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CHAPTER 1 

 

Introduction 

1.1 Motivation 

The spinal cord is a vital organ in the central nervous system (CNS) and is responsible for 

all communication between the brain and the peripheral nervous system. Electrical signals are 

transmitted up and down the spinal cord via distinct bundles of axonal tracts located in the white 

matter to convey sensory and motor information. Damage to these axons, possibly by 

neurodegenerative disease or trauma, can be devastating and may result in irreversible loss of 

neurological function. One such example is in multiple sclerosis (MS), an autoimmune disease 

that is marked by inflammation, demyelination, gliosis and axonal loss (1). While conventional 

magnetic resonance imaging (MRI) techniques can point to the location of the damage (2), these 

techniques do not typically offer specific information on the microscopic pathology of the tissue, 

such as axonal loss and myelin damage. Therefore, there is a need for advanced noninvasive 

MRI techniques that are sensitive to specific aspects of MS pathology in the spinal cord to 

understand its development and degeneration in vivo, which could have significant clinical 

implications on diagnosis and treatment of the disease. 

1.2 Approach 

 Quantitative MRI measurements, and in particular diffusion imaging, may reveal further 

microstructural insight on specific fiber bundles in the cervical spinal cord, which would be 

useful in the diagnosis and management of neurodegenerative diseases. Diffusion imaging has 

become a rapidly growing area of study, offering significant insight into microstructural 

abnormalities in MS. With diffusion MRI, the signal is sensitive to the random motion 

(displacement) of water molecules, which are restricted and/or hindered by fibrous structures or 

barriers (e.g. cell and axon membranes and myelin sheaths). Therefore, diffusion MRI offers an 

opportunity to indirectly probe microstructural integrity. However, the majority of diffusion MRI 

in the literature relies on the utilization of a simple model that summarizes all water 

compartments within the tissue of interest. Clinically, the most conventionally used model is the 
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diffusion tensor (diffusion tensor imaging, DTI), which models heterogeneous water 

displacement with a single three-dimensional tensor (3). While DTI has demonstrated sensitivity 

to changes in tissue microstructure such as demyelination and axonal loss (4-6), a major 

drawback is that DTI does not account for structural heterogeneity and is affected by multiple 

confounding tissue properties, resulting in reduced specificity of the derived indices to 

pathologic variations of clinical importance. Additionally, DTI assumes that the underlying 

probability distribution function of diffusion is Gaussian, which is not true due to the restricted 

nature of diffusion in axons, especially when higher b-values are used (7,8). Diffusion kurtosis 

imaging (DKI) has been introduced to quantify the degree of non-Gaussianity of the probability 

density function with the kurtosis (9), but it still suffers from limitations of probing specific 

tissue compartments. Other groups have developed biophysical diffusion models – models 

consisting of multiple compartments in order to more accurately characterize the diffusion signal 

in the presence of multiple tissue compartments or milieu (10-17). Unlike the signal models such 

as DTI or DKI, biophysically based methods can provide indices related to specific 

compartments of white matter microstructure. However, with biophysical models, often times 

assumptions need to be specified in order to simplify the complexity of the models, and it is 

difficult to simplify assumptions for a large cohort of patients. 

1.3 Innovation 

 Currently, there is a lack of diffusion techniques optimized for the spinal cord in vivo.  

While many of the aforementioned techniques have been successfully implemented in the brain, 

application to the cervical spinal cord has been hampered due to its small size, in addition to 

physiological challenges from the cardiac and respiratory cycles (18). Furthermore, while 

biophysical models offer the potential to distinguish specific aspects of MS pathology, very few 

studies have investigated their utility in the spinal cord of MS. In particular, we will investigate 

the sensitivity of neurite orientation dispersion and density imaging (NODDI), spherical mean 

technique (SMT), and diffusion basis spectrum imaging (DBSI) in the cervical segment of the 

spinal cord. 
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1.4 Objectives and Outline 

 The central hypothesis of this work is that diffusion MRI techniques can be developed 

and optimized to provide high sensitivity to microstructural changes in the cervical spinal cord, 

potentially serving as biomarkers for MS. The hypothesis will be evaluated through the 

completion of the following aims: 

Aim 1: Develop and optimize existing DTI techniques for the cervical spinal cord. 

Aim 2: Develop multi-shell diffusion techniques for the cervical spinal cord. 

Aim 3: Optimize multi-shell diffusion techniques for translation to clinical 

implementation. 

Following an introduction to the subject matter, the dissertation chapters will be divided based 

on each aim. Chapter 2 will include a brief description of the spinal cord and MS. An 

introduction to diffusion MRI will be provided, and the chapter will end with a summary of the 

challenges and current state of diffusion MRI in spinal cord imaging.  

 Chapter 3 discusses the first aim, reporting the development and optimization of existing 

DTI techniques for the spinal cord in terms of gradient direction scheme and acquisition time for 

high accuracy and reproducibility. In doing so, the bias and SNR dependency in DTI 

measurements will be understood, and an empirical framework for spinal cord diffusion will be 

established. 

 The remainder of this dissertation will focus on more advanced multi-shell, biophysical 

diffusion models by exploring their use in both healthy controls and MS patients. First (Chapter 

4), the NODDI model will be explored by implementing this model in a cohort of healthy 

controls in order to assess the feasibility and reproducibility of this technique. The NODDI 

model will then be applied in a cohort of patients with MS to assess its ability to detect white 

matter pathology. SMT (Chapter 5) and DBSI (Chapter 6) will next be assessed in a similar 

manner. In Chapter 7, these models will then be compared against one another and to signal 

models (i.e. DTI and DKI), with the main goal of determining whether multi-compartmental and 

biophysically based models are more sensitive to microstructural changes than signal models.  

 Chapter 8 covers the optimization of the multi-shell diffusion models (from Chapters 4-6) 

for clinical applicability. With an eye to deploy these sequences to the clinic, data reduction 

strategies, along with multiband excitation, will be implemented to shorten acquisition times and 

increase coverage of these methods. 
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 Finally, Chapter 9 will summarize the major results of this work and include a discussion 

of broader impacts and future directions.  
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CHAPTER 2 

 

Background 

2.1 Spinal Cord 

 The spinal cord is a vital organ of the central nervous system (CNS), serving as a conduit 

for motor and sensory information to the periphery.  Essentially, the spinal cord is a long, 

cylindrical bundle of nerve fibers that sits in a bath of cerebrospinal fluid, enclosed and protected 

by vertebral bodies and intervertebral discs. It is split into four main regions, segmented by the 

location of the vertebrae, all with varying lengths: cervical (C1-C7), thoracic (T1-T12), lumbar 

(L1-L5) and sacral (S1-S5).  Figure 1 shows an axial view of the spinal cord at the C3/C4 level.  

At the cervical level, the cord is only 1.5 cm in diameter and it is divided into two main 

regions. A butterfly-shaped gray matter region can be found in the center of the cord surrounded 

by densely packed white matter. The gray matter, comprised of interneurons and cell bodies, is 

split into three different columns (anterior, posterior, lateral). The white matter primarily consists 

of myelinated motor and sensory axons, which are bundled together to form tracts. Importantly, 

the spinal cord is somatotopically organized: sensory neuron cell bodies are found in the dorsal 

root ganglia and ascend the spinal cord for touch, vibration, and proprioception, while motor 

Figure 1: Axial view of the spinal cord, highlighting major components. A butterfly-shaped 
gray matter region can be found in the center of the cord, surrounded by densely packed white 
matter. 

gray matter

CSF

bone

15 mm

white matter
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function is passed to the extremities via descending tracts located primarily in the lateral column 

of the spinal cord.  

2.2 Multiple Sclerosis  

2.2.1. Overview  

 Multiple sclerosis (MS) is a chronic disease of the CNS that affects approximately 

400,000 people in the United States alone and over 2.5 million worldwide (19). Though the exact 

cause of MS is unknown, what is known is that the disease is marked by a myriad of changes 

including demyelination, inflammation, gliosis and axonal loss (1). Concomitantly, the damage 

to the CNS from these mechanisms results in an accumulation of sensorimotor impairment (20). 

Patients often exhibit symptoms of poor coordination, tremor, bladder dysfunction and motor 

impairment (21), and these symptoms are summarized by a clinical score of disability known as 

the Expanded Disability Status Scale (EDSS) (22).  

A complicating factor of MS is that the disease course and symptomatology is 

heterogeneous, temporally varying and constantly evolving. The first episode when a patient 

exhibits neurological symptoms is known as clinical isolated syndrome (CIS), which is 

suggestive of demyelination and/or inflammation. A patient exhibiting CIS does not necessarily 

meet the criteria for diagnosis of MS, and many patients with CIS may not develop MS later on. 

The most common form of MS is relapsing-remitting MS (RRMS), which is characterized by 

recurring bouts of relapse and remission.  Primary progressive MS (PPMS) is characterized by 

more gradual decline in disability without any remissions. Patients who are initially diagnosed 

with RRMS and eventually transition into more progressively accumulating disability are 

referred to as secondary progressive MS (SPMS). The patient subtypes are summarized in Figure 

2.  
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2.2.2 Immunopathology  

 MS is a result of an immune-mediated process. A trigger is provoked, causing a 

disruption of the blood brain barrier (BBB) and consequently, an activation of peripheral T cells 

to enter into the CNS. This initiates a cascade of inflammatory events, involving activation of B 

cells and innate immune cells (monocytes, macrophages, microglia). These immune-mediated 

responses are known to result in demyelination and axonal injury (23). Histological findings of 

MS lesions indicate that axonal damage occurs at all stages of the disease (24), with studies 

involving β-amyloid precursor protein (β-APP) immunoreactivity reporting axonal damage in 

acute plaques (25) in addition to damaged axons at the borders of chronic active plaques (26). 

Clinical 
Disability

Brain Volume

Relapsing 
Remitting

Clinically 
Isolated 

Syndrome
Secondary 
Progressive

Disease 
onset (yrs)

+2010-15

Di
sa

bi
lit

y
Primary 

Progressive

Figure 2: Heterogeneity of MS.  Clinical disability plotted against disease onset highlights the 
patterns of different MS subtypes. The most common type of MS is relapsing remitting MS 
(RRMS), where patients experience recurring bouts of relapse and remission; eventually some 
patients gradually transition into secondary progressive MS (SPMS), where remission wanes and 
clinical disability increases. Primary progressive MS (PPMS) is another subtype of MS, where 
patients experience progressive decline from the onset of disease and do not experience episodes 
of relapse and remission. Adapted from (1). 
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2.2.3 Role of MRI in MS 

MRI has become a powerful tool in diagnosing and evaluating MS, with the McDonald 

MS diagnostic criteria requiring demonstration of dissemination of lesions in space and in time 

(27). For the spinal cord specifically, up to 90% of MS patients exhibit spinal cord lesions (28). 

There exists, however, a clinical-radiological paradox (29), which refers to the poor association 

between radiologically-detected lesion load and clinical physical disability. This paradox can 

primarily be attributed to the fact that conventional MRI techniques, such as T1-weighted, T2- 

weighted, and Short T1 Inversion Recovery (STIR) imaging are sensitive to a combination of 

several pathological conditions and lack the ability to provide pathology-specific information. 

Therefore, quantitative MRI techniques, such as diffusion, that are sensitive to specific 

pathologies may address this paradox. 

2.3 Diffusion Imaging 

 The first credited observation of diffusion dates back to 1827, when botanist Robert 

Brown observed the jostling of pollen grains in water, but at the time, the underlying 

mechanisms of this motion were not well understood. In 1905, Albert Einstein introduced the 

concept of diffusion (also termed Brownian motion) (30), describing the phenomena as the 

random motion of the molecules due to thermal agitation following the equation:  

 

 𝑅𝑀𝑆𝐷 = 2𝐷𝑡 (1) 

 

where RMSD is the one-dimensional root mean squared displacement and D is the diffusion 

coefficient over a period of time t.  Interestingly, however, though often unaccredited, Lucretius 

had accurately described Brownian motion almost 1900 years prior in 60 BC in his poem “On 

the Nature of Things”, and in 1785, Jan Ingenhousz also observed diffusion through the motion 

of coal in alcohol. 

The diffusion coefficient of a molecule is affected by the molecular weight, viscosity, and 

temperature. As highlighted in Figure 3, in an unhindered or “free” medium, the RMSD will 

follow a Gaussian distribution; in a restricted medium or a closed space, however, the 

displacement is no longer Gaussian and the actual RMSD will be reduced. For a hindered space, 
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the actual RMSD will be reduced in comparison to a free medium, but does not reach a 

maximum displacement as with restricted diffusion.  In biological tissue, where water molecules 

can still diffuse freely at very short times, but will encounter more and more microscopic 

restrictions as time increases (due to the presence of cell walls or membranes, fibers, axonal 

myelin sheaths, macromolecules, etc.), the motion of the water molecules can be impeded 

(Figure 3b) (31). As a result, diffusion becomes time and direction dependent, or anisotropic, in 

biological tissue. These basic concepts serve as the theoretical framework for diffusion MRI, 

which provides the ability to probe the microstructural integrity of tissue by assessing the 

geometrical barriers to water displacement.  

  

2.3.1 Measuring Diffusion in MRI  

 Given the time scales of MRI (on the order of milliseconds), diffusion MRI is well suited 

to measure the displacement of water molecules on the scale of microns. Diffusion is captured in 

Figure 3: Free, hindered, and restricted diffusion. (a) For free diffusion, the 1D RMSD 
displaces linearly with the diffusion time ∆. With hindered diffusion, the RMSD increases less 
than free diffusion, since there are barriers to diffusion. When diffusion is restricted (such as by 
cell walls or membranes), the RMSD plateaus at the size of the restriction d. (b) Free, hindered, 
and restricted diffusion are depicted in blue, green, and yellow respectively. Adapted from (32). 

Δ1/2

d

R
M
SD

Free Hindered

Restricted

a b
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MRI using the Stejskal-Tanner pulsed gradient spin echo (PGSE) sequence (33), where a pair of 

bipolar diffusion gradients is placed around a 180° refocusing pulse, as shown in Figure 4. The 

diffusion gradients are characterized by direction, strength G, duration δ and separation Δ. The 

first gradient is used to spatially encode spins, while the second gradient pulse reverses this. If 

the spins remain stationary, the phase accrued after the first gradient would be reversed and 

magnetization would be restored. When diffusion is present, however, the spins move, and the 

second gradient reverses the phases incompletely, producing a phase dispersion and loss of 

signal proportional to the net displacement of spins. Since diffusion of water molecules in vivo is 

affected by the microstructure of neural tissues, diffusion MRI can assess structural changes due 

to pathology. 

 To account for the relaxation due to diffusion, the Bloch equations (34) were extended to 

the Bloch-Torrey equations (35), which describes the evolution of the total magnetization with 

diffusing water molecules:  

 

 𝜕𝑴
𝜕𝑡 = 𝛾𝑴×𝑩−   

𝑴𝒙𝚤 +𝑴𝒚𝚥
𝑇!

+
(𝑴𝟎 −𝑴𝒛)𝑘

𝑇!
+ ∇ ∙ 𝐃𝛁𝑴 (2) 

 

where 𝑀 is the magnetization vector 𝑀 =  (Mx, My, Mz) in the laboratory frame of reference, 𝛾 is 

the gyromagnetic ratio, T1 is the longitudinal relaxation time, T2 is the transverse relaxation time, 

and D is the diffusion tensor, which is introduced in the following section (Section 2.3.3).  

Figure 4: Schematic of pulsed gradient spin echo (PGSE) diffusion sequence. A pair of 
bipolar gradients is placed around the refocusing pulse to encode diffusion, with strength G, 
duration δ and separation Δ. For demonstration purposes, diffusion gradients are only applied in 
one direction.  

180o

90o

Gdiff     
δ 

Δ
G 

RF     

TE

echo
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2.3.2 Diffusion Weighted Imaging (DWI) 

In 1985, Le Bihan presented the first diffusion MRI studies of the brain in vivo (36,37), 

introducing the concept of the apparent diffusion coefficient (ADC). For the isotropic diffusion 

case, the Bloch-Torrey equations can be simplified with respect to the rotating frame, such that 

the observed signal attenuation can be characterized by: 

 

 𝑀!" = 𝑀!𝑒
!! !!𝑒!!" (3) 

 

where 𝑀!" is the transverse magnetization, 𝑀! is the magnetization after excitation, D is the 

apparent diffusion coefficient and b is known as the b-value and determines the diffusion-

weighted factor: 

 

 
𝑏 = 𝛾! [ 𝐺

!

!
𝑡! 𝑑𝑡′

!"

!
]!𝑑𝑡 (4) 

 

 For the Stejskal-Tanner sequence, the b-value can be summarized in terms of gradient duration δ  

and gradient spacing Δ: 

 

 𝑏 = 𝛾!𝛿!𝐺!(∆− 𝛿 3) (5) 

 

Thus, From Equation 3, it can be easily recognized that the orientation-dependent ADC can be 

recovered by simply acquiring one diffusion-weighted image, along with a non-diffusion-

weighted image (b0 image or S0 image), and the diffusion-weighted signal can be characterized 

as: 

 

 𝑆 = 𝑆!𝑒!!" (6) 

 

where  S0 is the non-diffusion-weighted baseline.  

2.3.3 Diffusion Tensor Imaging  

 In 1994, Basser et al. introduced the tensor formalism (3), allowing quantification of 
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diffusion properties to be orientation independent. Anisotropic diffusion is sensitive to different 

directions and requires a diffusion tensor, a 3x3 covariance matrix that defines diffusion along 

each axis and relates the displacements along these axes: 

 

 
𝐷 =

𝐷!! 𝐷!" 𝐷!"
𝐷!" 𝐷!! 𝐷!"
𝐷!" 𝐷!" 𝐷!!

 (7) 

 

where Dij is the correlation of the molecular displacements along the given axes. Assuming 

symmetry (Dij  = Dji), the tensor can be reduced to only the diagonal terms and a pair of the off 

diagonal elements. To solve for the six unknowns in the diffusion tensor, Equation 6 can be 

modified as: 

 

 
ln

𝑆
𝑆!

= − 𝑏!"𝐷!"

!

!!!

!

!!!

 (8) 

 

where the diffusion coefficient is replaced with the diffusion tensor, and 𝑏!"  is the ij-th 

component of the b-matrix (38).  

With at least six gradient directions and one non-diffusion-weighted image, the 

eigensystem can then be solved, where eigenvectors v1,  v2,  v3 represent the major and minor axes 

of the ellipsoid of the resulting fit and λ1, λ2, λ3 are the corresponding rotationally invariant 

eigenvalues indicating the apparent diffusivities. These eigenvalues are combined to yield four 

different indices: 

 

 
Fractional Anisotropy (FA) = !

!
(!!!!!)!!(!!!!!)!!(!!!!!)!

!!
!!!!

!!!!
!  (9) 

 Mean Diffusivity (MD) = !!!!!!!!
!

 (10) 

 Axial Diffusivity (AD)= 𝜆∥ = 𝜆! (11) 

 Radial Diffusivity= 𝜆! =
!!!!!
!

 (12) 

 

For a more intuitive description, FA is a measure of eccentricity of the diffusion tensor; 
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MD represents the average diffusion in a voxel irrespective of direction; AD is the diffusion 

parallel to the direction of the largest diffusion (generally parallel to the axon fibers); and RD is 

the diffusion perpendicular to the direction of largest diffusion.  

DTI of the spinal cord has been of interest, especially in the study of MS. Ex vivo and 

animal studies of the spinal cord have demonstrated the feasibility in using these parameters to 

detect pathological hallmarks of MS including inflammation, demyelination, gliosis and axonal 

loss (39-41). FA and AD have been linked to axonal loss (6,42), RD to demyelination (4,40), and 

MD to inflammation and gliosis (43). Several studies have also explored the effect of DTI-

derived indices in MS in the spinal cord in vivo. In initial studies, DTI was acquired in the 

sagittal plane, where a decrease in FA and a slight increase in MD were observed in PPMS 

patients in comparison to healthy controls (44). Another study later performed histogram 

analysis of the cervical cord in MS patients of different subtypes (SPMS, RRMS, healthy) (45), 

reporting a larger decrease in FA in the cord in patients with greater disability. This study was 

followed up with a longitudinal study of 42 patients of varying subtypes, and demonstrated that 

the baseline FA correlated with increased disability at a mean follow-up of 2.4 years (46).  

 More recent studies have performed DTI in the axial plane in order to evaluate tract-

specific information. In a study of 24 RRMS patients, Hesseltine et al. demonstrated lower FA 

values in the lateral, posterior and central columns of the spinal cord, which were otherwise 

normal-appearing in anatomical imaging (47). Expanding on this, Oh et al. performed a large 

clinical study of 129 patients (5), where they underwent quantitative sensorimotor function 

testing along with spinal cord MRI at the C3/C4 level. Differences were observed between MS 

and healthy controls, in addition to differences between progressive and RRMS subtypes. 

Interestingly, the authors also report that MD, AD, and RD all showed strong correlation with 

hip flexion strength, and FA showed strong correlation to vibration sensation threshold.  

2.3.4 Other Signal Models  

The diffusion tensor model is only valid when assuming the water signal decay is mono-

exponential; however, it has been well known that at sufficiently high b-values (b>2500 s/mm2), 

the water signal decay in vivo in diffusion sequences is non-mono-exponential (48). Q-space is 

an alternative approach for diffusion, where unlike conventional DTI, the underlying probability 

density function (PDF) of diffusion is not assumed to be Gaussian. 𝑞  is a reciprocal spatial vector 
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and is defined as: 

 

 𝑞 =
1
2𝜋

𝛾𝛿𝐺!   [𝑐𝑚!!] (13) 

 

Though 𝑞  is independent of ∆, the gradient timing affects the actual displacement measured. In 

order to obtain the displacement profile, the short gradient pulse approximation, where δ <<∆ (δ 

~0) (49), must be met. This ensures that diffusion during the pulse is minimal and will not 

influence the PDF.   

The displacement PDF is dependent on the diffusion gradient direction applied, and the 

displacement PDF elements can be solved by linearly combining the measured displacement 

PDFs acquired from different gradient diffusion directions. Therefore, the displacement PDF is 

influenced by the integrity of the microstructure in a particular direction. For a given diffusion, a 

tall, narrow PDF infers a low diffusion constant (restricted), whereas a low, broad PDF indicates 

a high diffusion constant (unrestricted) (50,51). Q-space offers four different contrasts. The 

shape of the PDF is characterized by the maximum height (zero displacement probability, ZDP) 

and full width at half maximum (FWHM). The ZDP is inversely related to the FWHM and 

identifies the number of molecules diffusing a short distance or not diffusing at all.  FWHM is 

correlated to the spacing between diffusion barriers, and it has been demonstrated that the mean 

axon diameter can therefore be inferred from the FWHM (52,53). Additionally the PDF can be 

further characterized by the RMSD and kurtosis excess (KE). 

Due to the sufficiently long diffusion times, q-space appears to be sensitive to the slow 

diffusing component (8), but the biophysical interpretation of the slow and rapid diffusing 

compartments still remains unclear (54). It is expected that demyelination can be observed with 

q-space and used as a biomarker for disease. Experiments using animal models with 

demyelinating tissue and a feasibility study including four MS patients have demonstrated a 

dramatic decrease in the magnitude of the slow diffusing component in the cervical spinal cord, 

resulting in a reduced weighting and a broadening of the narrow displacement component 

(50,55,56). Specifically, the diffusion measured perpendicular to the fiber direction demonstrated 

similar findings to histological staining in demyelinating models (56). Assaf et al. also used q-

space imaging to measure the displacement of water molecules in the rat spinal cord in vitro, 

reporting measures of 2-3 microns for white matter (52). Similarly, Ong et al. used the FWHM to 
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infer axon diameters of ex vivo mouse spinal cord, which demonstrated high correlation to 

histology measures (57). While promising, the use of q-space on clinical scanners is challenging 

due to current hardware limitations. With q-space, high diffusion weighting is required which 

can reduce the signal-to-noise ratio (SNR) of the images, a tradeoff which must be considered 

when gradient strengths of only about 60 mT/m is available. 

