curated
synteny databases and the requirement for a given ortholog to be present in all 23 species greatly
minimized errorsin orthology inference due to hidden paralogy®>*. It also avoided theinclusion
of any horizontally transferred genes present in some, but not all, species aswell as any
horizontally transferred genes present in regions that lack synteny conservation. For any
potentially horizontally transferred gene to be included in our data matrix, it would have had to
have been gained in some, but not all, yeast species used in our study and it would have had to
replace the native gene and take up its position on the chromosome, which has never been
observed in yeasts?****! and is likely very rare.

The nucleotide sequences of all genes were translated to amino acids (aa) taking into account
that in certain species in the Candida lineage the CUG codon encodes for the amino acid Serine
rather than Leucine. Using aignment quality and individual gene length filtering criteria
described below, we then reduced the number of orthogroups to the final 1,070. Examination of
the functional annotation—as defined by the Gene Ontology consortium>’—of the 1,070 S
cerevisiae orthologs using the GOstat software>® showed that this gene set is statistically
overrepresented for several different functional categories, such as cellular metabolic process,
cellular component organization and biogenesis, and ribosome assembly and biogenesis, in other

words, for categories associated with standard cell housekeeping functions. Analysis of different
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ortholog subsets (e.g., of the 131 genes whose bootstrap consensus trees show the highest
average bootstrap support (BS)) show that they are too statistically overrepresented for many
fewer, but the same, functions.

We also created two additional datasets from the complete sets of annotated genes from 18
vertebrate and 21 metazoan species (Supplementary Table S1). The two datasets were
constructed using the cRBH a gorithm?®, and comprised of 1,086 vertebrate and 225 metazoan
orthologous groups of genes. To avoid constructing orthogroups that contained very distant
homologs we set the filtering parameter of the cRBH algorithm?*, which considers the degree by
which the two proteins differed in sequence length or BLAST alignment, tor = 0.3.

For each species, for reasons of space and convenience, we constructed a corresponding acronym
using the first letter from the genus name and the three first letters from the species name (e.g.,
the acronym for Saccharomyces cerevisiaeis “ Scer”). All data matrices are available from the

authors upon request.

Gene Alignment and Filtering Criteria

To minimize the use of orthogroups that contained sequences whose annotation was problematic
or which resulted in alignments of low quality, we applied various filtering criteria. We first
excluded, prior to alignment, all orthogroups with an average sequence length< 150 amino
acids. Second, we aligned all orthogroups using the MAFFT software™®, with the default settings,
and excluded orthogroups whose alignment after removing al positions that contained gaps was

< 50% of the original alignment length.
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Gene Tree Inference

For each orthogroup, the best fit evolutionary model, which typically consisted of an
empirically-determined aa substitution matrix (e.g., WAG>"), empirically-measured aa state
frequencies, and accounted for heterogeneity in evolutionary rates among sites by using the
gamma distribution as well as by alowing for a given proportion of sites to be invariable, was
selected using ProtTest*. The unrooted phylogenetic tree of each and every orthogroup, also

called gene tree (GT), was then inferred using RAXML™.

Species Phylogeny Inference Using Concatenation and Extended Majority-Rule Consensus
Approaches

For the concatenation analysis, orthogroup alignments were analyzed as a single supermatrix. An
unrooted concatenation species phylogeny was then inferred under the
“PROTGAMMAIWAGF’ model of aasubstitution in RAXML*, and confirmed with GARLI> as
well aswith MrBayes™. The unrooted extended majority rule consensus (eMRC) phylogeny that
consisted of those bipartitions that appear in more than half of the maximum likelihood estimated
GTs, aswell as of additional compatible bipartitions that appear in less than half of the GTs>"®,
was inferred using the CONSENSE programin PHYLIP*. The eMRC phylogeny of bipartitions
with high BSwas constructed using custom per| scripts. Because the divergence of

Saccharomyces and Candida lineages is well established, all phylogenies shown in figures have

been mid-point rooted at the internode that separates these two lineages for easier visualization.

Species Phylogeny Inference Using a Consensus Phylogenetic Network Approach
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A consensus phylogenetic network was constructed based on the 1,070 GTs estimated by
maximum likelihood using the median network construction algorithm in the SplitsTree4

software' with athreshold of 0.1.

Tree Distance Estimation

Distances between trees were estimated using the normalized Robinson-Foulds tree distance®®, as
calculated by RAXM L. Sets of 100 random trees for 23 taxa (yeasts), 18 taxa (vertebrates), and
21 taxa (metazoans), were generated using the random tree generator in the T-REX webserver™,

using the random tree generation procedure described by Kuhner and Felsenstein®.

Internode Certainty (IC)

A phylogenetic tree is an acyclic connected graph that represents evolutionary relationships
among different genes or taxa and consists of nodes that are connected by edges or internodes.
Phylogenetic trees can also be represented in avariety of other ways. One useful depictionisas
sets of bipartitions (or splits). In this representation, each internode in a phylogenetic treeis
viewed as a bipartition between two sets of taxa. For example, given a set of five species (S
cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S bayanus), one example of a
bipartition is the one that separates the set of S. cerevisiag, S. paradoxus, and S. mikatae from the
set of S kudriavzevii and S bayanus.

Information from multiple phylogenetic trees from the same set of taxais typically summarized
using consensus trees. For example, the majority-rule consensus approach®’ calculates the shared
bipartitions across al phylogenetic trees and displays only those shared by their majority.

Consequently, each internode in the majority-rule consensus tree typically contains a value that
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corresponds to the percentage of individual trees that contain a given bipartition, but does not
provide any information about the next most prevalent conflicting bipartition, or more generadly,
about the distribution of bipartitions that conflict with the internode. For example, if a consensus
tree reports that 51 out of 100 phylogenetic trees contain a specific bipartition, we are not
informed whether the second most prevalent conflicting bipartition is present in the remaining 49
treesor in 5 of the remaining trees. However, the first case (51% vs 49%) would indicate that
both bipartitions have nearly equal support, whereas the second case (51% vs 5%) would

indicate that the first bipartition is the only strongly supported bipartition for this internode.
Consensus phylogenetic networks™®*, which are potentially hyperdimensional graphs inferred
from al bipartitions present above a certain frequency in a given set of trees, are very useful in
visualizing such conflicting bipartitions. To quantify the degree of incongruence, aswell as
examine whether incongruence is reduced when standard phylogenomic practices are applied, we
developed internode certainty (I1C), a measure that provides robust quantitative measures of the

information conveyed by conflicting bipartitions for each internode.

Description of 1C. Shannon’s entropy measures the amount of certainty found in arandom
variable®. For example, when tossing afair coin, heads or tails are equally probable and so the
amount of certainty we have about the outcome is O, whereas if the coin is not fair, our certainty
about the toss outcome will be high. Similarly, we can quantify the certainty that we havein the
inference of a given internode in a phylogenetic tree, by introducing a function that is maximized
in the absence of any conflicting bipartitions, but is minimized in the presence of equally
prevalent conflicting bipartitions. IC quantifies the certainty of a bipartition that appears on a

phylogenetic tree (i.e., of agiven internode) by considering its frequency of occurrence against
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that of the second most prevalent conflicting bipartition. Specifically, for the two most prevalent

conflicting bipartitions:

xl xl xz xz
IC =logz(2)+p(x1+x2)logz p<x1+x2) +p<x1+x2)logz p(x1+x2)

where x; and x, are the frequencies of the first and second most prevaent conflicting
bipartitions for a given internode.

IC, aswell asthe related measure Tree Certainty (see below), can be measured on any given set
of trees. For example, if the entire set of GTsis used, the IC value of agiven internode will
reflect the amount of information available for that internode in the set of GTs by considering the
internode’ s gene support frequency (GSF) jointly with the GSF of the most prevalent bipartition
that conflicts with the internode. If the set of bootstrap replicate trees for a given gene is used,
then IC will be calculated based on BS values (instead of GSF values). IC can also be measured
on any given set of bipartitions. For example, any two-state character that is variable across x
species can be thought of as a bipartition, asit splits the set of taxainto two distinct groups.
Thus, one can use IC to measure the amount of information available for a given bipartition, and
guantify the extent of incongruence, by considering the number of characters supporting that
bipartition jointly with the number of characters supporting the most prevalent bipartition that

conflicts with the internode.

Example#1. Let usassume that there are four prevalent conflicting bipartitions with

frequencies of 40%, 10%, 10% and 10%, respectively for a given internode. In this case,
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IC=1
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Example#2. Let usassume that there are four prevalent conflicting bipartitions with

frequencies of 40%, 40%, 10% and 10%, respectively for a given internode. In this case,

IC=1+

40 ( 40 ) 40
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Tree Certainty (TC). We define Tree Certainty (TC) as the sum of al IC values across all

internodes of a phylogenetic tree.

