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CHAPTER	I	

	

INTRODUCTION	TO	APOPTOLIDIN:	ISOLATION,	BIOSYNTHETSIS,	STRUCTURE	AND	

ACTIVITY	RELATIONSHIP,	AND	BIOACTIVITY	HISTORY	

	

1.1	Apoptolidin	isolation	and	biosynthesis	

	 Apoptolidin	 A	 1.1	 was	 first	 isolated	 by	 Seto	 and	 coworkers	 from	 a	 soil	 microbe	

classified	as	an	actinomycete,	of	the	species	Nocardiopsis	sp.	Apoptolidin	A	1.1	was	named	

according	 to	 its	 selective	 apoptotic	 activity	 against	 E1A	 induced	 rat	 glial	 cells	 over	

untransformed	cells.1	Its	structure	was	fully	elucidated	one	year	from	its	isolation	2	and	to	

date,	over	 ten	structurally	similar	apoptolidins	have	been	described	1.1-1.14	 (Fig.	1)	3-10.	

The	 apoptolidin	 family	 is	 characterized	 by	 their	 inclusion	 of	 a	 20	 or	 21-	 membered	

macrolactone	 core	 (isoapoptolidins),	 fully	 substituted	 hemi-ketal	 pyran	 ring,	 30	

stereogenic	 elements	 (25	 stereocenters,	 5	double	bonds),	 and	variable	 glycosylation	 that	

may	 include	 the	 addition	 of	 three	 carbohydrate	 units	 at	 the	 C9-	 and	C27-	 positions.	 The	

members	of	this	 family	differ	at	several	positions	including	the	C6-,	C2’-,	C16-,	C19-,	C27-	

positions,	E/Z	geometry	about	C2-3,	 and	O-acyl	migration	of	 the	C1	 carbonyl	onto	either	

the	 C19-	 or	 C20-	 hydroxyls.	 More	 recently,	 Mahmud	 and	 coworkers	 at	 Oregon	 State	

University	have	isolated	and	identified	three	additions	to	the	apoptolidin	family,	including:	

2’-O-succinylated-	 and	 3’-O-succinylated-	 apoptolidins	 1.12	 –	 1.13,	 and	 linear	 fully	

glycosylated	apoptolidin	seco-acid	1.14	from	an	Amycolatopsis	sp.	ICBB	8242.	10	
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Figure	1.1.	Members	of	the	apoptolidin	family	of	macrolides.	

	 The	apoptolidin	family	is	derived	from	a	polyketosynthase	(PKS)	cluster,	annotated	

by	Bachmann	and	coworkers	(Fig	1.2	and	1.3).	11	Its	genome	is	comprised	of	a	non-iterative	

type-I	 PKS	 with	 13	 homologating	 modules	 and	 spans	 approximately	 39	 open	 reading	

frames	 (ORF),	 including	nine	 type-I	 PKS,	 six	 oxidoreductase,	 four	methyltransferase,	 and	

three	glycosyl	trasnferase	genes.	Of	the	65	domains	that	encode	for	the	biosynthesis	of	the	

macrolide	apoptolidin	core,	four	have	been	predicted	to	be	inactive	(denoted	in	black,	Fig.	

1.2)	 Interestingly,	 the	 apoptolidin	 biosynthesis	 begins	 with	 a	 (2R)-methoxymalonyl-acyl	

carrier	protein	 (ACP)	 loading	module	 (Fig.	1.3).	Though	atypical,	 this	precursor	has	been	

observed	in	various	type-I	polyketide	biosynthesis	(e.g.	FK520,	soraphen,	and	ansamitocin).	

40	The	apoptolidin	gene	cluster	also	includes	a	single	cluster	of	putative	sugar	biosynthetic	

genes	 that	 encode	 for	 its	 three	 sugar	 appendages:	 6-deoxy-4-O-L-methyl	 glucose,	 L-
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olivomycose	 and	 D-oleandrose	 (Fig.	 1.1),	 and	 is	 flanked	 by	 two	 glycosyl	 transferases.	 A	

third	glycosyl	 transferase	 is	 located	within	the	putative	PKS	cluster.	Lastly,	 there	are	two	

putative	O-methyl	transferases	and	two	candidates	for	C-H	oxidation	of	the	C16-	and	C20-	

positions	via	ApoP,	a	P450	gene	that	is	similar	to	an	oxidase	used	in	the	biosynthesis	of	the	

erythromycin	macrolide	core,	and	ApoD1-3	gene,	non-heme	iron-dependent	oxidase	that	is	

similar	to	those	used	in	aryl	oxidations.		

	

Figure	1.2.	Organization	of	apoptolidin	gene	cluster	in	Nocardiopsis	sp.	FU	40.	11	
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Figure	1.3.	Hypothetical	biosynthetic	pathway	leading	to	apoptolidin	A.	11	
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1.2	Apoptolidin	structure	and	activity	relationship:	the	apoptolidin	family	

	 Structural	 differences	 among	 the	 naturally	 occurring	members	 of	 the	 apoptolidin	

family	 1.1-1.14	 have	 revealed	 a	 great	 deal	 of	 insight	 into	 the	 importance	 of	 various	

structural	features	within	the	molecule	for	bioactivity	(Fig.	1.4).	3-11	

	

Figure	1.4.	Structure-activity	relationship	(SAR)	of	members	of	the	apoptolidin	family	of	macrolides.	

While	 members	 of	 the	 apoptolidin	 family	 reportedly	 exhibit	 similar	 cytotoxicity	
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when	 kept	 at	 ambient	 temperature	 as	 a	 dilute	 aqueous	 solution	 (Dulbecco’s	 phosphate-

buffered	 saline).	 This	 ring	 expansion	 giving	 isoapoptolidin	 A	 1.9,	 stable	 at	 -20	 °C	 in	
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apoptolidin	 A	1.1	 (IC50	 =	 0.7	 μM,	 FoF1-ATPase	 assay).	 Under	 assaying	 conditions,	 which	

occur	in	less	than	20	min,	less	than	12%	conversion	to	isoapoptolidin	A	1.9	was	observed	

by	 Wender	 and	 coworkers.	 2	 Independently,	 Sulikowski	 and	 coworkers	 3	 isolated	

isoapoptolidin	 A	 1.9	 and	 noticed	 that	 ring	 expansion	 from	 apoptolidin	 A	 1.1	 to	

isoapoptolidin	A	1.9	could	be	promoted	under	base	catalyzed	conditions	(triethylamine	in	

methanol)	to	give	a	1.4:1	mixture,	in	favor	of	the	latter	analogue.		Koert	and	coworkers	note	

that	the	treatment	of	apoptolidin	1.1	with	pH=7	buffer	at	37	°C	for	20	hours	results	in	the	

formation	of	a	mixture	of	apoptolidin	1.1	and	isoapoptolidin	1.9.	17	

Additionally,	apoptolidins	kept	in	the	presence	of	light,	result	in	the	isomerization	of	

the	 C2-C3	 double	 bond	 from	 (E)-	 to	 (Z)-	 geometry.	 The	 first	 suggestion	 of	 this	

photochemical	 liability	 was	 described	 in	 the	 dissertation	 of	 Jankowski	 at	 Stanford	

University	 41	 when	 isolating	 and	 assaying	 apoptolidins	 B	 1.2	 and	 C	 1.3.	 Analyzing	 the	

cytotoxicity	 of	 apoptolidin	 C	1.3,	 in	 particular,	 they	 noted	 the	 formation	 of	 an	 unknown	

isomer	with	significantly	decreased	bioactivity.	Utilizing	spectroscopic	analysis,	Bachmann	

and	coworkers	6		later	determined	this	isomerization	to	occur	across	the	C2-C3	double	bond,	

from	 the	 (E)-	 geometry	 of	 apoptolidin	 A	 1.1	 to	 the	 (Z)-geometry	 of	 apoptolidin	 D	 1.4.		

While	apoptolidin	D	1.4	can	only	be	isolated	from	the	FU40	extract	in	<	5	mg/L,	irradiation	

of	 apoptolidin	 A	 1.1,	 can	 give	 apoptolidin	 D	 1.4	 in	 about	 a	 5:1	 ratio.	 Compared	 to	

apoptolidin	 A	 1.1	 (IC50	 =	 16	 nM,	 H292),	 apoptolidin	 D	 1.4	 has	 significantly	 decreased	

activity	 (IC50	 =	 150	 nM,	 H292),	 making	 the	 geometry	 about	 the	 C2-C3	 double	 bond	

extremely	important	for	bioactivity.		
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Apoptolidins	 F	 1.6	 and	 H	 1.8,	 lacking	 the	 C27-	 disaccharide,	 both	 exhibit	

significantly	 reduced	 bioactivities.	 Wender	 and	 coworkers	 7	 report	 apoptolidin	 F	 1.6	 to	

have	 greater	 than	 an	 order	 of	magnitude	 loss	 in	 potency	 (>500	nM,	H292)	 as	 compared	

with	 apoptolidin	A	 (50	nM,	H292).	Sulikowski	 and	 coworkers	 8	report	 that	 apoptolidin	H	

1.8	can	be	obtained	through	targeted	gene	deletion	of	the	GT2	glycosyl	transferase	gene	by	

double	 cross	 over	 homologous	 recombination.	 Mutasynthetic	 removal	 of	 the	 C27	

disaccharide,	results	in	significantly	lowered	potency	(610	nM,	H292),	on	par	with	that	of	

apoptolidin	F	1.6.	It	is	important	to	note	that	while	apoptolidin	F	1.6	can	be	extracted	from	

the	crude	fermentation	extract	of	the	Nocardiopsis	sp.		FU40	(<	5	mg/L),	apoptolidin	H	1.8	

was	accessed	via	targeted	gene	deletion	(50-100	mg/L).		

Recently	isolated	O-succinylated	apoptolidin	A	compounds	1.12-1.13	show	a	slight	

reduction	 in	 bioactivity	 (91	 nM	 and	 82	 nM	 in	H292	 for	 2’-O-succinylated	1.12	 and	 3’-O-

succinylated	 1.13	 apoptolidins,	 respectively).	 Mahmud	 and	 coworkers,	 9	 note	 that	

succinylated	apoptolidins	1.12-1.13	may	also	be	hydrolyzed	to	the	more	active	apoptolidin	

A	1.1,	and	note	that	these	succinylated	compounds	may	act	more	like	prodrugs.	Real	time	

analysis	of	cellular	respiration	of	H292	cells	upon	treatment	of	compounds	1.12-1.13	show	

succinylated	 apoptolidins	 to	 be	 weak	 mitochondrial	 inhibitors.	 Mahmud	 and	 coworkers	

hypothesize	that	the	succinylation	event	may	play	a	role	in	self-resistance	and/or	act	as	an	

export	 mechanism.	 Individual	 incubation	 of	 O-succinylated	 apoptolidins	 1.12-1.13	 in	

RPMI-1640	 mammalian	 culture	 conditions	 for	 72	 hours	 led	 to	 approximately	 30%	

conversion	 of	 1.12	 or	 1.13	 to	 apoptolidin	 A	 1.1.	 The	 linear	 apoptolidin	 A	 glycosylated	

secoacid	1.14	appeared	to	be	inactive	when	tested	against	H292	and	HeLa	cancer	cells	(>	1	

μM).	This	seems	to	suggest	the	extreme	importance	of	the	intact	macrocyclic	ring.		
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1.3	Apoptolidin	structure	and	activity	relationship:	chemical	functionalization	of	apoptolidins	

Since	 the	 isolation	 of	 the	 apoptolidins,	 in	 addition	 to	 understanding	 its	 structure-

activity	 relationship	 (SAR)	 by	 isolating	 structural	 analogues	 of	 the	 apoptolidin	 family,	

chemical	modification	of	apoptolidin	A	1.1	through	semi-synthetic	means	has	also	revealed	

a	great	deal	of	structural	information	about	the	apoptolidins	(Fig.	1.5).	Work	completed	by	

the	Sulikowski	4	and	Wender	12-13	groups	have	shown	that	through	functionalization	of	the	

decorating	hydroxyls	of	apoptolidin,	their	role	in	terms	of	bioactivity	can	be	decoded.		

	

Figure	1.5.	Functionalized	apoptolidins	via	chemical	modification	for	SAR	understanding.	

	 Per-acetylation	 of	 the	 apoptolidins	 by	 Sulikowki	 and	 coworkers,	 4	 show	 the	

importance	 of	 the	 hydroxyls	 for	 binding	 to	 their	 proposed	 target.	 	 Per-acetylation	 of	 the	
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fully	glycosylated	apoptolidin	1.15	and	C9-	monoglycosylated	apoptolidin	1.16-1.17,	leads	

to	a	large	decrease	in	binding	affinity	to	FoF1-ATPase	in	vitro	(Ki	>	100	μM)	as	compared	to	

the	free	hydoxylated	apoptolidin	A	1.1	(Ki	=	0.38	μM).		

Mono-	or	di-	 functionalization	of	 the	adorning	apoptolidin	hydroxyls,	 affect	only	a	

slight	 decrease	 in	 activity.	 Through	 collaboration,	 the	 Wender	 and	 Miller	 groups	 12-13	

showed	 that	 selective	 functionalization	 of	 apoptolidin	 A	 could	 be	 achieved	 1.18-1.25.	

While	 selective	 acylation	 or	 methylation	 generally	 gives	 little	 change	 in	 bioactivity,	

methylation	at	the	C20-	hydroxyl	results	in	the	largest	loss	in	activity	(IC50	=	2.8	±	0.5	μM,	

FoF1-ATPase	 assay).	 This	 effect	 is	 larger	 than	 that	 seen	with	 per-methylated	 apoptolidin	

1.18	(IC50	=	2.3	±	0.5	μM,	FoF1-ATPase	assay).	This	could	suggest	that	the	size	of	the	C20-	

hydroxyl	 is	 important	 for	 binding	 to	 its	 target	 as	 deletion	 of	 this	 functional	 group,	 as	 in	

apoptolidin	C	1.3,	 does	not	directly	 impact	bioactivity.	The	 increase	 in	 steric	bulk	at	 this	

position	 with	 the	 introduction	 of	 a	 methoxy	 group	 could	 be	 encumbering	 enough	 to	

prevent	favorable	binding	to	its	molecular	target.	Additionally,	functionalization	at	the	C2’,	

C3’,	 and	 C23-	 hydroxyls	 have	 the	 least	 impact	 on	 bioactivity,	 suggesting	 these	 could	

potentially	be	sites	for	further	functionalization	to	create	molecular	probes	of	apoptolidin.	

In	 three	 separate	 reports	 by	 the	 Wender,	 Seto,	 and	 Khosla	 groups,	 14-16	 drastic	

chemical	modification	was	performed	on	apoptolidin	A	to	access	diverse	macrolide	analogs	

(Fig.	 1.6).	 While	 these	 changes	 to	 the	 overall	 apoptolidin	 core	 are	 much	 more	 severe,	

cleavage	of	 the	hemi-ketal	 and	disaccharide	moiety	 result	 in	 about	 a	20	 fold	decrease	 in	

potency	(IC50	=	13	–	32	μM,	FoF1-ATPase	assay,	1.26-1.28)	as	compared	to	apoptolidin	A	

(IC50	=	0.7	μM).	Ring	expansion	of	macrolide	unit	1.26	under	basic	conditions	to	give	1.29,	
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showed	 a	decrease	 in	potency	 (IC50	 =	 34	μM,	 FoF1-ATPase	 assay)	 as	 compared	 to	 its	 20-

membered	 analogue	1.26	 (IC50	 =	 13	 μM).	 δ-lactone	1.30	 showed	 a	 marked	 decrease	 in	

potency	(IC50	=	190	μM,	FoF1-ATPase	assay),	suggesting	the	apoptolidin	macrolide	is	crucial	

for	binding	to	its	target.	Diels	alder	adduct	1.31	gave	only	a	slight	decrease	in	potency	(IC50	

=	 2.3	 μM,	 FoF1-ATPase	 assay)	 as	 compared	 to	 its	 parent	 (IC50	 =	 0.7	 μM),	 showing	 the	

relative	unimportance	of	the	dienyl	unit	of	apoptolidin	A.	14-15	

	

Figure	1.6.	Chemical	modification	to	the	marcolide	core	of	apoptolidin	A	

Functionalized	apoptolidins	1.26-1.29	were	accessed	via	oxidative	cleavage	of	fully	

pentatriethylsilyl	protected	apoptolidin	A	1.32,	followed	by	sodium	borohydride	reduction	

to	give	a	mixture	of	protected	C9-	glycosylated	macrolide	core	1.33	and	δ-lactone	1.34	(Fig.	

1.7).	 Functionalization	 of	 the	 free	 hydroxyl,	 followed	 by	 silyl	 deprotection	 gave	

functionalized	macrolides	1.26-1.28.	Ring	expansion	under	basic	conditions	of	macrolide	

1.26,	gave	21-membered	lactone	1.29.	Silyl	deprotection	of	protected	δ-lactone	1.34	was	

used	to	give	the	desired	δ-lactone	1.30.	Finally,	[4+2]	cycloaddition	between	apoptolidin	A	

and	N-tert-butyl	maleimide	gave	the	Diels	Alder	adduct	1.31.	
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Figure	1.7.	Oxidative	cleavage	of	apoptolidin	A	

	 Lastly,	 interestingly	 through	 total	 synthesis	 of	 the	 apoptolidin	 aglycone,	

apoptolidinone,	17-29	biological	testing	of	apoptolidinones	A	1.1,	C	1.3,	and	D	1.4	show	the	

aglycone	of	apoptolidin	to	be	completely	inactive	(>	10	μM,	H292).	9	

	

1.4	Apoptolidin	mechanism	of	cytotoxic	and	cytostatic	effects	

	 Several	 early	 papers	 reported	 apoptolidin	 A	 1.1	 has	 been	 shown	 to	 selectively	

induce	apoptosis	in	several	cultured	cancer	cell	models	over	“healthy”	cell	models.	In	1997,	

Seto	and	coworkers	1	demonstrated	that	E1A-transformed	rat	glial	cells	treated	with	1	μM	

of	 apoptolidin	 A	 1.1,	 exhibited	 visual	 signs	 of	 apoptotic	 cell	 death	 such	 as	 condensed	

chromatin,	 fragmented	 nuclei,	 and	 a	 large	 amount	 of	 DNA	 laddering,	 after	 24	 hours.	

Additionally,	1.1	 showed	 significant	 cytotoxicity	 towards	 E1A-transformed	 rat	 glial	 cells	

(IC50	=	11	nM)	as	compared	to	untransformed	cells	(IC50	=	100	μM).		

In	2000,	Khosla	and	coworkers	 30	 reported	apoptolidin	 to	be	among	 the	 top	0.1%	

most	cell-line	selective	cytotoxic	agents	of	the	37,000	molecules	screened	by	the	National	
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coworkers	 attribute	 apoptolidin’s	 (1.1)	 selective	 activity	 as	 derived	 from	 targeting	 FoF1-

ATP	synthase	(FoF1-ATPase),	due	to	apoptolidin’s	(1.1)	structural	similarity	to	known	FoF1-

ATPase	targeting	polyketides	(i.e.	ossamycin	1.35,	cytovaricin	1.36,	and	oligomycin	A	1.37,	

Fig.	 1.8).	 Analysis	 of	 the	 data	 from	 the	 NCI60	 cell	 line	 panel,	 showed	 a	 statistically	

significant	 correlation	 among	 leukemia	 cell	 lines	 that	 exhibited	 sensitivity	 to	 apoptolidin	

and	expression	levels	of	encoding	genes	for	the	subunit	6	of	the	mitochondrial	FoF1-ATPase.	

It	 is	 important	 to	 note,	 that	 this	 subunit	 of	 FoF1-ATPase	 has	 been	 reported	 to	 act	 as	 the	

binding	 site	 for	 macrolides	 such	 as	 oligomycin	 A	 1.37.	 Additionally,	 a	 high	 degree	 of	

correlation	among	screened	 leukemia	cell	 lines	between	apoptolidin	sensitivity	and	 their	

expression	for	enzymes	involved	in	central	carbon	metabolism	such	as	pyruvate	kinase	and	

aspartate	aminotransferase,	was	also	observed.		

	

Figure	1.8.	Structurally	similar	polyketides	to	the	apoptolidin	family.	

The	Khosla	group	concluded	their	report	by	hypothesizing	that	apoptolidin’s	cancer	

cell	 selectivity	 can	 be	 explained	 through	 inhibition	 of	 mitochondrial	 oxidative	

phosphorylation,	 similar	 to	 that	 of	 oligomycin	 A	1.37.	 This	metabolic	 preference	 can	 be	

correlated	well	with	 a	mitochondrial	 target	 such	 as	 FoF1-ATPase.	And	while	most	 cancer	
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glycolytic	in	nature	can	be	chemically	sensitized	to	apoptolidin	A	1.1	by	co-treatment	with	

nontoxic,	 small	 molecule	 inhibitors	 of	 cellular	 glycolysis,	 such	 as	 oxamate	 1.39	 and	 2-

deoxyglucose	1.38	(Fig.	1.9).	30	

	

Figure	1.9.	Small	molecular	inhibitors	of	cellular	glycosylsis:	2-deoxy	glucose	and	oxamate.	

In	 a	 separate	 report,	 Khosla	 and	 coworkers	 31	 determined	 that	 apoptolidin	 A	1.1	

cytotoxicity	 is	 most	 likely	 apoptotic	 in	 nature.	 The	 mechanism	 of	 apoptosis	 is	 highly	

complex	and	sophisticated	cascade	of	events	but	research	to	date	has	indicated	that	there	

are	 two	main	modes	of	 apoptotic	 cell	death:	 the	extrinsic	death	 receptor	pathway	or	 the	

intrinsic	mitochondrial	pathways	(Fig.	1.10).	38	
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Figure	1.10.	Overview	of	extrinsic	and	intrinsic	apoptotic	pathway.		

In	order	to	probe	the	mechanism	of	apoptolidin	A	1.1	apoptotic	cell	death,	Khosla	

and	 coworkers	 conducted	 a	 series	 of	 experiments.	 Using	 a	mouse	 B	 lymphoma	 cell	 line	

(LYas),	which	showed	a	surprising	degree	of	sensitivity	to	apoptolidin	as	compared	to	LYas	

cells	transfected	with	Bcl-2,	they	demonstrated	that	apoptolidin’s	cytotoxicity	toward	LYas	

cells	was	inhibited	by	the	presence	of	anti-apoptotic	protein	Bcl-2.	Its	specific	mechanism	

of	cell	death	was	determined	using	flow	cytometry	to	measure	cell	surface	staining	(FACS)	

using	 propidium	 iodide	 in	 conjunction	 with	 annexin	 V.	 These	 experiments	 showed	

propidium	iodide	and	annexin	V	positive	staining	upon	treatment	of	apoptolidin	(200	nM)	

after	 3	 hours,	 supporting	 an	 apoptotic	mechanism	 of	 cell	 death.	 37	 To	 further	 support	 a	
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mitochondrial	 apoptotic	 mechanism	 of	 cell	 death,	 LYas	 cells	 were	 co-treated	 with	

apoptolidin	 (1.1)	 and	 known	 caspase-9	 inhibitor	 etoposide	 1.40	 or	 caspase-9	 specific	

peptide	inhibitor	z-LEHD.fmk	1.41,	showing	a	significant	loss	in	activity.	In	contrast,	LYas	

cells	 solely	 treated	with	 apoptolidin	 resulted	 in	 PARP	 cleavage,	 a	 biochemical	 event	 that	

occurs	through	the	mitochondrial	intrinsic	pathway	and	results	in	apoptosis.		

	

Figure	1.11.	Caspase-9	inhibitors:	etoposide	and	z-LEHD.fmk.	

Interestingly,	 using	 an	 isogenic	 pair	 of	 wild	 type	 and	 double	 knock	 out	 human	

colorectal	 cells	 (HCT116)	 p53	 +/+	 and	 p53	 -/-,	 apoptolidin	 was	 observed	 to	 exhibit	

apoptotic	 activity	 independent	 of	 p53	 status.	While	 p53	dependent	 apoptosis	 is	 not	well	

understood,	 cells	 that	 engage	 in	 p53	 dependence	 typically	 act	 through	 the	 intrinsic	 cell	

death	 pathway.	 This	 pathway	 is	 typically	 regulated	 by	 BCL-2	 as	 BCL-2	 overexpression	

inhibits	this	pathway	of	apoptosis	(Fig.	1.10).	32		
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tagged	with	Cy3	fluorophores	1.42-1.43	(Fig.	1.12)	resulted	in	specific	cell	 localization	to	

the	mitochondria	of	H292	human	lung	cancer	cells,	about	thirteen	years	post	initial	reports	
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via	 mitochondrial	 FoF1-ATPase.	 These	 fluorescent	 apoptolidin	 analogues	 showed	

comparable	activity	to	their	natural	parents	and	a	high	degree	of	overlap	with	a	fluorescent	

mitochondrial	stain	(MitoTracker
Ⓡ 1.46).	However,	cells	treated	solely	with	fluorescent	Cy3	

linker	 (BNE-Cy3	1.44)	 showed	 significant	 and	 specific	 mitochondrial	 localization.	While	

cationic	dyes	such	as	Cy3	1.45	often	localize	to	the	mitochondria,	the	BNE-Cy3	1.44	 linker	

also	proved	to	be	non-toxic	to	cells	(EC50	=	4.6	μM,	H292).			

	

Figure	1.12.	Fluorescent	apoptolidin	and	related	small	molecule	probes.		