Diffusion kurtosis imaging (DKI) is another method that addresses the non-Gaussianity 

behavior of diffusion in white matter microstructure at higher b-values and may provide more 

specific insight on restricted diffusion in axons. With DKI, the degree of non-Gaussianity of the 

probability density function is quantified with the kurtosis (9), using the relationship: 

 

 ln 𝑆 𝑏 = ln[𝑆!] − 𝑏𝐷 +
1
6
𝑏!𝐷!𝐾 (14) 

 

where b is the b-value, D is the apparent diffusion coefficient as described above, and K is the 

apparent kurtosis or the fourth-order tensor in 3D. The kurtosis can be used to calculate contrasts 

including the mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK). For clarity, the 

kurtosis estimates the non-Gaussian nature of a distribution, where MK indicates the average 

diffusion kurtosis over all directions; AK indicates the diffusion kurtosis along the primary axis 

of the kurtosis tensor and is typically low in healthy white matter tissue since the diffusion along 

axons is relatively unrestricted; RK indicates the diffusion kurtosis along the axis perpendicular 

to the primary axis of the spinal cord and is typically high in healthy tissue due to the more 

heterogeneous pattern in the presence of myelin sheaths (58).   

Raz et al. demonstrated the feasibility and utility of DKI in the spinal cord of MS 

patients, where a significant decrease in MK was observed (59). A preliminary ex vivo study was 

conducted using the spinal cord of four experimental autoimmune encephalomyelitis (EAE) rats, 

reporting a significant difference in AK and RK between healthy tissue and lesions (60). 

While q-space and DKI signal models have demonstrated utility over conventional DTI 

(61), these models still suffer from limitations of probing specific tissue compartments. 

2.3.5 Biophysical Models    

 More advanced biophysical models have been developed to account for the non-mono-

exponential behavior of diffusion MRI observations in vivo and importantly, in pathology. These 
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biophysical models vary in complexity. Some of the earlier models that were introduced 

involved a bi-exponential fit of two compartments, but assigning slow and fast components to 

intra- and extracellular spaces have been met with difficulty (48,54,62). Pioneering the idea of 

decomposing the diffusion-weighted signal into various geometric components, Stanisz et al. 

(14) proposed a three-compartment model for the bovine optic nerve consisting of glial cells as 

spheres, axons as ellipsoids, and the extracellular space with apparent diffusivities calculated 

using a tortuosity model. While promising, the complexity of this model requires high quality 

data and long scan times, which can be challenging in patient populations in vivo. Another 

approach, which models the observed signal by diffusion physical processes, is used in the 

composite hindered and restricted model (CHARMED), consisting of an intracellular 

compartment of restricted diffusion and extracellular compartment of hindered diffusion (13) and 

yields estimates of the volume fractions for each compartment. Although other methods using 

different diffusion acquisitions have also been reported such as double-pulsed field gradient (d-

PFG) (63) and oscillating gradient spin echo (OGSE) (17), the majority of advanced biophysical 

diffusion models are based on multi-compartment models, like CHARMED, but have been 

extended to provide information on other tissue features. Such examples include a free water 

(e.g., cerebrospinal fluid [CSF]) component in the minimal model of white matter diffusion 

(MMWMD) (64), the axon diameter distribution in AxCaliber (12), the characterization of both 

white and gray matter in a neurite model (65), inference of the axon orientation with diffusion 

kurtosis imaging in the white matter tract integrity (WMTI) (66), cellularity of glial and other 

cells in diffusion basis spectrum imaging (DBSI) (67) and neurite orientation dispersion and 

density using NODDI (10). Recently, the spherical mean technique (SMT) has been proposed to 

model the microscopic diffusion process (68,69), enabling the ability to map the neurite density 

and compartment diffusivities without the confounding influence of fiber orientation dispersion. 

Figure 5 provides an overview of the potential diffusion models, evolving from signal models to 

biophysical models. This is only a small reflection of the many possible combinations of 

biophysical models available, and the reader can refer to studies conducted by Panagiotaki et al. 

and Ferizi et al. for a larger description and taxonomy of such models in the rat and human brain 

(70-72). 
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Figure 5: Overview of diffusion models. The most conventional model is the diffusion tensor 
model, which uses a single tensor to model diffusion. Other signal models have been proposed to 
characterize deviations from the tensor, such as q-space and DKI. Biophysical models have been 
proposed to obtain a more specific representation of the derived indices, such as axon diameters, 
fiber distribution, and compartmental volume fractions, and vary in complexity. 
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 There has been increased interest in the application of biophysical diffusion models, 

ranging from histological validation in animals to human application in vivo. It is important to 

note that the derived indices of biophysical models are only estimates and not absolute values, 

and therefore interpretation of these indices should be taken with care and also rely on studies 

where histological validation of these techniques have been performed. Of importance, Jespersen 

et al. performed ex vivo multi-shell diffusion in a rodent model, comparing the validation of a 

biophysical neurite model to the conventional diffusion tensor model using histological measures 

(73). The axonal volume fraction derived by optical staining correlated very highly with the 

neurite density from the biophysical model (ρ=0.97, p=0.0004); furthermore, this correlation was 

stronger than correlations comparing DTI-derived FA (ρ=0.93, p=0.002) and DKI-derived MK 

(ρ=0.65, p=0.1). Grussu et al. investigated the correlation of histological indices with NODDI-

derived indices for a human spinal cord with MS ex vivo, demonstrating decreased orientation 

dispersion index (ODI) and intra-axonal volume fractions in the white matter lesions when 

compared to normal appearing white matter (NAWM) (74). A high correlation was observed 

between intra-axonal volume fraction and myelin staining index (r=0.84, p<0.005), along with a 

high correlation between ODI and circular variance for silver staining (r=0.96, p<10-3). 

Similarly, Grussu et al. demonstrated the feasibility and reproducibility of NODDI-derived 

metrics in the healthy cervical spinal cord, enabling the estimate of indices more specific to 

neurite morphology than DTI (75).   

 Several ex vivo and animal studies have been performed for DBSI, such as the optic 

nerve in an EAE model (11), ex vivo mouse spinal cord (76), the corpus callosum of mice in 

vivo and fixed trigeminal nerve of mice (67), and autopsied MS spinal cord specimens (77),  

however, human in vivo applications have been limited to the brains of MS patients (77) and the 

in vivo spinal cord of cervical splondylotic myelopathy (CSM) patients (78).  

Assaf et al. have previously measured axon diameters using AxCaliber in a porcine spinal 

cord with good agreement to histology (12). While promising, estimation of axon diameters is 

limited by the gradient strength, and implementation of AxCaliber in the human spinal cord in 

vivo (79) has only been demonstrated on the Human Connectome gradients (80).  

To date, the aforementioned studies are the only in vivo studies that have implemented 

biophysical diffusion models in the human spinal cord. These studies demonstrate the advantages 

of characterizing spinal cord microstructure using advanced multi-compartment diffusion 
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models, but also the need for more in vivo investigation of the sensitivity and feasibility of these 

models for the spinal cord specifically.  

2.4 Challenges in Diffusion Imaging of the Spinal Cord 

MRI of the spinal cord is faced with several inherent challenges that have made imaging 

of the spinal cord difficult, and have limited the translation of advanced diffusion models. First, 

the spinal cord is small: axially, at the cervical level it is only 1.5 cm in diameter. Second, the 

spinal cord is susceptible to motion artifacts arising from cardiac cycles, respiratory cycles, and 

pulsating cerebrospinal fluid, as well as field inhomogeneities from the surrounding bone (which 

makes shimming difficult). Lastly, relaxation times across gray and white matter are similar, 

resulting in poor contrast (81).  

To address some of these concerns, higher spatial resolution can be attained with a 

reduced field-of-view (rFOV) sequence (82,83), as demonstrated in Figure 6.  

By reducing the FOV, the echo train length can be shortened, which can result in decreased 

sensitivity to susceptibility and motion artifacts. However, in order to avoid aliasing, rFOV 

techniques must be used to avoid a consequential increase in scan time. Outer volume 

suppression (OVS) is one rFOV method, and is implemented by placing 2D spatially selective 

radiofrequency (RF) excitation pulses, followed by dephasing gradients in the outer volume 

region, before the slice excitation pulse of the imaging sequence (82). OVS pulses are applied in 

Figure 6: Outer volume suppression with diffusion sequence. Reduced FOV imaging is 
achieved through the use of 2D spatially selective RF excitation pulses, followed by dephasing 
gradients in the outer volume regions.  
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the phase encode direction on both sides of the outer volume regions of the FOV, and then 

spoiler gradients completely dephase the transverse magnetization, such that at the time of the 

excitation pulse, no longitudinal magnetization is present. 

 Motion artifacts are minimized through the use of single-shot echo planar imaging (EPI), 

which enables fast acquisition. The effect of the cardiac cycle must also be considered, as caudal 

displacement of the spinal cord will occur during arterial systole (84). Thus, a pulse oximeter or 

electrocardiogram is used to trigger the pulse sequence, such that excitation of a slice (for single-

shot EPI) or k-space line occurs when the trigger signal is detected. Figure 7 highlights the main 

parameters required for cardiac triggering. Generally, the trigger signal will be the R-wave, 

which occurs at the beginning of ventricular systole. To stabilize the acquisition of the signal, a 

trigger delay, the time interval between the detected R-wave and the start of data acquisition is 

often defined. For the spinal cord in particular, the trigger delay is usually set around 150-250 ms 

in order to acquire the data during diastole (85). Lastly, an acquisition window is specified, 

which determines the time when during the R-R interval the signal is acquired.  Drawbacks for 

cardiac triggering include a prolonged acquisition time, along with variable repetition times 

(TR). 

Figure 7: Cardiac triggering parameters. The trigger is identified at the R-wave, followed by 
a delay to stabilize the acquisition.  The acquisition window is specified as the time during the R-
R interval. 
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The work in this dissertation uses the OVS rFOV method, along with these other 

techniques for mitigating the effects of motion, as the foundation of various diffusion sequences 

to explore the microstructure of the spinal cord. We start with the simplest method, DTI, and 

work towards biophysical models such as NODDI, SMT and DBSI to assess the sensitivity of 

these methods in MS.  
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CHAPTER 3 

 

Quantifying the Impact of Underlying Measurement Error on Cervical Spinal Cord 

Diffusion Tensor Imaging at 3T 

Text adapted partially from: 

By S, Smith AK, Dethrage LM, Lyttle BD, Landman BA, Creasy JL, Pawate S, Smith SA. 

Quantifying the impact of underlying measurement error on cervical spinal cord diffusion tensor 

imaging at 3T. J Magn Reson Imaging 2016; 44(6): 1608:1618. doi: 10.1002/jmri.25308 

3.1 Introduction 

 Diffusion tensor imaging (DTI) offers an opportunity to probe tissue microstructure 

through estimating three eigenvalues from the diffusion tensor, where λ1 is the axial diffusivity 

(AD), and the mean of λ2 and λ3 is known as the radial diffusivity (RD). Other scalar quantities 

may be calculated from these eigenvalues such as the fractional anisotropy (FA), a measure of 

diffusion eccentricity, and the mean diffusivity (MD), the average diffusion in a voxel 

irrespective of direction (86,87). These quantitative measures have demonstrated promise in 

characterizing demyelination and axonal damage of white matter in the brain (4,88). There has 

been increased motivation to expand the application of DTI to study the spinal cord, which is a 

smaller, and arguably more challenging, tissue, and to evaluate its relationship to the biological 

and clinical manifestations of diseases.  However, clinical implementation of human spinal cord 

DTI has been hindered by a lack of in vivo characterization of the impact of diffusion weighting 

choice and scan time.   

 The spinal cord is a small central nervous system structure that is somatotopically 

arranged, comprised of segmented tracts that directly communicate with the brain. The two 

major functions subtended by the spinal cord are motor and sensory function: sensory function is 

primarily conveyed from the dorsal columns, whereas motor pathways stem from the lateral and 

ventral columns (89).  The integrity of the spinal cord microstructure is vital to neurological 

function, and damage by neurodegenerative diseases or trauma can have a devastating impact on 

day-to-day functions such as walking, bowel and bladder function, and sensation. Thus, there is a 
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need for improved quantitative magnetic resonance imaging (MRI) measurements as they may 

reveal deeper insight on the subtle pathological changes within the human spinal cord that 

precede neurological dysfunction. 

 Specifically for DTI in the human spinal cord in vivo, a detailed set of benchmarks for 

DTI acquisitions could improve our understanding and interpretation of DTI-derived indices 

through characterizing the impact of (and interaction of anatomy with) noise, DTI-derived index 

variation (both spatially and temporally) and diffusion weighting scheme. In the human spinal 

cord, the feasibility of such studies has been hindered by four considerable challenges which 

must be overcome to generate high quality data: 1) the small size of the spinal cord (~1.5cm) and 

its substructures (< 5mm), 2) constant physiological motion, 3) field inhomogeneity near 

bone/tissue interfaces, and 4) cerebrospinal fluid pulsation (90). Simulation studies have 

identified that estimation of diffusion tensors is heavily influenced by the noise inherent in a DTI 

acquisition, and consequently, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) 

of the diffusion-weighted image can impact the accuracy and reproducibility of the derived 

indices (91-93).  Similarly, in the brain, in vivo studies corroborate these findings (94-96).  

However, in the human spinal cord, the sources and distributions of noise vary compared to the 

brain, and are not well studied in vivo, even though, theoretically, a set of cylindrically oriented 

tensors may offer some improved insight.  As with the brain, one has the choice of increasing the 

directional resolution of the gradient scheme or increasing the number of averages to increase the 

SNR for a given scan time (94); however, because of the spinal cord’s unique anatomical and 

physiological differences due to motion, spatial field gradients, largely anisotropic tensors, and 

cylindrical geometry, selecting more gradients over longer scan time may not provide the 

expected increase in fidelity of the derived tensors as can be predicted by studies in the brain, or 

through simulation.   

 Lee et al. studied DTI acquisition schemes for the cervical cord in the sagittal orientation 

(97) and focused on FA, however with improved coil and sequence design, higher resolution in 

the axial orientation can be achieved, which allows a study of both high and low anisotropy 

tissues (white and gray matter, respectively) (98).  A second study suggests no benefit in 

acquiring more than 15 directions for the estimation of FA (99). With considerable attention 

being paid to the study of the directional diffusivities for their relationship to axonal and myelin 

integrity (4,98), a more comprehensive study of all DTI-derived indices, rather than just FA, is 
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warranted. Moreover, for clinical studies when scan time is limited, we seek to quantify how 

choice of diffusion gradient scheme influence the accuracy and reproducibility of DTI-derived 

indices for both gray and white matter in the cervical spinal cord at 3T, a step that has not yet 

been investigated.  

 Therefore, the objective of this study is to characterize the source of measurement error 

in clinically feasible, well-balanced diffusion schemes for the cervical spinal cord.  

3.2 Methods 

3.2.1 Data Acquisition 

 Five healthy volunteers participated in this study (3 male/2 female, ages: 25-36 years). 

Local institutional review board approval and written informed consent were obtained prior to 

imaging. Imaging was acquired using a 3.0T whole body MR scanner (Philips Achieva, Best, 

Netherlands). A quadrature body coil was used for excitation and a 16-channel SENSE 

neurovascular coil was used for reception. Three DTI datasets were acquired in each scan 

session, and each volunteer was rescanned within ten days following the initial scan, yielding a 

total of 30 DTI scans. 

 Each DTI sequence was acquired with a single-shot echo planar imaging (EPI) using a 

reduced field-of-view outer volume suppression technique (82) in the axial plane at an effective 

b-value of 750 s/mm2. The protocol included a cardiac-triggered spin-echo acquisition with the 

following relevant parameters: SENSE factor=1.5, flip angle=90°, TR=5 beats (~5000 ms), 

TE=50 ms, resolution=1x1 mm2 slice thickness=5mm, number of slices=14, coverage=C2-C5, 

FOV=64 mm x 48 mm, and diffusion gradient times of ∆= 24.4 ms, δ = 12.8 ms. Three scan time 

equivalent (STE) scans were acquired in each session with a minimally weighted image (b = 0) 

acquired in each dynamic: 6 non-collinear diffusion-weighted directions acquired 9 times (18:15 

min), 15 directions with 4 acquisitions (17:15 min), and 32 directions with 2 acquisitions (17:15 

min). The direction schemes were chosen from the default orientation scheme from the scanner, 

such that directions were sampled uniformly around a sphere. Repeats of a diffusion-weighted 

scheme for each scan time equivalent acquisition were acquired using multiple dynamics to 

avoid scanner calibration, re-shimming, and power optimization changes. Consequently, each 

volume of the dynamic independently contributed to the tensor calculation, and no averaging of 
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repeated volumes was applied prior. Schemes consisting of 6, 15, and 32 directions were chosen, 

as these are standard default values on most clinical scanners and are therefore most readily 

available for clinical implementation. These schemes are highlighted in Table 1. Additionally, a 

high-resolution (0.6x0.6x5 mm3) multi-slice, multi-echo gradient echo (mFFE) (100) anatomical 

image was  acquired (TR/TE/∆TE = 700/7.2/8.8 ms, α = 28°, number of slices=14, 6:10 min) 

over the same volume to improve co-registration and to serve as a template for segmentation. 

The total scan time for one session was 1 hour: 2 minutes: 19 seconds, including the mFFE and 

other survey planning and calibration scans.  

3.2.2 Data Processing 

 To provide a benchmark for comparison, all diffusion-weighted (DW) images within 

each session were combined to compute a so-called gold standard (94). Therefore, for each 

Table 1: Overview of diffusion sequences. 
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acquisition a total of 193 DW acquisitions entered into the tensor calculation. Within each 

session, the three acquired scan time equivalent scans (6, 15, and 32 gradient directions) were 

broken down into two additional comparisons. Each protocol included the same number of b = 0 

images (Table 1). For each DTI set, each diffusion weighted acquisition was registered to the 

mFFE (Figure 8a) using the FLIRT package from FSL v5.0.2.1 (FMRIB, Oxford, UK) (101). 

The b=0 was directly registered to the mFFE, whereas all diffusion-weighted images were 

registered to the prior diffusion-weighted volume, and this transformation was concatenated with 

the b=0 and mFFE transformation. Registration was limited to translation (in x and y) and 

rotation (+/- 5 degrees about the z-axis) in plane. The rotational component of the correction 

from the registration procedure was applied to the DTI gradient table (102). As shown in Figure 

8b, regions of interest (ROIs) of white matter (WM) and gray matter (GM) were automatically 

segmented from the co-registered mFFE image using a slice-based groupwise multi-atlas 

procedure designed specifically for the spinal cord (103). The segmented ROIs were then 

transferred to the registered/calculated diffusion index maps (FA, MD, AD, RD) for each scan 

time equivalent scan and gold standard (Figure 8c). 

3.2.3 Data Analysis 

 Following registration, the diffusion tensor calculation was estimated using Camino using 

a nonlinear fit (104). Fractional anisotropy (FA), mean (MD), axial (AD) and radial diffusivity 

(RD) maps were calculated from the eigenvalues of the diffusion tensor.  Contrast-to-noise ratio 

(CNR) of each map was calculated as: 

 

 𝐶𝑁𝑅 =
𝑥!" − 𝑥!"

𝜎!"! + 𝜎!"
!

 (15) 

 

where  𝑥!"# is the mean value of the ROI and 𝜎!"#!  is the variance of the ROI.  A subjective 

image assessment was performed to qualitatively evaluate the effects of gradient direction 

scheme on DTI-derived maps.  
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3.2.4 Test-Retest Reproducibility 

Test-retest reproducibility of each index map from each DW direction scheme was 

assessed using Bland-Altman (105). With Bland-Altman, each subject from each time point 

contributes one data point in the analysis per index; the goal is to ascertain whether the 95% 

confidence interval for the mean difference overlaps zero (no difference at the α = 0.05 level) 

and to provide an estimate of the variation over time. This was performed for both segmented 

Step 2: Segment anatomical image 

Step 3: Compute DTI maps 

Step 1: Register to anatomical 
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Figure 8: Flowchart describing image processing scheme. A) Each scan session acquired an 
anatomical image, which was used for registration and segmentation of white and gray matter. A 
2D affine registration was performed from DTI to mFFE space. These segmented ROIs (B) were 
then transferred to the registered DTI set (C). 
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white and gray matter. The normalized Bland-Altman difference (DBA), 95% confidence interval 

for the difference, and the limits of agreement were used as reliability metrics. DBA was defined 

as: 

 𝐷!" =
𝐷!"
𝑀 ∗ 100% (16) 

where D12 is the mean difference of the two sessions and M is the mean DTI value. Secondly, a 

non-parametric Wilcoxon signed rank was performed on each mean DTI index in white matter 

and gray matter at the full scan time equivalent to test whether a difference between the two time 

points was observed at the α = 0.05 level. 

3.2.5 Voxel-Wise Analysis 

 To identify the spatial dependency of the underlying error in DTI measurements, a voxel-

wise analysis was also performed. The calculated maps from each control from the first scan 

were registered to one another using the mFFE anatomical images, and each DTI-derived index 

map was averaged over all controls, resulting in a single FA, MD, AD, and RD map representing 

the mean over all five controls.  In order to analyze the effect of diffusion scheme for each 

acquisition against the gold standard to characterize the accuracy of the DTI indices, each DTI 

index from each sampling scheme was subtracted from the gold standard map. Accuracy was 

quantified as the bias, or the difference from the gold standard; precision was calculated as the 

standard deviation of the difference between the chosen scheme’s derived maps and the gold 

standard (94,95). Root mean square error (RMSE) from the gold standard was chosen as the 

metric for quantifying the overall error, where the RMSE was calculated as the square root of the 

sum of the accuracy squared and the precision squared. Additional ROIs were manually drawn 

on the mean mFFE of all controls using MIPAV (Figure 9) to comprehensively assess the spatial 

dependencies of error in white matter and gray matter: dorsal column (DC), right lateral column 

(RLC), left lateral column (LLC) and gray matter (GM). The effect size (Ω) of these 

measurements is reported as the difference in mean RMSE values (78). To assess inter-rater 

variability, a second rater manually placed ROIs and Bland Altman was used to calculate 

whether the 95% confidence interval of the difference between the two raters was significantly 

different from 0. Additionally, the intraclass correlation coefficient (ICC) of rater 1 against rater 

2 for each DTI-derived index was computed. The 95% confidence intervals (CI) for the ICC 
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were calculated using a bootstrap procedure.   

3.2.6 Cross-Sectional Analysis 

 The goal of this analysis was to determine whether there was a statistically significant 

difference in measurement error (i) between gradient weighting schemes (6, 15, and 32), (ii) at 

different scan time equivalents (4.5, 9, and 18 min) and (iii) between ROIs (DC, RLC, LLC and 

GM). First, a non-parametric Wilcoxon signed rank test was performed on the mean RMSE for 

FA, MD, AD, and RD in four different ROIs between the different gradient schemes. This 

analysis was repeated for each scan time equivalent breakdown (4.5, 9, 18 minutes) to observe 

the effect of scan time on choice of sampling scheme.  Second, a non-parametric Wilcoxon 

signed rank test was performed on the mean RMSE for the same diffusion scheme at different 

scan time equivalents to determine whether increased scan time would mitigate measurement 

error. Third, a non-parametric Wilcoxon signed rank test was performed on the mean RMSE for 

the same scheme in different tracts. For all comparisons, each subject contributed four RMSE 

values (across four slices) to the Wilcoxon analysis, and only the first visit (session) was studied. 