Evaluation of Phylogenomic Practices

Removing positions or genes with gaps. We used custom perl scripts to modify our default
alignments by removing sites that contained either >50% gaps or any gap. We also tested
whether the removal of genes producing alignments of bad quality by filtering genes whose
alignment length after removal of all gap-containing sites was <70% of the original alignment

length (instead of the <50% threshold used in the default analysis).

Removing species from dataset. We removed several different unstable and fast-evolving species
from the default dataset, singly and in combination. After each removal, the new orthogroups
were re-aligned, a new best-fit evolutionary model was identified, and the phylogenetic analysis

was performed again with the new alignment and model.
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Sdlection of genes that recover specific bipartitions. For the 100 hundred bootstrap replicate trees
constructed from each gene, we used the CONSENSE program in the PHY LIP package to
generate the bootstrap consensus tree as well asits bipartitions. Using custom per| scripts, we
then extracted all genes that supported the three following bipartitions: (1) [C. albicans, C.
dubliniensis, C. tropicalis], (2) [C. glabrata, K. polysporus, S. bayanus, S. castellii, S. cerevisiae,
S kudriavzevii, S mikatae, S. paradoxus, Z. rouxii], and (3) [C. glabrata, S. bayanus, S
cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus]. We then used the selected genes and their

GTsto infer a species phylogeny using concatenation and eMRC analysis.

Selecting slow-evolving genes. The 100 slowest-evolving genes were identified by calculating

the 100 genes whose GTs had the smallest sum of branch lengths.

Selecting single rare but conserved aa substitutions or indels. To reduce the effect of homoplasy
for early divergent internodes, many studies have suggested the use of rare substitution types™ as
well asinsertions or deletions (indels)®*. We constructed three datasets by extracting all sites
from our 1,070 gene alignments that contained (1) asingle radical aa substitution (defined as a
substitution with a blosum62 matrix score <-3) (20,289 sites), (2) a single substitution between
aathat differ radically in their physicochemical properties™ (4,075 sites), or (3) asingleindel

that spans 7 or more aa (2,474 sites). The presence of any of these three types of sites instantly
parts a set of x speciesinto two groups of taxa or, equivalently, into two bipartitions (0;....0y, and
1;...1,), where m > 2 species contain the “0” character state, n > 2 species contain the “1”
character state, and m+ n = x. To quantify the extent of incongruence of each type of siteon a

given internode we used |1C to measure the amount of information available for that internode by

121



considering the number of characters supporting that internode jointly with the number of

characters supporting the most prevaent bipartition that conflicts with the internode.

Sdlecting genes with high average BSor high TC. For every gene from the default dataset, we
estimated the average BS value of all 20 internodes of its bootstrap consensus tree. We also used
the set of bootstrap replicate trees for every gene to calculate the IC value of every internode in
its bootstrap consensus tree. Thus calculated, the IC value reflects the amount of information
available for that internode in the set of bootstrap replicate trees because it considers the
internode’ s BS jointly with the BS of the most prevalent bipartition that conflicts with the
internode. We then calculated the TC vaue for each gene by summing the IC values of all
internodes in its bootstrap consensus tree. Finally, we used these average BS and TC valuesto
construct six subsets of orthogroups: three with genes having average BS> 60% (904 genes), >
70% (545 genes) and > 80% (131 genes), as well as three datasets of the 904, 545, and 131 genes

with the highest TC.

Selecting bipartitions with high BS. For every gene from the default dataset, we extracted all
bipartitions from its bootstrap consensus tree that had BS >60%, >70% and >80%. We then used
each one of these three sets of highly supported bipartitions to construct eM RC species

phylogenies with custom perl scripts.

Estimating root—to-node and internode length. We cal culated the root-to-node length as the sum

of all branch lengths from the midpoint of the rooted concatenation species phylogeny to the
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focal node. Asinternode length, we considered the branch length of the internode leading to the

foca node.
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SUPPLEMENTARY FIGURES & TABLES

Supplementary Table 1. The Taxonomy of the Organisms Used in this Study

Organism (acronym)

Taxonomy

Yeasts

Kluyveromyces waltii (Kwal)
Kluyveromyces thermotolerans (Kthe)
Saccharomyces kluyveri (Sklu)
Kluyveromyces lactis (Klac)
Eremothecium gossypii (Egos)
Zygosacharomyces rouxii (Zrou)
Kluyveromyces polysporus (Kpol)
Candida glabrata (Cgla)
Saccharomyces castellii (Scas)
Saccharomyces bayanus (Sbay)
Saccharomyces kudriavzevii (Skud)
Saccharomyces mikatae (Smik)
Saccharomyces paradoxus (Spar)
Saccharomyces cerevisiae (Scer)
Candida lusitaniae (Clus)
Candida dubliniensis (Cdub)
Candida albicans (Calb)
Candida tropicalis (Ctro)
Candida parapsilosis (Cpar)
Lodderomyces elongisporus (Lelo)
Pichia stipitis (Psti)
Candida guilliermondii (Cgui)

Debaryomyces hansenii (Dhan)

Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae;
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae
Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae

Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae

Verterbrates

Xenopus tropicalis (Xtro)
Gallus gallus (Ggal)
Monodelphis domestica (Mdom)
Bos taurus (Btau)
Equus caballus (Ecab)
Canis familiaris (Cfam)
Macaca mulatta (Mmul)
Pongo pygmaeus (Ppyg)
Homo sapiens (Hsap)
Pan troglodytes (Ptro)
Rattus norvegicus (Rnor)

Mus musculus (Mmus)

Animalia;Chordata;Aphibia;Anura;Pipidae
Animalia;Chordata;Aves;Galliformes;Phasianidae
Animalia;Chordata;Monodelphis;Mammalia;Didelphimorphia
Animalia;Chordata;Mammalia;Artiodactyla;Bovidae
Animalia;Chordata;Mammalia;Perissodactyla;Equidae
Animalia;Chordata;Mammalia;Carnivora;Canidae
Animalia;Chordata;Mammalia;Primates;Cercopithecidae
Animalia;Chordata;Mammalia;Primates;Hominidae
Animalia;Chordata;Mammalia;Primates;Hominidae
Animalia;Chordata;Mammalia;Primates;Hominidae
Animalia;Chordata;Mammalia;Rodentia;Muridae

Animalia;Chordata;Mammalia;Rodentia;Muridae
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Cavia porcellus (Cpor)
Danio rerio (Drer)
Oryzias latipes (Olat)
Tetraodon nigroviridis (Tnig)
Takifugu rubripes (Trub)

Gasterosteus aculeatus (Gacu)

Animalia;Chordata;Mammalia;Rodentia;Caviidae
Animalia;Chordata;Actinopterygii;Cypriniformes;Cyprinidae
Animalia;Chordata;Actinopterygii;Beloniformes;Adrianichthyidae
Animalia;Chordata;Actinopterygii;Tetraodontiformes;Tetraodontidae
Animalia;Chordata;Actinopterygii;Tetraodontiformes;Tetraodontidae

Animalia;Chordata;Actinopterygii;Gasterosteiformes;Gasterosteidae

Metazoa

Strongylocentrotus purpuratus (Spur)

Branchiostoma floridae (Bflo)
Ciona intestinalis (Cint)
Mus musculus (Mmus)

Gallus gallus (Ggal)
Homo sapiens (Hsap)
Xenopus tropicalis (Xtro)
Danio rerio (Drer)
Helobdella robusta (Hrob)
Lottia gigantea (Lgig)

Caenorhabditis elegans (Cele)

Schistosoma mansoni (Sman)
Ixodes scapularis (Isca)

Daphnia pulex (Dpul)

Apis mellifera (Amel)
Tribolium castaneum (Tcas)
Drosophila melanogaster (Dmel)
Bombyx mori (Bmor)
Monosiga brevicollis (Mbre)
Nematostella vectensis (Nvec)

Trichoplax adhaerens (Tadh)