In	addition,	Sulikowski	and	coworkers	showed	that	cancer	cell	 confluence	directly	

impacted	apoptolidin	activity.	By	treating	H292	cells	at	 low	confluence	(20k	cells/well	or	

less),	a	cytostatic	effect	was	observed	with	cell	viability	maintaining	about	50%	viability	as	

compared	 to	 control	 cells	 (DMSO	 treated).	 However,	 H292	 cells	 grown	 to	 a	 higher	
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confluence	(25k	cells/	well)	demonstrated	potent	apoptolidin-induced	cytotoxicity.	Using	

this	model	 for	 consistent	measurements	 for	 apoptolidin-induced	 cell	 death,	 activity	 was	

measured	according	 to	glycosylation	state	(Fig.	1.13).	Notably,	Sulikowski	and	coworkers	

observed	a	direct	correlation	between	apoptolidin	glycolytic	state	and	cytotoxicity	with	the	

fully	 glycosylated	 apoptolidins	 showing	 sub-nanomolar	 activity	 (IC50	 =	 16	nM,	1.1,	H292	

cells,	human	lung	cancer)	and	the	aglycone	losing	most	of	its	parent	activity	(>	10	μM,	1.48	

H292).		

	

Figure	1.13.	Correlation	between	apoptolidin	glycosylation	state	and	bioactivity.	

In	 December	 of	 2014,	 Ishmael	 and	 coworkers	 33	 analyzed	 apoptolidin	 activity	 in	

several	cancer	cell	lines,	including	human	gliablastoma,	lung	cancer,	and	mouse	embryonic	

fibroblasts	(MEFs).	Apoptolidin	A	1.1	 treatment	of	human	gliablastoma	(U87-MG	and	SF-
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H460	cells	all	showed	decreased	in	rates	of	oxidative	phosphorylation	and	increased	rates	

of	glycosylsis.	While	this	trend	is	consistent	with	previous	reports	of	an	apoptolidin	FoF1-

ATPase	 target,	 comparisons	 between	 apoptolidin	 A	1.1	 and	 oligomycin	 A	1.37	 revealed	

significant	differences	 in	activity	and	metabolic	changes	within	 the	 four	cell	 lines	used.	 It	

has	 long	 been	 established	 that	 oligomycin	 A	 1.37	 targets	 FoF1-ATPase.	 39	 Notably,	 they	

observed	 that	 the	 metabolic	 phenotype	 of	 a	 cell	 line	 was	 a	 critical	 determinant	 for	

apoptolidin	sensitivity,	 rather	 than	histological	similarities	among	cell	 lines.	They	ascribe	

this	phenomenon	to	be	the	basis	for	apoptolidin’s	cancer	cell	selectivity	among	cell	lines.		

In	addition,	 Ishmael	and	coworkers	also	determined	 that	apoptolidin	 treatment	 to	

U87-MG	 gliablastoma	 cells	 and	 MEF	 mouse	 embryonic	 cells	 resulted	 in	 the	 indirect	

activation	of	5’	AMP-activated	protein	kinase	(AMPK)	leading	towards	autophagy,	without	

significant	molecular	 target	 of	 rapamycin	 C1	 (mTORC1)	 activation.	 In	 U87-MG	 and	MEF	

cells,	 apoptolidin	 treatment	 results	 in	 the	 phosphorylation	 of	 phosphorylated	 acetyl-CoA	

carboxylase	(ACC)	and	UNC-like-51	kinase	(ULK1),	leading	toward	the	phosphorylation	of	

5’	 AMP-activated	 protein	 kinase	 (AMPK).	 Additionally,	 wild	 type	 MEFs	 exhibited	 clear	

activation	 of	AMPK	while	AMPKα-null	MEFs	 showed	no	 signs	 of	 phosphorylation	 of	ACC	

with	either	apoptolidin	A	1.1	or	oligomycin	A	1.37.	These	events	were	also	only	observed	

with	cell	lines	that	showed	a	large	metabolic	preference	toward	oxidative	phosphorylation	

(wild	type	MEFs	and	U87-MG)	over	glycolysis	(AMPKα-null	MEFs	and	SF-295).	This	could	

be	 attributed	 to	 a	 secondary	 autophagic	 response	 towards	 apoptolidin-induced	 cellular	

stress.	This	is	consistent	with	other	reports	of	a	diverse	group	of	natural	products,	which	

have	been	shown	 to	activate	AMPK	 indirectly	as	a	 result	of	 compromising	mitochondrial	

function.	34,	35	
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In	 January	 of	 2016,	 collaboration	 between	 the	 Sulikowski,	 Bachmann,	 and	 Irish	

groups	36	resulted	in	work	showing	that	fluorescent	differentially	glycosylated	apoptolidins	

are	selectively	taken	up	into	several	cancer	cell	lines	(A549,	U87,	LN229,	and	SW620)	over	

healthy	cell	models	 (peripheral	blood	mononuclear	 cells,	PBMC),	10	min	after	 treatment.	

Cell	microscopy	imaging	showed	specific	uptake	of	the	fluorescent	probes	into	human	lung	

cancer	cells	(A549)	and	gliablastoma	cells	(U87).	Single-cell	 fluorescent	phospho-	specific	

flow	 cytometry	 (phospho-flow)	 was	 then	 used	 to	 quantitate	 the	 uptake	 of	 fluorescent	

apoptolidins	in	the	four	cell	lines	as	plotted	against	up-regulation	of	phosphorylated	ACC,	1	

hour	 after	 treatment.	 Phospho-flow	 analysis	 after	 apoptolidin	 treatment	 showed	 almost	

compete	uptake	of	apoptolidin	into	healthy	PBMCs	and	all	tested	cancer	cell	lines	(>98%).	

However,	 healthy	 PBMCs	 showed	 minimal	 response	 to	 apoptolidin	 in	 terms	 of	

phosphorylated	ACC	(p-ACC)	while	all	cancer	cells	showed	a	portion	of	cell	subset,	which	

showed	 high	 p-ACC	 signal.	 LN229	 gliablastoma	 cells	 showed	 the	 highest	 increase	 in	 the	

abundance	 of	 this	 subset	 of	 apoptolidin-sensitive	 cells,	 from	 2.74%	 (DMSO	 control)	 to	

12.39%	 and	 15.28%	 for	 fully	 glycosylated	 fluorescent	 apoptolidin	 A	 1.42	 and	 C9-	

monoglycosylated	apoptolidin	H	1.43,	respectively.	

	

1.5	Conclusion	

	 Although	 isolated	 twenty	 years	 ago,	 the	 mechanism	 for	 apoptolidin’s	 observed	

selective	 cancer	 cell	 toxicity	 remains	 mostly	 unanswered.	 As	 more	 data	 regarding	

structure-activity	 relationships	 between	 apoptolidin	 structure	 and	 function,	 the	 better	

insight	we	gain	into	utilizing	this	knowledge	to	create	cancer	cell	selective	small	molecule	
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therapeutics.	 The	 apoptolidin	 macrolide	 family	 represents	 an	 immense	 opportunity	 to	

probe	cancer	cell	mechanistic	pathways.		
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CHAPTER	II	

	

STRUCTURE-ACTIVITY	RELATIONSHIP	STUDIES:	GLYCOCONJUGATES	AGLYCA	AND	THEIR	

BIOACTIVITY	

	

2.1	Importance	of	glycosylation	in	medicinally	relevant	natural	products	

	 The	discovery	and	development	of	glycosylated	natural	products	to	improve	human	

health	 can	 be	 found	 throughout	 medical	 history.	 Glycosylated	 natural	 products	 such	 as	

calicheamicin	 2.1	 (anticancer),	 amphotericin	 B	 2.2	 (antifungal),	 lomaiviticin	 2.3	

(antitumor),	daunomycin	2.4	(a.k.a.	daunorubicin,	anticancer),	bleomycin	2.5	(anticancer),	

and	 everninomicin	 2.6	 (antibiotic)	 are	 examples	 of	 well-known	 secondary	 metabolites	

containing	important	sugar	residues	(Fig.	2.1).	1	
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Figure	2.1.	Glycosylated	medicinally	relevant	natural	products.	
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and	 therefore	 enhanced	 permeability,	 as	 compared	 to	 healthy	 cells,	 which	 often	 have	

significant	 barriers	 to	 high	 molecular	 weight	 species.	 2	 Other	 reports	 show	 that	 the	

decreased	 number	 of	 lymphatic	 vessels	 in	 tumor	 cells	 allows	 for	 increased	 retention	 of	

these	secondary	metabolites	in	the	interstitial	space	of	cells.	3,	4	Conjugation	of	antibodies	

to	drugs	have	also	shown	slower	release	times	from	its	carrier,	giving	sustained	high	intra-

tumoral	concentrations	and	lower	plasma	concentrations	of	the	active	drug.	5	

While	it	is	generally	accepted	that	sugars	play	a	major	role	in	contributing	to	overall	

natural	product	pharmacokinetics,	 these	hypotheses	 largely	 remain	unproven.	There	 is	 a	

lack	of	detailed	understanding	at	the	molecular	level	of	the	importance	of	glycosylation	and	

identity	among	secondary	metabolites,	as	it	relates	to	overall	in	vitro	and	in	vivo	activity	of	

bioactive	natural	products.	Exceptions	to	this	generality	include	the	calicheamicins	2.1	and	

bleomycins	2.5,	 as	 these	 families	 of	 natural	 products	 have	 been	 studied	 extensively.	 6-16	

SAR	 studies	 of	 these	 natural	 products	 have	 produced	 a	 detailed	 understanding	 of	 target	

engagement	and	relationship	of	glycosylation	to	its	efficiency	and	selectivity	(Fig.	2.2).	14	
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Figure	2.2.	Chemical	structures	of	calicheamicin	and	bleomycin.		

	

2.2	A	case	study:	structure	and	function	of	the	calicheamicins	

Calicheamicin	2.1	was	first	discovered	in	the	mid-1980’s	by	a	scientist	on	vacation	

in	 Kerrville,	 Texas.	 The	 scientist	 had	 collected	 a	 sample	 of	 the	 soil	 and	 sent	 it	 back	 for	

testing	to	discover	an	extremely	potent	cytotoxic	agent	(optimal	dose	=	0.5	–	1.5	μg/k,	ca.	

4000x	more	potent	than	doxorubicin).	6	While	calicheamicin	2.1	does	not	show	selectivity	

for	 cancer	 cells	 by	 itself,	 when	 bound	 to	 a	 humanized	 monoclonal	 antibody,	 it	 can	 be	

directed	 toward	 leukemia	 cells	 in	 patients	 diagnosed	 with	 acute	 myeloid	 leukemia.	 17	

Calicheamicin	 2.1	 itself	 is	 an	 extremely	 potent	 cytotoxic	 agent.	 The	 generally	 accepted	

mechanism	 of	 calicheamicin	 2.1	 binding	 to	 DNA	 first	 involves	 non-specific	 binding	 of	

calicheamicin	 2.1	 to	 the	 minor	 groove,	 followed	 by	 tracking	 along	 the	 groove	 or	 outer	
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surface	of	the	helix	until	a	target	site	is	reached.	Either	during	this	process	or	once	bound,	

reduction	 of	 the	 calicheamicin	 trisulfide	 2.7	 most	 likely	 via	 glutathione,	 triggers	 an	

intramolecular	thiol	conjugate	addition	followed	by	a	Bergman	cyclization,	resulting	in	the	

formation	of	a	di-radical	species	2.10	 (Fig.	2.3).	The	orientation	of	 the	resulting	diradical	

intermediate	2.10	within	the	minor	groove	results	in	ribose	hydrogen	atom	abstraction	of	

each	strand	of	duplex	DNA.	This	results	in	lethal	double-stranded	DNA	cleavage	leading	to	

apoptosis.	This	pathway	is	the	basis	for	calicheamicin’s	potent	cellular	toxicity.	17	

	

Figure	2.3.	Mechanism	for	calicheamicin	cellular	toxicity	via	dsDNA	cleavage.	

Interestingly,	 studies	 have	 shown	 that	 the	 aryl	 tetrasaccharide	 of	 calicheamicin	

binds	in	the	same	orientation	with	or	without	the	aglycone.	18-21	Kahne	and	coworkers	have	

shown	 that	 the	 aryl	 tetrasaccharide	 exhibits	 a	 surprisingly	 large	 amount	 of	 rigidity	 and	

does	 not	 undergo	 any	major	 conformational	 changes	 when	 calicheamicin	 binds	 to	 DNA.	

Instead,	they	suggest	that	DNA	undergoes	a	conformational	change	in	the	presence	of	the	

rigid	 tetrasaccharide	due	 to	 the	steric	pressure	on	 the	pyrimidine	strand,	 leading	 toward	

widening	of	 the	minor	groove.	 22,	23	Additionally	Danishefsky	and	coworkers	have	 shown	
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that	the	aglycone	of	calicheamicin	2.1	may	bind	to	DNA	but	with	a	much	weaker	interaction	

and	 a	 loss	 of	 DNA	 cleavage	 specificity.	 Thus	 in	 the	 case	 of	 calicheamicin	 2.1,	 the	

tetrasaccharide	unit	is	necessary	for	tight	DNA	binding	and	double-stranded	DNA	cleavage	

specificity.	24	

	

2.3	A	case	study:	structure	and	function	of	the	bleomycins	

	 Bleomycin	2.5	is	a	glycopeptide	first	isolated	in	1966	by	Umezawa	and	coworkers	25	

and	later	marketed	in	Japan	as	a	drug	under	the	tradename	“Blenoxane”	by	Nippon	Kayaku	

in	 1966.	 Since	 its	 initial	 isolation	 and	 discovery	 as	 an	 anti-cancer	 agent,	 Blenoxane	 (a	

mixture	of	bleomycin	A2	2.11	 and	bleomycin	B2	2.12)	 14	has	become	an	 integral	part	of	

combination	 therapy	 to	 treat	 a	 number	 of	 cancers	 including	 Hodgkin’s	 lymphoma,	 non-

Hodgkin’s	 lymphoma,	 testicular	 cancer,	 breast	 cancer,	 cervical	 cancer,	 head	 and	 neck	

cancer,	 pleural	 effusions	 from	metastatic	 tumors,	 and	 AIDS-related	 sarcoma	 intracranial	

germ	cell	tumors	(Fig	2.4).	26	Most	notable	of	these	treatments	is	blenoxane’s	use	alongside	

cisplatin	and	etoposide	to	treat	testicular	cancer,	at	a	90%	curative	effect.	14	
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Figure	2.4.	Chemical	structure	of	BlenoxaneⓇ
:	Bleomycin	A2	and	B2.	 

The	bleomycin	family	consists	of	a	similarly	shared	aglycone	core,	differentiated	by	

glycoslation	pattern	and	charged	tail.	The	structural	features	of	the	bleomycin	family	have	

been	extensively	studied	and	dissected	into	several	functional	domains	(Fig.	2.5).	14	

	

Figure	2.5.	Chemical	structure	of	bleomycin	family.		

	 The	metal	 binding	 domain	 of	 bleomycin	 forms	 an	 octahedral	 complex	with	 either	

iron(II)	or	 copper(I)	 to	 form	 the	active	metallobleomycin	species:	bleomycin-Fe(III)-OOH	
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or	bleomycin-Cu(I),	the	latter	of	which	can	be	oxidized	further	resulting	in	reactive	oxygen	

species	 (ROS).	 These	 active	 forms	 of	 bleomycin	 are	 believed	 to	 diffuse	 into	 the	 nucleus,	

bind	to,	and	cleave	double	stranded	DNA	(dsDNA).	 27,	28	This	metal	binding	domain	binds	

selectively	to	guanine	sites,	typically	through	intercalation	or	binding	to	the	minor	groove	

with	the	pyrimidine	of	bleomycin	29,	30	(Fig.	2.6A).	Hydrogen	atom	abstraction	by	ROS	leads	

toward	 the	 cleavage	 of	 DNA.	 31,	 32	 The	 linker	 length	 of	 bleomycin	 has	 been	 found	 to	 be	

extremely	important	for	binding	to	DNA	as	the	charged	bithiazole	tail	partially	intercalates	

into	DNA	so	 that	bleomycin	can	reorganize	 itself	and	cleave	a	second	strand	of	DNA	33,	34	

(Fig.	2.6B).	While	extensive	SAR	studies	have	been	conducted	on	bleomycin,	until	recently	

little	was	known	about	its	selective	mechanism	of	cancer	cell	uptake	and	the	functional	role	

of	its	disaccharide.	
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Figure	2.6.	Bleomycin	structure	and	function.	A.	SAR	of	bleomycin	B.	Mechanism	for	dsDNA	clevage		

	 In	 2013,	 Hecht	 and	 coworkers	 showed	 that	 the	 disaccharide	 of	 bleomycin	 is	

necessary	for	selective	tumor	cell	targeting.	35	Using	fluorescent	bleomycin,	the	aglycone	of	

bleomycin,	 and	 the	 bleomycin	 disaccharide,	 Hecht	 and	 coworkers	 demonstrated	 that	

bleomycin	 glycovarints	2.13-2.16	 (Fig.	 2.7)	 selectively	 stain	 breast	 cancer	 cells	 (MCF-7)	

but	 not	 normal	 human	 breast	 cells	 (MCF-10A).	Notably,	 the	 bleomycin	 aglycone	 showed	

little	or	no	staining	of	either	MCF-7	or	MCF-10A	cell	lines.		
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Figure	2.7.	Structure	of	synthetic	bleomycin	glycovariants.		

In	 2015,	 the	 Hecht	 group	 36	 followed	 up	 these	 studies	 by	 creating	 fluorescent	

bleomycin	 monosaccharide	 analogues	 2.7-2.9	 (Fig.	 2.8).	 These	 studies	 showed	 that	 the	

disaccharide	portion	of	bleomycin	could	be	simplified	to	the	carbamoylmannose	moiety	of	

bleomycin	and	still	exhibit	selectivity	toward	cancer	cell	uptake	in	six	different	cancer	cell	
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lines.	 Interestingly	 they	 found	 that	 the	carbamoyl	portion	of	 the	sugar	was	necessary	 for	

selective	cancer	cell	uptake.	
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Figure	2.8.	Fluorescent	synthetic	bleomycin	monosaccharide	analogues.	

	 Recent	 findings	 by	 Hecht	 and	 coworkers	 35-36	 illustrate	 the	 potential	 to	 better	
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surge	 in	 the	 number	 of	 techniques	 to	 systematically	 explore	 the	 SAR	 of	 natural	 product	

glycosides,	it	remains	an	area	of	science	little	explored.	

	

2.4	Recent	advances	in	understanding	the	purpose	of	natural	product	glycosylation	state	

Groups	such	as	those	led	by	Jon	Thorson	and	Tadashi	Eguchi	have	sought	to	tackle	

this	interesting	yet	much	unexplored	area	of	science	by	systematically	diversifying	glycans	

on	known	natural	products	via	glycorandomization	 (Fig.	2.9).	Glycorandomization	allows	

for	the	creation	of	large	libraries	of	differentially	glycosylated	macrolide	aglycone	that	can	

be	screened	for	bioactivity.	37	

	

Figure	2.9.	Overview	of	enzymatic	glycorandomization.		

In	 2005,	 Eguchi	 and	 coworkers	 showed	 that	 using	 VinC,	 a	 glycosyltransferase	 of	

vicenilactam,	 in	 the	 presence	 of	 thimidine	 diphosphate	 (TDP),	 reversible	 glycosylation	

could	 be	 achieved	 to	 form	 the	 aglycone	 and	 TDP-activated	 glycoside.	 TDP-vicenisamine.	

TDP-vicenisamine	could	then	be	used	to	glycosylate	five	other	aglyca	(Fig.	2.10).	38		
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Figure	2.10.	Demonstration	of	glycorandomization	functionality	toward	accessing	new	aglyca.	

In	2006,	Thorson	and	 coworkers	 showed	glycosyltransferases	 from	calicheamycin	

(CalG1	and	CalG4)	and	vancomycin	(GtfD	and	GtfE),	allowed	for	increased	expansion	of	this	

reversible	glycosyltransferase	activity,	 leading	 to	 the	 formation	of	10	TDP	sugars	and	70	

new	calicheamycins.	39		
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Figure	2.11.	Demonstration	of	glycorandomization	functionality	toward	accessing	new	aglyca	con’t.	

Glycorandomization	is	a	powerful	new	approach	that	could	allow	access	to	various	

activated	glycosyl	donors	and	aglyca	not	easily	accessible.	It	significantly	expands	the	scope	

and	 role	 of	 glycosyl	 transferases	 as	 catalysts	 for	 traditional	 organic	 reactions.	 This	

approach,	however,	does	require	 large	and	variable	amounts	of	 isolated	enzyme.	Because	

of	 the	 size	of	 the	glycosyltransferase,	 large	quantities	of	 the	enzyme	catalyst	 are	needed,	
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even	 for	 low	catalyst	 loadings.	Typically	 this	approach	requires	knowledge	of	 the	natural	

product	 biosynthesis	 and/or	 a	 means	 of	 isolating	 the	 glycosyltransferase	 catalyst.	 And	

while	glycorandomization	represents	an	attractive	technique	to	analyze	glycosylation	state	

such	as	those	identifying	new	unnatural	potent	analogues	of	calicheamicin	and	vancomycin,	

it	is	still	a	recently	developed	technique	that	has	yet	to	be	applied	toward	other	aglyca.		

	

2.5	Exploring	the	function	of	apoptolidin	glycosylation	state	

In	 2009,	 through	 collaboration	 between	 the	 Bachmann,	 Sulikowski,	 and	 Marnett	

groups,	 40	 a	 hybrid	 chemical	 ketosynthase	 (PKS)	 “knockdown”	 approach	 (Fig.	 2.14)	was	

used	 to	 selectively	 glycosylate	 a	 synthetically	 produced	 aglycone	 of	 apoptolidin	

(apoptolidinone	D,	2.20).	This	technique	was	first	utilized	by	the	Omura	group	to	convert	a	

biologically	inactive	tylosin	aglycone	(protylonolide,	2.23)	into	chimeramycin	A	2.24	with	

a	 spiramycin	 A	2.25	 producing	 organism	 (Fig.	 2.12).	 41	 The	 Bachmann	 group	 40	 showed	

selective	 C27-	 glycosylation	 of	 apoptolidinone	 D	 is	 possible	 by	 co-treating	 its	 producing	

organism	 (FU40)	 with	 synthetic	 aglycone	 apoptolidinone	 D	 2.20	 and	 PKS	 inhibitor	

cerulenin	2.22.	Treatment	of	cerulenin	2.22	suppresses	endogenous	aglycone	production	

from	 the	 producing	 organism.	 This	 allows	 for	 downstream	 machinery,	 such	 as	 a	

glycosyltransferase,	to	act	upon	an	exogenously	treated	aglycone.		
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Figure	2.12.	Glycovariants	obtained	via	“chemical	knockdown”.		

Selective	C27-	glycosylation,	even	in	the	presence	of	free	hydroxyl	groups	within	the	

molecule	 represents	 a	 powerful	 tool	 to	 further	 understand	 apoptolidin	 SAR	 and	 access	

apoptolidin	 glycovariants	 without	 any	 knowledge	 of	 the	 natural	 product	 biosynthetic	

pathway.	 From	 a	 total	 synthesis	 perspective,	 the	 construction	 of	 the	 complex	molecular	

matrix	 of	 apoptolidin	 remains	 a	 tedious	 and	 daunting	 task.	 Utilizing	 the	 producing	

organism	to	synthesize	the	apoptolidin	disaccharide	and	achieve	its	selective	glycosylation	

is	 an	 attractive	 method	 to	 circumvent	 its	 chemical	 synthesis.	 It	 is	 however,	 unknown	

whether	 this	 technique	can	allow	 for	a	great	amount	of	 flexibility	within	 the	structure	of	

the	 treated	 aglycone,	 as	 apoptolidin	 D	 2.21	 is	 a	 naturally	 occurring	 member	 of	 the	

apoptolidin	family.	
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Figure	2.13.	Apoptolidin	glycovariants	obtained	via	precursor-directed	biosynthesis.	

In	 2011,	 Bachmann	 and	 coworkers	 42	 followed	 these	 studies	 in	 a	 seminal	 paper	

proposing	 the	 mechanism	 for	 apoptolidin	 biosynthesis	 by	 sequencing	 the	 FU40	 gene	

cluster.	 Equipped	with	 this	 knowledge,	 they	 showed	 that	 endogenous	 production	 of	 the	

apoptolidins	could	be	shut	down	by	targeting	the	 last	 frame	of	 its	PKS,	ApoS8	(Fig.	2.14).	

Using	 cosmids,	 the	 targeted	 gene	 was	 replaced	 by	 apramycin	 resistance	 gene	 markers	

using	 double	 crossover	 homologous	 recombination.	 The	 apramycin	 resistant	 mutant	

knockouts	(FU40	ΔS8),	showed	no	production	of	any	of	the	apoptolidins	but	when	treated	

with	 C9-	 glycosylated	monosaccharide	 apoptolidin	 H	 2.26,	 could	 produce	 apoptolidin	 A	

2.27	via	C27-	glycosylation	(Fig.	2.13).		

	

Figure	 2.14.	 Demonstration	 of	 “chemical	 knockdown”	 and	 precursor	 directed	 biosynthesis	 to	 access	 apoptolidin	
glycovariants.	
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In	contrast	to	the	chemical	“knockdown”	hybrid	approach	(ca.	18%),	this	precursor	

directed	 biosynthetic	 approach	 allows	 for	 selective	 glycosylation	 of	 apoptolidin	 in	 ca.	