Figure 9: Additional ROIs overlaid on mFFE for error map processing. Yellow: gray 
matter, light blue: right lateral column, green: left lateral column, dark blue: dorsal column. 
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To reduce the possibility of spurious significances, the significance threshold was chosen to be α 

= 0.01.   

3.3 Results 

3.3.1 Gradient Direction Scheme: Effects on DTI-derived maps  

 Representative DTI maps of a healthy volunteer at the C3/C4 level are displayed in 

Figure 10, demonstrating the impact of the number of gradient directions at different scan time 

equivalents. The SNR of the spinal cord of each b=0 image was approximately 13. Qualitatively, 

the gray/white matter contrast within the spinal cord for FA, AD, and RD can be observed in all 

schemes, but there is noticeably poorer separation between each tissue type in the 6-direction 

scheme. This is particularly pronounced on the AD and RD images, where the central gray 

matter butterfly pattern is difficult to appreciate, specifically in the ventral horns, and there is 

less contrast between cerebrospinal fluid (CSF) and the spinal cord. However, as expected, the 

MD is not directionally sensitive and has less dependency on the number of directions (106).  

 Figure 10 also lists the CNR between the gray and white matter of the spinal cord for 

each DTI metric. In general, the CNR decreases as scan time decreases with the exception of 

MD. At the full scan time equivalent, the CNR of the different schemes are comparable. While 

the contrast between gray and white matter generally increases with more gradient directions, 

multiple averaging produces lower noise, and therefore, the CNR of the 6-direction scheme for 

FA and RD is high. As the scan time decreases, the CNR for the 6-direction scheme 

monotonically decreases, for FA, AD, and RD, while the CNR for the 15-direction and 32-

direction schemes remains relatively consistent. At a scan time above 4.5 minutes, however, the 

effect of a reduced scan time on CNR is minimal for all maps sampled with the 15-direction 

scheme. The 32-direction scheme is more affected as there is less averaging to account for the 

variability in image quality.  
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3.3.2 Reproducibility 

 The reproducibility of each gradient scheme across two time points, choosing the 

intermediate scan time of 9 minutes, using Bland Altman and Wilcoxon signed rank are 

Figure 10: DTI maps of a representative healthy volunteer acquired from different 
gradient schemes at different scan time equivalents. Contrast-to-noise ratio (CNR) of each 
DTI map is listed below each map. At the full scan time equivalent, the CNR of the different 
schemes are comparable. However, as scan time decreases, in general, the CNR drops for the 6- 
and 32-direction scheme, while the 15-direction scheme with 2 averages remains relatively 
stable.   
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summarized in Table 2. The normalized mean differences of the two visits were small (below 

14%) for all indices, with the largest DBA being produced from the 32-direction scheme. In 

addition, no significant differences between the two visits were detected with Wilcoxon signed 

rank for any sampling scheme. The 15-direction scheme resulted in the lowest DBA for the most 

comparisons (FA: WM DBA=0.09%, GM DBA=2.43%; MD: WM DBA=2.28%, GM DBA=0.07%; 

RD: WM DBA=3.1%), indicating a smaller variability across different time points with the 15-

direction scheme overall.  

3.3.3 Spatial Dependency of Error 

 Figure 11 provides a group-wise analysis of the error using data from all five controls at 

C3/C4. The spatial dependency and artifact contribution of each gradient scheme in the spinal 

cord can be clearly highlighted in the bias maps (left columns) relative to the mean gold 

standard. The mean map points out any residual misalignment between multiple subjects.  In 

addition, the RMSE (top) and bias (bottom) plots (right columns) demonstrate the spatial 

dependency from four different ROIs, with the error bars representing inter-subject variability. In 

the top panel, the difference in FA (∆FA) from the gold standard is shown. It is clear that the 

difference map is most ordered in the 6-direction scheme, with the gray matter visually distinct 

from the other substructures. The 15-direction scheme and 32-direction scheme produce maps 

where the cord’s general features cannot be easily identified until we reach a low SNR regime of 

4.5 minutes.  Additionally, it should be noted that there is an upward bias in the mean ∆FA with 

6-directions (95) as indicated by the uniformly positive ∆FA values, but this bias diminishes and 

accuracy in ∆FA estimation is improved with an increase in the number of gradient directions. 

These trends are also seen in the ∆AD maps, but the effects are negligible for ∆MD. The ∆RD 

maps indicate that bias is attributed from partial volume effects at the boundaries of the cord and 

the CSF, rather than from the gray matter structure as seen in ∆FA and ∆AD. 

 Inter-rater difference ∆RMSE was low: DBA of 0.67% (FA), 3.08% (MD), 0.07% (AD), 

and 5.38% (RD). The ICC (95% CI ICC)) between rater 1 and rater 2 was 0.94 (0.92, 0.95), 0.87 

(0.84, 0.90), 0.95 (0.93, 0.96), and 0.80 (0.74, 0.84) for FA, MD, AD, and RD respectively.  



 

 
33 

 

Table 2: Mean (±standard deviation) of DTI-derived parameters over all participants for both scans at the 9-
minute breakdown for white matter (WM) and gray matter (GM). 

  Scan 1 Scan2   Bland Altman   WSR 

FA mean±s.d. mean±s.d.   difference (D)  95% CI LOA DBA(%)   p 

WM 6 0.73±0.05 0.74±0.07 

 

-0.008 [-0.04, 0.02] [-0.15, 0.13] 1.09 

 

0.65 

WM 15 0.68±0.05 0.68±0.07 

 

-0.001 [-0.03, 0.03] [-0.12, 0.12] 0.09 

 

0.91 

WM 32 0.69±0.04 0.66±0.10 

 

0.036 [0.0, 0.07] [-0.12, 0.19] 5.4 

 

0.05 

GM 6 0.61±0.07 0.62±0.06 

 

-0.017 [-0.04, 0.01] [-0.12, 0.09] 2.84 

 

0.2 

GM 15 0.55±0.08 0.54±0.08 

 

0.013 [-0.01, 0.04] [-0.10, 0.12] 2.43 

 

0.41 

GM 32 0.57±0.09 0.56±0.10 

 

0.014 [-0.01, 0.04] [-0.10, 0.13] 2.53 

 

0.26 

  

        

  

MD 

(µm2/ms)                   

WM 6 1.03±0.12 1.00±0.08 

 

0.032 [-0.02, 0.08] [-0.18, 0.24] 3.15 

 

0.22 

WM 15 1.00±0.07 0.97±0.06 

 

0.022 [-0.01, 0.05] [-0.11, 0.15] 2.28 

 

0.28 

WM 32 0.96±0.06 1.02±0.13 

 

-0.053 [-0.11, 0.01] [-0.31, 0.20] 5.3 

 

0.11 

GM 6 0.99±0.12 0.99±0.09 

 

0.004 [-0.03, 0.04] [-0.16, 0.17] 0.42 

 

0.91 

GM 15 0.94±0.06 0.94±0.07 

 

0.001 [-0.04, 0.04] [-0.16, 0.16] 0.07 

 

0.94 

GM 32 0.92±0.07 0.94±0.11 

 

-0.022 [-0.08, 0.03] [-0.26, 0.22] 2.34 

 

0.55 

  

        

  

AD 

(µm2/ms)                   

WM 6 2.11±0.27 2.06±0.17 

 

0.052 [-0.02, 0.13] [-0.27, 0.37] 2.48 

 

0.39 

WM 15 1.92±0.13 1.89±0.13 

 

0.035 [-0.02, 0.09] [-0.19, 0.26] 1.82 

 

0.23 

WM 32 1.89±0.12 1.91±0.10 

 

-0.014 [-0.07, 0.04] [-0.26, 0.23] 0.75 

 

0.65 

GM 6 1.79±0.23 1.79±0.20 

 

-0.009 [-0.07, 0.05] [-0.27, 0.25] 0.48 

 

0.55 

GM 15 1.62±0.13 1.59±0.12 

 

0.029 [-0.05, 0.11] [-0.30, 0.35] 1.83 

 

0.53 

GM 32 1.60±0.19 1.59±0.13 

 

0.013 [-0.09, 0.11] [-0.43, 0.45] 0.8 

 

0.88 

  

        

  

RD 

(µm2/ms)     	
  	
         	
  	
   	
  	
     

WM 6 0.49±0.08 0.47±0.10 

	
  

0.022 [-0.03, 0.08] [-0.21, 0.26] 4.63 

 

0.46 

WM 15 0.53±0.08 0.52±0.10 

	
  

0.016 [-0.03, 0.06] [-0.17, 0.20] 3.1 

 

0.41 

WM 32 0.50±0.07 0.57±0.18 

	
  

-0.07 [-0.14, 0.00] [-0.38, 0.24] 13.36 

 

0.09 

GM 6 0.59±0.11 0.58±0.08 

	
  

0.01 [-0.03, 0.05] [-0.15, 0.18] 1.78 

 

0.5 

GM 15 0.61±0.10 0.62±0.10 

	
  

-0.016 [-0.05, 0.2] [-0.16, 0.12] 2.54 

 

0.37 

GM 32 0.57±0.08 0.61±0.15 

	
  

-0.039 [-0.09, 0.01] [-0.24, 0.17] 6.57 

 

0.16 
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Notably, we find that increased scan time from 4.5 to 18 minutes leads to reduced RMSE (e.g., 

for 15 directions p=0.0004, 0.0004, 0.001, 0.0001 for DC, RLC, LLC, GM respectively) with 

moderate effect size for ∆FA (e.g., for 15 directions, Ω [effect size]=0.02, 0.03, 0.03, 0.05 or 3%, 

4.4%, 4.4%, 9% for DC, RLC, LLC, GM). ∆MD was generally stable at a scan time greater than 

4.5 minutes (Ω <0.05, 0.03, 0.08 or 5%, 3%, 8% for 6,15, 32 directions) while AD and RD 

mirrored the effects seen in FA. Bias contributed to approximately half of the total error ∆FA 

and ∆AD, approximately 1/4 of the error to ∆RD, and nominally to ∆MD (Figure 11).  

 For all indices, however, the reduction in RMSE from 9 minutes to 18 minutes is minimal 

for the 15-direction scheme (for FA, |Ω| < 3.4% and Ω = -3.7%; for MD, |Ω|<3% and Ω = -2.4%; 

for AD, |Ω| < 3.7% and Ω = -3.1%; for RD, |Ω| < 5.9% and Ω = -3.6% for WM and GM 

respectively), and remains lower than the inter-subject variability. Scan time equivalent (STE) 

sequences with 15 and 32 directions exhibited small differences in error (e.g., for 9 minutes, Ω < 

1% and Ω = 1.8% for WM and GM at a p>0.39 and p=0.82 in ∆FA with similar relative 

differences seen in ∆AD, ∆RD and ∆MD). However, the 6-direction scheme was substantively 

different than 15 directions. For ∆FA at 9 minutes, Ω < 4.4% and Ω = 5.5% for WM and GM 

(p<0.01), and the difference in error was seen to increase with increased scan time; at 18 

minutes, Ω < 4.4% and Ω = 7.2% WM and GM (p<0.01).  

 For FA, the error between GM and DC was significantly different (p=0.001, 0.01, 0.02 

and Ω=0.02, 0.03, 0.01 or 3.3%, 4.9%, 1.6% for 6, 15, and 32 directions). It should also be noted 

that at 9 minutes, the difference in RMSE between the RLC and LLC is lowest for all DTI 

metrics with the 15-directions (e.g. for ∆FA, Ω=0.08, 0.007, 0.03 or 11.8%, 1.0% or 4.4% for 6, 

15, and 32 directions); no difference is detected between the two columns (e.g. for ∆FA, p=0.94, 

0.37, 0.23 for 6, 15, and 32 directions). 
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Figure 11: Error bias maps, calculated as the difference from the gold standard, using all 
control data for gradient schemes of 6, 15 and 32 directions at 4.5, 9, and 18 minutes. 
Increased scan time leads to reduced RMSE. ΔMD was relatively stable, while the effect size for 
ΔFA, ΔAD and ΔRD was moderate. Scan time equivalent sequences of 15 and 32 exhibited 
small differences in error, but the 6-direction scheme was significantly different from the 15-
direction scheme. 
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3.4 Discussion 

 In this work, we investigated the accuracy and precision of FA, MD, AD, and RD in scan 

time equivalent acquisitions for the cervical spinal cord. The goal was to provide an estimate of 

the benefits and consequences when designing pulse sequences to be deployed in the clinic for 

evaluation of various disease states, highlighting the magnitude of error for the most commonly 

used gradient schemes. From our findings, we observe that at a clinically relevant scan time of 9 

minutes, a 15-direction gradient scheme produces the lowest error in diffusion measurements of 

all gradient schemes tested and provides DTI maps with high and reproducible contrast. 

Furthermore, we find that there is no benefit in using scan times over 9 minutes with the 15-

direction scheme, as the reduction in RMSE from 9 to 18 minutes is lower than the inter-subject 

variability and any benefits in doubling scan time are negligible. Therefore, we conclude that a 

15-direction gradient scheme of 9 minutes can accurately quantify tissue microstructure of the 

cervical spinal cord at 3T.  

 Recent studies of the spinal cord indicate the large disagreement in the applied number of 

directions (107-110). When establishing a DTI protocol for clinical implementation, it is critical 

to consider the number of gradient directions of the DTI scheme in terms of the overall goal of 

the study. Consistent with other studies, we observed that a scan time equivalent gradient scheme 

of 6-directions is significantly worse than a gradient scheme of 15- or 32- directions in 

estimation for ∆FA (99), but we further reveal that these trends are also observed for ∆AD and 

∆RD. Therefore, when referencing the literature and performing future studies, comparisons of 

protocols using different gradient schemes should be cautiously analyzed. Simulations of the 

brain have identified a scheme of 20 directions is optimal for robust anisotropy estimation, and at 

least 30 are required for estimation of mean diffusivity (111). Our choice to compare 6-, 15- and 

32-direction schemes enabled us to test whether these findings could be easily translatable to the 

cervical spinal cord on most clinical MRI scanners. Furthermore, we investigated the error in 

gradient schemes at three different scan time equivalents. The 18-minute scan time equivalent 

demonstrates the most extreme case we are capable of performing, providing differences in 

gradient schemes at a high SNR regime while minimizing variability (94). While increased scan 

time led to reduced RMSE, the trends observed at the full scan time equivalent were mirrored at 

the other scan time equivalents, albeit with reduced effect. We use this finding to guide the user 
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to implement the maximum available scan time equivalent when possible to minimize spurious 

conclusions.  

 In terms of contrast, a balance between acquisition time and gradient scheme was 

observed. With 32-directions, the CNR was lowest for FA and RD. This can be attributed to the 

fact that in the 32-direction gradient scheme there is an increased sampling along the longitudinal 

(and primary diffusion) axis, yielding increased diffusion and an attenuation of signal resulting in 

increased noise. The CNR for the 6-direction schemes should not be overanalyzed, as the known 

upward bias in FA in lower SNR regimes may incorrectly detect contrast (95). Furthermore, it 

was observed that multiple averages minimize variability caused by image corruption due to 

patient movement and inherent inconsistencies in hardware of the MR system. It should also be 

noted that choice of b-value will influence CNR, and in this study, we chose a b-value of 750 

s/mm2 to provide high gray and white matter contrast while maintaining sufficient SNR, as 

suggested by Summers et al. (84). 

 Assessment of reproducibility of DTI measurements is vital when evaluating the clinical 

utility of DTI in the spinal cord. In order to perform longitudinal or multisite studies, the 

variation of the measurement error of different tracts must be known in order to determine 

whether observed differences are normal or abnormal. We found that the mean difference 

between two scans was small, but the 32-direction scheme produced the largest DBA values due 

to the increased variability when no averaging was applied for this scheme at the 9-minute scan 

time equivalent. Cardiac triggering was applied in this study to reduce signal intensity variations 

(84), and may have strengthened the reproducibility of these measurements.  

 Given these combined results, we conclude that in clinical studies where the goal is a 

general characterization of quantitative indices in each spinal cord tissue type, a 15-direction 

scheme is sufficient for reliable tensor estimation and the time saved from sampling fewer 

gradient directions can be leveraged for greater SNR and sensitivity. In general, for clinically 

relevant applications (acquisition time < 10 min), we recommend the use of a 15-direction 

gradient scheme with two averages (9 minutes) for accurate estimation of FA, AD, and RD. 

When investigating the intricacies of the spinal cord microstructure in greater detail, however, a 

higher sampling rate (32 directions over 15) may be beneficial to resolve boundaries of the spinal 

cord, as fewer directions may lead to greater variability in the principal eigenvector (PEV) 

orientation, which is an important consideration for tractography. This may be important for 
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tissues that are damaged or when following the longitudinal evolution of diseases. For example, 

when it is desired to observe features such as crossing fibers, schemes with higher angular 

resolution such as HARDI and DBSI have been implemented, as an increase in the number of 

gradient directions is necessary to distinguish partial volume effects (76,112,113).  

 While others have reported optimization of DTI protocols in the spinal cord (97,99), this 

study provides two main distinctions. First, this study provides a comprehensive analysis using 

all DTI-derived indices in the spinal cord, where it is not transparent which direction scheme is 

optimal for minimizing variance in the derived indices while maximizing contrast. This type of 

experiment provides important findings, as acquisition time can be used more effectively to 

provide higher sensitivity, resolution, or SNR rather than to acquire unnecessary gradient 

directions (redundant data) for relatively oriented tensors such as in the spinal cord. Furthermore, 

the consideration of diffusivities other than FA is integral to comprehensively assessing 

pathological processes. Oh et al. (5) observed RD to be the most distinguishable index in their 

study of MS patients versus healthy controls, but current studies on optimization of DTI in the 

spinal cord have only considered the effect of acquisition parameters on FA. We demonstrated 

that accurate estimation of RD is directionally sensitive, and therefore, findings from this study 

can offer new opportunities for comprehensively studying the role of the spinal cord in diseased 

states. Second, this type of study not only provides an optimal protocol for spinal cord DTI, but 

additionally, it quantifies the impact of the sacrifices (i.e. lower number of gradient directions or 

fewer excitations) that must be made for clinical implementation of spinal cord DTI on DTI-

derived indices.  Given the RMSE and bias of each gradient scheme, the results of this study can 

also be used to build the foundation to perform power tests to calculate sample sizes for future 

diffusion studies. In addition, this study implements more recent findings of DTI that have not 

been thoroughly investigated for protocol optimization such as imaging the spinal cord axially 

(98), the use of cardiac triggering (84), reduced field-of-view imaging (82,83,114), and voxel-

wise analysis of individual tracts (115). The voxel-wise analysis of multiple tracts highlights 

where the measurement is specifically failing, and the spatial dependencies of error. It should be 

noted that the ventral column could not be reliably determined due to partial volume effects.  

 This study had several limitations. First, we did not perform any fiber tractography. 

While an increase in angular resolution may be necessary for improved tractography of the cord, 

since the spinal cord primarily runs in the rostral-caudal direction, we have chosen to focus on 
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the scalar indices under the assumption that tractography may be able to be performed with 

probabilistic methods, or even fewer directions than in the brain (116). This study could also be 

improved by using a larger sample size of healthy controls and including abnormal patients. 

Patients with neurological disorders may have movement impairments, which may additionally 

affect the spatial dependency of error in our DTI-derived measurements. However, it is noted 

that larger studies in patient populations would provide improved insight into the direct clinical 

impact that these optimization strategies may have. Technological advancements, such as 

simultaneous multi-slice (SMS) imaging, may help expedite diffusion scans and further 

minimize errors (117). Finally, it should be noted that the reduced field-of-view excitation 

scheme chosen for this work is currently not product on all clinical scanners, however it can 

easily be implemented using 2D excitation, outer volume suppression methods or saturation 

bands, which are currently available features on most clinical scanners without further software 

modification.   

 Looking forward, though these guidelines were optimized for the cervical spine, they can 

easily be adapted for the thoracic and lumbar spine or any anatomy where their fibers align along 

a single, largely coherent direction (peripheral nervous system, optic nerve). When considering 

smaller structures, the SNR is significantly reduced due to a need for higher resolution. In the 

condition where the SNR is not as high as it is in the cervical cord, the directional dependencies 

and need for more averages may play a role in choosing the best sequence to obtain quality 

indices. Moreover, it may be advantageous to develop an optimized gradient direction scheme, 

rather than using the basic schemes available on the scanner, for more precise and accurate 

tensor estimation (118).   

 In conclusion, the results of this study provide the underlying error and variation of 

different gradient schemes on estimation of FA, MD, AD, and RD. Taken together, the observed 

results demonstrate the efficiency of the 15-direction scheme in minimizing error when 

characterizing the spinal cord’s tracts overall.  
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CHAPTER 4 

 

Neurite Orientation Dispersion and Density Imaging: Application to MS 

Text adapted partially from: 

By S, Xu J, Box BA, Bagnato FR, Smith SA. Application and evaluation of NODDI in the 

cervical spinal cord of multiple sclerosis patients. NeuroImage: Clinical 2017. doi: 

10.1016/j.nicl.2017.05.010. 

4.1 Introduction 

Though diffusion tensor imaging (DTI) has demonstrated promise in assessing tissue 

microstructure, several pathological factors, such as the presence of inflammation, tissue loss, 

crossing fibers and cerebrospinal fluid (CSF) contamination, can confound the interpretation of 

these findings. Multi-compartmental and multi-tensor biophysical models have been developed 

to address this concern. The first multi-compartmental model that this work will investigate is 

called neurite orientation dispersion and density imaging (NODDI). NODDI may provide a more 

specific analysis of diffusion. In particular, the changes in microstructure can be assessed in 

terms of neurite density and orientation dispersion, elucidating the contributions to DTI-derived 

fractional anisotropy (FA) and therefore ameliorating the issue of DTI-derived parameters being 

non-specific. Characterizing axonal fractions of the spinal cord could potentially be useful in 

disease tracking of multiple sclerosis (MS). 

NODDI has been demonstrated in brain tumors (119), neurofibromatosis (120), focal 

cortical dysplasia (121) and the brain in multiple sclerosis (122). To date, most applications 

using NODDI focus on the brain, but recently, the feasibility of performing NODDI in the 

healthy human spinal cord in vivo was reported (75). There are, however, no studies evaluating 

NODDI in the spinal cord with pathology such as MS. Therefore, our main objectives were (i) to 

study the reproducibility of NODDI in the spinal cord of healthy controls and (ii) to study the 

feasibility and sensitivity of NODDI in patients with MS. We hypothesize that NODDI may 

provide the unique ability to offer sensitive and more model-specific information about the 

pathological changes known to occur in the spinal cord of MS patients, potentially improving 
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upon DKI and conventional DTI.  

4.1.1 Model Theory 

NODDI is a multi-compartmental model that distinguishes intracellular, extracellular and 

CSF compartments. The normalized signal  A is written as: 

 

 𝐴 = 1− 𝑣!"# 𝑣!"𝐴!" + 1− 𝑣!" 𝐴!" + 𝑣!"#𝐴!"# (17) 

  

Ain, Aec  , Aiso, are the normalized signal of the intracellular, extracellular and CSF compartments 

respectively; vin and  viso  are the volume fractions of the intracellular and CSF compartments, 

respectively. Note that in describing white matter, the intracellular and extracellular 

compartments may also be referred to as intra-axonal and extra-axonal respectively. Each of 

these compartments has different signal models.  

 The intracellular component is the space containing neurites (dendrites and axons). Due 

to the highly restricted nature of diffusion in this space, the intracellular component is modeled 

as sticks, or cylinders with zero radius. The normalized signal is given as: 

 

 
𝐴!" = 𝑓 𝑛 𝑒!!!∥(!∙!)!