Animalia;Echinodermata;Echinoidea;Echinoida;Strongylocentrotidae
Animalia;Chordata;Leptocardii;Amphioxiformes;Branchiostomidae
Animalia;Chordata;Ascidiaceae;Enterogona;Cionidae
Animalia;Chordata;Mammalia;Rodentia;Muridae
Animalia;Chordata;Aves;Galliformes;Phasianidae
Animalia;Chordata;Mammalia;Primates;Hominidae
Animalia;Chordata;Aphibia;Anura;Pipidae
Animalia;Chordata;Actinopterygii;Cypriniformes;Cyprinidae
Animalia;Annelida;Clitellata;Rhynchobdellida;Glossiphoniidae
Animalia;Mollusca;Gastropoda;Patellogastropoda;Lottiidae
Animalia;Nematoda;Secernentea;Rhabditida;Rhabditidae
Animalia;Platyhelminthes;Digenea;Strigeidida
Animalia;Arthropoda;Arachnida;lxodida;Ixodidae
Animalia;Arthropoda;Branchiopoda;Cladocera;Daphniidae
Animalia;Arthropoda;insecta;Hymenoptera;Apidae
Animalia;Arthropoda;Insecta;Coleoptera;Tenebrionidae
Animalia;Arthropoda;insecta;Diptera;Drosophilidae
Animalia;Arthropoda;Insecta;Lepidopteroa;Bombycidae
hoanoflagellida;Codonosigidae
Animalia;Cnidaria;Anthozoa;Actiniaria;Edwardsiidae

Animalia;Placozoa;Tricoplacia;Tricoplaciformes;Trichoplacidae
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Supplementary Table 2.Bipartitions that Significantly Conflict with the Bipartitions Recovered in the
Concatenation Phylogeny of 23 Yeast Genomes

Primary Tree Bipartition GSF IC [Conflicting Bipartition]:GSF value
Kthe, Kwal 99 0.96 None
Calb, Cdub 98 0.95 None
Sbay, Scer, Skud, Smik, Spar 99 0.97 None
Calb, Cdughgﬁ?te%??s;par’ Ctro, 95 0.90 None
Calb, Cdub, Ctro 90 0.78 None
Cpar, Lelo 89 0.77 None
Calb, Cdub, Cpar, Ctro, Lelo 86 0.76 None
Scer, Spar 77 0.54 [Sbay,Skud,Smik,Spar]:8; [Smik,Spar]:5
Cgla, Kpol, Sbay, Scas, Scer, Skud, 62 059 [Calb,Cdub,Cgla,Cgui,Clus,Cpar,Ctro,Dhan,Lelo,Psti]:6;
Smik, Spar, Zrou [Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Lelo,Psti,Zrou]:5
Scer, Smik, Spar 60 030 [Sbay,[Sitzjz\tlss:#ls'Sspn;lfl](]s?z[‘élzzlzrﬁlckir’7s,k Fsdé:sglz]tii,ls;par]ﬁ
Scer, Skud, Smik Spar 5> 0.06 [Sbay,Skud]:29; [Sbay,Skud,Smik]:14; [Sbay,Scer,Smik,Spar]:11;

[Sbay,Scer,Skud,Spar]:11; [Sbay,Skud,Smik,Spar]:8

[Cgui,Clus,Dhan,Psti]:20; [Dhan,Psti]:11; [Cgui,Dhan,Psti]:10;
Calb, Cdub, Cpar, Ctro, Lelo, Psti 45 0.11 [Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Lelo]:8;
[Calb,Cdub,Clus,Cpar,Ctro,Lelo]:5; [Clus,Dhan,Psti]:5

[Agos,Kthe,Kwal]:9; [Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Kthe,
Kwal,Lelo,Psti]:9; [Klac,Sklu]:8; [Agos,Klac,Kthe,Kwal]:7; [Agos,
Kthe, Kwal, Sklu 41 0.32 Klac,Sklu]:7; [Agos,Sklu]:7; [Cgla,Kpol,Kthe,Kwal,Sbay,Scas,
Scer,Skud,Smik,Spar,Zrou]:6; [Klac,Kthe,Kwal]:5; [Cgla,Kpol,
Sbay,Scas,Scer,Sklu,Skud,Smik,Spar,Zrou]:5

[Agos,Cgla,Kpol,Kthe,Kwal,Sbay,Scas,Scer,Sklu,Skud,Smik,Spar,Zrou
1:17; [Cgla,Klac,Kpol,Kthe,Kwal,Sbay,Scas,Scer,Sklu,Skud,
Smik,Spar,Zrou]:13; [Agos,Kthe,Kwal,Sklu]:13; [Klac,Kthe,Kwal,
Sklu]:10; [Agos,Kthe,Kwal]:9; [Klac,Sklu]:8; [Agos,Sklu]:7; [Cgla,
Klac,Kpol,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:7; [Klac,Kthe,
Kwal]:5

Agos, Klac 36 0.09

[Agos,Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Klac,Lelo,Psti]:19;
[Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Klac,Lelo,Psti]:17; [Agos,
Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Lelo,Psti]:13; [Calb,Cdub,
Cgui,Clus,Cpar,Ctro,Dhan,Kthe,Kwal,Lelo,Psti]:9; [Agos,Cgla,
Klac,Kpol,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:7; [Cgla,Klac,
Kpol,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:7; [Cgla,Kpol,Kthe,
Kwal,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:6; [Cgla,Kpol,Sbay,
Scas,Scer,Sklu,Skud,Smik,Spar,Zrou]:5

Agos, Klac, Kthe, Kwal, Sklu 31 0.04

129



Cgla, Sbay, Scas, Scer, Skud, Smik,
Spar

Sbay, Scas, Scer, Skud, Smik, Spar

Calb, Cdub, Cgui, Cpar, Ctro, Dhan,
Lelo, Psti

Cgui, Dhan

Cgla, Kpol, Sbay, Scas, Scer, Skud,
Smik, Spar

29

29

29

29

24

0.12

0.02

0.01

0.02

0.02

[Cgla,Kpol]:12; [Kpol,Scas]:10; [Kpol,Sbay,Scas,Scer,Skud,Smik,
Spar,Zrou]:9; [Kpol,Sbay,Scas,Scer,Skud,Smik,Spar]:8; [Cgla,
Zrou]:8; [Kpol,Sbay,Scer,Skud,Smik,Spar]:8; [Sbay,Scer,Skud,
Smik,Spar,Zrou):7; [Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:7;
[Cgla,Kpol,Scas]:6; [Agos,Klac,Kpol,Kthe,Kwal,Sbay,Scas,Scer,

Sklu,Skud,Smik,Spar,Zrou]:6; [Scas,Zrou]:5

[Cgla,Sbay,Scer,Skud,Smik,Spar]:20; [Cgla,Scas]:17; [Kpol, Scas]:10;
[Kpol,Sbay,Scer,Skud,Smik,Spar]:8; [Sbay,Scer,Skud,
Smik,Spar,Zrou]:7; [Cgla,Kpol,Scas]:6; [Scas,Zrou]:5

[Cgui,Clus,Dhan]:24; [Cgui,Clus,Dhan,Psti]:20; [Cgui,Clus]:20;
[Calb,Cdub,Clus,Cpar,Ctro,Dhan,Lelo,Psti]:16; [Clus,Dhan]:12;
[Calb,Cdub,Clus,Cpar,Ctro,Lelo,Psti]:9; [Calb,Cdub,Cgui,Clus,
Cpar,Ctro,Dhan,Lelo]:8; [Calb,Cdub,Cgui,Clus,Cpar,Ctro,Lelo,
Psti]:6; [Clus,Dhan,Psti]:5; [Calb,Cdub,Clus,Cpar,Ctro,Lelo]:5

[Cgui,Clus]:20; [Calb,Cdub,Cpar,Ctro,Dhan,Lelo,Psti]:18;
[Calb,Cdub,Clus,Cpar,Ctro,Dhan,Lelo,Psti]:16; [Clus,Dhan]:12;
[Dhan,Psti]:11; [Calb,Cdub,Cgui,Cpar,Ctro,Lelo,Psti]:6; [Calb,

Cdub,Cgui,Clus,Cpar,Ctro,Lelo,Psti]:6; [Clus,Dhan,Psti]:5

[Kpol,Zrou]:17; [Cgla,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:15;
[Kpol,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:9; [Cgla,Zrou]:8;
[Sbay,Scer,Skud,Smik,Spar,Zroul:7; [Sbay,Scas,Scer,Skud,Smik,
Spar,Zrou]:7; [Calb,Cdub,Cgla,Cgui,Clus,Cpar,Ctro,Dhan,Lelo,
Psti]:6; [Scas,Zrou]:5
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Supplementary Figures 4.1 | The topology of the yeast phylogeny recovered from concatenation
analyses using one other maximum likelihood software (GARLI) and one other Bayesian inference
(MrBayes) software was identical to the topology recovered by maximum likelihood analysis using the
RAXML software. a, The yeast species phylogeny recovered from concatenation analysis of 1,070 genes
using maximum likelihood as implemented in the GARLI software. All internodes received 100%
bootstrap support. b, The yeast species phylogeny recovered from concatenation analysis of 1,070
genes using Bayesian inference as implemented in the MrBayes software. All internodes had 100%
posterior probability.