24.7%	 yield	 (Fig.	 2.14).	 Pulse	 feeding	 of	 both	 cerulenin	 2.22	 and	 the	 C9-	 glycosylated	

apoptolidin	H	2.26	 in	 the	hybrid	approach	necessitates	great	care	 in	effecting	a	chemical	

“knockdown”	of	the	endogenous	PKS	system	while	reducing	toxicity	to	the	microorganism.	

Precursor	directed	biosynthesis	circumvents	the	inherent	toxicity	of	cerulenin	2.22.	These	

studies	demonstrate	an	additional	approach	to	“chemical	knockdown”	that	could	be	used	

toward	the	selective	C27-	glycosylation	of	apoptolidin.		

Additionally,	 collaboration	 between	 the	 Sulikowski	 and	 Bachmann	 groups	 43	

showed	 that	 using	 targeted	 gene	 deletion	 of	 one	 of	 the	 glycosyl	 transferases	 (ΔGT2),	

apoptolidin	 H	 2.26	 could	 be	 accessed	 (Fig.2.15).	 Mutasynthesis	 produces	 C9-	

monoglycosylated	 apoptolidin	 H	 2.26	 in	 50-100	 mg/L.	 This	 technique	 uses	 the	 same	

double	 crossover	 homologous	 recombination	 with	 apramycin	 resistant	 gene	 markers,	

developed	by	the	Bachmann	group	toward	the	C27-	glycosylation	of	apoptolidin	H	2.26.	

	

Figure	2.15.	Demonstration	of	mutasynthesis	to	access	apoptolidin	glycovariants.		

O

OMe
O

Apo A

Apo∆GT2
O

OMe
OH

Apo H

usu.
100-130 mg/L

50-100 mg/L

O

O

O
OMe

O

OMe

OH

O

HO
OH

MeO

OH H

OH

OH

Apoptolidin H  2.26

HO



	 46	

Lastly,	the	aglycone	of	apoptolidin	(A	2.28,	C	2.29,	and	D	2.30,	Fig.	2.16A)	has	been	

reached	 via	 total	 synthesis	 by	 several	 groups	 including	 those	 lead	 by	 Koert,	 Nicolaou,	

Crimmins,	 Sulikowski,	 and	Nelson.	 44-56	 It	 is	 important	 to	note	 that	 typical	means	of	 acid	

degradation	 of	 the	 fully	 glycosylated	 natural	 product	2.27	 result	 in	 decomposition	 (Fig.	

2.16B).	Reports	by	Salomon	and	coworkers	57	have	shown	that	acidic	methanolysis	of	the	

fully	glycosylated	apoptolidin	A	 results	 in	 the	dehydration	of	 the	C23-	hydroxyl	group	of	

the	 hemi-ketal	 ring	 and	 that	 the	 C9-	 sugar	 remains	 in	 tact	 before	 degradation	 of	 the	

macrolide	is	observed.	
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Figure	2.16.	Chemical	approaches	toward	acquiring	the	apoptolidin	aglycone.	A.	Chemical	structures	of	apoptolidinones	
A,	C,	and	D	accessed	via	total	synthesis.	B.	Acidic	degradation	studies	of	apoptolidin	A	(apoptolidin	A	2.27	 treated	with	
0.2M	HCl	in	methanol	for	3h,	12%	yield).		

In	2015,	using	fully	glycosylated	apoptolidin	A	2.27,	C27-	glycosylated	apoptolidin	D	

disaccharide	 2.21,	 C9-	 glycosylated	 apoptolidin	 H	 2.26,	 and	 synthetic	 aglycone	

apoptolidinone	A	2.28,	Sulikowski	and	coworkers	43	demonstrated	apoptolidin	cytotoxicity	

against	 H292	 human	 lung	 cancer	 cells	 is	 dependent	 on	 glycosylation	 state	 (Fig.	 2.17).	
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apoptolidin	 A	2.27	 (EC50	 =	 16	 nM,	 H292).	 C27-	 glycosylated	 apoptolidin	 D	 disaccharide	

2.21	 retains	 some	 of	 its	 activity	 (EC50	 =	 200	 nM,	 H292)	 and	 C9-	 mono-glycosylated	

apoptolidin	H	2.26	 loses	much	of	 its	parent	activity	(IC50	=	810	nM,	H292).	 Interestingly,	

when	 tested	against	FoF1-ATPase,	apoptolidin	H	2.26	 exhibited	similar	activity	 (Ki	=	13.7	

μM)	to	the	fully	glycosylated	apoptolidin	A	2.27	(Ki	=	4.9	μM).		This	data	seems	to	suggest	

that	 the	 pharmacological	 importance	 of	 the	 apoptolidin	 disaccharide	 moiety	 is	 largely	

decoupled	from	its	activity	against	its	proposed	molecular	target,	FoF1-ATPase.	

	

Figure	2.17.	Exploring	bioactivity	as	a	function	of	glycosylation	state.		
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di-,	mono-,	and	non-	glycosylated	apoptolidins),	access	to	the	aglycone	is	necessary.	Fully	

glycosylated	 apoptolidin	 A	 2.27	 (tri-glycosylated)	 can	 be	 accessed	 as	 the	 natural	 major	

metabolite	 produced	 by	 Nocardiopsis	 sp.	 FU40.	 58,	 59	 C27-	 glycosylated	 apoptolidin	

disaccharide	 2.21	 (di-glycosylated)	 can	 be	 accessed	 via	 chemical	 “knockdown”	 with	

cerulenin	 or	 precursor	 directed	 biosynthesis.	 40,	 42	 And	 finally,	 mutasynthesis	 by	 GT2	

glycosyltransferase	 knock	 out	 (FU40	 ΔGT2)	 can	 be	 utilized	 to	 produce	 C9-	 glycosylated	

(mono-glycosylated)	 apoptolidin	H	 2.26.	 43	 The	 aglycone	2.28	 (non-glycosylated)	 can	 in	

theory	 be	 produced	 using	 several	 methods.	 However,	 acid	 mediated	 degradation	 of	 the	

fully	 glycosylated	 apoptolidin	 A	 2.27,	 does	 not	 give	 the	 desired	 apoptolidin	 A	 2.28	 but	

rather	 C23-	 dehydrated	 apoptolidin	H	2.31	 or	 decomposition	 (Fig.	 2.16).	 57	Additionally,	

efforts	to	either	 isolate	active	glycosyltranserases	of	FU40	or	complete	knockdown	of	the	

glycosyltransferases	within	the	apoptolidin	gene	cluster	have	yet	to	be	achieved.	Thus	total	

synthesis	of	the	apoptolidin	aglycone	remains	an	attractive	strategy	and	provides	the	basis	

for	the	work	presented	herein.		
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CHAPTER	III	

	

DEVELOPMENT	OF	A	ROUTE	TOWARD	THE	WESTERN	HEMISPHERE	OF	

APOPTOLIDINONE	C	

	

3.1	Chemical	synthesis	of	apoptolidinone	A	and	C	

Due	 to	 its	 complex	 structure	 and	 interesting	 bioactivity,	 apoptolidin	 A	 3.1	 has	

garnered	much	 attention	 since	 its	 isolation	 in	 1997.	 To	 date,	 three	 total	 syntheses	 have	

been	accomplished	by	the	Nicolaou,	Koert,	and	Crimmins	groups	1-7	and	four	synthesis	of	its	

aglycone	(apoptolidinones	A	3.2,	C	3.3,	and	D	3.4)	by	the	Koert,	Sulikowski,	Crimmins,	and	

Nelson	groups,	Fig.	3.1).	1,	8-13		
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Figure	3.1.	Chemical	structures	of	apoptolidin	and	related	aglyca.		

While	 the	 apoptolidins	 have	 been	 synthesized	 several	 times	 throughout	 history,	

efforts	 to	 achieve	 a	 highly	 convergent	 and	 efficient	 route	 toward	 the	macrolide	 for	 late	

stage	 SAR	 studies	 are	 on	 going.	 Access	 to	 large	 quantities	 of	 the	 fully	 glycosylated	

apoptolidin	 A	 3.1	 and	 its	 glycovariants	 has	 yet	 to	 be	 reported.	 Solely	 focusing	 on	 the	

aglycone	of	apoptolidin	A,	it	has	been	synthesized	by	the	Koert,	Sulikowski,	and	Crimmins	

groups.	 1,	8-13	 Overall	 yields	 range	 between	 0.027%	 and	 0.147%	 and	 contain	 37-47	 total	

steps	and	18-26	longest	linear	sequences	(Fig.	3.2).	
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Figure	3.2.	Historical	timeline	of	completed	syntheses	of	apoptolidin	macrolides.		

	 The	Koert	group	first	published	their	synthesis	of	apoptolidinone	A	in	June	of	2001,	

8	 four	 years	 after	 its	 initial	 isolation.	Apoptolidinone	A	was	 synthesized	by	 accessing	 the	

northern	and	 southern	hemispheres	of	 apoptolidinone	A	and	uniting	 the	halves	 together	

through	Stille	coupling	and	macrolactonization	(Fig.	3.3).		

	

Figure	3.3.	Koert’s	retrosynthetic	analysis	for	apoptolidinone	A.		

The	 northern	 C1-C11	 fragment	 3.6	 was	 constructed	 through	 iterative	 Wittig	

homologation	of	the	C6-C10	fragment	3.5.	C6-C10	fragment	3.5	was	synthesized	beginning	
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from	 β-hydroxy	 lactone	 3.10.	 t-Butyldimethylsilyl	 (TBS)	 protection	 and	 semi-reduction	

arrived	at	lactol	3.11.	Wittig	homologation	followed	by	triethylsilyl	(TES)	protection	gave	

alcohol	3.12	(Fig.	3.4).		

	

Figure	3.4.	Koert’s	synthesis	of	C6-C10	fragment	of	apoptolidinone	A.		

	 C21-28	 fragment	3.18	was	 assembled	beginning	with	β-keto-ester	3.13	 (Fig.	 3.4).	

Noyori	 reduction	 followed	 by	 silyl	 protection	 and	 semi	 reduction	 gave	 aldehyde	 3.14.	

Evan’s	 auxiliary	mediated	 aldol	with	 β-keto-imide	 auxiliary	 provided	 the	 aldol	 adduct	 in	

91%	yield	and	96:4	dr.	Hydroxy-	directed	 reduction	 cleanly	gave	 trans	diol	3.17	 in	98%	

yield	 and	 in	 95:5	 dr.	 Transamidation	 to	 the	Weinreb	 amide	 followed	 by	 TES	 protection	

arrived	at	the	C21-C28	fragment	3.18.		

	

Figure	3.5.		Koert’s	synthesis	of	C21-C28	fragment	of	apoptolidinone	A.		

The	 southern	 hemisphere	 of	 apoptolidinone	 A	 was	 assembled	 using	 iterative	

nucleophillic	 additions	 of	 fragments	3.19	 and	3.24	 (Fig.	 3.6).	 Lithium	 halogen	 exchange	

CO2Et

Me
TBSO

Me

HO

O

O
Me

HO
O

OH
Me

TBSO

1. TBSOTf, 2,6-lutidine,
     DCM, 90%

2. DiBAlH, DCM, 95%

1. TBSOTf, 2,6-lutidine,
     DCM               Tol.

2. TESCl, Im, DCM, 
     82% over 2 steps

Ph3P Me

OEtO

3.10 3.123.11

O O
TES TES

OMe
O

TBS

C21 - C28 fragment 3.18

O

N
MeO

Me

MeO

O
OMe

O

H

O
OMe

OTBS

1. [RuCl2(C6H6)]2,(S)-BINAP
    H2, MeOH, DMF, 
    94%, 97% ee

2. TBSCl, Im, DCM
3. DiBAlH, DCM
    86% over 2 steps

N

O

O

O O

Bn

N

O

O

O

Me

O

Bn
Me

OH OTBS
OMeSn(OTf)2, TEA

DCM
91%, 96:4 dr

N

O

O

O

Me

OH

Bn
Me

OH OTBS
OMe

NaBH(OAc)3, HOAc, MeCN
98%, 95:5 dr 1.  AlMe3, Me(MeO)NH•HCl

     
2. TESCl, Im, DCM
     70% over 2 steps

3.13 3.14 3.15 3.16

3.17



	 64	

with	 vinyl	 iodide	 3.19	 and	 addition	 to	 Weinreb	 amide	 3.20	 gave	 α,β-ketone	 3.21.	

Comprehensive	silyl	deprotection	resulted	in	the	cyclization	of	the	protected	ketal	ring	to	

give	 3.22.	 Dihydroxylation	 and	 acetylation	 set	 the	 C19-	 and	 C20-	 hydroxyl	 group	

stereochemistry.	Protecting	group	manipulation	and	oxidation	provided	electrophile	3.23	

for	nucleophillic	addition	of	Grignard	reagent	3.24.		

	

Figure	3.6.	Koert’s	synthesis	of	apoptolidinone	A	southern	hemisphere.		

	 Completion	 of	 the	 aglycone	 was	 achieved	 via	 Copper	 (I)	 thiocarboxylate	 Stille	

coupling	between	northern	fragment	3.6	and	southern	fragment	3.25	(Fig.	3.7).	Hydrolysis,	

Yamaguchi	macrolactonization,	 and	global	deprotection	gave	 the	apoptolidinone	A	3.2	 in	

0.20%	overall	yield,	28	total	steps,	and	a	longest	linear	sequence	of	20	steps.	
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Figure	3.7.	Koert’s	completion	of	apoptolidinone	A.		

	 In	 2004,	 Sulikowski	 and	 coworkers	 9	 demonstrated	 synthesis	 of	 apoptolidinone	A	

could	be	achieved	by	synthesizing	western	C6-C22	fragment	3.26,	northeastern	C1-C5	3.27,	

and	southeastern	C23-C28	3.28	fragments	(Fig.	3.8).	These	three	fragments	were	brought	

together	utilizing	a	Mukaiyama	aldol	between	the	C22-	and	C23-	carbons,	esterification	to	

combine	C1-C5	fragment	3.27,	and	Suzuki	cross	coupling	to	close	the	macrolide	ring.		

	

Figure	3.8.	Sulikowski’s	retrosynthetic	analysis	for	apoptolidinone	A.	

The	 synthesis	 of	 the	C6-C22	 fragment	3.26	was	 achieved	 from	β-methoxy	 lactone	

3.29	(Fig.	3.9).	Semi-reduction,	1,3-dithiane	opening,	and	oxidation	revealed	aldehyde	3.30.	

Grignard	 formation	 and	 addition	 of	 bromide	 3.31	 to	 aldehyde	 3.30	 provided	 the	 vinyl	
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stannane	3.32.	Tin-iodine	exchange	and	TES	protection	supplied	the	cross	coupling	partner	

3.35	for	Suzuki	coupling	with	vinyl	boronate	3.36.	Subsequent	Mukaiyama	aldol	arrived	at	

the	C6-C22	fragment	3.39.		

	

Figure	3.9.	Sulikowski’s	synthesis	of	C6-C22	western	fragment	of	apoptolidinone	A.		

With	 C6-C22	 fragment	 3.39	 in	 hand,	 the	 macrolide	 was	 brought	 together	 via	

Yamaguchi	 esterification	 of	3.39	with	C1-C5	 fragment	3.40	 (Fig.	 3.10).	Mukaiyama	 aldol	

between	ketone	3.41	and	aldehyde	3.42,	 followed	by	cross	metathesis	to	give	the	acyclic	

framework	 3.43.	 Final	 Suzuki	 cross	 coupling	 and	 global	 deprotection	 with	 concomitant	

cyclization	 of	 the	 pyran	 ring	 furnished	 the	 apoptolidinone	A	 aglycone	3.2	 in	 0.078%,	 34	

total	 steps,	 and	 a	 longest	 linear	 sequence	 of	 29	 steps.	 Unique	 to	 this	 synthesis	 was	 the	

demonstration	 of	 comprehensive	 deprotection	 of	 the	 aglycone	 core	 resulting	 in	

simultaneous	cyclization	of	the	hemi-ketal	ring.	This	means	of	concomitant	ring	cyclization	

avoids	the	need	to	protect	the	hemi-ketal	moiety	as	a	mixed	ketal.			
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Figure	3.10.	Sulikowski’s	completion	of	apoptolidinone	A.	

The	 Crimmins	 group	 synthesized	 apoptolidinone	 A	 in	 2005	 7	 by	 dividing	 the	

aglycone	in	roughly	three	equal	parts:	C1-C11	fragment	3.44,	C13-C19	fragment	3.47,	and	

C20-C28	 fragment	 3.48	 (Fig.	 3.11).	 These	 three	 fragments	 were	 brought	 together	 by	

Horner	Wadsworth	Emmons	(HWE)	olefination,	cross	methathesis,	and	macrolactonization.	

Similar	 to	 the	 Koert	 synthesis,	 9	 the	 hemi-ketal	 ring	 was	 formed	 prior	 to	 global	

deprotection	with	H2SiF6	 in	 aqueous	 acetonitrile.	 Additionally	 saponification	 of	 the	 ethyl	

ester	 and	 carbonate	 moieties	 forms	 an	 analog	 3.46	 of	 the	 presumed	 seco-acid	 of	

apoptolidin	 A.	 Also,	 similar	 to	 the	 Koert	 synthesis	 of	 apoptolidinone	 A,	 9	 the	 northern	

hemisphere	of	the	aglycone	was	synthesized	by	iterative	Wittig	homologation.	Notably,	the	

Crimmins	group	showcased	 the	effective	use	of	 titantium	mediated	aldol	methodology	 to	

set	much	of	the	molecule’s	stereocomplexity.		
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Figure	3.11.	Crimmin’s	retrosynthetic	analysis	for	apoptolidinone	A.	

	 Similar	to	syntheses	by	Koert	8,	9	and	Sulikowski,	10,	11	 the	Crimmin’s	12	group	used	

iterative	aldols	 to	homologate	 the	 southern	hemisphere	of	 the	aglycone.	 Instead	of	using	

Evan’s	 tin	 and	 boron	mediated	 aldol	 conditions,	 titanium	mediated	 aldol	 reactions	 using	

thiazolidinthione	 auxiliaries	 directed	 stereoechemistry	 of	 the	 polyketide	 backbone.	

Interestingly,	 thiazolinthione	 auxiliaries	 can	 be	 removed	with	milder	 conditions,	 such	 as	

diisobutylaluminum	hydride	(DiBAlH)	to	obtain	the	aldehyde	directly.	In	their	synthesis	of	

the	southern	half	of	apoptolidinone	A,	 the	Crimmin’s	group	demonstrates	effective	use	of	

titanium-mediated	aldols.	As	a	testament	to	the	thiazolidinthione	auxiliary	utility,	mild	and	

direct	addition	from	aldol	adduct	3.53	 to	phosphonate	3.48	was	achieved.	Typical	Evan’s	

conditions	would	require	transamidation	to	the	Weinreb	amide	before	alkylation.	38	
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Figure	3.12.	Crimmin’s	synthesis	of	C20-C28	phosphonate.		

	 	C13-C19	fragment	3.59	was	prepared	using	auxiliary	directed	alkylation	and	redox	

manipulation	to	reach	aldehyde	3.56	(Fig.	3.13).		Titanium	mediated	allylation	of	3.56	and	

TBS	 protection	 provided	 olefin	 3.58.	 Hydroboration-oxidation	 of	 the	 terminal	 olefin	

followed	 by	 protection	 and	 ozonolysis	 formed	 the	 desired	 aldehyde	 3.59	 for	 HWE	

olefination.		

	

Figure	3.13.	Crimmin’s	synthesis	of	C13-C19	fragment	of	apoptolidinone	A.	

	 To	 construct	 the	 southern	 hemisphere	 of	 apoptolidinone	 A,	 HWE	 olefination	
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half	 (Fig.	 3.14).	 Silyl	 deprotection	 resulted	 in	 ring	 cyclization	 and	 treatment	 with	 t-

butyldimethylsilyl	triflate	gave	ketal	3.49.	Dihydroxylation,	as	in	the	Nicolaou	synthesis	2-5	

toward	 apoptolidin	 A	 3.1,	 followed	 by	 acyl	 protection	 with	 triphosgene	 installed	 and	

protected	 the	C19-	 and	C20-	 hydroxyl	 groups.	 Protecting	 group	manipulation	 and	Wittig	

homologation	 then	 gave	 diene	 3.53	 to	 complete	 the	 southern	 hemisphere	 of	

apoptolidinone	A.		

	

Figure	3.14.	Crimmin’s	synthesis	of	the	southern	hemisphere	of	apoptolidinone	A.	

	 Preparation	 of	 the	 northern	 hemisphere	 of	 apoptolidinone	 A,	 began	 with	

crotonaldehyde	 and	 the	 necessary	 auxiliary	 for	 titanium-mediated	 anti-syn	 aldol.	 The	

resulting	aldol	adduct	3.54	was	semi-reduced,	subjected	to	iterative	Wittig	homologation,	

and	deprotected	to	provide	C1-C10	fragment	3.44.		
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Figure	3.15.	Crimmin’s	synthesis	of	the	northern	hemisphere	of	apoptolidinone	A.		

	 The	northern	3.44	and	southern	3.58	hemispheres	were	brought	together	via	cross	

metatheses	using	the	Grubb’s	second	generation	catalyst.	The	resulting	seco-acid	analogue	

was	 protected	 to	 give	 3.59.	 Saponification,	 Yamaguchi	 macrolactonization,	 and	 global	

deprotection	gave	the	desired	aglycone,	apoptolidinone	A	3.2.	
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Figure	3.16.	Crimmin’s	completion	of	apoptolidinone	A.		

	 The	 Nelson	 group	 has	 accomplished	 the	 synthesis	 of	 apoptolidinone	 C	 using	 four	

main	 fragments	3.63-3.66	 (Fig.	 3.17A).	Macrolide	 construction	 featured	 a	 Stille	 coupling	

between	the	northern	and	southern	fragments	followed	by	macrolactonization	and	global	

deprotection,	similar	 to	 the	strategy	employed	by	 the	Koert	group.	 8	However,	unlike	 the	

strategies	 employed	 by	 the	 Koert,	 Sulikowski,	 11	 and	 Crimmins	 12	 groups,	 Nelson	 and	

coworkers	13	utilized	catalytic	enantioselective	aldol	surrogates	to	construct	the	polyketide	

backbone	(Fig.	3.17B).	Specifically,	the	Nelson	group	has	developed	a	catalytic	asymmetric	

acyl	 halide-aldehyde	 cyclocondensation	 (AAC)	 reaction,	 which	 utilize	 cinchona	 alkaloid	

Lewis	base	complexes	3.67-3.68	or	aluminum	(III)	Lewis	acid	complexes	3.69.	
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Figure	3.17.	Nelson’s	retrosynthetic	analysis	of	apoptolidinone	A.	

	 Mechanistically,	 the	 AAC	 methodology	 developed	 by	 the	 Nelson	 group	 and	 first	

reported	 in	1999,	

14

	 exploits	 a	 [2+2]	 ketene—aldehyde	 cycloaddition	 in	which	 the	 chiral	

Lewis	acid	or	base	can	influence	the	facial	selectivity	of	the	approach	(Fig.	3.17B).	
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halide-aldehyde	cyclocondensation	were	used	 to	assemble	nearly	all	 the	 stereocenters	 in	

the	molecule	 including	 the	 upper	 C8-9	 positions,	 and	most	 of	 the	 lower	 half	 (Fig.	 3.17A,	

stereocenters	 set	 by	 propionate	 “aldols”	 denoted	 in	 red	 and	 acetate	 “aldols”	 denoted	 in	

blue).	13	

It	 is	 worth	 noting	 that	 of	 all	 the	 reported	 total	 syntheses	 of	 apoptolidinone	 A,	

synthesis	 of	 the	 C11-C19	 region	 has	 the	most	 variation	 (Fig.	 3.18).	 The	 C1-C5	 region	 of	

apoptolidinone	 has,	 for	 the	 most	 part,	 been	 reached	 using	 a	 varied	 order	 of	 olefination	

methods.	 The	 C20-C28	 region	 is	 usually	 prepared	 through	 iterative	 aldol	 reactions.	 No	

similar	process	has	been	developed	for	the	western	half	of	the	molecule	and	represents	the	

last	synthetic	hurdle	towards	the	efficient	production	of	the	aglycone.	

	

Figure	3.18.	Retrosynthetic	comparison	of	completed	syntheses	of	apoptolidinones	A	and	C.	
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The	Nelson	group	has	 reported	an	extremely	 concise	method	 for	 synthesizing	 the	

two	western	 C6-C10	3.64	 and	 C11-C19	3.65	 fragments	 using	 their	 catalytic	 asymmetric	

aldol	 methodology	 via	 chiral	 β-lactones	 3.70-3.71	 and	 chiral	 catalyst	 3.67-3.69	 (Fig.	

3.17A-B),	 however	we	 sought	 to	 create	 a	process	 toward	 the	western	hemisphere	of	 the	

apoptolidin	aglycone	that	would	allow	for	reliable	multi-gram	scale	synthesis	and	late	stage	

modifications	for	future	structure-activity	relationship	(SAR)	studies.		

	

3.2	Structure-activity	relationship	between	apoptolidin	A	and	C		

	 Apoptolidin	C	3.72	was	 first	 isolated	by	Wender	and	 coworkers	 17	 from	 the	 same	

producing	 organism	 as	 apoptolidin	 A	 3.1	 (Nocardiopsis	 sp.	 FU40).	 Apoptolidin	 C	 was	

isolated	 in	 less	 than	 5	 mg/L	 as	 compared	 to	 the	 major	 metabolite	 (50-100	 mg/L).	