𝕊!
𝑑𝑛 (18) 

 

where q is the gradient direction and b is the b-value; f(n)dn   is the volume fraction of sticks 

along the orientation n; 𝑒!!!∥(!∙!)! is the signal attenuation due to unhindered diffusion along a 

stick with diffusivity 𝜆∥ and orientation n. The orientation distribution function is modeled as a 

Watson distribution, a cylindrically and antipodally symmetric distribution over a unit sphere, 

representing nonparallel axons dispersing about some central orientation (123,124): 

 

 𝑓 𝑛 = 𝑀(
1
2 ,
3
2 , 𝜅)

!!𝑒!(!∙!)! (19) 

 

where 𝑀  is a confluent hypergeometric function and 𝜅  represents the extent of orientation 

dispersion around µμ, the mean orientation for the distribution. When 𝜅  is positive, the distribution 
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is bipolar with a maximum at ±µμ. Larger 𝜅 corresponds to lower dispersion about  µμ. 

 The extracellular component is the space around the neurites, occupied by glial cells and 

neuronal cell bodies. Diffusion is hindered, and is modeled as a Gaussian anisotropic 

distribution. The diffusivities of the extracellular compartment are coupled via the orientation 

dispersion of the intracellular space, with the normalized signal expressed as: 

 

 
log 𝐴!" = −𝑏𝑞!( 𝑓 𝑛 𝐷!" 𝑛 𝑑𝑛)

𝕊!
𝑞 (20) 

 

𝐷!" 𝑛   is a cylindrically symmetric tensor with an axial diffusivity 𝜆∥ that is parallel to   n and 

equal to the free diffusivity of the intracellular compartment. Its radial diffusivity is 

perpendicular to n and described by the tortuosity model (125): 

 

 𝜆! = 𝜆∥(1− 𝑣!") (21) 

 

Using the Watson model, 𝐷!" from Equation 20 can be analytically written as: 

 

 𝐷!" = (𝜆∥′− 𝜆!′)𝜇𝜇! + 𝜆!′𝐼 (22) 

 

where I is the identity matrix and 

 

 𝜆∥! = 𝜆∥ − 𝜆∥𝑣!"(1− (−
1
2𝜅 +

1
2𝐹 𝜅 𝜅

) (23) 

 

𝜆!! = 𝜆∥ − 𝜆∥𝑣!"

1+ (− 1
2𝜅 +

1
2𝐹 𝜅 𝜅

)

2  
(24) 

 

where 𝐹 𝜅 = !
!
𝜋𝑒! !

!
𝑒𝑟𝑓𝑖  ( 𝜅). 

 CSF is modeled as isotropic Gaussian diffusion, with diffusivity diso. Given the isotropic 

volume fraction, a relationship solving for the intracellular restricted volume fraction   𝑣! has 

been adapted (75):  
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   𝑣! =    (1−   𝑣!"#) ∗ 𝑣!" (25) 

 

In addition to the intracellular volume fraction, intracellular restricted volume fraction and 

isotropic volume fraction, the orientation dispersion index can be computed: 

 

 

 
𝑂𝐷𝐼 =

2
𝜋 arctan  (

1 𝜅) (26) 

 

The NODDI model is summarized in Table 3. 

Table 3: Summary of NODDI model. 

Compartment Model DOF Assumptions Resulting 
DOF 

Intracellular 

Sticks 
 

 
 
 
 
 

vin   vin 
d|| d||=1.7 µm2/ms   

f(n,µ,κ), 
µ(θ,ψ)   κ, θ, ψ 

        

Extracellular 

Hindered, Anisotropic Tensor 

 
 

vex vex=(1-vin)   

d⊥ ,d|| d⊥=(1-vin)*d||   

        

Other (CSF) 

Isotropic Restricted 

 
 

diso, viso diso=3 µm2/ms viso 
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4.2 Methods 

4.2.1 MRI Experiments 

 Eight healthy controls (mean age ± standard deviation = 29.0±5.0 years, 5 male/3 female) 

participated in this study, four of whom had a rescan within a month to assess reproducibility. 

Six relapsing-remitting MS (RRMS) patients (6 female, 39.3±6.1 years) were recruited for this 

study. Patients’ disability was rated using the Expanded Disability Status Scale (EDSS) score 

(22) in the Vanderbilt University Multiple Sclerosis Clinic (patient EDSS range=0-6). Table 4 

lists specific clinical demographics of the patients. Local institutional review board approval and 

written informed consent were obtained prior to imaging. 

 All experiments were performed on a 3.0T whole body MR scanner (Philips Achieva, 

Best, Netherlands). A quadrature body coil was used for excitation and a 16-channel SENSE 

neurovascular coil was used for reception. The maximum gradient strength of the system was 80 

mT/m at a slew rate of 100 mT/m/s. 

 For each subject, a high-resolution (0.65x0.65x5 mm3) multi-slice, multi-echo gradient 

 

Table 4: Clinical and demographic characteristics of patients. 

Patient 
Age                    

(years) 
Sex 

MS 
Type 

MS 
Duration 
(years) 

EDSS 

 
Lesion (in 
diffusion 
volume)* 

MS 1 46 F RRMS 17 2 Y (LLC) 

MS 2 36 F RRMS 8 2.5 Y (LLC, DC) 

MS 3 45 F RRMS 4 3.5 Y (RLC, LLC, DC) 

MS 4 34 F RRMS 10 6 Y (diffuse) 

MS 5 32 F RRMS 1 0 Y (LLC) 

MS 6 43 F RRMS 2 1 Y (RLC, LLC) 

Y=yes, N=no, RLC=right lateral column, LLC=left lateral column, DC=dorsal column 
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echo (mFFE) anatomical image (100) was acquired (TR/TE/∆TE = 753/7.1/8.8 ms, α = 28°, 

number of slices=14, 6:12 min) for co-registration and to serve as a reference image for 

segmentation.  

 The diffusion sequence consisted of a cardiac-triggered, spin echo sequence with single-

shot echo planar imaging (EPI) readout with the following parameters: TR/TE=3 beats (~3000 

ms)/65 ms, resolution=1.25 x 1.25 mm2, slice thickness=10 mm, slices=1, FOV=68 x 52 mm, 

SENSE (AP)=1.5 and NSA=3. Reduced field-of-view was applied using an outer volume 

suppression technique (82) and fat suppression was achieved using Spectral Presaturation with 

Inversion Recovery (SPIR). A multi-shell acquisition, similar to the previously published 

NODDI protocol in the brain (10) and the one implemented in the spinal cord (75) was used with 

uniform sampling: (i) b=711 s/mm2 with 32 directions and (ii) b=2855 s/mm2 with 64 directions, 

with constant gradient times of ∆ (separation between gradients)=31.8 ms and δ (gradient 

duration)=21.0 ms. A non-diffusion-weighted scan (b=0 s/mm2 or b0) was acquired with each 

shell. Total scan time was 18:11 min. All images were centered at the C3/C4 level, except for 

one MS patient that was centered at the C4/C5 level where more lesions were detected. Images 

were acquired in the axial plane for both the anatomical and diffusion images.  

4.2.2 Image Analysis and Processing 

 All diffusion-weighted volumes were co-registered to the anatomical (mFFE). First, the 

b0 images from each shell was diffeomorphically registered to the anatomical using ANTS (126). 

All other diffusion-weighted volumes were then registered to its b0 image using an affine 

transformation to correct for eddy current distortions (127). Finally, regions of interest (ROIs) of 

white matter (WM) and gray matter (GM) were automatically segmented from the co-registered 

anatomical image using a slice-based groupwise multi-atlas procedure designed specifically for 

the spinal cord (103). The ROIs were eroded by a disk-shaped structuring element with a radius 

of four voxels in the white matter and one voxel in the gray matter to avoid inaccurate voxels at 

the boundaries, potentially arising from misregistration or partial volume effects. For patients, 

the same groupwise multi-atlas segmentation procedure was performed for white and gray 

matter. Additionally, we refined the segmentation by manually delineating lesions on the 

anatomical image, and then normal appearing white matter (NAWM) was any of the segmented 

white matter not containing manually drawn lesion voxels. It is possible that some gray matter 
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voxels either contain gray matter lesions themselves, or are partial volumed with white matter 

lesions.  For the latter, this is somewhat unavoidable due to the reliance on automatic gray matter 

segmentation, which cannot differentiate lesions from gray matter (similar contrast) when they 

are in close proximity to one another; for the former, we expect that gray matter is damaged in 

some participants and thus the gray matter values we report are a combination of both normal 

appearing gray matter and gray matter with lesions. Examples of ROI identification for a 

representative control (WM, GM) and two MS patients (lesion, NAWM) are shown in Figure 12. 

Note that all images are displayed on the radiological coordinate system. 

NODDI fitting was performed using the NODDI MATLAB Toolbox 

(http://nitrc.org/projects/noddi_tolbox, version: 0.9). Diffusion coefficients for the intra-axonal 
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Figure 12: Examples of ROI identification. Representative control (top row) includes the 
anatomical (left) from which the GM (second column) and WM (third column) were 
automatically segmented. For MS patients (middle and bottom row), the GM (second column) 
and WM are automatically segmented the same way as controls. WM, however, is separated into 
manually delineated lesions (third column) and any WM voxels containing no lesion was 
considered NAWM (fourth column). Note for all images the radiological coordinate system is 
used. 



 

 
47 

and isotropic compartments were fixed with values of d||=1.7 µm2/ms and diso=3.0 µm2/ms 

respectively as in (10) and (75). From this fitting, the derived NODDI indices included: the 

apparent intra-axonal volume fraction vin, representing the fraction of dendrites and axons; the 

isotropic volume fraction viso, representing the fraction of free water such as CSF; and the 

orientation dispersion ODI, a measure of how nonparallel axons disperse about a central 

orientation by assuming a cylindrically symmetric Watson distribution (10).   

4.2.3 Repeatability 

 The reproducibility of the NODDI-derived indices were assessed using Bland-Altman 

(105) for white matter. In the Bland Altman analysis, each subject’s mean index within the 

automatically segmented ROI (white matter) entered reproducibility analysis as a single data 

point. The 95% confidence interval (CI) for the mean difference was calculated and if the 95% 

CI overlaps zero, the indication is that there is no significant difference between scan 1 and scan 

2 at α=0.05. The normalized Bland Altman (DBA) was also used as an estimate of reliability to be 

used for comparison across derived indices, calculated as: 

 

 𝐷!" =
𝐷!"
𝑀 ∗ 100% (27) 

 

where D12  is the mean difference between the two sessions and M is the mean diffusion-derived 

index of interest. A nonparametric Wilcoxon signed rank was performed, in addition to the Bland 

Altman analysis, to determine whether a significant difference exists between the mean of each 

diffusion-derived index for each of the two scans at α=0.05. 

 Histograms of the NODDI-fitted parameters were created over all of the healthy control 

white matter voxels in the scan and rescan to visualize whether any deviations from one another 

were noticeable. For vin, a bin width of 2% over a range of 25 to 95% was used; for viso a bin 

width of 2% with a range of 0 to 80% was used; for ODI, a bin width of 0.008 with a range of 0 

to 0.15 was used.  

4.2.4 Group Comparison  

 A cross-sectional analysis was conducted to determine white matter differences in 

NODDI-derived indices between the healthy and MS cohorts. A nonparametric Wilcoxon rank 
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sum test was performed on the mean vin, viso, and ODI values in healthy white matter (within 

healthy controls), NAWM, and lesions for patients at a significant threshold of α=0.05. The same 

comparison was performed for DKI and DTI. Statistical differences between healthy gray matter 

(within healthy controls) and normal appearing gray matter (MS patients) were also assessed 

using a nonparametric Wilcoxon rank sum test. 

4.2.5 Analysis of Maps 

 Image quality in the NODDI-derived maps was assessed by the image contrast between 

white matter and gray matter in healthy controls.  Contrast was defined as:  

 

 
𝐶 =

|𝜇!" − 𝜇!"|
1
2 (𝜇!" + 𝜇!")

 (28) 

 

where 𝜇! represents the mean over the specified region of interest.  

4.3 Results 

4.3.1 Feasibility and Reproducibility of NODDI in Controls 

Figure 13 shows the NODDI-derived maps co-registered and averaged over all healthy 

controls, along with the averaged anatomical image (mFFE). The vin maps show high contrast 

between gray and white matter, with lower vin values in the gray matter compared to white 

matter, as expected. The averaged image’s (from Figure 13) contrast between white matter and 

gray matter is 0.23; the image contrast from the maps of individual controls is smaller (mean 

over all controls ± standard deviation = 0.13±0.07). The viso map highlights the central sulcus 

and central canal, along with some gray and white matter contrast (averaged image’s contrast: 

0.53, mean contrast over all controls=0.42±0.36). Lastly, the ODI maps provide the most 

significant contrast between gray and white matter (averaged image’s contrast: 1.19, mean 

contrast over all controls=1.08±0.19), which is expected since the orientations of gray matter 

dendrites are much more non-uniformly distributed compared to close-to-uniformly oriented 

axons in the white matter tracts. It is important to point out that the high value voxels at the rim 

of the spinal cord in both the vin and ODI maps are presumably due to registration errors, and are 
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exaggerated when taking the average over all healthy control subjects. For viso, high viso levels at 

the boundary of the spinal cord and cerebrospinal fluid (CSF) can be attributed to higher partial 

volume effects, in addition to the registration errors. 

 To highlight any outliers and demonstrate the overlap between scan and rescan, the 

bottom row of Figure 13 includes the histograms over all white matter voxels for all of the 

controls in scan 1 and scan 2. For vin, both histograms overlap one another significantly. For viso, 

although both of the histograms largely overlap, there is a higher frequency of voxels with low 

viso (<10%) in scan 2 than scan 1. For ODI, the histograms overlay onto each other directly, 

indicating high reproducibility. Reproducibility histograms for individual controls (data not 

shown) demonstrated the same trends as the group histograms (Figure 13), and were consistent 

across subjects, yielding mean percent differences between scan and rescan over all controls of 

8.22%, 45.5% and 5.09% for vin, viso, and ODI respectively. Table 5 lists the reproducibility 

metrics for each NODDI-derived index. It is important to note that the 95% confidence intervals 

for the mean difference of all of the derived indices overlap 0 and the Wilcoxon sign rank p-

value is greater than 0.05, indicating that the metrics are not significantly different from one 

another in the two different time points. Both vin and ODI yield DBA under 10%, however viso 

70%0% 60%0% 0.250

vin viso ODIanatomical

30% 50 70 90% 0% 20 40 60 80% 0.02 0.14

Scan 1
Scan 2

0.08

Figure 13: Maps and histograms of fitted parameters using NODDI in controls. Top row: 
Mean maps over all of the controls were calculated for the anatomical (left), vin, viso, and ODI 
(right). Bottom row:  Histograms over all white matter voxels for scan 1 and scan 2 for vin, viso, 
and ODI (right). 
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yields a high DBA of 35.5%, indicating that the variability between the two scans is large for viso.  

4.3.2 Application in MS Cohort 

 Figure 14 shows examples of the anatomical and NODDI-derived maps in a healthy 

volunteer and two MS patients (patient 1: EDSS=2, duration of disease=17 years, patient 2: 

EDSS=2.5, duration of disease=8 years). For patient 1, a lesion in the left lateral column (as 

shown in Figure 12) can be observed in the anatomical and corresponds to areas of decreased 

intra-axonal fractions in the vin maps. Additionally, this patient shows decreased vin in areas 

where the anatomical looks otherwise normal, such as the right dorsal column. In patient 2, 

smaller lesions are seen in the left dorsal and left lateral column on the anatomical (as shown in 

Figure 12), and similarly, a decreased vin is observed. No similar trends in the viso maps can be 

extracted from these examples. Lastly, the ODI maps in both MS participants demonstrate 

changes not localized at the site of the lesion, but rather, diffuse increases throughout the cord’s 

white matter and in MS patient 2, a large increase in the gray matter signal. This indicates that 

ODI may have the ability to probe the subtle microstructural changes in NAWM before they can 

be detected by conventional MRI such as the mFFE. 

Table 5: Reproducibility metrics for NODDI. 

 Scan 1 Scan 2 Bland-Altman WSR 
 mean±s.d. mean±s.d. Difference 95% CI  DBA (%) p-value 

NODDI       

       vin 54.3±3.53% 50.4±8.19% 3.88 [-4.52, 12.3] 7.47 0.38 

viso 21.8±4.84% 15.2±8.30% 6.59 [-3.07, 16.2] 35.5 0.13 

ODI 0.021±0.007 0.021±0.003 -0.0005 [-0.013,0.012] 2.27 0.86 
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In Figure 15, boxplots summarize the observed trends for vin, viso, and ODI over healthy 

white matter for controls (white) and, in the MS patients, lesions (identified from the anatomical) 

and NAWM in light and dark gray boxes respectively. The median (red line) and interquartile 

range (whiskers) over each cohort is displayed, along with the mean value for each individual as 

it enters the boxplot.  Note, only five points are plotted for the NAWM in the MS cohort, as one 

MS patient had a diffuse lesion over the entire cord at the C3/C4 level. For vin (Figure 15a), 

lesions show a significant decrease (p=0.001) compared to healthy control white matter.  There is 

no detectable difference between NAWM and control white matter (p=0.171) or between 

NAWM and lesions (p=0.247), but a trend is observed where NAWM values fall between lesions 

and control white matter tissue. No significant differences were observed in viso across cohorts in 

either tissue type (Figure 15b). Importantly, Figure 15c shows a global increase in ODI in lesions 

(p<0.001) and NAWM (p=0.002) compared to healthy volunteer white matter. When comparing 

gray matter of healthy controls to MS patients (data not shown), a significant decrease in vin was 

Figure 14: Example images from NODDI. Representative control is shown in the first row, 
followed by examples from two different MS patients (same as Figure 12). From left to right, the 
anatomical, vin, viso, and ODI are shown. 
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observed (p=0.04) along with a significant increase in ODI (p=0.003), but no change was 

observed in viso (p=0.22).  

 

4.4 Discussion  

 This work demonstrates (i) the feasibility of deriving high-quality NODDI indices in the 

spinal cord of healthy controls and patients with MS and (ii) the sensitivity of NODDI in 

detecting pathological changes in the spinal cord of MS. Specifically, we show that vin and ODI 

provide high intra-cord contrast in patients with MS, which allows for unique characterization of 

damage that the spinal cord undergoes along the evolution of MS. With NODDI, the ability to 

separate different compartments provides a clearer understanding of the derived indices. For 

example, it has been demonstrated that a decrease in FA could be due to a decrease in vin or 

increase in ODI (10,75). Parameters such as vin and ODI, however, offer assessment of specific 

Figure 15: Comparison of vin, viso, and ODI. Boxplots highlighting the median, 25th and 75th 

percentiles over controls (WM) and MS patients (lesions and NAWM) for (a) vin, (b) viso and (c) 
ODI. Mean values from each subject plotted and asterisks indicate significant differences 
between the groups. 
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pathological changes with minimized confounding influence (i.e. from CSF), which may be 

advantageous in longitudinal tracking of the disease more accurately.   

 Recently, the first application and feasibility of NODDI in the cervical spinal cord was 

reported with healthy volunteers only (75). In this current study, we observed that our NODDI-

derived indices fall within the range of those observed by Grussu et al., who report a vin of 

57±9% (our study: 54±4%), viso of 12±11% (18±7%), and ODI of 0.027±0.0.003 (0.018±0.006). 

Additionally, our reproducibility measurements are in good agreement to those previously 

reported, where vin and ODI show reliable measurements but the reproducibility of viso is poor. 

As a result, viso did not provide a reliable contrast when applied to the MS cohort, and would be 

more difficult to follow in longitudinal studies. However, we observed a statistically significant 

decrease in vin in lesions, a finding that is consistent with the expected pathology in chronic MS 

lesions with known axonal injury and loss. This also corresponds well with findings from an ex 

vivo spinal cord of MS study (74), where decreased vin was observed in lesions in comparison to 

the NAWM and correlated well with histological metrics. Interestingly, in some patients in our 

study, a decreased vin was also observed in surrounding NAWM, which may indicate the 

potential of the index to detect microstructural changes of white matter without obvious 

inflammation, which is not detectable using conventional MRI. An increased ODI throughout the 

white matter was observed, suggesting pervasive changes in the spinal cord in the presence of 

MS.  These findings also align well with the ex vivo study, where ODI was higher in NAWM 

than in lesions (74), and may indicate that ODI has the potential to be used as a prognostic 

indicator even before new lesions appear. Finally, significant differences in gray matter of 

healthy controls and normal appearing gray matter in MS patients were observed for vin and ODI, 

which may be indicative of pathological changes known to occur in gray matter lesions, such as 

axonal transection, in addition to neuronal, glial and synaptic loss (128).  One limitation of this 

study, however, is that fixed diffusivities of d||=1.7 µm2/ms and diso=3.0 µm2/ms for the intra-

axonal and isotropic compartments respectively, as implemented in the NODDI toolbox (10) and 

in the previous study of NODDI in the healthy spinal cord (75). While the DTI-derived indices 

from this study indicated that these estimates were reasonable and similar to literature values (5) 

for the spinal cord in both healthy and MS cohorts, future studies should investigate the effect of 

fixing the diffusivities to known values for a specific cohort. 

 There has recently been an increased interest of applying advanced diffusion models in 
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the human cervical spinal cord in vivo (50,75,78,79) and to our knowledge, no multi-

compartmental diffusion models have been used to measure specific microstructural information 

of spinal cord of patients with MS. A main technical concern that has hampered this application 

is the difficulty in registering diffusion-weighted volumes well. With the high b-values (b>1000 

s/mm2) needed in many of these protocols, the signal is often too low for registration.  Previous 

studies have interleaved non-diffusion-weighted volumes throughout the acquisition, and relied 

on applying the transformation of the nearest interleaved volume to the diffusion-weighted 

volumes (75,129). This method, however, assumes that negligible motion has occurred in 

between non-diffusion-weighted volumes, which is impractical in the presence of patient 

movement such as swallowing. With sufficient signal-to-noise ratio (SNR), we were able to 

achieve reliable affine registration of the individual diffusion-weighted volumes, which also 

enabled eddy current correction (130).  

Only one slice of the cervical spinal cord was acquired in the current study, because the 

main goal was to investigate the feasibility and sensitivity of NODDI in MS patients, and 

therefore, rather than optimizing for acquisition time, we chose to implement a sequence that 

minimized any dependencies of SNR and focused only on one level of the cord.  In future 

studies, simultaneous multi-slice excitation imaging will help improve slice coverage without the 

expense of additional acquisition time (131). Optimal direction schemes may also be investigated 

for the spinal cord specifically to allow for additional decreases in acquisition time.  

 Future studies involving a larger cohort and investigating the correlation of the NODDI-

derived parameters with clinical disability are warranted.  While no effect on age was observed 

on the NODDI-derived metrics in this study, Taso et al. have previously reported an association 

with age and decreased DTI-derived metrics (132); however, their results indicate that an effect 

on age is only significant when comparing groups younger than 50 to groups older than 50 years 

old, which was not the case for this current study. However, future studies involving age-

matched controls are worthwhile. Lastly, a longitudinal study utilizing multi-parametric MRI 

may help gain confidence of the NODDI-derived indices, in addition to further disentangling the 

pathological processes occurring in MS (113). 

 In conclusion, we demonstrated the feasibility and initial results of NODDI in the 

cervical spinal cord of MS patients. NODDI maps provide distinguishable contrast, which may 

reflect underlying microstructural changes known to occur in MS.   
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CHAPTER 5 

 

Spherical Mean Technique: Application to MS 

5.1 Introduction 

 While promising, NODDI makes two primary assumptions that may hinder application to 

various diseases (133). First, NODDI assumes fixed intrinsic diffusivities, which is known to 

vary across white matter tissues. Secondly, the NODDI model underestimates the complicated 

white matter fiber orientations, as the orientation dispersion is modeled by a single, cylindrically 

symmetric Watson distribution. These approximations, while helpful for rapid application in 

vivo, may limit the accuracy of the NODDI-derived metrics, especially in pathology. Recently, 

the spherical mean technique (SMT) has been proposed to model the microscopic diffusion 

process (68,69), enabling the ability to map the neurite density and compartment diffusivities. 

