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Chapter 1

Preliminaries

1.1 Introduction

The goal of the present text is to establish some fundamental asymptotic properties of an

important class of positive definite kernels of energy functionals, and to provide an outline of

their applications to manifold discretization and computations with radial basis functions. By an

energy functional on discrete configurations in Ω we understand a mapping of the form

E(· ; g, q) : (x1, . . . ,xN ) ∈ ΩN 7→
∑
i 6=j

g(xi,xj) + τ(N)
∑
i

q(xi), (?)

defined on discrete subsets of a compact set Ω ⊂ Rp of Hausdorff dimension d := dimH Ω.

Functions g and q are lower semicontinuous and g(x,y) is radial, i.e. it depends only on the

distance between its arguments ‖x − y‖ (notation ‖ · ‖ stands for the Euclidean distance in

Rp). The purpose of the factor τ(N) is to ensure that the two sums in the RHS have the same

order asymptotics as N →∞, so it will in general depend on both s and d; we shall return to

it in a moment. Here and in the following we identify configurations {xi} with their counting

probability measures,

(x1, . . . ,xN )←→ 1

N

N∑
i=1

δxi ,

and so the expression (?) can be seen as a multiple of the continuous energy functional

I(· ; g, q) : µ ∈ P(Ω) 7→
∫∫

Ω×Ω

g(x,y)dµ(x)dµ(y) +

∫
Ω

q(x)dµ(x) (??)

defined on P(Ω), the space of probability measures supported on Ω, in the special case of a

discrete µ with the diagonal x = y removed. Indeed, denote the subset of P(Ω) of discrete

measures supported on N vectors by

PN (Ω) :=

{
µ ∈ P(Ω) : µ =

1

N

N∑
i=1

δxi , xi 6= xj for i 6= j

}
.

Then for a kernel g continuous on Ω× Ω and any µN ∈ PN (Ω), setting τ(N) = N gives

I(µN ; g, q) =
1

N2
E(µN ; g, q) +

1

N2

∑
i

g(xi,xi). (1.1)
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As the second sum in the RHS goes to zero as N → ∞, equation (1.1) shows, unsurprisingly,

that the asymptotic behavior of the minima of E(· ; g, q) as N →∞ is determined by the minima

of I(· ; g, q) in the case of a continuous kernel g; as is shown in the classical potential theory, the

same applies to the case of a g(x,y) with an integrable singularity on the diagonal x = y. As

the asymptotic order remains N2 for any integrable kernel, τ(N) = τs,d(N) = N, s < d.

The importance of minima and minimizers of the functionals (?)–(??) lies in their interpretation

as ground states of a certain physical system. Expression (?) corresponds to the Hamiltonian

of the collection (x1, . . . ,xN ) of particles with pairwise interaction energy g(· , ·) subject to an

external potential q. Optimization of the Hamiltonian over the phase space leads to the ground

state of the discrete system or, when N →∞, to the mean-field limit.

The present text targets the Riesz kernel g(x,y) = ‖x− y‖−s, especially the hypersingular

case of s ≥ d, although most of the results in Section 1.4.1 concerning the case of integrable

g apply to positive definite lower semicontinuous kernels that are monotone decreasing as a

function of radius. A discussion of properties of the Riesz kernel that make it quite remarkable

is contained in Section 1.4. We have remarked that when g has an integrable singularity, using

τ(N) = N in (?) ensures that minimizers of E(· ; g, q) over PN (Ω) converge to those of I(· ; g, q)
over P(Ω); this result therefore applies to the Riesz kernel when s < d.

In the hypersingular case, I(µ; g, q) is not defined for measures µ such that µ � Hd, the

Hausdorff measure on Ω, whereas the functional E(· ; g, q) is well-defined on PN (N) for all N ,

which raises the question of the continuous functional describing its asymptotic behavior as

N →∞. This behavior was first described in the Poppy-seed bagel theorem (PSB) of the seminal

paper by Hardin and Saff [62] in the case q ≡ 0 (see Theorem 1.3 below). It was shown that

the minima of E(· ; g, 0) grow as N1+s/d when N → ∞ and s > d; this implies in particular

that one has to set τ(N) = τs,d(N) = N s/d for s > d. Furthermore, identifying a collection

(x1, . . . ,xN ) ∈ ΩN with its normalized counting measure, and minimizing the functional E(· ; g, 0)

over such collections, one obtains discrete measures weak∗-converging to Hd on Ω and possessing

asymptotically optimal local properties of covering and separation (the formal definitions can

be found below). It therefore became clear that the hypersingular kernel might be particularly

well-suited as a means to produce discrete configurations in a controlled fashion; this objective

can be loosely stated in the following form.

Problem. Given a compact rectifiable set Ω ⊂ Rp with a probability measure µ on it, absolutely

continuous with respect to the appropriately restricted Hausdorff measure Hd, approximate µ on

Ω with discrete measures.

Here (d-)rectifiabilityd-rectifiable set means it is the image of a bounded subset of Rd under a

Lipschitz mapping. The local behavior of discrete approximants is an important factor, influencing

the quality of meshes [98] and meshless solvers [29]; although not the primary motivation for

the Riesz energy-based discretization, it turns out that in practice the Voronoi tessellations
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of the minimizers have a highly regular structure. The method of [62] was later successfully

applied to nonuniform distributions by Borodachov, Hardin, and Saff [15, 18]. The present text

is an extension of the above work; the contents Chapter 2 is the next natural step in this

direction, introducing an external field instead of a multiplicative weight. Thereby we can confine

optimal configurations to specified sets. Furthermore, the notion of Γ-convergence introduced in

Section 1.5 below allows us to give a unified treatment of the continuous functionals describing

the asymptotics of the minimizers of both integrable and non-integrable gs, as well as of the

weighted hypersingular gs with an external field.

1.2 Overview of results

In this section we shall give the approximate formulations of the main results of the dissertation.

The technicalities are largely omitted here; full details can be found in the corresponding

statement(s) referenced in parentheses. We write Ms,d for a certain numerical constant, which

can be computed with arbitrary precision, and depends only on the s and d, see Section 1.4.2.

We write ωN for an N -point subset of Ω, so ωN := {x1, . . . ,xN} ⊂ Ω; furthermore, whenever we

deal with a Riesz energy functional E(· ; g, q), its minimizer in PN (Ω) is denoted by ω̂N . Recall

also that we identify ωN with elements of PN (Ω). The Dirac delta-function supported at x is

denoted by δx; we denote (t)+ :=max(0, t), positive part of the number. The closed Euclidean

ball of radius r in Rp, centered at x, is written as B(x, r). In this overview s > d = dimH Ω; note

that in this range for s, the value of τ(N) in (?) has to be set to τ(N) = τs,d(N) = N s/d.

First-order term of the hypersingular Riesz energy with an external field

Theorem (Theorem 2.1). Assume that the compact set Ω is d-rectifiable and Hd(Ω) > 0. Let

further L1 = L1(q,Ω) be the (unique) constant defined so that

dµq := Ms,d (L1 − q)d/s+ dHd

is a probability measure on Ω. Then every sequence ω̂N , N ≥ 2, of minimizers of the functional

E(· ; gs, q) on ΩN , N ≥ 2, satisfies

lim
N→∞

E(ω̂N ; gs, q)

N1+s/d
=

∫
L1d+ q(x)s

d+ s
dµq(x) =: S(q,Ω).

Furthermore, if ωN , N ≥ 2, is a sequence of N -point configurations on Ω satisfying

lim
N→∞

E(ωN ; gs, q)

N1+s/d
= S(q,Ω),

3



then
1

N

∑
x∈ωN

δx
∗
⇀µq, N →∞.

The support of the limiting distribution is thus characterized as a certain sublevel set of

the external field q(x). A sequence of configurations attaining the asymptotics S(q,Ω) is called

asymptotically optimal. Note that the uniqueness of the weak∗ limit of an asymptotically optimal

sequence does not depend on the convexity of q, and is entirely a consequence of the strong

repulsive properties of gs.

An important feature of the minimizers of E(·, ; gs, q) is that, like those of the unweighted

E(·, ; gs, 0), they have the optimal order minimal separation distances and (on the support of µq)

covering distance, see theorem below. For this result we shall require that Ω be Ahlfors regular

with dimension d, that is, for some positive constants c0, C0, inequalities

c0R
d ≤ Hd(B(x, R) ∩ Ω) ≤ C0R

d (1.2)

must hold for all x ∈ Ω and 0 < R ≤ diam(Ω), diameter of Ω. In the following statement,

Ω(L) = {x ∈ Ω : q(x) ≤ L} denotes an L-sublevel set of function q, and dist (x, ω̂N ) =

min{‖x − y‖ : y ∈ ω̂N} is the distance from point x to the set ω̂N , induced by the Euclidean

metric on Ω.

Theorem (Theorems 2.7 and 2.10). If Ω ⊂ Rp is compact and Ahlfors regular with dimension d,

then for every sequence of minimizers ω̂N , N ≥ 2, there exists a constant C1 such that

min
{
‖x− y‖ : x 6= y; x,y ∈ ω̂N

}
≥ C1N

−1/d N ≥ 2.

If in addition Ω is d-rectifiable, then for each h > 0 there is a constant C2, such that for every

x ∈ Ω(L1 − h) there holds

dist (x, ω̂N ) ≤ C2N
−1/d, N ≥ 2.

Riesz energy on fractal sets

Results discussed in the previous section required that Ω be d-rectifiable; on the other hand,

observe that minimizers of E(· ; g, q) are well-defined provided Ω is compact in Rp. It is therefore

natural to consider behavior of the Riesz energy functionals on compact non-rectifiable sets, in

particular on the class of self-similar fractals. The latter are a natural choice given the scale-

invariance of the Riesz kernel; that is, minimizing the unweighted Riesz energy on similar sets

leads to similar minimizers.

Let us recall some basic definitions first. A similitude ψ : Rp → Rp is a mapping that can be

4



written as

ψ(x) = rA(x) + z

for some orthogonal matrix A ∈ O(p), a vector z ∈ Rp, and a contraction ratio 0 < r < 1. A

self-similar fractal, as defined by Hutchinson [69], is a compact Ω ⊂ Rp comprising the fixed

points of a collection of similitudes {ψm}Mm=1 with contraction ratios rm, 1 ≤ m ≤ M , that is,

satisfying

Ω =

M⋃
m=1

ψm(Ω),

where the union is disjoint. Such mappings {ψm} are said to satisfy the open set condition if

there exists a bounded open set V ⊂ Rp such that

M⋃
m=1

ψm(V ) ⊂ V,

where the sets in the union are disjoint.

In [13] Borodachov, Hardin, and Saff considered, in particular, properties of E(· ; gs, 0) on

fractal sets; they have shown that for the minimum values of E(· ; gs, 0) on a self-similar fractal Ω

there does not exist an asymptotic limit, even assuming that all the contraction ratios of Ω are

equal: r1 = . . . = rM . Using their results, Calef [32] found a sequence of minimizers on a union

of a rectifiable set with a self-similar fractal for which the weak∗ limit does not exist; consult

Section 3.1 for further details.

Chapter 3 contains, among others, the following new results. Note that we use Fraktur for

sequences of positive integers, as in N ⊂ N; see also Section 1.3 and Glossary in Appendix A for

notation.

Theorem 1.1 (Theorem 3.4). Let Ω ⊂ Rp be a compact self-similar fractal satisfying the open

set condition, and dimH Ω = d < s. If {ωN : N ∈ N}, is a sequence of configurations for which

lim
N3N→∞

E(ωN ; gs, 0)

N1+s/d
= lim inf

N→∞

E(ω̂N ; gs, 0)

N1+s/d
,

then the corresponding sequence of empirical measures converges weak∗:

νN
∗
⇀

Hd
Hd(Ω)

, N 3 N →∞.

As usual, here Hd is the d-dimensional Hausdorff measure on Ω, and ω̂N stands for the

minimizer of the E(· ; gs, 0) Riesz energy in PN (Ω). For a sequence N, we write

{N} := lim
N3N→∞

{logM N},

5



where {·} in the RHS stands for the fractional part, and

Es(N) := lim
N3N→∞

E(ω̂N ; gs, 0)

N1+s/d
,

if either limit exists.

Theorem 1.2 (Theorem 3.6). If Ω is a self-similar fractal with equal contraction ratios, and

two sequences N1, N2 ⊂ N are such that

{N1} = {N2},

then

Es(N1) = Es(N2).

In particular, the latter limits exist. Moreover, the function gs,d : {N} 7→ Es(N) is continuous on

[0, 1].

Applications to meshless methods

In this section (and in the eponymous chapter) we will refer to the elements of ωN as nodes. The

“node” terminology is common in the radial-basis functions (RBF) literature [51], and reflects

that the discrete measures as above ordinarily serve as the nodes of interpolatory/FD stencils.

Furthermore, for simplicity we assume that Ω has the full dimension, so d = p.

In order to use the minimizers of (?)-type functionals in constructing discrete sets efficiently,

one needs a suitably fast optimization method. On the other hand, geo-modelling applications that

were of special interest to us often demand enormous node sets on rather complicated domains,

usually with non-differentiable boundary; for example, Section 4.4.1 considers the Earth-shaped

Ωetopo. Our objective was the following.

Problem. Guarantee that for a given function ρ(·), for every node x ∈ ωN the distance to the

nearest neighbor ∆(x) satisfies ∆(x) � ρ(x), that is, the two quantities differ only up to a

constant factor.

(In Chapter 4 we refer to the function ρ as radial density.) High dimensionality of the

optimization problem arising from (?), combined with nontrivial domain constraints creates a

formidable obstacle to applying any of the widely-used optimization solvers that involve the

gradient (for example, the popular L-BFGS-B [30]). The difficulty lies in the large number local

of minima of (?), and the complexity of domain Ω.

To tackle the above issues, we have developed the procedure for node distribution in Chapter 4;

its general outline is as follows. Assume that the relation ∆(x) � ρ(x) corresponds to the

measure µ on Ω; the latter will necessarily be continuous with respect to Hd. First, discretize
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the target distribution µ using stratified quasi-Monte Carlo sequence [31], built from periodic

(i.e., using a periodized version of the Euclidean metric) minimizers of E(· ; g, q); then, apply the

modified gradient flow of the truncated version of the Riesz energy with multiplicative weight,

chosen so that the limiting distribution of the flow is exactly µ. More precisely, our construction

performs T iterations, moving the i-th node position on the t-th iteration, 1 ≤ t ≤ T , denoted by

x
(t)
i , in the direction of vector

g
(t)
i = s ρ

(
x

(t)
i

)s K∑
k=1

x
(t)
i − x

(t)
j(i,k)

‖x(t)
i − x

(t)
j(i,k)‖s+2

, 1 ≤ i ≤ N. (1.3)

Here x
(t)
j(i,k), 1 ≤ k ≤ K, are the K nearest neighbors of x

(t)
i . The use of flow (1.3) reduces the

necessity of minimizing the whole energy functional to an implementation of line search that

determines the length of the step in direction g
(t)
i ; in fact, even fixed size stepping with some

elementary adjustments has proven to work well. Chapter 4 describes using a point inclusion

check and a fraction of the distance to the nearest neighbor ∆(xi):

x
(t+1)
i =


x

(t)
i +

∆
(
x

(t)
i

)
t+ C

g
(t)
i

‖g(t)
i ‖

if this sum is inside Ω;

x
(t)
i , otherwise,

1 ≤ i ≤ N, 1 ≤ t ≤ T.

The multiplicative approach is employed to reduce the computational complexity of the algorithm,

and the theoretic groundwork is provided by [19]. Additional simplification is attained due to using

the truncated gradient, as shown in (1.3); see discussion on p.82. An even more general treatment

is possible, comprising both kernel truncation and external field. For the precise formulation of

the algorithm see Section 4.3.1. The procedure outlined here is scalable (our implementation

[102] handles up to about 3 million nodes on a standard laptop) due to a complexity that is

essentially linear in the number of nodes N , provides locally regular node sets, handles complex

densities well, and does not create artifacts on non-smooth boundaries.

Γ-convergence

To reveal the common features of the asymptotic behavior of minimizers of Hamiltonians (?) for

all values of s, in Section 1.5 we shall introduce the notion of Γ-convergence. It will be shown

that Γ-convergence of energy functionals leads to weak∗ convergence of their minimizers. This

behavior is the same for both integrable and non-integrable kernels g; the analytic tools necessary

to establish it however turn out to be somewhat different, and Chapter 2 is dedicated to proving

the properties underlying the Γ-convergence in the hypersingular case with external field. The

corresponding argument for the integrable case is classical, and we shall sketch out its essential
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ideas in Section 1.5.1. The unified view of Γ-convergence allows one to obtain the expression for

the minimizer of the hypersingular Riesz energy functional including both a multiplicative weight

and an external field:

E(x1, . . . ,xN ; gs, κ, q) :=
∑
i 6=j

κ(xi,xj)gs(xi,xj) + τ(N)
∑
i

q(xi), (1.4)

where s ≥ d = dimH Ω, as well as gives as simple proof of the uniqueness of the limit of an

asymptotically optimal sequence in P(Ω), see Sections 2.5 and 1.5.2 respectively.

Observe that the positive definiteness of the Riesz kernels implies also that the functional in

(??) is convex on P(Ω), and thus has a unique solution. An additional motivation for considering

the continuous form I(· ; g, q) is also that, assuming that the kernel g(· , ·) is positive definite and

integrable, the first integral in the RHS of (??) defines scalar product on P(Ω), and therefore a

Hilbert space, in which the weak convergence is equivalent to the weak∗ topology in (Ω) (see

also 2‡ in Section 1.4.1). Optimization of (??) for q identically equal to zero is then equivalent

to the problem of approximation of the minimizing distribution with discrete measures in the

aforementioned Hilbert space.

1.3 Notation and layout

The bold typeface is reserved for vectors, x ∈ Rp; Fraktur is used for sequences of integers, N ⊂ N.

All the distributions we discuss are supported on some compact subset of Rp, denoted by Ω; its

Hausdorff dimension dimH Ω = d is fixed within each chapter. In Chapter 4, p = d, and thus Ω

has full dimension (in particular, the dimension of the ambient space is not fixed throughout the

text). We write Hd for the d-dimensional Hausdorff measure normalized to coincide with the

respective Lebesgue measure. The scaling factor τ(N) in (?) is defined as

τ(N) = τs,d(N) :=


N, s < d,

N logN, s = d,

N s/d, s > d.

(1.5)

We shall suppress the reference to s and d in τs,d(N) whenever it cannot cause confusion. The

same applies to the asymptotic order T (N)(N) = Ts,d(N) := Nτs,d(N). For further reference,

consult the list of common symbolic notation and important terms in the Glossary.

The layout of the present text is following. We collect all the necessary information from

classical potential theory and calculus of variations in the Chapter 1, and develop a description

of the proofs contained in Chapters 2–3 in terms of Γ-convergence. Chapter 2 is dedicated to

minimizing the hypersingular Riesz kernel with an external field; Chapter 3 considers the case of

8



Ω being a fractal. Chapter 4 discusses applications of the Riesz energy functionals, primarily

for generation of node configurations used to form RBF-FD stencils. Appendices include the

Glossary and excerpts from the listings of relevant routines. Additional details about the contents

of each chapter can be found in the respective introductory section.

1.4 Riesz kernel

1.4.1 Potential-theoretic case 0 < s < d

The classical potential theory apparently goes back at least to Gauss; other notable contributors (in

roughly chronological order) include Poincaré, Vallée-Poussin, the Riesz brothers, Leja, Frostman,

Szegő, Keldysh, Lavrentiev, Brelot, Ohtsuka, Choquet, Fuglede, Rakhmanov, Totik, Saff, and

Dragnev. The field has a number of important connections to other areas of mathematics, for

example, theory of PDEs, polynomial approximation, martingales, theory of holomorphic functions,

measure theory, etc. The present section highlights some essential properties of integrable Riesz

kernels as well as the properties of respective energies and potentials.

Recall that we are dealing with the problem of minimization of the integral operator I(· ; g, q)
defined in (??) over the set of probability measures supported on Ω. The specific assumptions of

smoothness on Ω are postponed until the later formulations; in general we shall need at least

that Ω be rectifiable. We shall write I(µ) whenever this cannot cause confusion, so

I(µ) =

∫∫
Ω×Ω

g(x,y)dµ(x)dµ(y) +

∫
Ω
q(x)dµ(x),

for a lower semicontinuous kernel g(· , ·); in some cases we shall restrict g to positive definite

radial kernels. We shall further use gs(x,y) = ‖x− y‖−s to denote the Riesz s-kernel. One more

important notation to be introduced here is

Uµ(x; g) :=

∫
Ω
g(x,y)dµ(y),

the potential of measure µ with the kernel g; as before, whenever it cannot create confusion,

we shall write simply Uµ(x). Potential of a measure with a Riesz s-kernel gs is abbreviated to

Uµs (x), and the respective energy to Is(µ).

We are ready for a discussion of the Riesz energy in the integrable case. The three lists that

follow contain properties of integrable kernels, the potentials they generate, and the corresponding

energies obtained by integrating the potentials. Although we focus on the Riesz s-kernel, some

properties are stated for a general lower semicontinuous or positive definite kernel. It should

be observed that by positive definiteness we understand simply the positivity of the Fourier

transform, or as the complete monotonicity of the radial function g̃(r) defined by g(x,y) =

9



g(‖x−y‖2) =: g̃(r2). Finally, suppose for simplicity that Ω is a sufficiently smooth d-dimensional

manifold in Rp.
We shall not use most of the properties of integrable kernels below in any of the following

chapters; the cursory overview here is intended only as an illustration of the depth of classical

potential theory. Certainly no claim for generality or completeness is made, instead we refer the

reader to the several excellent sources [83, 74, 100, 93, 96].

1. A Riesz kernel gs(x, ·) is lower semicontinuous as a function of one variable x.

2. The kernel gs(x, ·) is i) superharmonic for s ∈ (0,max{0, d − 2}], ii) subharmonic for

s ∈ [max{0, d− 2}, d).

3. Riesz kernel gs(x,0) = ‖x‖−s has positive Fourier transform1:

(
‖x‖−s

)∧
= γs‖λ‖s−p,

where γs = πs−p/2 Γ((p−s)/2)
Γ(s/p) . Consequently, the Riesz kernel is positive definite in the sense

of Bochner.

4. It follows from the previous item that Riesz kernels gs have semigroup properties in Rp for

s < p; it is convenient to denote ft(x) := γ−1
d−t‖x‖

t−p = γ−1
d−tgp−t(x,0), then

fr(x) ∗ ft(x) = fr+t(x),

where ∗ denotes convolution in Rp. This equality can be analytically extended to pairs

r, t satisfying <(r + t) < p and r, t 6= p+ 2n, n = 0, 1, 2, . . ., [74, (1.1.11)]. Note that the

relation between exponents s in gs and t in ft is s+ t = p.

5. gd−2 is the fundamental solution of the Poisson equation:

−∆gd−2 = cpδ0

with c2 = 2π and cp = (p− 2)Hp−1(Sp−1) = 4π2γp−2.

The above properties of the kernel gs imply corresponding properties of Uµ(x; gs). Perhaps the

most important is that in the harmonic case s = d − 2, Uµ(xgd−2) gives the solution to the

Poisson problem with the data given by the generating measure µ.

1†. If g is a lower semicontinuous kernel, Uµ(x, g) is l.s.c. as a function of x. Moreover, it is

l.s.c. in the weak∗ topology on Ω as a function of µ (this result is sometimes called principle

of descent).

1where f̂(λ) :=
∫
e−2πix·λdx.

10



2†. Uµ(x, g) of a (sub-, super-)harmonic kernel g is itself (sub-, super-)harmonic outside suppµ.

Moreover, if g is superharmonic, Uµ(x, g) is also superharmonic on Rp.

3†. By 2†, Riesz potentials satisfy a maximum principle that depends on the exponent s. They

also satisfy the following weak maximum principle for all values of s, 0 < s < p. Suppose

Uµs (x) ≤M, x ∈ suppµ.

Then

Uµs (x) ≤ 2sM, x ∈ Rp.

4†. For every function F (x), supported on Ω and p+ 2 times continuously differentiable, and

any 0 < s < d, there exists a signed absolutely continuous measure on Ω such that, in the

notation of 4,

F (x) = Uµs (x) = (fp−s ∗ µ)(x).

Moreover, the density of µ is given by

dµ

dHd
= (fs−p ∗ F )(x).

Note that in the harmonic case s = p− 2 it is sufficient to require that F have 3 continuous

derivatives; it follows from 5 that the corresponding density of µ is then given by − 1
4π2 ∆F .

5†. If Uµs (x) is continuous on suppµ, it is continuous on Rp.

6†. If d = p, any superharmonic function f(x) can be (uniquely) represented on Ω as

f(x) = Uµp−2(x) + h(x), x ∈ Ω,

for an appropriate choice of a measure µ supported on Ω, and a harmonic function h; both µ

and h are uniquely determined by Ω. This result is called the Riesz representation theorem

for superharmonic functions.

7†. The lower semicontinuity property of Uµ(x) in µ can be made more precise as follows. If a

sequence of probability measures {µn : n ≥ 1} is such that

µn
∗
⇀µ, n→∞,

then

lim inf
n→∞

Uµn(x) = Uµ(x) Hd-a.e.

The “Hd-a.e.” above can be replaced with “except for sets of capacity zero”. Notation
∗
⇀
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here stands for the convergence in the weak∗ topology, see (1.6) below. This statement is

known as the lower envelope theorem [26, 91, 93, Theorem 6.9].

Lastly, we formulate the properties of energies I(µ; g) and especially of Is(µ).

1‡. I(µ) of a lower semicontinuous kernel g is itself lower semicontinuous in the weak∗ topology,

as a functional on the space of probability measures on Ω.

2‡. As can be seen from 3 for example, a positive definite kernel such as Is(µ) corresponds

to a scalar product on the space of probability measures on Ω. Indeed, fix 0 < s < d and

define the mutual energy of two probability measures µ, ν on Ω by

I[µ, ν] :=

∫∫
Ω×Ω

gs(x,y)dµ(x)dν(y).

It can be verified that the self-energy I(µ) = I[µ, µ] is nonnegative for any signed measure,

and is equal to zero only if µ ≡ 0. Clearly, the quadratic form I[µ, ν] can then serve as

a scalar product to introduce Hilbert space topology on the vector space of all signed

measures on Ω with finite energies.

It is important to note that the weak topology in the resulting Hilbert space is equivalent

to the usual weak∗ topology when restricted to the set of probability measures supported

on Ω [74, pp. 88–89].

3‡. In the harmonic case s = p− 2, the energy integral can be represented as

Ip−2(µ) =
1

cp

∫
Rp
‖∇Uµp−2(x)‖2dx.

The proof of this equality consists in applying 5 together with integration by parts.

1.4.2 Hypersingular case s ≥ d

We call the Riesz kernels gs(x,y) = ‖x− y‖−s hypersingular when s ≥ d = dimH Ω. The reason

to consider such kernels will become evident from the following Theorem 1.3, which shows that

the minimizers of (2.1) with q ≡ 0 are well-distributed (in a sense to be made precise later) on

the set Ω, which need not be the case when s < d.

For the purposes of studying the asymptotic behavior of N -point configurations ωN on a com-

pact Ω we consider their normalized counting measures. Recall that such measures N−1
∑

x∈ωN δx

are said to weak∗ converge to the measure µ if

∀f ∈ C(Ω),
1

N

∑
x∈ωN

f(x)−→
∫
f dµ as N →∞, (1.6)
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where, as usual, C(Ω) denotes the family of all continuous functions defined on Ω. Weak∗

convergence is denoted by
∗
⇀.