Apoptolidin	 A	 3.1	 and	 C	 3.72	 were	 later	 isolated	 by	 Ismael	 and	 coworkers	 18	 from	 an	

Amycolatopsis	sp.	ICBB	8242	(150	mg/L	and	2-7	mg/L,	respectively).	Apoptolidin	A	3.1	and	

C	 3.72	 differ	 by	 two	 key	 hydroxyl	 groups	 about	 the	 center	 macrolide,	 yet	 exhibit	

reasonably	similar	bioactivities	against	H292	human	lung	cancer	cells	(Fig.	3.19).	17	
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Figure	3.19.	Structure-Activity	relationship	comparisons	of	apoptolidins.		

As	compared	to	apoptolidin	A,	apoptolidin	C	does	not	have	a	C16-	or	C20-	hydroxyl	

group.	Due	to	the	absence	of	the	C20-	alcohol,	apoptolidin	C	is	incapable	of	ring	expansion	

to	 the	 isoapoptolidins.	 It	 should	 be	 noted	 that	 apoptolidin	 A	 can	 ring	 isomerize	 to	

isoapoptolidin	A	and	exists	in	an	equilibrium	when	treating	cells	for	more	than	20	minutes	

of	time	(less	than	12%	conversion	in	20	minutes,	ambient	temperature).	19-20	Additionally,	

the	bioactivity	 of	 isoapoptolidin	A	 (IC50	 =	17	μM,	 FoF1-ATPase	 assay)	 is	 somewhat	 lower	

than	apoptolidin	A	(IC50	=	0.7	μM,	FoF1-ATPase	assay).	19	The	removal	of	the	C20-	hydroxyl	

group	prevents	 this	 ring	 expansion	 in	 apoptolidin	C,	 having	 apoptolidin	 exist	 in	 its	most	

potent	20-membered	macrolide	form.	The	additional	removal	of	the	C16-	hydroxyl	group	

in	 apoptolidin	 C	was	 thought	 to	 reduce	 the	 overall	 stereocomplexity	 of	 the	molecule	 for	

ease	of	synthesis.	Thus,	apoptolidinone	C	was	chosen	as	the	target	for	total	synthesis.	
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	 Overall	 the	 synthetic	 target	 described	 herein,	 apoptolidinone	 C	3.3,	 contains	 a	 20	

membered	 macrocycle,	 10	 stereocenters,	 5	 sites	 of	 unsaturation,	 a	 densely	 substituted	

hemiketal	 ring.	 Apoptolidin	 C	 3.72	 exhibits	 similar	 bioactivity	 to	 major	 metabolite	

apoptolidin	A	3.1,	19	yet	increased	overall	stability	and	reduced	stereocomplexity,	making	it	

the	ideal	target	for	total	synthesis	and	subsequent	precursor	directed	biosynthetic	studies.		

	

Figure	3.20.	Selective	C27-glycosylation	via	precursor	directed	biosynthesis	of	apoptolidin	C.		
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would	 concomitantly	 form	 the	 fully	 substituted	 hemi-ketal	 ring	 to	 give	 apoptolidinone	 C	

3.3.	

	

Figure	3.21.	First	generation	retrosynthetic	analysis	of	apoptolidinone	C.		

Northeastern	C1-C5	fragment	3.76	was	first	reported	by	Sulikowski	and	coworkers	

en	route	to	apoptolidinone	A	in	2005,	21	and	has	been	used	by	the	Nelson	group	toward	the	

total	 synthesis	 of	 apoptolidinone	 C.	 13	 Other	 groups	 2-9,	12	have	 opted	 for	 iterative	Wittig	

olefination,	but	the	route	described	by	Sulikowski	and	coworkers	21	was	chosen	to	increase	

overall	 synthetic	 efficiency	 and	 convergence.	 Southeastern	 C20-C27	 fragment	 3.78	 was	

first	reported	by	Koert	and	coworkers	in	2001	8	en	route	to	apoptolidinone	A	3.2,	and	later	

used	 by	 Nelson	 and	 coworkers	 13	 in	 their	 synthesis	 toward	 apoptolidinone	 C	 3.3,	

representing	a	second	reliable	and	reproducible	route	toward	a	fragment	of	the	apoptolidin	

macrolide.		
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3.4	First	generation	approach	toward	apoptolidinone	C	

	 At	 the	 outset,	we	 hoped	 to	 generate	 the	 C6-C19	 framework	 (depicted	 in	 red,	 Fig.	

3.22)	 through	either	 a	 Suzuki	 or	 Stille	 coupling	 to	 join	 the	C11-	 and	C12-	 carbons	of	 the	

macrolide.	 The	 northwestern	 C6-C10	 fragment	 3.75	 could	 be	 synthesized	 in	 a	 manner	

much	like	our	previously	published	synthesis	via	crotylation	or	aldol	reaction,	10-11	followed	

by	oxidation-reduction	elaboration,	homologation,	and	methylation.	However,	the	C12-C19	

fragment	 3.77	 (Fig.	 3.22)	 proved	 more	 difficult	 to	 produce,	 with	 the	 largest	 synthetic	

hurdle	of	achieving	high	stereocontrol	of	a	single	stereocenter	(C17)	with	 few	handles	 to	

induce	this	asymmetry	in	the	fragment,	all	in	highly	reproducible	yield.		

	

Figure	3.22.	Target	region	of	apoptolidinone	C	for	improved	synthetic	process.	

To	direct	the	stereochemistry	of	the	C17	hydroxyl,	we	set	out	to	complete	an	acetate	

aldol	 between	 aldehydes	3.78	 or	3.81	 and	 either	 enol	 silyl	 ether	3.79	 or	 auxillary	3.82,	
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Figure	3.23.	Stereoselective	acetate	aldols	to	synthesize	the	C11-C19	fragment	of	apoptolidinone	C.		

After	much	screening,	it	was	determined	that	the	aldol	adduct	could	not	be	reliably	

produced	and	in	good	yield	(table	3.1).	This	was	in	part	due	to	the	instability	of	aldehyde	

3.81	 to	 purification	 via	 column	 chromatography	 or	 distillation.	 This	 instability	 is	 most	

likely	 due	 to	 self-condensation	 and	 cyclization.	 Reports	 by	 the	 King	 and	 Montgomery	

groups	 have	 shown	 this	 type	 of	 cyclization	 is	 possible	 under	 acidic	 and/or	 lewis	 acidic	

conditions	via	formal	[2+2]—retro	[2+2]	or	5-exo	dig	ring	cyclizaiton.	25-26	Crude	solutions	

of	aldehyde	3.81	were,	however,	used	to	successfully	obtain	the	desired	aldol	adduct,	albeit	

in	disappointingly	low	yield.	
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Investigations	into	setting	the	C17-	alcohol	stereochemistry	were	then	pursued	via	

epoxide	opening	of	3.86	with	1,3-dithiane	(Fig.	3.24).	Lithiation	of	1,3-dithianes	allow	for	

umpolong	 formation	of	acyl	anion	 like	synthons	 for	an	atypical	disconnection.	Unlike	 the	

aldol	 reaction,	 the	 carbonyl	 carbon	 becomes	 the	 nucleophile.	 Furthermore,	 rather	 than	

utilize	enolate	nucleophiles,	the	enolate	becomes	the	electrophile	in	the	form	of	an	epoxide.	

By	employing	epoxide	intermediate	3.86,	the	C17-	hydroxyl	could	instead	be	set	using	an	

organo-catalyzed	asymmetric	α-chlorination	of	aldehyde	3.90.		

	

Figure	3.24.	Synthesis	of	C11-C19	fragment	via	α-chlorination	with	C2-symmetric	pyrrolidine	catalyst.	

Gratifyingly,	 unlike	 aldehyde	 3.81	 needed	 for	 acetate	 aldol,	 aldehyde	 3.90,	
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hand,	α-chlorination	with	C2-	symmetric	pyrrolidine	catalyst	3.94,	developed	and	used	by	

MacMillan,	Jørgensen,	and	Lindsley	groups	27-29	provided	an	α-chloroaldehyde	that	could	be	

reduced	 with	 sodium	 borohydride	 to	 give	 the	 desired	 halohydrin	 3.91,	 all	 in	 one	 pot.	

However,	 monitoring	 the	 reaction	 by	 nuclear	 magnetic	 resonance	 (NMR)	 showed	 a	

significant	amount	of	competing	dichlorination	(Fig.	3.25),	despite	efforts	to	minimize	the	

rate	of	dichlorination	via	changes	in	reaction	time,	temperature,	and	concentrations.	Talks	

with	 the	 Lindsley	 group	 at	 Vanderbilt	 University,	 revealed	 this	 reaction	 to	 be	 highly	

substrate	dependent,	giving	sometimes	dichlorination	over	monochlorination.	

	

Figure	3.25.	α-Chlorination	of	aldehyde	3.90	gives	both	mono-	and	di-	chlorinated	products.	

	 While	 this	proved	to	be	an	 inefficient	route	toward	the	C12-C19	fragment	3.84,	 in	

order	 to	 explore	 this	 α-chlorination,	 large	 quantities	 of	 (2S,5S)-2,5-diphenylpyrrolidine	

were	required.	En	route	to	synthesizing	the	diphenylpyrrolidine	3.94,	a	more	efficient	and	

facile	means	of	purifying	a	key	intermediate	was	discovered	(Fig.	3.26).	30	
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Figure	3.26.	Synthetic	process	toward	C2-symmetric	catalyst	3.94.	

Previously,	 separation	 via	 column	 chromatography	 of	 diphenyl	 intermediate	3.98	

from	the	achiral	meso	byproduct	3.99	 required	multiple	columns	using	an	ethyl	acetate/	

hexanes	 solvent	 system	 or	 careful	 recrystallization	 in	 hexanes	 utilizing	 a	 cold	 room.	

Discovery	of	a	different	solvent	system	employing	 toluene	(Tol)	and	hexanes	 (Hex),	10%	

Tol/Hex,	could	be	used	to	achieve	complete	separation	between	the	desired	C2-symmetric	

catalyst	3.98	and	the	undesired	achiral	meso	byproduct	3.99.	With	this	solvent	system,	the	

undesired	meso	byproduct	3.99	has	an	Rf	=	1,	while	the	desired	C2-	symmetric	3.98,	an	Rf	

=	 0.	 The	 desired	 product	 XX	 could	 then	 be	 flushed	 from	 the	 column	 using	 a	mixture	 of	

diethyl	ether	(Et2O)	and	hexanes,	30%	Et2O/Hex.	

	 Though	the	synthesis	of	the	C2-symmetric	diphenyl	pyrrolidine	3.94	was	achieved,	

due	 to	 the	 large	 amount	 of	 competing	 dichlorination,	 an	 alternative	 disconnection	 was	

made.	By	migrating	the	key	bond	disconnection,	we	instead	sought	to	utilize	a	nucleophillic	

opening	of	epoxide	3.102	using	various	lower	order	cuprates,	lower	order	mixed	cuprates,	

and	higher	order	cuprates	(Fig.	3.27).	
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Figure	3.27.	Synthesis	of	C12-C29	fragment	via	cuprate	opening	of	epoxide	3.102.	

	 Epoxide	3.102	 was	 synthesized	 in	 five	 steps	 from	 (L)-malic	 acid	 (Fig.	 3.27).	 (L)-

Malic	 acid	 was	 reduced	 with	 borane-dimethyl	 sulfide	 to	 the	 triol	 3.103,	 selectively	

protected	with	3-pentanone	to	the	five-membered	diethyl	ketal,	and	silyl	protected	to	give	

3.105.	The	diethyl	ketal	was	removed	under	acidic	conditions	and	the	resulting	diol	3.106	

was	 treated	with	 sodium	hydride	 and	 tosyl-imidazole	 to	 give	 the	desired	epoxide	3.102,	

under	Forsyth	conditions,	all	in	good	yield.	The	necessary	alkynyl	halide	3.108	to	construct	

the	desired	cuprate	was	 fashioned	 from	3-pentynol	 in	 two	steps	 through	 tosyl	activation	

followed	by	Finkelstein.		
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	 With	 all	 the	 necessary	 components	 for	 epoxide	 opening	 in	 hand,	 several	 different	

conditions	 were	 screened	 (table	 3.2).	 However	 all	 attempts	 to	 synthesize	 the	 C12-C19	

framework	 via	 this	 route,	 proved	 unfruitful.	 Instead,	 lower	 order	 cuprates	 and	 mixed	

cuprates	gave	the	undesired	halohydrin	3.110,	whereas	higher	order	cuprates	resulted	in	

decomposition	or	recovery	of	starting	material.	Attempts	to	resubmit	the	halohydrin	3.110	

with	an	additional	equivalent	of	cuprate	resulted	 in	almost	complete	recovery	of	starting	

halohydrin	3.110.	In	order	to	move	away	from	using	alkynes	in	the	presence	of	a	cuprate,	

cyclic	 acetal	 (table	 3.2,	 entry	 3)	 was	 used,	 and	 disappointingly	 returned	 the	 same	

halohydrin	3.110.	However,	upon	exposure	to	12	equivalents	of	vinyl	magnesium	bromide	

and	 copper	 (I)	 iodide	did	 return	 the	 desired	 secondary	 alcohol	was	produced	 (table	 3.2,	

entry	5).	While	successful,	this	route	was	abandoned	due	to	its	inefficient	atom	economy.		
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Table	3.2.	Attempts	to	elaborate	epoxide	3.102	using	cuprates.	

	

	 Due	 to	 the	 inability	 to	 successfully	 open	 epoxide	 3.102	 in	 an	 efficient	 manner,	
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Finkelstein	 with	 lithium	 bromide	 to	 give	 the	 desired	 bromide	 in	 70%	 over	 all	 yield.	

Additionally,	 all	 five	 steps	 could	 be	 conducted	 by	 without	 flash	 chromatography	 or	

additional	purification	to	produce	6-bromohex-2-yne	3.115	in	consistent	66%	yield	over	5	

steps,	increasing	the	overall	efficiency	of	the	synthetic	route.		

	

Figure	3.28.	Synthesis	of	C12-C19	fragment	via	asymmetric	induction.		
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product.	 This	 however,	 proved	 to	 give	 variable	 diastereoselectivity	 (20:1	 –	 3:1).	 While	

asymmetric	induction	of	β-substituted	carbonyl	compounds	has	been	shown	to	give	great	

diastereoselectivity	 (5:1	 –	 4:1)	 with	 β-substituted	 ketones,	 32-33	 the	 variability	 observed	

with	 aldehyde	 3.116,	 may	 be	 substrate	 dependent.	 Typically	 asymmetric	 induction	 is	

obtained	 with	 α-substituted	 aldehydes,	 through	 a	 Cram-chelate-like	 or	 Felk-Ahn	 model	

rather	 than	 a	 Zimmerman-Traxler-like	 transition	 state	 (Fig.	 3.29).	 33	 Additionally,	 α-

substitution	would	lower	the	acidity	of	the	α-hydrogens	when	using	Grignard	reagents	 in	

the	nucleophillic	opening.	

	

Figure	3.29.	Asymmetric	induction	via	1,3-	or	1,2-	chelation	controlled	addition	to	aldehydes.		

	 Having	explored	several	means	of	organocatalysis	 to	set	 the	C17	chiral	center	and	

utilizing	the	chiral	pool,	a	more	reliable	method	of	inducing	asymmetry	was	pursued.	Using	

inspiration	 from	process	 chemistry,	 34	 a	 route	using	a	Noyori	 reduction	of	 a	β-keto	ester	

was	settled	upon.	 In	order	to	reach	the	desired	β-keto	ester	 framework,	 two	routes	were	

simultaneously	explored	(Fig.	3.30).		
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Figure	3.30.	Synthesis	of	C12-C19	fragment	via	Grobb	fragmentation.		

Formation	of	the	dianion	from	3.119	35	and	alkylation	with	alkynyl	bromide	3.120	

(synthesized	previously,	Fig.	3.28),	β-keto	ester	3.122	could	be	obtained	in	low	to	modest	

yield	(24-25%).	Alternatively,	Claisen	or	Grobb-like	fragmentation	using	vinylogous	triflate	

3.131	and	esters	3.126	or	3.127	could	be	used	to	reach	the	same	β-keto	esters	3.128	and	

3.129.	 Subsequent	Noyori	 reduction,	however,	gave	 the	β-hydroxy	 t-butyl	ester	3.128	 in	

about	21%	yield	and	none	of	the	desired	β-hydroxy	ethyl	ester	3.130.	Presumably,	this	is	

due	to	competing	reduction	of	 the	alkyne.	Substituting	the	traditional	Noyori	asymmetric	

reduction	 for	hydrogen	 transfer	 conditions	with	 isopropanol	 gave	 the	desired	β-hydroxy	

ethyl	 ester	3.129	 in	 good	yield	 (60-80%),	but	unfortunately	 low	enantioselectivity	 (30%	

ee).	 The	 low	 enantioselectivity	 observed	 in	 this	 reaction	 may	 be	 due	 to	 unfavorable	
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interactions	between	 the	 catalyst	 and	alkynyl	moiety,	 as	 this	 catalyst	has	been	known	 to	

coordinate	with	ynones	to	induce	selectivity	in	the	reduction.	36	

	

3.5	Apoptolidinone	model	system	for	western	C6-C19	fragment	

	 While	simultaneously	working	on	the	synthesis	of	the	C6-C10	northwestern	portion	

of	the	aglycone,	a	model	system	was	developed	to	explore	the	C10-C11	bond	connection	to	

bring	 together	 the	 western	 hemisphere	 of	 apoptolidinone	 C	 (Fig.	 3.31).	 These	 studies	

completed	in	unpublished	work	by	Robert	Davis	in	the	Sulikowski	group,	showed	that	Stille	

conditions,	even	when	the	vinyl	stannane	(3.133,	3.136)	and	vinyl	 iodide	(3.134,	3.137)	

were	reversed,	could	not	yield	the	desired	western	framework.	However,	Suzuki	coupling	

between	vinyl	boronate	ester	3.139	and	vinyl	iodide	3.140	gave	the	desired	model	system	

skeleton,	albeit	in	modest	yield	(51%).		
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Figure	3.31.	Davis’	model	system	studies	toward	exploration	of	the	C10-C11	bond	connection.	

	 In	light	of	these	findings,	racemic	β-hydroxy	esters	were	O-methylated	to	give	3.143	

and	3.147,	and	the	resulting	framework	was	used	as	a	model	system	to	study	methods	of	

regioselective	 hydrometallation	 (Fig.	 3.32).	 With	 little	 differentiation	 along	 the	 internal	

alkyne,	poor	selectivity	was	witnessed	under	hydrostannylation	conditions.	Efforts	to	form	

the	vinyl	iodide	via	hydrozirconation-iodination	surprisingly	gave	the	proto-demetallation	

alkene	by-product	3.148	 in	>95%	yield.	This	result	was	surprising.	However,	while	lower	

in	 yield,	 ethyl	 ester	 3.146	 under	 the	 same	 conditions	 returned	 the	 same	 proto-
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demetallation	 product.	 Reduction	 of	 ethyl	 ester	 3.143	 to	 the	 alcohol,	 followed	 by	

triethylsilyl	(TES)	protection	to	give	silyl	ether	3.149,	gave	the	desired	vinyl	iodide	under	

hydrozirconation	 iodination	 conditions.	 While	 low	 in	 yield,	 optimization	 of	 the	 reaction	

was	not	pursued	as	this	route	would	require	the	excessive	use	of	redox	manipulations.		

	

Figure	3.32.	Model	system	hydrometallation	of	internal	alkynes.		
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Figure	3.33.	Davis’	synthesis	of	the	C6-C10	fragment.	

	

3.6	Second	generation	approach	toward	apoptolidinone	C	

	 Our	 second-generational	 approach	 focused	 on	 the	 forming	 the	 bond	 between	 the	

C10-	 and	 C11-	 carbons	 of	 the	 western	 half,	 for	 either	 cross	 metathesis	 or	 ring	 closing	

metathesis	 (RCM)	mediated	 completion	 of	 the	 macrolide	 (Fig.	 3.34).	 The	 use	 of	 a	 cross	

metathesis	 to	bring	 together	western	halves	C6-C10	3.75	and	C11-C19	3.158	would	also	

allow	 for	 a	 Mukaiyama	 aldol	 reaction	 to	 incorporate	 C20-C28	 fragment	 3.78	 and	

Yamaguchi	 esterification	 to	 join	 the	 last	 C1-C5	 fragment	 3.76.	 A	 one-pot	

hydrostannylation-Stille	 coupling,	 developed	 in	 unpublished	work	 by	Dr.	 Steven	 Chau	 of	

the	 Sulikowski	 group,	 37	 could	 then	 furnish	 the	 resulting	 macrolide	 3.162.	 Global	

deprotection	 would	 comprehensively	 remove	 the	 silyl	 ethers	 and	 concomitant	 ring	

cyclization	to	the	hemi-ketal	ring	provides	the	desired	macrolide	3.3.	
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Figure	3.34.	Second	generation	retrosynthetic	analysis	of	apoptolidinone	C.		
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Weinreb	 amide	 3.167	 treated	 with	 the	 lithiate	 of	 ethoxyacetylene	 produced	 alkynone	

3.168.	 However	 unexpected	 hydration	 during	 the	 purification	 process	 gave	 a	 variable	

amount	of	β-keto	ester	3.169.		

	

Figure	3.35.	Synthesis	of	C11-C19	fragment	via	Noyori	asymmetric	reduction.		

	 To	avoid	the	variable	hydration	of	alkynone	3.168	during	pufication,	we	sought	to	

develop	 a	 route	 that	 utilized	 β-keto	 ester	3.169	 as	 a	 key	 intermediate.	 Instead	 of	 using	

Noyori	hydrogen	transfer	conditions	on	ynone	3.168,	 typical	Noyori	hydrogenation	could	

be	used	 to	 establish	asymmetry	of	 the	C17	hydroxyl	 from	β-keto	ester	3.171	 (Fig.	3.36).	

Claisen	 condensation	 between	 δ-valerolatone	3.136	 and	 ethyl	 acetate	 gave	 a	mixture	 of	

cyclic	and	acyclic	products	3.170-3.171	in	ca.	2:1	ratio	and	good	yield	(88	-	95%).	Noyori	

hydrogenation	of	the	mixture	cleanly	gave	the	desired	β-hydroxy	ester	3.172,	in	92	–	96%	
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hydroxy	ester	3.173,	which	could	be	analyzed	for	enantiopurity	(>99%	ee).	O-methylation,	

deprotection,	oxidation,	and	double	wittig	homologation	gave	the	final	desired	diene,	all	in	

excellent	yield	and	reasonably	large	scale.	

	

Figure	3.36.	Final	synthetic	process	toward	C11-C19	western	fragment	of	apoptolidinone	C.		
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3.7	Exploration	of	cross	metatheses	to	complete	western	hemisphere	of	apoptolidinone	C	

	 Investigations	into	the	possible	cross	metatheses	between	the	western	hemispheres	

utilized	diene	3.158	and	several	variations	of	alkene	3.75,	3.177-3.182	(Table	3.3).	While	

initially	 promising,	 these	 experiments	 yielded	 little	 success,	 suggesting	 this	 to	 be	 a	

suboptimal	route.	Treatment	of	diene	3.158	with	Grubb’s	II	catalyst,	and	several	variations	

of	allylic	alcohol	(3.177,	3.179,	3.180-3.181,	Table	3.3)	resulted	in	mostly	the	recovery	of	

starting	 material,	 despite	 several	 additional	 changes	 in	 reaction	 time,	 solvent,	 and	

temperature.	
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Table	3.3.	Attempted	cross	metatheses	to	form	western	hemisphere	of	apoptolidinone	C.		

	

	 At	 the	outset,	we	realized	the	alkynyl	moiety	of	alkenes	3.75	and	3.177	may	have	

been	negatively	impacting	the	catalyst,	resulting	in	no	reaction.	While	not	fully	confirmed,	

we	 hypothesized	 that	 under	 forcing	 conditions,	 the	 alkyne	may	 dimerize	 to	 form	3.183.	
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Unsurprisingly,	aldol	adduct	3.180	gave	recovery	of	the	diene	starting	material	3.158	and	

decomposition	of	the	aldol	adduct	3.180.	Finally,	crotonaldehyde	3.181	and	allylic	alcohol	

3.182	did	yield	the	desired	cross	metatheses	product,	albeit	in	low	yield.		

	

3.8	Conclusion	

	 In	 the	 interest	 of	 atom	 economy	 and	 the	 creation	 of	 a	 highly	 convergent	 route	

toward	apoptolidinone	C,	we	hoped	instead	to	bring	the	western	haves	through	a	late	stage	

ring	 closing	 metathesis.	 RCM	 as	 it	 would	 be	 more	 entropically	 favorable	 than	 cross	

metatheses	(Fig.	3.37).	
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Figure	3.37.	Revisiting	the	second	generational	retrosynthetic	analysis	for	apoptolidinone	C	synthesis.		
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alkenes	 are	 much	 more	 difficult	 to	 form	 via	 this	 method,	 often	 needing	 extensive	

optimization.		