SMT takes the spherical mean of the diffusion signals over various gradient directions for a 

given b-value, and provides orientation invariant indices, such as the apparent axonal volume 

fraction vax and axonal diffusivity Dax. Figure 16 demonstrates the confounding effects of 

orientation dispersion when estimating FA with DTI and how orientation invariant indices can 

resolve these issues. With an orientationally organized anisotropic structure (left), the 

microdomain FA (µFA) and DTI-derived FA are equal to 1. As the tissue geometry’s 

orientational order decreases, the FA decreases, however the µFA is unaffected. In an isotropic 

situation, both µFA and FA are equal to 0.  

Additionally, by estimating the axonal diffusivity, SMT does not assume fast exchange in 

the extra-axonal space (i.e. a uniform diffusion coefficient) as it does in NODDI. Thus, the SMT 

model may provide an alternative, straightforward and potentially reliable method to characterize 

neural tissue without the confounding influence from complicated axon fiber orientation 

distribution.  This may be useful in studying MS, as the fiber orientation dispersion may increase 

as a result of demyelination and axonal loss. By removing the effect of fiber orientation 

distribution and modeling the true axonal diffusivity, SMT may provide a more sensitive 

measure of axonal volume fraction than NODDI.  
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5.1.2 Model Theory 

 Details on the SMT model and derivations can be found in (68,69). Briefly, the diffusion 

signal hb is independent of its location within a voxel (since it is not spatially encoded this way in 

our MRI acquisition) and can be, therefore, the microscopic diffusion signal can be written as a 

function of the spherical distance < 𝑔,𝜔 >  between two normalized gradient directions g:  

 

 ℎ! 𝑔,𝜔 = ℎ!(< 𝑔,𝜔 >) (29) 

 

where 𝜔 is the rotation axis or orientation of the microscopic axonal segment and is defined on a 

two-dimensional unit sphere, 𝜔 ∈ 𝑆!.  The spherical distance < 𝑔,𝜔 > falls between [-1,1].  

Furthermore, hb is antipodally symmetric, such that ℎ! 𝑔,𝜔 = ℎ! −𝑔,𝜔 . The observed MRI 

signal can therefore be written as: 

  

 𝐸!(𝑔)
𝐸!

= ℎ! 𝑔,𝜔
!!

𝜌 𝜔 𝑑𝜔 (30) 

 

where 𝐸!(𝑔) is the diffusion-weighted signal, 𝐸! is the non-diffusion-weighted signal and  𝜌 𝜔   

describes the frequency of the microscopic fiber population. 

Without knowing the distribution of the axons, the spherical mean of the diffusion signal 

over all gradient directions eb can be expressed as: 

 

μFA

FA

0

0

Tissue
Geometry

1

1 0.7

1

0

1

Figure 16: Varying tissue geometries and effect on µFA and FA. When the orientational 
order decreases, the FA decreases, however the µFA remains constant. 
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𝑒! =

1
4𝜋 𝑒! 𝑔 𝑑𝑔

!!
 (31) 

 

Conversely, the microscopic fiber diffusion signal ℎ! can be written as: 

 

 
ℎ! =

1
4𝜋 ℎ! 𝑔,𝜔 𝑑𝑔

!!
 (32) 

 

Using Fubini’s theorem and shifting the order of integration, the mean signal is independent of 

orientation distribution and is only a function of diffusion signal of the microscopic diffusion 

signal: 

 

 
𝑒! =

1
4𝜋 ℎ! 𝑔,𝜔 𝑑𝑔  )𝜌 𝜔 𝑑𝜔 =

!!!!
ℎ! 𝜌 𝜔 𝑑𝜔

!!
 (33) 

 

While fixing the b-value, the spherical mean of the diffusion signal over all gradient directions eb 

in the spherical coordinate system yields: 

 

 
𝑒! = ℎ! ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑠𝑖𝑛𝜃

!/!

!
 (34) 

 

where 𝜃 is the angle between the gradient direction and microdomain orientation. 

 The diffusion signal is represented using a two-compartment model, separated into an 

intra- and extra-axonal compartment. The apparent intra-axonal compartment represents 

dendrites and axons, and is modeled as sticks with a transverse diffusivity set to zero. The extra-

axonal compartment comprises of the glial cells and neurons in the extracellular space and is 

modeled as an anisotropic tensor. The transverse extra-axonal diffusivity coefficient 𝐷!,!" is 

described using a tortuosity approximation (125) where 𝐷!,!" = (1− 𝑣!")𝐷!" . The mean 

diffusion signal using SMT is therefore represented as: 

 

 𝑆 = 𝑣!"𝑆!" + 1− 𝑣!" 𝑆!" (35) 
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where 𝑆!" =
!∗!"#  ( !!!")
! !!!"

 and 𝑆!" = exp  (−𝑏𝐷!,!")
!∗!"#  ( !(!!"!!!,!")
! !  (!!"!!!,!")

.  Furthermore, the 

intra- and extra- axonal diffusion signals are the spherical means over all gradient directions in 

each b-value shell. Table 6 below summarizes the SMT model. 

To date, there are only a few studies that have implemented multi-compartment diffusion 

imaging in spinal cord (75,79), but none have implemented the SMT technique in either healthy 

subjects or patients with MS. The goals of this study were (i) to evaluate the feasibility and 

reproducibility of SMT in the human spinal cord in vivo and (ii) to determine the sensitivity of 

SMT in a cohort of MS patients.  

Table 6: Summary of SMT model. 

Compartment Model DOF Assumptions Resulting DOF 

Intra-axonal 

Sticks 
 

 
 
 
 
 

Vic   Vic 

d||   d|| 

         

Extra-axonal 

Hindered, 
Anisotropic 

Tensor 
 

 
 
 
 

Vex vex=(1-vic)   

d⊥ ,d|| d⊥=(1-vic)*d||   
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5.2 Methods 

5.2.1 Human Subjects 

 Local institutional review board approval and written informed consent were obtained 

prior to imaging. The same controls and patients in the NODDI study (Chapter 4, Table 4) were 

enrolled. Eight healthy controls (29.0±5.0 years, 5M/3F) participated in this study; to assess 

reproducibility, four healthy controls were rescanned within a month. Six relapsing-remitting MS 

patients (39.3±6.1 years, 6F) were recruited for this study. Patients’ disability was rated using the 

Expanded Disability Status Scale (EDSS) score (22), and ranged from 0 to 6 for the patients 

enrolled in this study. Although some of the patients were known to have spinal cord disease 

from previous clinical scans, none of them was experiencing an acute exacerbation. All patients 

had been free from steroid administration for at least 6 months. 

5.2.2 In Vivo Imaging  

 Scans were performed on a 3.0T whole body MR scanner (Philips Achieva, Best, 

Netherlands), using a dual channel body coil for excitation and a 16-channel SENSE 

neurovascular coil for reception. Again, the same exact dataset used for the NODDI study was 

used for this study, but for reference, the main parameters will be summarized here. All imaging 

was centered at the C3/C4 level, except for one MS patient centered at C4/C5 where more 

lesions were known to be present. In each scan session, an anatomical image was acquired 

consisting of a high-resolution, multi-echo gradient echo (mFFE) (100) with the following 

relevant parameters: resolution=0.65x0.65x5 mm3, TR/TE/∆TE=753/7.1/8.8 ms, α=28°, number 

of slices=14 and acquisition time=6:12 min. The spin-echo diffusion sequence was cardiac 

triggered and utilized a single-shot echo planar imaging (EPI) readout. Reduced field-of-view 

was implemented using an outer volume suppression technique (82). One slice was acquired with 

the following parameters: TR/TE=3 beats (~3000 ms)/65 ms, resolution=1.25 x 1.25 mm2, slice 

thickness=10 mm, FOV=68 x 52 mm, SENSE (AP)=1.5, fat suppression was performed using 

Spectral Presaturation with Inversion Recovery (SPIR), NSA=3. Two b-shells were acquired, 

including a b=711 s/mm2 shell uniformly sampling 32 non-coplanar directions and a b=2855 

s/mm2 shell sampling 64 non-coplanar directions. A total of two non-diffusion-weighted scans 

(b=0 s/mm2 or b0) were acquired, one at the beginning of each b-value shell acquisition. Total 
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acquisition time was 18:11 min.  

5.2.3 Image Pre-Processing 

 In each scan, the anatomical image (mFFE) was used as a reference template for 

registration and segmentation. Registration was performed using ANTS (126). The two b0 

images from the diffusion-weighted scan were diffeomorphically registered to the anatomical, 

and all other diffusion-weighted volumes were subsequently registered to the closest b0 image 

using an affine transformation to correct for eddy current distortions (127).  

A groupwise multi-atlas method was used to automatically segment the anatomical image 

into regions of interest (ROIs) of white matter and gray matter (103). To avoid inaccurate voxels 

at tissue boundaries (cord and cerebrospinal fluid or white matter/gray matter) that may have 

been a result of misregistration or partial volume effects, the ROIs were eroded by a disk-shaped 

structuring element with a radius of four voxels in the white matter and one voxel in the gray 

matter. 

5.2.4 Image Analysis 

 Signal-to-noise ratio (SNR) was found to be approximately 30 across all tracts (30.8± 

7.44), and hence a homogenous Rician noise throughout the entire spinal cord (σ=0.05) was 

assumed in all subsequent analyses. Using the two acquired b0 images, a single b0 image was 

estimated using a maximum likelihood approach, where the single b0 signal was predicted by 

minimizing the objective function using a Rician noise model (16).  

 SMT fitting to the diffusion-weighted data was performed using in-house MATLAB 

code, and yielded maps of the apparent intra-axonal volume fractions (vax) and the intra-axonal 

diffusivity (Dax).   

5.2.5 Statistical Analysis 

 Reproducibility of the SMT-derived indices in white matter of healthy controls were 

assessed using Bland Altman (105). The mean index within a given ROI (white matter) for each 

subject was calculated and was entered as a single data point for the Bland Altman analysis.  The 

95% confidence interval (CI) for the mean difference was calculated to determine whether the 

interval overlapped zero at α=0.05, which would indicate that the differences between scan and 

rescan were non-significant at the α = 0.05 level. The normalized Bland Altman (DBA) was also 
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used as an estimate of reliability to be used for comparison across derived indices, calculated as: 

 

 𝐷!" =
𝐷!"
𝑀 ∗ 100% (36) 

 

where D12  is the mean difference between the two sessions and M is the mean diffusion-derived 

index of interest.  Additionally, a nonparametric Wilcoxon signed rank was performed, in 

addition to the Bland Altman analysis, to determine whether a significant difference exists 

between the median of each diffusion-derived index for each of the two scans at α=0.05. 

 Group comparisons between healthy controls and MS patients were performed to assess 

differences in SMT-derived indices. For controls, the mean value was calculated over all white 

matter, which was defined using the automatically segmented ROIs as previously described; for 

MS patients, white matter was further manually delineated into lesion and normal appearing 

white matter (NAWM) from the mFFE images. For each SMT-derived index (vax and Dax), three 

non-parametric Wilcoxon rank sum tests were performed to compare (i) healthy white matter vs. 

lesions, (ii) healthy white matter vs. NAWM and (iii) lesions vs. NAWM at a significant 

threshold of α=0.05.  

5.3 Results 

5.3.1 In Vivo Results and Reproducibility 

 Figure 17a shows the averaged anatomical and SMT-derived maps over all healthy 

controls, with the anatomical mFFE image on the left, the vax map in the middle, and the Dax map 

on the right. In the anatomical image, there is contrast between white and gray matter. The 

averaged vax map indicates heterogeneity in the microenvironments of the spinal cord, with 

lower values in the gray matter relative to the white matter. This contrast is expected because vax 

represents the apparent intra-neurite volume fraction in gray matter, which is lower than the 

intra-axonal volume fraction in the white matter. The Dax map shows higher diffusivities in the 

white matter, where the organization of fibers within a fiber population primarily align with one 

axis and therefore do not present many barriers to diffusion. It should be noted that there are 

some unrealistic fitted values only at the boundaries of the cord, which we ascribe to 

misregistration, which would also be observed in conventional DTI-derived parametric maps.  
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Figure 17b displays the histograms of all the white matter voxels over all of the controls for scan 

1 (black) and scan 2 (dashed blue). The histograms of the scan and rescan largely overlap one 

another, indicating high reproducibility for both vax and Dax. There is a spike around 3 µm2/ms in 

the Dax histogram, which demonstrates the close-to-unrestricted diffusion present along the main 

spinal cord axis. 

Table 7 lists the reproducibility statistics from Bland Altman and the Wilcoxon rank sum 

test. The 95% CIs for the mean differences of both indices overlap 0 and yield a DBA of less than 

10%, indicating that the differences between scan and rescan are small and that SMT is capable 

of providing reliable indices over time. 
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Figure 17: Mean SMT-derived maps and reproducibility in controls. (a) From left to right, 
mean anatomical (mFFE) image, mean vax and mean Dax over all controls. (b) Histograms of all 
white matter voxels over all controls for scan 1 and scan 2. The overlap between the two 
histograms signifies high inter-scan reproducibility of the derived indices. 
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5.3.2 Application to MS Cohort  

 Figure 18 displays the SMT-derived maps for a representative control and two MS 

patients. The MS patient in the middle column (patient 1) has an EDSS of 2 with a disease 

duration of 17 years; the MS patient in the right column (patient 2) has an EDSS of 2.5 with a 

disease duration of 8 years. For patient 1, a lesion can be seen in the left lateral column (black 

arrow), and corresponds to a decreased vax and Dax. For patient 2, smaller lesions are observed in 

the left dorsal column and left lateral column, and the same trends of decreased vax and Dax are 

seen in the SMT-derived maps.  

 Figure 19 displays the box-and-whisker plots for vax (Figure 19a) and Dax (Figure 19b) 

comparing healthy white matter (white), MS lesions (light gray) and MS NAWM (dark gray). In 

comparison to white matter in healthy controls, a significant decrease in vax is observed in the 

lesions (p=0.001) and NAWM (p=0.019). No significant trends exist for Dax, however a trend 

towards decreased Dax is observed at the site of the lesion.  

Table 7: Reproducibility of SMT-derived indices. 

 Scan 1 Scan 2 Bland-Altman WSR 
 mean±s.d. mean±s.d. Difference 95% CI  DBA (%) p-value 

SMT       

       Vax 49.3±4.43% 47.1±9.20% 2.29 [-6.60, 1.12] 4.75 0.88 

Dax 2.46±0.21 2.23±0.44 0.23 [-0.222, 0.682] 9.81 0.13 
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Figure 18: Anatomical images (top), SMT-derived maps vax (middle) and Dax (bottom) are 
displayed for control (left) and two patients. MS patient 1 (middle), EDSS 2 and duration of 
disease of 17 years, highlights a decreased vax at the site of the lesion (black arrow) in the left 
lateral column. MS patient 2 (right), EDSS 2.5 and duration of disease 8 years, demonstrates 
similar trends in vax to the MS patient 1. 
 

Figure 19: Application of SMT in MS cohort. Boxplots highlighting the median, 25th and 75th 

percentiles over controls (WM) and MS patients (lesions and NAWM) for (a) vax and (b) Dax. 
Mean values from each subject plotted and asterisks indicate significant differences between the 
groups. 
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5.4 Discussion 

 Our results demonstrate (i) the feasibility of SMT in the human spinal cord in vivo and 

(ii) the sensitivity of SMT-derived indices in the spinal cord of MS. Recently, there has been a 

push towards the implementation of advanced diffusion models beyond conventional DTI to 

study human healthy and diseased spinal cord in vivo. Farrell et al. demonstrated the feasibility 

of q-space imaging in healthy controls, and showed the potential of displacement and probability 

maps in providing useful contrasts for characterizing microstructural damage in MS (50). Grussu 

et al. demonstrated the reproducibility of NODDI-derived indices in the healthy cervical spinal 

cord, enabling the estimation of indices more specific to neurite morphology than DTI (75).  

Duval et al. implemented q-space AxCaliber using Human Connectome gradients (80) to 

estimate axon diameters of the spinal cord (79). These studies demonstrate the advantages of 

characterizing spinal cord microstructure using advanced multi-compartment diffusion models. 

Compared with these methods, SMT is an attractive biophysical model to characterize specific 

tissue properties. SMT makes no assumptions about the orientation of fibers or the fast exchange 

in the extra-neurite space. Therefore, SMT is insensitive to the confounding influence on 

estimation accuracy caused by pathology, such as inflammation-induced changes in fiber 

orientation distribution, which may in turn enable SMT to provide valuable information on the 

apparent axonal volume fraction or intra-axonal diffusivity. Furthermore, the protocol used in the 

current study is clinically feasible on standard MRI scanners and does not rely on extremely 

powerful gradient systems, which is of high interest when translating SMT to characterize 

specific neural tissue properties in a clinical setting.  

 To evaluate the utility of SMT in the spinal cord, we applied SMT on a cohort of MS 

patients. This feasibility study shows that SMT is sensitive in identifying abnormal changes in 

MS lesions when compared to healthy white matter. The decreased apparent axonal volume 

fraction vax in MS lesions is consistent with histopathological studies (134) as well as other 

previous in vivo reports using NODDI (122). With MS, an immune response is triggered 

followed by blood brain barrier leakage, ultimately resulting in axonal damage, which can cause 

disability in patients and potentially, consequential death at end stage pathology in MS. The 

ability to detect changes in axonal loss may have clinical potential such as modified treatment 

plans, especially in those patients who have yet to demonstrate clinical disability or those 

without significant atrophy or irreparable axonal loss. A longitudinal study involving a larger 
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cohort of patients is warranted. Furthermore, to derive meaningful clinical consideration from 

this newly developed method, work on the association between SMT-derived indices and 

patients’ disability, as well as on longitudinal changes of these indices over time, should be 

investigated. 

 Due to the difficulty in registering spinal cord diffusion-weighted volumes, misfittings at 

the boundaries of the spinal cord and CSF are evident, but it is important to note that this affects 

all diffusion MR images. Interleaving more b0 images throughout the acquisition may provide 

more accurate registration transformations (75). Misfittings at the boundaries may also be 

minimized by increasing the spatial resolution of the protocol, and should be further investigated 

in future studies to potentially distinguish different spinal cord tracts. The main goal of this 

study, however, was to test the feasibility of SMT in the spinal cord, and consequently, the 

protocol was optimized in terms of SNR in order to minimize any potential biases in the SMT 

fitting. To this end, a large slice thickness (slice thickness = 10 mm) was also employed in order 

to maximize SNR, which is not problematic since this covered approximately one cervical level 

rostral-caudally. Furthermore, given the rostral-caudal symmetry of the spinal cord at each 

cervical level, there is no concern for partial voluming effects between CSF and spinal cord 

tissue. For the MS patients, lesions were evaluated slice-by-slice on the anatomical image (slice 

thickness = 5 mm) and after inspection, the lesion ROI was delineated on the averaged 

anatomical image to ensure that normal appearing white matter voxels were not averaged into the 

region of interest. 

 In summary, this study delivers a multi-shell diffusion characterization of the cervical 

spinal cord with SMT. This method carries a high degree of reproducibility and shows the 

clinical potential of SMT in characterizing axonal pathology in MS. 
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CHAPTER 6 

 

Diffusion Basis Spectrum Imaging: Application to MS 

6.1 Introduction 

While NODDI and SMT are able to resolve axonal fractions, they do not consider the 

restricted water diffusion outside fiber tracts (restricted isotropic component). The restricted 

water diffusion outside of the fiber tracts may be a measure of cellularity (11), which would be 

valuable in the study of MS to possibly track disease evolution. Furthermore, by separating this 

component from the anisotropic tensor, a more accurate measure of axial diffusivity (AD or 𝜆∥) 

and radial diffusivity (RD or 𝜆!) may be obtained.  

Diffusion basis spectrum imaging (DBSI) is a recently developed technique that models 

white matter diffusion as a linear combination of multiple discrete anisotropic tensors and a 

spectrum of isotropic diffusion tensors. The discrete anisotropic tensors represent intra-axonal 

tracts. The isotropic tensors are divided into two compartments: 1) the summation of the 

isotropic spectrum from 0 ≤ ADC ≤ 0.3 µm2/ms infer restricted diffusion, reflecting cellularity 

and 2) the summation of the isotropic spectrum at 0.3 < ADC < 3 µm2/ms   is considered non-

restricted diffusion outside of axonal tracts, reflecting vasogenic edema and CSF.  

DBSI has been demonstrated in tissue phantoms and mice (trigeminal nerves, optic nerve, 

spinal cord) to resolve crossing fiber tracts, remove CSF partial volume effects and quantify 

axonal injury, demyelination and inflammation (11,67,76,77). There is significant value that 

DBSI can offer to the study of MS. For example, DTI can estimate axonal injury and 

demyelination in a voxel whose signal is largely from coherent axonal fibers (42). During 

inflammation, however, voxel signals are conflicted with infiltrated cells undergoing axon and 

myelin injury; in this scenario, DTI generally underestimates the demyelination and 

overestimates the effect of axonal injury (4,135). During axonal loss, there is an increased 

isotropic diffusion component, but the DTI model exaggerates 𝜆! and 𝜆∥ (136). Because the 

DBSI model separates the diffusion signal into different components, DBSI may be able to 

discern these pathologies and provide higher sensitivity and specificity than conventional DTI.  
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6.1.2 Model Theory 

The DBSI signal is modeled as: 

 

 
𝑆! = 𝑓!𝑒!|!!|!!!𝑒!|!!|(!∥!!!!!)!"#

!!!" + 𝑓(𝐷)𝑒!|!!|!𝑑𝐷
!

!

!!"#$%

!!!

 
 

(37) 

 

In Equation 37,  𝑆!  is the measured signal intensity acquired at the k-th diffusion gradient 

normalized (to b=0 s/mm2); |𝑏!|is the b-value of the k-th diffusion gradient. The unknown 

variables to be solved in the anisotropic term include  𝑁!"#$%, the number of anisotropic tensors; 

𝑓!, the signal intensity fraction for the i-th anisotropic tensor; 𝜓!", the angle between the k-th 

diffusion gradient and the principal direction of the i-th anisotropic tensor; 𝜆∥! and 𝜆!!, the 

respective axial and radial diffusivities for the i-th anisotropic tensor under the assumption of 

cylindrical symmetric tensors. For the isotropic component, the isotropic diffusion spectrum 

𝑓(𝐷) must be solved over chosen diffusivity limits a to b. (For clarification, the isotropic 

diffusion spectrum may also be referred herein as fiso.) To solve this model, a two-step approach 

is taken to simplify the number of free variables needed. 

First, 𝑁!"#$%  and 𝜓!"  are determined by employing a diffusion basis decomposition 

approach (137). A diffusion basis function (DBF) is created from a set of basis tensors uniformly 

distributed in a 3D space. In DBSI, a DBF is created for each anisotropic term and is given as: 

 

 𝜙!" = 𝑐!𝑒!|!!|!!!𝑒!|!!|(!∥!!!!!)!"#
!!!" (38) 

 

where 𝜙!" is a discrete, anisotropic DBF for the i-th diffusion basis tensor and k-th diffusion 

gradient direction; our algorithm uses N=129 diffusion basis tensors. Isotropic diffusion is 

modeled as a single DBF: 

 𝜙!,!!! = 𝑐!!!𝑒!|!!|!!"# (39) 

 

Thus, the diffusion basis decomposition approach computes the best linear combination of DBFs 

that are able to reproduce the signal Sk: 
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𝑆! = 𝑐!𝑒!|!!|!!!𝑒!|!!|(!∥!!!!!)!"#

!!!" +
!

!!!