In this chapter we further need to impose some regularity conditions on the underlying

compact set. A set Ω ⊂ Rp is said to be d-rectifiable if it is the image of a bounded subset of Rd

under a Lipschitz mapping. Note that any subset of a d-rectifiable set is also d-rectifiable. Here

and below we write Bd for the d-dimensional unit ball. We use Hd to denote the d-dimensional

Hausdorff measure on Rp normalized so that [0, 1]d ⊂ Rd ⊂ Rp has unit volume, and by Hd
its restriction to Ω. In particular, for a d-rectifiable Ω, Hd(Ω) < ∞. We shall also employ the

following compact notation (see (?), p.1):

Es(ωN ) := E(ωN ; gs, 0)

Es(Ω, N) := inf
ωN⊂Ω

E(ωN ; gs, 0).
(1.7)

This infimum is attained for compact sets Ω because the Riesz s-kernel ‖x − y‖−s is lower

semicontinuous on Ω× Ω.

Theorem 1.3 ([63, 16]). (Poppy-seed bagel theorem) Suppose s ≥ d and Ω ⊂ Rp is d-rectifiable

and compact. If s = d, it is further assumed that Ω is a subset of a d-dimensional C1 manifold.

Then for s = d

lim
N→∞

Es(Ω, N)

N2 logN
=
Hd(Bd)
Hd(Ω)

, (1.8)

while for s > d, the following limit exists:

lim
N→∞

Es(Ω, N)

N1+s/d
=

Cs,d

Hd(Ω)s/d
, (1.9)

where Cs,d is a finite positive constant independent of Ω and p, and 1/0 = +∞. Furthermore, if

Hd(Ω) > 0 and {ωN}N≥2 is any sequence of N -point configurations on Ω satisfying

lim
N→∞

Es(ωN )

Es(Ω, N)
= 1, (1.10)

then
1

N

∑
x∈ωN

δx
∗
⇀

dHd
Hd(Ω)

, N →∞. (1.11)

This theorem is sometimes described as the Poppy-seed bagel theorem (PSB), a name that

alludes to discrete equilibrium configurations on the torus. It first appeared in [63, Theorem 2.1],

and in the present generality in [16, Theorems 1–3].

In particular, the theorem holds for any compact Ω ⊂ Rd as well as any compact subset of

a smooth d-dimensional manifold. To be consistent with the notation of (1.9), we define Cd,d
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according to (1.8):

Cd,d := Hd(Bd) =
πd/2

Γ (d/2 + 1)
, d ≥ 1, (1.12)

where Γ is the standard gamma function. It is known for d = 1, s > 1 that

Cs,1 = 2ζ(s), s > 1, (1.13)

where ζ is the Riemann zeta function, see e.g. [79], and the claimed result of universal optimality

of E8 and the Leech lattice, implies in particular

Cs,d = |Λd|s/dζΛd(s), s > d, (1.14)

for d = 8, 24. This claim has been recently announced by Cohn, Kumar, Miller, Radchenko, and

Viazovska, who are using the methods of [36] by the same authors. Here Λd denotes the lattice

achieving optimal packing in these two dimensions: E8 and the Leech lattice, respectively; |Λd|
stands for the volume of the corresponding fundamental cell and ζΛd is the corresponding Epstein

zeta-function. However, the exact value of Cs,d is unknown for all d ≥ 2, d 6= 8, 24. In the cases

d = 2, 4, the conjectured value is also described by (1.14) with Λd, respectively, the hexagonal

and D4 lattices; see [22, Conjecture 2]. It was shown [22, Proposition 1] that the conjectured

values (1.14) serve as upper bounds for their respective Cs,d. For more details, consult [64] and

[22].

One way of generalizing Theorem 1.3 so that it yields non-uniform limiting distributions

was studied in [16], where the Riesz potential is multiplied by a weight satisfying semicontinuity

conditions. More precisely, one minimizes the energy

E(x1, . . . ,xN ; gs, κ, 0) =
∑

x6=y∈ωN

κ(x,y)

‖x− y‖s
,

for a non-negative weight function κ on Ω × Ω. Our present goal is to develop an alternate

approach by introducing an external field equipped with a suitable scaling factor that depends

on the number of points N .

With regard to practical implementation, it is worth mentioning that by using a localized

weight κ(· , ·) := κN (· , ·) that depends on the number of points, one can lower the computational

complexity of Ews (ωN ). This approach is investigated in [20], and we shall return to it in Chapter 4.

On the other hand, a number of papers are dedicated to producing well-distributed discrete

configurations by drawing them from a suitable random process with, perhaps, further local

optimization, see for example [1], [5], [78].
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1.5 Γ-convergence

Let X be a metric space and denote by U the topology on X corresponding to its metric. Suppose

that the functionals F, Fn : X → R, n ≥ 1, satisfy

1Γ. for every sequence {xn} ⊂ X such that xn → x, n→∞, there holds lim infn→∞ Fn(xn) ≥
F (x);

2Γ. for every x ∈ X there exists a sequence {xn} ⊂ X converging to it and such that

limn→∞ Fn(xn) = F (x).

We shall then say that the sequence {Fn} is Γ-converging to the functional F on (X,U) (on

X equipped with topology U); in symbols, Fn
Γ−→ F . The sequence in 2Γ is called the recovery

sequence. The notion of Γ-convergence originated in the theory of elliptic operators, and was

developed by De Giorgi in the 1970s [21]. Its primary value for our purposes consists in that in

conjunction with certain compactness property, it guarantees that minimizers of Fn converge to

those of F . Namely, suppose that there exists a compact subset K of the metric space X, such

that infX Fn = infK Fn for all n ≥ 1. Then the following result holds.

Theorem 1.4. If a sequence of functionals {Fn} on a metric space X satisfies the above

compactness property and Γ-converges to F , then

1. F attains its minimum and minF = limn→∞ inf Fn

2. if {xn} is a sequence of (global) minimizers of Fn, converging to an x ∈ X, then x is a

(global) minimizer for F .

The proof is straightforward; see for example [21, Theorem 2.1]. In the context of energy

minimization, the metric space X = P(Ω) is chosen to be the space of all probability measures

on Ω with the weak∗ topology; this topology is metrizable, and X is itself compact by the

Banach-Alaoglu theorem.

To define the sequence of functionals on P(Ω), recall that the set PN (Ω) ⊂ P(Ω) consists of

measures of the form 1
N

∑N
i=1 δxi , and that the Riesz energy functional (?)

E(x1, . . . ,xN ; gs, q) =
∑
i 6=j

gs(xi,xj) + τ(N)
∑
i

q(xi),

is defined (only) on PN (Ω). An extension to the whole P(Ω) can now be written as

1

T (N)
EN (µ; gs, q) :=

 1
T (N)E({x : x ∈ suppµ}; gs, q) if µ ∈ PN (Ω),

+∞, otherwise.
(1.15)
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Here as before, the scaling factor τ(N) = τs,d(N) is defined by (1.5); T (N) = Nτ(N). The

same construction applies to an any kernel with a singularity on the diagonal, provided that its

asymptotics is known. Thus, the remaining part of this section, as well as the results of Chapter 2

can be generalized to similar (approximately) scale-invariant kernels, as for example the weighted

kernels E(· ; gs, κ, q) of [15], see (1.4). It is known in the case of an integrable kernel g that the

sequence of minimizers of the extended functionals EN (µ; gs, q) converges to the minimizer of

the continuous energy functional (??), and also that the functionals themselves Γ-converge to

(??). Similarly, the results of Chapter 2 yield in particular a proof that in the hypersingular case

s ≥ d, (1.15) also Γ-converges to a functional on absolutely continuous measures in P(Ω) (the

absolute continuity here is w.r.t. Hd on Ω), defined by

S(µ; gs, q) :=

Cs,d
∫

Ω ϕ(x)1+s/d dHd(x) +
∫

Ω q(x)ϕ(x) dHd(x), µ = ϕdHd,

+∞, otherwise.
(1.16)

Here ϕ is the Radon-Nikodym derivative; Cs,d stands for the constant from the PSB Theorem 1.3.

Recall that a d-rectifiable set is a Lipschitz image of a closed d-dimensional set; a d-regular

set satisfies inequalities (1.2). Recall also the classical integral functional I(· ; gs, q), defined in

(??). Gamma-convergence properties of the first-order asymptotics of the Riesz kernel can be

summarized in the following propositions.

Proposition 1.5. Suppose the set Ω is d-rectifiable and d-regular. If q is continuous on Ω, and

the kernel gs is the integrable Riesz kernel gs(x,y) = ‖x− y‖−s with s < d = dimH Ω, then

1

N2
EN (· ; gs, q)

Γ−→ I(· ; gs, q), N →∞,

on P(Ω) equipped with the weak∗ topology.

Proposition 1.6. Suppose Ω is a d-rectifiable set. If q is continuous on Ω and kernel gs is the

hypersingular Riesz kernel, gs(x,y) = ‖x− y‖−s with s > d = dimH Ω, then

1

N1+s/d
EN (· ; gs, q)

Γ−→ S(· ; gs, q), N →∞,

on P(Ω) equipped with the weak∗ topology.

The remaining part of this section is dedicated to the proofs of these two statements.

Proposition 1.5 follows from a well-known [96] argument, that applies to a general integrable

kernel, whereas Proposition 1.6 can be seen as a reformulation of the results of [65]. Their

comparison reveals the difference in the asymptotic structures of energies for s < d and s ≥ d:

constructing a recovery sequence for the integrable case requires a delicate argument that we

present in Section 1.5.1, whereas a hypersingular recovery sequence is produced by simply
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taking the minimizers of the corresponding functional; it should however be noted that the

latter approach is possible only provided the asymptotic analysis in Chapter 2 is in place. This

distinction illustrates certain rigidity that the hypersingular minimizers possess, which makes

them especially appealing for various applications, see Chapter 4.

1.5.1 Γ-convergence for the integrable case

In the present section we shall outline a proof of Γ-convergence in order to contrast it with

the corresponding proofs in the hypersingular case, see Sections 1.5.2 and 2.5. The exposition

here follows [96]; we shall omit some technical details, since all the following chapters deal

exclusively with the hypersingular case, and refer the interested reader to [94, 96]. The reader

should compare the proof of Γ-convergence for an integrable Riesz kernel given here, with the

proof of Proposition 1.6 in the following section, covering the hypersingular case. Although the

d-dimensional Hausdorff measure plays an important part in both proofs, its roles are quite

different; it serves as an estimate for the Γ-limit in the former, and appears as the unique

minimizer of a convex variational functional in the latter. Not surprisingly, it is the reduction to

the variational argument that takes the most effort in the hypersingular case; the subsequent

treatment is easier due to convexity of the resulting Γ-limit.

Proof of Proposition 1.5. Suppose {µN} ⊂ P converges weak∗ to µ ∈ P(Ω); we shall first

verify the property 1Γ. Note that if {µN} does not contain a subsequence of the form {µn ∈ Pn(Ω)},
the inequality in 1Γ is trivial. Thus, without loss of generality, µN ∈ PN (Ω).

Observe that, since the term
∫

Ω qdµ is linear in µ, the functional I(µ; gs, q) is lower semicon-

tinuous in µ by the semicontinuity of gs and q, see 1‡. Property 1Γ then follows simply from the

lower semicontinuity of I(µ; gs, q) in µ, and the representation (see (?) and (??) for the difference

in scalings)
1

N2
EN (µN ; gs, q) = I(µN ; gs, q). (1.17)

To verify property 2Γ, fix a probability measure µ ∈ P(Ω); we shall construct a sequence µN

converging weak∗ to µ. Suppose the density dµ/Hd is continuous on Ω; this is not a restrictive

requirement, since µ can be approximated with a mollifying sequence, and then a diagonal

argument applies to the latter. We shall further assume for simplicity that the parametrization

of Ω, denoted by ψ : Cd → Ω, is bi-Lipschitz and defined on the unit cube Cd ⊂ Rd.
Following [96], we shall choose a sequence sN , N ≥ 1, such that N−1/d = o(sN ) and o(sN ) =

o(1), N → ∞, and split the cube Cd into equal cubes Cm, 1 ≤ m ≤ M with side length in the

interval [sN , 2sN ). By [94, Lemma 7.4, p.143], for every N there exist numbers nm such that∑
m nm = N and

|nm −Nµ[ψ(Cm)]| < 1, 1 ≤ m ≤M, (1.18)
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where we used that the mapping ψ is a bijection. It is further possible to place nm points

{xj,m}nmj=1 in each cube Cm, so that for any pair of distinct points xi,l, xj,m ∈ Cd there holds

‖xi,m − xj,m‖ ≥
3c

N1/d
, (1.19)

for a constant c independent of N . (An explicit construction of such points is given by the

hypersingular Riesz minimizers, see Theorem 2.7.) Note that by (1.18), the counting measures of

the discrete collections constructed in this way converge weak∗ to µ; denote such measures by

µN , N ≥ 2, for the rest of this proof. We shall verify that they satisfy the equality in 2Γ. Note

that by the continuity of q, convergence of the external field term is readily implied by the weak∗

convergence; it therefore suffices to deal with the case of q ≡ 0.

By (1.17) and the above reasoning, we need to show that

lim
N→∞

I(µN ; gs, 0) = I(µN ; gs, 0)

or, in the integral notation,

lim
N→∞

∫∫
Ω×Ω

gs(x,y)dµN (x)dµN (y) =

∫∫
Ω
gs(x,y)dµN (x)dµN (y).

Let us fix δ > 0 and write Dδ for the δ-neighborhood of diag (Ω × Ω) in l∞ product metric.

Splitting the integral in the LHS gives∫∫
Ω
gs(x,y)dµN (x)dµN (y) =

∫∫
Dδ

gs(x,y)dµN (x)dµN (y) +

∫∫
Dcδ

gs(x,y)dµN (x)dµN (y),

where M c denotes the complement of the setM . Since gs(x,y) is continuous outside Dδ, µN
∗
⇀µ

implies

lim
N→∞

∫∫
Dcδ

gs(x,y)dµN (x)dµN (y) =

∫∫
Dcδ

gs(x,y)dµ(x)dµ(y).

To finish the proof, we will show that the integral I(µN ; gs, 0) over Dδ vanishes as δ → 0

uniformly in N . This is clearly the case for I(Hd; gs, 0), where Hd is restricted to Ω, so it suffices

to estimate the integral with respect to µN by that with respect to Hd. By (1.19), there holds

B(xi, cN
−1/d) ∩ B(xj , cN

−1/d), i 6= j, and for any pair of points x, y from two such distinct

balls, ‖x− y‖ ≤ 2‖xi − xj‖. From the lower bound of the d-regularity of Ω,

Hd[Ω ∩B(xi, cN
−1/d)] ≥ c0c

dN−1, 1 ≤ i ≤ N.

This allows to obtain the aforementioned estimate in terms of I(Hd; gs, 0) as follows. For large
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enough N , 2cN−1/d < δ, thus, writing Bi := B(xi, cN
−1/d), we have∫∫

Dδ

gs(x,y)dµN (x)dµN (y) =
1

N2

∑
‖xi−xj‖<δ

i 6=j

gs(xi,xj)

≤ 2s

c2
0c
d

∑
‖xi−xj‖<δ

i 6=j

∫∫
Bi×Bj

gs(x,y)dHd(x)dHd(y)

≤ 2s

c2
0c
d

∫∫
D2δ

gs(x,y)dHd(x)dHd(y).

As explained above, the RHS tends to zero when δ → 0.

Remark 1.7. In the above argument, it was essential that the kernel is continuous away from

diag (Ω× Ω) and monotone decreasing as a function of distance; a similar argument therefore

applies to any integrable kernel satisfying these assumptions.

1.5.2 Γ-convergence for the hypersingular case

Before proceeding to prove Proposition 1.6, we shall rewrite (2.5) to show the provenance of

(1.16), and also derive from variational principles that S(· ; gs, q) is indeed minimized by the

measure µq in (2.5). As follows from (2.5)–(2.6), the expression for the density dµq/dHd(x),

ϕq(x) =
dµq

dHd
(x) =

(
L1 − q(x)

Cs,d(1 + s/d)

)d/s
+

, (1.20)

where the constant L1 is chosen so that ϕq dHd is a probability measure, allows to rewrite the

energy asymptotics (2.6) as

lim
N→∞

E(x̂1, . . . , x̂N ; gs, q)

Ts,d(N)
=

∫
Ω

L1 + sq(x)/d

1 + s/d
dµq(x)

= Cs,d

∫
Ω
ϕq(x)1+s/d dHd(x) +

∫
Ω
q(x)ϕq(x) dHd(x)

= S(µq; gs, q),

where {x̂i} is a collection minimizing E(· ; gs, q) on PN (Ω). This implies Γ-convergence to (1.16)

on sequences of minimizers. The limit in the LHS is denoted by S(q,Ω) in (2.6), Chapter 2.

Let us now apply a variational argument to show that the density ϕq minimizes S(ϕdHd; gs, q);
for brevity, we shall write simply S(ϕ; gs, q). First, observe that S(ϕ; gs, q) is convex in ϕ, and

must therefore attain a minimum on the set
∫

Ω ϕdHd = 1. Suppose ϕ̂ is a minimizer, and let δϕ
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satisfy
∫

Ω δϕdHd = 0. Taking Gâteaux derivative at ϕ̂ in the direction δϕ gives

d[S(ϕ̂; gs, q); δϕ] = lim
t→0

1

t
[S ((ϕ̂+ δϕ); gs, q)− S (ϕ̂; gs, q)]

= lim
t→0

1

t

[∫
Ω
δϕ(x)t

(
Cs,d(1 + s/d)ϕ̂(x)s/d + q(x)

)
dHd(x) + o(t)

]
=

∫
Ω
δϕ(x)

(
Cs,d(1 + s/d)ϕ̂(x)s/d + q(x)

)
dHd(x).

Since ϕ̂ is a minimizer, equality d[S(ϕ̂; gs, q); δϕ] = 0 must hold for every δϕ such that
∫

Ω δϕ dHd =

0. This implies that the factor

f(x) := Cs,d(1 + s/d)ϕ̂(x)s/d + q(x)

is an Hd-a.e. constant. Indeed, let δϕ = f−
∫

Ω fdHd/Hd(Ω); there holds
∫

Ω δϕ dHd = 0, therefore

0 =

∫
Ω
δϕ fdHd

=

∫
Ω
δϕ ϕ̂ dHd −

∫
Ω

δϕ

Hd(Ω)

(∫
Ω
fdHd

)
dHd

=

∫
Ω

(
f − 1

Hd(Ω)

∫
Ω
fdHd

)2

dHd,

as desired. Let L1 =
∫

Ω fdHd so that f = L1 Hd-a.e.; then the definition of f and (1.20) imply

ϕ̂ = ϕq Hd-a.e. Note that we did not make any smoothness assumptions on ϕ̂ except that all the

above integrals exist.

Proof of Proposition 1.6. To verify the property 1Γ of the definition of Γ-convergence, suppose

a sequence {µN} ⊂ P(Ω) weak∗ converges to µ ∈ P(Ω); observe that if

lim inf
N→∞

1

T (N)
EN (µN ; gs, q) = +∞ ≥ S(µ; gs, q),

so the inequality in 1Γ holds trivially, and its proof is complete. It will therefore suffice to assume

that the limit in the last equation is finite. In particular, {µN} must contain a subsequence

comprising only elements from PN (Ω), so passing to a subsequence if necessary we now suppose

that the sequence of discrete measures µN , N ≥ 2, is such that

µN
∗
⇀µ, µN ∈ PN (Ω).

Furthermore, Lemma 2.25 implies that µ must be absolutely continuous with respect to Hd for

the above limit to be finite. Note also that this explains setting S(· ; gs, q) to +∞ on measures

with nontrivial singular components in the Lebesgue decomposition with respect to Hd, as +∞
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is the only value for which construction of a recovery sequence is possible.

By Theorem 2.3, provided continuity of the density dµ/dHd, which we shall assume for

simplicity, there exists a function q∗ such that the minimizers of (1.15) also converge to µ; denote

them by µ∗N , N ≥ 2. Furthermore, it follows from Theorem 2.1 that for the sequence {µ∗N}, there

holds
1

N1+s/d
EN (µ∗N ; gs, q

∗)→ S(µ ; gs, q
∗), N →∞.

Note that both q and q∗ are continuous; the latter follows from the continuity of the density of

µ. Using this together with the weak∗ convergence of the two sequences µN , µ
∗
N to µ, we can

conclude

lim inf
N→∞

1

N1+s/d
EN (µN ; gs, q) = lim inf

N→∞

1

N1+s/d
EN (µN ; gs, q

∗) +

∫
Ω

(q − q∗) dµ

≥ lim
N→∞

1

N1+s/d
EN (µ∗N ; gs, q

∗) +

∫
Ω

(q − q∗) dµ

= S(µ ; gs, q
∗) +

∫
Ω

(q − q∗) dµ = S(µ ; gs, q).

This gives property 1Γ in the definition of Γ-convergence.

To establish property 2Γ, first note that taking µ∗N as the recovery sequence immediately

implies 2Γ for any µ such that S(µ ; gs, q) < +∞. On the other hand, S(µ ; gs, q) = +∞ implies

that µ contains a nonzero singular component with respect to Hd, and by Lemma 2.25,

lim
N→∞

1

N1+s/d
EN (µN ; gs, q) = +∞ = S(µ ; gs, q)

for every sequence {µN} of probability measures weak∗ converging to µ.

Remark 1.8. Note that the assumption of continuity of density dµ/dHd is not very restrictive;

the general case can be reduced to it by a mollification argument, as outlined in the proof of

Proposition 1.5.

Remark 1.9. The above proof shows also that any sequence {µN} ⊂ P(Ω) with an optimal

asymptotics

lim
N→∞

1

T (N)
EN (µN ; gs, q)

must converge weak∗ to the measure µq. This is a corollary of the convexity of the functional

S(· ; gs, q), by which it has a unique minimizer, and property 1Γ of the Γ-convergence.
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Chapter 2

First-order term of the hypersingular Riesz energy with an
external field

In the language of Section 1.5, the present chapter contains the proof of Γ-convergence of the

functional (?) (also in display (2.1) below) for a hypersingular kernel gs in the presence of an

external field. We derive the first-order asymptotics of minimal values of the functional, as well

as the weak∗ limit of minimizing configurations; local separation and covering properties are

established as well.

The outline of the chapter is as follows. In the following section we specialize the notation

from Chapter 1 to the case of hypersingular Riesz kernel in the presence of an external field.

Section 2.2 contains an extension of the PSB Theorem 1.3 to this case; it also includes results on

separation and covering of minimizing configurations. We discuss several numerical examples in

Section 2.3. Finally, Section 2.4 contains proofs of the results stated in Section 2.2. This chapter

reproduces with minor modifications the contents of a paper by Douglas Hardin, Edward Saff,

and the author [66], published in the SIAM Journal on Mathematical Analysis.

2.1 Overview

We are concerned with the problem of minimizing the discrete Riesz s-energy of N particles

constrained to a compact subset Ω of Rp of Hausdorff dimension d under the influence of an

external field q(x). More precisely, we minimize

Eqs,d(ωN ) := E(x1, . . .xN ; gs, q) =
∑
x6=y

x,y∈ωN

‖x− y‖−s + τ(N)
∑
x∈ωN

q(x), s ≥ d,
(2.1)

where from (1.5),

τ(N) =

N s/d, s > d,

N logN, s = d,

over N -element subsets ωN = {x1, . . .xN} ⊂ Ω.

The factor τ(N) is chosen so that the two terms on the RHS of (2.1) have the same order of

growth as N →∞, equal to T (N) = Ts,d(N) = Nτs,d(N). Since we shall fix the values of s , d in

all arguments, we shall often write simply T (N) if there is no risk of confusion. Here we consider

only the case when s is chosen greater than or equal to the dimension of the set Ω because for

s < d such external field problems come under the umbrella of classical potential theory and

have been well studied, as described in Chapter 1.
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One motivation to consider this energy expression is that (under mild conditions on the

set Ω) for any probability measure µ on Ω that is absolutely continuous with respect to the

d-dimensional Hausdorff measure restricted to Ω, there is an easily described external field q(x)

for which the normalized counting measures of the minimizers of (2.1) weak∗ converge to µ

(formal definitions are given in the next two subsections).

For s > d the minimizers of (2.1) are shown to have optimal orders of separation and covering

as N → ∞. Minimization of (2.1) therefore provides well-distributed nodes on compact sets,

which can be used for a number of applications; for example, meshless methods [84], halftoning

[106] and sensor deployment [70].

Recall that external fields arise in the Gauss variational problem, which involves minimizing

the functional introduced in equation (??),

I(µ ; g, q) =

∫∫
Ω

g(x,y)dµ(x)dµ(y) +

∫
Ω

q(x)dµ(x),

for a pair of fixed integrable lower semicontinuous functions g : Ω× Ω→ R ∪ {+∞}, q : Ω→
R∪{+∞} over the probability measures µ ∈ P(Ω) supported on Ω. The classical work of Ohtsuka

[85] deals with this question when Ω is locally compact and g is integrable on Ω. The case

g(x,y) = log 1
‖x−y‖ and a number of its applications to constructive analysis are extensively

treated in the book [93] by Saff and Totik. More recently, the question of solvability of the Gauss

variational problem was considered by Zorii in [108] and [109]; several references to general

monographs on the subject can be found in Section 1.4.1.

As follows from (1.5), for an integrable kernel g, the problem of minimization of (?) over

N -element sets ωN ⊂ Ω deals with

E(x1, . . . ,xN ; g, q) =
∑
x6=y

x,y∈ωN

g(x,y) +N
∑
x∈ωN

q(x), N = 2, 3, . . . . (2.2)

Such problems have been studied by Petrache, Rougerie and Serfaty in [87], [92] for the Riesz

s-kernel

gs(x,y) = ‖x− y‖−s, (2.3)

with s < d, and for the logarithmic kernel in [93]. An earlier series of papers [41], [23] and [24] by

Brauchart, Dragnev, and Saff explores minima of (2.2) when Ω is a d-dimensional sphere and

d− 2 ≤ s < d. The paper [8] by Bilogliadov discusses minimizing (??) with the Riesz kernel for

s = 1 and a rotationally symmetric q over probability measures supported on the 2-dimensional

unit sphere.

We consider configurations of points restricted to a compact set Ω ⊂ Rp, such that Hd(Ω) > 0,

d ≤ p. The external field q : A→ (−∞,∞] is assumed to be lower semicontinuous and finite on a
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subset of Ω of positive Hd-measure. We write M̊ for the interior of a set M ⊂ Rp, and M for its

closure. For a real number t, let (t)+ := max(0, t). The closed ball in Rp of radius r centered at

the point x is denoted by B(x, r). Notation L1(Ω, µ) stands for the class of functions integrable

on the set Ω with respect to measure µ.

The minimal (s, d, q)-energy of the set Ω over all N -point subsets of Ω is given by (see (2.1))

Eqs,d(Ω, N) := inf{Eqs,d(ωN ) : ωN ⊂ Ω, #ωN = N}, (2.4)

where #S denotes the cardinality of a set S. Since q is lower semicontinuous and Ω is compact,

there exists a configuration of N charges ω̂N for which the infimum in (2.4) is attained; i.e.,

Eqs,d(ω̂N ) = Eqs,d(Ω, N).