a Maximum likelihood species phylogeny inferred using the GARLI software
Kiluyveromyces wallii (Kwal)
Kluyveromyces thermotolerans (Kthe)
Saccharomyces kiuyver (Skiu)
Kluyveromyces lactis (Klac)
Eremothecium gossypii (Egos)
Zygosaccharomyces rouxii (Zrou)
Kluyveromyces polysporus (Kpol)
Candida glabrata (Cgla)
Saccharomyces castellii (Scas)
Saccharomyces bayanus (Sbay)
Saccharomyces kudniavzevii (Skud)
Saccharomyces mikatae (Smik)
Saccharomyces paradoxus (Spar)
Saccharomyces cerevisiae (Scer)
Candida lusitaniae (Clus)
Candida dubliniensis (Cdub)
Candida albicans (Calb)
Candida tropicalis (Ctro)
Candida parapsilosis (Cpar)
Lodderomyces elongisporus (Lelo)
Pichia stipitis (Psti)
Candida guilliermondii (Cgui)
Debaryomyces hansenii (Dhan)

b Bayesian inference species phylogeny inferred using the MrBayes software
Kluyveromyces waltii (Kwal)
Kiuyveromyces thermotolerans (Kthe)
Saccharomyces kiuyven (Sklu)
Kluyveromyces lactis (Klac)
Eremothecium gossypii (Egos)
Zygosaccharomyces rouxii (Zrou)
Kluyveromyces polysporus (Kpol)
Candida glabrata (Cgla)
Saccharomyces castelli (Scas)
Saccharomyces bayanus (Sbay)
Saccharomyces kudnavzewvii (Skud)
Saccharomyces mikatae (Smik)
Saccharomyces paradoxus (Spar)
Saccharomyces cerevisiae (Scer)
Candida lusitaniae (Clus)
Candida dubliniensis (Cdub)
Candida albicans (Calb)
Candida tropicalis (Ctro)
Candida parapsilosis (Cpar)
Lodderomyces elongisporus (Lelo)
Pichia stipitis (Psti)
Candida guilliermondii (Cgui)
Debaryomyces hansenii (Dhan)

0.2

0.1
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Supplementary Figures 4.2 | Representative values of the new measure Internode Certainty (IC) for a
range of representative support values of two most prevalent and conflicting bipartitions for a given
internode. Each plot on the graph depicts how IC (Y-axis) varies in response to the relative support of
conflicting bipartitions on a given internode. IC can be measured on any given set of trees. For example,
if the entire set of gene trees (GTs) is used, the IC value of a given internode will reflect the amount of
information available for that internode in the set GTs by considering the internode’s gene support
frequency jointly with the frequency of the most prevalent bipartition that conflicts with the internode.
If the set of bootstrap replicate trees for a given gene is used, then IC will be calculated based on
bootstrap support values. From the right to the left of the graph, the first of the four plots shown with
triangle symbols corresponds to the case of only two conflicting bipartitions for one internode with
support values X and 100-X. For example, given 100 total GTs, if 60 of them support bipartition 1, the
remaining 40 will support the conflicting bipartition. The second, third and fourth of the four plots
(shown with diamond, circle, and square symbols, respectively) correspond to case where there are
three conflicting bipartitions for one internode, but only the two most prevalent ones are considered.
For example, in the plot with the diamond symbols, given 100 total GTs, if 60 of them support
bipartition 1, 35 will support the conflicting bipartition 2, because conflicting bipartition 3 has been set
to be supported by 5 GTs. Thus, when the two most prevalent ones are considered, the percentage of
GTs supporting the first bipartition will be equal to 60/(60+35), whereas the percentage of GTs
supporting the second bipartition will be 35/(60+35). The reason that the number of GTs that support
the third conflicting bipartition is not included is because we want IC to measure the magnitude of
certainty conveyed by the two most prevalent bipartitions. This way, IC will equal zero when the two
most prevalent bipartitions are equally prevalent (in this example that would be the case if bipartitions 1
and 2 were each supported by 42.5 GTs each).

A e 7 /]
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0 10 20 30 40 50 60 70 80 a0 100
Support Value X

=2 conflicting bipartitions with support values X and 100-X
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-0—3 conflicting bipartitions with values X, 85-X, and 15 of which only the two highest are used to calculate IC
-B=-3 conflicting bipartitions with values X, 75-X, and 25 of which only the two highest are used to calculate IC
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Supplementary Figures 4.3 | Removal of sites containing gaps or of poorly aligned genes does not
significantly improve the yeast phylogeny inferred by concatenation and eMRC approaches. Each
panel shows the yeast species phylogeny inferred from concatenation analysis (left panel) and from
extended majority rule consensus (eMRC) analysis (right panel). All internodes of phylogenies inferred
by concatenation received 100% bootstrap support unless otherwise indicated. Values near internodes
of phylogenies inferred by eMRC analysis correspond to gene support frequency and internode
certainty, respectively. a, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following
removal of all sites containing gaps. b, Concatenation (left) and eMRC (right) phylogenies of all 1,070
genes following removal of all sites where >50% of the character states are gaps. ¢, Concatenation (left)
and eMRC (right) phylogenies of the 374 genes whose alignment length following removal of all gaps is
270% of the length of the original alignment.
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Supplementary Figures 4.4 | Removal of one or more unstable or fast-evolving species has, if any, a
minor and local effect on the yeast phylogeny inferred by concatenation and eMRC approaches. Each
panel shows the yeast species phylogeny inferred from concatenation analysis (left panel) and from
extended majority rule consensus (eMRC) analysis (right panel) following removal of one or more
unstable or fast-evolving species from the analysis. All internodes of phylogenies inferred by
concatenation received 100% bootstrap support unless otherwise indicated. Values near internodes of
phylogenies inferred by eMRC analysis correspond to gene support frequency and internode certainty,
respectively. a, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following the
removal of the unstable taxon Candida lusitaniae. b, Concatenation (left) and eMRC (right) phylogenies
of all 1,070 genes following the removal of the fast-evolving and unstable taxon Kluyveromyces
polysporus. ¢, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following the
removal of the fast-evolving and unstable taxon Candida glabrata. d, Concatenation (left) and eMRC
(right) phylogenies of all 1,070 genes following the removal of the unstable taxon Saccharomyces
castellii. e, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following the removal of
the fast-evolving and unstable taxon Eremothecium gossypii. f, Concatenation (left) and eMRC (right)
phylogenies of all 1,070 genes following the removal of the fast-evolving and unstable taxon
Kluyveromyces lactis. g, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following
the removal of both Eremothecium gossypii and Kluyveromyces lactis. h, Concatenation (left) and eMRC
(right) phylogenies of all 1,070 genes following the removal of Eremothecium gossypii, Kluyveromyces
lactis and Candida glabrata.
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Supplementary Figures 4.5 | Removal of fast-evolving and unstable species has, if any, a minor and
effect on GSF and IC values of internodes of the yeast phylogeny. The X-axis shows the 20 bipartitions
present in the yeast phylogeny suggested by concatenation analysis and the Y-axis the percent change in
gene support frequency (GSF) or Internode Certainty (IC) observed for each bipartition between the
treatment (removal of fast-evolving and unstable species) and the default analysis (all species included).
Only GSF changes 23% are shown. a, Change in the GSF values of the 20 bipartitions present in the yeast
phylogeny when C. glabrata, C. lusitaniae, K. polysporus, and S. castellii are removed individually. b,
Change in the IC values of the 20 bipartitions present in the yeast phylogeny when C. glabrata, C.