	

3.9	Experimental	methods	

General	Procedure.	 All	 glassware	 used	 for	 non-aqueous	 reactions	was	 flame	 dried	 under	

vacuum.	 Reactions	 conducted	 at	 ambient	 temperature	were	 run	 at	 approximately	 23	 °C	

unless	 otherwise	 noted.	 Reactions	 were	 monitored	 by	 analytical	 thin-layer	

chromatography	performed	on	Analtech	silica	gel	GF	250	micron	plates.	The	plates	were	

visualized	with	UV	 light	 (254	nm)	and	either	potassium	permanganate,	 ceric	 ammonium	

molybdate,	or	p-anisaldehyde	followed	by	charring	with	a	heat-gun.	Flash	chromatography	

utilized	230-400	mesh	silica	from	Sorbent	Technologies	or	Silica	RediSep	Rf	flash	columns	

on	 a	 CombiFlash	 Rf	 automated	 flash	 chromatography	 system.	 	 Solvents	 for	 extraction,	

washing	 and	 chromatography	 were	 HPLC	 grade.	 Nuclear	 magnetic	 resonance	 (NMR)	

spectra	were	acquired	on	either	a	300	MHz	Bruker	DPX-300	FT-NMR,	a	400	MHz	Bruker	

AV-400	 FT-NMR,	 or	 500	 MHz	 Bruker	 DRX-500	 FT-NMR	 Spectrometer	 at	 ambient	

temperature.	 1H	 and	 13C	 NMR	 data	 are	 reported	 as	 values	 relative	 to	 CDCl3.1H	 chemical	

shifts	 are	 reported	 in	 δ	 values	 in	 ppm.	 	 Data	 are	 reported	 as	 follows:	 	 chemical	 shift,	

multiplicity	 (s	 =	 singlet,	 d	 =	 doublet,	 t	 =	 triplet,	 q	 =	 quartet,	 br	 =	 broad,	m	 =	multiplet),	

integration,	 coupling	 constant	 (Hz).	 	 13C	 chemical	 shifts	 are	 reported	 in	δ	 values	 in	ppm.		

Low	 resolution	 mass	 spectra	 were	 obtained	 on	 an	 Agilent	 1200	 series	 6130	 mass	

spectrometer	with	electrospray	ionization.		High	resolution	mass	spectra	were	recorded	on	

a	Waters	Q-TOF	API-US..	 	Analytical	HPLC	was	performed	on	an	Agilent	1200	series	with	
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UV	detection	 at	 214	nm	and	254	nm	along	with	ELSD	detection.	 	 Preparative	HPLC	was	

conducted	 on	 a	 Gilson	 215	 Liquid	 Handler	 HPLC	 system	 using	 Gemini-NX	 50	 x	 20	 mm	

column.	Yields	were	reported	as	isolated,	spectroscopically	pure	compounds.		

	

Materials.	All	reagents	and	solvents	were	commercial	grade	and	purified	prior	to	use	when	

necessary.	D-Valine	was	purchased	from	Combi-blocks.	All	other	reagents	unless	otherwise	

stated	 were	 purchased	 from	 Sigma	 Aldrich	 or	 VWR	 International.	 All	 reactions	 were	

performed	 under	 argon	 atmosphere	 unless	 otherwise	 stated.	 Diethyl	 ether	 (Et2O)	 and	

dichloromethane	 (CH2Cl2)	were	dried	by	passage	 through	 a	 column	of	 activated	 alumina	

using	 an	MBraun	MB-SPS	 dry	 solvent	 system.	 Tetrahydrofuran	 (THF)	was	 distilled	 from	

sodium	with	benzophenone	as	indicator	prior	to	use.	Solid	lithium	bis(trimethylsilyl)amide	

was	 stored	 under	 argon	 in	 a	 glove	 box	 and	 removed	prior	 to	 use.	 Freshly	 distilled	 ethyl	

acetate	was	stirred	prior	to	distillation	with	activated	4	Å	molecular	sieves	(MS).		
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Ethyl	2-(2-hydroxytetrahydro-2H-pyran-2-yl)acetate	(3.170)	and	Ethyl	7-hydroxy-3-

oxoheptanoate	(3.171):	To	a	cooled	solution	of	 lithium	bis(trimethylsilyl)amide	(9.19	g,	

54.9	mmol)	in	THF	(40	mL,	1.4	M)	at	-78	°C,	was	added	a	solution	of	freshly	distilled	ethyl	

acetate	(4.88	mL,	49.9	mmol)	in	THF	(26	mL,	1.9	M)	via	addition	funnel,	dropwise	over	2	h.	

The	 thick	 mixture	 was	 stirred	 at	 -78	°C	 for	 1	 h.	 A	 solution	 of	 freshly	 distilled	 δ-

valerolactone	 3.136	 (5.0	 g,	 49.9	 mmol)	 in	 THF	 (21	 mL,	 2.4M)	 was	 added	 dropwise	 via	

addition	 funnel,	 and	 the	 mixture	 was	 stirred	 at	 -78	 °C	 for	 3	 h.	 Upon	 completion,	 the	

reaction	was	quenched	with	glacial	acetic	acid	(ca.	6	mL)	and	the	cloudy	white	suspension	

was	allowed	to	warm	to	RT.	The	mixture	was	diluted	with	brine	and	Et2O	and	the	 layers	

were	seperated.	The	crude	product	was	extracted	 from	the	aqueous	 layer	with	Et2O	(3X)	

and	 the	 combined	 organic	 extracts	 were	 dried	 (MgSO4),	 filtered,	 and	 concentrated.	 The	

resulting	 residue	was	 then	purified	by	column	chromatography	 (Hex	→	40%	EtOAc/Hex,	

holding	at	20%	EtOAc/Hex)	to	give	a	mixture	of	the	cyclic	3.170	and	acyclic	3.171	product	

as	 a	 clear	 and	 colorless	 oil	 (8.8	 g,	 94%,	 1.2:1.0	 cyclic	3.170	 :	 acyclic	3.171):	 1H	NMR	of	

cyclic	product	(400	MHz,	CDCl3)	δ4.84	(d,	J	=	2.07	Hz,	1H),	4.19	(q,	J	=	7.17	Hz,	2H),	3.97	(m,	

1H),	3.61	(m,	1H),	2.62	(d,	J	=	15.6	Hz,	1H),	2.53	(d,	J	=	15.6	Hz,	1H),	1.93	–	1.41	(m,	6H),	

1.27	(t,	J	=	7.14	Hz,	3H).	1H	NMR	of	acyclic	product	(400	MHz,	CDCl3)	δ4.19	(q,	J	=	7.18	Hz,	

2H),	3.57	(t,	J	=	6.26	Hz,	2H),	3.42	(s,	2H),	2.56	(t,	J	=	7.29	Hz,	2H),	1.63	–	1.51	(m,	6H),	1.27	

(t,	 J	 =	 7.18	 Hz,	 3H).	 Observed	 spectral	 properties	 were	 identical	 with	 those	 previously	

reported.		
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Ethyl	 (R)-3,7-dihydroxyheptanoate	 (3.172):	 To	 a	 suspension	 of	benzeneruthenium(II)	

chloride	dimer	(137	mg,	0.274	mmol)	 in	DMF	(1.4	mL,	0.05	M)	at	115	°C,	was	added	(S)-

BINAP	(256	mg,	0.411	mmol).	The	resulting	slurry	was	stirred	for	15	min	and	then	cooled	

to	ambient	 temperature.	The	mixture	was	 transferred	to	a	Parr	hydrogenation	apparatus	

and	a	solution	of	Ethyl	2-(2-hydroxytetrahydro-2H-pyran-2-yl)acetate	3.170	and	Ethyl	7-

hydroxy-3-oxoheptanoate	 3.171	 (10	 g,	 68.4	 mmol)	 in	 MeOH	 (30	 mL,	 2.3	 M)	 was	

added.		The	mixture	was	filled	with	hydrogen	and	cycled	three	times,	evacuating	the	vessel	

and	 refilling	with	 hydrogen,	 behind	 a	 blast	 shield.	 The	mixture	was	 pressurized	with	 an	

atmosphere	 of	 hydrogen	 (10	 bar,	 150	 psi),	 warmed	 to	 95	 °C,	 and	 stirred	 for	 72	 h.	 The	

mixture	was	transferred	to	an	RB	flask	and	concentrated.	The	resulting	residue	was	then	

purified	by	column	chromatography	(Hex	→	20%	EtOAc/Hex)	to	give	12	(9.63	g,	95%)	as	a	

yellow-green	oil:	1H	NMR	(400	MHz,	CDCl3)	δ	4.17	(q,	J	=	6.90	Hz,	2H),	4.03	–	3.99	(m,	1H),	

3.65	(dd,	J	=	10.16,	5.47	Hz,	2H),	3.06	(d,	J	=	3.57	Hz,	1H),	2.50	(dd,	J	=	16.7,	3.17	Hz,	1H),	

2.41	 (dd,	 J	 =	 16.7,	 8.88	Hz,	 1H),	 1.66	 –	 1.41	 (m,	 6H),	 1.27	 (t,	 J	 =	 7.14	Hz,	 3H).	 Observed	

spectral	properties	were	identical	with	those	previously	reported.		

	

O
HO CO2Et

EtO

O

OH

O H2, RuCl3

EtOH

O

O
O

O

PPh2PPh2

92 - 96%

EtO

O

OH

OH

3.170 3.171 3.172



	 105	

	

Ethyl	(R)-7-((tert-butyldiphenylsilyl)oxy)-3-hydroxyheptanoate	(3.173):	To	a	solution	

of	ethyl	 (R)-3,7-dihydroxyheptanoate	3.172	 (3.66	 g,	 19.3	mmol)	 in	DCM	 (21	mL,	 0.9	M),	

was	added	tert-butylchlorodiphenylsilane	(5.50	mL,	21.2	mmol),	followed	by	triethylamine	

(2.95	mL,	21.2	mmol)	and	N,N-dimethylpyridin-4-amine	(94	mg,	0.77	mmol).	The	mixture	

was	 stirred	 at	 ambient	 temperature	 for	 48	 h	 and	 then	 poured	 into	 a	 mixture	 of	 sat.	

NH4Cl	(aq.)	and	DCM.	The	layers	were	separated	and	the	crude	product	was	extracted	from	

the	aqueous	with	DCM	(3X).	The	combined	organic	extracts	were	washed	with	brine,	dried	

(MgSO4),	filtered,	and	concentrated.	The	resulting	residue	was	then	purified	by	ISCO	(Hex	

→	20%EtOAc/Hex)	to	give	3.173	(7.89	g,	96%)	as	a	colorless	oil:	1H	NMR	(600	MHz,	CDCl3)	

δ7.67	–	7.65	(m,	4H),	7.44	–	7.35	(m,	6H),	4.12	(q,	J	=	7.15	Hz,	2H),	4.01	–	3.94	(m,	1H),	3.66,	

(t,	J	=	6.13	Hz,	2H),	2.90	(m,	1H),	2.49	(dd,	J	=	16.5,	3.07	Hz,	1H),	2.37	(dd,	J	=	9.34,	16.5	Hz,	

1H),	 1.61	 –	 1.40	 (m,	 4H),	 1.27	 (q,	 J	=	 7.07,	 3H),	 1.04	 (s,	 9H).	13C	NMR	 (600	MHz,	 CDCl3)	

δ173.4,	 135.9,	 134.4,	 129.9,	 129.9,	 68.29,	 64.06,	 61.01,	 41.58,	 36.52,	 32.71,	 27.22,	 22.11,	

19.55,	14.53.	Observed	spectral	properties	were	identical	with	those	previously	reported.		
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Ethyl	 (R)-7-((tert-butyldiphenylsilyl)oxy)-3-methoxyheptanoate	 (3.174):	To	a	cooled	

solution	of	ethyl	(R)-7-((tert-butyldiphenylsilyl)oxy)-3-hydroxyheptanoate	3.173	(6.4	g,	15	

mmol)	 in	 DCM	 (30	 mL,	 0.5M)	 at	 0	 °C,	 was	 added	 N,N,N’,N’-tetramethyl-1,8-

naphthalenediamine	(9.61	g,	45	mmol)	and	trimethyloxonium	tetrafluoroborate	(4.42	g,	30	

mmol).	 The	 mixture	 was	 warmed	 to	 ambient	 temperature	 and	 stirred	 over	 24	 h.	 The	

reaction	 was	 then	 quenched	 with	 sat.	 NH4Cl	 (aq.).	DCM	 and	 Celite
Ⓡ
	 was	 added	 and	 the	

mixture	was	stirred	for	15	min	and	filtered	through	a	plug	of	Celite
Ⓡ
.	The	sticky	white	solids	

were	washed	with	 DCM	 (3X)	 and	 the	 combined	 filtrate	was	 transferred	 to	 a	 separatory	

funnel	and	the	layers	separated.	The	organic	layer	was	washed	with	sat.	NaHSO3	(4X)	and	

brine,	 dried	 (MgSO4),	 filtered,	 and	 concentrated.	The	 resulting	 residue	was	 ISCO	purified	

(Hex	→	25%	EtOAc/Hex)	to	give	3.147	as	colorless	oil	(5.33	g,	81%):	1H	NMR	(600	MHz,	

CDCl3)	δ7.67	–	7.65	(m,	4H),	7.44	–	7.35	(m,	6H),	4.15	(q,	J	=	7.11	Hz,	2H),	3.66	(t,	J	=	6.19,	

2H),	3.65	–	3.59	(m,	1H),	3.34	(s,	3H),	2.51	(dd,	J	=	15.1,	7.39	Hz,	1H),	2.38	(dd,	J	=	15.1,	5.36	

Hz,	 1H),	 1.59	 –	 1.41	 (m,	 6H),	 1.26	 (t,	 J	 =	 7.15	Hz,	 3H),	 1.05	 (s,	 9H).	13C	 NMR	 (600	MHz,	

CDCl3)	δ172.2,	136.0,	134.4,	130.0,	127.9,	78.1,	64.1,	60.8,	57.4,	53.8,	39.9,	34.1,	32.9,	27.2,	

21.8,	19.6,	14.6.	m/z	calcd.	for	C26H38O4Si	[M+H]+	442.25	found	443.2615.	
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Ethyl	(R)-7-hydroxy-3-methoxyheptanoate	(3.175):	To	a	cooled	solution	of	ethyl	(R)-7-

((tert-butyldiphenylsilyl)oxy)-3-methoxyheptanoate	 3.174	 (2.903	 g,	 6.56	 mmol)	 in	 THF	

(13	mL,	0.5M)	at	0	°C,	was	added	a	solution	of	tetrabutylammonium	fluoride	(13	mL,	1.0	M	

in	THF,	13.1	mmol).	The	 reaction	mixture	was	allowed	 to	warm	 to	ambient	 temperature	

and	 stir	 for	 24	 h.	 The	 reaction	 mixture	 was	 quenched	 with	 sat.	 NH4Cl	(aq.),	 diluted	 with	

water	and	Et2O,	and	the	layers	were	separated.	The	crude	product	was	extracted	from	the	

aqueous	with	Et2O	(3X)	and	the	combined	organic	extracts	were	washed	with	brine,	dried	

(MgSO4),	 filtered,	 and	 concentrated.	 The	 resulting	 residue	 was	 then	 purified	 by	 column	

chroatography	(Hex	→	70%	EtOAc/Hex)	to	give	3.175	as	a	light	yellow	oil	(1.17	g,	87%):	1H	

NMR	(400	MHz,	CDCl3)	δ4.15	(q,	J	=	7.12	Hz,	2H),	3.65	(t,	J	=	6.45,	2H),	3.64	–	3.61	(m,	1H),	

3.35	(s,	3H),	2.51	(dd,	J	=	15.1,	7.08	Hz,	1H),	2.38	(dd,	J	=	15.1,	5.74	Hz,	1H),	1.63	–	1.40	(m,	

6H),	1.26,	(t,	J	=	7.07	Hz,	3H).	13C	NMR	(400	MHz,	CDCl3)	δ172.1,	78.0,	63.1,	60.8,	57.4,	39.7,	

34.0,	33.0,	21.7,	14.5.	m/z	calcd.	for	C10H21O4	[M+H]+	204.14	found	205.1434.	

	

	

To	a	solution	of	ethyl	(R)-7-hydroxy-3-methoxyheptanoate	3.175	(966.3	mg,	4.73	mmol)	in	

DCM	(12	mL,	0.4M),	was	added	a	mixture	of	Dess-Martin	Periodinane	(2.41	g,	5.68	mmol)	

and	sodium	bicarbonate	(1.99	g,	23.7	mmol).	The	reaction	mixture	was	stirred	at	ambient	

temperature	for	4	h	and	quenched	with	sat.	NaHCO3	(aq.).	The	mixture	was	stirred	until	gas	

EtO

O

OH

OMe

1.DMP, NaHCO3, DCM
2. 

                             , Tol.
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evolution	ceased	and	then	diluted	with	water	and	Et2O.	The	layers	were	separated	and	the	

crude	product	was	extracted	from	the	aqueous	layer	with	Et2O	(3X).	The	combined	organic	

extracts	were	washed	with	brine,	dried	(MgSO4),	 filtered,	and	concentrated.	The	resulting	

sticky	white	solids	were	taken	up	into	hexanes	and	filtered	through	a	plug	of	CeliteⓇ.	The	

white	 solids	 were	 washed	 with	 hexanes	 extensively	 and	 the	 combined	 filtrate	 was	

concentrated.	 The	 resulting	 colorless	 residue	 was	 taken	 through	 crude	 without	 further	

purification.	

	

To	 a	 solution	 of	 crude	ethyl	 (R)-3-methoxy-7-oxoheptanoate	 (957	 mg,	 4.73	 mmol)	 in	

toluene	 (16	mL,	0.3M),	was	added	solid	2-(triphenylphosphoranylidene)propionaldehyde	

(2.26	g,	7.10	mmol).	The	mixture	was	heated	 to	85	 °C	and	 stirred	 for	18	h.	The	 reaction	

mixture	 was	 cooled	 to	 ambient	 temperature	 and	 concentrated.	 The	 resulting	 brown	

residue	was	taken	up	into	a	mixture	of	hexanes	and	CeliteⓇ	and	carefully	heated	with	a	heat	

gun	to	a	gentle	boil,	while	stirring	vigorously.	The	mixture	was	allowed	to	cool	to	ambient	

temperature	and	was	filtered	through	an	additional	plug	of	CeliteⓇ.	The	solids	were	washed	

with	hexanes	(3X)	and	the	combined	filtrate	was	concentrated	to	give	a	colorless	oil	which	

was	used	crude	without	further	purification	in	the	following	reaction.	

	

	To	a	stirring	solution	of	solid	methyltriphenylphosphonium	bromide	(5.07	g,	14.2	mmol)	

in	THF	 (95	mL,	0.05	M),	was	added	 solid	potassium	 tert-butoxide	 (1.59	mg,	14.2	mmol).	

The	 bright	 yellow	 solution	 was	 stirred	 at	 ambient	 temperature	 for	 1	 h.	 Any	 unreacted	



	 109	

particulates	were	allowed	to	settle	and	the	clear	yellow-orange	solution	was	taken	up	and	

added	dropwise	to	a	stirring	solution	of	crude	ethyl	(R,E)-3-methoxy-8-methyl-9-oxonon-

7-enoate	(1.15	g,	4.73	mmol)	in	THF	(9.5	mL,	0.5M)	dropwise	until	a	bright	yellow-orange	

suspension	was	 observed	 (or	 1.1	 eq	was	 added).	 The	 reaction	mixture	was	 immediately	

quenched	with	NH4Cl	and	diluted	with	Et2O	and	water.	The	layers	were	separated	and	the	

crude	product	was	extracted	from	the	aqueous	layer	with	Et2O	(3X).	The	combined	organic	

extracts	were	washed	with	brine,	dried	(MgSO4),	 filtered,	and	concentrated.	The	resulting	

residue	was	purified	to	give	3.158	(692	mg,	60%	over	3	steps)	as	a	faint	yellow	clear	oil.	1H	

NMR	(400	MHz,	CDCl3)	δ6.36	(dd,	J	=	7.3	Hz,	10.7	Hz,	1H),	5.45	(t,	J	=	7.39	Hz,	1H),	5.08	(d,	J	

=	16.9	Hz,	1H),	4.93	(d,	J	=	10.7	Hz,	1H),	4.15	(q,	J	=	7.03	Hz,	2H),	3.35	(s,	3H),	2.53	(dd,	J		=	

7.10,	14.8	Hz,	1H),	2.39	(dd,	J	=	5.43,	14.8),	2.15	(m,	2H),	1.73	(s,	3H),	1.26	(t,	J	=	7.23	Hz,	

3H).		
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Appendix	A1:	
Spectra	relevant	to	chapter	III	
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Figure	A1.1.	1H	NMR	(400	MHz,	CDCl3)	of	3.170	and	3.171.	
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Figure	A1.2.	1H	NMR	(400	MHz,	CDCl3)	of	3.172.	
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Figure	A1.3.	1H	NMR	(400	MHz,	CDCl3)	and	13C	NMR	(400	MHz,	CDCl3)	of	3.173.	
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Figure	A1.4.	HPLC	trace	for	racemic	asymmetric	3.173.	
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Figure	A1.5.	1H	NMR	(400	MHz,	CDCl3)	and	13C	NMR	(400	MHz,	CDCl3)	of	3.174.	
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Figure	A1.6.	DEPT-135	(400	MHz,	CDCl3)	and	HSQC	(600	MHz,	CDCl3)	of	3.174.	
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Figure	A1.7.	1H	NMR	(400	MHz,	CDCl3)	and	13C	NMR	(400	MHz,	CDCl3)	of	3.175.	
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Figure	A1.8.		DEPT-135	(400	MHz,	CDCl3)	of	3.174.	
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Figure	A1.9.	1H	NMR	(400	MHz,	CDCl3)	and	13C	NMR	(400	MHz,	CDCl3)	of	3.178.	
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Figure	A1.10.	DEPT-135	(400	MHz,	CDCl3)	and	HSQC	(600	MHz,	CDCl3)	for	3.158.	
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Figure	A.11.	COSY	(600	MHz,	CDCl3)	for	3.158.	
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CHAPTER	IV	

	

A	ROBUST	PROCESS	TOWARD	THE	TOTAL	SYNTHESIS	OF	APOPTOLIDINONE	C	AND	

FORMATION	OF	APOPTOLIDIN	C	DISACCHARIDE	

	

4.1	Synthesis	of	northern	hemispheric	apoptolidinone	C	fragments	

	 At	this	point	in	our	work,	a	robust	and	reliable	route	to	the	southwestern	C11-C19	

fragment	4.2	was	established	(Fig.	4.1),	and	the	remaining	objectives	were	to	construct	a	

synthetic	 process	 toward	 the	 northwestern	 C6-C10	 fragment	 4.1,	 and	 produce	 gram	

quantities	of	each	of	the	four	fragments	4.1-4.4	to	form	the	apoptolidin	C	aglycone	4.5.		
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Figure	4.1.	Retrosynthetic	strategy	to	reach	apoptolidinone	C	and	synthesis	of	C11-C19	fragment.	

	 Northern	 C6-C10	 fragment	4.1	was	modified	 from	 a	 synthetic	 route	 developed	 in	

unpublished	work	by	Robert	Davis	of	the	Sulikowski	group,	used	to	create	alkyne	4.17	for	

cross	metatheses	studies	(Fig.	4.2).		
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Figure	4.2.	Davis’	synthesis	of	alkyne	C6-C11	fragment	4.17.	

	 In	order	to	construct	the	necessary	C6-C10	fragment	4.1,	selective	hydrometallation	

of	 the	 alkyne	 rather	 than	 the	 alkene,	 would	 need	 to	 be	 implemented	 (Fig.	 4.3).	

Unfortunately,	studies	completed	by	Davis	and	coworkers	show	that	methods	developed	by	

Lipshultz	 and	 Lindley	 failed	 to	 produce	 vinyl	 stannane	4.17.	 Efforts	 to	 functionalize	 the	

alkyne	through	radical	and	palladium-mediated	hydrostannylation	conditions	also	failed.		

	

Figure	4.3.	Davis’	hydrostannylation	of	alkynyl	fragment	4.1.	

	 In	 the	 interest	 of	 exploring	new	synthetically	useful	methods	 for	 the	 formation	of	

complex	 targets,	 we	 sought	 to	 develop	 an	 alternative	 approach	 to	 vinyl	 stannane	 4.17	

directly	 from	 aldehyde	4.16.	 Originally	 the	 route	 aimed	 to	 synthesize	 vinyl	 stanne	4.17	

through	alkynyl	intermediate	4.1,	adding	3-4	steps.	If	we	could	instead	utilize	phosphonate	

4.19,	 a	 Horner-Waddsworth-Emmons-like	 olefination	 could	 be	 developed	 and	 employed	

toward	the	synthesis	of	C6-C10	fragment	4.17	(Fig.	4.4).	
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Figure	4.4.	Modified	HWE	olefination	to	construct	vinyl	stannane	4.17.	

	 Gratifyingly	vinyl	stannane	4.17	could	be	produced	from	the	aldehyde	intermediate	

4.16,	although	in	modest	yield	yet	excellent	geometric	selectivity	(30%,	17:1	E:Z,	Fig.	4.4).	

Interestingly,	 lithium	diisoporpyl	 amine	 (LDA)	was	not	 formed	prior	 to	deprotonation	of	

the	phosphonate	4.19.	Instead,	a	solution	of	diisopropylamine	and	phosphonate	4.19	were	

added	simultaneously	to	a	solution	of	n-butyl	lithium	(nBuLi)	at	-60	°C	and	then	allowed	to	

warm	to	ambient	temperature	over	the	course	of	20	hours	(Table	4.1).	When	not	warmed	

to	 ambient	 temperature,	 starting	 material	 was	 recovered.	 At	 higher	 temperatures,	

decomposition	 was	 observed.	 In	 situ	 formation	 of	 LDA	 did	 not	 yield	 the	 desired	 vinyl	

stannane,	 presumably	 due	 to	 the	 steric	 bulk	 of	 both	 the	 base	 and	 the	 phosphonate.	