Such a configuration ω̂N will be called an N -point (s, d, q)-energy minimizer on Ω.

2.2 Main results

2.2.1 A Poppy-seed bagel theorem for (s, d, q)-energy

The following two results extend Theorem 1.3 to (s, d, q)-energy.

Theorem 2.1. Assume 0 < d ≤ p, and s ≥ d. Let Ω ⊂ Rp be a d-rectifiable compact set,

Hd(Ω) > 0, and in the case s = d require additionally that Ω be a subset of a d-dimensional

C1-manifold. Further assume that q is a lower semicontinuous function on Ω and finite on a

set of positive Hd-measure. Define L1 and µq to be the positive constant and probability measure

determined, respectively, by∫
Ω

(
L1 − q(x)

Cs,d(1 + s/d)

)d/s
+

dHd(x) = 1, dµq :=

(
L1 − q(·)

Cs,d(1 + s/d)

)d/s
+

dHd, (2.5)

where Cs,d for s ≥ d is the same as in Theorem 1.3. Then

lim
N→∞

Eqs,d(Ω, N)

Ts,d(N)
= S(q,Ω) :=

∫
L1 + sq(x)/d

1 + s/d
dµq(x). (2.6)

Furthermore, if {ωN}N≥2 is any sequence of asymptotically (s, d, q)-energy minimizing configura-

tions on Ω; that is,

lim
N→∞

Eqs,d(ωN )

Ts,d(N)
= S(q,Ω), (2.7)
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then
1

N

∑
x∈ωN

δx
∗
⇀ dµq as N →∞. (2.8)

Remark 2.2. As with Theorem 1.3, this result holds on the (possibly) larger class of sets Ω

satisfying Hd(Ω) =Md(Ω), where Md is the d-dimensional Minkowski content.

As an application of Theorem 2.1, we deduce a method for constructing a sequence of (s, d, q)-

energy minimizing collections ω̂N such that their normalized counting measures weak∗ converge

to a given distribution.

Theorem 2.3. Let the assumptions of Theorem 2.1 on the set Ω and numbers s, d, p hold. Assume

further ρ : A → [0,∞) is an upper semicontinuous function, such that ρ dHd is a probability

measure. Then the lower semicontinuous function q : A→ (−∞, 0] given by

q(x) := −Ms,dρ(x)s/d, where Ms,d := Cs,d(1 + s/d), (2.9)

is such that any sequence {ω̂N}N≥2 of (s, d, q)-energy minimizers converges weak∗ to ρ dHd:

1

N

∑
x∈ω̂N

δx
∗
⇀ρdHd, N →∞. (2.10)

In particular, for s = d equation (2.10) holds with (2.9) taking the form

q(x) := − 2πd/2ρ(x)

Γ (d/2 + 1)
. (2.11)

Remark 2.4. The reader will no doubt observe that except for the case d = 1 which is covered

in (1.13), the usefulness of the last theorem is limited by the lack of knowledge of the value of Cs,d

when d ≥ 2. Fortunately, the limit distribution in equation (2.10) is stable under perturbations

of the constant Ms,d: small error in the value of Cs,d used in (2.9) only leads to small errors in

the resulting weak∗ limit of minimizers. We quantify this statement in Proposition 2.5 below.

Another possible way of overcoming this difficulty is modifying the problem of minimizing

(2.1) so that the charges are restricted to an unbounded set Ω. It will be addressed in a future

work.

Proposition 2.5. Assume that in Theorem 2.3 one uses an approximate value of Cs,d satisfying

C ′s,d = (1 + ∆)Cs,d

with a fixed ∆. Let also ρ(x) ≥ δ > 0 for all x ∈ Ω and write q′(x) for the external field defined

with C ′s,d instead of Cs,d in (2.9). Then for ∆ < Ms,d/
(
1 + (‖ρ‖∞δ−1)s/d

)
, the weak∗ limit of
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the (s, d, q′)-energy minimizers has density ρ′ = dµq
′
/ dHd satisfying

|ρ′(x)− ρ(x)| ≤ ∆
d(1 + ‖ρ‖s/d∞ /ρ(x)s/d)

sMs,d
+ o(∆), ∆→ 0. (2.12)

Example 2.6. Consider the problem of minimization of (4, 1, q)-energy on the interval [0, 2],

where

q = (x− 1)2 +
1

2
.

Formula (1.13) gives the exact value of C4,1, which enables us to plot the density of µq[0,2] on [0, 2].

For comparison, we also plot the densities of asymptotic distributions obtained for non-exact

values of C4,1 by taking ∆ = ±0.3,±0.25,±0.2,±0.1,±0.05,±0.03 in Proposition 2.5.

Figure 2.1: The exact graph of density dµq[0,2] is pictured in red, graphs for perturbed values of
C4,1 are in blue.

2.2.2 Separation and covering properties of minimal configurations

Let

δ(ωN ) := min
x6=y,

x,y∈ωN

‖x− y‖,

be the separation distance of configuration ωN . We write Ω(u) := {x ∈ Ω : q(x) ≤ u} for a u ∈ R.

Theorem 2.7. Let 0 < d ≤ p and s ≥ d. Let Ω ⊂ Rp be compact with Hd(Ω) > 0, and let q be a

nonnegative lower semicontinuous function on Ω. Then there exists a constant C(Ω, s, d, q) such

that for each N -point (s, d, q)-energy minimizer ω̂N ⊂ Ω

δ(ω̂N ) ≥ C(Ω, s, d, q)

N−1/d s > d,

(N logN)−1/d s = d,
N ≥ 2.

To prove Theorem 2.7, we will need the following lemma which is also of independent interest.
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For a sequence of configurations {ωN}N≥2 we consider the quantity

U(x, ωN ) :=
∑

y∈ωN :
y 6=x

‖x− y‖−s + q(x)τs,d(N). (2.13)

Lemma 2.8. Let the assumptions of Theorem 2.7 be satisfied. Then there exists a constant

C(Ω, s, d, q) such that for every (s, d, q)-energy minimizing configuration ω̂N , N ≥ 2, and each

x ∈ ω̂N there holds

U(x, ω̂N ) ≤ C(Ω, s, d, q)

N s/d s > d;

N logN s = d,
N ≥ 2. (2.14)

Corollary 2.9. Let the assumptions of Theorem 2.7 hold. Then there exists a constant C =

C(Ω, s, d, q) such that for all N ≥ 2, the minimizers ω̂N are contained in the set Ω(C).

Due to this corollary, the sets {ω̂N}N≥2 for the problem of minimizing the (s, d, q)-energy on

the whole space Rp are restricted to a compact set, provided that for some compact Ω and a

large enough cube Cp := [−R,R]p with Ω ⊂ Cp, the value C in (2.14) is such that q(x) > C for

any x not in Cp. Such a problem is then equivalent to energy minimization on Cp only.

To prove the covering property of (s, d, q)-energy minimizers, we will need the notion of

Ahlfors regularity [39, Definition 1.13]. A set Ω ⊂ Rp with Hd(Ω) > 0 is called d-regular with

respect to µ if there are positive constants c0, C0 and a positive locally finite Borel measure µ,

such that

c0R
d ≤ µ

(
B(x, R) ∩ Ω

)
≤ C0R

d (2.15)

for all x ∈ Ω and 0 < R ≤ diam(Ω). In the case µ = Hd, the set Ω is called Ahlfors regular with

dimension d.

For an x ∈ Ω and an N -point collection ωN define

dist (x, ωN ) := min
y∈ωN

‖y − x‖,

the covering radius at x with respect to ωN .

Theorem 2.10. Let 0 < d ≤ p and s > d. Assume Ω ⊂ Rp is compact, d-rectifiable and Ahlfors

regular with dimension d. Assume also q ≥ 0 is a continuous function. Let x ∈ Ω(L1 − h) for

some h > 0, where L1 is defined in Theorem 2.1. Then for each sequence of (s, d, q)-energy

minimizers {ω̂N}N≥2, there exists a constant C(Ω, h, s, d, q) such that

dist (x, ω̂N ) ≤ C(Ω, h, s, d, q)N−1/d, N ≥ 2.

27



A sequence of configurations {ωN}N≥1 is said to be quasi-uniform in M ⊂ Ω if the ratio

γ(x;ωN ,Ω) := dist (x, ωN )/δ(ωN ) (2.16)

is bounded uniformly for all x ∈ M and N ≥ 1. From Theorems 2.7 and 2.10 we have the

following result.

Corollary 2.11. Let s > d. Assume Ω ⊂ Rp is compact, d-rectifiable and Ahlfors regular with

dimension d. Suppose also that q : Ω→ R is a continuous function. Then for any sequence of

(s, d, q)-energy minimizers {ω̂N}N≥2 on Ω, sequence of subsets {ω̂N ∩ Ω(L1 − h)}N≥2 is quasi-

uniform in Ω(L1 − h) for any h > 0. That is, for some constant C = C(Ω, h, s, d, q) there

holds:

γ(x;ωN ,Ω(L1 − h)) ≤ C(Ω, h, s, d, q), x ∈ Ω(L1 − h), N ≥ 2.

2.3 Examples and numerics

All the results of this section were obtained by using default Mathematica routines (FindMinimum)

to minimize the energy functional, starting with a randomly generated collection of point charges.

We will write L1(q,Ω) to show explicitly the set on which we are solving the minimization problem

and the external field acting on it.

In this section ez := (0, 0, 1)T is the basis vector.

Example 2.12. Consider the problem of minimizing (2.1) with s = 2 and an external field

qa(x) = cos(3 arccos〈x, ez〉)16

on the unit sphere S2 ⊂ R3. According to (1.12), C2,2 = π. Equation (2.5) for L1(qa,S2) in this

case is ∫
S2

(
L− qa(x)

2π

)
+

dH2(x) = 1, (2.17)

solving it for L gives L1(qa,S2) ≈ 0.65448. Figure 2.2 is the graph of qa depending on 〈x, ez〉.
Density of µqaS2 for this external field is

dµqaS2(x) =

(
L1(qa,S2)− cos(3 arccosx · ez)16

2π

)
+

dHd.

Using the numeric method described above, we obtain an approximate minimizer ωa pictured in

Figure 2.3.

Evaluating separation distance for ωa gives δ(ωa) ≈ 0.0813. Covering radius for the middle

strip is ηmid ≈ 0.0829, and for the other two ηpolar ≈ 0.0727, whence mesh ratio is γmid ≈ 1.02
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Figure 2.2: Left: graph of qa(x), right: dµqaS2(x) from Example 2.12. The horizontal axis is
arccos(x · ez).

Figure 2.3: Two views of an approximate 1000-point (2, 2, qa)-energy minimizer ωa from Exam-
ple 2.12. The latitudinal circles denote the boundaries of suppµqaS2 ; i.e., {x : qa(x) = L1(qa, S2)}.

and γpolar ≈ 0.8942 respectively.

Example 2.13. Again, let Ω = S2 ⊂ R3, s = d = 2. Let us construct a sequence of discrete

collections {ω̂N}N≥2 weak∗ converging to the probability distribution with density proportional

to

ρb(x) =


10 cos(4θ) + 11, 0 ≤ θ < π/4,

1, π/4 ≤ θ < 3π/4,

10 cos(4θ) + 11, 3π/4 ≤ θ,

(2.18)

where θ = arccos(x ·ez). The external field with such a sequence of minimizers is provided by The-

orem 2.3. Writing ρ for the normalization of (2.18), ρ(x) := ρb(x)/
∫
S2 |ρb| dH2 ≈ ρb(x)/5.581722,

equation (2.9) gives the following external field:

qb(x) := −2πρ,
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Figure 2.4: Two views of an approximation of 500-point (2, 2, qb)-energy minimizer ωb from
Example 2.13.

where we used again that C2,2 = π.

An approximate discrete minimizer of this (2, 2, qb)-energy is shown in the Figure 2.4. Note

how higher density of µqbS2 (equivalently, larger values of ρ) causes charges to concentrate near

the poles. Evaluating separation distance for the pictured configuration ωb gives δ(ωb) ≈ 0.0777,

covering radius ηb ≈ 0.1681. The mesh ratio of ωb is therefore: γ(ωb, S2) ≈ 2.163.

Figure 2.5: An approximation of 500-point (8, 2, qc)-energy minimizer ωc from Example 2.14. The
red dot marks position (4, 0, 0)T , where the repelling external field qc is centered.

Example 2.14. In this example the underlying set Ω is a 2-dimensional torus with inner radius

ri = 2, outer radius ro = 4, centered at the origin. In particular, the point (4, 0, 0) lies on the

outer side of its surface. Consider the problem of minimizing (8, 2, qc)-energy with the external

field

qc(x) := ‖x− (4, 0, 0)T ‖−2.

A resulting approximation of 500-point minimizer ωc is shown in Figure 2.5. Separation distance
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for this collection is δ(ωc) ≈ 0.125339.

Figure 2.6: Two views of an approximation of 1000-point energy minimizer from Example 2.15.
The support of µqdS2 is highlighted as are the positions of the fixed “repelling charges” that create
the external field qd.

Example 2.15. Let us now consider an example of repelling field on the sphere S2 ⊂ R3. Namely,

we will minimize the (4, 2, qd)-energy, where

qd := 10−3
(∥∥x− (1, 0, 0)T

∥∥−4
+
∥∥x− (0.5691, 0.8223, 0)T

∥∥−4
)
.

The second repelling charge is a randomly selected point in the first quadrant of Oxy plane;

factor 10−3 is used merely for convenience purposes.

An approximate 1000-point minimizer ωd is shown in Figure 2.6. The shaded region marks

the support of µqdS2 , obtained using formulas (2.5) with C4,2 ≈ 5.7834 computed by the formula

for its conjectured value (1.14). In other words, the shaded set is {x : qd(x) ≤ L1(qd,S2)} ≈ {x :

qd(x) ≤ 0.127} (thus the complement of the support in the sphere consists of two circular-like

regions). The separation distance of the pictured configuration is δ(ωd) ≈ 0.1015.

Example 2.16. Finally, consider a 1-dimensional example. We will minimize the (4, 1, qe)-energy

on the interval [0, 2], where

qe(x) := (x− 1.6)4 + 40(x− 0.2)4(x− 1.6)2.

Substituting values of s, d, Cs,d (the latter using formula (1.13)) into (2.5) gives that the weak∗

limit of minimizers is the measure with density

dµqe[0,2] ≈
(

5.9574− qe(·)
10.8232

)1/4

+

dH1.
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Figure 2.7: Left, empirical density dµemp of ωe, an approximate 500-point (4, 1, qe(x))-energy
minimizer from Example 2.16 (red) overlaid with the graph of dµqe[0,2] (blue); right, ωe and the
graph of external field qe.

Figure 2.7 shows graphs of empirical density computed for ωe and dµqe[0,2], as well as the graph of

qe. Separation distance of the pictured configuration is δ(ωe) ≈ 0.0051.

2.4 Proofs

For s ≥ d, we denote by Rds the collection of all compact d-rectifiable sets Ω ⊂ Rp with Hd(Ω) > 0

and, in the case s = d, additionally require Ω to be a subset of a d-dimensional C1-manifold in Rp.
For Ω ∈ Rds and a suitable external field q, the values of L1 and S(q,Ω) are defined by (2.5) and

(2.6), respectively. For real sequences {aN}∞1 , {β}∞1 we shall use the notation α ∼ β, N →∞ to

mean α/βN → 1, N →∞.

Observe that in the formula (2.1) the scaling factor T (N) depends on N , the number of

elements in ωN . We will occasionally need to evaluate the (s, d, q)-energy of a discrete ω ⊂ Ω

with #ω 6= N and the scaling factor T (N), that is, the value of

Eqs,d(ω,N) := E0
s,d(ω) + τ(N)

∑
x∈ω

q(x), s ≥ d. (2.19)

Throughout this section N stands for the set of positive integers. For s ≥ d we also define

gqs,d(Ω) := lim inf
N→∞

Eqs,d(Ω, N)

T (N)
, gqs,d(Ω) := lim sup

N→∞

Eqs,d(Ω, N)

T (N)
,

and if the limits coincide, the common value is denoted by

gqs,d(Ω) = gqs,d(Ω) = gqs,d(Ω).

Remark 2.17. Note that for s ≥ d both the lower and upper asymptotic limits are finite
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if q is finite-valued on a set of positive measure. Indeed, then there exists an L∗ such that

Hd({x ∈ Ω : q(x) ≤ L∗}) > 0, so the fact that gqs,d(Ω) and gqs,d(Ω) are finite follows from

Theorem 1.3 and a simple observation: for any two functions q1, q2 satisfying the hypotheses of

Theorem 2.1, the inequality q1(x) ≤ q2(x), ∀x ∈ Ω, implies Eq1s,d(Ω, N) ≤ Eq2s,d(Ω, N). It suffices

to put q1 := q, q2(x) ≡ L∗ and restrict the minimization problem to {x ∈ Ω : q(x) ≤ L∗}.

Remark 2.18. If q is finite valued on a set of positive measure, then the constant L1 in (2.5) is

finite:

L1 ≤ Cs,d (Hd({x ∈ Ω : q(x) < L∗}))−s/d (1 + s/d) + L∗,

where L∗ is as in Remark 2.17.

Remark 2.19. We will use in many computations that if a sequence {aN}N∈N with aN > 0

satisfies limN3N→∞ aN/N = α ≥ 0, then

lim
N→∞
N∈N

T (aN )

T (N)
= α1+s/d. (2.20)

2.4.1 Proofs of the main theorems

We first establish a few lemmas that will be used in the proof of Theorem 2.1.

Lemma 2.20. Let u, v > 0 and q0, q1 be real. Then the function

F (t) := tq0 + (1− t)q1 + ut1+s/d + v(1− t)1+s/d, s ≥ d, (2.21)

has a unique minimum on [0, 1]. If there is some t∗ in (0, 1) that satisfies

q1 − q0

1 + s/d
= ut

s/d
∗ − v(1− t∗)s/d, (2.22)

then the minimum occurs at t∗. Otherwise, the minimum occurs at t∗ ∈ {0, 1} such that q1−t∗ =

min{q0, q1}.

Proof. As F is strictly convex on [0, 1], it has a unique minimum in this interval. Differentiating

yields F ′(t) = q0 − q1 + (1 + s/d)(uts/d − v(1− t)s/d). If there is a t∗ ∈ (0, 1) satisfying (2.22),

then F ′(t∗) = 0 and the minimum of F occurs at the value t∗. Otherwise, F is strictly monotone

in [0, 1], and the minimum must occur at an endpoint. In fact, the minimum is at t∗ ∈ {0, 1}
such that q1−t∗ = min{q0, q1}.

Lemma 2.21. Let µ be a finite Radon measure on the set Ω ⊂ Rp and q : Ω→ R be measurable

with respect to µ. Then for every ε > 0 and µ-a.e. point x ∈ Rp there exists a positive number
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R = R(x, ε) such that

µ [{z ∈ Ω ∩B(x, r) : |q(z)− q(x)| < ε}]
µ[B(x, r)]

> 1− ε (2.23)

for all r < R.

Proof. Consider the following partition of set Ω:

Ω =
∞⋃
m=1

{(m− 1)ε ≤ q(x) < mε} =:
∞⋃
m=1

Ωm. (2.24)

By the Lebesgue-Besicovitch differentiation theorem (cf. [42, 1.7.1] or [81, Corollary 2.14])

(or Lebesgue’s density theorem in this case), for µ-a.e. point x ∈ Am, m = 1, 2, . . . ,

lim
r↓0

µ[Am ∩B(x, r)]

µ[B(x, r)]
= 1. (2.25)

Therefore, (2.25) holds for µ-a.e. point x ∈ Ω. In particular, fix such a point x ∈ Am. Because

(Am ∩ B(x, r)) ⊂ {z ∈ B(x, r) : |q(z) − q(x)| < ε}, equation (2.25) implies (2.23) for small

enough R.

Lemma 2.22. Let Ω ⊂ Rp satisfy Ω = ∪Mm=1Am, where Am are sets from the class Rds. Let also

the function q be defined and lower semicontinuous on Ω. Assume that a sequence of configurations

ωn ⊂ Ω, n ∈ N, is such that

1. ωn =
⋃M
m=1 ω

m
n and ωmn ⊂ Am;

2. ωkn ∩ ωln = ∅ if k 6= l;

3. limN3n→∞#ωmn /n = αm, 1 ≤ m ≤M.

Then

lim inf
N3n→∞

Eqs,d(ωn, n)

T (n)
≥

M∑
m=1

α1+s/d
m

Cs,d

Hd(Am)s/d
+

M∑
m=1

αm min
x∈Am

q(x). (2.26)

Proof. Observe that the minima on the RHS of (2.26) are attained due to the lower semicontinuity
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of q. For the LHS of (2.26) there holds

lim inf
N3n→∞

Eqs,d(ωn, n)

T (n)
= lim inf

N3n→∞

1

T (n)

 ∑
x6=y

x,y∈ωn

‖x− y‖−s +
T (n)

n

∑
x∈ωn

q(x)


≥ lim inf

N3n→∞

1

T (n)

M∑
m=1

∑
x6=y

x,y∈ωmn

‖x− y‖−s + lim inf
n→∞

1

n

M∑
m=1

∑
x∈ωmn

q(x)

≥ lim inf
N3n→∞

M∑
m=1

T (#ωmn )

T (n)

E0
s,d(ω

m
n )

T (#ωmn )
+ lim inf

n→∞

M∑
m=1

#ωmn
n

min
x∈Am

q(x)

≥
M∑
m=1

α1+s/d
m

Cs,d

Hd(Am)s/d
+

M∑
m=1

αm min
x∈Am

q(x),

where for the last inequality we used (2.20) and Theorem 1.3.

Remark 2.23. Observe that the only assertion about #ωn we make is (3).

Corollary 2.24. Let the assumptions of Lemma 2.22 be satisfied and suppose qm, 1 ≤ m ≤M ,

are numbers such that the closure of Zm := {x ∈ Am : q(x) < qm} has Hd-measure zero. Then

lim inf
N3n→∞

Eqs,d(ωn, n)

T (n)
≥

M∑
m=1

α1+s/d
m

Cs,d

Hd(Am)s/d
+

M∑
m=1

αmqm. (2.27)

Proof. Let N′ ⊂ N be such that

lim inf
N3n→∞

Eqs,d(ωn, n)

T (n)
= lim

N′3n→∞

Eqs,d(ωn, n)

T (n)
.

Then

lim
N′3n→∞

Eqs,d(ωn, n)

T (n)
≥

M∑
m=1

α1+s/d
m

Cs,d

Hd(Am)s/d
+ lim

N′3n→∞

1

n

M∑
m=1

∑
x∈ωmn

q(x)

≥
M∑
m=1

α1+s/d
m

Cs,d

Hd(Am)s/d
+ lim

N′3n→∞

1

n

(
M∑
m=1

#(ωmn ∩ (Ω \ Zm))

n

)

=

M∑
m=1

α1+s/d
m

Cs,d

Hd(Am)s/d
+

M∑
m=1

αmqm.

Lemma 2.25. Let the set Ω be such that the assumptions of Theorem 2.1 hold. Assume that a
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sequence of N -point configurations {ωN}N≥2 in Ω satisfies

lim sup
N→∞
N∈N

Eqs,d(ωN )

T (N)
< +∞ (2.28)

and
1

N

∑
x∈ωN

δx
∗
⇀ dµ, N 3 N →∞, (2.29)

for some Borel probability measure µ on Ω. Then µ is Hd-absolutely continuous.

Proof. Indeed, otherwise let E ⊂ Ω be a Borel set such that Hd(E) = 0 and µ(E) > 0. Since µ

is inner regular as a Borel measure on a Radon space, [59, 434K(b)], without loss of generality E

is closed. For an ε > 0 pick r > 0 such that Er := {x ∈ A : dist (x, E) ≤ r} satisfies Hd(Er) < ε;

observe that Er is closed. By the definition of weak∗ convergence, lim infN3N→∞
1
N#{x ∈ ωN :

x ∈ Er} ≥ µ(E). Then according to Theorem 1.3 and the limit (2.20),

lim inf
N→∞
N∈N

E0
s,d(ωN ∩ Er, N)

T (N)
= lim inf

N→∞
N∈N

E0
s,d(ωN ∩ Er, N)

T (#(ωN ∩ Er))
T (#(ωN ∩ Er))

T (N)

≥
Cs,d

Hd(Er)s/d
µ(E)1+s/d ≥

Cs,d

εs/d
µ(E)1+s/d.

As ε was arbitrary, this contradicts (2.28). Thus µ must be Hd-absolutely continuous.

Lemma 2.26. Let the assumptions of Theorem 2.1 be satisfied. Let also the sequence of N -point

configurations {ωN}N∈N be such that

lim
N→∞
N∈N

Eqs,d(ωN )

T (N)
= gqs,d(Ω) (2.30)

and
1

N

∑
x∈ωN

δx
∗
⇀ dµ, N 3 N →∞. (2.31)

Assume that {Bm}Mm=1, M ≥ 1, is a collection of closed pairwise disjoint balls such that Hd(Bm) >

0, Hd(∂Bm) = 0 and Hd ({z ∈ Bm : q(z) ≤ qm}) ≥ (1 − δ)Hd(Bm), m = 1, . . . ,M, for some

positive δ < 1.

Then

lim
N→∞
N∈N

Eqs,d(ωN ∩ (∪mBm) , N)

T (N)
≤ min

{
M∑
m=1

Cs,d α
1+s/d
m

((1− δ)Hd(Bm))s/d
+ qmαm

}
, (2.32)

where the minimum is taken over αm ≥ 0 such that
∑
αm =

∑
µ(Bm).
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In particular, there exists a sequence {ω0
N}N∈N for which (2.32) is an equality with ω0

N in

place of ωN .

Proof. Fix an ε > 0 satisfying ε < 1− δ. Consider the set {z ∈ Bm : q(z) ≤ qm}, m = 1, . . . ,M .

By the inner regularity of measure Hd, it has a closed subset B′m contained in a ball concentric

with Bi of smaller radius, for which Hd(B′m) > (1− δ − ε)Hd(Bm). Let a sequence of N -point

configurations {ω0
N}N∈N in Ω be such that ω0

N ∩ (Ω \ ∪mBm) = ωN ∩ (Ω \ ∪mBm), and such

that for 1 ≤ m ≤ M , the collection ω0
N ∩ Bm is a minimizer of the (s, d, 0)-energy in B′m (in

particular, is contained in it).

Equation (2.30) and Lemma 2.25 imply that µ(∂Bm) = 0, 1 ≤ m ≤ M . Hence the weak∗

convergence in (2.31) implies lim #{x ∈ ωN : x ∈ Bm}/N → µ(Bm) when N 3 N → ∞, [7,

Theorem 2.1].

We will further assume that the following limits exist αm := limN3N→∞#(ω0
N ∩ Bm)/N ,

1 ≤ m ≤ M . The assumptions on #(ω0
N ∩ Bm) mean that

∑
m αm =

∑
m µ(Bm). Finally, we

observe that by the construction of the sets B′m, there exists a positive r such that dist (∪mB′m,Ω\
∪mBm) ≥ r. Recall that

Eqs,d(ω
0
N , N) = Eqs,d

(
ω0
N ∩ (∪mBm), N

)
+ Eqs,d

(
ω0
N ∩ (Ω \ ∪mBm), N

)
+

∑
x,y∈ω0

N ,
x∈∪mBm,
y∈Ω\∪mBm

‖x− y‖−s. (2.33)

Because ω0
N ∩ ∪mBm = ω0

N ∩ ∪mB′m and because of the lower bound r for the distance between

∪mB′m and Ω \ ∪mBm, every term in the last sum is at most r−s.