lusitaniae, K. polysporus, and S. castellii are removed individually.
a Change in GSF when removing fast-evolving and unstable
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Supplementary Figures 4.6 | Removal of fast-evolving and unstable species or the exclusive use of
genes that recover specific bipartitions has a minor and typically local effect on IC values of internodes
of the yeast phylogeny. The X-axis shows the 20 bipartitions present in the yeast phylogeny suggested
by concatenation analysis and the Y-axis the percent change in Internode Certainty (IC) observed for
each bipartition between the treatment (removal of fast-evolving and unstable species or of genes that
fail to recover specific clades) and the default analysis (all species and genes included). Only GSF changes
23% are shown. a, The individual or combined removal of E. gossypii (Egos), K. lactis (Klac), and C.
glabrata (Cgla), three of the fastest evolving species as well as of those whose phylogenetic position is
most unstable from the dataset has a minor and local effect on the IC of neighboring internodes. b, The
selection of genes whose individual topologies recover well-established bipartitions of the yeast
phylogeny has a minor effect on the IC of internodes of the yeast phylogeny. Note that the [C. albicans,
C. dubliniensis, C. tropicalis] (abbreviated [Calb, Cdub, Ctro]) bipartition has 90% GSF in the extended
majority rule consensus (eMRC) phylogeny reconstructed from the 1,070 individual gene trees, the [C.
glabrata, K. polysporus, S. bayanus, S. castellii, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, Z.
rouxii] (abbreviated [Zrou, Kpol, Cgla, Sbay, Skud, Smik, Scer, Spar]) bipartition has 62% GSF, and the [C.
glabrata, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus] (abbreviated [Cgla, Sbay,
Skud, Smik, Scer, Spar]) bipartition has 20% GSF. This last bipartition does not appear in the eMRC
phylogeny but, as discussed in the main text, several independent rare genomic changes strongly
suggest that it is the correct one.
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Supplementary Figures 4.7 | Selection of genes that support specific bipartitions has, if any, a minor
and local effect on the yeast phylogeny inferred by concatenation and eMRC approaches. Each panel
shows the yeast species phylogeny inferred from concatenation analysis (left panel) and from extended
majority rule consensus (eMRC) analysis (right panel) following the selection and use of genes that
recover specific bipartitions. All internodes of phylogenies inferred by concatenation received 100%
bootstrap support unless otherwise indicated. Values near internodes of phylogenies inferred by eMRC
analysis correspond to gene support frequency and internode certainty, respectively. a, Concatenation
(left) and eMRC (right) phylogenies using only the genes that recover the [C. albicans, C. dubliniensis, C.
tropicalis] (abbreviated [Calb, Cdub, Ctro]) bipartition. b, Concatenation (left) and eMRC (right)
phylogenies using only the genes that recover the [C. glabrata, K. polysporus, S. bayanus, S. castellii, S.
cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, Z. rouxii] (abbreviated [Zrou, Kpol, Cgla, Sbay, Skud,
Smik, Scer, Spar]) bipartition. ¢, Concatenation (left) and eMRC (right) phylogenies using only the genes
that recover the [C. glabrata, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus]
(abbreviated [Cgla, Sbay, Skud, Smik, Scer, Spar]) bipartition. This last bipartition does not appear in the
eMRC phylogeny but, as discussed in the main text, several independent rare genomic changes strongly
suggest that it is the correct one.
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Supplementary Figures 4.8 | Selection of the 100 slowest-evolving genes has a large, negative effect
on GSF and IC values of internodes of the yeast phylogeny inferred by concatenation and eMRC
approaches. Each panel shows the yeast species phylogeny inferred from concatenation analysis (left
panel) and from extended majority rule consensus (eMRC) analysis (right panel) following the selection
and use of the 100 slowest-evolving genes. All internodes of phylogenies inferred by concatenation
received 100% bootstrap support unless otherwise indicated. Values near internodes of phylogenies
inferred by eMRC analysis correspond to gene support frequency and internode certainty, respectively.
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Supplementary Figures 4.9 | Selection of sites that contain a single rare but conserved amino acid
substitution or indels has a large, negative effect on GSF and IC values of internodes of the yeast
phylogeny. The X-axis shows the 20 bipartitions present in the yeast phylogeny suggested by
concatenation analysis and the Y-axis the percent change in Internode Certainty (IC) observed for each
bipartition between the treatment (selection of specific sites or indels) and the default analysis (all sites
included). Only GSF changes >3% are shown. The red bars correspond to changes in IC when using only
the 20,289 sites that contain single radical substitutions (defined as a substitution with a blosum62
matrix score <—3), the blue bars correspond to changes in IC when using only the 4,075 sites that contain
a single substitution between amino acids that differ radically in their physicochemical properties, and
the yellow bars correspond to changes in IC when using only the 2,474 characters which mark the
presence / absence of a single indel that spans 7 or more aa among the 23 yeast species.
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Supplementary Figures 4.10 | High levels of incongruence in Vertebrate and Metazoan phylogenomic
datasets despite the inference of highly supported phylogenies by concatenation analysis. a, The
distribution of the agreement between the bipartitions present in the 1,086 individual gene trees (GTs)
and the vertebrate concatenation phylogeny, as well as the distribution of the agreement between the
bipartitions present in 100 randomly generated trees of equal taxon number and the concatenation
phylogeny, measured using the normalized Robinson-Foulds tree distance. The average tree distances
between the 1,086 GTs and the concatenation phylogeny as well as between the 1,086 GTs with each
other are also shown. b, The vertebrate species phylogeny recovered from concatenation analysis of
1,086 genes using maximum likelihood. The extended majority rule consensus (eMRC) phylogeny is
topologically identical to the concatenation phylogeny. Values near internodes correspond to bootstrap
support and gene support frequency (GSF), respectively. Asterisks (*) denote internodes that received
100% bootstrap support by the concatenation analysis. ¢, The distribution of Internode Certainty (IC)
values for all internodes of the vertebrate species phylogeny. d, The distribution of the agreement
between the bipartitions present in the 225 individual GTs and the metazoan concatenation phylogeny,
as well as the distribution of the agreement between the bipartitions present in 100 randomly
generated trees of equal taxon number and the concatenation phylogeny, measured using the
normalized Robinson-Foulds tree distance. The average tree distances between the 225 GTs and the
concatenation phylogeny as well as between the 225 GTs with each other are also shown. e, The
metazoan species phylogeny recovered from concatenation analysis of 225 genes using maximum
likelihood. The eMRC phylogeny is topologically identical to the concatenation phylogeny. Values near
internodes correspond to bootstrap support and gene support frequency, respectively. Asterisks (*)
denote internodes that received 100% bootstrap support by the concatenation analysis. f, The
distribution of IC values for all internodes of the metazoan species phylogeny. Note that GSF and IC
values indicate the existence of numerous internodes in the vertebrate and especially in the metazoan
phylogeny that are supported by a small percentage of gene trees and have very small or zero IC values.
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Vertebrate Concatenation phylogeny
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Supplementary Figures 4.11 | Selection of genes whose bootstrap consensus trees have high average
Bootstrap Support (avBS) or Tree Certainty (TC) has a large, positive effect on GSF and IC values of
internodes of the yeast phylogeny inferred by concatenation and eMRC approaches. Each panel shows
the yeast species phylogeny inferred from concatenation analysis (left panel) and from extended
majority rule consensus (eMRC) analysis (right panel) following the selection of genes whose trees have
high average bootstrap support (BS) or Tree Certainty (TC). All internodes of phylogenies inferred by
concatenation received 100% bootstrap support unless otherwise indicated. Values near internodes of
phylogenies inferred by eMRC analysis correspond to gene support frequency and internode certainty,
respectively. a, Concatenation (left) and eMRC (right) phylogenies of the 904 genes whose gene trees
have average BS 260%. b, Concatenation (left) and eMRC (right) phylogenies of the 545 genes whose
gene trees have average BS 270%. ¢, Concatenation (left) and eMRC (right) phylogenies of the 131 genes
whose gene trees have average BS >80%. d, Concatenation (left) and eMRC (right) phylogenies of the
904 genes with the highest TC. e, Concatenation (left) and eMRC (right) phylogenies of the 545 genes
with the highest TC. f, Concatenation (left) and eMRC (right) phylogenies of the 131 genes with the
highest TC.
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Using only the 904 genes whose bootstrap consensus trees have average Bootstrap Support 260%
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Using only the 904 genes whose bootstrap consensus trees have highest Tree Certainty
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Supplementary Figures 4.12 | Selecting highly supported genes or bipartitions has a large, positive
effect on GSF and IC values of internodes of the yeast phylogeny. The X-axis shows the 20 bipartitions
present in the yeast phylogeny suggested by concatenation analysis and the Y-axis the percent change in
Gene Support Frequency (GSF) and Internode Certainty (IC) observed for each bipartition between the
treatment (selection of highly supported genes or internodes) and the default analysis. Only GSF
changes 23% and IC changes 20.03 are shown. The red bars correspond to changes in IC when using only
the 131 genes with average bootstrap support 280%, the yellow bars correspond to changes in IC when
using only the 131 genes with the highest Tree Certainty, the black bars correspond to changes in IC
when using only those bipartitions found in the bootstrap consensus trees of individual genes that had
bootstrap support 280%, and the blue bars correspond to changes in IC when using only the 100
slowest-evolving genes. a, Change in GSF for highly supported genes or slow evolving genes. b, Change
in IC for highly supported genes, bipartitions or slow evolving genes.

a Change in Gene Support Frequency for highly supported genes or slow evolving genes

w2

‘7 45

Lol

<

= 35.

= 25

<

L

= 15 = —_— — — —

8 J

= 5 - - - - — -1 -

O

S i il —1-

£

=

8 -

m—15

7)) -

2 -25H = Using only the 131 genes with average BS =280%

'; 1| © Using only the 131 genes with the highest TC

5n-35 H . .