Treatment	of	phosphonate	4.19	with	solely	nBuLi	or	 sodium	hydride	 (NaH),	 followed	by	

the	 addition	 of	 a	 model	 aldehyde	 (benzaldehyde)	 also	 failed	 to	 yield	 the	 desired	 vinyl	

stannane	4.20	(Table	4.2).		
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Table	4.1.	Methodology	toward	modified	HWE	to	synthesize	vinyl	stannane	4.17.	

	

Table	4.2.	Exploration	of	modified	HWE	olefination	with	model	system.		

	

	 Next,	 Stille	 cross	 coupling	 was	 pursued	 between	 vinyl	 stannane	 4.17	 and	 vinyl	
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be	produced	(Fig	4.5).	While	reports	have	shown	that	more	difficult	Stille	couplings	can	be	
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achieved	 with	 the	 addition	 of	 tetrabutylammonium	 phosphinate	 salt	 [Ph2PO2][NBu4].	 2-6	

This	strategy	was	not	pursued	due	to	the	prohibitive	cost	of	the	reagent.		

	

Figure	4.5.	Attempts	to	construct	apoptolidinone	C	northern	hemisphere	via	Stille	cross	coupling.		

	 Revisiting	 other	 possible	 disconnections,	 we	 thought	 to	 complete	 the	 northern	

framework	of	apoptolidinone	C	via	Suzuki	cross	coupling	from	vinyl	dibromide	4.22	 (Fig.	

4.6).	 In	 order	 to	 access	 vinyl	 dibromide	 4.22,	 modified	 Wittig	 olefination	 with	

triphenylphosphonium	bromide	could	be	used	to	 intercept	aldehyde	4.16,	 in	>95%	yield.	
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Interestingly,	 standard	 Ramirez	 conditions	 7	 to	 form	 the	 vinyl	 dibromide	 from	

bromotriphenylphosphonium	 bromide	 and	 carbon	 tetrabromide	 resulted	 in	 the	

concomitant	deprotection	of	the	silyl	ether	followed	by	elimination	and	decomposition	of	

the	starting	material.		

	

Figure	 4.6.	Revisiting	retrosynthetic	analysis	of	apoptolidinone	northern	hemisphere,	synthesis	of	vinyl	dibromide	C6-
C10	fragment	4.22.	

	 With	 vinyl	 dibromide	 4.22	 in	 hand,	 the	 C1-C5	 fragment	 4.2	 was	 synthesized	

according	to	Sulikowski	and	coworkers	original	report,	8	beginning	with	diethyl	2-methyl	

malonate	4.23	 (Fig.4.7).	Malonate	4.23	was	subjected	 through	alkylation	conditions	with	

iodoform	and	treated	with	three	equivalents	of	potassium	hydroxide	to	furnish	the	desired	

vinyl	 iodide	 4.25	 by	 simultaneous	 saponification,	 decarboxylation,	 and	 elimination.	

Carboxylic	 acid	 intermediate	 4.25	 was	 then	 reduced,	 oxidized	 and	 homologated	 with	

phosphonate	4.26	to	give	the	desired	C1-C5	fragment	4.2.		
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Figure	4.7.	Synthesis	of	northeastern	C1-C5	fragment	4.2.		

Suzuki	cross	coupling	from	the	vinyl	iodide	to	vinyl	Bpin	boronate	gave	the	coupling	

partner	for	northern	hemispheric	elaboration	(Fig.	4.8).	Cross	coupling	between	northern	

fragments	 C1-C5	 4.2	 and	 C6-C10	 4.22	 proceeded	 smoothly	 in	 42%	 yield	 to	 give	 vinyl	

bromide	4.27.	Completion	of	the	C1-C10	fragment	requires	a	second	cross-coupling	with	a	

methyl-metal	 reagent.	 This	 could	 be	 completed	 through	 additional	 Suzuki	 (Me-BBN,	Me-

B(OH)2),	Negishi	(Me2Zn),	or	cuprate	coupling.		

	

Figure	4.8.	Synthesis	of	northern	hemisphere	of	apoptolidinone	C.	

	

4.2	Synthesis	of	southern	hemispheric	apoptolidinone	C	fragments	
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described	by	Koert	and	coworkers	(Fig.	4.9).	9	However,	in	work	conducted	by	Robert	Davis	
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and	Binhua	Li	of	the	Sulikowski	group,	the	β-keto-imide	4.31	used	to	synthesize	the	C20-

C28	fragment	4.34,	underwent	a	substantial	amount	of	epimerization	at	the	α-carbon.		

	

Figure	4.9.	Koert’s	synthesis	of	C20-C28	fragment	4.34	of	apoptolidinone	A.		

Attention	 was	 turned	 toward	 an	 iterative	 titanium-mediated	 aldol	 assembly	

beginning	with	methyl	4-methoxy-3-oxobutanoate	4.35	 (Fig.	4.10).	β-keto	ester	4.35	was	

subjected	through	Noyori	hydrogenation	conditions	to	furnish	the	β-hydroxy	ester	4.36.	β-

hydroxy	 ester	4.36	 was	 then	 protected	 as	 a	 tert-butyl	 dimethyl	 silyl	 (TBS)	 ether,	 semi-

reduced	 to	 aldehyde	 4.38	 and	 subjected	 through	 its	 first	 titanium-mediated	 aldol	 with	

auxillary	4.39.	The	 resulting	aldol	adduct	was	 triethyl	 silyl	 (TES)	protected,	 reduced	and	

oxidized	to	give	aldehyde	4.41.	Aldehyde	4.41	was	submitted	through	a	second	titanium-

mediated	aldol	with	auxillary	4.42.	Aldol	adduct	4.43	was	treated	with	the	HCl	salt	of	N,O-

Dimethylhydroxylamine	and	trimethyl	aluminum	to	produce	the	Weinreb	salt	and	then	TES	

protected.	Treatment	of	4.44	with	methyl	magnesium	chloride	gave	the	final	methyl	ketone	

4.4,	all	in	good	yield	and	diastereoselectivity.		
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Figure	4.10.	Synthesis	of	southwestern	C20-C28	fragment	4.4.		

It	 is	 interesting	to	note,	that	for	the	first	titanium-mediate	aldol	between	aldehyde	

4.38	 and	auxillary	4.39,	 depending	on	 the	 type	of	 auxillary,	differing	diastereoselectivity	

can	 be	 achieved.	 Oxazolidinone	 4.45,	 thiazolidinthione	 4.46,	 and	 oxazolidinthione	 4.39	

auxiliaries	were	examined.	Oxazolidinthione	4.39	gave	the	best	overall	consistent	yield	and	

diastereoselectivity,	 under	 titanium-mediated	 aldol	 conditions	 with	 aldehyde	 4.38.	 The	
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Table	4.3.	Exploration	of	first	aldol	in	synthesis	of	C20-C28	apoptolidinone	C	fragment	4.4.	

	

The	second	similarly	conducted	aldol	in	constructing	the	C20-C28	fragment	4.4	(Fig.	

4.10)	 is	not	as	sensitive	 to	 the	 identity	of	 the	auxiliary	as	can	be	evidenced	by	 the	use	of	

commercially	available	oxazolidinone	auxillary	4.42,	in	great	yield	and	diastereoselectivity,	

as	 this	 is	 a	 matched	 case	 in	 terms	 of	 substrate	 control	 in	 the	 auxiliary	 4.42	 and	 chiral	

aldehyde	4.41.	In	addition,	oxazolidinthione	4.39	was	used	as	an	auxiliary	in	the	first	aldol	

to	synthesize	aldol	adduct	4.40	due	to	its	more	efficient	and	mild	cleavage	as	compared	to	

the	oxazolidinone	auxiliary	4.47	(Fig.	4.11).	

	

Figure	4.11.	Comparison	of	conditions	for	auxiliary	removal	of	aldol	adduct	variants.	
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Having	developed	a	route	toward	C11-C19	fragment	4.3	(Fig.	4.12),	semi-reduction	

using	diisobutylaluminum	hydride(DIBAlH)	arrived	at	desired	aldehyde	4.13	in	60%	yield.		

	

Figure	4.12.	Semi-reduction	of	β-methoxy	ester	4.3.		

	

4.3	Toward	the	total	synthesis	of	apoptolidinone	C	

	

Figure	4.13.	Summary	retrosynthetic	analysis	of	apoptolidinone	C	construction.		
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linear	framework	4.56	and	RCM	could	furnish	the	full	macrolide	core.	Global	deprotection	

and	 simultaneous	hemi-ketal	 formation	would	arrive	at	 the	 final	 apoptolidinone	C	 target	

4.5.		
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Figure	4.14.	Final	synthetic	strategy	to	reach	apoptolidinone	C.		
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4.4	Conclusion	

	 In	 summary,	we	have	 completed	 the	 synthesis	of	 each	of	 the	necessary	 fragments	

for	 the	completion	of	apoptolidinone	C.	This	highly	convergent	 route	should	produce	 the	

aglycone	 in	 large	quantities	allowing	 for	 future	precursor	directed	biosynthesis	 to	access	

every	glycosylation	state	of	apoptolidin	4.5	and	4.58-4	(Fig.	4.17).	

	

4.5	Experimental	methods	

General	Procedure.	 All	 glassware	 used	 for	 non-aqueous	 reactions	was	 flame	 dried	 under	

vacuum.	 Reactions	 conducted	 at	 ambient	 temperature	were	 run	 at	 approximately	 23	 °C	

unless	 otherwise	 noted.	 Reactions	 were	 monitored	 by	 analytical	 thin-layer	

chromatography	performed	on	Analtech	silica	gel	GF	250	micron	plates.	The	plates	were	

visualized	with	UV	 light	 (254	nm)	and	either	potassium	permanganate,	 ceric	 ammonium	

molybdate,	or	p-anisaldehyde	followed	by	charring	with	a	heat-gun.	Flash	chromatography	

utilized	230-400	mesh	silica	from	Sorbent	Technologies	or	Silica	RediSep	Rf	flash	columns	

on	 a	 CombiFlash	 Rf	 automated	 flash	 chromatography	 system.	 	 Solvents	 for	 extraction,	

washing	 and	 chromatography	 were	 HPLC	 grade.	 Nuclear	 magnetic	 resonance	 (NMR)	

spectra	were	acquired	on	either	a	300	MHz	Bruker	DPX-300	FT-NMR,	a	400	MHz	Bruker	

AV-400	 FT-NMR,	 or	 500	 MHz	 Bruker	 DRX-500	 FT-NMR	 Spectrometer	 at	 ambient	

temperature.	 1H	 and	 13C	 NMR	 data	 are	 reported	 as	 values	 relative	 to	 CDCl3.1H	 chemical	

shifts	 are	 reported	 in	 δ	 values	 in	 ppm.	 	 Data	 are	 reported	 as	 follows:	 	 chemical	 shift,	

multiplicity	 (s	 =	 singlet,	 d	 =	 doublet,	 t	 =	 triplet,	 q	 =	 quartet,	 br	 =	 broad,	m	 =	multiplet),	

integration,	 coupling	 constant	 (Hz).	 	 13C	 chemical	 shifts	 are	 reported	 in	δ	 values	 in	ppm.		
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Low	 resolution	 mass	 spectra	 were	 obtained	 on	 an	 Agilent	 1200	 series	 6130	 mass	

spectrometer	with	electrospray	ionization.		High	resolution	mass	spectra	were	recorded	on	

a	Waters	Q-TOF	API-US..	 	Analytical	HPLC	was	performed	on	an	Agilent	1200	series	with	

UV	detection	 at	 214	nm	and	254	nm	along	with	ELSD	detection.	 	 Preparative	HPLC	was	

conducted	 on	 a	 Gilson	 215	 Liquid	 Handler	 HPLC	 system	 using	 Gemini-NX	 50	 x	 20	 mm	

column.	Yields	were	reported	as	isolated,	spectroscopically	pure	compounds.		

	

Materials.	All	reagents	and	solvents	were	commercial	grade	and	purified	prior	to	use	when	

necessary.	 All	 reagents	 unless	 otherwise	 stated	 were	 purchased	 from	 Sigma	 Aldrich	 or	

VWR	 International.	 All	 reactions	 were	 performed	 under	 argon	 atmosphere	 unless	

otherwise	 stated.	 Diethyl	 ether	 (Et2O)	 and	 dichloromethane	 (CH2Cl2)	 were	 dried	 by	

passage	 through	 a	 column	 of	 activated	 alumina	 using	 an	 MBraun	 MB-SPS	 dry	 solvent	

system.	Tetrahydrofuran	(THF)	was	distilled	from	sodium	with	benzophenone	as	indicator	

prior	to	use.		
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(S)-4-benzyl-3-((2S,3R)-2-methyl-3-((triethylsilyl)oxy)pent-4-enoyl)oxazolidin-2-

one	 (4.15):	To	a	solution	of	(S)-4-benzyl-3-propionyloxazolidin-2-one	4.14	(3.00	g,	12.86	

mmol)	 in	DCM	(535	mL)	at	0	°C,	was	added	a	solution	of	titanium	tetrachloride	(14.4	mL,	

1M	in	DCM,	14.4	mmol)	dropwise.	The	resulting	yellow	slurry	was	stirred	for	15	min	and	

freshly	distilled	diispropylethylamine	(2.3	mL,	13.1	mmol).	The	mixture	was	allowed	to	stir	

for	40	min	and	N-methylpyrrolidinone	(1.3	mL,	12.8	mmol)	was	added	and	allowed	to	stir	

for	5	min.	A	solution	of	freshly	distilled	acrolein	(0.961	mL,	14.4	mmol)	in	DCM	(5	mL)	was	

added	and	the	mixture	was	allowed	to	stir	 for	an	additional	1.5	h.	The	reaction	was	 then	

quenched	with	sat.	NH4Cl	(aq.)	and	diluted	with	water	and	DCM.	The	layers	were	separated	

and	 the	 crude	 product	 was	 extracted	 from	 the	 aqueous	 with	 DCM	 (3X).	 The	 combined	

organic	 extracts	were	washed	with	 brine,	 dried	 (MgSO4),	 filtered,	 and	 concentrated.	 The	

resulting	residue	was	then	purified	by	column	chromatography	(Hex	→	20%	EtOAC/Hex)	

to	 give	 the	 syn	 aldol	 adduct	 (S)-4-benzyl-3-((2S,3R)-3-hydroxy-2-methylpent-4-

enoyl)oxazolidin-2-one	as	 a	yellow	oil	 (3.3	 g,	 87%).		1H	NMR	 (400	MHz,	CDCl3):	δ	=	7.18-

7.32	(m,	5H),	5.84	(m,	1H),	5.37	(d,	J	 	=	17.24,	1H),	5.23	(d,	J	=	10.6	Hz,	1H),	4.70	(m,	1H),	

4.50	(br.	S,	1H),	4.19	(m,	2H),	3.87	(m,	1H),	3.26	(d,	J	=	10.4	Hz,	1H),	2.79	(m,	1H),	1.25	(d,	J	

=	 7.0	 Hz,	 3H);	 13C	 NMR	 (100	 MHz,	 CDCl3):	 δ	 =	 176.35,	 153.08,	 137.42,	 135.01,	 129.36,	

128.87,	127.32,	116.12,	72.61,	66.15,	55.07,	42.50,	37.66,	11.05.		

	

To	a	solution	of	(S)-4-benzyl-3-((2S,3R)-3-hydroxy-2-methylpent-4-enoyl)oxazolidin-2-one	

(1.34	 	 g,	 4.60	mmol)	 in	DCM	 (34	mL,	0.15	M),	was	added	 triethylsilyl	 chloride	 (2.32	mL,	

13.8	mmol)	followed	by	imidazole	(940	mg,	13.8	mmol).	The	mixture	was	stirred	for	18	h	
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and	quenched	with	 sat.	NH4Cl	(aq.).	The	mixture	was	diluted	with	water	and	DCM	and	 the	

layers	were	separated.	The	crude	product	was	extracted	from	the	aqueous	with	DCM	(3X)	

and	 the	 combined	organic	 extracts	were	washed	with	 brine,	 dried	 (MgSO4),	 filtered,	 and	

concentrated.	The	resulting	residue	was	then	purified	by	column	chromatography	(Hex	→	

20%	EtOAc/Hex)	to	give	4.15	as	a	colorless	oil	(1.83,	>95%).	1H	NMR	(400	MHz,	CDCl3):	δ	=	

7.15-7.25	(m,	5H),	5.79	(m,	1H),	5.14	(d,	J	=	17.2,	1H),	5.04	(d,	J	=	10.36,	1H),	4.53	(ddd,	1H),	

4.24	(t,	1H),	4.06	(m,	2H),	3.95	(m,	1H),	3.18	(d,	J	=	16.48	Hz,	1H),	2.69	(m,	1H),	1.14	(d,	3H),	

0.86	(m,	9H),	0.51	(m,	6H),	;	13C	NMR	(CDCl3,	100	MHz):	δ	=	174.67,	153.16,	139.09,	135.34,	

129.38,	128.85,	127.24,	115.73,	75.45,	65.89,	55.57,	43.94,	37.78,	29.62,	12.72,	6.70,	4.76.		

	

	

(2S,3R)-2-methyl-3-((triethylsilyl)oxy)pent-4-enal	 (4.16):	 To	 a	 solution	 of	 (S)-4-

benzyl-3-((2S,3R)-2-methyl-3-((triethylsilyl)oxy)pent-4-enoyl)oxazolidin-2-one	 4.15	 (700	

mg,	1.74	mmol)	in	THF	(16	mL)	stirring	at	0	°C	was	added	LiBH4	(3.47	mL,	2.0	M	in	THF,	

1.74	mmol)	dropwise.	The	mixture	was	allowed	to	warm	to	room	temperature	and	stirred	

for	5	h.	The	reaction	was	then	cooled	to	0	°C	and	quenched	by	dropwise	addition	of	water.	

The	 aqueous	 layer	was	 extracted	with	 diethyl	 ether	 (3	 x	 10	mL).	 The	 combined	 organic	

extracts	were	dried	(MgSO4),	filtered,	and	concentrated.	The	residue	was	purified	by	flash	

chromatography	 (8:1	 hexanes/ethyl	 acetate)	 to	 give	 (2R,3R)-2-methyl-3-

((triethylsilyl)oxy)pent-4-en-1-ol	 (340	 mg,	 85%)	 as	 a	 colorless	 oil.	 1H	 NMR	 (400	 MHz,	
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CDCl3):	δ	=	5.88	(m,	1H),	5.24	(d,	J	=	17.3	Hz,	1H),	5.19	(d,	J	=	10.5	Hz,	1H),	4.24	(t,	1H),	3.65	

(m,	1H),	3.49	(m,	1H),	3.02	(br	s,	1H),	2.01	(m,	1H),	0.94	(m,	9H),	0.78	(d,	3H),	0.59	(m,	6H);	

13C	NMR	(CDCl3,	100	MHz):	δ	=	137.36,	115.99,	65.69,	40.64,	12.37,	6.66,	4.68.	

	

To	 a	 solution	 of	(2R,3R)-2-methyl-3-((triethylsilyl)oxy)pent-4-en-1-ol	 (100	 mg,	 0.434	

mmol)	in	DCM	(8.7	mL,	0.05	M),	was	added	a	mixture	of	Dess-Martin	periodinane	(276	mg,	

0.651	mmol)	and	sodium	bicarbonate	(31	mg,	0.373	mmol).	The	mixture	was	stirred	for	1	h	

and	quenched	with	sat.	Na2SO3	(aq.).	The	reaction	mixture	was	diluted	with	water	and	DCM	

and	 the	 layers	were	 separated.	 The	 crude	product	was	 extracted	 from	 the	 aqueous	with	

DCM	 (3X)	 and	 the	 combined	 organic	 extracts	 were	 washed	 with	 brine,	 dried	 (MgSO4),	

filtered,	 and	 concentrated.	 The	 resulting	 residue	 was	 then	 purified	 by	 column	

chromatography	 (Hex	 →	 10	 %	 EtOAc/Hex)	 to	 give	 4.16	 as	 a	 colorless	 oil	 (113	 mg,	 >	

95%).	1H	NMR	(400	MHz,	CDCl3):	δ	=	9.76	(d,	J	=	1.3	Hz,	1H),	5.82	(m,	1H),	5.26	(d,	1H),	5.17	

(d,	1H),	4.52	(t,	1H),	2.47	(m,	1H),	1.05	(d,	J	=	6.8	Hz,	3H),	0.91	(m,	9H),	0.58	(m,	6H);	13C	

NMR	(CDCl3,	100	MHz):	δ	=	204.57,	138.25,	115.89,	73.68,	52.48,	8.39,	6.65,	4.78.	

		

	

(((3R,4R)-6,6-dibromo-4-methylhexa-1,5-dien-3-yl)oxy)triethylsilane	 (4.22):	 To	 a	

suspension	of	(dibromomethyl)triphenylphosphonium	bromide	(1.49	g,	2.89	mmol)	in	THF	
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(2.9	 mL,	 1M),	 was	 added	 solid	 potassium	 t-butoxide	 (181	 mg,	 1.62	 mmol)	 at	 RT.	 The	

mixture	 was	 allowed	 to	 stir	 for	 1	 min	 and	 cooled	 to	 0	oC.	 The	 mixture	 gold-brown	

suspension	 was	 stirred	 for	 an	 additional	 15	 min	 and	 a	 solution	 of	(2S,3R)-2-methyl-3-

((triethylsilyl)oxy)pent-4-enal	 9	 (60.01	 mg,	 0.263	 mmol)	 in	 THF	 (10	 mL)	 was	 added	

dropwise.	The	remaining	residue	was	dissolved	 in	THF	(3	mL)	and	the	resulting	solution	

was	added	dropwise	to	the	dark	orange/brown	suspension.	The	reaction	was	stirred	at	0	°C	

for	 3	 h	 and	 quenched	with	 brine.	 The	mixture	was	 diluted	with	water	 and	Et2O	 and	 the	

layers	were	separated.	The	crude	product	was	extracted	from	the	aqueous	layer	with	Et2O	

(3X).	The	combined	organic	extracts	were	washed	with	brine,	dried	(MgSO4),	filtered,	and	

concentrated.	 The	 resulting	 residue	 was	 then	 purified	 through	 a	 plug	 of	 silica	 gel	 and	

washed	with	hexanes	(3X),	followed	by	DCM	(3X)	to	give	4.22	as	a	light	orange	oil	(100.41	

mg,	>	95%).		

	

	

diethyl	2-(diiodomethyl)-2-methylmalonate	(4.24):	To	a	suspension	of	sodium	hydride	

(2.3	g,	58	mmol,	60%	dispersion)	in	ether	(70	mL)	was	added	diethyl	methylmalonate	(9.9	

mL,	57	mmol)	dropwise	over	30	min	via	addition	funnel.	The	resulting	thick	white	slurry	

was	refluxed	for	2.5	h	before	iodoform	(22.4	g,	57	mmol)	was	added.	The	reaction	mixture	

was	 refluxed	 for	 an	 additional	 21	 h	 and	 cooled	 to	 0°C.	 HCl	 (20	mL,	 10%	 aqueous)	 was	

added	 and	 the	 mixture	 was	 stirred	 for	 10	 min.	 The	 aqueous	 layer	 was	 separated	 and	
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extracted	 with	 ether	 (2	 x	 200	 mL).	 The	 combined	 organic	 layers	 were	 dried	 (MgSO4),	

filtered,	and	concentrated,	and	purified	by	simple	distillation	(128-148°C)	to	give	4.24	as	a	

colorless	 liquid	 (22.4	 g,	 89%).	 Observed	 spectral	 properties	 were	 identical	 with	 those	

previously	reported.	8	

	

	

(E)-3-iodo-2-methylacrylic	 acid	 (4.24):	 To	 a	 solution	 of	 diethyl	 2-(diiodomethyl)-2-

methylmalonate	4.24	(22.4	g,	51	mmol)	in	EtOH-H2O	(60	mL,	3:1)	was	added	KOH	(8.8	g,	

156	mmol).	The	reaction	mixture	was	refluxed	for	24	h	and	cooled	to	ambient	temperature.	

The	 reaction	 mixture	 was	 concentrated	 and	 solid	 K2CO3	 (30	 mL,	 10%)	 was	 added.	 The	

layers	were	separated	and	 the	crude	product	was	extracted	 from	the	aqueous	 layer	with	

DCM	(2X)	and	then	acidified	with	concentrated	HCl	(pH	=	4).	The	acidified	aqueous	 layer	

was	extracted	with	CH2Cl2	(7X).	The	combined	organic	layers	were	dried	(MgSO4),	filtered,	

and	concentrated	to	give	4.25	as	a	brown	solid	(10.4	g,	96%).	Observed	spectral	properties	

were	identical	with	those	previously	reported.	8	
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Methyl	 (2E,4E)-5-iodo-2,4-dimethylpenta-2,4-dienoate	 (4.2):	 To	 a	 solution	 of	 (E)-3-

iodo-2-methylacrylic	acid	4.24	(10.4	g,	49	mmol)	in	THF	(80	mL)	at	0°C	was	slowly	added	

lithium	aluminumhydride	(1.86	g,	49	mmol)	via	a	solid	addition	 funnel	over	20	min.	The	

mixture	was	warmed	 to	 ambient	 temperature	 and	 stirred	 for	 3	 h	 then	 cooled	 to	 0°C.	 A	

saturated	 solution	 of	Na2SO4	 (30	mL)	was	 added	 slowly,	 followed	 by	 ether	 (50	mL)	 and	

H2SO4	(70	mL,	2.0	M).	The	aqueous	layer	was	separated	and	extracted	with	DCM	(2X).	The	

combined	organic	 layers	were	washed	with	K2CO3	(20	mL,	10%)	and	dried	(MgSO4),	and	

concentrated.	The	resulting	residue	was	purified	by	column	chromatography	(Hex	->	25%	

EtOAc/Hex)	 to	 give	 (E)-3-iodo-2-methylprop-2-en-1-ol	 as	 a	 pale	 yellow	 oil	 (9.3	 g,	 96%).	