Using the previous equation and the definition of gqs,d(Ω), we have:

0 ≤ lim
N→∞
N∈N

Eqs,d(ω
0
N , N)

T (N)
− gqs,d(Ω) = lim

N→∞
N∈N

(
Eqs,d(ω

0
N )

T (N)
−
Eqs,d(ωN )

T (N)

)

≤ lim
N→∞
N∈N

Eqs,d(ω
0
N ∩ (∪mBm) , N)

T (N)
− lim
N→∞
N∈N

Eqs,d(ωN ∩ (∪mBm) , N)

T (N)

+ lim
N→∞
N∈N

N2

T (N)
r−s.

(2.34)

Since limN→∞
N∈N

N2r−s/T (N) = 0, there holds

lim
N→∞
N∈N

Eqs,d(ωN ∩ (∪mBm) , N)

T (N)
≤ lim

N→∞
N∈N

Eqs,d(ω
0
N ∩ (∪mBm) , N)

T (N)
. (2.35)

From equation (2.30) and Lemma 2.25 follows that µ(∂Bm) = 0, 1 ≤ m ≤M . Hence the weak∗
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convergence in (2.31) implies lim #{x ∈ ωN : x ∈ Bm}/N → µ(Bm) when N 3 N → ∞, [7,

Theorem 2.1]. The construction of the sequence {ω0
N}N∈N and the limit (2.20) therefore imply

lim
N→∞
N∈N

Eqs,d(ω
0
N ∩ (∪mBm) , N)

T (N)
≤

M∑
m=1

(
Cs,d α

1+s/d
m

((1− δ − ε)Hd(Bm))s/d
+ qmαm

)
. (2.36)

We have so far only imposed the conditions that α1, . . . , αM are nonnegative and sum to∑
m µ(Bm). Taking ε→ 0+ and minimizing over such αm in (2.36) gives (2.32).

We first prove Theorem 2.1 for the case that q is a suitable simple function. The general case

then follows by approximating an arbitrary lower semicontinuous q with such functions.

Lemma 2.27. Let Ω ⊂ Rp be a set from Rds, and Bm, 1 ≤ m ≤M , be a collection of pairwise

disjoint closed balls such that Hd(Bm) > 0 and Hd(Ω ∩ ∂Bm) = 0, 1 ≤ m ≤M . Assume also q

is a lower semicontinuous function and for D := Ω \ ∪mBm,

q(x) =

q0, Hd-a.e. x ∈ D,

qm, Hd-a.e. x ∈ Bm, 1 ≤ m ≤M,
(2.37)

for positive qm, 0 ≤ m ≤M .

Then equation (2.6) holds for the set Ω and function q.

Proof. For convenience, let A0 := D, Am := Bm, 1 ≤ m ≤M , in this proof. We will first verify

that for some positive {α̂m}Mm=0 that add up to one,

lim
N→∞

Eqs,d(Ω, N)

Ts,d(N)
=

M∑
m=0

(
Cs,d α̂

1+s/d
m

Hd(Am)s/d
+ qmα̂m

)
, (2.38)

where the values of α̂m, 0 ≤ m ≤M are such that

(α̂0, . . . , α̂M ) := arg min
αm≥0,∑
αm=1

M∑
m=0

(
Cs,d α

1+s/d
m

Hd(Am)s/d
+ qmαm

)
. (2.39)

(i). Due to the weak∗ compactness of the set Ω, Corollary 2.24 implies

gqs,d(Ω) ≥ min
αm≥0,∑
αm=1

M∑
m=0

(
Cs,d α

1+s/d
m

Hd(Am)s/d
+ qmαm

)
. (2.40)

Let a closedD′ ⊂ D satisfy q(x) ≡ q0, x ∈ D′ andHd(D′) > (1−ε)Hd(D). By the same argument

as in the proof of Lemma 2.26, for a fixed ε > 0 we construct a sequence ofN -element sets {ω0
N}N∈N

such that the subsets ω0
N ∩D and ω0

N ∩Bm, 1 ≤ m ≤M are (s, d, 0)-energy minimizing in D′ and

38



B′m respectively. Recall that B′m are closed subsets of Ω∩Bm satisfying Hd(B′m) > (1−ε)Hd(Bm)

and dist (∪mB′m, D) > 0. As in Lemma 2.26, we construct {ω0
N}N≥1 so that the following limits

exist and are finite α0 := limN3N→∞#(ω0
N ∩ D′)/N and αm := limN3N→∞#(ω0

N ∩ Bm)/N ,

1 ≤ m ≤M . Since Eqs,d(Ω, N) ≤ Eqs,d(ω
0
N , N), equation (2.33) implies

gqs,d(Ω) ≤ lim
N→∞

Eqs,d(ω
0
N , N)

T (N)
=

M∑
m=0

(
Cs,d α

1+s/d
m

((1− ε)Hd(Am))s/d
+ qmαm

)
. (2.41)

This gives (2.38) after taking ε→ 0+.

(ii). Fix an Am with strictly positive α̂m, say, A0 and assume q0 ≤ qm for definiteness. Pick

any of the remaining sets Ak, 1 ≤ k ≤M and denote β = β(k) := α0 + αk. Consider the terms

on the RHS of (2.39) that contain either α0 or αk:

F̄ (α1, αk) :=
∑
m=0,k

(
Cs,d α

1+s/d
m

Hd(Am)s/d
+ qmαm

)
. (2.42)

Now choose the coefficients of the function F (t) in Lemma 2.20 so that

F (t) = t1+s/d Cs,d

Hd(A0)s/d
+ t

q0

βs/d
+ (1− t)1+s/d Cs,d

Hd(Ak)s/d
+ (1− t) qk

βs/d
, (2.43)

then β1+s/dF (α0/β) = F̄ (α0, αk). Because of (2.39), it must be that α̂0/β is the value t̂ ∈ (0, 1]

for which the minimum of F (t) is attained. According to Lemma 2.20, either t̂ = 1, or

qk − q0

Cs,d(1 + s/d)
=

(
α̂0

Hd(A0)

)s/d
−
(

α̂k
Hd(Ak)

)s/d
. (2.44)

Equation (2.44) thus applies to any pair of sets in A0, . . . , AM provided both the corresponding

α̂m’s is positive. Also, if α̂k > 0, then qk < ql for every l such that α̂l = 0. To summarize, for

some L1 there holds(
α̂m

Hd(Am)

)s/d
=

(
L1 − qm

Cs,d(1 + s/d)

)
+

, 0 ≤ m ≤M. (2.45)

It follows from
∑

m α̂m = 1 that the first of equations (2.5) is satisfied for this L1.

Finally, we can evaluate the RHS of (2.38):

lim
N→∞

Eqs,d(Ω, N)

Ts,d(N)
=

M∑
m=0

(
α̂m

(
L1 − qm
1 + s/d

)
+

+ qmα̂m

)
=

M∑
m=0

α̂m
L1 + sqm/d

1 + s/d
,

where in the last equality we used α̂m = 0 ⇐⇒ (L1− qm)+ = 0. This implies (2.6) because from
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(2.45), α̂0 = µq(D) and α̂m = µq(Am), 1 ≤ m ≤M , for the µq defined in (2.5).

Proof of Theorem 2.1. Note that as q is lower semicontinuous on the compact set Ω, it is

bounded below there, so we may assume without loss of generality q is positive.

(i). Let Ω ∈ Rds and let 0 ≤ q < C for a positive constant C. We will further use that the

restriction Hd is a Radon measure on Rp. Namely, [81, Theorem 7.5] implies it is locally finite

because Ω is the Lipschitz image of a compact set in Rd. It is also Borel regular as a restriction of

Hausdorff measure, see [81, Theorem 4.2]. Then by [81, Corollary 1.11], Hd is a Radon measure.

Fix from now on a number 0 < ε < 1/4. Apply Lemma 2.21 to the measure Hd and function

q, denote the set of x ∈ Ω for which there exists an R(x, ε) as described in the Lemma by Ω′,

and consider covering of Ω′ by the collection of closed balls {B(x, r) : x ∈ Ω′, 0 < r < R(x, ε)}.
Choose for each x ∈ Ω′ a sequence of radii rx,k → 0, k →∞, k ∈ N, for which

Hd [{z ∈ B(x, rx,k) : |q(z)− q(x)| < ε}]
Hd[B(x, rx,k)]

> 1− ε (2.46)

and also y ∈ Ω ∩ B(x, rx,k) =⇒ q(y) > q(x) − ε. The latter is possible due to the lower

semicontinuity of q.

Let {B(x, rx,k)} be a Vitali cover of Ω′, so one can apply the version of Vitali’s covering

theorem for Radon measures [81, Theorem 2.8] to produce a (at most) countable subcollection of

pairwise disjoint {Bj := B(xj , rj) : j ≥ 1} for which Hd (Ω′ \ ∪j≥1 Bj) = 0. Using Hd(Ω) <∞,

{Bj}j≥1 can be chosen so that Hd(Ω ∩ ∂Bj) = 0, j = 1, 2, . . . (there are uncountable many

options for the value of rj , at most countably many of them positive). Since Hd(Ω\Ω′) = 0, we can

fix a J ∈ N such that Hd
(

Ω \ ∪Jj=1Bj

)
< ε. Let D := Ω \ ∪ Jj=1Bj . As Hd(∂Bj) = 0, 1 ≤ j ≤ J ,

there holds Hd(D) < ε.

Define the two simple functions qε, qε to be constant on each Bj , 1 ≤ j ≤ J :

qε(x) :=

q(xj) + ε, x ∈ Bj ,

C, x ∈ D \
⋃
j Bj .

q
ε
(x) :=

max(0, q(xj)− ε), x ∈ Bj \D,

0, x ∈ D.

(2.47)

Such q
ε
, qε are lower semicontinuous on Ω. Lemma 2.27 gives equation (2.6) applied to q

ε
and

qε on Ω. Let B′j := {z ∈ Ω ∩Bj : |q(z)− q(xj)| < ε}. Then,

q(xj)− ε ≤ qε(x) ≤ q(x) ≤ qε(X) = q(xj)ε, x ∈ B′j . (2.48)

In view of (2.46) for B′j and Hd(D) < ε, (2.48) implies that both q
ε

and qε converge Hd-a.e. to q

as ε→ 0+. Since both are bounded by C + 1, the dominated convergence theorem is applicable,

40



and

lim
ε→0

S(q
ε
,Ω) = lim

ε→0
S(qε,Ω) = S(q,Ω). (2.49)

We now estimate

lim
N→∞

Eqs,d(Ω, N)/Ts,d(N)

in terms of

lim
N→∞

E
q
ε
s,d(Ω, N)/Ts,d(N)

and

lim
N→∞

Eqεs,d(Ω, N)/Ts,d(N).

Firstly, by construction q(x) ≥ q
ε
(x), x ∈ Ω, which gives

Eqs,d(Ω, N) ≥ E
q
ε
s,d(Ω, N). (2.50)

On the other hand,

Eqs,d(Ω, N) ≤ Eqs,d(D ∪
⋃
j

B′j , N) ≤ Eqs,d(D ∪
⋃
j

B′j , N) ≤ T (N)

(1− ε)s/d
S(qε,Ω), (2.51)

where the last inequality follows from (2.46) and (2.38). This proves (2.6).

(ii). It remains to prove equation (2.8) for a sequence {ωN}N≥2 satisfying (2.7). Since the

probability measures on Ω are weak∗ compact, one can pick a subsequence {ω̂N}N∈N ⊂ {ωN}N≥2

for which the corresponding normalized counting measures have a weak∗ limit:

1

N

∑
x∈ω̂N

δx
∗
⇀µ, N 3 N →∞.

Then µ is Hd-absolutely continuous by the Lemma 2.25. Set ρ(x) := dµ
dHd (x).

Since the integral
∫

Ω ρ dHd = 1 is finite, at Hd-a.e. point x of Ω there holds

lim
r→0

1

Hd(B(x, r))

∫
B(x,r)

ρ dHd = ρ(x). (2.52)

Fix two distinct points x1, x2 for which both (2.23) for measure Hd and (2.52) hold. Then for

an arbitrary fixed 0 < ε < min(1/2, ρ(x1), ρ(x2), q(x1), q(x2)) there exist closed disjoint balls

B1 := B(x1, r1), B2 := B(x2, r2) centered around x1, x2 such that equations

Hd [{z ∈ Ω ∩Bm : |q(z)− q(xm)| < ε}]
Hd[Bm]

> 1− ε, m = 1, 2, (2.53)∫
Bm

|ρ(z)− ρ(xm)| dHd(z) < εHd(Bm), m = 1, 2, (2.54)
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hold for all closed balls concentric with Bm of radius at most rm. Without loss of generality we

will also require Hd(∂B1) = Hd(∂B2) = 0 and that q(x) ≥ q(xm)− ε for all x ∈ Bm, m = 1, 2

(which can be assumed by lower semicontinuity). Let qm := q(xm), m = 1, 2; let also q1 ≤ q2.

Due to µ being absolutely continuous with respect to Hd, the assumption Hd(∂Bm) = 0, m =

1, 2, and the limit (2.20), Lemma 2.22 implies

lim
N→∞
N∈N

Eqs,d(ω̂N ∩ (B1 ∪B2), N)

T (N)
≥
∑
m=1,2

(
Cs,d µ(Bm)1+s/d

Hd(Bm)s/d
+ µ(Bm)(qm − ε)

)
. (2.55)

On the other hand, from Lemma 2.26:

lim
N→∞
N∈N

Eqs,d(ω̂N ∩ (B1 ∪B2), N)

T (N)
≤ min

 ∑
m=1,2

Cs,d α
1+s/d
m

((1− ε)Hd(Bm))s/d
+ (qm + ε)αm

 (2.56)

with minimum taken over positive α1, α2 satisfying α1 + α2 = µ(B1) + µ(B2). If we denote

(α̂1, α̂2) := arg min

{ ∑
m=1,2

(
Cs,d α

1+s/d
m

((1− ε)Hd(Bm))s/d
+ (qm + ε)αm

)

: α1 + α2 = µ(B1) + µ(B2)

}
,

(2.57)

and argue as in the proof of Lemma 2.27, we obtain, similarly to (2.44), that (α̂1, α̂2) satisfy

q2 − q1

Cs,d(1 + s/d)
=

(
α̂1

(1− ε)Hd(B1)

)s/d
−
(

α̂2

(1− ε)Hd(B2)

)s/d
. (2.58)

Inequalities (2.55)–(2.56) and the definition of (α̂1, α̂2) give:

∑
m=1,2

(
Cs,d µ(Bm)1+s/d

Hd(Bm)s/d
+ µ(Bm)(qm − ε)

)

≤
∑
m=1,2

(
Cs,d α̂

1+s/d
m

((1− ε)Hd(Bm))s/d
+ α̂m(qm + ε)

)

≤
∑
m=1,2

(
Cs,d µ(Bm)1+s/d

((1− ε)Hd(Bm))s/d
+ µ(Bm)(qm + ε)

)
.

(2.59)

Observe that if in the above construction we fix the ball B1 and allow r2 → 0, the first term on

the RHS of (2.58) is bounded, so the ratio α̂2/Hd(B2) is bounded as well, say, α̂2/Hd(B2) ≤ R2
1.

1due to the assumptions q1 ≤ q2 and Hd(B2)/Hd(B1) < ε, the equality α̂1 + α̂2 = µ(B1) +µ(B2), and equations
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Let also r2 be such that Hd(B2)/Hd(B1) < ε and α̂2/Hd(B1) < ε. Due to equation (2.54), there

holds |µ(Bm)/Hd(Bm) − ρ(xm)| < ε, m = 1, 2. Dividing (2.59) through by Hd(B1) for such a

choice of r2 gives:

Cs,d(ρ(x1)− ε)1+s/d + (ρ(x1)− ε)(q1 − ε)

≤
Cs,d

(1− ε)s/d

(
α̂1

Hd(B1)

)1+s/d

+

(
α̂1

Hd(B1)

)
(q1 + ε)

+

(
α̂2

Hd(B1)

)
Cs,d

(1− ε)s/d

(
α̂2

Hd(B2)

)s/d
+

(
α̂2

Hd(B1)

)
(q2 + ε)

≤
Cs,d

(1− ε)s/d
(ρ(x1) + ε)1+s/d + (ρ(x1) + ε)(q1 + ε)

+ ε

(
Cs,d

(1− ε)s/d
(ρ(x2) + ε)1+s/d + (ρ(x2) + ε)(q2 + ε)

)
,

(2.60)

Finally, because ε > 0 was arbitrary and the function Cs,dt
1+s/d + q(x1)t, t ≥ 0 is monotone,

inequalities (2.60) yield by the above discussion

ρ(x1) = lim
r1→0

α̂1

Hd(B1)
. (2.61)

We could similarly fix the ball B2 first and ensure Hd(B1)/Hd(B2) < ε, taking r2 → 0 afterwards,

thus also

ρ(x2) = lim
r2→0

α̂2

Hd(B2)
. (2.62)

In conjunction with (2.58) the last two equations give

q2 − q1

Cs,d(1 + s/d)
= ρ(x1)s/d − ρ(x2)s/d (2.63)

for Hd ×Hd-a.e. pair (x1,x2) ∈ Ω× Ω. Due to the normalization property
∫

Ω ρ(x) dHd = 1 and

the definition of L1 in (2.5),

ρ(x) =

(
L1 − q(x)

Cs,d(1 + s/d)

)d/s
+

Hd-a.e. (2.64)

which coincides with the density in formula (2.8).

(iii). Finally, we turn to the case when the function q need not be bounded above. Consider

qC(x) :=

q(x), q(x) ≤ C,

C, otherwise.

(2.54) and (2.58), one can take R2 = ρ(x1) + ρ(x2) + 2 as a rough estimate.
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Recall that Ω(C) = {x ∈ Ω : q(x) ≤ C} is a d-rectifiable set as a closed subset of Ω. The

Theorem 2.1 is therefore applicable to each function qC if seen as defined on Ω(C). By Remark

2.18, the value of L1 is finite. For all C ≥ L1,

supp (µqC ) ∩ {x : q(x) > C} = ∅. (2.65)

Inequality qC(x) ≤ q(x) for all x ∈ Ω implies

EqCs,d(Ω, N) ≤ Eqs,d(Ω, N), N ≥ 2,

so S(qC,Ω) ≤ gqs,d(Ω). On the other hand, due to set inclusion,

gqs,d(Ω) ≤ gqs,d(Ω) ≤ gqs,d(Ω(C)) = S(qC,Ω(C)) = S(qC,Ω),

where the last two equalities follow from Theorem 2.1 applied to the function qC and sets Ω(C)

and Ω respectively, and equation (2.65). To summarize, gqs,d(Ω) = gqs,d(Ω) = S(q,Ω).

Let now {ωN}N≥2 be a sequence satisfying (2.7). Fix a C > L1. Because qC(x) ≤ q(x) for

all x ∈ Ω and S(q,Ω) = S(qC,Ω), the sequence {ωN}N≥2 is also asymptotically (s, d, qC)-energy

minimizing. Then by Theorem 2.1 this sequence converges weak∗ to dµqC , and it remains to

observe that for C > L1 it holds dµqC = dµq, where the two measures are defined in equation

(2.5).

Proof of Theorem 2.3. The desired result is an immediate application of Theorem 2.1 since

using equation (2.5) for the external field from (2.9) gives L1 = 0, so the asymptotic distribution

is indeed (2.10).

Proof of Proposition 2.5. We have

q′(x) = (1 + ∆)q(x).

According to (2.5), the equation

∫
Ω

(
l − q′(x)

Ms,d

)d/s
+

dHd(x) = 1 (2.66)

for variable l has the unique solution l = L′1. Using (2.9), it can be rewritten as

∫
Ω

(
ρs/d +

∆ρs/d + l

Ms,d

)d/s
+

dHd(x) = 1, (2.67)

which, in view of
∫

Ω ρ dHd = 1 and monotonicity of the function (·)+, shows that the solution of
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(2.66) satisfies |l| ≤ |∆| ‖ρ‖s/d∞ , that is,

|L′1| ≤ |∆| ‖ρ‖s/d∞ .

We will therefore write L′1 = K∆ with |K| ≤ ‖ρ‖s/d∞ .

Let us now estimate the difference between densities ρ′ = dµq
′
/ dHd and ρ = dµq/ dHd

in terms of ∆. Factor out ρs/d from the parentheses in (2.67) and observe that for ∆ <

Ms,d/
(
1 + (‖ρ‖∞δ−1)s/d

)
the expression inside is nonnegative, which allows to expand it up to

o(∆):

ρ′ = ρ

(
1 +

∆(1 +K/ρs/d)

Ms,d

)d/s
= ρ+ ∆

d(1 +K/ρs/d)

sMs,d
+ o(∆), ∆→ 0.

2.4.2 Proofs of separation and covering properties

To obtain point separation results we use techniques of [71, 12].

Proof of Lemma 2.8. Fix an x ∈ ω̂N . Because the minimal value of energy Eqs,d(ωN ) is

attained for ω̂N , one must have

U(x, ω̂N ) ≤ U(z, ω̂N ), z ∈ Ω, (2.68)

where U(· , ω̂N ) is defined in (2.13). According to Frostman’s lemma, [81, Theorem 8.8], for the

set Ω there exists a positive Borel measure µ satisfying µ(Ω) > 0 and such that for all x ∈ Rp

and R > 0,

µ
(
B(x, R) ∩ Ω

)
≤ Rd. (2.69)

By continuity of measure µ from below there exists a positive constant H for which µ[Ω(H)] ≥
2µ(Ω)/3; this constant then depends on Ω and q, H = H(Ω, q). Observe that when q is bounded

from above, H can be chosen equal to its upper bound. Let r0 := (µ(Ω)/3N)1/d. Consider the set

Dx := Ω(H) \
⋃

y∈ω̂N :
y 6=x

B(y, r0).

From (2.69):

µ(Dx) ≥ 2µ(Ω)/3−
∑

y∈ω̂N :
y 6=x

µ (Ω ∩B(y, r0)) ≥ µ(Ω)/3.
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Averaging U(z, ω̂N ) on Dx and taking into account (2.68) yields

U(x, ω̂N ) ≤µ(Dx)−1

∫
Dx

U(z, ω̂N )dµ(z)

≤ 3

µ(Ω)

 ∑
y∈ω̂N :
y 6=x

∫
Ω\B(y,r0)

‖z − y‖−s dµ(z) +
T (N)

N

∫
Ω
q(z) dµ(z)

 . (2.70)

Denote R0 := diam(Ω). For the integrals in the sum (2.70), use (2.69) again:

I(y, r) :=

∫
Ω\B(y,r)

‖z − y‖−s dµ(z) =

r−s∫
0

µ
{
z ∈ Ω \B(y, r) : ‖z − y‖−s > t

}
dt

≤µ(Ω)R−s0 +

r−s∫
R−s0

µ
[
Ω ∩B(y, t−1/s)

]
dt

≤

rd−s s/(s− d), s > d,

(1 + d log(R0/r)), s = d.

(2.71)

This estimate is independent of y. Using the definition of r0, in the case s > d:

U(x, ω̂N ) ≤ 3

µ(Ω)

(
NI(y, r0) +N s/d

∫
Ω
q(z) dµ(z)

)
≤ 3

µ(Ω)

(
Ns

rs−d0 (s− d)
+ µ(Ω)HN s/d

)

=

(
s

s− d

(
3

µ(Ω)

)s/d
+ 3H

)
N s/d = C(Ω, s, d, q)N s/d.

Similarly, for s = d,

U(x, ω̂N ) ≤ 3

µ(Ω)
N(1 + d log(R0/r0)) + 3HN logN

≤C(Ω, d, q)N logN = C(Ω, d, q)N logN.

This proves the desired statement.

Proof of Corollary 2.9. It is immediate from Lemma 2.8 and nonnegativity of q that each

x ∈ ω̂N satisfies x ∈ Ω(C(Ω, s, d, q)) with the constant taken from (2.14).
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Proof of Theorem 2.7. Let ‖x− y‖ = δ(ω̂N ), x,y ∈ ω̂N . From Lemma 2.8, for N ≥ 2,

δ(ω̂N )−s = ‖x− y‖−s ≤ U(x, ω̂N ) ≤ U(x, ω̂N ) ≤ C(Ω, s, d, q)

N s/d s > d;

N logN s = d,

which implies the theorem.

Similarly to the function (2.13), for an r > 0 and y ∈ Ω let

Ur(x, ωN ) :=
∑

y∈ωN (x,r)

‖y − x‖−s, (2.72)

where ωN (x, r) := {y ∈ ωN : y ∈ B(x, r)} for a fixed sequence of discrete configurations

{ωN}N≥2.

Lemma 2.28. Let s > d. Assume that Ω ⊂ Rp satisfies Hd(Ω) > 0, is compact and d-regular

with respect to µ. Let q ∈ L1(Ω, µ) be a nonnegative lower semicontinuous function and {ω̂N}N≥2

be a sequence of (s, d, q)-energy minimizers. If for a point x ∈ Ω and some r > 0,

Ur(x, ω̂N ) ≥ CN s/d, N ≥ 2, (2.73)

then

dist (x, ω̂N ) ≤ C̃(C,Ω, µ, s, d)N−1/d, N ≥ 2.

Proof. The proof follows the lines of [67]. By Theorem 2.7, there exists a C1 > 0 such that

δ(ω̂N ) ≥ C1/N
1/d, N ≥ 2.

Considering a subsequence if necessary, one may assume dist (x, ω̂N ) ≥ C1/2N
1/d, since otherwise

the statement of the Lemma follows immediately. Consider r0 := εC1/N
1/d, 0 < ε < 1/2 and

put By := Ω ∩B(y, r0), y ∈ ω̂N (x, r) for every N ≥ 2. The collection {By} defined in this way

consists of disjoint sets. By construction, then for any z ∈ By,

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ ≤ r0 + ‖y − x‖ ≤ (2ε+ 1)‖y − x‖, y ∈ ω̂(x, r)

where we used that r0 ≤ 2εdist (x, ω̂N ) ≤ 2ε‖y − x‖. As Ω is d-regular with respect to µ, we

obtain from the last equation

‖y − x‖−s ≤ (2ε+ 1)s

µ(By)

∫
By

‖z − x‖−s dµ(z) ≤ (2ε+ 1)s

c0rd0

∫
By

‖z − x‖−s dµ(z). (2.74)
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Also, for z ∈ By:

‖z − x‖ ≥ ‖y − x‖ − ‖z − y‖ ≥ (1− 2ε)‖y − x‖ ≥ (1− 2ε)dist (x, ω̂N ) =: rε,

which implies ⋃
y∈ω̂(x,r)

By ⊂ Ω \B(x, rε).

We write c̃0 := (2ε+ 1)s/c0. Summing equations (2.74) over y ∈ ω̂(x, r) and using (2.71),

Ur(x, ω̂N ) =
∑

y∈ω̂N (x,r)

‖y − x‖−s ≤ c̃0

rd0

∑
y∈ω̂N (x,r)

∫
By

‖z − x‖−s dµ(z) ≤ c̃0

rd0

∫
Ω\B(x,rε)

‖z − x‖−s dµ(z)

=
c̃0

rd0
I(x, rε) ≤ rd−sε C0

sc̃0

(s− d)rd0
= N [dist (x, ω̂N )]d−s

C0s (1 + 2ε)s(1− 2ε)d−s

c0Cd1 (s− d) εd
.