= || mUsing only the 100 slowest evolving genes

= 45l | | | L ]

© R S N BN S PO S S, SN, S, S SIS
P \¢@ R SR SE AL R eReReR R eR eR

O ) ,b$ PR P v § ) ,&w (bﬁa AT AT A A N
0’& 06 OQ \O\ \/C)q\?b(\\*/@(\y \L’_(.Q <</0_, :L_AA \bQA o_)Q %({\\ %(Q\ & \c_) \@6\\%6\\ %0

0" xQ 2 DT DOV
Or& QQ O 0@00:0 AN %@%@ %@(O@%@%@ AL
> Q’Q oy @fbcc;;k-\}b o@Kéo‘z}éo@;o@&éo@b

A R & ;
013}\09‘5 \SQQG,S’Q <</QO 0‘\%0@%%0@%@0@ o

Sale (e BN NN

b\\)@~ @5\" C:oo\(o“o (O‘Q Q}Q CQ’%

O > A \
NS &\b'-o‘o& L P S
PR P X o 3 ¢
o Y R R
® & ® %\)EO\Q

151



Change in Internode Certainty for highly supported genes, bipartitions or slow evolving genes
0.5

o
'S

0.3

JTII
N I

0.2

—E

W Using only the 131 genes with average BS 280%
03 Using only the 131 genes with the highest TC

W Using only bipartitions with BS 280%

W Using only the 100 slowest evolving genes

Change in IC compared to default analysis

VO 0 0. D & AR S
S F I T2 @‘@@0 ‘*’L‘O o o_aQ %Q@%Q oD e’ @Q

Y B a0 50700 NP
PP SIS NP e LA L e
0" O NCN 2@ & D7 DT{TITRT M
N QL O WA NS S ©
N SNV & e G.J\l"\}%\l"\}%\{' @“° &
b\‘@ C)Q O\go C)é \,OC:“ O AT AT AT AT S
OESEEXY -F oF <'o° %" %"%"fo
NS b\) Q’b Q’b O X
SR S PP
& A N
NS © a0’ 00
G° 0@)\ ‘\(:O C? "b‘% @ QJ%
N0 @%& 9°®*FQO o ‘@e&
S T Tl
YN KRR AR
O’§0 i a e
> R S

152



Supplementary Figures 4.13 | Selection of highly supported bipartitions from the bootstrap consensus
trees of individual genes has a large, positive effect on the IC values of internodes of the yeast
phylogeny inferred by the eMRC approach. The first three panels show the yeast species phylogeny

inferred from extended majority rule consensus (e

MRC) analysis following the selection of bipartitions

that had high bootstrap support (BS) in the bootstrap consensus trees of individual genes. Values near

internodes correspond to the percentage of bootstrap consensus trees of individual genes in which this
specific bipartition received high BS and to internode certainty (IC), respectively. a, The eMRC phylogeny
inferred from selecting bipartitions that had BS 260% in individual gene analyses. b, The eMRC

phylogeny inferred from selecting bipartitions that

had BS 270% in individual gene analyses. ¢, The

eMRC phylogeny inferred from selecting bipartitions that had BS 280% in individual gene analyses. d,
Plot that illustrates the change in IC of internodes relative to the values obtained in the default analysis

associated with the use of bipartitions that had hig

h bootstrap support (BS) in the bootstrap consensus

trees of individual genes. Each line of different color depicts the IC value obtained for a given internode
in the default analysis (Fig. 1a), when using only bipartitions that had BS 260%, BS >70%, and BS >80%.
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Supplementary Figures 4.14 | Selection of highly supported genes and bipartitions has a large,
positive effect on IC values of internodes of the vertebrate and metazoan phylogenies. a, Plot that
illustrates the change in IC of internodes of the vertebrate phylogeny relative to the values obtained in
the default analysis associated with the use of genes whose bootstrap consensus trees have high
average bootstrap support (BS) or with the use of bipartitions that had high BS in the bootstrap
consensus trees of individual genes. Each line of different color depicts the IC value obtained for a given
internode in the default analysis (Supplementary Fig. S10b), when using only genes with average BS
260%, BS 270%, and BS 280%, as well as when using only bipartitions that had BS 260%, BS 270%, and BS
280%. b, Plot that illustrates the change in IC of internodes of the metazoan phylogeny relative to the
values obtained in the default analysis associated with the use of genes whose bootstrap consensus
trees have high average bootstrap support (BS) or with the use of bipartitions that had high BS in the
bootstrap consensus trees of individual genes. Each line of different color depicts the IC value obtained
for a given internode in the default analysis (Supplementary Fig. S10e), when using only genes with
average BS 240%, BS 250%, and BS 260%, as well as when using only bipartitions that had BS 260%, BS
>70%, and BS >80%.
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Supplementary Figures 4.15 | The phylogenetic consensus network that describes the 1,070 yeast
gene histories. The consensus network inferred using the 1,070 maximum likelihood gene trees under
the median network construction algorithm in the SplitsTree4 software. Boxes in the network denote
internodes that harbor significant conflict, with the length of each branch in each box being proportional
to the number of GTs that support it. Only branches that are present in at least 10% of the GTs are
shown in the network.
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Supplementary Figures 4.16 | Supported, weakly supported, and unresolved internodes in the yeast
phylogeny. Values near internodes correspond to gene support frequency and internode certainty,
respectively calculated from the 1,070 yeast gene histories. Note that the validity of certain internodes
marked as “unresolved” is supported by independent data (e.g., rare genomic changes).
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Supplementary Figures 4.17 | The yeast phylogeny inferred using a “species tree” method that
accounts for variation between the 1,070 gene histories is highly supported and has extremely short
internodes whose coalescent unit lengths are highly correlated with gene support frequency and
internode certainty values. Using the 1,070 gene dataset, we inferred a yeast species phylogeny under
the coalescent model and average ranks of gene coalescence times, as implemented in the STAR species
tree method. a, The yeast species phylogeny under the coalescent. Values near internodes correspond
to bootstrap support and internode length in coalescence units, respectively. The inferred topology is
identical to the phylogeny shown in Figures 4.1a, except with respect to the placement of Candida
lusitaniae. b, The lengths of internodes in the phylogeny inferred using the STAR species tree method,
measured in average coalescent units, is highly correlated with internodes’ Gene Support Frequency
(left panel) and Internode Certainty (right panel) values. The strength of each correlation is indicated by
r, Pearson’s correlation coefficient.

a The yeast species phylogeny inferred using the STAR species tree method
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ABSTRACT

The reconstruction of ancient divergences continues to confound molecular phylogeneticists due
to the presence of substantial amounts of incongruence between gene trees. Apart from
biological events that can cause gene histories to differ from the species one, several previous
studies have suggested a link between the functional characteristics of genes (e.g., GC content)
and their degree of incongruence. Identifying the influence of different factors on phylogenetic
inferenceis critical because they render phylogenetic studies vulnerable to systematic error and
model misspecification but also because they can help identify genes that are more informative
markers of phylogeny. In this study, we examined the degree to which 10 diverse functiona and
evolutionary characteristics -extracted from 1,070 groups of orthologous genes (orthogroups)
from 23 yeast species- are correlated with 4 phylogenetic gene measures of incongruence, two
referring to the orthogroup’ s conflicting phylogenetic signal and the other two to the
orthogroup’ s tree when compared against all other gene trees. Overall, we found that GC
content, the percentage of variable sites, codon bias and codon adaptation, provided the highest
correlation with the levels of gene incongruence both within and across gene trees. Genes with
low GC content or low GC variance across taxa, with higher percentage of variable sites or
relative long branches, as well as genes with lower codon bias, seem to be less incongruent. On
the other end of the spectrum, genes that exhibit few or many physical interactions, much
conserved genes, and genes with high or low codon adaptation appear to increase gene
incongruence. A principal component regression analysis showed that variance based on
different functional factors can explain approximately 15-20% of the total variance in gene tree
incongruence. Thus, even though severa functional and evolutionary properties of genes

contribute significantly to the incongruence between a given gene tree and the species

159



phylogeny, our results indicate that alarge amount of the observed incongruence remains
unexplained. Selecting genes based on their phylogenetic properties remains the safest way to

reduce incongruence.