𝑐!!!𝑒!|!!|!!"# (40) 

 

To solve Equation 40, the DBFs must have a known set of diffusivities, 𝜆!  and 𝜆∥ . An 

optimization procedure is initialized with a set of diffusivities, 𝜆!, 𝜆∥, and diso, derived from the 

tensor. Given a set of diffusivities, 𝜆!, 𝜆∥, and diso,  a non-linear regularized least-squares analysis 

of  Sk is performed to solve for the weighted coefficients ci    for a discrete set of DBFs.  The fitting 

procedure for 𝜆!, 𝜆∥, and diso was analyzed by the minimum sum of squares and once converged 

at the global minimum,   a continuous DBF solution is solved for, providing Naniso   and the 

corresponding principal directions 𝜓!" based on the nonzero ci  .  

The second step to solving Equation 37 optimizes 𝜆!!, 𝜆∥!, and fi        for each anisotropic 

tensor. Again, the nonlinear optimization problem is solved by initialization of a selected 𝜆!! and 

𝜆∥! to compute corresponding   fi  and f(D). f(D) is uniformly discretized by L points from [a,  b], 

where [a,  b] = [0,3 µm2/ms] as defined by (11), to simplify the problem into a linear least-square 

analysis. Knowing that the signal intensities cannot be negative, the problem is solved using a 

regularized non-negative least-squares analysis with incorporated finite signal energy to avoid 

over-fitting noisy data. Once the solution converges to a global minimum, all of the variables in 

Equation 37 are accounted for. Table 8 summarizes the DBSI model. 

6.2 Methods 

6.2.1 Human Subjects 

 Local institutional review board approval and written informed consent were obtained 

prior to imaging. Five healthy controls (29.2±5.36 years, 2M/3F) participated in this study to 

assess reproducibility, all of which were rescanned within a month. Six relapsing-remitting MS 

patients (38.2±5.93 years, 6F) were recruited for this study. While some of the patients from the 

NODDI and SMT study also participated in this study, the cohort was slightly different from the 

NODDI and SMT dataset. Patients’ disability was rated using the Expanded Disability Status 

Scale (EDSS) score (22), and ranged from 0 to 6 for the patients enrolled in this study. Although 

some of the patients were known to have spinal cord disease from previous clinical scans, none 

of them were experiencing an acute exacerbation. All patients had been free from steroid 
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administration for at least 6 months. 

6.2.2 In Vivo Imaging  

 Scans were performed on a 3.0T whole body MR scanner (Philips Achieva, Best, 

Netherlands), using a dual channel body coil for excitation and a 16-channel SENSE 

neurovascular coil for reception. All imaging was centered at the C3/C4 level, except for one MS 

patient centered at C4/C5 where more lesions were known to be present. In each scan session, an 

anatomical image was acquired consisting of a high-resolution, multi-echo gradient echo (mFFE) 

(100) with the following relevant parameters: resolution=0.65x0.65x5 mm3, 

Table 8: Summary of DBSI model. 

Compartment Model DOF Assumptions 
Resulting 

DOF 

Intra-axonal + 
water 

molecules 
outside but 
adjacent to 
axon fibers 

Hindered, 
Anisotropic 

Tensor 
 

 
 

Naniso Naniso=1   
faniso   faniso 

ψik (principal 
directions) 

Use set of 
DBF ψik 

ADi   AD 

RDi   RD 

 
 

Isotropic 
Restricted 

 
 

     

Cells f(D) 0<ADC≤0.3 
µm2/ms fiso, restricted 

       

Free water 
(CSF), 

Vasogenic 
Edema 

Isotropic Non- 
Restricted 

 
 

f(D) 0.3<ADC≤3 
µm2/ms fiso,non-restricted 
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TR/TE/∆TE=753/7.1/8.8 ms, α=28°, number of slices=14 and acquisition time=6:12 min. The 

spin-echo diffusion sequence was cardiac triggered and utilized a single-shot echo planar 

imaging (EPI) readout. Reduced field-of-view was implemented using an outer volume 

suppression technique (82). One slice was acquired with the following parameters: TR/TE=3 

beats (~3000 ms)/65 ms, resolution=1.25 x 1.25 mm2, slice thickness=10 mm, FOV=68 x 52 

mm, SENSE (AP)=1.5, fat suppression was performed using Spectral Presaturation with 

Inversion Recovery (SPIR), NSA=4. The diffusion gradient encoding scheme consisted of 99 

directions, where the vectors are defined as (qx, qy, qz) and are prescribed in the three-dimension 

q-space satisfying qx
2+qy

2+qz
2 =r2 directions, with a maximum b-value of 2000 s/mm2. A total of 

eight non-diffusion-weighted scans (b=0 s/mm2 or b0) were acquired, interleaved evenly 

throughout the acquisition. Total acquisition time was 21:18 min.  

6.2.3 Image Pre-Processing  

 In each scan, the anatomical image (mFFE) was used as a reference template for 

registration and segmentation. Registration was performed using ANTS (126). The eight 

interleaved b0 images from the diffusion-weighted scan were diffeomorphically registered to the 

anatomical, and all other diffusion-weighted volumes were subsequently registered to the closest 

b0 image using an affine transformation to correct for eddy current distortions (127).  

Segmentation was performed using the same procedure that was used for NODDI and 

SMT, where a groupwise multi-atlas method was used to automatically segment the anatomical 

image into regions of interest (ROIs) of white matter and gray matter (103). To avoid inaccurate 

voxels at tissue boundaries (cord and cerebrospinal fluid or white matter/gray matter) that may 

have been a result of misregistration or partial volume effects, the ROIs were eroded by a disk-

shaped structuring element with a radius of four voxels in the white matter and one voxel in the 

gray matter. 

6.2.4 Image Analysis 

 DBSI fitting was performed using in-house MATLAB code, and yielded maps of the 

anisotropic fraction (fanisotropic), the isotropic restricted fraction (fisotropic, restricted), the isotropic non-

restricted fraction (fisotropic, non-restricted), the axial diffusivity for the anisotropic tensor (AD), and 

the radial diffusivity for the anisotropic tensor (RD). For this study, since white matter tracts are 
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primarily coherent in the spinal cord, the number of anisotropic tensors was restricted to Naniso=1 

(11). 

 The nonlinear least squares problem was minimized by the residuals of the fit and data 

using the lsqnonlin function in MATLAB.  For both healthy controls and MS patients, the fit of 

the model was assessed using a Chi-square goodness-of-fit, where the number of degrees of 

freedom was set to 94. Resulting p-values from the test were mapped voxel-by-voxel where p 

<0.05 indicated a significant difference from the fit and data.  

6.2.5 Statistical Analysis  

Statistical analysis was performed similar to the NODDI and SMT.  For convenience, the 

analysis is recapped here. Reproducibility of the DBSI-derived indices in white matter of healthy 

controls were assessed using Bland-Altman (105). The mean index within a given ROI (white 

matter) for each subject was calculated and was entered as a single data point for the Bland 

Altman analysis.  The 95% confidence interval (CI) for the mean difference was calculated to 

determine whether the interval overlapped zero at α=0.05, which would indicate that the 

differences between scan and rescan were non-significant at the α = 0.05 level. The normalized 

Bland Altman (DBA) was also used as an estimate of reliability to be used for comparison across 

derived indices, calculated as: 

 

 𝐷!! =
𝐷!"
𝑀 ∗ 100% (41) 

 

where D12  is the mean difference between the two sessions and M is the mean diffusion-derived 

index of interest.  Additionally, a nonparametric Wilcoxon signed rank was performed, in 

addition to the Bland Altman analysis, to determine whether a significant difference exists 

between the median of each diffusion-derived index for each of the two scans at α=0.05. 

 Group comparisons between healthy controls and MS patients were performed to assess 

differences in DBSI-derived indices. For controls, the mean value was calculated over all white 

matter, which was defined using the automatically segmented ROIs as previously described; for 

MS patients, white matter was further manually delineated into lesion and normal appearing 

white matter (NAWM) from the mFFE images. For each DBSI-derived index (fanisotropic, fisotropic, 

restricted, fisotropic, non-restricted, AD, RD), three non-parametric Wilcoxon rank sum tests were 
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performed to compare (i) healthy white matter vs. lesions, (ii) healthy white matter vs. NAWM 

and (iii) lesions vs. NAWM at a significant threshold of α=0.05.  

6.3 Results 

6.3.1 In Vivo Results and Reproducibility 

 Figure 20a shows the averaged anatomical and DBSI-derived maps over all healthy 

controls, with the anatomical mFFE image on the top row, followed by the fanisotropic, fisotropic, 

restricted, fisotropic, non-restricted, AD and RD maps. In the anatomical image, there is high white 

matter/gray matter contrast. The averaged fanisotropic map indicates heterogeneity in the different 

tissues of the spinal cord, with lower fractional values in the gray matter relative to the white 

matter. This contrast is expected, as the fanisotropic is a representation of the intra-axonal water 

molecules and those outside, but adjacent to the axon fibers, and therefore highlights the 

coherently organized white matter tracts. The isotropic restricted fraction map represents the 

restricted diffusion inside cells, and therefore is intended to be a measure of cellularity. In the 

isotropic restricted fraction map below, there is a higher concentration of isotropic restricted 

diffusion in gray matter as a result of the presence of glial cells, cell bodies and neutrophils; the 

white matter consists of very low values for isotropic restricted diffusion, since the white matter 

is expected to contain primarily coherent, organized tracts. The isotropic non-restricted fraction 

is a measure of hindered and/or free diffusion  (0.3 < ADC < 3 µm2/ms), representing CSF in 

healthy controls, or in diseased tissue, hindered diffusion in the presence of vasogenic edema or 

free diffusion when tissue is loss. As expected, only the boundaries of the spinal cord and CSF 

are highlighted, where partial voluming effects may be present. The AD and RD maps represent 

the diffusion for the anisotropic tensor only, and therefore are unconfounded by vasogenic edema 

and cellularity. For the healthy controls, the AD and RD are similar to the DTI-derived AD and 

RD maps, which is expected in healthy controls since there is no presence of vasogenic edema or 

cellularity confounding these measurements. With AD, higher AD is present in the white matter 

in comparison to gray matter, and with RD, there is higher transverse diffusivity in the gray 

matter than white matter. Finally, it should be noted that in all maps, there are some unrealistic 

fitted values only at the boundaries of the cord, which we ascribe to misregistration, which 

would also be observed in conventional DTI-derived parametric maps.  
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Figure 20: DBSI-derived maps and histograms. (a) Mean anatomical image and DBSI-derived 
maps over all healthy controls. (b) Histograms of all white mater voxels over all controls for scan 
and rescan. 
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 Figure 20b displays the histograms of all the white matter voxels over all of the controls 

for scan 1 (black) and scan 2 (dashed blue) to provide a measure of reproducibility. The 

histograms of the scan and rescan largely overlap one another, indicating high reproducibility for 

all of the indices. Table 9 lists the reproducibility statistics from Bland Altman and the Wilcoxon 

rank sum test. With the exception of fisotropic, non-restricted, the 95% CIs for the mean differences of 

both indices overlap 0 and yield a DBA of less than 10%, indicating that the differences between 

scan and rescan are small. Since the non-restricted isotropic fractions are expected to be close to 

0 in healthy controls, the DBA will reflect an exaggerated difference in the two scans when 

normalized by a small mean value. The histograms as shown in Figure 20b, however, largely 

overlap one another, which indicates the fisotropic, non-restricted may still be a useful, reliable measure. 

6.3.2 Application to MS 

 Figure 21 shows three example cases, with a healthy representative control on the left, an 

MS patient (MS patient 1) with an EDSS of 2 and disease duration of 17 years in the middle, and 

another MS patient (MS patient 2) with an EDSS of 2.5 and disease duration of 8 years on the 

right.  In the representative control, the same trends, as described earlier for the mean control 

maps, are observed. The anisotropic fraction is high in white matter, while the isotropic restricted 

fraction mainly highlights the gray matter. The isotropic non-restricted fraction is low throughout 

Table 9: Reproducibility of DBSI-derived indices. 

 Scan 1 Scan 2 Bland-Altman WSR 
 mean±s.d. mean±s.d. Difference 95% CI  DBA (%) p-value 

DBSI       

       faniso 82.8±2.33% 82.0±7.31% 6.96 [-7.81, 9.49] 1.02 0.81 

fiso_restricted 9.01±1.13% 9.95±1.32% -0.94 [-2.82, 0.94] 9.89 0.19 

fiso_nonrestricted 1.25±0.99% 2.80±2.71% -1.55 [-5.19, 2.08] 76.5 0.81 

AD* 2.39±0.11 2.48±0.10 -0.09 [-0.22, 0.04] 3.62 0.25 

RD* 0.44±0.05 0.45±0.02 -0.01 [-0.08, 0.06] 2.74 0.63 

 *units of µm2/ms 
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all of the spinal cord, and is only evident at the boundaries of the cord, where partial volume 

effects may be present.  
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Figure 21: Anatomical images (top), with DBSI-derived maps following, are displayed for 
control (left) and two patients (right). MS patient 1 (middle), EDSS 2 and duration of disease 
of 17 years; MS patient 2 (right), EDSS 2.5 and duration of disease 8 years.  
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 In MS patient 1, the anisotropic fraction is decreased in the white matter 

(fanisotropic=72.3%) relative to the healthy control  (fanisotropic=81.1%), however the change is not 

localized to the lesions or NAWM; rather, the decrease appears to be attributed to misfit voxels 

throughout the cord. There is an increase in the isotropic non-restricted fraction, which could 

indicate an increase in vasogenic edema in an MS patient, however these increases are speckled 

throughout the cord and appear noisy. With RD, again the map is noisier than the control, but an 

increase is observed throughout the cord (lesion=0.66 µm2/ms, NAWM=0.63 µm2/ms). No 

notable changes are observed in the isotropic restricted fraction or AD maps.  

 For MS patient 2, the maps do not appear as noisy as MS patient 1, however the changes 

are subtle. The isotropic restricted fraction (third row) is slightly higher in the white matter in the 

MS patient (fisotropic, restricted=11.9%) in comparison to the healthy control (fisotropic, restricted =8.76%). 

The AD is slightly lower at the site of the lesion (MS lesion=2.28 µm2/ms, healthy control 

WM=2.39 µm2/ms); for RD, there is an increase at the site of the lesion (MS lesion=0.61 

µm2/ms, control=0.38 µm2/ms). 

Figure 22 summarizes the group trends between healthy control white matter (white), and 

MS white matter tissue in terms of lesions (gray) and NAWM (dark gray) for the DBSI-derived 

indices. There are several trends to highlight, however, it is important to note that only 

significant differences exist for RD. With the anisotropic fraction, in comparison to healthy 

controls, a trend towards decreased anisotropic diffusion fraction (Figure 22a) is observed at the 

site of the lesion (healthy: 82.8%, MS lesions: 81.3%, p=0.75) and in NAWM (healthy: 82.8%, 

MS NAWM: 76.8%, p=0.28). In the MS patients, there appears to be an increase in cellularity, as 

indicated by the trend (healthy vs. lesions: p=0.43, healthy vs. NAWM: p=0.31) towards 

increased isotropic restricted fraction (Figure 22b). Additionally, the increase in the isotropic 

non-restricted fraction (Figure 22c) in the MS cohort (healthy: 1.25%, lesions: 5.17%, NAWM: 

5.12%) would be interpreted as vasogenic edema being present or tissue loss in patients with 

more severe disease, however no significant comparisons exist (healthy vs. lesion: p=0.50, 

healthy vs. NAWM: p=0.31). A slight decrease in AD is observed at the site of the lesion 

(healthy: 2.39 µm2/ms, lesion: 2.36 µm2/ms, p=0.93), along with a significant difference in RD at 

both the site of the lesion (p=0.004) and NAWM (p=0.008).  
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Figure 23 shows the p-value maps from the Chi-square goodness-of-fit test for the same 

healthy control  (Figure 23a) and MS patient 1 (Figure 23d) in Figure 21.  Blue voxels are 

highlighted as having p<0.05, which indicates that there is a significant difference between the fit 

and the data. The mean p-value over healthy white matter in this control (p=0.32) indicates a 

reasonable model fit to the data over white matter voxels.  

For the MS patient, the Chi-square goodness-of-fit indicates a significant difference 

(p<0.01) between the model fit and the test yields a mean p-value of 0.008 over all the white 

matter voxels. Interestingly, the misfits (p<0.05) are not localized to lesions, but rather, highlight 

all of the voxels in the spinal cord, indicating a poor fit with the DBSI model. 
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Figure 22: Boxplots highlighting group trends for DBSI-derived indices in healthy controls 
and MS patients. (a) Anisotropic fraction, (b) Isotropic restricted fraction, (c) Isotropic non-
restricted fraction, (d) AD for anisotropic tensor, and (e) RD for anisotropic are displayed. 
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The normalized signal and the DBSI fit is plotted in Figure 23b and e, along with the 

residuals of the data and fit in Figure 23c and f. It can be observed from these figures that the 

DBSI model more adequately fits the data for the healthy control, consequently resulting in 

lower residuals for the healthy control.  

6.4 Discussion 

The goals of this study was to assess (i) the feasibility of DBSI in the human spinal cord 

in vivo and (ii) the sensitivity of DBSI-derived indices in the spinal cord of MS.  

 DBSI offers the ability to separate inflammation-associated effects arising from 

Figure 23: Goodness-of-fit comparison for healthy control and MS patient. Left column 
displays example for a healthy control, showing (a) the Chi-square goodness of fit map, (b) the 
normalized signal in black along with the predicted fit, and (c) a plot of the residuals. Right 
column shows same plots but for a MS patient (d,e,f).  
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vasogenic edema and increased cellularity. In MS, increased cellularity, along with the presence 

of axonal and myelin injury, can occur; with DTI, the representation of this process would be 

simplified to underestimated demyelination (RD) and overestimation of axonal injury (AD). In a 

more severe case of MS, axonal loss can occur, and the resulting isotropic unrestricted diffusion 

can overexaggerate AD and RD. Due to the possible bias in DTI measurements resulting from 

MS pathology, there is a need to adequately model the effects induced by inflammation and 

axonal loss. DBSI has demonstrated a lot of promise in several animal models including EAE 

mice for the spinal cord (76) and optic nerve (11), in addition to in vivo human MS applications 

for the brain (67,77). Recently, DBSI has been demonstrated in the spinal cord of cervical 

spondylotic myelopathy patients (78), however it is important to note that this protocol was 

limited to a b-value of 800 s/mm2, which would be difficult to adequately probe restricted 

diffusion.  

 Our results indicate that DBSI is feasible in healthy controls, however, the model is 

unable to accurately characterize the underlying pathology in MS. DBSI demonstrated high 

reproducibility in the healthy controls, however this is a much more simplified case than the MS 

patients. The only validation for correct separation of isotropic restricted diffusion and isotropic 

non-restricted diffusion is the correct identification of gray matter and CSF respectively. The 

model did not seem to adequately fit the data for the MS patients, as indicated by the Chi-square 

goodness-of-fit tests, where all of the patient data yielded significant differences between the fit 

and the model. One possible reason for this lack of sensitivity to MS is the inability to separate 

the isotropic diffusion.  This may be due to the lower SNR in spinal cord diffusion MRI, which 

could make it difficult to distinguish isotropic restricted diffusion (0 ≤ ADC ≤ 0.3 µm2/ms) from 

the noise floor (138). Additionally, since the DBSI model is complex, the fitting may 

consequently require more SNR than the other two methods investigated in this work (NODDI 

and SMT).  It would be worthwhile to investigate the reproducibility of the isotropic spectrum 

fitting, in addition to optimizing the number of uniformly discretized points in that spectrum to 

determine whether the model fit would be more stabilized with less points. It is also worth noting 

that the model does not consider the fast exchange between the restricted isotropic components 

due to the lack of myelin, and this could be considered in future work. 

 Lastly, a known degeneracy in fitting biophysical models exists (133,139), where it has 

been demonstrated that a signal can be fit equally as well by two different solutions using the 
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same model. The complexity of the DBSI model may result in several local minima, and due to 

the noisier DW images inherent to spinal cord imaging, it may be difficult to choose the correct 

set of parameters when several sets may yield low objective function values. Constraining the fit 

for the MS cohort may help yield results that more aligned with expected pathology; however 

further investigation is necessary before doing so in order to validate any assumptions.  

Additionally, acquiring more information, such as by varying the diffusion time, may help 

identify the correct solution (140). 

 In summary, DBSI holds promise in separating inflammation effects from other diffusion 

properties, which would allow for increased specificity and sensitivity of AD and RD in the 

presence of pathology. Currently, however, the method may be limited in its application of the 

spinal cord due to low SNR, however, efforts towards DBSI in the spinal cord should be 

continued.  
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CHAPTER 7 

 

Comparison of Biophysical Models to DTI and DKI 

Text adapted partially from: 

By S, Xu J, Box BA, Bagnato FR, Smith SA. Application and evaluation of NODDI in the 

cervical spinal cord of multiple sclerosis patients. NeuroImage: Clinical 2017. doi: 

10.1016/j.nicl.2017.05.010. 

7.1 Introduction 

 The last three chapters have investigated the implementation of biophysical models 

(NODDI, SMT, and DBSI) in the spinal cord of healthy controls and MS patients. NODDI, 

SMT, and DBSI all vary in complexity, have different assumptions, and provide different 

properties of the tissue microstructure. In Chapter 4, we explored the value of NODDI in the 

spinal cord of MS, which has the potential to provide estimates of axonal volume fractions and 

orientation dispersion. We observed that NODDI-derived vin and ODI were significantly 

different in healthy controls and in patients, and the observed trends in patients were in 

agreement to what is known in MS. In Chapter 5, we investigated the utility of SMT, a recently 

developed model that addresses some of the questionable assumptions in NODDI. Similarly, 

however, a decrease in SMT-derived axonal fractions vax was observed in MS patients in 

comparison to healthy controls. Finally, in Chapter 6, the DBSI model was implemented, which 

could provide additional value over NODDI and SMT in that DBSI could provide measures of 

gliosis and vasogenic edema. While the indices were reproducible in healthy controls, the model 

showed no sensitivity to the MS cohort. 

 The goal of this chapter is to compare these biophysical models to two signal models, 

DTI and DKI. DTI analysis can provide another measure of credibility for the biophysical 

models, should the trends in both provide expected observations. With DKI, higher b-values are 

also used, and therefore, DKI allows us to answer the question of whether the sensitivity of the 

previously implemented methods arises from the use of higher b-value data or from the 

biophysical model itself.  



 

 
83 

7.2 Methods 

7.2.1 Human Subjects 

 Local institutional review board approval and written informed consent were obtained 

prior to imaging. The same controls and patients in the NODDI (Chapter 4) and SMT (Chapter 

5) were enrolled. Eight healthy controls (29.0±5.0 years, 5M/3F) participated in this study; to 

assess reproducibility, four healthy controls were rescanned within a month. Six relapsing-

remitting MS patients (39.3±6.1 years, 6F) were recruited for this study. Patients’ disability was 

rated using the Expanded Disability Status Scale (EDSS) score (22), and ranged from 0 to 6 for 

the patients enrolled in this study. Although some of the patients were known to have spinal cord 

disease from previous clinical scans, none of them was experiencing an acute exacerbation. All 

patients had been free from steroid administration for at least 6 months. 

7.2.2 In Vivo Imaging  

 Scans were performed on a 3.0T whole body MR scanner (Philips Achieva, Best, 

Netherlands), using a dual channel body coil for excitation and a 16-channel SENSE 

neurovascular coil for reception. Again, the same exact dataset used for the NODDI and SMT 

study was used for this study. Two b-shells were acquired, including a b=711 s/mm2 shell 

uniformly sampling 32 non-coplanar directions and a b=2855 s/mm2 shell sampling 64 non-

coplanar directions. A total of two non-diffusion-weighted scans (b=0 s/mm2 or b0) were 

acquired, one at the beginning of each b-value shell acquisition. Total acquisition time was 18:11 

min.  