The RHS has the minimal value at ε = d
4s−2d < 1/2, if considered as function of ε. Summarizing,

we have

Ur(x, ω̂N ) ≤ Ĉ(Ω, µ, s, d)N [dist (x, ω̂N )]d−s.

Substitution of (2.73) gives

dist (x, ω̂N ) ≤

(
Ĉ(Ω, µ, s, d)N

Ur(x, ω̂N )

)1/(s−d)

≤

(
Ĉ(Ω, µ, s, d)N

CN s/d

)1/(s−d)

,

which ends the proof.

Recall that we write αN ∼ βN , N →∞ if αN/βN → 1, N →∞.

Lemma 2.29. Let the assumptions of Theorem 2.10 hold. Then

Ur(x, ω̂N ) ≥ C(Ω, h, s, d, q)N s/d, N ≥ 2. (2.75)

Proof. For a fixed ∆ > 0, choose small enough r > 0, so that z ∈ B(x, r) implies q(z) ≤ L1−h/2
and q(z) ≥ q(x) −∆ for all x ∈ Ω(L1 − h). The choice of r thus depends on q, h,Ω,∆. Note

that by (2.5), x ∈ supp (µq). Suppose also that r satisfies Hd(∂B(x, r)) = 0 (such values of r are

dense because Hd(Ω) <∞). As above, ω̂N (x, r) = {y ∈ ω̂N : y ∈ B(x, r)}. Using equation (2.15)

and Theorem 2.1, we have:

µq[B(x, r)] =

∫
B(x,r)

(
L1 − q(z)

Cs,d(1 + s/d)

)d/s
dHd(z) ≥

≥
(

h

2Cs,d(1 + s/d)

)d/s
c0r

d =: c(h,Ω, s, d)rd.

(2.76)
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For any N ≥ 2, if x ∈ ω̂N there is nothing to prove. Otherwise, as ω̂N is an optimal configuration,

from (2.68) for every y ∈ ω̂N (x, r)

Ur(x, ω̂N ) +N s/dq(x) ≥ ‖x− y‖−s +
∑

z∈ω̂N (x,r):
z 6=y

‖z − y‖−s +N s/dq(y)+

+
∑

z∈ω̂N :
z/∈ω̂N (x,r)

(
‖z − y‖−s − ‖z − x‖−s

)
≥ ‖x− y‖−s +

∑
z∈ω̂N (x,r):

z 6=y

‖z − y‖−s +N s/dq(y)−Nr−s.

Summing over all y ∈ ω̂N (x, r),

(#ω̂N (x, r)− 1)Ur(y, ω̂N ) ≥

≥
∑

y,z∈ω̂N (x,r):
z 6=y

‖z − y‖−s +N s/d
∑

y∈ω̂N (x,r)

(q(y)− q(x))−N2r−s

≥
∑

y,z∈ω̂N (x,r):
z 6=y

‖z − y‖−s −N s/d∆#ω̂N (x, r)−N2r−s.

(2.77)

Since Hd(∂B(x, r)) = 0, there holds lim #ω̂N (x, r)/N = µq[B(x, r)], N →∞. Using (2.76) and

the Lemma 2.22 for the single set B(x, r) with q(·) ≡ 0, we conclude

lim inf
N→∞

N−1−s/d
∑

y,z∈ω̂N (x,r):
z 6=y

‖z − y‖−s ≥ Hd[B(x, r)]

C
d/s
s,d

(
h

2(1 + s/d)

)1+d/s

.

Since N2r−s = o(N1+s/d), dividing (2.77) by #ω̂N (x, r) ∼ Nµq[B(x, r)] for N →∞ gives

Ur(x, ω̂N ) ≥

≥ N s/d

 Hd[B(x, r)]

µq[B(x, r)]C
d/s
s,d

(
h

2(1 + s/d)

)1+d/s

−∆−N1−s/d r−s

µq[B(x, r)]


≥ N s/d

(
(h/2)1+d/s

(1 + s/d)L
d/s
1

−∆−N1−s/d r−s−d

c(h,Ω, s, d)

)
, N →∞,

(2.78)

where we used

µq[B(x, r)] ≤
(

L1

Cs,d(1 + s/d)

)d/s
Hd[B(x, r)].

If we put ∆ = (h/2)1+d/s

2(1+s/d)L
d/s
1

, the inequality (2.78) implies that there exists a constant C =
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C(Ω, h, s, d, q) for which

Ur(x, ω̂N ) ≥ C(Ω, h, s, d, q)N s/d, N ∈ N. (2.79)

Proof of Theorem 2.10. Follows from Lemma 2.28 and Lemma 2.29.

2.5 Combined kernels

The combined Riesz energy functional was introduced in (1.4) for s ≥ d = dimH Ω as

E(x1, . . . ,xN ; gs, κ, q) =
∑
i 6=j

κ(xi,xj)gs(xi,xj) + τ(N)
∑
i

q(xi). (2.80)

Similarly to how it was done for E(x1, . . . ,xN ; gs, q) in Section 1.5.2, one can consider a sequence

of functionals on P(Ω) using (2.80) and to compute its Γ-limit, defined on the measures absolutely

continuous with respect to Hd on Ω. In this section we shall derive an expression for the limiting

functional, which will be denoted by S(· ; gs, κ, q). First, by an analog to (1.15),

1

T (N)
EN (µ; gs, κ, q) :=

 1
T (N)E({x : x ∈ suppµ}; gs, q) if µ ∈ PN (Ω),

+∞, otherwise.
(2.81)

It has been shown in Proposition 1.6 that

1

T (N)
EN (· ; gs, 1, q)

Γ−→ S(· ; gs, 1, q), N →∞,

where

S(µ; gs, κ, q) :=

Cs,d
∫

Ω κ(x,x)ϕ(x)1+s/d dHd(x) +
∫

Ω q(x)ϕ(x) dHd(x), µ = ϕdHd,

+∞, otherwise.

Note that we reuse the notation of (1.16) by simply adding another argument. Further, suppose

following [15] that κ is strictly positive and continuous on the diagonal diag (Ω × Ω), that is,

(xn,yn)→ (x0,x0) in the product topology of Ω×Ω implies κ(xn,yn)→ κ(x0,x0). The following

statement is a straightforward generalization of Proposition 1.6.

Proposition 2.30. Suppose Ω is d-rectifiable . If κ is continuous at every (x,x) ∈ diag (Ω×Ω),
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q is continuous on Ω, and gs is the hypersingular Riesz kernel, then

1

T (N)
EN (· ; gs, κ, q)

Γ−→ S(µ; gs, κ, q), N →∞, (2.82)

on P(Ω) equipped with the weak∗ topology.

Proof. Note that for any fixed δ > 0, the contribution of pairs (xi,xj) for which ‖xi,xj‖ ≥ δ
to the LHS of (2.82) is zero, since there are at most N2 � T (N) such pairs; this implies only

the diagonal values κ(x,x) have impact on the Γ-limit. For additional details, see Lemma 2.26.

Since the statement of the proposition is obvious when κ ≡ C for some constant C, it suffices to

construct a partition of Ω into a metrically separated collection of sets {Ωm}M1 , with a remainder

Ω0 of small Hd measure, and to approximate κ with a constant on every element of the partition.

The metric separation property will then allow to discard interactions of pairs (xi,xj) between

different Ωm, 1 ≤ m ≤M . Lastly, it will be convenient to assume that q(x) > 0, x ∈ Ω; it is not

a restrictive assumption since adding a constant to q translates into the same constant being

added to both sides of (2.82).

To verify the property 1Γ of Γ-convergence, first fix a sequence {µN} ⊂ P(Ω) converging to

µ ∈ P(Ω); just as in the proof of Proposition 1.6, it suffices to assume that µN ∈ PN (Ω). By the

same argument as in Proposition 1.6, µ must be absolutely continuous w.r.t. Hd. Fix an ε > 0;

we shall need a partition of Ω of the form

Ω =

M⋃
m=0

Ωm

with dist (Ωl,Ωm) ≥ σ > 0, 1 ≤ l 6= m ≤ M ; in addition, Hd(∂Ωm) = 0, 1 ≤ m ≤ M and all

Ωm are closed and such that κm − κm < ε for 1 ≤ m ≤ M . The latter is achieved by taking

diam(Ωm) small enough, due to continuity of κ(x,x). By taking Hd(Ω0) small enough, we shall

further guarantee that∫
Ω0

[
Cs,dκ(x,x)ϕ(x)1+s/d + q(x)ϕ(x)

]
dHd(x) < ε,

where ϕ := dµ/dHd. Such a partition is constructed in the proof of Theorem 2.1 using the Vitali

covering lemma. As outlined above, we shall approximate κ(x,x) on Ωm with κm := minΩm κ(x,x)

and κm := maxΩm κ(x,x); both are well-defined due to the continuity of κ on the diagonal.

As discussed above, the case of a constant κ(x,x) can be handled by the argument of

Proposition 1.6, thereby giving

1

T (N)
EN (· ; gs, C, q)

Γ−→ S(· ; gs, C, q), N →∞, 1 ≤ m ≤M
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for any constant C; observe that the continuity of q means that S(· ; gs, C, q) is a continuous

perturbation of S(· ; gs, C, 0), [21, Proposition 2.3]. Denote the N -point supports of µN by

ωN , N ≥ 2. We shall write

µ(m) :=
1

µ(Ωm)
µ∣∣

Ωm
, µ

(m)
N :=

1

µN (Ωm)
µN
∣∣
Ωm
,

the for the renormalized restrictions of µ, µN to Ωm, 1 ≤ m ≤ M . In the case of µ(Ωm) = 0

for some m, we shall join Ωm with an Ωl of positive measure and adjust the value of M below

accordingly. By the property 1Γ of Γ-convergence, there holds

lim
N→∞

EN (µ
(m)
N ; gs, κm, q)

T (NµN (ΩN ))
≥ S(µ(m); gs, κm, q), 1 ≤ m ≤M,

where we used the definition of the counting measures µN and, by the agreement made in

Section 1.1, identified a counting measure with its support as an argument of an energy functional.

The second sum of S(· ; gs, κ, q), containing the external field q(xi) terms, simply adds the∫
Ω qϕ dHd term to the Γ-limit due to the stability under continuous perturbations [21, Proposition

2.3], so we shall focus on the weighted energy sum instead. Since Hd(∂Ωm) = 0, also µ(∂Ωm) = 0,

and thus all the limits

lim
N→∞

#{ωN ∩ Ωm}
N

= lim
N→∞

µN (Ωm) = µ(Ωm), 1 ≤ m ≤M,

exist. This means, we can apply Lemma 3.7 (which is formulated for the unweighted Riesz energy,

but applies here as well) to obtain

lim
N→∞

1

T (N)
EN (µN ; gs, κ, 0) ≥

M∑
m=1

µ(Ωm)1+s/d lim inf
N→∞

EN (µ
(m)
N ; gs, κ, 0)

T (NµN (ΩN ))

≥
M∑
m=1

µ(Ωm)1+s/d lim inf
N→∞

EN (µ
(m)
N ; gs, κm, 0)

T (NµN (ΩN ))

≥
M∑
m=1

µ(Ωm)1+s/dS(µ(m); gs, κm, 0).

To finish the proof of the property 1Γ, we need to show that the sum in the RHS of the last

inequality approximates the value of S(µ; gs, κ, q). Indeed, first observe that

S(µ; gs, κ, q) =

M∑
m=0

∫
Ωm

[
Cs,dκ(x,x)ϕ(x)1+s/d + q(x)ϕ(x)

]
dHd(x)

≤
M∑
m=1

µ(Ωm)1+s/dS(µ(m); gs, κ, q) + ε,
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since the functional S(· ; gs, κ, q) is defined on P(Ω), and thus the respective densities ϕm(x)

have to be rescaled. Furthermore, for every x ∈ Ωm, 0 ≤ κ(x,x)− κm ≤ κm − κm < ε; by taking

ε small enough and applying the monotone convergence theorem, we complete the proof of the

property 1Γ of Γ-convergence.

Fix a µ ∈ P(Ω). Constructing a recovery sequence for µ to verify the property 2Γ will involve

a partition of Ω constructed to satisfy the same requirements as in the first part of the proof,

but instead of approximating κ from below, we shall use κm to approximate it from above. First,

for the remaining part of this proof let µ
(m)
N be the recovery sequences of S(· ; gs, κm, q) for the

restrictions µ(m), 1 ≤ m ≤ M , with the cardinalities #ω
(m)
N adding up to N (thus assuming a

notation not used elsewhere in this text; it will be rather helpful here); let also

µN :=
1

N

∑
m

µ
(m)
N #ω

(m)
N .

The existence of such recovery sequences µ
(m)
N follows from Γ-convergence on individual Ωm, 1 ≤

m ≤M . We thus have

lim
N→∞

EN (µ
(m)
N ; gs, κm, q)

T (NµN (ΩN ))
= S(µ(m); gs, κm, q), 1 ≤ m ≤M,

from where

lim
N→∞

1

T (N)
EN (µN ; gs, κ, 0) =

M∑
m=1

µ(Ωm)1+s/d lim
N→∞

EN (µ
(m)
N ; gs, κ, 0)

T (NµN (ΩN ))

≤
M∑
m=1

µ(Ωm)1+s/d lim
N→∞

EN (µ
(m)
N ; gs, κm, 0)

T (NµN (ΩN ))

=
M∑
m=1

µ(Ωm)1+s/dS(µ(m); gs, κm, 0).

Since the positivity of κ and q implies

S(µ; gs, κ, q) ≥
M∑
m=1

µ(Ωm)1+s/dS(µ(m); gs, κ, q),

taking ε small enough and using the monotone convergence theorem completes the proof of

(2.82).

Corollary 2.31. Any sequence {ωN} that attains the lowest value of

lim
N→∞

1

T (N)
EN (ωN ; gs, κ, q)
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converges weak∗ to the probability measure µκ,q with density

ϕκ,q(x) =
dµκ,q

dHd
(x) :=

(
L1 − q(x)

Cs,d(1 + s/d)κ(x,x)

)d/s
+

,

where L1 is a normalizing constant.

Proof. The proof proceeds by a variational argument identical to the one given in Section 1.5.2.

Uniqueness of the weak∗ limit follows from convexity of the functional S(· ; gs, κ, q) on probability

measures P(Ω) and convergence of minimizers, see Theorem 1.4.
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Chapter 3

Riesz energy on fractal sets

In the previous chapter we made a smoothness assumption on Ω: namely, that it be d-rectifiable.

Observe that given an infinite set Ω, the Riesz s-energy

Es(ωN ) := E(x1, . . . ,xN ; gs, 0) =
∑
i 6=j
‖xi − xj‖−s, N = 2, 3, 4, . . .

on discrete subsets Ω ⊃ ωN = {xi : 1 ≤ i ≤ N} can always be defined, provided that Ω ⊂ Rp is

compact. Indeed, in this case it is a lower semicontinuous functional in the product topology

on (Rp)N , which allows us to consider configurations minimizing it for a fixed N , as well as the

asymptotics of Es(Ω, N) := min{Es(ωN ) : ωN ⊂ Ω} when N →∞.

As has been pointed out in Chapter 1, in the hypersingular case of s > d := dimH Ω

for integer d, there exists extensive treatment of both the asymptotics of Es(Ω.N), and of

the minimizing configurations in the weak∗ topology. Recall that we identify discrete sets

ωN = {xi : 1 ≤ i ≤ N} ⊂ Ω with the corresponding (empirical) probability measures

νN :=
1

N

N∑
i=1

δxi .

Then, as summarized in Theorem 1.3 [61, 17], any sequence of minimizers of Es on ΩN weak∗

converges to the normalized d-dimensional Hausdorff measure Hd(· ∩ Ω)/Hd(Ω) on Ω, provided

that

Ω = Ω(0) ∪
∞⋃
k=0

Ω(k), (3.1)

where each Ω(k) is d-rectifiable andHd(Ω(0)) = 0, and that the d-dimensional Minkowski content of

Ω coincides withHd(Ω). Moreover, under such assumptions the limit of Es(Ω, N)/N1+s/d, N →∞,

exists; i.e., every sequence {ωN : N ≥ 2} of discrete subsets of Ω achieving the limit will converge

weak∗ to Hd/Hd(Ω).

The requirement of Ω being representable as (3.1) is the weakest that is known to guarantee

the Poppy-seed bagel theorem; on the other hand, it has been established [14, Proposition 2.6]

that for a class of self-similar fractals F with dimH F = d, the limit of Es(F,N)/N1+s/d does not

exist. Using this observation, [32] gives an example of a sequence of minimizers without a weak∗

limit.

In view of the above developments, it is natural to ask what can be said about weak∗ cluster

points of {νN : N ≥ 2} in the case when the underlying set Ω is not d-rectifiable; similarly,

what is there to be said about cluster points of {Es(Ω, N)/N1+s/d : N ≥ 2}. We will show
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that when Ω belongs to the class of self-similar fractals satisfying the open set condition, any

subsequence {ωN : N ∈ N} achieving the limit inferior must converge weak∗ to Hd/Hd(Ω).

Furthermore, in the case when contraction ratios of the fractal Ω are all equal, the energy limit

Es(Ω, N)/N1+s/d, N ∈ N, along a sequence N ⊂ N can be characterized by the behavior of

sequence itself.

The following section contains formal definitions and the prerequisites necessary to state our

result; Section 3.2 formulates the main results, and Section 3.3 is dedicated to the proof of weak∗

convergence of sequences corresponding to the lim inf, as well as the results regarding a fractal

with equal contraction ratios. This chapter is based on a joint work in progress by Alexander

Reznikov and the author.

3.1 Self-similarity and open set condition

From now on in this chapter we shall be working with subsets of the Euclidean space Rp. As above,

bold typeface is used for its elements: x ∈ Rp. An open ball of radius r, centered at x, is denoted

by B(x, r). Recall also the standard definition of the weak∗ convergence: given a countable

sequence {µN : N ≥ 1} of probability measures supported on Ω and another probability measure

µ,

µN
∗
⇀µ, N →∞ ⇐⇒

∫
A
f(x)dµN (x) −→

∫
A
f(x)dµ(x), N →∞,

for every f ∈ C(Ω). (Limits along nets are not necessary, as in this context weak∗ topology

is metrizable.) A pair of sets Ω(1), Ω(2) will be called metrically separated if ‖x − y‖ ≥ σ > 0

whenever x ∈ Ω(1) and y ∈ Ω(2). Recall that a similitude ψ : Rp → Rp can be written as

ψ(x) = rM(x) + z

for some orthogonal matrix M ∈ O(p), a vector z ∈ Rp, and a contraction ratio 0 < r < 1. We

shall assume the set Ω ⊂ Rp to be a self-similar fractal, as defined by Hutchinson [69]. Namely, let

Ω ⊂ Rp be the compact set of fixed points of a collection of similitudes {ψm}Mm=1 with contraction

ratios rm, 1 ≤ m ≤M , that is, satisfying

Ω =

M⋃
m=1

ψm(Ω),

where the union is disjoint. Assume additionally that the maps {ψm} satisfy the open set condition:

there exists a bounded open V ⊂ Rp such that

M⋃
m=1

ψm(V ) ⊂ V,
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where the sets in the union are disjoint. Let d be such that

M∑
m=1

rdm = 1. (3.2)

Then d is equal to the Hausdorff dimension of Ω, d = dimH Ω, [43, 80]. It will further be used that

if Ω is a self-similar fractal satisfying the open set condition, then there holds 0 < Hd(Ω) <∞
and Ω is d-regular with respect to Hd; that is, there exists a positive constant c, such that for

every r, 0 < r ≤ diam(Ω), and every x ∈ Ω,

c−1rd ≤ Hd(Ω ∩B(x, r)) ≤ crd. (3.3)

Consider the collection of all sequences {ωN : N ≥ 2} of discrete subsets of Ω, and let

{ωN : N ∈ N} denote a sequence such that

lim
N3N→∞

Es(ωN )

N1+s/d
= lim inf

N→∞

Es(Ω, N)

N1+s/d
=: gs,d(Ω), (3.4)

and similarly, {ωN : N ∈ N} a sequence for which

lim
N3N→∞

Es(ωN )

N1+s/d
= lim sup

N→∞

Es(Ω, N)

N1+s/d
=: gs,d(Ω). (3.5)

Using the notation in (3.4)-(3.5), the precise statement of the non-existence of the limit of

Es(Ω, N)/N1+s/d, N →∞ from [14] is as follows.

Proposition 3.1. If Ω is a self-similar fractal as above, then there exists an S0 > 0 such that

for every s > S0,

0 < gs,d(Ω) < gs,d(Ω) <∞.

It is further useful to recall that [80, Theorem 5.7] if a compact set is d-regular, it must have

Hausdorff dimension d. Then the result of [32] can be fomulated in

Proposition 3.2. Assume that the two d-regular compact sets Ω(1), Ω(2) are metrically separated

and are such that Ω(1) is a self-similar fractal as above and gs,d(Ω
(2)) = gs,d(Ω

(2)). Then for

any sequence of minimizers of Es, {ω̂N : N ≥ 2}, the corresponding sequence of measures

{ν̂N : N ≥ 2} does not have a weak∗ limit.

In view of these two propositions, it is remarkable that the local properties of minimizers of

Es are fully preserved on self-similar fractals. Indeed, d-regularity of Ω can be readily used to

obtain that any sequence of minimizers of Es has the optimal orders of separation and covering.

The following result was proved in [68]:
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Proposition 3.3. If Ω ⊂ Rp is a compact d-regular set, {ω̂N : N ≥ 1} a sequence of configura-

tions minimizing Es with ω̂N = {x̂i : 1 ≤ i ≤ N}, then there exist a constant C1 > 0 such that

for any 1 ≤ i < j ≤ N ,

‖x̂i − x̂j‖ ≥ C1N
−1/d, N ≥ 2,

and a constant C2 > 0 such that for any y ∈ Ω,

min
i
‖y − x̂i‖ ≤ C2N

−1/d, N ≥ 2.

As already noted, self-similar fractals have the d-regularity property; the same applies to

finite unions and countable metrically separated unions of such sets.

3.2 Main results

As will become clear from Lemma 3.7, we require that the first order asymptotics of Es(Ω, N)

grow faster than N2 when N → ∞; this is also the case when s = d, and the proofs in this

section are fully applicable. We shall assume s > d for simplicity; to obtain s = d case, replace

all instances of N1+s/d with N2 logN .

In accordance with the prior notation, we write ωN = {xi : 1 ≤ i ≤ N} for the sequence of

configurations with the lowest limit, and

νN =
1

N

N∑
i=1

δxi , N ∈ N.

As described above, generally neither the weak∗ limit of minimizers of Es, nor the limit of

Es(Ω, N)/N1+s/d, N →∞, need to exist. We can still obtain the following statement about the

sequence {ωN : N ∈ N}.

Theorem 3.4. Let Ω ⊂ Rp be a compact self-similar fractal satisfying the open set condition,

and dimH Ω = d < s. If {ωN : N ∈ N}, is a sequence of configurations for which

lim
N3N→∞

Es(ωN )

N1+s/d
= gs,d(Ω),

then the corresponding sequence of empirical measures converges weak∗:

νN
∗
⇀

Hd
Hd(Ω)

, N 3 N →∞.

When the similitudes {ψm}Mm=1 fixing Ω all have the same contraction ratio, it is natural to

expect some additional symmetry of minimizers, associated with the M -fold scale symmetry of Ω.
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Similarly, since the energy of interactions between particles in different Ω(m) is at most of order

N2, see proof of Lemma 3.7 below, we expect that by acting with {ψm}Mm=1 on a minimizer ω̂N

with N large, we obtain a near-minimizer with MN elements. This heuristic is made rigorous in

the following theorem.

Theorem 3.5. Let Ω ⊂ Rp be a self-similar fractal, fixed under M similitudes with the same

contraction ratio, and M = {Mkn : k ≥ 1}. Then the following limit exists

lim
M3N→∞

Es(Ω, N)

N1+s/d
.

The previous theorem can be slightly extended to show that in the case of equal contraction

ratios r1 = . . . = rm, any sequence N for which the corresponding sequence of minimizers has a

limit must be of this form. Indeed, the following result establishes a bijection between cluster

points of {{logM N} : N ∈ N} and those of the sequence {Es(Ω, N)/N1+s/d : N ∈ N}. We shall

need some notation first. For a sequence N, let

{N} := lim
N3N→∞

{logM N},

where {·} in the RHS denotes the fractional part, and

Es(N) := lim
N3N→∞

Es(Ω, N)

N1+s/d
,

if the corresponding limit exists.

Theorem 3.6. If Ω is a self-similar fractal with equal contraction ratios, and two sequences

N1, N2 ⊂ N are such that

{N1} = {N2}, (3.6)

then

Es(N1) = Es(N2). (3.7)

In particular, the limits in (3.7) exist. Moreover, the function gs,d : {N} 7→ Es(N) is continuous

on [0, 1].

3.3 Proofs

The key to proving Theorem 3.4 is that the hypersingular Riesz energy grows faster than N2.

We shall need this property in the following form.

Lemma 3.7. Let a pair of compact sets Ω(1), Ω(2) ⊂ Rp be metrically separated; let further
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{ωN ⊂ Ω : N ∈ N} be a sequence for which the limits

lim
N3N→∞

#(ωN ∩ Ω(i))

N
= β(i), i = 1, 2.

exist. Then

lim inf
N3N→∞

Es(ωN )

N1+s/d
≥(

β(1)
)1+s/d

lim inf
N3N→∞

Es(ωN ∩ Ω(1))

#(ωN ∩ Ω(1))1+s/d
+
(
β(2)

)1+s/d
lim inf
N3N→∞

Es(ωN ∩ Ω(2))

#(ωN ∩ Ω(2))1+s/d
.

Proof. We observe that with σ = dist (Ω(1),Ω(2)),∥∥∥Es(ωN )−
(
Es(ωN ∩ Ω(1)) + Es(ωN ∩ Ω(2))

)∥∥∥ =
∑

xi∈Ω(1)

,xj∈Ω(2)

‖xi − xj‖−s ≤ σ−sN2,

and use the definition of β(i), i = 1, 2, to obtain the desired equality.

This is particularly useful due to the open set property. Consider a self-similar fractal

satisfying it; since Ω ⊂ V for an open V and ψm(V ) are disjoint, there exists a σ > 0 such that

dist (ψi(Ω), ψj(Ω)) ≥ σ for i 6= j. Following [43], we will write

Ωm1...ml := ψm1 ◦ . . . ◦ ψml(Ω), 1 ≤ mi ≤M, l ≥ 1.

Then dist (Ωm1...ml , Ωm′1...m
′
l
) ≥ rm1 . . . rmkσ, where k = min{i : mi 6= m′i}, so for a fixed M in

the expression

Ω =
M⋃

m1,...,ml=1

Ωm1...ml

not only the union is disjoint, but also the sets Ωm1...ml are metrically separated.

Lemma 3.8. If {µN : N ∈ N} is a sequence of probability measures on the set Ω, which for

every l ≥ 1 satisfies

lim
N3N→∞

µN (Ωm1...ml) = µ(Ωm1...ml), 1 ≤ m1, . . . ,ml ≤M,

for another probability measure µ on Ω, then

µN
∗
⇀µ, N 3 N →∞.