INTRODUCTION

Phylogenomic data matrices from diverse clades of the tree of life typically exhibit extensive
phylogenetic incongruence between the trees of the individual genes that comprise them*™2. In
genera, the reasons for observing phylogenetic incongruence may be characterized as either
analytical or biological. Biological reasons involve cases where the history of genesis genuingly
different from the species phylogeny™. In contrast, analytical reasonsinvolve cases where the

>*%0r the models of evolution are

data are not representative of the whole population
misspecified’®!, and are typically distinguished into two types, sampling error and systematic
error'®,

Several factors contribute to sampling and systematic error. Factors that may increase sampling

>1819 and the availability of data™******. Importantly, incongruence

error are taxon sampling
stemming from sampling errors can be detected and overcome by including more data; the same
istypically true of biological reasons. In contrast, incongruence stemming from systematic error
cannot be overcome by increases in the amount of data>*’. Example of factors that may contribute
to systematic error are base composition and compositional heterogeneity, sequence length,
mutation rate,the branching pattern of a phylogeny, branch length and others'®%=3 |n their
2003 study, using amatrix of 106 orthologous groups, Rokas et a. identified that bootstrap

support obtained from individual gene tree analyses was significantly correlated with gene

properties such as gene size, long branches, GC content, or the percentage of variable sites’.
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Subsequent analyses of the same dataset showed an additional dependence on gene stationarity
(genes exhibiting similar base frequencies among taxa)> and that, occasionally, the length of the
branches resulted in the misplacement for some of the eight taxa™>".

In Salichos and Rokas 2013, using a dataset of 1,070 groups of orthologous genes or orthogroups
constructed based on syntenic information, sequence similarity and manual curation from 23
yeast species, we showed that gene tree incongruence was highly correlated with short internodes
at the base of the phylogeny. By comparing 1,070 yeast genes against the species phylogeny, we
discovered great differences among the gene trees, as well as between the gene trees and the
species phylogeny. Moreover, with the use of two novel phylogenetic measures that quantify
incongruence, namely internode certainty (IC) and tree certainty (TC), we showed that by
selecting genes or gene tree bipartitions that exhibit high TC (genes) or I1C (bipartitions) values,
we were able to decrease the levels of incongruence much more than when we applied standard
practices such as the removal of rogue taxa, genes or sites. However, the factors that contribute
to these high levels of incongruence and may render a gene more informative still remain largely
unexplored.

In this study, we first estimate the correlation between a set of 10 functional gene factors (% GC
content, variance in GC content across sequences of the orthogroup, % of variable sites, sum of
gene tree branch lengths, codon bias and codon adaptation®, number of physical or genetic
interactions per gene - retrieved from the Saccharomyces Genome Database™-, gene expression -
as estimated from Busby et al 2011%-, number of paralogs per gene) and a set of 4 phylogenetic
measures (including gene Tree Certainty (TC)*', orthogroup tree’ s average bootstrap support
(AVBS)®, gene tree’ s Robinson-Foul ds™ mean distance (mRF) and Robinson-Foulds variance of

distances per gene). My results indicate a significant correlation between phylogenetic
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incongruence and many functional gene properties, including % GC content, % variable sites,
codon bias and codon adaptation. Second, using a sliding-window approach, we test the behavior
of these functional factorsin terms of contributing or not to incongruence, across arange of the
gene values in ascending order, by constructing majority consensus trees for each sliding
window of 100 genes. These analysis show that genes with low GC content or low GC variance
across taxa, with higher percentage of variable sites or relative long branches and genes with
lower codon bias, seem to provide MRC trees with higher TC. On the contrary, genes linked
with few or many physical interactions, as well as much conserved genes provide MRC trees
with very low TC.T hird, using a principal component regression, we examine the linearity of
functional factors against mRF, a measure that demonstrates the topological distance of one gene
against all others. Based on this analysis, we find that approximately 18% of total topological
variance can be directly explained by functional gene factors. However, even though these
factors may play a significant role in driving gene incongruence, they still cannot be utilized as

effective markers for selecting informative genes

RESULTS

Using adataset of 1,070 orthogroups, we assigned for each orthogroup a set of functional
measures like % GC content, % GC variance across the orthogroup, % of variable sites, branch
length of its gene tree, codon bias, codon adaptation, number of genetic or physical interactions,
gene expression, and number of gene paralogs. Vaues for the last six factors were obtained
based on the Saccharomyces cerevisiae gene ortholog. For each orthogroup, we also calculated 4
measures of incongruence including gene TC, AvBS, mRF and RF variance. Gene TC and

AVBS refer to the incongruence observed based on the orthogroup’ s conflicting phylogenetic
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signas, while mRF and RF distance variance refer to how incongruent is the orthogroup’ s gene

tree when compared against all other genes trees.

Significant Link Between Gene Factors and Phylogenetic Gene I ncongruence

Initially, we estimated the correlation among the set of 10 factors and 4 phylogenetic measures.
In table 5.1, we summarize the results for every correlation analysis between all gene factors and
phylogenetic measures. All phylogenetic measures showed a very high correlation (positive or
negative) with each other. Significant correlation was also observed between functional factors
like % GC content, % of variable sites, codon bias, codon adaptation, sum of branch lengths, the
number of physical interactions and gene expression. Finally, % GC content, % of variable sites,
codon bias and codon adaptation provided a significant correlation with values of mRF having a
Pearson’ s coefficient of > 0.2, suggesting involvement in gene' s incongruence.

Tableb5.1. A correlation analysis. For every orthogroup, we estimated the percentage of GC
content, the variance of GC content, the percentage of variable sites, the sum of all branch
lengths from the gene tree, the number of physical interactions (PI), the logPI, the number of
genetic interactions (Gl), the logGl, the codon adaptation index (CAl), the codon bias index
(CBI), the expression levels of the S.cerevisiae (Scer) ortholog, the number of close paralogs to
the Scer ortholog, the mean Robinson —Foulds distance against all other genes, the variance of all
1069 pairwise RF distances, the average bootstrap support for its gene tree (AvBS) and the tree’s
Tree Certainty. Then we calculated the correlation across different gene factors and phylogenetic
measures. Values represent the Pearson’ s coefficient R.

% GC % GC var  %vs BrLen Pl logP1 Gl logGl CAI CBI SGE #SH mRF Rfvar  AvBS gl'C

% GC

% GC variance !
% variable sites (%vs) -0. .

Gene Tree Branch Length

# of Physical Interactions (PI)
logphys

# of Genetic Interactions (GI)
logGi

Codon Adaptation Index (CAI)| 0.28 -0.15
Codon Bias Index (CBI) 0.42 -0.08
Scer gene expression (SGE) 0.20 -0.06
# of Scer homologs (#SH) 0.05 -0.03
RF mean distance (mRF) 0.34 0.20
RF variance -0.33 -0.18

Average Bootstrap (AvBS) -0.31 -0.25
gene Tree Certainty (gTC) -0.35 -0.26
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A Sliding Window Approach

Using a dliding-window analysis with a step of 20 and awindow of 100 genes, we ordered al
1,070 genes in an ascending order based on their value for each different functional factor. Then,
for every window of 100 genes and their respective gene-trees, each time we inferred the

magj ority-rule consensus tree (MRC), while aso calculating the MRC’ s tree certainty (TC). We
repeated this process for each phylogenetic measure. Our results indicated that selecting genes
with high GC content or high GC variance increases incongruence (measured by the lower TC
values). Genes whose trees have short branch lengths a so increase incongruence, but the longest
branches may provide lower TC too. The same trend in a greater magnitude seems to apply for
the number of physical interactions per gene, whereby selecting genes with small or large
numbers of physical interactions resultsin lower TC values. Genes with higher values of Codon
Adaptation Index or Codon Bias Index appear to provide higher values of TC with very high
correlation, but the effect on TC does not deviate much. Finally, genes with low expression seem
to provide higher TC values, but overal correlation is not that high (figure 5.1). As expected,
phylogenetic properties showed an extremely high correlation with TC, while the first 100 genes

with the smallest mRF presented the highest TC across all datasets (figure 5.2).
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Figure5.1. A dliding window approach for functional factors. Using a sliding window
approach, with awindow of 100 genes and a step of 10, we plot the maority consensus tree’s

Tree Certainty (y axis) vs the average (x axis) value of 100 gene’s GC content, variance of GC
content, percentage of variable sites, tree’ stotal branch length, number of physical interactions,

genetic interactions, Codon adaptation index, Codon Bias Index and gene expression. By plotting

them in an ascending order, overall, none factor achieves particular high TC values, although
many factors appear to behave differently across the spectrum of their values. Genes with lower
GC content appears to show the least amounts of incongruence (close to 0.5). On the contrary,
much conserved genes, appear to provide very high levels of incongruence (closeto 0.3).
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Figure5.2. A didingwindow approach phylogenetic measur es. Using a sliding window
approach, with awindow of 100 genes and a step of 10, we plot the majority consensustree’s
Tree Certainty (y axis) vsthe average (x axis) value of 100 gene tree’s Tree Certainty (gTC),
average bootstrap support (AvBS) and mean Robinson-Foulds distance. By plotting them in an
ascending order, overall, al phylogenetic measures achieve high TC values (demonstrating low
incongruence). mMRF, not only provides the highest degree of correlation, but by selecting genes
with low mRF gives TC > 0.6.
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Regression analysis

To decrease the number of dimensionsin our data set, we performed a Principal Component
Analysis (PCA) on the set of functional factors. Then, given the extremely high correlation
between mRF and magjority rule consensus TC, we used mRF to perform aregression analysis
against those components, as well against the entire set of functional factors. Overall, the highest

degree of variance was explained using 7 principal components accounting for ~18% of the total
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variance (figure 5.3a). In figure 5.3b, we show a 3d representation of the three first Principal

components, colored by mRF.