Observed	spectral	properties	were	identical	with	those	previously	reported.	8	

	

To	a	solution	of	 (E)-3-iodo-2-methylprop-2-en-1-ol	 (9.3	g,	47	mmol)	 in	DCM	(350	mL)	at	

0	°C	was	added	CeliteⓇ	(21	g)	and	pyridinium	chlorochromate	(15	g,	70	mmol).	The	mixture	

was	stirred	at	0	°C	for	3.5	h	and	filtered	through	a	bed	of	silica	gel,	rinsed	with	Et2O	(500	

mL),	and	concentrated	to	give	a	volatile	brown	crude	oil.	To	a	solution	of	the	crude	oil	 in	

DCM	(50	mL)	at	0	°C	was	added	Ph3P=C(CH3)COOMe	(10.6	g,	30	mmol).	The	solution	was	

stirred	 at	 ambient	 temperature	 for	 1.5	 h	 and	 concentrated.	 The	 resulting	 residue	 was	
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filtered	through	a	bed	of	silica	gel	and	rinsed	with	ether	(500	mL)	and	the	combined	filtrate	

concentrated.	 The	 resulting	 residue	 was	 purified	 by	 column	 chromatography	 (5%	

Et2O/petroleum	 ether)	 to	 give	 4.2	 as	 a	 pale	 yellow	 oil	 (5.1	 g,	 41%).	 Observed	 spectral	

properties	were	identical	with	those	previously	reported.		

	

	

	

methyl	 (2E,4E)-2,4-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-

2,4-dienoate	 (4.26):	 To	 a	 solution	 of	methyl	 (2E,4E)-5-iodo-2,4-dimethylpenta-2,4-

dienoate	 4.2	 (100	 mg,	 0.376	 mmol)	 in	 DMSO	 (1.3	 mL,	 0.3	 M),	 was	 added	

bis(pinacolato)diboron	 (286	 mg,	 1.13	 mmol),	 followed	 by	 PdCl2(dppf)	 (8.3	 mg,	 0.011	

mmol)	and	potassium	acetate	(111	mg,	1.13	mmol).	The	mixture	was	heated	to	85	°C	and	

stirred	 for	35	min.	The	 reaction	mixture	was	cooled	 to	ambient	 temperature	and	diluted	

with	Et2O	 and	water.	 The	 layers	were	 separated	 and	 the	organic	 layer	was	washed	with	

water	(2X).	The	combined	organic	extracts	were	dried	(MgSO4),	filtered,	and	concentrated.	

The	 resulting	 residue	 was	 then	 purified	 by	 column	 chromatography	 (Hex	 →	 10	 %	
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EtOAc/Hex)	to	give	4.26	as	a	colorless-white	amorphous	solid	(94.74	mg,	95%).	Observed	

spectral	properties	were	identical	with	those	previously	reported.	8,	12	

	

Methyl	 (2E,4E,6Z,8R,9R)-6-bromo-2,4,8-trimethyl-9-((triethylsilyl)oxy)undeca-

2,4,6,10-tetraenoate	 (4.27):	 To	 a	 solution	 of	(((3R,4R)-6,6-dibromo-4-methylhexa-1,5-

dien-3-yl)oxy)triethylsilane	 (46	 mg,	 0.119	 mmol)	 and	methyl	 (2E,4E)-2,4-dimethyl-5-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-2,4-dienoate	 (95	 mg,	 0.357	 mmol)	 in	

(3:1)	THF/H2O	 (0.63	mL,	0.19	M,	0.47	mL/0.16	mL)	 at	 ambient	 temperature,	was	 added	

Pd(PPh3)4	(14	mg,	0.012	mmol).	The	suspension	was	stirred	 for	5	min	and	TlOEt	 (15	μL,	

0.21	mmol).	 The	 suspension	was	 stirred	 for	 an	 additional	 40	min	 and	 then	 diluted	with	

Et2O	 (1.2	 mL)	 and	 NaHSO4	(1	 mL).	 The	 layers	 were	 shaken	 and	 separated.	 The	 organic	

portion	 was	 filtered	 through	 a	 CeliteⓇ plug	 and	 then	 washed	 with	 brine,	 dried	 (MgSO4),	

filtered,	 and	 concentrated.	 The	 resulting	 residue	 was	 then	 purified	 by	 column	

chromatography	(10%	Tol/Hex	with	1%	EtOAc	→	5%	EtOAc/Hex)	 to	give	4.27	as	a	 light	

yellow	oil	(22.2	mg,	42%).	1H	NMR	(600	MHz,	CDCl3)	δ7.12	(s,	1H),	6.08	(s,	1H),	5.90-5.82	

(m,	1H),	5.70	(dd,	J	=	1.07,	9.08	Hz),	5.16	(overlapping	dd,	2H),	4.10	(apparent	t,	J	=	5.57	Hz),	

3.77	(s,	3H),	2.04	(d,	J	=	1.34	Hz),	1.98	(d,	J	=	1.34	Hz),	1.04	(d,	J	=	7.09	Hz),	0.95	(t,	J	=	7.82	

Hz),	0.59	(q,	J	=	7.82).		
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Methyl	 (R)-3-hydroxy-4-methoxybutanoate	 (4.36):	 To	 a	 suspension	

of	benzeneruthenium	(II)	chloride	dimer	(137	mg,	0.274	mmol)	in	DMF	(1.4	mL,	0.05	M)	at	

115	°C,	was	added	(S)-BINAP	(256	mg,	0.411	mmol).	The	resulting	slurry	was	stirred	for	15	

min	 and	 then	 cooled	 to	 ambient	 temperature.	 The	 mixture	 was	 transferred	 to	 a	 Parr	

hydrogenation	apparatus	and	a	solution	of	methyl	4-methoxy-3-oxobutanoate	4.35	 (10	g,	

68.4	mmol)	in	MeOH	(30	mL,	2.3	M)	was	added.		The	mixture	was	filled	with	hydrogen	gas	

(10	bar,	150	psi)	and	cycled	three	times	evacuating	the	vessel	and	refilling	with	hydrogen	

gas.	The	mixture	was	left	under	an	atmosphere	of	hydrogen	(10	bar,	150	psi)	and	stirred	at	

95	°C	for	72	h.	The	reaction	mixture	was	transferred	to	a	RB	flask	and	concentrated.	The	

resulting	residue	was	purified	by	 flash	chromatography	(Hex	→	40%	EtOAc/Hex)	 to	give	

4.36	(8.5g,	84%)	as	a	yellow	oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	4.13	(m,	1H),	3.71	(s,	3H),	

3.42	(m,	2H),	3.40	(s,	3H),	2.95	(d,	1H),	2.54	(d,	2H);	13C	NMR	(100	MHz,	CDCl3):	δ	=	171.7,	

75.3,	 66.2,	 58.3,	 51.0,	 37.7.	 Observed	 spectral	 properties	 were	 identical	 with	 those	

previously	reported.	9	

	

	

Methyl	 (R)-3-((tert-butyldimethylsilyl)oxy)-4-methoxybutanoate	 (4.37):	 To	 a	

suspension	of	benzeneruthenium	(II)	chloride	dimer	(137	mg,	0.274	mmol)	in	DMF	(1.4	mL,	

0.05	M)	at	115	°C,	was	added	(S)-BINAP	(256	mg,	0.411	mmol).	The	resulting	slurry	was	

stirred	for	15	min	and	then	cooled	to	ambient	temperature.	The	mixture	was	transferred	to	

MeO

O
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a	Parr	hydrogenation	apparatus	and	a	solution	of	methyl	4-methoxy-3-oxobutanoate	4.36	

(10	 g,	 68.4	 mmol)	 in	 MeOH	 (30	 mL,	 2.3	 M)	 was	 added.	 	The	 mixture	 was	 filled	 with	

hydrogen	gas	(10	bar,	150	psi)	and	cycled	three	 times	evacuating	 the	vessel	and	refilling	

with	hydrogen	gas.	The	mixture	was	 left	under	an	atmosphere	of	hydrogen	 (10	bar,	150	

psi)	and	stirred	at	95	°C	for	72	h.	The	reaction	mixture	was	transferred	to	a	RB	flask	and	

concentrated.	 The	 resulting	 residue	was	 purified	 by	 flash	 chromatography	 (Hex	→	 35%	

EtOAc/Hex)	to	give	4.37	(8.5g,	84%)	as	a	yellow	oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	4.13	(m,	

1H),	3.71	(s,	3H),	3.42	(m,	2H),	3.40	(s,	3H),	2.95	(d,	1H),	2.54	(d,	2H);	13C	NMR	(100	MHz,	

CDCl3):	δ	=	171.7,	75.3,	66.2,	58.3,	51.0,	37.7.	Observed	spectral	properties	were	identical	

with	those	previously	reported.	9	

	

	

(R)-3-((tert-butyldimethylsilyl)oxy)-4-methoxybutanal	 (4.38):	To	a	solution	of	methyl	

(R)-3-hydroxy-4-methoxybutanoate	4.37	 (8.4	 g,	 56.7	mmol)	 in	DMF	 (81	mL,	0.7	M),	was	

added	 tert-butyldimethylsilyl	 chloride	 (11.1	 g,	 73.7	mmol)	 followed	 by	 imidazole	 (8.9	 g,	

130	 mmol).	 The	 mixture	 was	 stirred	 for	 18	 h	 and	 quenched	 with	 sat.	 NH4Cl	 (aq.).	 The	

reaction	 mixture	 was	 diluted	 with	 DCM	 and	 water	 and	 the	 layers	 were	 separated.	 The	

crude	 product	 was	 extracted	 from	 the	 aqueous	 with	 DCM	 (3X).	 The	 combined	 organic	

extracts	were	washed	with	brine,	dried	(MgSO4),	filtered,	and	concentrated.	The	resulting	

residue	 was	 then	 purified	 through	 a	 plug	 of	 silica	 gel	 (Hex	 →	 15%	 EtOAc/Hex)	 to	 give	

MeO

O
OMe

OTBS DIBALH

-78 °C, 73-90% OMe
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silylether	22	(13.8	g,	93%)	as	a	light	yellow	oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	4.25	(m,	1H),	

3.65	(s,	3H),	3.31	(s,	3H),	3.27	(dd,	1H),	2.58	(dd,	1H),	2.44	(dd,	1H)	0.84	(s,	9H),	0.06,	0.03	

(2s,	6H);	13C	NMR	(100	MHz,	CDCl3):	δ	=	171.7,	76.5,	68.2,	58.8,	51.3,	40.1,	25.6,	17.9,	-4.7,	-

5.3.	Observed	spectral	properties	were	identical	with	those	previously	reported.	9	

	

	

(2S,3R,5R)-1-((S)-4-benzyl-2-thioxooxazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-

6-methoxy-2-methyl-3-((triethylsilyl)oxy)hexan-1-one	 (4.40):	 To	 a	 solution	 of	

propionyloxazolidinethione	4.39	(6.82	g,	27.4	mmol)	in	DCM	(110	mL)	at	0	°C	was	added	a	

solution	of	 titanium	tetrachloride	(30.2	mL,	1.0	M	in	DCM,	30.2	mmol).	The	yellow	slurry	

was	 stirred	 for	 15	min	 at	 0	°C.	 Diisopropylethylamine	 (4.77	mL,	 27.4	mmol)	was	 added	

slowly	and	the	reaction	was	stirred	for	40	min	at	0	°C.	Added	N-methylpyrrolidinone	(2.64	

mL,	27.4	mmol)	and	stirred	for	10	min.	A	solution	of	(R)-3-((tert-butyldimethylsilyl)oxy)-4-

methoxybutanal	 4.38	 (7.0	 g,	 30.2	 mmol)	 in	 DCM	 (10	 mL)	 was	 added	 dropwise.	 After	

complete	 addition,	 the	 reaction	was	 stirred	 at	 0	°C	 for	1.5	h.	The	 reaction	was	quenched	

with	 sat.	NH4Cl	 (aq.)	 and	diluted	with	water	 and	DCM.	The	 layers	were	 separated	and	 the	

crude	 product	 was	 extracted	 from	 the	 aqueous	 with	 DCM	(3	 x	 150	 mL).	 The	 combined	

organic	layers	were	dried	(MgSO4),	filtered,	and	concentrated.	The	residue	was	purified	by	

flash	 chromatography	 (Hex	 →	 15%	 EtOAc/Hex)	 to	 give	 (2S,3R,5R)-1-((S)-4-benzyl-2-
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thioxooxazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-6-methoxy-2-methyl-3-

((triethylsilyl)oxy)hexan-1-one	as	a	yellow	oil	(12.2	g,	92%,	>95:5	dr).	1H	NMR	(400	MHz,	

CDCl3):	δ	=	7.37-7.22	(m,	5H),	4.96	(m,	1H),	4.72	(m,	1H),	4.32	(m,	3H),	4.11	(m,	1H),	3.40	

(m,	2H),	3.36	(s,	3H),	3.29	(dd,	1H),	2.80	(dd,	1H),	1.80	(m,	1H),	1.68	(m,	1H),	1.33	(d,	3H),	

0.90	(s,	9H),	0.12,	0.11	(2s,	6H);	13C	NMR	(100	MHz,	CDCl3):	δ	=185.1,	177.0,	135.1,	129.3,	

128.9,	127.3,	70.0,	69.6,	68.6,	65.7,	60.2,	59.0,	53.3,	43.0,	38.3,	37.4,	25.7,	18.0,	15.1,	10.7,	-

4.66,	-5.04.	Observed	spectral	properties	were	identical	with	those	previously	reported.	12	

	

To	 a	 cooled	 solution	 of	(2S,3R,5R)-1-((S)-4-benzyl-2-thioxooxazolidin-3-yl)-5-((tert-

butyldimethylsilyl)oxy)-3-hydroxy-6-methoxy-2-methylhexan-1-one	(2.08	g,	4.32	mmol)	in	

DMF	 (7.2	 mL),	 at	 0	°C,	 was	 added	 triethylsilylchloride	 (1.95	 g,	 12.95	 mmol,	 2.2	 mL)	

followed	by	imidazole	(882	mg,	12.95	mmol).	The	mixture	was	stirred	at	0	°C	for	3	h	and	

then	 quenched	with	water.	 The	 layers	were	 separated	 and	 crude	 product	was	 extracted	

from	the	aqueous	layer	with	DCM	(3X).	The	combined	organic	extracts	were	washed	with	

water	and	brine,	dried	(MgSO4),	filtered,	and	concentrated.	The	resulting	residue	was	then	

ISCO	 purified	 (Hex	 →	 10%	 EtOAc/Hex)	 to	 give	 silyl	 ether	 4.40	 (2.37	 g,	 92%)	 colorless	

oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	7.37-7.22	(m,	5H),	4.83	(m,	2H),	4.29	(m,	1H),	4.19	(m,	

2H),	3.95	(m,	1H),	3.33	(m,	4H),	2.78	(m,	1H),	1.69	(m,	2H),	1.37	(d,	3H),	0.99	(s,	9H),	0.60	

(m,	15H),	 0.11,	 0.10	 	 (2s,	 6H);	 13C	NMR	 (100	MHz,	CDCl3):	δ	 =185.0,	 175.9,	 135.3,	 129.3,	

128.8,	127.2,	71.4,	69.0,	68.6,	60.7,	59.0,	43.4,	37.2,	25.8,	22.5,	13.9,	12.3,	6.81,	6.43,	-3.94,	-

4.71.	Observed	spectral	properties	were	identical	with	those	previously	reported.	12	
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(2S,3R,5R)-5-((tert-butyldimethylsilyl)oxy)-6-methoxy-2-methyl-3-

((triethylsilyl)oxy)hexanal	 (4.41):	To	a	cooled	solution	of	(2S,3R,5R)-1-((S)-4-benzyl-2-

thioxooxazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-6-methoxy-2-methyl-3-

((triethylsilyl)oxy)hexan-1-one	4.40	 (2.37	g,	3.98	mmol)	 in	MeOH	(40	mL,	0.1	M)	at	0	°C,	

was	added	sodium	borohydride	(903	mg,	23.9	mmol).	The	mixture	was	stirred	at	0	°C	for	3	

h	and	then	concentrated.	The	resulting	residue	was	taken	up	into	water	and	DCM	and	the	

layers	were	separated.	The	crude	product	was	extracted	from	the	aqueous	with	DCM	(3X)	

and	 the	 combined	organic	extracts	were	washed	with	brine,	dried	 (MgSO4),	 filtered,	 and	

concentrated.	The	resulting	residue	was	then	purified	by	column	chromatography	(Hex	->	

15%	Et2O/Hex)	to	give	(2R,3R,5R)-5-((tert-butyldimethylsilyl)oxy)-6-methoxy-2-methyl-3-

((triethylsilyl)oxy)hexan-1-ol	(1.38	g,	86%)	as	a	colorless	oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	

4.13	(m,	1H),	3.99	(m,	1H),	3.87	(m,	1H),	3.68	(m,	1H),	3.32	(s,	3H),	3.30	(m,	2H),	2.74	(m,	

1H),	2.00	(m,	1H),	1.69	(t,	2H),	0.98	(s,	9H),	0.87	(m,	12H),	0.64	(m,	6H),	0.08,	0.07	(2s,	6H);	

13C	NMR	(100	MHz,	CDCl3):	δ	=	77.6,	73.1,	69.2,	65.6,	58.5,	40.0,	38.0,	25.7,	18.0,	11.9,	6.68,	

6.43,	 5.68,	 5.00,	 -3.94,	 -4.86.	 Observed	 spectral	 properties	 were	 identical	 with	 those	

previously	reported.	12	
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To	a	stirred	solution	of	(2R,3R,5R)-5-((tert-butyldimethylsilyl)oxy)-6-methoxy-2-methyl-3-

((triethylsilyl)oxy)hexan-1-ol	(215.21	mg,	0.529	mmol)	in	DCM	(5.3	mL,	0.1	M),	was	added	

a	mixture	of	Dess-Martin	Periodinane	(269	mg,	0.635	mmol)	and	sodium	bicarbonate	(222	

mg,	2.65	mmol).	The	mixture	was	stirred	for	4	h	at	ambient	temperature.	The	reaction	was	

quenched	with	sat.	NaHCO3	(aq.)	and	diluted	with	water	and	DCM.	The	layers	were	separated	

and	the	crude	product	was	extracted	from	the	aqueous	layer	with	DCM	(3X).	The	combined	

organic	 extracts	were	washed	with	 brine,	 dried	 (MgSO4),	 filtered,	 and	 concentrated.	 The	

resulting	residue	was	then	purified	by	column	chromatography	(Hex	→	15%	EtOAc/Hex)	to	

give	aldehyde	4.41	(210	mg,	>	95%)	as	a	colorless	oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	9.81	

(s,	1H),	4.31	(m,	1H),	3.88	(m,	1H),	3.35	(s,	3H),	3.31	(d,	2H),	2.53	(m,	1H),	1.68	(m,	2H),	

1.08	 (d,	 3H),	 0.96	 (s,	 9H),	 0.90	 (m,	12H),	 0.63	 (m,	6H),	 0.10	 (s,	 6H);	 13C	NMR	 (100	MHz,	

CDCl3):	δ	=	205.0,	77.5,	69.7,	69.1,	58.7,	52.1,	40.0,	25.8,	18.0,	6.76,	6.49,	5.37,	5.08,	-4.00,	-

4.75.	Observed	spectral	properties	were	identical	with	those	previously	reported.	

	

	

To	 a	 cooled	 solution	 of	(R)-4-benzyl-3-propionyloxazolidin-2-one	 4.42	 (201	 mg,	 0.86	

mmol)	 in	DCM	(3.7	mL,	0.23	M)	at	0	 °C,	was	added	a	solution	of	TiCl4	(0.95	mL,	1.0	M	 in	

DCM,	 0.95	 mmol).	 The	 yellow	 slurry	 was	 stirred	 for	 15	 min	 and	 freshly	 distilled	

diisopropylethylamine	(0.15	mL,	0.86	mmol)	was	added	and	the	reaction	was	stirred	over	
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40	min.	N-methylpyrrolidine		(0.083	mL,	0.86	mmol)	was	added	and	stirred	for	10	min.	A	

solution	 of	(2S,3R,5R)-5-((tert-butyldimethylsilyl)oxy)-6-methoxy-2-methyl-3-

((triethylsilyl)oxy)hexanal	4.41	(383.4	mg,	0.95	mmol)	in	DCM	(1	mL,	0.95	M)	was	added	

dropwise.	 The	 reaction	was	 stirred	 for	 1.5	 h	 and	 then	 quenched	with	 sat.	 NH4Cl	(aq.)	and	

allowed	 to	 stir	 for	 30	min	 before	 the	 reaction	mixture	was	 diluted	water	 and	DCM.	 The	

layers	were	 separated	and	 the	 crude	product	was	extracted	 from	 the	aqueous	with	DCM	

(3X).	The	combined	organic	extracts	were	washed	with	water,	dried	(MgSO4),	filtered,	and	

concentrated.	 The	 resulting	 residue	was	 then	 purified	 by	 column	 chromatography	 (15%	

EtOAc/Hex	→	30%	EtOAc/Hex)	to	give	4.43	(320.3	mg,	71%,	>	95:5	dr)	as	a	colorless	oil.	

1H	NMR	(400	MHz,	CDCl3):	δ	=	7.33-7.21	(m,	5H),	4.69	(m,	1H),	4.19	(m,	2H),	4.11	(m,	2H),	

4.09	(m,	2H),	3.39	(m,	2H),	3.33	(s,	3H),	3.29	(dd,	1H),	2.80	(dd,	1H),	1.84	(m,	2H),	1.60	(m,	

1H),	1.25	 (d,	 3H),	0.87	 (s,	 9H),	0.09,	0.08	 (2s,	 6H);	 13C	NMR	 (100	MHz,	CDCl3):	δ	 =176.9,	

152.9,	135.2,	129.3,	128.8,	127.2,	77.3,	73.6,	71.8,	70.7,	66.0,	60.2,	55.4,	40.0,	39.3,	37.62,	

36.4,	25.7,	17.9,	11.8,	9.73,	 -4.68,	 -5.01.	Observed	spectral	properties	were	 identical	with	

those	previously	reported.	9	

	

	

To	a	solution	of	N,O-Dimethylhydroxylamine	hydrochloride	(519	mg,	5.32	mmol)	 in	DCM	

(8.0	mL)	at	-10oC	was	added	AlMe3	(2.66	mL,	2.0	M	in	hexanes).	The	mixture	was	allowed	
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to	 stir	 at	 room	 temperature	 for	 1	 h.	 The	 reaction	was	 cooled	 to	 -10	°C	 and	 a	 solution	 of	

adduct	4.43	(400	mg,	0.76	mmol)	in	CH2Cl2	(8	mL)	was	added.	The	reaction	was	stirred	at	-

10	°C	for	4	h.	The	mixture	was	then	transferred	to	a	solution	of	aq.	Rochelle’s	salt	(60	mL,	

1.0	M)	via	cannula	and	the	solution	was	stirred	overnight.	The	two	layers	were	separated	

and	the	aqueous	layer	was	extracted	with	DCM	(3	x	60	mL).	The	combined	organic	layers	

were	 washed	 with	 brine,	 dried	 (MgSO4),	 filtered,	 and	 concentrated.	 The	 residue	 was	

purified	 by	 flash	 chromatography	 (25%	 EtOAc/Hex	 →	 50%	 EtOAc/Hex)	 to	 give	

(2R,3S,4S,5R,7R)-7-((tert-butyldimethylsilyl)oxy)-3,5-dihydroxy-N,8-dimethoxy-N,2,4-

trimethyloctanamide	(310	mg,	80%)	as	a	colorless	oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	4.37	

(s,	1H),	4.10	(m,	1H),	4.09	(1H),	3.85	(m,	1H),	3.71	(br	s,	1H),	3.68	(s,	3H),	3.38	(m,	2H),	3.33	

(s,	3H),	3.17	(s,	3H),	3.07	(br	m,	1H),	1.81	(m,	2H),	1.50	(m,	1H),	1.17	(d,	3H),	0.87	(s,	9H),	

0.09,	0.07	(2s,	6H);	13C	NMR	(100	MHz,	CDCl3):	δ	=	178.2,	77.2,	74.3,	69.9,	69.3,	60.8,	58.9,	

39.2,	 37.4,	 32.3,	 25.9,	 18.0,	 11.9,	 10.0,	 -4.56,	 -5.06.	 Observed	 spectral	 properties	 were	

identical	with	those	previously	reported.	13	

	

To	 a	 solution	 of	 (2R,3S,4S,5R,7R)-7-((tert-butyldimethylsilyl)oxy)-3,5-dihydroxy-N,8-

dimethoxy-N,2,4-trimethyloctanamide	(250	mg,	0.61	mmol)	in	DCM	(10	mL)	stirring	at	0	°C	

was	added	imidazole	(332	mg,	4.9	mmol)	and	trimethylsilyl	chloride	(0.62	mL,	3.7	mmol).	