Proof. Fix an f ∈ C(Ω); since Ω is compact, f is uniformly continuous on Ω. Let ε > 0 be

also fixed. By the uniform continuity of f , there exists an L0 ∈ N such that |f(x)− f(y)| < ε

60



whenever x, y ∈ Ωm1,...,ml for any l ≥ L0 and any set of indices 0 ≤ m1, . . . ,ml ≤ M ; this is

possible due to

diam(Ωm1,...,ml) ≤ rm1 . . . rmldiam(Ω) ≤
(

max
1≤m≤M

rm

)l
diam(Ω).

Fix an l ≥ L0 until the end of this proof, then pick an N0 ∈ N so that for every N ≥ N0, there

holds

|µN (Ωm1...ml)− µ(Ωm1...ml)| < ε/M l, 1 ≤ m1, . . . ,ml ≤M.

Finally, let us write fm1...ml := minΩm1...ml
f(x) for brevity. Then for N ≥ N0,∣∣∣∣∫

A
f(x)dµN (x) −

∫
A
f(x)dµ(x)

∣∣∣∣
≤

M∑
m1,...,ml=1

∣∣∣∣∫
Ωm

(f(x)− fm1...ml)dµN (x) −
∫

Ωm

(f(x)− fm1...ml)dµ(x)

∣∣∣∣
+

M∑
m1,...,ml=1

|(µN (Ωm)− µ(Ωm))fm1...ml |

≤ 2ε+ ε‖f‖∞,

where the estimate for the first sum used that both µN and µ are probability measures. This

proves the desired statement.

Note that the converse is also true: since the sets Ωm1,...,ml are metrically separated, con-

vergence µN
∗
⇀ µ of measures supported on Ω immediately implies (by Urysohn’s lemma)

µN (Ωm1...ml)→ µ(Ωm1...ml) for all l ≥ 1 and all indices 1 ≤ m1, . . . ,ml ≤M .

Lemma 3.9. If Ω is a compact d-regular set, then 0 < gs,d(Ω) ≤ gs,d(Ω) <∞.

Proof. We shall provide a concise proof for the sake of completeness; in fact, it suffices to follow

the well-known approach, found for example in [72, 68]. First, for the lower bound observe that

for any ωN = {xi : 1 ≤ i ≤ N}, applying Jensen’s inequality to the function t 7→ t−s/d gives

Es(ωN ) =
∑
i 6=j
|xi − xj |−s ≥

N∑
i=1

(
∆d
i

)−s/d
≥ N

(∑N
i=1 ∆d

i

N

)−s/d
= N1+s/d

(
N∑
i=1

∆d
i

)−s/d
,

where we denote ∆i := minj:j 6=i ‖xj − xi‖. Thus bounding the RHS of the previous equation

from below will give the desired result. Let {Bi = B(xi,∆i/3) : 1 ≤ i ≤ N} be a collection of

pairwise disjoint closed balls of radii {∆i/3}, centered around {xi}. Then the first inequality in
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d-regularity of Ω (3.3) implies

Hd(Ω) ≥
N∑
i=1

Hd(Ω ∩Bi) ≥ c−1
N∑
i=1

(∆i/3)d,

which yields

Es(ωN ) ≥ N1+s/d

3s (cHd(Ω))s/d
. (3.8)

To obtain an upper bound, consider a set of minimizers ω̂N = {x̂i : 1 ≤ i ≤ N} of Es; then

for any x ∈ Ω and 1 ≤ i ≤ N , by optimality of the set ω̂N there holds

min
x∈Ω

∑
j:j 6=i
‖x− x̂j‖−s =

∑
j:j 6=i
‖x̂i − x̂j‖−s ≤

∑
j:j 6=i
‖x− x̂j‖−s.

Denoting r = (Hd(Ω)/2cN)1/d and integrating over x ∈ Ω\
⋃
iB (x̂i, r) gives by Fubini’s theorem

Hd(Ω)

2

∑
j:j 6=i
‖x̂i − x̂j‖−s ≤

∑
j:j 6=i

∫ r−s

0
Hd({x ∈ Ω : ‖x− x̂j‖ ≤ t−1/s}) dt

≤ cN
∫ r−s

0
t−d/s dt =

csN

s− d

(
Hd(Ω)

2cN

)(d−s)/d
.

After adding the above inequalities over 1 ≤ i ≤ N :

Es(Ω, N) ≤ s(2c)s/d

s− d
N1+s/d

Hd(Ω)s/d
.

The above argument gives a somewhat stronger statement, since both bounds hold for finite

values of N ; furthermore, each bound requires only one of the inequalities in (3.3). Equation

(3.8) implies that for any sequence of configurations ωN , N ∈ N, with

lim
N3N→∞

Es(ωN )

N1+s/d
<∞,

every weak∗ cluster point of νN , N ∈ N, must be absolutely continuous with respect to Hd on Ω.

Lastly, observe that the proof of Lemma 3.9 shows also that for an arbitrary collection of distinct

points x1, . . . ,xN−1 ⊂ Ω, the minimal value of the point energy is bounded:

min
x∈Ω

N−1∑
j=1

‖x− xj‖−s ≤
scs/d

s− d

(
Hd(Ω)

2

)−s/d
N s/d.
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It will be subsequently used that the RHS in the last inequality does not depend on N . The

above bound can therefore be summarized as follows.

Corollary 3.10. Suppose Ω is a compact d-regular set, ωN = {xi : 1 ≤ i ≤ N} ⊂ Ω, and s > d.

Then the minimal point energy of ωN is bounded by:

min
x∈Ω

N∑
j=1

‖x− xj‖−s ≤ CN s/d,

where C depends only on Ω, s, d.

Proof of Theorem 3.4. In view of the weak∗ compactness of probability measures in Ω, to

establish existence of the weak∗ limit of νN , N ∈ N, it suffices to show that any cluster point of

νN , N ∈ N, in the weak∗ topology is Hd/Hd(Ω) by a standard argument (see [37, Proposition

A.2.7]). To that end, consider a subsequence of N for which the empirical measures νN converge

to a cluster point µ; for simplicity we shall use the same notation N for this subsequence.

As shown above, νN (Ωm1...ml)→ µ(Ωm1...ml), N 3 N →∞; this ensures that the quantities

βm := µ(Ωm) = lim
N3N→∞

νN (Ωm) = lim
N3N→∞

#(ωN ∩ Ωm)

N
, m = 1, . . . ,M,

are well-defined. From (3.4), separation of {Ωm}, and Lemma 3.7 follows

gs,d(Ω) =

M∑
m=1

lim
N3N→∞

Es(ωN ∩ Ωm)

N1+s/d
≥

M∑
m=1

β1+s/d
m lim inf

N3N→∞

Es(ωN ∩ Ωm)

#(ωN ∩ Ωm)1+s/d

≥
M∑
m=1

β1+s/d
m r−sm gs,d(Ω).

Consider the RHS in the last inequality. As a function of {βm}, it satisfies the constraint∑
m βm = 1; note also that by the defining property (3.2) of d, there holds

∑
mRm = 1 with

Rm := rdm, 1 ≤ m ≤M . We have

gs,d(Ω) ≥ inf

{
M∑
m=1

β1+s/d
m R−s/dm :

M∑
m=1

βm = 1

}
gs,d(Ω). (3.9)

Level sets of the function
∑

m β
1+s/d
m R

−s/d
m are convex, so the infimum is attained and unique; it

is easy to check that the solution is at βm = Rm = rdm, 1 ≤ m ≤M, and the minimal value is 1.

Indeed, the corresponding Lagrangian is

L(β1, . . . , βM , λ) :=

M∑
m=1

β1+s/d
m R−s/dm − λ

M∑
m=1

βm,
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hence

∇Lβm = (1 + s/d)

(
βm
Rm

)s/d
− λ, 1 ≤ m ≤M,

and it remains to use βm ≥ 0, 1 ≤ m ≤M , and
∑

mRm = 1, to conclude βm = Rm, 1 ≤ m ≤M .

Since 0 < gs,d(Ω) <∞ by Lemma 3.9, from (3.9) it follows

βm = rdm, m = 1, . . . ,M.

Note that this argument shows also

lim
N3N→∞

Es(ωN ∩ Ωm)

(#(ωN ∩ Ωm))1+s/d
= gs,d(Ω),

so the above can be repeated recursively for sets Ωm1...ml . Namely, for every l ≥ 1 and 1 ≤
m,m1, . . . ,ml ≤M ,

µ(Ωmm1...ml) =: βmm1...ml = rdmβm1...ml .

Observe further that Hd satisfies

Hd(Ωmm1...ml) = rdmHd(Ωm1...ml)

by definition, so by Lemma 3.8 follows that every weak∗ cluster point of νN , N ∈ N, is Hd/Hd(Ω),

as desired.

Proof of Theorem 3.5. Note that setting equal contraction ratios r1 = . . . = rm = r in (3.2)

gives r−s = M s/d. Consider the set function

ψ : x 7→
M⋃
m=1

ψm(x), x ∈ Ω,

and denote

ψ(ωε) :=
⋃

x∈ωε
ψ(x).

It follows from the open set condition that the union above is metrically separated; we shall denote

the separation distance by σ. Observe that the definition of a similitude implies #(ψ(ωε)) =

M#(ωε). We then have for any configuration ωN , N ≥ 2,

Es(Ω,MN) ≤ Es(ψ(ωN )) ≤Mr−sEs(ωN ) + σ−sN2M2

= M1+s/dEs(ωN ) + σ−sN2M2,
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and repeated application of the second inequality yields

Es(Ω,MkN) ≤ Es[ψ(ψ(k−1)(ωN ))] ≤M1+s/dEs(ψ
(k−1)(ωN )) + σ−s(Mk−1N)2M2

≤ (M2)1+s/dEs(ψ
(k−2)(ωN )) +M1+s/dσ−s(Mk−2N)2M2 + σ−s(Mk−1N)2M2

≤ . . .

≤ (Mk)1+s/dEs(ωN ) + σ−sN2
k∑
l=1

(M l−1)1+s/d(Mk−l)2M2.

Estimating the geometric series in the last inequality, we obtain

Es(Ω,MkN) ≤ (Mk)1+s/dEs(ωN ) + σ−sN2M2k+1−s/d
k∑
l=1

M l(s/d−1)

≤ (Mk)1+s/dEs(ωN ) + σ−sN2M2k−s/d
(

2M (k+1)(s/d−1)
)

= (Mk)1+s/dEs(ωN ) +
2

σsM
N1−s/d

(
MkN

)(1+s/d)
.

(3.10)

Let now ε > 0 fixed; find ωN0 such that N0 ∈M and

Es(ωN0)

N
1+s/d
0

≤ lim inf
M3N→∞

Es(Ω, N)

N1+s/d
+ ε,

and in addition, 2N
1−s/d
0 < εσsM . Then by (3.10) we have

Es(Ω, N)

N1+s/d
≤ Es(ωN0)

N
1+s/d
0

+ ε ≤ lim inf
M3N→∞

Es(Ω, N)

N1+s/d
+ 2ε, M 3 N ≥ N0.

This proves the desired statement.

In the following lemma we write N(k), k ∈ N, to denote the k-th element of the sequence

N ⊂ N; we say that N is majorized by a sequence M, if the inequality N(k) <M(k) holds for

every k ≥ 1.

Lemma 3.11. If M ⊂ N is a sequence such that the limit

lim
M3N→∞

Es(Ω, N)

N1+s/d

exists, then for any sequence of integers N ⊂ Z with |N(k)| majorized by M and satisfying

|N(k)| = o(M(k)), k →∞, there holds

lim
(M+N)3N→∞

Es(Ω, N)

N1+s/d
= lim

M3N→∞

Es(Ω, N)

N1+s/d
, (3.11)
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where the addition M + N is performed elementwise.

Proof. First, observe that by passing to subsequences of M and N, it suffices to assume N(k) ≥ 0

and to show(3.11) for M + N and M−N. Furthermore, inequality

Es[Ω, (M + N)(k)] ≥ Es(Ω,M(k))

holds by the definition of Es. Thus

lim inf
(M+N)3N→∞

Es(Ω, N)

N1+s/d
≥ lim

k→∞

Es(Ω,M(k))

(M(k) + N(k))1+s/d

= lim
k→∞

Es(Ω,M(k))

(M(k))1+s/d

(
M(k)

M(k) + N(k)

)1+s/d

= lim
M3N→∞

Es(Ω, N)

N1+s/d
,

(∗)

in view of N(k) = o(M(k)). Similarly,

lim sup
(M−N)3N→∞

Es(Ω, N)

N1+s/d
≤ lim

M3N→∞

Es(Ω, N)

N1+s/d
. (∗)

For the converse estimates, use Corollary 3.10 to conclude that for every N ∈ N there holds

Es(Ω, N + 1) ≤ Es(Ω, N) + CN s/d.

Applying this inequality N(k) times to M(k), we obtain

Es[Ω, (M + N)(k)] ≤ Es(Ω,M(k)) + N(k)C[M(k) + N(k)]s/d,

which yields

lim sup
(M+N)3N→∞

Es(Ω, N)

N1+s/d
≤ lim

M3N→∞

Es(Ω, N)

N1+s/d
. (∗)

Finally, applying Corollary 3.10 N(k) times to M(k)−N(k) gives

Es[Ω,M(k)] ≤ Es[Ω, (M−N)(k)] + N(k)CM(k)s/d,

whence, using that N(k) = o(M(k)), k →∞,

lim inf
(M−N)3N→∞

Es(Ω, N)

N1+s/d
≥ lim

M3N→∞

Es(Ω, N)

N1+s/d
. (∗)

Combining inequalities marked by (∗), we obtain the desired result.

The proof of the previous lemma gives also the following.
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Corollary 3.12. If M,N ⊂ N are a pair of sequences such that

N(k) ≤ θM(k), k ≥ 1,

then

lim inf
(M+N)3N→∞

Es(Ω, N)

N1+s/d
≥ lim inf

M3N→∞

Es(Ω, N)

N1+s/d
·
(

1

1 + θ

)1+s/d

and

lim sup
(M+N)3N→∞

Es(Ω, N)

N1+s/d
≤ lim sup

M3N→∞

Es(Ω, N)

N1+s/d
+

Cθ

1 + θ
,

where C is the same as in Corollary 3.10.

Proof of Theorem 3.6. To show that gs,d(·) is well-defined, it is necessary to verify that (i)

existence of the limit {N} implies that of the limit Es(N), and (ii) the value of Es(N) is uniquely

defined by {N}. First assume that N1, N2 are multiples of (a subset of) the geometric series,

that is, Ni = {Mkni : k ∈ Ki}, i = 1, 2. Observe that (3.6) implies {logM n1} = {logM n2} and

let for definiteness n2 ≥ n1; then n2 = Mk0n1 for some k0 ≥ 1. It follows that Ni ⊂ N0, i = 1, 2,

with N0 = {Mkn0 : k ≥ 1}. By Theorem 3.5, the limit

lim
N03N→∞

Es(Ω, N)

N1+s/d

exists, so it must be that the limits over subsequences of N0

lim
Ni3N→∞

Es(Ω, N)

N1+s/d
, i = 1, 2,

also exist and are equal, so the function gs,d(·) is well-defined on the subset of [0, 1] of the form

{N} with N = {Mkn : k ∈ K}.
Now let N1, N2 ⊂ N be arbitrary. Denote the common value of the limit a := {Ni}, i = 1, 2.

We shall assume for definiteness that a ∈ (0, 1); the case of a ∈ {0, 1} can be handled similarly.

In order to bound Ni between two sequences of the type {Mkni : k ∈ Ki}, discussed above, fix

an ε > 0 such that a− 2ε > 0 and a+ 2ε < 1, and find an N0 ∈ N, for which

|{logM Ni} − a| < ε, N0 ≤ Ni ∈ Ni, i = 1, 2. (3.12)

By the choice of ε, the above equation gives b{logM N1}c = b{logM N2}c when N0 ≤ Ni ∈ Ni.

Now let ni, i = 1, 2 be such that

a− 2ε ≤ {logM n1} ≤ a− ε

a+ ε ≤ {logM n2} ≤ a+ 2ε.
(3.13)
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Replacing one of ni, i = 1, 2, with its multiple, if necessary, we can guarantee that 0 < logM n2−
logM n1 < 4ε. Consider a pair of sequences Ñi = {Mkni : k ≥ dlogM N0e}, i = 1, 2; observe that

by the above argument, limits

Es(Ñi) =: Li, i = 1, 2,

along Ñi, i = 1, 2, both exist, and the inequality

Ñ1(k) ≤ Ni ≤ Ñ2(k), k = blogM Nic, N0 ≤ Ni ∈ Ni, i = 1, 2,

holds. By the definition of Es, and due to (3.12)–(3.13),

lim sup
Ni3N→∞

Es(Ω, N)

N1+s/d
≤ lim

k→∞

Es(Ω,Mkn2)

(Mkn1)1+s/d
=

(
n2

n1

)1+s/d

L2, i = 1, 2,

and

lim inf
Ni3N→∞

Es(Ω, N)

N1+s/d
≥ lim

k→∞

Es(Ω,Mkn1)

(Mkn2)1+s/d
=

(
n1

n2

)1+s/d

L1, i = 1, 2.

Combining the last two inequalities gives(
n1

n2

)1+s/d

L1 ≤ lim inf
Ni3N→∞

Es(Ω, N)

N1+s/d
≤ lim sup

Ni3N→∞

Es(Ω, N)

N1+s/d
≤
(
n2

n1

)1+s/d

L2,

so it suffices to show that L2 can be made arbitrarily close to L1 by taking ε→ 0. The latter

follows from Corollary 3.12, and the choice of ni, i = 1, 2:

0 ≤ Ñ2(k)− Ñ1(k)

Ñ1(k)
=
n2

n1
− 1 ≤M4ε − 1.

Taking ε→ 0 shows both that Es(N1) = Es(N2), and that these two limits exist. The function

gs,d : [0, 1] → (0,∞) is therefore well-defined. Note that repeating the above argument for

|{N1} − {N2}| < ε for a fixed positive ε gives a bound on |Es(N1)−Es(N2)|, which implies that

gs,d is continuous. This completes the proof.
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Chapter 4

Applications to meshless methods

The present chapter discusses construction of stencils for the Radial Basis Function-generated

Finite Differences (RBF-FD) method, by applying a Riesz energy gradient flow to an initial Quasi-

Monte Carlo (Q-MC) configuration. This approach targets primarily meshless finite difference

methods, see Section 4.2.1, but can be applied to a wide range of problems that require generation

of a point cloud with controlled local properties.

The section structure is as follows: Section 4.2.1 outlines the RBF-FD method using Gaussian

and Polyharmonic Spline kernels; Sections 4.2.2 and 4.2.3 introduce the two essential components

of our approach, Riesz energy functionals and quasi-Monte Carlo methods. The main algorithm

and its discussion are the subjects of Sections 4.3.1 and 4.3.2, respectively. Sections 4.4.1–4.4.3

offer applications of the algorithm; the corresponding run times are summarized in Section 4.4.4.

Section 4.5.1 contains comparisons of the condition numbers of RBF-FD matrices with stencils

on periodic Riesz minimizers, Halton nodes, and the Cartesian grid; Section 4.5.2 discusses the

range of dimensions where the present method is applicable. Lastly, Section 4.6 is dedicated to

numerical experiments with the mean and minimal separation distance of Riesz minimizers and

irrational lattices. Throughout the chapter the underlying set has full dimension: dimH Ω = d = p;

we shall denote it by d. This chapter reproduces with minor modifications the joint paper with

Natasha Flyer, Bengt Fornberg, and Timothy Michaels [104, 103], published electronically in

Computers & Mathematics with Applications.

4.1 Formulation of the problem

In a number of important applications, usefulness of meshless methods in general, and of radial

basis functions (RBFs) in particular, is well-known. They have found their way into high-

dimensional interpolation, machine learning, spectral methods, vector-valued approximation

and interpolation, just to name a few [105, 33, 49, 27, 97]. RBFs have multiple advantages,

most importantly extreme flexibility in forming stencils (in the case of RBF-FD) and high local

adaptivity; allowing spectral accuracy on irregular domains; the fact that the corresponding

interpolation matrix (denoted by A below) is positive definite for several types of radial functions

and does not suffer from instability phenomena characteristic of some alternative interpolation

methods.

Applying RBF-FD stencils to building solvers requires an efficient way of distributing the

nodes of basis elements in the domain, which can be either a solid or a surface. The tasks of

modeling and simulation often call for massive numbers of nodes, so it is important to ensure
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that the distribution process is easily scalable. One further has to be able to place the RBFs

according to a certain density, as a method of local refinement, for example, at the boundary,

or in regions of special interest. Yet another challenge arises when it is necessary to deal with

complex or non-smooth domains and/or surfaces.

Recall [51] that an RBF is a linear combination of the form

S(x) =

K∑
k=1

ckϕ(‖x− xk‖), (4.1)

where ϕ(·) is a radial function, and xk, k = 1, . . . ,K, is a collection of pairwise distinct points in

Rd. A common choice of ϕ is the Gaussian ϕ(r) = e−(εr)2 , although one may also use 1/(1+(εr)2),

r2p log(r), p ∈ N, etc. In this discussion, we are not concerned with the distinctions between the

different radial kernels, so the reader can assume that ϕ(r) = e−(εr)2 . In contrast to pseudospectral

methods [49], RBF-FD approach means that to obtain a useful approximation of a function, or a

differential operator, the nodes in expressions like (4.1) must be in the vicinity of the point x,

and therefore numerous stencils are constructed throughout the underlying set. It is well-known

that the matrix

A =


ϕ(‖x1 − x1‖) ϕ(‖x1 − x2‖) . . . ϕ(‖x1 − xK‖)
ϕ(‖x2 − x1‖) ϕ(‖x2 − x2‖) . . . ϕ(‖x2 − xK‖)

...
...

...

ϕ(‖xK − x1‖) ϕ(‖xK − x2‖) . . . ϕ(‖xK − xK‖)

 (4.2)

is positive definite if the nodes x1 . . .xK are all distinct [95], and so under this assumption there

exist K-point RBF interpolants for any function data. A different question, however, is whether

the matrix A will be well-conditioned: it is not the case, for example, when the nodes are placed

on a lattice and ε→ 0, [53]. The other extreme, having low regularity, also does not provide a

reliable source of nodes, as can be seen on the example of the Halton sequence [53]. Furthermore,

node clumping can lead to instability of PDE solvers, [49]. To avoid this, one must guarantee

that the nodes are separated. In effect, generally the quasi-uniform node sets generated by the

present algorithm, or, for example, the one constructed by the third and fourth authors [52],

perform better than either lattice or the Halton sequence.

In many applications, one has to ensure that the distance from a node x to its nearest

neighbor behaves approximately as a function of the position of the node [52]. Prescribing this

function, ρ(x)(x), which we call the radial density, is a natural way to treat the cases when a

local refinement is required in order to capture special features of the domain. In the present

chapter we will describe a method of node placement for which the actual distance to the nearest

neighbor, denoted by ∆(x) = minx′ 6=x ‖x′ − x‖, satisfies the above description. To summarize,

we are interested in a procedure for obtaining discrete configurations inside a compact set that
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will:

• guarantee that ∆(x) � ρ(x) (that is, differ only up to a constant factor) for a given function

ρ(x) with a reasonably wide choice of ρ;

• be suitable for mesh-free PDE discretizations using RBFs, i.e., produce well-separated configu-

rations without significant node alignment;

• result in quasi-uniform node distributions also on the surface boundaries of the domain;

• be computationally efficient, easily scalable, and suitable for parallelization.

4.2 Choice of method

4.2.1 RBF-FD approximations

In this section we shall outline the common practices involving RBFs, in order to motivate

the requirements that have to be imposed on the node distribution used in the respective

computations. For a more in-depth discussion see one of [51, 105, 28, 44]. A significant portion

of the RBF approach hinges on the theory of positive definite functions.

Suppose we need to approximate a linear operator L acting on sufficiently smooth functions

supported on Ω, given locally by their values at the nodes xk, k = 1, . . . ,K. More specifically,

we need to compute the value Lξ(x0) for some fixed x0 ∈ Ω and a variable function ξ. A

generalization of the standard [50] finite-difference (FD) approach consists in constructing

weights wk, k = 1, . . . ,K, that recover the value of L at x0 in the form

LS(x0) =
K∑
k=1

wkS(xk), (4.3)

for every S from a convenient functional space; the S is then chosen to interpolate ξ at the

given nodes x1, . . . ,xK . In our case, S is spanned by RBFs, so by analogy to the 1-dimensional

case this method is called RBF-FD; there exists extensive literature covering different types of

kernels and different applications [51, 48, 54, 11, 47, 46, 4, 45]. Note that the node localization is

required due to that (i) local stencils lead to sparse matrices, and are thus much more suitable

for computations, (ii) in most applications, L is either an interpolation or a differential operator;

both act locally, so it is natural to use local stencils.

For example, using the space of shifts of the Gaussian kernel ϕ(r) = e−(εr)2 , one arrives at an

RBF interpolant

S(x) =
K∑
k=1

ckϕ(‖x− xk‖).
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In order to express LS(x0) as a functional of S(xk), k = 1, . . . ,K, as in (4.3), it suffices to do so

for the functions ϕk(x) = ϕ(‖x − xk‖), k = 1, . . . ,K. The weights {wk} are then obtained as

the solution to
ϕ(‖x1 − x1‖) ϕ(‖x1 − x2‖) . . . ϕ(‖x1 − xK‖)
ϕ(‖x2 − x1‖) ϕ(‖x2 − x2‖) . . . ϕ(‖x2 − xK‖)

...
...

...

ϕ(‖xK − x1‖) ϕ(‖xK − x2‖) . . . ϕ(‖xK − xK‖)



w1

w2

...

wK

 =


Lϕ(‖x0 − x1‖)
Lϕ(‖x0 − x2‖)

...

Lϕ(‖x0 − xK‖)

 .

Observe that in order to find the interpolant S for ξ, {ck} are determined from the same system,

with L taken to be the identity map. The matrix on the left is denoted by A in (4.2); it is

degenerate whenever any two of {xk} coincide, and is ill-conditioned whenever any two are very

close, due to the continuity of ϕ. This brings us to further considerations of how the stencil {xk}
can be chosen. By the above, it is necessary that the nodes be (i) distinct and well-separated,

and (ii) localized inside the domain Ω. For a quasi-uniform node set, K nearest neighbors of a

fixed node satisfy both conditions.

Observe that for any strictly positive definite kernel ϕ, provided {xk} are all distinct, the

interpolation matrix A is always invertible (the Gaussian is an example of such kernel). To

summarize, the above expression for weights {wk} is the defining property of the RBF-FD

methods with the Gaussian kernel.

Taking the limit of the shape parameter ε → 0 can cause the interpolant s to diverge for

other RBF kernels [56, 29] that contain ε; this phenomenon however does not occur for the

Gaussian ϕ(r) = e−(εr)2 . The motivation for considering the “increasingly flat” limit ε → 0 is

that the resulting RBFs can be used to obtain highly accurate solutions of elliptic problems and

approximants of smooth data [56, 75]. We now conclude the discussion of the Gaussian kernel

and turn to its novel alternative.

