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CHAPTER I 

 

INTRODUCTION 

 

1.1 Overview 

Computational models are widely used by engineers to capture the behavior of 

physical systems. For large systems, computational models are usually constructed based 

on sparse experimental data, sometimes even with no full-scale experiments. As a result, 

errors arise due to lack of data and lack of knowledge about system behavior. Numerical 

approaches used to solve the model equations also produce errors and uncertainties due to 

various assumptions and approximations. Natural variability in many physical variables, 

and data uncertainty due to sparse data and measurement errors, add further uncertainty 

in the model prediction. Therefore, computational models must be subjected to rigorous 

model verification and validation (V&V) [1], during which sources of error and 

uncertainty need to be analyzed and quantified in order to assess the credibility of the 

model prediction.    

Verification and validation are quantitative procedures to check how well the 

model represents the real world phenomenon being simulated. The accuracy of the 

solution  is assessed with respect to known solutions and experimental data, respectively, 
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in verification and validation [2]. An important consequence of V&V is the identification, 

quantification and reduction of the errors in the computational model [3].  

The error in a computational model prediction consists of two parts: model form 

error ( modelε ) and solution approximation error or numerical error ( numε ) [1, 4]. The 

model form error depends on whether the selected model correctly represents the real 

phenomenon. For example, engineers might have to choose between a small deformation 

model and a large deformation model, between a linear elastic model and an elastoplastic 

model, or between the Euler equation and the Navier-Stokes equation, or between 1-D, 2-

D and 3-D model. Choosing the correct model could reduce model form error. The 

solution approximation error arises when numerically solving the model equations, and 

arises from approximations in the solution procedure. In other words, the model form 

error is related to the question “Did I choose the correct equation?” which is answered 

using validation experiments, while the solution approximation error is related to the 

question “Did I solve the equations correctly?” which is answered through verification 

studies.  

Mathematical theory and methods have been discussed in [4] for quantifying 

numerical error and model form error in computational mechanics models, but these 

methods require access to the original PDEs of the system. A simplified approach to error 

quantification for generic computational models has been developed in [5]. If we denote 

predy  and truey  as model prediction and the true response of the physical system, 

respectively, then we have: 



 

3 
 

modelnumpredtrue ε+ε+y=y     (1.1) 

Rebba and Mahadevan [5] further decomposed the numerical error into various error 

sources and observed that the numerical error is a nonlinear combination of these 

components. However, only a simple example was shown with only one error source, 

namely, finite element discretization error. This research first considers three typical 

numerical error components and their quantification and combination, including input 

error, discretization error in FEA, and surrogate model error.  

In order to quantify the numerical error, assume cy  is the model prediction 

corrected for error sources, and predy  is the raw model prediction. Uncertainty 

propagation analysis is required when calculating cy  that includes the uncertainty of 

error sources. As a result, extra uncertainty is introduced in cy , compared to that in predy . 

As we will see in Chapter 4, cy  is also used to quantify the model form error. Besides 

cy , to quantify the model form error, observed data ( obsy ) are needed. However, there is 

a difference between obsy  and truey , which is called output measurement error ( omε ). 

Thus we have 

omobstrue ε+y=y      (1.2) 

Model form error can be quantified based on Eq. (1.1) and (1.2). Implementation details 

are discussed in Chapter 4.  

One focus of this research is how to obtain a model prediction cy  corrected for 

numerical error. This is a crucial part for model V&V, where the corrected model 
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prediction cy  plays an important role in both numerical error quantification and model 

form error quantification. Among all errors, some errors are stochastic, such as input error 

and surrogate model error, and some errors are deterministic, such as discretization error 

in FEA. In previous work, model form error is first explicitly expressed in terms of all 

error sources, and then it is quantified by sampling each of the error terms[5]. This 

approach has two significant drawbacks: first, in some cases it is not easy to find an 

analytical expression for model form error in terms of all error sources; second, the 

discretization error is treated as a random variable, which is incorrect, although we agree 

on the fact that in non-deterministic analysis correcting for this error would change the 

uncertainty of model prediction[5, 6, 7].  In this research, a simple but efficient approach 

is developed to obtain cy . The basic idea is to quantify and correct for each error where 

it arises. The advantage of this method is that it is easy to implement even if the model 

involves multiple disciplinary analyses. Stochastic error is corrected for by adding its 

samples to the original result. Deterministic error is corrected for by directly adding it to 

the corresponding result. For example, to correct for the discretization error, every time a 

particular FEA result is obtained, a corresponding discretization error is calculated and is 

added to the original result. And the new FEA result will be used for further calculation to 

obtain cy . 