7.2.3 Image Processing  

Conventional diffusion tensor analysis was performed using a nonlinear fit in Camino 

(104) utilizing only the 32 directions from the b = 711 s/mm2 shell and provided FA, MD, AD 

and RD indices. 

Additionally, using all of the same data as NODDI and SMT, DKI fitting was performed 

with a weighted linear least squares estimator (141) using the freely available NYU DKI toolbox 

(142). The resulting DKI maps included the mean kurtosis (MK), axial kurtosis (AK), and radial 

kurtosis (RK). For clarity, the kurtosis estimates the non-Gaussian nature of a distribution, where 

MK indicates the average diffusion kurtosis over all directions; AK indicates the diffusion 
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kurtosis along the primary axis of the kurtosis tensor and is typically low in healthy white matter 

tissue since the diffusion along axons is relatively unrestricted; RK indicates the diffusion 

kurtosis along the axis perpendicular to the primary axis of the spinal cord and is typically high 

in healthy tissue due to the more heterogeneous pattern in the presence of myelin sheaths (58).  

7.2.3 Image Pre-Processing 

The data was processed as described in Chapters 4 and 5, following the same pipeline for 

image registration and segmentation.  

7.2.4 Statistical Analysis 

 Reproducibility of the DTI- and DKI-derived indices in white matter of healthy controls 

were assessed using Bland-Altman (105), where the mean difference, 95% confidence interval 

(CI) for the mean difference and the normalized Bland Altman difference (DBA) were assessed in 

white matter. Additionally, a nonparametric Wilcoxon signed rank was performed, in addition to 

the Bland Altman analysis, to determine whether a significant difference exists between the 

median of each diffusion-derived index for each of the two scans at α=0.05. 

 Group comparisons between healthy controls and MS patients were performed to assess 

differences in DTI- and DKI-derived indices. For controls, the mean value was calculated over 

all white matter, which was defined using the automatically segmented ROIs as previously 

described; for MS patients, white matter was further manually delineated into lesion and normal 

appearing white matter (NAWM) from the mFFE images. For each index three non-parametric 

Wilcoxon rank sum tests were performed to compare (i) healthy white matter vs. lesions, (ii) 

healthy white matter vs. NAWM and (iii) lesions vs. NAWM at a significant threshold of 

α=0.05.  

7.2.5 Contrast of Derived Indices in MS Patients 

 Image contrast between lesions and NAWM in the MS patients was calculated for the 

derived maps for NODDI, SMT, DTI, and DKI, where contrast was defined as:  

 

 
𝐶 =

|𝜇!"#$%& − 𝜇!"#$|
1
2 (𝜇!"#$%& + 𝜇!"#$)

 (42) 
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with 𝜇! representing the mean over the specified region of interest.  Note DBSI was not included 

in this comparison, as it was not able to provide sensitivity of MS.  

7.2.6 Evaluation of Model Fit 

 Since NODDI, SMT and DKI used all of the exact diffusion data, these models can be 

compared directly to one another using the Bayesian Information Criterion (BIC): 

 

 𝐵𝐼𝐶 = k ∗ ln  (n)− 2 ∗ ln  (𝐿   ̂) (43) 

 

where 𝐿   ̂ is the likelihood of the estimated model, n is the number of data points (i.e. n=98), and 

k is the number of free parameters that are estimated. The log likelihood from the n 

measurements can be calculated as: 

 

 

ln 𝐿   ̂ = ln  (𝐴!)− 2𝑙𝑛𝜎 +
𝐴!𝐴!
𝜎!

!

!!!

−
ln  (2𝜋𝐴!𝐴!𝜎! )

2 −
𝐴!! + 𝐴!!

2𝜎!  (44) 

 

where 𝜎 is the square root of the noise variance, 𝐴! is the measurement and 𝐴! is the predicted 

model signal (16). For NODDI, SMT, and DKI, k=5, 2, and 21, respectively. The model yielding 

the lowest BIC is the favored model.  

7.3 Results 

7.3.1 Reproducibility of DKI and DTI   

Table 10 lists the reproducibility metrics for each DKI- and DTI-derived index. It is 

important to note that the 95% confidence intervals for the mean difference of all of the derived 

indices overlap 0 and the Wilcoxon sign rank p-value is greater than 0.05, indicating that the 

metrics are not significantly different from one another in the two different time points. 

Additionally, the DBA for all of the indices is under 10%, indicating that that the variability 

between the two scans is low for DKI and DTI. 
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7.3.2 Application of DKI in MS 

 Figure 24 shows the derived DKI images from the same control and MS patients as in 

Chapters 4 (Figure 14), 5 (Figure 18) and 6 (Figure 21). In the healthy control, the contrast 

between white matter and gray matter is low in both the MK (mean image contrast=0.02) and 

RK (mean image contrast=0.11) maps, as there are areas of inconsistent estimation in the white 

matter, particularly in the dorsal and lateral columns.  There is, however, a noticeable decrease in 

MK and RK at the site of the lesions. For MS patient 1 (middle row), a larger decrease in MK 

and RK is observed in other areas outside the lesion.  

Group comparisons for the DKI-derived metrics are shown in Figure 25. A decrease in 

MK in the lesions of MS patients is detected (p=0.003). No significant differences were observed 

between healthy white matter and MS white matter for AK. For RK, a significant decrease was 

observed between healthy white matter and lesions in MS patients (p<0.001). Additionally, a 

decrease was observed between healthy white matter and NAWM in MS patients (p=0.016), 

albeit to a lesser degree than what was observed in lesions.  

Table 10: Reproducibility metrics for DKI and DTI. 

 Scan 1 Scan 2 Bland-Altman WSR 
 mean±s.d. mean±s.d. Difference 95% CI  DBA (%) p-value 

DKI       

MK 0.81±0.04 0.78±0.10 0.03 [-0.13, 0.19] 3.89 1 

AK 0.53±0.04 0.56±0.02 -0.03 [-0.10, 0.04] 5.39 0.25 

RK 1.56±0.16 1.49±0.20 0.07 [-0.25, 0.40] 4.77 0.63 

DTI       

       FA 0.70±0.06 0.71±0.03 -0.01 [-0.10, 0.08] 1.34 0.88 

MD* 1.15±0.04 1.08±0.09 0.07 [-0.01, 0.16] 6.49 0.13 

AD* 2.28±0.21 2.15±0.14 0.13 [-0.01, 0.27] 5.81 0.13 

RD* 0.58±0.06 0.54±0.07 0.04 [-0.11, 0.19] 7.81 0.38 

     *units of µm2/ms 
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Figure 25: Comparison of MK, AK and RK.  Boxplots highlighting the median, 25th and 75th 

percentiles over controls (WM) and MS patients (lesions and NAWM) for (a) MK, (b) AK and 
(c) RK. Mean values from each subject plotted and asterisks indicate significant differences 
between the groups. Kurtosis metrics are unitless. 
 

10.35 2.10.3

MK RKanatomical
Co

nt
ro

l
M

S 
Pa

tie
nt

ED
SS

 2
M

S P
at

ien
t

ED
SS

 2.
5

10.3

AK

0.55

0.65

0.75

0.85

0.95

0.4

0.5

0.6

0.7

0.8
a

0.6

1

1.4

1.8

M
K 

AK
 

RK
 

Controls 
WM

MS 
Lesion

MS 
NAWM

Controls 
WM

MS 
Lesion

MS 
NAWM

Controls 
WM

MS 
Lesion

MS 
NAWM

b c
*

*
*

* p<0.05

Figure 24: Example images from DKI. Representative control is shown in the first row, 
followed by examples from two MS patients. From left to right, the anatomical, MK, AK and 
RK are shown. 
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7.3.3 Application of DTI in MS 

Figure 26 shows the FA, MD, AD and RD maps for the same control and MS patients as 

shown in Figure 24. The healthy control provides maps with expected features. For FA, there are 

higher values in white matter than in gray matter (FA contrast=1.40).  For MD, the contrast is 

low between gray and white matter and the values are around 1 µm2/mm. For AD, the white 

matter has very high diffusivity in the direction parallel to the fibers, whereas much lower 

diffusivity values perpendicular to the fibers can be observe in the RD maps.  In the MS patients, 

the most noticeable changes are observed in the FA and RD maps, but it is still difficult to 

delineate the lesions from NAWM in patient 1 (FA contrast=0.024, RD contrast=0.130) and 

patient 2 (FA contrast=0.070, RD contrast=0.090). There is a slight decrease in AD in the MS 
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Figure 26: Example images from DTI. Representative control is shown in the first row, 
followed by examples from two MS patients. From left to right, the anatomical, FA and RD are 
shown.  
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patients, however no significant change can be observed in the MD maps. 

Figure 27 displays the boxplots for each DTI-derived index, highlighting the median and 

interquartile range for DTI-derived indices over all volunteers.  
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Figure 27: Comparison of FA, MD, AD and RD.  Boxplots highlighting the median, 25th and 
75th percentiles over controls (WM) and MS patients (lesions and NAWM) for (a) FA, (b) MD, 
(c) AD, and (d) RD. Mean values from each subject plotted and asterisks indicate significant 
differences between the groups. 
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FA (Figure 27a) is reduced in both lesions (mean=0.58±0.05, p<0.001) and NAWM 

(mean=0.59±0.06, p<0.01). No significant differences are detected for MD (Figure 27b), 

however there is a trend towards an increased MD. There is a significant decrease in AD 

(healthy=2.26±0.20, lesion=2.01±0.17µm2/ms, p=0.03), and lastly, differences in RD were also 

seen (Figure 27d) in both lesions (mean=0.73±0.10, p=0.005) and NAWM  (mean 0.77±0.15 

µm2/ms m p=0.01).  

7.3.3 Comparison of Contrast  

Figure 28 compares the mean contrast, along with the standard deviation, between lesion 

and NAWM over all of the patients for the indices that provided the ability to distinguish 

disparity between healthy controls (i.e., NODDI-derived vin and ODI, SMT-derived vax, DKI-

derived MK and RK, and DTI-derived FA, AD and RD). It is apparent that the biophysical 

models NODDI and SMT provide higher contrast between NAWM and lesions than both signal 

models DKI and DTI. DKI-derived MK provides reasonable contrast, however the inter-subject 

variability is large.  

Figure 28: Contrast in diffusion maps. Mean contrast between lesions and NAWM over all 
patients is shown, with error bars indicating the standard deviation over all of the patients. 
Histograms of all the voxels over each patient are shown for lesions (black) and NAWM (dashed 
blue), where large overlap between the two would indicate low contrast.  
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Below the bar plot, a histogram of all the voxels delineating lesions (black) and NAWM 

(dashed blue) over all patients is shown. In all cases, the contrast between lesion and NAWM 

from the NODDI indices, either vin  (0.20±0.08) or ODI (0.15±0.02), and SMT’s vax (0.16±0.09) 

was greater than any of the DKI (MK: 0.13±0.15, RK: 0.07±0.0.05) or DTI indices (FA: 

0.04±0.02, AD: 0.05±0.02 RD: 0.10±0.02). Furthermore, the histograms demonstrate that the 

distributions of the lesion and NAWM voxels mostly overlap one another for the DKI and DTI 

indices, whereas the histograms of the NODDI indices indicate greater deviation from one 

another. In particular, the vin histogram for the NAWM highlights a bump to the right of the 

lesion histogram, indicating a large frequency of increased vin values in the NAWM. With ODI, a 

global increase throughout the cord was observed, so there is overlap in the histograms for 

NAWM and lesion voxels, but a more distinct peak is seen in the lesion histogram.  

7.3.4 Evaluation of BIC 

Table 11 lists the mean BIC for the NODDI, SMT, and DKI fittings over all white matter 

voxels. Both healthy controls and MS patient data are listed, where the lowest BIC is favored. 

Table 11: BIC of NODDI, SMT and DKI. 

  NODDI SMT DKI 
C1 2.89E+05 879.8 1.48E+05 
C2 1.49E+04 10.3 5.32E+03 
C3 4.30E+07 2.17E+04 1.93E+07 
C4 1.25E+04 0.57 3.30E+03 
C5 6.29E+06 830.85 3.40E+06 
C6 7.33E+04 0.89 3.03E+04 
C7 1.61E+04 -1.11 6.37E+03 
C8 2.26E+07 1.18E+03 1.13E+07 
        
MS1 9.17E+05 320.66 4.41E+05 
MS2 5.02E+06 435.93 2.98E+06 
MS3 8.49E+02 2.14 2.93E+02 
MS4 7.92E+06 2.63E+03 4.94E+06 
MS5 1.16E+07 2.20E+03 4.66E+06 
MS6 5.78E+06 2.57E+03 2.43E+06 
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The trends are consistent throughout all of the controls and MS patients.  SMT yields the lowest 

BIC, followed by DKI, and then NODDI. Though not shown, the DTI fitting using both b-value 

shells resulted in the highest BIC overall. Figure 29 shows an example DKI and NODDI fit for a 

white matter voxel, highlighting the larger residuals in the NODDI fit in comparison to DKI.  

7.4 Discussion 

Without histology, it is difficult to truly validate the biophysical models and determine 

whether the derived measurements are closer to the ground truth than DTI and DKI.  However, 

this study identifies which models are capable in vivo of providing reliable (in terms of 

reproducibility of healthy controls and evaluation of fit with BIC) information, while providing 
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Figure 29: Comparison of NODDI and DKI fit. Top figure plots the normalized signal in a 
white matter voxel, with DKI fit in blue and NODDI fit in dashed gray. Bottom figure plots the 
residuals for both models. 
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unique contrasts to characterize MS, consistent to what is known about the underlying pathology 

of the disease. Rather than focusing on the accuracy of these models, the use of only clinical 

diffusion data consequently focuses on the precision of these models.  

Here, we show that DKI and DTI analysis on the same data do provide high 

reproducibility, along with the ability to detect disparity between healthy controls and MS 

patients. A key advantage with the biophysical models is the potential to disentangle multiple 

effects from the diffusion signal and obtain more specific information regarding tissue 

microstructure, which may attribute to the increased contrast observed in the indices derived 

from the biophysical models (NODDI and SMT) over the indices derived by the signal models 

(DTI and DKI). NODDI and SMT showed more disparity between lesions and NAWM, whereas 

with DTI-derived FA and RD, the changes are global, resulting in a decrease in contrast.  The 

global change in FA and RD is consistent with previous findings that point to improved quality 

of fit with NODDI versus DTI (75) and we hypothesize this is due to the non-specificity of the 

tensor model. It is important to note, however, that only the b=711 s/mm2 shell was used in the 

DTI tensor calculation since at higher b-values, the signal is more sensitive to slow diffusing 

time components, and it is well known that the diffusion signal no longer follows a Gaussian 

approximation (50). With DKI, both b-value shells are used to fit the model since the model can 

account for the non-Gaussianity in the diffusion weighted signal. The contrast in DKI-derived 

MK is higher than DTI, however there is large inter-subject variability in the contrast for MK. 

This may be due to the fact that more parameters are required in the fit for DKI in comparison to 

NODDI and SMT, and the simpler models (i.e. less parameters to fit for) will provide smoother 

maps (72).  

Since the DTI model did not use all of the data in the NODDI and SMT acquisition, the 

comparison was not scan time equivalent. Previous work has demonstrated that the underlying 

measurement error in the DTI-derived indices in the spinal cord is negligible when increasing the 

number of averages from one to two for a 32-direction scheme (143). Therefore, we do not 

expect different conclusions in our DTI analysis, if we instead were to use a scan time equivalent 

comparison for DTI. However, we also chose to compare the biophysical models with the DKI 

model in order to have a comparison using all of the same data. This comparison has never been 

made for in vivo spinal cord imaging, but answers a relevant question of whether multi-

compartmental and biophysically based models are indeed more sensitive than conventional 



 

 
94 

single compartment models, or whether the source of sensitivity arises from acquiring multiple 

b-shells. Interestingly, a significant change was observed in MK at the site of the lesion, whereas 

no change was detected with MD. This may indicate DKI’s ability to overcome some of the 

limitations of DTI. To compare the differences between DKI and the biophysical models, we 

referred to our BIC analysis. Here, the results favored SMT, followed by DKI and then NODDI. 

It is important to note, however, that the comparison with SMT may be biased, as the likelihood 

calculation only takes into consideration two points (the mean over all gradient directions for a 

given b-value), whereas DKI and NODDI examine the fit over all 98 points. To this end, though 

the original data is the same, it is expected that the variations in two points for SMT is much 

smaller. However, it is fair to compare DKI and NODDI directly, in which case the BIC analysis 

favors DKI. This may be attributed to the fact that the complexity of the NODDI model requires 

several assumptions. Although these assumptions are able to provide reasonable biophysical 

parameters, too many assumptions may restrict the model from capturing all of the effects 

observed in the signal. Therefore, future work is still necessary to improve on these biophysical 

models.  

SMT and NODDI both provide estimates of axonal volume fractions, however the 

implemented assumptions in the models are different. In particular, NODDI’s assumptions of 

fixed intrinsic diffusivity and modeling of orientation dispersion using only a single distribution 

have been questioned (139). The high similarity in estimates from both models may indicate that 

for in vivo implementation of NODDI in the spinal cord, the assumptions are reasonable.  The 

spinal cord provides a more ideal environment for assessment of these diffusion models than the 

brain, as the fibers are primarily aligned along one axis. Furthermore, the orientation dispersion 

is very low and crossing fibers are not as present as they are in the brain.  However, with SMT, a 

trend towards decreased intrinsic diffusivity was observed, and it would be worthwhile to 

investigate both methods in patients with more progressive disease to determine whether or not 

the intrinsic diffusivity will bias the axonal fractions derived by NODDI and SMT. 

A limitation in this work is that the implemented protocol was optimized for NODDI (10) 

and not SMT. Less variability in the SMT-derived indices may be observed when using schemes 

with less gradient directions in each b-value shell, but with more b-value shells (68). Therefore, 

optimization of the SMT protocol in terms of number of b-value shells and number of gradient 

directions in each shell should be investigated for future studies. Lastly, it would be interesting to 
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implement the white matter tract integrity (WMTI) model, using the kurtosis information, to 

extract biophysical parameters (66). 
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CHAPTER 8  

 

Towards Clinical Applicability: Reducing Scan Times and Increasing Coverage of Multi-

Shell Diffusion Protocols 

8.1 Introduction 

 Up to now, the biophysical models have been implemented in order to maximize SNR in 

one slice, and therefore resulted in a long acquisition time and limited coverage. To move 

NODDI and SMT towards clinical adoption, it is important to consider the scan time and 

potential coverage for the overall utility of these techniques. To this end, this chapter investigates 

the optimization of these techniques using a two-pronged approach. First, to decrease scan time, 

the effect of reduced acquisition schemes (i.e. fewer gradient directions sampled) on the derived 

indices will be investigated. Second, to increase coverage, a multi-slice acquisition can be used 

given the long repetition times implemented; furthermore, the use of multiband will be 

investigated in order to provide additional coverage.  

Multiband strategies enable excitation and acquisition of multiple slices simultaneously 

(144-146), and would be well suited for speeding up acquisition of or increasing coverage in 

diffusion sequences (119). Theoretically, a multiband composite RF, comprised of n sinc pulses 

with different frequency offsets, can be used to acquire multiple slices simultaneously without 

sacrificing in-plane resolution in the slice direction. The RF receive coil array then provides the 

spatial encoding to separate the simultaneously acquired slices (147).  While there is no intrinsic 

penalty on SNR due to the reduction factor R, as in SENSE, the SNR of the multiband SENSE 

acquisition is dependent on the g-factor of the coil setup (i.e. there must be sufficient coil 

sensitivity along the slice direction). Additionally, RF phase cycling is generally employed to 

make unfolding images easier, where a phase shift is applied between slices during the 

simultaneous excitation. For single-shot EPI sequences, since a single excitation pulse is used, 

RF phase cycling is not useful. Individual slices can be shifted in-plane through implementation 

of linear phase modulations over k-space blips in the slice direction, which shifts the coil 

sensitivities and makes the aliased pixels easier to unfold (131). Generally in brain diffusion 

MRI, full brain coverage is feasible, and multiband is used to accelerate the scan time by 

acquiring more slices per TR. However, our spinal cord diffusion sequence is limited by the 
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cardiac cycle, so the primary benefit in using a multiband acquisition is to gain more volume 

coverage.  

8.2 Methods 

8.2.1 Influence of Acquisition Schemes on NODDI and SMT Accuracy 

 The dependency of the accuracy of NODDI- and SMT-derived indices on number of 

gradient directions was investigated by subsampling the fully acquired dataset (see Sections 4.2 

and 5.2). The fully-acquired gradient direction scheme (32 directions at b=711 s/mm2, 64 

directions at b=2855 s/mm2) was ordered using Camino’s orderpoints function (148), which 

orders the directions by minimizing the electrostatic energy of the subsampled sets. Three 

subsampled schemes were analyzed: (i) ‘acq_2/3’, where 2/3 of the acquired data was used (12 

min), consisting of 32 directions in the b=711 s/mm2 shell and 32 directions in the b=2855 

s/mm2, (ii) ‘acq_1/2’, where 1/2 of the acquired data was used (9 min), consisting of 16 

directions in the b=711 s/mm2 shell and 32 directions in the b=2855 s/mm2, and (iii) ‘acq_1/3’, 

where 1/3 of the acquired data was used (6 min), consisting of 16 directions in the b=711 s/mm2 

shell and 16 directions in the b=2855 s/mm2. Table 12 summarizes the number of directions in 

each subsampled scheme. 

In controls, the root mean squared error (RMSE) was calculated over white matter using 

the full acquisition as the gold standard. For RMSE, accuracy was quantified as the bias, or the 

difference from the gold standard; precision was calculated as the standard deviation of the 

difference between the chosen scheme’s derived maps and the gold standard (94,95). RMSE 

units are expressed in the same units as the estimator it is quantifying. In patients, the sensitivity 

Table 12: Summary of Reduced Acquisition Schemes. 

 Lower b-shell 
(711 s/mm2) 

Upper b-shell 
(2855 s/mm2) 

Total Number 
of Directions 

acq 2/3 32 32 64 

acq 1/2 16 32 48 

acq 1/3 16 16 32 
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to lesion presence and conspicuity between lesion and NAWM was observed for each data 

reduction scheme. 

8.2.2 Implementation of Reduced Acquisition Schemes with Multi-Slice Imaging 

 Local institutional review board approval and written informed consent were obtained 

prior to imaging. Three healthy controls (32.0±5.51 years, 1M/2F) participated in this study. For 

the rest of this chapter, all scans were performed on a 3.0T whole body MR scanner (Philips 

Ingenia, Best, Netherlands), using a dual channel body coil for excitation and a 52-channel 

dStream head/spine coil for reception. The half scheme (same as ‘acq_1/2’ above, herein also 

referred to as ‘Half Acquisition’) was implemented, where two b-shells were acquired, including 

a b=711 s/mm2 shell uniformly sampling 16 non-coplanar directions and a b=2855 s/mm2 shell 

sampling 32 non-coplanar directions. A total of two non-diffusion-weighted scans (b=0 s/mm2 or 

b0) were acquired, one at the beginning of each b-value shell acquisition. Other relevant 

parameters include: slices=3, TR=4 beats. All other acquisition parameters were unchanged from 

the protocol previously described in Chapters 4 and 5. Total acquisition time was 11:53 min. 

Additionally, an anatomical image (mFFE) was acquired for image registration and 

segmentation. For comparison, the full acquisition was also acquired to evaluate the RMSE in 

the same scan session.   