In the recent years, there have been noteworthy advances in RBF-FD using Polyharmonic

Spline (PHS) kernels, ϕ(r) = r2p−1 or ϕ(r) = r2p log r, p ∈ N; it has been shown [46, 4, 45]

that using PHS-based RBF-FD leads to improved accuracy, stability, and eliminates the Runge

phenomenon at the boundary of the domain [4], which is not the case in general [57]. Another

benefit from using the PHS kernel is that it does not contain the shape parameter ε. The

analytical property underlying existence of the weights {wk} for the PHS kernels is that the PHS

are conditionally strictly positive definite [44, 82] and thus need a slightly different treatment,

which we shall now outline.

To ensure unisolvency (uniqueness of the weights and interpolants), we need to augment the
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S with polynomial terms: it is selected from the space defined by

S(x) =
K∑
k=1

ckϕ(‖x− xk‖) +

(l+dl )∑
i=1

biπi(x),

with {ck} satisfying the constraint

K∑
k=1

ckπi(xk) = 0, i = 1, 2, . . . ,

(
l + d

l

)
,

where ϕ is now the PHS kernel, and
(
l+d
l

)
is the dimension of the space of multivariate polynomials

of degree up to l in Rd; accordingly, πi varies over the monomial basis for such polynomials.

The degree l has to satisfy l = p − 1 and l = p for ϕ(r) = r2p−1 and ϕ(r) = r2p log r,

respectively [44, Chapter 8]. For example, when ϕ(r) = r2 log r and d = 2, then l = 1 and the

weights corresponding to an operator L in R2 are determined by

| 1 x11 x12

A |
...

...
...

| 1 xk1 xk2

− − − + − − −
1 1 1 |
x11 . . . xk1 | 0

x12 . . . xk2 |





w1

...

wk

−
wk+1

wk+2

wk+3


=



Lϕ(‖x0 − x1‖)
...

Lϕ(‖x0 − xK‖)
−
L 1

Lx1(x01)

Lx2(x02)


, (4.4)

where the matrix A is the same as in (4.2) with the PHS kernel; xkj is the j-th coordinate of

xk, k = 1, . . . ,K; j = 1, 2, and similarly for x0 = (x01, x02)tr; L1, Lx1, Lx2 denote images of the

constant and coordinate functions under L, respectively. Here, as before, the interpolation case

is obtained by taking L equal to the identity operator; compare the constraints on {ck} above.

The generalization to larger values of l and higher dimensions follows along the same lines, with

higher-degree monomials instead of linear terms [105, Chapters 8, 11.1].

For this and the other commonly used kernels, non-degeneracy follows from a strengthened

form of Micchelli’s theorem [88], see also [44, 105, 34, 82]; namely, the matrix in the LHS of

the previous equation is non-degenerate for any unisolvent x1, . . . ,xK . The remaining part of

the discussion for the Gaussian kernel above is further applicable without any modifications. It

should be noted that the optimal choice of the degree of PHS that needs to be used, does in

general depend on the particular problem under consideration.
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4.2.2 Riesz energy

To generate nodes both devoid of lattice alignment and having near-optimal local separation, we

shall minimize a functional on the space of discrete subsets of Ω. Equivalently, one can think of

the corresponding gradient flow moving the starting configuration to a suitable position. The

desired properties of the minimizing configuration will then follow from the strong repulsion

imposed by the functional.

Recall that for a fixed s > d the Riesz s-energy is a functional Es : ΩN 7→ (0,∞) such that

for a collection of vectors x1, . . . ,xN in Ω,

Es(x1, . . .xN ) =
∑
i 6=j

1

‖xi − xj‖s
. (4.5)

As discussed in Chapter 1, there exists extensive literature dedicated to the collections minimizing

this and derived functionals for s ≥ d, their asymptotics and limiting measures, see for example

[62, 15, 22]. Recall that in the case s ≥ d, the distribution of minimizers of Es coincides with

the normalized Hausdorff measure on Ω; practically this means that the minimizers are uniform

in the volumetric sense on Ω, that is, the number of nodes per unit volume is close to constant.

In order to produce non-uniform nodes, we shall further add multiplicative weight to (4.5);

this modification of (4.5) was first studied in [15]. The weighted Riesz s-energy with kernel

κ : Ω× Ω→ (0,∞) is the functional Eκs : ΩN 7→ (0,∞), defined in the notation of (1.4) as

Eκs (x1, . . .xN ) := E(x1, . . . ,xN ; gs, κ, 0) =
∑
i 6=j

κ(xi,xj)

‖xi − xj‖s
.

It has been shown [15], that the counting measures of minimizers of the weighted energy converge

to the probability measure with volumetric density proportional to

κ(x,x)−d/sdHd(x),

with Hd denoting the d-dimensional Hausdorff measure. More precisely, for any B ⊂ Ω with

boundary of zero measure there holds

1

N

N∑
i=1

χ(xi;B) −→ 1

Z(κ,Ω)

∫
B
κ−d/s(x,x)dHd(x), N →∞,

where χ(· ;B) is the indicator function of B and Z(κ,Ω) is the normalization constant. Of course,

for most applications the set B will have zero-measure or even differentiable boundary.

It is worth noting that the previous equation shows that the distribution of nodes produced

by minimizing Eκs depends only on the diagonal values of κ for large enough N . Indeed, this has
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been explored in [18], where it is shown that omitting interactions of points at least rN apart

in Eκs and minimizing the resulting expression leads to the same distribution when N → ∞;

the sequence rN , N ≥ 2 here satisfies rNN
1/d → ∞, N → ∞. Following [18], a weight κ(x,y)

vanishing whenever ‖x− y‖ > rN is said to be truncated.

Configurations that minimize Eκs over ΩN for a compact Ω are well-separated, that is, the

quantity ∆({x1, . . .xN}) = mini ∆(xi) satisfies

∆({x1, . . .xN}) ≥ CN−1/d, N ≥ 2. (4.6)

We shall assume that the terms in Eκs for which xj is not among the K nearest nodes to xi are

zero, a condition equivalent to truncating κ, provided the nodes are well-separated. Under this

assumption, the expression for Eκs can be rewritten as

Eκs (x1, . . .xN ) =
N∑
i=1

K∑
k=1

κ
(
xi,xj(i,k)

)
‖xi − xj(i,k)‖s

, (4.7)

where nodes xj(i,k), k = 1, . . . ,K, are the K nearest neighbors of x. That minimizers of (4.7)

are well-separated can be shown by the standard argument from one of [62, 15, 18]. This further

implies that they are quasi-uniform, which is the key property for us in view of the discussion in

Section 4.2.1. As the form (4.7) makes clear, for the truncated kernel κ the Eκs can be computed

in O(NK) operations, unlike the O(N2) operations required to evaluate the functional for a

non-vanishing κ. This, and the fact that (4.7) requires constant size memory for storage makes

this form of Eκs the most useful for our purposes.

The value of the exponent s is chosen so that s ≥ d to ensure that the energy functional is

sufficiently repulsive; it is known from the classical potential theory that for s < d the minimal

energy configurations are not necessarily uniform, and their local structure depends on the shape

of the domain [74]. Property (4.6) holds for any s > d, when minimizing the energy over any

fixed compact set Ω ⊂ Rd. While setting κ(x,y) = f(‖x− y‖) for an arbitrary positive definite

radial function f(r) that grows fast enough when r → 0 would produce similar results, we chose

the Riesz energy because the properties of its minimizers are well understood.

Note that simply looking for minimizers of Eκs does not provide node sets satisfying ∆(x) �
ρ(x) for every x; in fact, boundary nodes of such minimizers will often have smaller separations

than desired. Since in such cases the boundary has a lower Hausdorff dimension, it does not

influence the volumetric density, which agrees with the results above. With this motivation in

mind, we are ready to introduce the second component of our method.
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4.2.3 Quasi-Monte Carlo methods

To facilitate convergence of whichever optimization algorithm is used to find minimizers of (4.7),

we can initialize it with a configuration that approximates the limiting measure. One has to rule

out Monte Carlo methods due to the separation requirement: random points exhibit clustering

[25], which makes deterministic post-processing, in particular by energy minimization, costly.

Similarly, mitigating the clustering by purely probabilistic approaches, as for example thinning

discussed in [77], or by sampling from a random process with repulsive properties [2, 6], does

not generally yield satisfying results, since the separation can only be guaranteed on average.

Instead, we turn to the quasi-Monte Carlo (Q-MC) approach. As has been pointed out at the

end of Section 4.2.1, in order to ensure convergence of RBF-FD interpolants, the underlying

node set must be (locally) unisolvent; for our purposes this just means that the nodes are in a

generic position with respect to each other. The latter is clearly not the case for lattice-like Q-MC

configurations, which explains why we resort to energy minimization. On the other hand, we

choose not to use other popular Q-MC sequences, such as Halton nodes, as they do not necessarily

lead to the best conditioned systems, see [55, Figure 5.1] and Figure 4.10 below, and are harder

to handle when the distribution support Ω has complex geometry.

The key element of our construction lies in distributing the node set in a deterministic way

so that to guarantee low discrepancy between the desired and the obtained radial densities.

This is achieved by a Q-MC analog of the stratification of the Monte Carlo method [31]: nodes

are distributed with piecewise constant (radial) density that approximates the desired one.

We consider two different Q-MC sequences to draw from with (near-)constant radial density:

irrational lattices and periodic Riesz minimizers. After dividing the set Ω into cube-shaped voxels

Vm, m = 1, . . . ,Md, each voxel is filled with nodes obtained in one of the two ways, appropriately

scaled, then the weighted s-energy (4.7) of the whole node set is minimized. Although we discuss

the radial density in the present chapter, an argument for the volumetric density can be produced

along the same lines.

Yet another reason to make use of a Q-MC sequence is to avoid recursive data structures,

which in some cases can be detrimental to the overall performance. Even though such structures

have seen significant developments over the years, both dynamic update and parallelization for

them remain challenging, [90, 107]. The present approach should therefore be understood as

almost opposite to the well-known “quadtree” algorithm [60], that indeed has been used for

meshless node generation [101]. Namely, as outlined above, our algorithm places nodes en masse

inside the voxels to produce a rough approximation of the target distribution, and subsequently

adjusts them by a gradient flow, which is straightforward to parallelize. Although this does involve

the computation of the nearest neighbors in (4.7), which in practice will be done by constructing

a k-d tree, by initializing the node configuration with a stratified Q-MC sequence we ensure the

indices j(i, k) in (4.7) will not undergo significant changes during the energy minimization stage,

76



so the k-d tree will not require intensive updates.

An irrational lattice(IL) is defined as a discrete subset of the d-dimensional unit cube [0, 1]d

Ln =

{(
{C1 + i/n}, {iα1}, {iα2}, . . . , {iαd−1}

)
: i = 1, . . . , n

}
, (4.8)

where {x} = mod(x, 1) = x − bxc denotes the fractional part of x, C1 > 0 is fixed, and

α1, α2, . . . , αd−1 are irrational numbers, linearly independent over the rationals. This terminology

seems to be accepted in the low-discrepancy community [9], while closely related objects, when

used for Q-MC purposes, are known as Korobov/lattice point sets [76].

The motivation for using an IL in this context is due to the existing results on the discrepancy

of ILs. It is known for example, that the two-dimensional ILs have the optimal order of L2

discrepancy, [10, 9]. Furthermore, in all dimensions ILs are uniformly distributed [73, Chapter

1.6], that is, the fraction of lattice points inside any rectangular box with faces parallel to

the coordinate planes converges to its volume. The simple linear structure of ILs makes them

especially attractive for SIMD-parallelization.

Another Q-MC sequence that has proven to suit our purposes consists of periodic Riesz

minimizers on the unit flat torus, that is, n-point collections Mn, n ≥ 1 = {x1, . . . ,xn} that

minimize (4.5) on ([0, 1]d)n with the Euclidean distance ‖ · ‖ replaced by the periodic metric

‖x− y‖2∼ = Π(x1 − y1) + Π(x2 − y2) + Π(x3 − y3), (4.9)

where Π(x) = min(x2, (1− x)2), 0 ≤ x ≤ 1. It follows from [62] that such configurations have

optimal separation and asymptotically uniform volumetric density. It follows from the numerics

also, that in this case the nearest neighbor distances vary very little from node to node; this and

that minimizing configurations do not suffer from the lattice-like alignment, makes their rescaled

copies good candidates for the stratification.

The number of nodes in individual voxels is defined by the function ρ, so the resulting

collection has piecewise constant density; refining the voxel partition leads to an improved

piecewise approximation of the desired (e.g., smooth) density. In practice, the dependence

between the number of nodes contained in the unit cube, and average/minimal nearest neighbor

distance is tabulated in advance, and then inverted during the construction of the node set.

4.3 The algorithm

The interested reader will find a Matlab codebase implementing the algorithm described here, as

well as the sources for all the figures contained in the present chapter, at [102].
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Figure 4.1: An illustration of some of the symbolic notation used in the algorithm below, in the
case d = 2.

4.3.1 Formulation

If the nodes must be restricted to a certain compact set Ω, for example, support of a given

indicator, we will refer to the set as density support, and to the indicator function as point

inclusion function. We may further assume that Ω is contained in the d-dimensional unit cube

Cd = [0, 1]d (see Figure 4.1 for some of the notation involved); the case of an arbitrary compact set

then follows by choosing a suitable enclosing cube and applying scaling and translation. Suppose

the radial density is prescribed by a Lipschitz-1 function; i.e., |ρ(x)(x)− ρ(y)| ≤ ‖x− y‖. The

reason for this assumption is the respective property of ∆(x), and is explained in further detail

in the following section. Recall that we use an exponent s > d. We summarize the discussion in

Section 4.2 into the following algorithm for generating nodes with radial density ρ:

Initial node layout.

Step 0 Choose one of the two Q-MC sequences described in Section 4.2, {Ln : n ≥ 1} or

{Mn : n ≥ 1}, draw configurations with up to nmax nodes from it, and determine

the mean nearest neighbor distance for its periodization by the integer lattice, denoted

by ∆̄n for n nodes. Let λ : (0,∞) → {0, 1, 2, . . . , nmax} be the interpolated inverse to

〈∆n〉 : {1, 2, . . . , nmax} → (0, 1].1

Step 1 Partition Cd into Md equal cube-shaped voxels Vm, m = 1, . . . ,Md of side length 1/M ,

with faces parallel to the coordinate planes. Let {Vm : m ∈ D} be the subset for which at

least one of the adjacent (i.e., sharing a face) voxels has a vertex inside Ω.

Step 2 Let 〈ρm〉 be the average value of ρ at the 2d vertices of a voxel Vm, m ∈ D. Place inside

1Note that both ILs and the minimizers can have the nearest neighbor distance of at most 1, due to periodicity.
We therefore take λ(x) = 0 whenever x > 1.
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Vm a scaled and translated version of the nm-point IL (4.8), or of the nm-point periodic

Riesz minimizer, using nm defined by

nm = λ(〈ρm〉M).

Repeat for each m ∈ D.

Saturation and cleanup.

Step 3 Let E ⊂ D be the set of m for which voxels {Vm : m ∈ E} contain no nodes and the

centers {zm : m ∈ E} satisfy ∆(zm) > ρ(zm). Sort E by the increasing values of ρ(zm).

Repeat until E is empty: for every m ∈ E place a node in zm; recompute E .

Step 4 For all nonempty voxels, remove nodes outside Ω.

Repel-type iterations, boundary detection.

Step 5 Perform T iterations of the partial gradient descent on the weighted s-energy functional

(4.7) with κ(x,x) = cρ(x)s, using the K nearest neighbors of each node: Let the initial

configuration be the 0-th iteration, x
(0)
i = xi, i = 1, . . . , N , with N denoting the total

number of nodes distributed. On the tth iteration, 1 ≤ t ≤ T , given a node x
(t)
i with K

nearest neighbors x
(t)
j(i,k), k = 1, . . . ,K, form the weighted vector sum

g
(t)
i = s ρ

(
x

(t)
i

)s K∑
k=1

x
(t)
i − x

(t)
j(i,k)

‖x(t)
i − x

(t)
j(i,k)‖s+2

, 1 ≤ i ≤ N,

and the new node position can now be expressed as

x
(t+1)
i =


x

(t)
i +

∆(x
(t)
i )

t+ C2

g
(t)
i

‖g(t)
i ‖

if this sum is inside Ω;

x
(t)
i , otherwise,

1 ≤ i ≤ N. (4.10)

where C2 is a fixed offset chosen to control the step size between x
(t)
i and x

(t+1)
i . If a

“pullback” function is provided from a neighborhood of Ω to its boundary, the condition

of x
(t+1)
i being inside Ω is replaced with applying the pullback; furthermore, if the radial

density has an easily computable gradient, or is changing rapidly, an additional term must

be included in (4.10) (see discussion below).

Update the neighbor indices j(i, k) after every few iterations.

Step 6 If no boundary node set/pullback function is prescribed, define the boundary nodes as

follows. Evaluate the point inclusion function for xi ±∆(xi)el, l = 1, . . . , d, i = 1, . . . , N ,

where el is the l-th basis vector. If at least one such point lies outside Ω, the xi is considered

to be a boundary node.
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4.3.2 Discussion

Our assumption of ρ being Lipschitz-1 is natural, since ∆(·) is always Lipschitz-1, if viewed

as a function of position. To see this, consider any two nodes x,y, and let x′,y′ be their

nearest neighbors, respectively, so that ‖x − x′‖ = ∆(x) and ‖y − y′‖ = ∆(y). It follows,

∆(x) ≤ ‖x− y′‖ ≤ ‖x− y‖+ ∆(y), which by symmetry implies ∆ is Lipschitz-1.

Initial node layout.

In the parts of the density support with constant ρ, the nodes will locally look like a periodization

of the initial Q-MC sequence; hence the average neighbor distance in Step 0 is tabulated for the

periodized version. Observe that there is some freedom in the notion of voxel adjacency used to

define {Vm : m ∈ D} in Step 1; for example, in the case of a highly non-convex domain Ω, it

might be reasonable to denote the 3d − 1 voxels sharing a vertex with a given Vm as adjacent

to it, rather than only the 2d voxels that it has a common face with. This would then ensure

that no part of Ω will be omitted in the node allocation; imagine a long and thin peninsula in Ω

containing no corners of Vm, m = 1, . . . ,Md. We have found however, that the subsequent repel

iterations will guarantee that such a peninsula is adequately filled with nodes even when using

only the face-adjacent voxels.

If the IL sequence is chosen in Step 0, the nm-node set placed in voxel Vm at Step 2 is an

adjusted version of (4.8) as follows. Let for every Vm the corner with the smallest absolute value

be cm; the points cm are then vertices of a lattice. Before scaling and translating Lnm , apply a

random permutation to the coordinates of each node in it, so that to remove long-range lattice

structure from the distribution; we will denote such an operation by πc. Then the IL in voxel Vm
becomes

L′nm = cm +
f

M
πc(Lnm) +

h

M
, (4.11)

where

f = 1− cd (nmax)−1/d, h =
1− f

2
· (1, 1, . . . , 1)tr,

with cd depending only on the dimension. The quantities f and h ensure that the lattice points

in Lm are inset into the voxel by about half the separation distance, avoiding poorly separated

points along the voxel interfaces.

When the periodic minimizer sequence is selected in Step 0, the inset is defined similarly, but

the permutation is just an identity, πc ≡ id, as the minimizers don’t have the lattice structure.

Likewise, the scaling factor and translation are

fm = 1− cd (nm)−1/d, hm =
1− fm

2
· (1, 1, . . . , 1)tr.
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The analog of (4.11) thus takes the form

M′nm = cm +
fm
M
Mnm +

hm
M

. (4.12)

As one would expect, the average separation for the sequence {Mn} is larger than that of {Ln}
for the respective values of n. While the inset for the latter is necessary to account for the node

proximity after periodization, for the former it serves to mitigate the effects of interfacing voxels

containing different number of nodes. This is further discussed in the Appendix.

Saturation and cleanup.

Observe that after Step 2, voxels in {Vm : m ∈ D} satisfying 〈ρm〉M > 1 do not contain any

nodes. The goal of Step 3 is therefore to remove any redundant sparsity that may be present

whenever the radial density ρ is larger than 1/M , as in this case the function λ in Step 2 is set to

zero. More careful geometric considerations would lead one to set λ(x) > 0 when 0 < x <
√
d/M ,

the length of a voxel diagonal, and thus make λ dependent on the dimension; on the other hand,

using the interval 0 < x < 1/M as we did appears to suffice due to correction of density in Step

5.

Note that in practice, when recomputing E in Step 3, to verify ∆(zm0) > ρ(zm0) for a

fixed m0 ∈ E it is enough to check ‖zm0 − zm‖ > ρ(zm0) for the previously selected zm with

ρ(zm) < ρ(zm0). Indeed, let zm0 be the center of Vm0 . Then, by the definition of λ in Step 2,

the radial density ρ(zm0) = (1 +D)/M for some D > 0, so the Lipschitz-1 property implies, for

any x such that ρ(x) ≤ 1/M there holds ‖zm0 − x‖ ≥ |ρ(zm0) − ρ(x)| ≥ D/M . This ensures

that distances from zm0 to the nodes produced on Step 2 satisfy

‖zm0 − x‖ ≥
D

1 +D
ρ(zm0).

This shows, when D � 1, not checking the inequality ‖zm0 − x‖ > ρ(zm0) leads to at most a

bounded factor error. On the other hand, for D � 1 distances from zm0 to the nodes from Step

2 are also controlled: it follows from (4.11)–(4.12) that for nm small, nodes in the voxel Vm have

larger inset (depending on cd). This analysis is certainly not rigorous; however, applying the

partial gradient descent in Step 5, we are able to ensure that the ratio ρ/∆ is close to 1, as

desired.

Observe that in Step 2 the nodes are only placed in Vm’s for which either of the adjacent

voxels has corners inside the density support Ω, so removing nodes outside Ω in Step 4 does not

lead to much overhead. Furthermore, since the density is evaluated at the corners only and not at

individual nodes, the total number of evaluations may be significantly reduced, which is especially

useful when ρ is computationally expensive. It is essential here that due to the Lipschitz-1
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property, ρ is well estimated by its values at the corners cm; specifically, |ρ(x)−ρ(cm)| ≤
√
d/2M

with cm the nearest voxel corner to x.

Repel-type iterations, boundary detection.

The equality κ(x,x) = cρ(x)s can be justified by observing that each node x of the target

distribution must be contained in a ball of radius ρ(x), not containing any of the other nodes, hence,

the volumetric density must be inverse proportional to ρ(x)d. On the other hand, minimizers of

(4.7) converge to the distribution with volumetric density κ(x,x)−d/s; hence κ(x,x)d/s = cρ(x)d.

The vector sum in Step 5 is the partial x-gradient of the weighted Riesz s-energy (4.7) in

the sense that a single summand of (4.7) is e(x,y) = κ(x,y)‖x− y‖−s, and thus its complete

x-gradient is equal to

∇x e(x,y) = −s κ(x,y)(x− y)‖x− y‖−s−2 +∇xκ(x,y)‖x− y‖−s.

For our purposes, the y here is one of the K nearest nodes to x, and, since due to the Q-MC

initialization there will be few isolated nodes, and since off-diagonal values of κ(x,y) do not

influence the limiting distribution (for details see [18]), we assume κ(x,y) ≈ κ(x,x) to rewrite

the previous equation as

∇x e(x,y) = −s ρ (x)s (x− y)‖x− y‖−s−2 + s∇xρ(x) ρ(x)s−1‖x− y‖−s. (4.13)

As has been pointed out at the beginning of Section 4.3.2, in order to be meaningful as a radial

density, the function ρ must be Lipschitz-1. Then by the Rademacher’s theorem,∇xρ exists almost

everywhere; this validates the use of it in (4.13) as well as the approximation κ(x,y) ≈ κ(x,x).

The ratio of the second term to the first one in (4.13) is bounded by ∇xρ(x)‖x− y‖/ρ(x) and,

provided that the distances from x to its nearest neighbors are close to the value of ρ(x), is at

most c∇xρ(x) for a constant c. This condition is satisfied because the chosen Q-MC sequences

have very regular local structure. In practice, the node distance is small on the scale of the support

and varies slowly, so the second term will have negligible impact on the direction of the gradient

after normalization; besides, precise gradient computation may prove costly. For these reasons

we omit the second term in equation (4.10). If it is necessary to deal with a fast-changing radial

density, a trade-off between the computational costs and the resulting distribution properties

must be sought.

It doesn’t matter which minimization method is applied to the weighted s-energy, rather

the gradient descent is chosen due to its simplicity. Note, the second case in (4.10), leading to

shrinking of the line stepping distance, can be thought of as a simplistic backtracking line search;

it turns out to be sufficient for our purposes. Furthermore, applying a more involved line search
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Figure 4.2: Left: a general view of a uniform node distribution in an atmospheric-like shell. Right:
a separate view of the Western hemisphere.

may significantly degrade performance for complicated or nonsmooth domains.

The number of nearest neighbors K in (4.7), and the number of iterations T in Step 5 can be

adjusted to achieve a trade-off between execution speed/memory consumption/local separation.

In our experiments,2 even relatively small values of K and T produce good results: we used

K ≈ T ≈ 30 for 1.36 million nodes with constant density in Section 4.4.1, and K = 30, T = 200 for

0.58 million and 0.36 million nodes with variable densities in Sections 4.4.2 and 4.4.3, respectively.

4.4 Sample applications

4.4.1 Atmospheric node distribution using surface data

We use the geodata [3] from the collection of global relief datasets produced by NOAA (National

Oceanic and Atmospheric Administration), which contains a 1 arc-minute resolution model. We

generate a sample configuration consisting of 1,356,566 nodes distributed uniformly inside an

atmospheric-type shell Ωetopo: the outer boundary of Ωetopo is spherical, the inner one is an

interpolation of the relief from ETOPO1 data, exaggerated by a factor of 100. The scale is chosen

so that the average Earth radius, assumed to be 6,371,220 meters, has unit length; the radius

of the outer boundary is set to 1.1, which corresponds to the height of 6,371 meters above the

average radius, given the exaggeration factor.

The ETOPO1 dataset stores relief as a 21 600-by-10 800 array of elevations above the sea level;

equivalently, of radial coordinates that correspond to the spherical angles defined by the array’s

2The Matlab code we provide performs naive autotuning of K and T , using the total number of nodes to be
placed. Although sufficient for demonstration purposes, there is room for improvement.
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Figure 4.3: Surface subset: a fragment of the Western coast of South America. The nodes on the
right are color-coded using heights.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Distance to the nearest neighbor

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

ba
bi

lit
y

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Distances to the nearest neighbors vs hole radii

0

0.05

0.1

0.15

0.2

0.25
P

ro
ba

bi
lit

y

Figure 4.4: The effects of the repel procedure and hole radii. Left: probability distribution of the
nearest-neighbor distances in the atmospheric node set, before (blue) and after (red) executing
the repel subroutine. Right: distribution of distances to the 12 nearest neighbors for the whole
configuration (color only), for the surface subset (contours), the hole radii (black dashed contour
on the left).

indices. The data points are equispaced on lines of constant azimuth/inclination with angular

distance B = π/10 800 between them. To determine whether a given node x = (rx, ax, px) =

(r, a, p) belongs to Ωetopo, its radial coordinate rx was compared with a linear interpolation of

the values of radii of three ETOPO1 points with the nearest spherical coordinates. For example,

assume that such three points have the spherical coordinates (rj , aj , pj), j = 1, 2, 3, where
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0 ≤ a ≤ 2π and 0 ≤ p ≤ π are the azimuth and polar angle, respectively, and

a1 = lB, a2 = (l + 1)B, a3 = lB, 0 ≤ l ≤ 21 599;

p1 = mB, p2 = mB, p3 = (m+ 1)B, 0 ≤ m ≤ 10 799.