The	solution	was	stirred	at	0	°C	for	3	h.	The	reaction	was	quenched	with	pH	=	7	phosphate	

buffer	(10	mL).	The	two	layers	were	separated	and	the	aqueous	layer	was	extracted	with	

Et2O	(3X).	The	combined	organic	layers	were	dried	(MgSO4),	filtered,	and	concentrated.	The	

residue	 was	 purified	 by	 column	 chromatography	 (Hex	 →	 5%	 EtOAc/Hex)	 to	 afford	 the	
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product	4.44	(370	mg,	>	95%)	as	a	colorless	oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	4.14	(m,	1H),	

3.99	(m,	1H),	3.74	(m,	1H),	3.66	(s,	3H),	3.32	(s,	3H),	3.31	(m,	2H),	3.16	(s,	3H),	2.97	(m,	1H),	

1.80	(m,	2H),	1.47	(m,	1H),	1.03	(d,	3H),	0.92	(s,	9H),	0.88	(m,	12H),	0.52	(m,	6H),	0.07	(s,	

6H).	13C	NMR	(100	MHz,	CDCl3):	δ	=	176.2,	77.2,	73.71,	69.6,	69.3,	60.4,	58.6,	42.1,	40.3,	38.7,	

31.4,	25.7,	22.5,	18.0,	13.9,	9.71,	10.,	10.5,	 -4.48,	-4.87.	Observed	spectral	properties	were	

identical	with	those	previously	reported.	13	

	

	

	

To	 a	 solution	 of	 amide	 4.44	 (250	 mg,	 0.39	 mmol)	 in	 THF	 (0.39	 mL)	 at	 0oC	 was	 added	

CH3MgCl	 (0.39	 mL,	 3.0	 M	 in	 THF)	 dropwise.	 After	 complete	 addition,	 the	 reaction	 was	

allowed	 to	 stir	 for	 30	mins,	 before	 quenching	with	 sat.	 aq.	 NH4Cl	 (10	mL).	 The	 aqueous	

layer	 was	 extracted	 with	 CH2Cl2	 (3	 x	 10	 mL).	 The	 combined	 organic	 layers	 were	 dried	

(MgSO4),	 filtered,	 and	 concentrated	 in	 vacuo.	 The	 residue	 was	 purified	 by	 flash	

chromatography	 (Hex	→	 5%	 EtOAc/Hex)	 to	 afford	 the	 product	4.4	 (208	mg,	 89%)	 as	 a	

colorless	oil.	1H	NMR	(400	MHz,	CDCl3):	δ	=	4.26	(m,	1H),	3.95	(m,	1H),	3.71	(m,	1H),	3.33	(s,	

3H),	3.29	(m,	2H),	2.70	(m,	1H),	2.15	(s,	3H),	1.78	(m,	2H),	1.62	(m,	1H),	1.09	(d,	3H),	0.92	(s,	

9H),	0.88	(m,	12H),	0.52	(m,	6H),	0.69	(s,	6H);	13C	NMR	(100	MHz,	CDCl3):	δ	=	210.1,	73.0,	
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70.1,	 69.3,	 58.8,	 50.2,	 42.8,	 40.5,	 28.5,	 25.8,	 11.9,	 9.72,	 9.41,	 7.00,	 5.91,	 5.33,	 -4.36,	 -4.75.	

Observed	spectral	properties	were	identical	with	those	previously	reported.	13	
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Appendix	A2:	
Spectra	relevant	to	chapter	IV	
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Figure	A2.1.	1H	NMR	(400	MHz,	CDCl3)	of	(S)-4-benzyl-3-((2S,3R)-3-hydroxy-2-methylpent-4-enoyl)oxazolidin-2-one	
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Figure	A2.2.	1H	NMR	(400	MHz,	CDCl3)		and	13C	NMR	(400	MHz,	CDCl3)	of	4.15.	
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Figure	A2.3.	1H	NMR	(400	MHz,	CDCl3)	and	13C	NMR	(400	MHz,	CDCl3)	of	(2R,3R)-2-methyl-3-((triethylsilyl)oxy)pent-4-
en-1-ol.	
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Figure	A2.4.	1H	NMR	(400	MHz,	CDCl3)	and	13C	NMR	(400	MHz,	CDCl3)	of	4.16.	
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Figure	A2.5.	1H	NMR	(600	MHz,	CDCl3)	and	13C	NMR	(600	MHz,	CDCl3)	of	4.22	
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Figure	A2.6.	1H	NMR	(600	MHz,	CDCl3)	and	13C	NMR	(600	MHz,	CDCl3)	of	4.26.	
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Figure	A2.7.	DEPT-135	(600	MHz,	CDCl3)	of	4.26.	
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Figure	A2.8.	1H	NMR	(400	MHz,	CDCl3)	and	DEPT-135	(400	MHz,	CDCl3)		of	4.27.		
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CHAPTER	V	

	

TOWARD	THE	COMPREHENSIVE	SYNTHEIS	OF	FLUORESCENT	APOPTOLIDIN	

GLYCOVARIANTS	

	

5.1	 Progress	 toward	 evaluating	 cell	 uptake	 and	 localization	 of	 fluorescent	 apoptolidin	

glycovariants	

	 In	 previous	 work,	 1	 our	 group	 has	 shown	 that	 apoptolidin	 5.1-5.4	 displays	 an	

interesting	cell	confluence	and	glycosylation	dependency	for	cytotoxic	activity	(Fig.	5.1).	At	

levels	of	high	cell	confluence	and	glycosylation	state,	apoptolidin	is	a	substantial	cancer	cell	

toxin	against	human	lung	cancer	cells	(H292).		

	

Figure	5.1.	Comparison	of	cytotoxicity	as	a	function	of	apoptolidin	glycosylation	state.		

Sulikowski	 and	 coworkers	 1	 further	 explored	 this	 trend	by	visualizing	 the	 cellular	

localization	of	fluorescent	apoptolidin	A	5.1	and	H	5.3	in	H292	cells.	Apoptolidin	A	5.1	and	

H	 5.3	 were	 functionalized	 via	 selective	 C2’	 esterification	 with	 5-azidopentanoic	 acid	
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followed	by	copper-free	click	conditions	with	 fluorescent	bicyclononyne	 linker	(BNE-Cy3,	

5.7)	to	give	Cy3	functionalized	apoptolidin	A	(Cy3	Apo	A,	5.5)	and	H	(Cy3	Apo	H,	5.6,	Fig.	

5.2).		

	

Figure	5.2.	Chemical	structures	of	fluorescent	and	non-fluorescent	apoptolidins.		
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Imaging	of	the	H292	cells	after	treatment	with	either	Cy3	Apo	A	5.5	or	Cy3	Apo	H	

5.6	 showed	 significant	 staining	 of	 the	 mitochondria	 and	 overlap	 with	 a	 known	

mitochondrial	dye:	MitoTracker
Ⓡ	5.9	(Pearson	coefficient	0.90	–	0.88,	Fig.	5.3).	Fluorescent	

Cy3	 functionalized	apoptolidins	5.5-5.6	 also	retain	much	of	 their	activity	as	compared	 to	

their	 non-fluorescent	 parents	 5.10-5.11.	 These	 findings	 are	 consistent	 with	 a	 proposed	

mitochondrial	target,	such	as	FoF1-ATPase.		

	

Figure	5.3.	Deguire’s	confocal	microscopy	images	of	fluorescent	apoptolidins.	

However	 in	 these	 studies,	 Sulikowski	 and	 coworkers	 did	 find	 that	 fluorescent	

cationic	bicyclononyne	linker	(BNE-Cy3,	5.7)	does	show	significant	selective	localization	to	

the	mitochrondria	and	overlap	with	MitoTracker
Ⓡ	5.9	 (Pearson	coefficient	=	0.80).	While	

cationic	 dyes	 have	 been	 known	 to	 localize	 to	 the	 mitochondria	 due	 to	 its	 large	

electrochemical	 gradient,	 the	 BNE-Cy3	 linker	 5.7	 does	 not	 show	 significant	 cytotoxicity	

towards	H292	cells	(EC50	=	4.6	μM),	revealing	that	Cy3-	 labeled	apoptolidin	glycovariants	

5.5-5.6,	 supporting	 previous	 studies	 proposing	 a	 mitochondrial	 apoptolidin	 molecular	
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target.	While	the	Cy3-BNE	linker	5.7	exhibited	little	to	no	activity	against	the	lung	cancer	

cells	 (4.6	 μM,	 H292	 cells),	 this	 work	 necessitates	 follow-up	 studies	 utilizing	 a	 non-	

mitochondrial	staining	fluorescent	linker.		

	 Cationic	 amphiphilic	 small	molecules	 readily	 localize	 to	 the	mitochondria.	 	One	of	

the	 first	 dyes	 reported	 to	 exhibit	 mitochondrial	 selectivity	 and	 fluorescent	 staining	 was	

Janus	green	B	5.12	 (Fig.	5.3).	 Janus	green	B	5.12,	along	with	several	other	 later	reported	

dyes:	 rhodamine	123	 (Rh123)	5.13	 and	 cresyl	blue	5.14,	 have	been	 shown	 to	 target	 the	

mitochondria	due	to	its	transmembrane	potential.	2	

	

Figure	5.4.	Cationic	mitochondrion	staining	dyes.		

Mitochondria	 are	 the	 energy	 power	 plants	 of	 the	 cell	 and	 generate	 adenine	

triphosphoate	 (ATP)	 by	 utilizing	 a	 large	 electrochemical	 gradient	 potential	 across	 its	

membrane	 (Fig.	 5.4).	The	 respiratory	 electron	 transport	 chain	 (ETC)	drives	protons	 (H+)	

against	 their	natural	 concentration	gradient	 to	 the	outer	membrane	of	 the	mitochondria.	

The	accumulation	of	H+	 results	 in	 the	 flow	of	protons	 into	 the	mitochondria	 through	 the	

FoF1-ATPase	 complex	 to	 complete	 the	 ETC	 and	 produce	 ATP.	 3	 This	 charge	 gradient	 of	
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positive	 charge	 into	 the	 mitochondria	 explains	 how	 cationic	 dyes	 can	 result	 in	 specific	

mitochondrial	staining.	2	

	

Figure	5.5.	General	mechanism	for	electrochemical	gradient	across	mitochondrial	membrane.			

	 While	there	are	still	means	of	utilizing	Cy3-	labeled	apoptolidins	A	5.5	and	H	5.6	and	

decoupling	 the	 Cy3	 dye	 activity	 from	 the	 parent	 apoptolidins	 by	 using	 small	 molecule	

protonophore	 mitochondrial	 inhibitors	 such	 as	 2,4-dinitrophenol	 5.15,	 4	 p-

trifluoromethoxy	carbonyl	cyanide	phenyl	hydrazine	(FCCP)	5.16,	and	carbonyl	cyanide	m-

chloro	phenyl	hydrazine	(CCCP)	5.17	 (Fig.	5.5).	5	These	mitochondrial	 inhibitors	work	by	

rapidly	 dissipating	 the	 mitochondrial	 gradient	 by	 targeting	 FoF1-ATP	 synthase.	 Because	

these	these	inhibitors	directly	impact	the	proposed	target	of	apoptolidin,	FoF1-ATPase,	we	

cannot	rule	out	the	possibility	that	this	could	somehow	disrupt	apoptolidin’s	mechanism	of	

action.		

H+

H+
H+

H+

H+

H+

H+

O2

2H2O

H+

H+

H+

Electron Transport Chain

ADP 
+ Pi

ATP

ATP Synthase

H+

H+



	 179	

	

Figure	5.6.	Small	molecule	protonophore	mitochondrial	decouplers.	

	

5.2	Synthesis	of	fluorescent	non-cationic	apoptolidin	glycovariants	

	 In	order	to	observe	apoptolidin	cell	localization	as	a	function	of	glycosylation	state,	

we	propose	to	synthesize	non-cationic	fluorescent	apoptolidin	glycovariants,	based	on	the	

fluorescent	 scaffold	difluoro-boraindacene	5.18,	 otherwise	known	as	BODIPY	 (Fig.	5.6A).	

The	synthesis	of	BODIPY	was	first	reported	in	1968	by	Triebs	and	Kreuzer.	However,	little	

attention	was	given	until	the	mid	1990’s,	as	it	became	popularized	as	an	effective	label	for	

biological	studies.	6	

	

Figure	5.7.	BODIPY	scaffold	and	spectral	properties.	A.	Chemical	structure	of	BODIPY	core	and	relevant	dyes.	B.	Example	

spectral	properties	of	dyes	available	through	ThermoFisher	for	purchase.		

The	BODIPY	scaffold	exhibits	immense	versatility	with	finely	tunable	photochemical	

properties,	 excellent	 thermal	 and	 photostability,	 high	 fluorescent	 and	 quantum	 yield,	
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negligible	triplet	state	formation,	intense	absorption	profile,	good	solubility,	and	chemical	

robustness.	Depending	on	its	substitution	pattern,	BODIPY	dyes	can	absorb	light	anywhere	

from	370	nm	to	770	nm	and	emit	from	500	nm	to	830	nm	(Fig.	5.6B).	These	dyes	typically	

have	 sharp	 absorption	 bands	 (half-widths	 typically	 ranging	 from	 25-35	 nm),	 high	molar	

absorption	 coefficients	 (between	 40,000	 –	 110,	 000	M-1cm-1),	 high	 quantum	 yield	 (60	 –	

90%),	long	excited	singlet-state	lives	(1	to	10	ns),	are	resistant	to	aggregation	in	solution,	

and	 good	 solubility	 in	most	 solvents	 (except	 water).	 6-8	 Additionally,	 BODIPY	 dyes	 been	

shown	 to	 somewhat	 localize	 to	 lipophilic	 compartments	 of	 the	 cell	 including	 the	 golgi	

apparatus	 and	 endoplasmic	 reticulum,	 however	 multiple	 reports	 have	 been	 shown	 that	

redirecting	BODIPY	cell	localization	to	specific	cellular	compartments	is	possible.	9-10	

	

Figure	5.8.	Deguire’s	synthesis	of	fluorescent	Cy3	bicyclononyne	linker	(BNE-Cy3,	5.7).	

	 The	synthesis	of	Cy3-	fluorescent	apoptolidin	glycovariants,	originally	developed	by	

Sean	Deguire	 of	 the	 Sulikowski	 group	 (Fig.	 5.7	 and	 5.8),	 1	was	modified	 to	 allow	 for	 the	

incorporation	 of	 non-cationic	 fluorescent	 BODIPY	 5.18.	 In	 the	 work	 described	 by	

Sulikowski	and	coworkers,	apoptolidins	A	5.10	and	H	5.11	are	selectively	esterified	at	the	

C2’	hydroxyl	according	to	conditions	first	reported	by	Wender	and	coworkers	(Fig.	5.8).	11-
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12	 This	 selective	 esterification	 allows	 for	 “clicking”	 of	 the	 fluorescent	 BNE	 linker	 for	

synthetic	flexibility	in	fluorescent	dye	choice.		

	

Figure	5.9.	Deguire’s	synthesis	of	fluorescent	Cy3	labeled	apoptolidins	A	and	H.	

	 Sulikowski	 and	 coworkers	 1	 detail	 selective	 C2’	 glycosylation	 of	 C9-	 glycosylated	

apoptolidin	A	and	H	5.10	and	5.11	with	5-azidopenatoic	acid	to	form	azido	apoptolidins	A	

5.20	and	H	5.19	(Fig.	5.8).	The	azido	apoptolidins	can	then	be	introduced	to	Cy3-BNE	5.7	

through	copper-free	“click”	conditions	to	produce	the	fully	 fluorescent	apoptolidins	A	5.5	

and	H	5.6.	BODIPY	tagged	apoptolidins	A	5.27	and	H	5.28	can	be	synthesized	in	much	the	

same	way	using	azido	apoptolidins	A	5.20	and	H	5.19	in	[3+2]	cycloaddition	with	BODIPY	

tagged	BNE	linker	5.26	(Fig.	5.9).	
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Figure	5.10.	Proposed	synthesis	of	BODIPY	tagged	apoptolidins	A	and	H.	

In	order	to	synthesize	BODIPY	BNE	linker	5.26,	BODIPY	was	synthesized	according	

to	 a	 procedure	 described	 by	 Richert	 and	 coworkers	 (Fig.	 5.10).	 	 13	 Cyclization	 with	

phosphoryl	chloride,	triethylamine,	and	boron	trifluoride	etherate	gave	intermediate	5.24,	

which	 was	 saponified	 and	 esterified	 to	 give	 the	 N-hydroxy	 succinimide	 ester	 (NHS)	

derivative	5.25.		
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Figure	5.11.	BODIPY	tagged	bicyclononyne	linker	BNE-BODIPY.	

	 With	BODIPY-NHS	5.25	ester	 in	hand,	amidation	with	bicyclononyne	(BNE)	amino	

linker	5.29	could	arrive	at	BODIPY-BNE	linker	5.26.	Finally,	copper-free	“click”	conditions,	

or	 [3+2]	 cycloaddition,	 1	 between	 azido-apoptolidins	 would	 produce	 the	 desired	

fluorescent	apoptolidin	glycovariants	5.27-5.28	(Fig.	5.9).	
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Figure	5.12.	Chemical	structures	of	BODIPY	tagged	apoptolidinone	C	and	apoptolidin	C	disaccharide.	

Apoptolidinone	 C	5.30	 and	 apoptolidin	 C	 disaccharide	5.31	 lacking	 the	 C9-	 sugar	

can	be	selectively	esterified	prior	to	late	stage	formation	of	the	macrolide	ring	(Fig.	5.12).	

Deprotection	 of	 the	 C9-	 silyl	 ether	 of	 the	 northern	hemisphere	 of	 apoptolidinone	C	5.34	

would	 allow	 for	 selective	 incorporation	 of	 the	 5-azido	 ester	 5.35.	 Alternatively	 careful	

control	of	the	global	deprotection	of	5.36,	leaving	t-butyl	dimethyl	silyl	(TBS)	ether	in	place	

at	 the	 C27-	 position	 to	 give	 5.37,	 could	 also	 be	 used	 to	 selectively	 esterify	 at	 the	 C9-	

hydroxyl.	This	would	allow	access	to	azido	apoptolidinone	C	5.11	and	azido	apoptolidin	C	

disaccharide	5.10.		
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Figure	5.13.	Proposed	synthesis	of	azido	apoptolidinone	C	and	azido	apoptolidin	C	disaccharide.		

	 	

5.3	Understanding	cellular	uptake	and	response	of	fluorescent	apoptolidins	

	 Preliminary	 studies	 completed	 through	 collaboration	 between	 the	 Sulikowski,	

Bachmann,	and	Irish	groups	14	has	shown	that	fluorescent	apoptolidin	glycovariants	can	be	

used	 to	 study	 cellular	 uptake,	 localization,	 and	 response	 of	 cancer	 and	 healthy	 cells.	

Utilizing	Cy3-	conjugated	apoptolidins	A	5.20	and	H	5.19,	cell	microscopy	can	be	used	to	

better	understand	 the	effect	of	 the	apoptolidin	glycosides	on	cellular	uptake	 into	specific	

cancer	 cells.	 Phospho-	 specific	 flow	 cytometry	 in	 a	 single-cell	 format	 allows	 for	
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quantification	 of	 apoptolidin	 cellular	 uptake	 and	 subsequent	 response	 by	 analyzing	 up-

regulation	of	specific	phosphorylation	events.	15-17	In	preliminary	studies,	we	have	shown	

that	 a	 panel	 of	 cancer	 cells	 (SW620,	 U87-MG,	 LN229,	 and	 A549)	 can	 be	 simultaneously	

analyzed	 for	 cellular	 uptake	 and	 response	 toward	 activation	 of	 the	 AMPK	 pathway.	

Specifically	 we	 chose	 to	 focus	 on	 the	 up-regulation	 of	 phosphorylated	 acetyl-CoA-

carboxylase	 (ACC),	 an	 important	 biomarker	 for	 autophagy,	 18	 as	 previous	 reports	 by	

Ishmael	 and	 coworkers	 19	 demonstrated	 apoptolidin-induced	 autophagic	 cell	 death	 in	

several	 lines	 of	 lung	 cancer	 cells	 (H292,	HCT-116),	 gliablastoma	 cells	 (U87-MG	and	 SW),	

and	mouse	embryonic	cells	(MEF’s).		
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Figure	 5.14.	 Fluorescent	 flow	 cytometry	 used	 to	 monitor	 cellular	 uptake	 of	 Cy3	 apoptolidins	 A	 and	 H	 and	

phosphorylation	of	ACC.		

	 In	addition,	Cy3	tagged	apoptolidins	A	5.20	and	H	5.19	were	used	to	monitor	

cellular	uptake	qualitatively	in	tumor	cells	(A549	lung	cancer	cell	line,	U87	gliablastoma	

cell	line)	as	compared	to	healthy	cells	(PBMC’s)	via	confocal	microscopy	(Fig.	5.14).	The	

confocal	images	showed	minimal	uptake	of	the	Cy3	apoptolidins	by	healthy	PBMC’s	but	

higher	uptake	of	Cy3	apoptolidins	A	5.20	and	H	5.19.		
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Figure	5.15.	Confocal	images	demonstrate	differential	uptake	of	Cy3	apoptolidins	in	tumor	cells	relative	to	healthy	cells.		
	

5.4	Future	works	

	 Comprehensive	access	to	fluorescent	non-cationic	apoptolidin	glycovariants	at	each	

glycosylation	 state	 could	 be	 used	 for	 exhaustive	 study	 of	 the	 apoptolidin	 sugars’	

mechanistic	 effect	 on	 apoptolidin	 induced	 cancer	 cell	 death.	 With	 each	 apoptolidin	

glycovariant	 in	 hand,	 fluorescent	 probes	 can	 be	 created	 to	 further	 explore	 apoptolidin	

cellular	localization,	specific	uptake	into	certain	cancer	cells,	and	cell	response,	including	its	

induction	of	apoptosis	and/or	autophagy,	as	a	function	of	glycosylation	state.	Fluorescent	

apoptolidins	 can	 be	 tracked	 and	 visualized	 via	 confocal	microscopy	 using	 a	 non-cationic	

dye,	according	to	glycosylation	state.	Cellular	uptake	and	subsequent	response	studies	can	
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be	performed	using	single-cell	fluorescent	phospho-specific	flow	cytometry	to	understand	

up-regulation	of	specific	phosphorylation	events.	

	

Figure	5.16.	Graphical	representation	of	proposed	future	work.		

	

5.5	Experimental	methods	

Production	and	chemical	synthesis	of	apoptolidins	and	fluorescent	derivatives:	Apoptolidins	

A	and	H	were	produced	by	fermentation	of	the	apoptolidin	producer	FU	40	and	a	mutant	

strain	(ApoGT2	knockout)	at	Vanderbilt	University.	Cyanine-3	derivatives	of	apoptolidin	A	

and	H	were	prepared	by	semi	synthesis	as	described	earlier.		

	

Uptake	of	apoptolidins	A	and	H	in	various	cell	types:	Human	cancer	cell	lines	and	peripheral	

blood	mononuclear	cells	(PBMCs)	were	used	to	characterize	uptake	of	apoptolidin	A	and	

apoptolidin	H.	The	following	cell	lines	were	included:	SW620	(colon	cancer),	U87-MG	
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(glioblastoma),	LN229	(glioblastoma),	and	A549	(lung	adenocarcinoma).	Cell	lines	were	

cultured	under	ATCC	recommended	protocols.	Cells	were	detached	using	Trypsin	and	

resuspended	in	recommended	culture	media	at	1x106	cells/mL	prior	to	drug	treatment.	

Human	PBMCs	were	collected	from	a	healthy	donor	following	protocols	approved	by	

Vanderbilt	University	Medical	Center	Institutional	Review	Board,	processed	by	standard	

Ficoll	preparation	protocol,	and	cryopreserved	in	liquid	nitrogen.	PBMCs	were	thawed	and	

resuspended	in	warm	RPMI	1640	media	containing	10%	FBS	at	1x106	cells/mL	prior	to	

drug	treatment.	Cells	were	treated	with	either	vehicle	(DMSO),	1	µM	of	Cy3	apoplolidin	A,	

or	1	µM	of	Cy3	apoptolidin	H	for	1	hour	at	37°C.	Cells	were	washed	twice	in	PBS	and	fixed	

with	1.6%	paraformaldehyde	for	10	minutes	at	room	temperature,	and	were	permeabilized	

with	ice-cold	methanol	for	30	minutes.		

	

Fluorescent	flow	cytometry:	After	methanol	permeabilization,	cells	were	stained	with	1:250	

anti	p-ACC	antibody	(Cell	Signaling)	for	30	minutes	in	the	dark	at	room	temperature.	Cells	

were	 then	 stained	 with	 1:1000	 Donkey	 anti-Rabbit	 Ax647	 (Life	 Technologies)	 for	 30	

minutes	 in	 the	dark	at	 room	temperature,	and	were	washed	and	resuspended	 in	PBS	 for	

analysis	 on	 5-laser	 BD	 LSRII	 (BD	 Biosciences,	 San	 Jose,	 CA)	 at	 the	 Vanderbilt	 Flow	

Cytometry	Shared	Resource	and	evaluated	using	Cytobank	software.	Untreated	cells	were	

stained	with	only	the	secondary	antibody	and	used	as	negative	control.	

	

Confocal	microscopy:	 The	 stained	 cell	 suspensions	 described	 above	were	 incubated	with	

diaminophenylindole	(DAPI)	at	1	µg/mL	for	10	minutes	at	room	temperature,	and	placed	
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on	 glass	 slides	 for	 imaging	 on	 an	 LSM	 710	 META	 inverted	 microscope	 (Zeiss)	 at	 the	

Vanderbilt	Cell	Imaging	Shared	Resource.	Data	were	analyzed	using		

Zen	2011	software.		
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