Figure5.3. Principal Component Regression analysis a) By performing a principa component
regression analysis of all functional factors against each gene’s mean Robinson-Foulds distance
we show that about 17% of the total variance of gene incongruence in the dataset can be
explained by functional factors In b) we present a 3-d scatterplot of the first 3 principal
components, where each gene’ s values has been colored based on their mRF value. Darker colors
signify higher mean distance and therefore a more evolutionary diverged gene.
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Testing the predictability of functional factorsto predict gene incongruence

In the last step of our analysis, we randomly divided our dataset into two groups of 700 (training
dataset) and 370 genes (testing). Using the training dataset, we trained a simple neural network
of different layers and asked to predict each orthologous group’s mRF value based on its
functional properties. Then, we performed a simple correlation analysis against the true mRF
values for the test dataset. The best neural network consisted of 20 hidden layers, and provided

an R? of ~0.15.

DISCUSSION
The existence of topological conflict in recent phylogenomic analyses on ancient divergences'®

“together with an increasing number of studies that demonstrate extremely high levels of gene

5,10,12,38,45

incongruence continue to confound phylogeneticists. In general, phylogenetic

incongruence can be attributed into two main reasons: biological or analytical*®. As biological

reasons, we consider events when some genes have a different history than their respective

species such as incomplete lineage sorting, hybridization or horizontal gene transfer™™. As,

,14,15

analytical, we consider the type of error that stems from either small sample sizes or the

misspecification of the evolutionary mode***7,

By performing a principal component regression analysis, we found that at least 17% of the total
variance of gene-tree incongruence can be directly attributed to analytical reasons and gene
factors like the percentage of GC content, codon bias, codon adaptation and percentage of
variable sites. However, alarge amount of this variance remains unexplained. Given that our
analysis consisted of 1070 orthogroups based on syntenic information and without any missing

5,22

data, the effect of sampling error>?(small sample size), horizontal gene transfer and para ogy™®
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should be insignificant. Thus, we consider that the remaining variance of gene tree incongruence
could be potentialy explained by the existence of additional analytical reasons, the loss of
phylogenetic signal in short internodes deep in time, together with biological reasons such as
incompl ete lineage sorting or hybridization. However, distinguishing between the three later
reasons that may drive gene incongruence is an extremely difficult puzzle. One typical example
is the high phylogenetic conflict observed for the topologies of S. bayanus and S. kudriavzevii .
Our current models have a great difficulty in ascertaining whether this conflict is the result of
hybridization or incomplete lineage sorting (but see **°).

To tackle incongruence, severa phylogenomic studies have adopted various approaches (see
Salichos and Rokas 2013) including the selection of only a subset of genes based on specific
gene properties. Such properties may refer to various gene factors, for example retaining only

55 «

10415154 the use of gene markers™, ‘good’ genes that support known

slowly involving genes

es>® aswell as stationary genes®. In our analysis, we explored the behavior of 10 such

topologi
functional gene factors (and their combination) but we were not able to identify any factor that
stands out and could serve as reliable marker for selecting informative genes. Furthermore, we
found that, in some cases, selecting for highly conserved genes could be detrimental in resolving

ancient divergences. In contrast, by selecting genes based on phylogenetic measures such as gene

TC, AvBS or mRF we were able to observe a dramatic decrease in gene incongruence.
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METHODS

The dataset

To perform our analysis, we used the gene dataset from Salichos and Rokas 2013. This dataset
consists of 1070 orthol ogous groups, without any missing data, constructed using synteny and

orthology information present in the Y GOB®’ and CGOB®>® databases from 23 yeast genomes.

Analysis and calculation of phylogenetic properties

Genes were aligned using MAFFT®, the best-fit evolutionary model for each gene-tree was
determined using ProtTest™, and the maximum likelihood tree was estimated using RAXML.
Moreover, using RAXML®, we also calculated Internode Certainty (IC)*” and Tree Certainty
(TC)* for each genetree, TC for the sliding window approach and Robinson-Foul ds(RF)* gene
tree distance. For each gene, to estimate the mean RF distance, we averaged over al 1069
pairwise distances against every other gene. Size of homolog gene family was calculated using
OrthoM CL® with an inflation parameter of 1.5. The percentage of variable sites per genes,
average bootstrap support per gene tree and branch lengths were calculated using custom perl
scripts. The sliding window approach was also performed using custom perl scripts and RAXML.

CBI and CAI** for orthogroups were cal culated using codonw®.

Functional gene factors
The number of physical and genetic interactions per gene were retrieved from the
Saccharomyces Genome Database™. Information concerning Saccharomyces cerevisiae gene

135

expression was retrieved from Busby et al., 2011™. Raw counts were averaged per gene and

expression values were normalized using RPKM.
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Satistical analysis
All statistical and data mining analyses including data normalization, correlation, regression with
Principal Component Analysis and the construction neural networks were performed using the R

project™.
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CHAPTER VI

CONCLUSIONS

In thislast chapter, | would like to address and summarize epigrammatically, the basic
conclusions of my dissertation thesis, as they were thoroughly presented throughout the previous

chapters of my dissertation thesis.

Chapter 11: Evaluating ortholog prediction algorithmsin a yeast model clade

Having a quality set of orthogroups s the keystone for every phylogenic analysis. By evaluating
4 graphed-based ortholog prediction algorithmsin ayeast model, | found that they all perform
very well in datasets deprived of paralogy, but their accuracy decreases dramatically when
paralogy is rampant. Moreover, my evaluation of these algorithms showed that sometimes
simpler is better, as cRBH, asimple clustering algorithm for reciprocal best hit outperformed al

other three agorithms in almost every category.

Chapter 111: Novel information theory-based measures for quantifying incongruence among
phylogenetic trees

With the advent of phylogenomics, most recent phylogenetic studies do not depend on single few
genes. However, despite the abundance of data and the high bootstrap support the use of
hundreds of genes brought, many phylogenomic studies continue to present conflicting
topologies, all supported with high confidence. For this reason, | developed 4 novel measures -

IC, ICA, TC, TCA- based on information theory and Shannon’s entropy, aiming at quantifying
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incongruence and the uncertainty existing in many conflicting and ambiguous clades. These
measures are independent from the species tree, optimality criteria, they can be used for many
different types of data-characters, including molecular data, indels or other genomic characters,
they can be used as optimality criterion, they are relatively straightforward and easy to use and
they have been integrated in the latest version of RAXML, avery popular open-source software
for constructing phylogenies. In the near future, | ‘1l be working with collaborators to extend

these measures for datasets that contain missing data.

Chapter 1V: Inferring ancient divergences requires genes with strong phylogenetic signals

As mentioned previously, the use of concatenation in several studies, has presented conflicting
topologies with high support. By concatenating 1070 high quality orthogroups from a yeast
model clade, | inferred the yeast species tree, which was at least partially wrong based on
syntenic information. By examining the individual gene trees, | discovered that all gene trees
differed from the inferred species tree, as well as with each other. Using IC, | was able to
unmask excessive levels of gene tree incongruence and show that clades with high bootstrap
support, were extremely ambiguous. Moreover, using TC, | demonstrated that several high-
profile and widely used methods that intend to decrease incongruence, have little, no or negative
effect. Moreover, | introduced two new methods which were able to dramatically decrease
phylogenetic incongruence. However, even with the use of these methods, | was not able to
resolve at least four short basal internodes on the tree of yeast, possibly due to reasons of
incomplete lineage sorting, hybridization, or simply the loss of any phylogenetic signal, after
more than 200 million years of evolution. However, the development of methods that can

distinguish between these three reasons of incongruence, still remains as a strong puzzle and a
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future aim. It should be mentioned, that | also obtained similar results using two more datasets;

Vertebrates and M etazoa.

Chapter V: Examination of factors that influence phyl ogenetic incongruence in a yeast model
clade

In this chapter, | examined severa functional gene factorsto find whether they play arolein
driving this excessive gene incongruence that | previously described.and whether genes that
show some of these properties may be selected for phylogenetic markers. Overal, | found that
some of these factors show a significant correlation with gene incongruence. Moreover, by
implementing a principal component regression analysis on these functional gene factors, | was
able to explain more than 17% of the total variance of gene incongruence. However, my results
also showed that they cannot be selected for and used as reliable phylogenetic markers, despite

their often use as such by many researchers.
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