Without loss of generality, the inequalities

lB ≤ ax < (l + 1)B; mB ≤ px < (m+ 1)B

hold true. The point inclusion function is defined in this case as

χ(x; Ωetopo) =

1, r1 + ax−a1
B (r2 − r1) + px−p1

B (r3 − r1) < rx < 1.1;

0, otherwise,

with 1.1 being the radius of the outer sphere in the chosen scale. In effect, the algorithm for

evaluating the χ(· ; Ωetopo) described here coincides with the star-shaped point location algorithm

from [89, Section 2.2], applied to the interpolated Earth surface and the outer spherical boundary.

Our node set consists of 1,356,566 nodes with the nearest-neighbor separation close to the

constant ρ(x) = 0.01124, and our top priority was to ensure the low variance of the radial

separation across the configuration, especially on the surface; the general view of the set is

given in Figure 4.2. We used the piecewise IL with golden-ratio derived parameters α1 =
√

2,

α2 = (
√

5− 1)/
√

2; regarding these α1, α2 see also the discussion in Appendix. Several statistics

of the resulting set are presented in the following table; here again we used the common notation

〈x〉 for the averaged value of a quantity x. Notation ∆k stands for the distance to the k-th nearest

neighbor.

Whole node set Surface nodes

∆12(x)/∆2(x) 1.3674 2.0353

∆4(x)/∆1(x) 1.0859 1.34019

99th percentile of {∆(xi)} 0.012143 0.014444

∆(x) 0.011243 0.010879

1st percentile of {∆(xi)} 0.009652 0.009340

Figure 4.3 illustrates the distribution of nodes close to the surface of Ωetopo. No pullback

function has been used, just the inclusion check performed as in (4.10). Observe that the near-

surface nodes display no artifacts, and the spacing does not significantly depend on the local

surface shape. The left subplot in the Figure 4.4 illustrates the effect of Step 5 on the distribution

of distances to the nearest neighbor. In the right subplot, we have collected distances to the

12 nearest neighbors for the whole configuration, and separately for the surface subset. The

histogram also contains the distribution of hole radii, that is, distances from the Voronoi centers
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Figure 4.5: Distribution of distances to the 12 nearest neighbors for the atmospheric node
configuration; medians and the 25th and 75th percentiles are shown. Left: the surface subset.
Right: the whole set. Scales are the same in both subplots.

of the entire node configuration to their respective nearest nodes. It is a well-known fact that the

Voronoi centers are local maxima of the distance from the node set [38], considered as a function

on the whole space R3. Note that all the histograms on the right are normalized by probability,

not by the node count.

The pair of plots in Figure 4.5 shows in detail the distribution of distances to the nearest

neighbors in the sample node set. It has been produced using the standard Matlab routine boxplot.

For each of the blue boxes corresponding to a specific nearest neighbor, the central mark is the

median, the edges of the box denote the 25th and 75th percentiles. The red crosses mark outliers.

4.4.2 Point cloud

To demonstrate a nonuniform node distribution using our algorithm, we fix a collection of 100

points, X100, inside the cube [−1, 1]3, and consider the following radial density function:

ρ(x) =
(
∆(x;X100) + ∆2(x;X100)

)
/20,

where, as above, ∆k is the distance to the k-th nearest neighbor to the nodes in X100. A possible

interpretation of this density is a distribution that concentrates about a set of points X100, which

are of particular interest for a certain model.

We proceed as in the Step 5 of the algorithm, not using the full gradient expression described

in (4.13). In fact, it is instructive to note that computing the second term in (4.13) would be

quite cumbersome here in view of ρ being a piecewise-defined function. One could thus consider
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Figure 4.6: Left: the node set from Section 4.4.2. Right: node locations that contribute to the
distribution of the ratio ρ(x)/∆(x) beyond the 5- and 95-percentiles.
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Figure 4.7: Distribution of the ratios ρ(x)/∆(x) for the node set in Section 4.4.2.

the density recovery for this distribution, Figure 4.7, as a validation of the gradient truncation

approach in Step 5; cf. Section 4.3.2. The Q-MC voxels were drawn from the sequence {Ln}
with the same lattice parameters as in Section 4.4.1, α1 =

√
2, α2 = (

√
5− 1)/

√
2.

Figure 4.7 contains the distribution of the ratio ρ(x)/∆(x). The minimal and maximal values

of the ratio are about 0.8099 and 1.8231 respectively; its mean value is 0.9797, and the variance is

0.0019. The 5- and 95-percentiles are 0.9208 and 1.0441, respectively; the right plot in Figure 4.6

highlights the outliers in the ratio distribution.
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4.4.3 Spherical shell

The motivation for this example comes from atmospheric modeling. Representing the Earth

surface by a sphere, we consider first a thin 3-dimensional shell Ωshell of inner radius Rinner

and outer radius Rinner +Hatm with constant target separation h between points in the radial

(vertical) direction, and the tangential (horizontal) separation to be τ(r) = C · r at radius r, for

some constant C. With typical choices of parameters, τ will be much larger than h, reflecting the

much higher resolution needed in the vertical direction due to Hatm � Rinner. We make a radial

change of variables, which can be written in spherical coordinates as (r , a , p) 7→ (r̂(r), a, p), so

that any configuration in Ωshell having the 2-directional resolutions τ(r) and h will have isotropic

resolution after the transformation. It is much easier to construct RBF bases in the isotropic

case, hence our deliberation.

Following this change of variables, the radial/tangential node separations become, respectively,

ν̂(r) = h · r̂′(r)

τ̂(r) = C · r̂(r).
(4.14)

Setting these two quantities to be equal, we obtain the ODE

r̂′(r) =
C

h
· r̂(r)

with initial condition r̂(Rinner) = 1, and its solution becomes

r̂(r) = exp

(
C · r −Rinner

h

)
.

From the second equation in (4.14) follows that our goal is to generate a node set in the (r̂, a, p)-

space, whose separation is proportional to r̂ and is equal in all directions: ρ(x) = C · ‖x‖. The

outer radius of the image of Ωshell in the (r̂, a, p)-space is a function of Rinner and Hatm; our

model implies Rinner = 6,371,220, the mean radius of the Earth in meters, and Hatm = 12,000,

the thickness of the atmospheric layer we are interested in. The constant C is determined by the

desired tangential separation at the r = Rinner level (see Figure 4.8).

Say, we intend to generate nodes corresponding to the 2 degree resolution on the spherical

“Earth surface” and h = 400 meter vertical resolution. Due to the peculiarities of atmospheric

modeling, we would like to fix two much denser sets of nodes on the inner and outer boundary

of Ωshell; specifically, we are using 12,100 approximate Riesz energy minimizers on a sphere,

appropriately rescaled. The interior nodes are generated using our algorithm, and then Step 5

is modified so that to leave the boundary subset intact. This, however, causes a difficulty: the

separation distances between the interior and the surface nodes must remain large; on the other

hand, our generic formulation of Step 5 does not account for the much higher concentration of
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Figure 4.8: Left: the node set from Section 4.4.3. Right: node locations that contribute to the
distribution of the ratio ρ(x)/∆(x) beyond the 5- and 95-percentiles.

nodes on the surface, which causes excessive repelling force, seen in the oscillations of the radial

distribution, Figure 4.9. Mitigating this effect requires artificially weakening the repulsive force

caused by the boundary nodes, a straightforward task using our codebase. Instead, we show in

Figure 4.9 the performance of the generic algorithm, to illustrate complications that may arise

when applying it to specialized problems.

The set Ωshell can be challenging for the basic form of our algorithm, as described in Sec-

tion 4.3.1: obtaining satisfying convergence requires using the full version of gradient descent

(4.13). The reasons for it being more difficult to tackle than, say, Ωetopo in Section 4.4.1, are that

due to convexity of the outer boundary, the weighted s-energy minimizers on it are denser than

on the sphere with radius r̂(Rinner +Hatm)− 10−3, for example; see also discussion at the end of

Section 4.2.2. Getting rid of the artifacts at the endpoints of the radial distribution is done by

using the full gradient, weakening the repulsion of the fixed boundary nodes, and not striving for

the full convergence of a minimization method applied to the Riesz energy.

In this example, we used the {Mn} sequence to fill individual voxels. The left subplot in

Figure 4.9 contains the distribution of the ratio ρ(x)/∆(x). The minimal and maximal values of

the ratio are about 0.9165 and 1.8989 respectively; its mean value is 1.0226, and the variance is

0.0024. The 5- and 95-percentiles are 0.9782 and 1.0717, respectively.

4.4.4 Run times

The execution times (in seconds) for the above examples are summarized in Table 4.1, where, as

before,K and T stand for the number of nearest neighbors and the number of iterations used in the

repel procedure in Step 5, respectively. The fifth column contains times required to fill the voxels

selected at Step 1 with configurations from either {Ln} or {Mn} and to remove any redundant
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Figure 4.9: Left: Distribution of the ratios ρ(x)/∆(x) for the node set in Section 4.4.3. Right:
Radial node distribution, actual (blue) and the theoretic (red) continuous component; i.e., without
the δ-function spikes at the endpoints.

Example K T N Q-MC distribution times, s Repel times, s

Atmospheric nodes 33 29 1, 356, 566 5 89
Point cloud 30 200 577, 321 4 840
Spherical shell 30 200 358, 915 1 144

Table 4.1: Timings of the examples in Sections 4.4.1–4.4.3.

nodes as in Step 4. All the computations were performed on a dedicated machine with 40 GB

RAM and an 8-core Intel Xeon CPU. Note that the basic Q-MC node sets for both sequences

were precomputed, and the pre-computation times are not included in the table. Computation of

configurations in {Ln} for 1 ≤ n ≤ 200 took less than 1 second. An implementation of the {Mn}
sequence for 1 ≤ n ≤ 200 took 4311 seconds to generate; coordinates of the resulting minimizers

as well as the corresponding average separation distances are distributed with the associated

codebase [102].

4.5 Final observations and comparisons

4.5.1 Comparisons

Of the two Q-MC sequences we considered, the periodic Riesz minimizers appear more promising,

being devoid of the lattice structure and having high space utilization. On the other hand, we

have successfully applied ILs as an elementary uniform configuration. One could use different
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Figure 4.10: Average condition numbers of the joint RBF-FD PHS-based matrices for order 1-
and 2-differential operators. Left: Between 20 and 100 nodes in the stencil. Right: Between 100
and 200 nodes in the stencil.

sets of irrational parameters α1, . . . , αd−1 for different numbers of nodes in a voxel. Although

this might be useful in mitigating the non-isotropic behavior of ILs, it makes hard to control

node separation at voxel interfaces.

Another quasi-uniform node set commonly used in Q-MC methods can be constructed from

the Halton sequence [76, Chapter 5.4], an example of a low-discrepancy sequence. To see how the

Halton nodes compare to Riesz minimizers for RBF-FD methods, we have computed condition

numbers of PHS-based RBF-FD matrix in the LHS of (4.4), using operators ∂/∂xi, i = 1, 2, 3,

and ∂2/∂xi∂xj , i ≤ j = 1, 2, 3 as L; the resulting LHS then constitutes the joint system for the

weights corresponding to these nine differential operators. We used the RBF kernel ϕ(r) = r5,

and the polynomials in the interpolation space were of degree at most 2, see Section 4.2.1. The

computations were performed for the Riesz and Halton nodes, and the uniform Cartesian grid.

The stencils consisted of K nearest neighbors of a random vector with Gaussian distribution,

centered around (0.5, 0.5, 0.5)tr; the evaluation point x0 was taken equal to the random vector

itself. The nearest neighbors were drawn from 1000 nodes of the respective sequence, uniformly

distributed over the unit cube. The Riesz nodes were produced by minimizing periodic energy

(4.5) with the distance (4.9).

Figure 4.10 contains a comparison of the condition numbers of RBF-FD matrices for the

three sequences. The values shown are averages of the condition numbers for 500 random stencil

centers x0; the averaging was introduced to eliminate the rather unpredictable dependence on

x0, and to display the underlying trend. We omitted values of K below 20 from the plots, as all

the three node sets resulted in relatively ill-conditioned systems; this was to be expected, as the

recommended stencil size is roughly twice the number of linearly independent polynomials in the
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interpolation space (there are 10 monomials of degree at most 2 in R3) [46].

4.5.2 Range of applications

Our method has proven very efficient for slowly varying radial densities that are small (recall

that small radial density means a large number of nodes per unit volume) compared to the

entire node set scale, and is capable of handling very complex underlying sets. The range of

dimensions where the algorithm can be used efficiently is determined by the applicability of

Q-MC initialization and the nearest neighbor searches: the repelling iterations for Riesz energy in

Step 5 are largely (with a proper value of s) dimension-agnostic. A shortcoming that is common

to all quasi-Monte Carlo methods (but of little practical relevance) is a much worse performance

(measured by L2 discrepancy), compared to Monte-Carlo distribution, in dimensions starting

at about 15 [31]. Furthermore, using the uniform grid to detect the support Ω, as is done in

Step 1–Step 2, becomes unfeasible already for d = 10; instead, one needs an efficient way to

determine which corners of the grid are in some sense close to Ω. This is certainly not a feature

of our approach, but a manifestation of the curse of dimensionality: treatment of a complicated

high-dimensional set is a computationally intensive task. Regarding finding the nearest neighbors

it should be noted that common implementations of k-d trees are efficient only up to about

d = 20; additionally, the k-d tree approach is faster than the full brute force search only if N � 2d

[58]. On the other hand, as has already been noted, our repelling procedure does not require

frequent updates of the search tree, as the local adjacency largely remains intact.

The suggested algorithm is very local, and it therefore must be straightforward to add multi-

resolution and adaptive refinement, as is widely done for grids [35, 40], yet as of this writing, our

proof-of-concept implementation does not include these features. Still, we would like to observe

that refining the voxel structure is indeed easier than refining a mesh, since no geometry is taken

into account. This partially addresses the previous remark on detection of Ω in high dimensions.

The closest set of goals to what we have presented here, that we’re aware of, is posed in

the pioneering paper [99]; our method is crafted for full-dimensional domains, and apparently

performs faster in this case. The bubble packing algorithm in [99] is conceptually similar to

the greedy filling of centers in Step 3, while physical relaxation is an alternative to the energy

minimization we employ; of course, the idea of relaxation can also be found in a number of related

references, and is a well-known approach in this context, see for example [86]. Our method requires

computing the gradient of the desired radial density in the cases when the outer boundary of the

underlying set is uniformly convex, and/or when the radial density changes quickly. Alternatively,

fine partition of the set is necessary. Either solution, however, may be computationally expensive.

92



0 20 40 60 80 100 120 140 160 180 200

Number of nodes in the unit cube

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n 
se

pa
ra

tio
n 

di
st

an
ce

sqrt(2) and (sqrt(5)-1)/(sqrt(2));
sqrt(3) and sqrt(5);
0.785477746971993 and 0.348797903953764;
0.179373654819913 and 0.531793804909494;
0.429397337085805 and 0.257282784769860;
rand(1) and rand(1);
Periodic Riesz minimizers

n -1/d

0 20 40 60 80 100 120 140 160 180 200

Number of nodes in the unit cube

0

1

2

3

4

5

6

7

M
ea

n 
to

 m
in

im
al

 s
ep

ar
at

io
n 

ra
tio

Figure 4.11: Left: dependence of the mean separation distances on the number of nodes in the
unit cube for different values of parameters α1, α2; the n−1/d decay rate shown as a dash-dot line.
Right: ratios of the mean separation distances to the minimal ones for the same configurations.

4.6 Separation properties of sequences {Ln} and {Mn}

This section deals with the results of our numerical experiments, set in the 3-dimensional space.

The function λ(r) used in Step 2 is the number of nodes in the unit cube [0, 1]3, placed according to

(4.8), or obtained by minimizing the Riesz s-energy (4.5) with periodic metric, such that the mean

separation distance of these nodes is the closest to r. To compute λ(r) for the periodization of {Ln},
we tabulate mean separations 〈∆n〉 in a sample configuration comprising Ln and its 26 = 33 − 1

copies, obtained translating Ln by the vectors {(i, j, k)tr : i, j, k ∈ {0,±1} and |i|+ |j|+ |k| > 0}.
The tabulated dependence of separation on n is then inverted and interpolated using a piecewise

cubic Hermite interpolating polynomial. The reason to consider separation distance between

configurations in 3d cubes in dimension d (and not a single cube with a single instance of Ln) is

to account for the boundary effects. Likewise, to compute λ(r) for the Riesz minimizers, the mean

separation of Mn is tabulated for 1 ≤ n ≤ nmax, then the inverse dependence is interpolated. No

copies of Mn are considered alongside the original configuration, since periodicity condition is

already included in the metric (4.9).

In general, putting too many nodes in individual voxels is justified only if the radial density

function ρ varies slowly. For our applications, nmax ≤ 100 was sufficient. The left plot in Figure 4.11

illustrates the delicate dependence of the separation distances of ILs on the lattice parameters.

While any set of irrational quantities α1, . . . , αd−1 in (4.8) that are linearly independent over

rationals will give a uniformly distributed IL as n grows, certain values may perform better than
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Figure 4.12: Left: A cross-section of the IL L100 with parameters 0.179373654819913 and
0.531793804909494. Right: A (different) cross-section of the periodic Riesz minimizer M100.

the others. In particular, adjustments can be made to improve the distribution for small values

of n. For example, it is known from [9] that a 2-dimensional IL generated by the golden ratio has

optimal L2 discrepancy. Numerical experiments have shown that its 3-dimensional analog with

parameters α1 =
√

2, α2 = (
√

5− 1)/
√

2 does perform well for large numbers of nodes; yet by

carrying out a Monte Carlo search for the parameters maximizing separation distance in (4.8),

we found several (necessarily rational) pairs that performed at least just as well for up to n = 200,

see Figure 4.11.

Curiously enough, a pair of random numbers drawn uniformly from [0, 1] (shown in the legend

as rand(1)), consistently performed better than the pair
√

3 and
√

5, starting at n ≈ 40. We were

able to reproduce this behavior in a number of runs; in fact, we haven’t seen a random pair that

wouldn’t always outperform
√

3 and
√

5 after a fairly small n.

The second graph in Figure 4.11 shows the ratios of the mean to minimal separation distances

〈∆n〉/∆n for the same range of n. In both subfigures, Riesz periodic minimizers clearly stand

out, by having the largest mean separation (left), and by smallest ratios (right). This means,

the nearest neighbor distances ∆(x) vary little from node to node in the {Mn} sequence. We

conclude this section by presenting in Figure 4.12 a pair of cross-sections of the IL L100 and the

configurationM100 that look remarkably similar. In fact, we found the vague resemblance between

the low-energy periodic configurations and lattice structures, similar to ILs, quite interesting,

given the connection between packing and Riesz energy minimization [62], and that the highest

packing density in the 3-dimensional space is achieved, in particular, by the hcp lattice [38].
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Appendix A

Glossary

Term Description Pages

Ahlfors regular set see d-regular set 4, 27

Bd the unit ball in Rd 13

B(x, r) a ball of radius of radius r, centered at x ∈ Rp 3, 4, 24

Cd unit cube [0, 1]d 17, 78

M closure of a set M 24

M c complement of a set M 18

cm the closest to the origin corner of Vm 78, 82

∆(x) distance from the node x to its nearest neighbor in

ωN

71

∆({x1, . . .xN}) separation of the configuration 75

∆k(x), k = 1, . . . ,K distance from x to the k-th nearest neighbor 85, 86

∆̄n mean separation of the periodized Ln, Mn 78

diam(Ω) diameter of the set Ω 4, 27, 61

d-rectifiable set the image of a bounded subset of Rd under a Lipschitz

mapping

2, 13, 16, 50

d-regular set satisfying c0R
d ≤ Hd(B(x, R) ∩ Ω) ≤ C0R

d 4, 27

E(x1, . . . ,xN ; gs, κ, q) combined Riesz kernel, showing all the arguments

explicitly

8, 50

1
T (N)EN (µ; gs, q) extension of the discrete Riesz energy to P(Ω) 15

1
T (N)EN (µ; gs, κ, q) extension of the weighted discrete Riesz energy to

P(Ω)

50

Eqs,d short notation for the unweighted Riesz functional

E(· ; gs, 1, q) with external field

22

Eκs short notation for the weighted Riesz functional

E(x1, . . . ,xN ; gs, κ, 0) without external field

74

Es short notation for the unweighted Riesz functional

E(· ; gs, 1, 0) without external field

13, 55

{t} fractional part of the real number t 6, 59, 77

Γ-convergence convergence of functionals on metric spaces, preserving

minimizers

iv, 3, 15, 17,

22, 51
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Term Description Pages

Hd d-dimensional Hausdorff measure 13

χ(· ; Ω) indicator function of the set Ω 74, 85

M̊ interior of a set M 24

κ multiplicative weight for the Riesz energy functional 8, 14, 50, 74,

75, 95

λ interpolated inverse of ∆̄n 78

Ln, n ≥ 1 n-point irrational lattice 77

〈t〉 mean value of the quantity t 78, 85

Mn, n ≥ 1 n-point periodic Riesz minimizer 77

nm number of nodes in Vm 79, 80

‖ · ‖ Euclidean distance in Rp 1

Ω target distribution support 1–3, 56, 78

ωN a subset of Ω containing N elements 3, 6, 12

(t)+ max(0, t), positive part of the number 24

PN (Ω) measures in P(Ω), supported on N points 1, 3

P(Ω) the space of probability measures supported on Ω 1

PSB Poppy-seed bagel theorem iv, 2, 16, 22,

24

Q-MC Quasi-Monte Carlo 69

(r, a, p) spherical coordinates 84

RBF-FD Radial Basis Function-generated Finite Differences 69

ρ(x) objective radial density 70, 78

S(µ; gs, q) Γ-limit of the unweighted discrete energies with exter-

nal field

16

S(µ; gs, q) Γ-limit of the weighted discrete energies with external

field

50

σ separation distance between metrically separated sets 56, 60

suppµ support of the measure µ 11, 29

T (N) order of the asymptotics of the Riesz energy 8

τ(N) asymptotic scaling factor for the external field term

in Riesz energy

8, 22

Vm, m = 1, . . . ,Md cube-shaped voxel in Rd 76, 78
∗
⇀ convergence in the weak∗ topology 13, 74

x; xi, i = 1, . . . , N points in Rd; nodes of the configuration 1, 8

xj(i,k), k = 1, . . . ,K the k-th nearest neighbor of xi 7, 75, 79

zm center of Vm 78
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Appendix B

Repel-type code listings

For the complete source code of the routines belows, see repository at [102].

B.1 Full dimension case

Below is an excerpt from the Matlab routine performing repelling iterations discussed in Step

5-Step 6 of the main algorithm of Chapter 4.

1 %% Main loop

for iter =1: repel_steps

if mod(iter ,10) == 1

[IDX , ~] = knnsearch(cnf ’, cnf(:,1: N_moving)’, ’k’, k_value +1);

IDX = IDX(:,2:end)’;

6 end

%% Vectors from nearest neighbors

cnf_repeated = reshape(repmat(cnf(:,1: N_moving),k_value ,1),dim ,[]);

cnf_repeated_concentric = cnf_repeated ./sqrt(sum(cnf_repeated .* cnf_repeated

,1));

knn_cnf = cnf(:,IDX);

11 knn_differences = cnf_repeated - knn_cnf;

knn_norms_squared = sum(knn_differences .* knn_differences ,1);

%% Weights using radial density

riesz_weights = compute_riesz(knn_norms_squared);

if isa(densityF ,’function_handle ’)

16 knn_density = densityF(knn_cnf);

density_weights = compute_weights(knn_density);

weights = s*density_weights .* riesz_weights ./ ...

knn_norms_squared;

else

21 weights = s*riesz_weights ./ knn_norms_squared;

end

%% Sum up over the nearest neighbors

gradient = bsxfun(@times ,weights ,knn_differences);

gradient = reshape(gradient , dim , k_value , []);

26 gradient = reshape(sum(gradient ,2), dim , []);

%% Add noise and renormalize

if isa(noise ,’function_handle ’)

gradient = gradient + noise () * mean(sqrt(sum(gradient .*gradient ,1)));

end

31 directions = gradient ./sqrt(sum(gradient .*gradient ,1));

step = sqrt(min(reshape(knn_norms_squared ,k_value ,[]) ,[],1));
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cnf_tentative = cnf(:,1: N_moving) +...

directions (:,1: N_moving).*step/( offset+iter -1);

%% Detect the domain

36 if exist(’in_domainF ’, ’var’) && isa(in_domainF ,’function_handle ’)

domain_check = in_domainF( cnf_tentative (1,:), cnf_tentative (2,:),

cnf_tentative (3,:));

else

domain_check = ~any(( cnf_tentative <-A/2.0) | (cnf_tentative >A/2.0) ,1);

end

41 if isa(pullbackF ,’function_handle ’)

cnf(:,~ domain_check) = pullbackF(cnf_tentative (:,~ domain_check));

end

cnf(:, domain_check) = cnf_tentative (:, domain_check);

end

46 toc

B.2 Repelling on implicit surfaces

The following listing contains an excerpt from a Matlab routine distributing nodes on an implicit

surface. Note that the pullback in this case is done by solving a mini-Newton’s method problem.

%% Main loop

for iter =1: repel_steps

if mod(iter ,10) == 1

4 [IDX , ~] = knnsearch(cnf ’, cnf(:,1: N_moving)’, ’k’, k_value +1);

IDX = IDX(:,2:end)’;

end

%% Vectors from nearest neighbors

cnf_repeated = reshape(repmat(cnf(:,1: N_moving),k_value ,1),dim ,[]);

9 knn_cnf = cnf(:,IDX);

knn_differences = cnf_repeated - knn_cnf;

knn_norms_squared = sum(knn_differences .* knn_differences ,1);

%% Weights using radial density

riesz_weights = compute_riesz(knn_norms_squared);

14 if isa(densityF ,’function_handle ’)

knn_density = abs(densityF(knn_cnf)) + .1;

weights = s* riesz_weights ./ knn_norms_squared ./ knn_density;

else

weights = s*riesz_weights ./ knn_norms_squared;

19 end

%% Sum up over the nearest neighbors

gradient = bsxfun(@times ,weights ,knn_differences);

gradient = reshape(gradient , dim , k_value , []);

gradient = reshape(sum(gradient ,2), dim , []);

24 %
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surfnormals = ngrad ./sqrt(sum(ngrad .*ngrad ,1));

tangentgrad = gradient - surfnormals .* sum(gradient .* surfnormals , 1);

if mod(iter ,50) == 1

tangentgradnorm = sqrt(max(sum(tangentgrad .* tangentgrad , 1)))

29 end

%

directions = tangentgrad ./sqrt(sum(tangentgrad .* tangentgrad ,1));

step = sqrt(min(reshape(knn_norms_squared ,k_value ,[]) ,[],1));

cnf_tentative = cnf(:,1: N_moving) +...

34 directions (:,1: N_moving).*step/( offset+iter -1);

%% Pullback to surface

h = surfF(cnf_tentative) ;

ngrad = gradF(cnf_tentative);

while max(abs( h )) > 1e-4

39 cnf_tentative = cnf_tentative - ngrad .* h ./ sum(ngrad .* ngrad , 1);

h = surfF(cnf_tentative) ;

ngrad = gradF(cnf_tentative);

end

cnf = cnf_tentative;

44 end
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