In addition to the errors mentioned above, another error arises due to the Monte-

Carlo sampling method used in the error quantification procedure. This error is referred 

to as uncertainty quantification error (UQ error). For example, when estimating the CDF 
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for a random variable from sparse data, UQ error arises as the error in the CDF value. 

Methods for quantifying this error are available in [8, 9]. Then if more samples are 

generated by inverse CDF method using such CDF estimated from sparse data, the UQ 

error is propagated as sampling error to the newly generated samples. An approach is 

developed in Section 3.4 to quantify this sampling error. Basically, the proposed approach 

is a generic re-sampling method from sparse data based on inverse CDF method, 

considering the error that arises in this procedure. In this research, this method is only 

applied for model form error quantification (see Chapter 4 for details), just for the sake of 

demonstration. However, as a generic method, it can be applied anywhere sampling from 

sparse data is needed, e.g., sampling from sparse input data. Compared to the other 

resampling methods, e.g. bootstrapping [10] and Johnson distribution [11], this method 

provides a convenient way to include the uncertainty due to sparseness of data into the 

new samples.  

After a probabilistic framework to manage all sources of uncertainty and error is 

established, sensitivity analysis is performed to assess the contribution of each source of 

uncertainty and error to the overall uncertainty in the corrected model prediction. The 

sensitivity analysis result can be used to effectively make improvements according to the 

importance ranking of the errors so as to trade off between accuracy and computational 

effort. 
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1.2 Objective and contributions 

The objective of this research is to develop a methodology that provides 

information regarding the relative contribution of various sources of error and uncertainty 

to the overall model prediction uncertainty. Such information can guide any decisions 

made towards model improvement so as to enhance both accuracy and prediction 

confidence. The proposed methodology results in the sensitivity rankings of the various 

errors that contribute to the model prediction uncertainty. It is more advantageous to 

spend resources towards reducing an error with a higher ranking than one with a lower 

ranking. The sensitivity rankings are based on systematic sensitivity analysis, which is 

possible only after quantifying the effect of each error source on the model prediction 

accuracy.  

The contributions of this research can be summarized as follows: 

1. A systematic methodology for error and uncertainty quantification and 

propagation in computational mechanics models is developed. Previous literature 

has developed methods to quantify the discretization error, and to propagate input 

randomness through computational models. However, the combination of various 

error and uncertainty sources is not straightforward: some are additive, some 

multiplicative, some nonlinear, and some even nested.  Also, some errors are 

deterministic, and some are stochastic. The methodology in this thesis provides a 

template to track the propagation of various error and uncertainty sources through 

the computational model.  
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2. Sensitivity analysis methods are developed to identify the contribution of each 

error source to the overall uncertainty in the model prediction. Previous literature 

in global sensitivity analysis has only considered the effect of input random 

variables, and this research extends the methodology to include data uncertainty 

and model errors. The sensitivity information is helpful in identifying the 

dominant contributors to model prediction uncertainty and in guiding resource 

allocation for model improvement. The sensitivity analysis method is further 

enhanced to compare the contributions of both deterministic and stochastic errors 

on the same level, in order to facilitate model improvement decision making.  

3. The error quantification methodology itself introduces error due to the limited 

number of samples; therefore a methodology is proposed in this thesis for the 

quantification and propagation of the UQ error. This computation includes a new 

nonparametric method for constructing the confidence interval for mean and 

variance estimated from a given set of samples. 

 

1.3 Organization of the thesis 

 The objective of this study is to develop a methodology to quantify different 

errors in model prediction and investigate the importance of each error through sensitivity 

analysis. Chapter 2 discusses quantification and correction methods for three types of 

numerical errors [5]. And then a method for quantifying uncertainty quantification error 
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and its propagation is proposed in Chapter 3. The quantification method of model form 

error is developed in Chapter 4. Chapter 5 investigates two sensitivity analysis methods 

for evaluating the contribution of each error. The proposed methodologies are 

demonstrated using two numerical examples in Chapter 6. 
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CHAPTER II 

 

NUMERICAL ERROR QUANTIFICATION 

 

2.1 Introduction 

In model validation practice where the computational model is compared with the 

experimental results, errors are categorized into numerical error, model form error and 

measurement error. Quantification methodology of each kind of error is developed in this 

section. Especially, in model verification practice, three typical sources of the numerical 

error and their quantification methods are discussed, which are input error, discretization 

error in FEA and surrogate model error. Furthermore, a methodology for quantification 

and propagation of the uncertainty quantification error is proposed.  