8.2.3 Implementation of Reduced Acquisition Schemes with Multiband Imaging  

 Increased coverage was further tested through the use of multiband imaging.  First, the 

feasibility of multiband imaging was tested on a phantom. The phantom consisted of a test tube 

filled with water, submerged in a tub of water to ensure sufficient coil loading. Imaging 

consisted of the half acquisition as described in the previous section (Section 8.2.2), but with the 

following relevant parameters changed: SENSE=1, multiband factor (MB factor)=2, slices=6. To 

assess the effect of slice gap, the scan was repeated with a slice gap of 0, 2, 5, 10 and 20 mm. A 

dynamic noise scan was acquired, such that SNR could be characterized as: 
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where 𝑆 𝑟, 𝑘𝑖  is the signal of the i-th image for the r position in a given ROI. In vivo imaging 

was performed in the same scan session as described in the previous section (Section 8.2.2) for 

all of the same healthy controls. SNR of non-diffusion-weighted images were acquired. The 

multiband sequence (herein referred to as “Multiband”) consisted of: TE=73 ms, TR=4 beats, 

FOV=68x51x85 mm3, resolution=1.25x1.25x10 mm3, slice gap=5 mm, slices=6, MB factor=2, 

SENSE=1, NSA=3. Total acquisition time as 10:13 minutes. An additional mFFE with the same 

coverage as the multiband sequence was acquired. 

For comparison, a multi-slice imaging acquisition (herein referred to as “Multi-Slice”) 

with no multiband was acquired.  In order to provide a fair comparison, scan times were kept as 

close to one another as possible. The multi-slice acquisition consisted of the following 

parameters: NSA=2, TR=6 beats, TE=65 ms, FOV=68x48x50 mm3, resolution=1.25x1.25x10 

mm3, slices=5, SENSE=1.5. Total acquisition time was 11:47 minutes. For evaluation metrics, 

RMSE from the gold standard was calculated for the SMT- and NODDI-derived indices for the 

multiband and multi-slice acquisition. Second, the variability between slices was assessed by 

taking the mean index over all of white matter in each slice, and then taking the standard 

deviation across slices. 

8.3 Results 

8.3.1 Influence of Acquisition Schemes on NODDI  

Figure 30 demonstrates the effect of reduced acquisition schemes on NODDI parameters, 

showing the full acquisition, 2/3 acquisition, 1/2 acquisition, and 1/3 acquisition from left to 

right. It is important to note that the data was extracted from the full acquisition set; therefore the 

impact of gradient direction scheme was evaluated, not the dependency of SNR.  For the 

different gradient acquisition schemes, the change in RMSE in vin is negligible (Figure 30b), 

with a mean RMSE of 3.17 ± 2.13%, 2.37 ± 0.79%, and 3.35 ± 1.27% for the 2/3, 1/2, and 1/3 

acquisition respectively.  For all schemes, the percent error in estimated vin remains under 4%. 

With viso (Figure 30c) and ODI (Figure 30e), the RMSE increases with less gradient directions 

sampled (Figure 30d and f). With the half scheme, the percent error still remains under 10% for 

all indices, yielding a percent error of 1.70, 6.52 and 8.01% for vin, viso, and ODI respectively.  
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Figure 31 shows the effect of the reduced acquisition schemes on a MS patient for vin 

(Figure 31a), viso (Figure 31b), and ODI (Figure 31c). Despite significant decreases in scan time, 

the observed features from the maps derived from the full acquisition scheme are still evident in 

the maps derived from the subsampled acquisition schemes.  The most noticeable differences are 

in the ODI maps, where reducing the acquisition scheme to 1/3 of the full scheme loses some of 

the ability to estimate high ODI values (observed in full acquisition scheme) in the dorsal 

column of the white matter and left ventral horn of the gray matter. 
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Figure 30: Effect of reduced acquisition schemes on NODDI-derived parameters. (a) vin 
maps for a healthy control for full 18 min acquisition (left), along with reduced schemes of 12 
minutes, 9 minutes and 6 minutes (right). Bias maps are shown below each subsampled scheme, 
demonstrating an increased bias in vin with reduced acquisition times, but with fairly negligible 
differences between all acquisitions. (b) Mean RMSE for vin in white matter over all of the 
controls, with error bars plotting the inter-subject variability. (c) viso maps, with bias maps below, 
for same reduced acquisition times as shown in (a). (d) RMSE of viso increases with reduced 
acquisition. (e)   ODI maps, with bias maps below, for same reduced acquisition times as shown 
in (a and c). (f) RMSE of ODI increases with reduced acquisition. 
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8.3.2 Influence of Acquisition Schemes on SMT Accuracy  

Figure 32 highlights the effect of reduced acquisition schemes on the SMT-derived 

indices, vax (Figure 32a and b) and Dax (Figure 32c and d). From left to right, the derived map is 

shown, as calculated from a full dataset acquired, 2/3 acquired – ‘acq_2/3’, 1/2 acquired – 

‘acq_1/2’, and 1/3 acquired dataset – ‘acq_1/3’; the bias maps from the fully acquired (assumed 

to be the gold standard) are shown below each scheme. With reduced data for the SMT fitting, 

there is an overestimation in vax, as indicated by the negative Δvax values (blue). For acq_2/3, the 

bias is only evident in the left dorsal column, but extends into more white matter areas for the 

acq_1/3. The RMSE for vax (Figure 32b), however, is low for the acq_2/3 (mean RMSE = 2.70 ± 

1.55%) and acq_1/2 acquisitions (mean RMSE = 2.55 ± 0.72%); additionally, the mean percent 

error over all controls for white matter vax is 3.06% and 2.12% for the acq_2/3 and acq_1/2 

acquisitions respectively, indicating that the difference between the two reduced schemes is 

negligible. With acq_1/3, the mean RMSE increases to 5.52%, with an increased mean percent 

error for averaged white matter vax of 7.13%. For Dax, similar trends are observed, but RMSE 

Figure 31: Effect of reduced acquisition schemes on NODDI in MS patient. From left to 
right, the NODDI-derived (a) vin map, (b) viso map and (c) ODI map are shown with the fully 
acquired dataset, 2/3 acquisition, 1/2 acquisition, and 1/3 acquisition. With decreases in 
acquisition schemes, and consequently scan times, NODDI does not lose sensitivity to 
distinguish lesions from NAWM. 
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(Figure 32d) increases with reduced acquisition, yielding a mean RMSE, with respect to the fully 

acquired dataset, of 0.11, 0.13, and 0.21 µm2/ms for the acq_2/3, acq_1/2, and acq_1/3 datasets 

respectively.   

 

Lastly, Figure 33 implements the reduced acquisition schemes for vax (Figure 33a) and 

Dax (Figure 33b), in the same MS patient (patient 1) as in Figure 31. It is important to highlight 

that the reduced acquisition schemes do not lose sensitivity in separating lesions from NAWM, 

indicating that the total scan time for SMT acquisition can be reduced by 50% in the current 

study while keeping reasonable estimation of tissue properties.  
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Figure 32: Effect of reduced acquisition schemes on SMT-derived parameters. (a) 
Corresponding vax maps for a healthy control for full 18 min acquisition (left), along with 
reduced data acquisition schemes of 12 minutes, 9 minutes and 6 minutes (right). Bias maps, 
with respect to full acquisition schemes, are shown below each subsampled scheme and 
demonstrate that there is an increased bias in vax with reduced acquisition times, but with fairly 
negligible differences between the 2/3 and 1/2 acquisition. (b) Mean root mean squared error 
(RMSE) for vax in white matter over all of the controls, with error bars plotting the inter-subject 
variability. (c) Dax maps, with bias maps below, for same reduced acquisition times as shown in 
(a). (d) RMSE of Dax increases with reduced acquisition. 
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8.3.3 Increasing Coverage  

Increasing coverage was tested two ways: 1) multiband and 2) multi-slice imaging. 

Figure 34 highlights the dependency of SNR and slice gap (slice gap = 0, 2, 5, 10, 20 mm) when 

using multiband factors of 2 in a phantom.  

 

 

 

 

Figure 34: SNR dependency with slice gap. (a) With increasing slice gap, there is an increase 
in SNR. With multiband (red x), the dependency is greater than with no multiband (blue circles). 
(b) The percent difference in SNR between no multiband and multiband is plotted against slice 
gap. With increasing slice gaps, the percent difference decreases significantly.  

Figure 33: Effect of reduced acquisition schemes on SMT in MS patient. From left to right, 
the SMT-derived (a) vax map and (b) Dax map are shown with the fully acquired dataset, 2/3 
acquisition, 1/2 acquisition, and 1/3 acquisition. With decreases in acquisition time, SMT does 
not lose sensitivity to distinguish lesions from NAWM. 
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With increasing slice gaps, the SNR recovers closer to the maximum SNR (when no multiband is 

applied). With no multiband applied, the SNR increases slightly with increasing slice gap, albeit 

to a lesser degree than when multiband is applied. As observed in Figure 34b, the percent 

difference in SNR between no multiband and multiband decreases with increasing slice gap. A 

substantial increase in SNR occurs when increasing the slice gap from 0 to 5 mm, while the SNR 

boost is relatively minor when increasing the slice gap from 5 to 10 mm. Thus, for practical 

purposes, a slice gap of 5 mm was implemented for the remaining in vivo tests. 

 Figure 35 compares the non-diffusion-weighted images for the half acquisition, the multi-

slice acquisition, and the multiband acquisition.  

Half Acquisition

MultibandMulti-Slice

Figure 35: Comparison of half, multi-slice, and multiband acquisition.  Top image shows 
slice positioning for the comparing schemes overlaid on the sagittal image, where red represents 
the same center slice for all of the schemes, orange for the half acquisition, blue for the multi-
slice acquisition, and green for the multiband. In each box, the anatomical (mFFE) is displayed, 
along with the non-diffusion-weighted image for the different slices. Geometric distortion is 
more evident in some of the slices in the multiband sequence. 
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The coverage for each slice is shown in the top left, where the red box indicates where the gold 

standard slice was acquired. In the multiband acquisition, the signal is lower in the b0 images; 

additionally, geometric distortion is more evident, especially in the bottom two slices.  

 Figure 36 demonstrates the effect of the comparing schemes on the NODDI-derived 

indices vin (Figure 36a and b), viso (Figure 36c and d), and ODI (Figure 36e and f).  

Figure 36: NODDI-derived indices for the comparing schemes for the same slice. (a) From 
left to right, the vin for the half acquisition, multi-slice acquisition, and multiband acquisition is 
displayed. (b) RMSE plots for the acquisitions, highlighting the mean over all controls with the 
error bars indicating inter-subject variation. (c) viso plots for the same control and schemes as 
shown in (a). (d) RMSE plots for viso.  (d) ODI maps for the same control and schemes as shown 
in (a). (e) RMSE plots for ODI. 
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For the axonal volume fraction (vin) estimation (Figure 36 a and b), the RMSE for the multiband 

sequence is highest (mean RMSE±s.d.=18.7±4.01%), whereas the RMSE for the half acquisition 

(12.4±5.46%) and multi-slice (13.4±4.17%) acquisitions are similar. The error is mainly 

attributed to the bias in the measurements, yielding percent errors (mean±s.d.) of 16.5±10.9%, 

13.6±9.96%, and 23.7±24.33% for the half acquisition, multi-slice and multiband schemes 

respectively. The variability between slices is lowest for the half acquisition (5.35±2.05%), 

however the variability for the multi-slice (7.45±2.00%) and multiband (8.97±2.85%) sequences 

is similar. With the isotropic volume fraction (Figure 36 c and d) and ODI (Figure 36 e and f), 

the errors are similar for all three acquisition schemes. The contrast between gray and white 

matter can still be appreciated for vin and ODI in half acquisition and the multi-slice acquisition, 

albeit to a lesser degree than the half acquisition; with the multiband sequence, however, the bias 

in the fit results in difficulty in distinguishing the different tissue types from one another.  
Figure 37 displays the SMT-derived vax (Figure 37a) and Dax (Figure 37c), along with the 

corresponding error plots (Figure 37b and d) for each scheme using the full acquisition as the 

gold standard. The error bars indicate inter-subject variability. Qualitatively, the gray matter and 

white matter contrast is highest with the half acquisition scheme, while the multiband sequence 

provides the lowest contrast. For the axonal volume fraction estimation (vax), with the half 

acquisition, the RMSE is lowest (mean RMSE±s.d.=10.1±1.50), and the variability between 

slices is low (mean variability±s.d.=5.08±2.93%). With the multi-slice scan, the RMSE only 

slightly increases to 10.6±0.3% and the variability remains low (4.60±2.77%). However with the 

multiband acquisition, the RMSE and variability both increase to 13.0±2.11% and 7.36±0.36% 

respectively. This corresponds to a mean percent error of 5.79±6.3%, 6.04±7.43, and 

15.5±17.0% for the half acquisition, multi-slice, and multiband acquisitions respectively, all of 

which are lower than what NODDI yielded for the same axonal volume fraction estimate. Figure 

37c and d summarize the error in the comparing acquisitions for Dax, where a similar trend 

exists, with the half acquisition providing the lowest error (0.49±0.14 µm2/ms).  With the multi-

slice acquisition, the error increases (0.64±0.07 µm2/ms), albeit to a smaller effect than the 

multiband acquisition (0.74±0.14 µm2/ms). 



 

 
107 

8.4 Discussion 

 With an eye towards clinical deployment, it is desirable to optimize these methods for 

spinal cord imaging in vivo with minimized scan time, large coverage and acceptable accuracy. 

To this end, we examined the possibility of 1) reducing scan times by reducing the number of 

gradient directions sampled in the acquisition schemes and 2) increasing coverage with 

conventional multi-slice imaging and simultaneous excitation of multiple slices using multiband 

imaging.  

For the first goal of reducing scan times, reduced acquisition schemes were obtained by 

subsampling the originally full sampled acquisition. Therefore, the SNR of the images remained 

constant, and the only differing factor in the comparisons was the number of gradient directions 

used to fit the models. While noting that the accuracy in fits is dependent on the application at 

Figure 37: SMT-derived indices for the comparing schemes for the same slice. (a) From left 
to right, the vax for the half acquisition, multi-slice acquisition, and multiband acquisition is 
displayed. (b) RMSE plots for the acquisitions, highlighting the mean over all controls with the 
error bars indicating inter-subject variation. (c) Dax plots for the same control and schemes as 
shown in (a). (d) RMSE plots for Dax. 
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hand, these results indicate the potential to significantly decrease scan time without sacrificing 

the accuracy of the derived indices. Interestingly, for the axonal volume fractions derived by 

both NODDI and SMT, the change in RMSE between the 2/3 and 1/2 acquisition schemes is 

negligible, however, for all other indices (NODDI viso and ODI, SMT Dax), there is a clear trend 

of increased RMSE with decreased acquisition times.  When reducing the number of gradient 

direction in the current acquisition scheme by 50%, the error in the estimated axonal fractions for 

NODDI (RMSE = 2.37 ± 0.80%) and SMT (RMSE = 2.55 ± 0.72%) remained low, while also 

noting that the percent error of all of the NODDI- and SMT-derived indices remained under 10% 

for the 1/2 acquisition. Moreover, with the 1/2 acquisition, we demonstrate that the reduction in 

scan time does not come at a cost to sensitivity to lesions.  

We also assessed the feasibility in increasing coverage with NODDI and SMT. With 

multiband imaging, we observed a dependency of SNR with slice gap. Given the limited number 

of receive coil elements in the cervical section of the neurovascular coil, increasing the slice gap 

would differentiate the coil sensitivities more; consequently, this would cause a reduction in the 

noise amplification and the ill-posed problem would be more stabilized. It is important to note 

that the same experiment was performed using the 32-channel head coil, and no dependency 

between SNR and slice gap was observed (data not shown). In vivo, the recovery in SNR from 5 

mm to 10 or 20 mm was negligible, and therefore, we implemented a multiband acquisition with 

a slice gap of 5 mm. For SMT, in comparison to the multiband sequence, the multi-slice 

acquisition produced lower variability between slices, along with smaller RMSE at the center 

slice.  The major difference between the multi-slice and multiband sequences can be attributed to 

the increased geometric distortion due to susceptibility present in the multiband sequence. With 

the multiband sequence, system restrictions (duty cycle, peripheral nerve simulation [PNS], or 

specific absorption rate [SAR]) required an increase of TR from 65 to 73 ms when using high b-

values (b-value >2000 s/mm2); given this consequential SNR decrease, SENSE was turned off in 

the multiband sequence to avoid any further decreases in SNR. The inconsistency observed 

between slices with the multiband sequence would make it difficult to perform reliable 

comparisons for longitudinal and cohort studies. Furthermore, we note that some of the error in 

all of the non-single slice acquisitions may be attributed to possible undesirable RF excitation 

from different slices, preventing the perturbed magnetization from recovering fully.  

We note a difference in SNR dependency between SMT and NODDI. A small increase in 
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the SNR can be observed by comparing the half acquisition scheme to the multi-slice scheme, as 

the number of averages was decreased from 3 to 2 in order to accommodating an increase in TR 

to minimize physiological motion and CSF pulsation effects due to the cardiac cycle. There is a 

larger decrease in SNR with the multiband sequence, however, and for NODDI, it is evident that 

the fitting is more dependent on SNR than with SMT, as observed by the large bias in the fitting 

for the axonal volume fraction (vin). Furthermore, for all sequence comparisons, SMT yielded 

lower errors (both percent error and RMSE) than NODDI. This is expected, as SMT averages 

over all of the gradient directions for a given b-value and therefore, inherently provides an SNR 

boost over NODDI. Therefore, in a clinical setting, SMT is likely more robust than NODDI.  

A limitation in this study was the long scan time required in order to perform all four 

diffusion sequences (gold standard, half scheme, multi-slice and multiband). This is likely to 

produce intra-session error, and this may bias the error calculated from the gold standard, 

depending on when in the scan session each scheme was acquired.  While the scan protocol order 

did not change for any of the controls, it is difficult to account for this intra-session error. 

However, we note that the same trends in error were observed for all controls, and therefore this 

intra-session error should not effect the overall conclusions drawn from comparison of these 

methods.  

In conclusion, we demonstrate the possibility of imaging multiple levels of the cervical 

spinal cord in a reasonable scan time without sacrificing confidence in the SMT-derived indices. 

For NODDI, we observed a dependency to SNR on the accuracy of the derived measurements, 

and therefore, it is more challenging to translate NODDI clinically in terms of providing large 

coverage in a reasonable scan time. Taken together, this represents an important step forwards in 

the field of MS imaging given the shortage of sequences sensitive to axonal loss and the 

paramount need of these MRI methods. 
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CHAPTER 9 

 

Conclusions and Future Directions 

 

 Theoretical physicist Howard Georgi in a review article (149) states, “One of the most 

astonishing things about the world we live is that there seems to be interesting physics at all 

scales. To do physics amid this remarkable richness, it is convenient to be able to isolate a set of 

phenomena from all the rest, so that we can describe it without having to understand everything. 

Fortunately this is often possible. We can divide the parameter space of the world into different 

regions, in each of which there is a different appropriate description of the important physics.” In 

essence, this quote describes the main goal of this work: to understand the limitations of different 

diffusion models for in vivo characterization of the spinal cord.    

 This work has described the microstructural characterization of the human spinal cord in 

vivo. To enable this, first, we investigated the bias in conventional DTI measurements. 

Conventional DTI techniques were optimized in terms of accuracy and reproducibility, 

concluding that a sequence of 15 directions in 9 minutes yielded low error.  Second, we explored 

the feasibility of advanced biophysical diffusion methods, which offers the ability to provide 

measures of axonal volume fractions. While there are a number of possible methods to 

implement, we focused our attention to three methods in particular: 1) NODDI, 2) SMT and 3) 

DBSI. Given the promise in disentangling specific aspects of DTI indices, these biophysical 

models have gained traction in the past few years, but have not been extensively applied to the 

spinal cord in disease cohorts. These methods were individually assessed based on 

reproducibility, model fit (BIC, goodness-of-fit), and sensitivity to distinguish disparity between 

MS patients and healthy controls, in addition to comparing their performance to signal models 

DTI and DKI. In the second aim, we concluded that NODDI and SMT are both feasible, 

however, DBSI still remains challenging in accurately characterizing the data in the patient 

population.  Lastly, we investigated the potential sources of error in these biophysical models 

(SMT and NODDI) to optimize the acquisition schemes in terms of reduced acquisition time and 

increased coverage. Using data reduction strategies and conventional multi-slice imaging, it was 

feasible to acquire up to five levels in the cervical segment in less than 10 minutes.  

Taken together, the results herein favored SMT over NODDI in terms of clinical 
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translation. In a high SNR regime, NODDI and SMT provided similar measures of axonal 

volume fractions, in addition to comparable reproducibility. However, SMT provided more 

robustness to optimized schemes for shorter acquisition times and increased coverage. This is 

expected, as NODDI’s complex model requires more constraints, which are not necessarily 

easily applied to a large cohort of patients. Future work involving histological validation of SMT 

would be worthwhile and could propel the clinical translation of SMT. With histological 

validation, the accuracy of the SMT measurements would be validated. Furthermore, 

optimization of the SMT protocol in terms of number of b-value shells and number of gradient 

directions in each shell may provide more sensitivity in the derived indices. Another technical 

direction stemming from this work would be the investigation of more complex biophysical 

modeling using the SMT approach. For example, a three-compartment model could be 

implemented, accounting for the isotropic component (cerebrospinal fluid, gliosis in pathology, 

etc.) of the diffusion signal.  

Targeting the overarching potential of this work, another interesting extension would be 

the implementation of SMT to a larger, and more diverse, cohort of MS patients, including 

correlation to clinical measures. While the work in this dissertation served as a promising 

preliminary application, a larger study will allow assessment of its prognostic capability. Doing 

so may enable longitudinal tracking of treatment plans and disease progression. Axonal loss can 

be the main cause of irreversible, neurological impairment, and given the advent of 

neuroprotective therapies (150), the ability to capture axonal loss prior to disability would 

provide significant clinical implications and improved patient quality of life.  To this end, 

NODDI and SMT should also be considered in a multi-modality study, which may be beneficial 

in the understanding of MS. For example, the combination of quantitative magnetization transfer 

(qMT) (151), chemical exchange saturation transfer (CEST) (152), and diffusion such as NODDI 

or SMT, could provide a comprehensive assessment of the spinal cord in terms of myelin, 

metabolic and axonal content respectively.  

Given the superior fit of DKI over NODDI, investigation of the white matter tract 

integrity (WMTI) model in the spinal cord would be interesting. With WMTI, biophysical 

parameters, such as the axonal volume fraction, are estimated from the kurtosis (66). While the 

methods discussed in this work quantify axonal volume fractions, mapping axon diameters is 

another active area of study. Studies involving postmortem tissue have demonstrated that smaller 
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axons have a higher probability of being targeted in chronic and acute lesions of MS (153). A 

recent study has used Human Connectome gradients (G~300 mT/m) in order to estimate axon 

diameter sizes in the spinal cord using AxCaliber. Such methods would be difficult to implement 

currently on clinical scanners (G~60 mT/m), where the gradients are far less advanced than those 

implemented on the Human Connectome scanner, as a resolution limit exists (154). Oscillating 

gradient spin echo (OGSE), however, has become a promising technique to achieve shorter 

diffusion times (17,155), and hence, is an attractive method to map axon diameters clinically, but 

has never been studied in the human spinal cord in vivo.  

The use of the Human Connectome gradients, however, may be a viable option to explore 

the potential of DBSI in the human spinal cord in vivo. Studies have reported the impact of 

gradient strength on the possible axon diameter estimation limit (156), where the lower limit on 

clinical scanners is about 4 µm; using Human Connectome gradients, however, the limit is 2 µm. 

These improvements may enable better separation of the isotropic component in the spinal cord 

using the DBSI model.  

 In conclusion, the work presented here describes the feasibility and potential of novel 

diffusion methods for the cervical spinal cord, serving as a vital stepping stone towards the 

clinical implementation of characterizing spinal cord microstructure.  
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