It is necessary to first distinguish between stochastic error and deterministic error 

before going into the following sections. In the Merriam-Webster Dictionary, the word 

error is defined as “the difference between an observed or calculated value and a true 

value”, and it appears to be a deterministic quantity. But what if the true value is 

unknown and we still need some estimation of the error? In this case the error can be 

modeled as a random variable, namely, stochastic error. Note that this does not imply that 

the difference between the observation or calculated value and a true value is random. 
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The probability distribution only represents our belief (in a Bayesian sense) regarding the 

difference, or the degree of uncertainty regarding the difference, when missing the true 

value. The advantage of modeling the error as a random variable is that the uncertainty of 

the error can be easily incorporated with other uncertainty sources within a well-

developed probability-based uncertainty quantification framework. In this research, 

deterministic error and stochastic error are treated differently. In order to correct a 

measured or calculated value, the deterministic error is directly added to it, while a 

random sample of the stochastic error is first generated and then added to it.  

In this research, in order to quantify the numerical error, instead of comparing the 

original model prediction predy  with known solutions, it is compared with a corrected 

model prediction cy . Generally, if the error is deterministic, it will be corrected by 

adding it to its corresponding quantity; if the error is stochastic, it will be accounted for 

by including its uncertainty in the final output through sampling. Once the corrected 

model prediction cy  is obtained, the numerical error can be estimated as  

predcnum yy −=ε      (2.1) 

Note that since cy  and predy  are both considered as random variables and hence numε  is 

also a random variable, this equation is evaluated in a probabilistic sense, i.e., by 

sampling and substituting the samples into the equation, samples of numε  are obtained. In 

the following, all equations that involve random variables are treated the same way.  
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2.2 Input error 

In a validation exercise, the inputs to the computational model should ideally have 

the same values as those to the physical system. However, the inputs to the physical 

system model are subject to experimental variability and measurement error; therefore 

there is a discrepancy between what is measured or reported as the input to the physical 

system and its actual value. The use of this measured value in the computational model 

gives rise to an error in the model prediction, since the model and the actual system had 

different inputs.  

If no prior information is available, the input errors are represented by random 

variables based on knowledge about experimental variability, measurement process, and 

instrument errors. Usually, normal distributions with mean value of zero or a constant 

bias are assumed. The input error can be accounted for by including its uncertainty in the 

final model output, i.e., by propagating the randomness of input error through the 

computational model. Suppose that a computational model has the form 

),...,,( 21pred mxxxfy = , in which mx,,x,x ...21  are model inputs and predy  is model 

prediction. Then the model output that accounts for the input errors is  

])(...)()([ in2in21in1pred mm ε+x,,ε+x,ε+xf=y'    (2.2) 

where m)(,...,)(,)( in2in1in εεε  are the (stochastic) input errors of each input variable.  

 

2.3 Discretization error  

Many engineering problems involve solving differential equations numerically 
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using a discretization method, such as the finite difference method or finite element 

method. The approximation error due to coarse discretization of the domain is denoted as 

discretization error. The practice of quantifying the discretization error is also referred to 

as a posteriori error estimation in boundary value problems in mechanics. Different 

methods have been proposed for a posteriori error estimation, including explicit error 

estimation methods [12], element residual methods [13], recovery based methods [14], 

and extrapolation methods [15]. A comprehensive review of a posteriori error estimation 

is given by Ainsworth and Oden [16]. But most methods are only useful for adaptive 

mesh refinement, not for quantifying the actual error [1]. A good method to approximate 

the actual error for model V&V is found to be the Richardson extrapolation [17, 18]. 

In this research, the Richardson extrapolation method is employed to quantify the 

discretization error. And we consider the estimated error is the actual error, just to 

demonstrate how to deal with deterministic error. However, in practice it is advised to use 

better methods because the Richardson Extrapolation has the following pitfalls: (1) it 

performs well for 1-dimensional cases, but it is less reliable after that; (2) it was first 

developed for finite difference method, and its result is less credible for finite element 

method; (3) it requires the model result to be monotonically convergent as the mesh is 

refined, while in most cases the result converges with fluctuation. 

The Richardson Extrapolation method uses the finite element analysis as a black-

box, i.e., no other modification of the finite element code is required except refining the 

mesh. It requires that the finite element analysis (FEA) result be monotonically 
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convergent towards the exact solution as the mesh size approaches zero. To quantify the 

discretization error hε  in an FEA result 1φ  with mesh size 1h , two more FEA runs are 

needed to obtained  2φ  with a finer mesh 2h  and  3φ  with the finest mesh 3h . Then the 

discretization error hε  is given by )1/()( 21h −−= prφφε . As a result, the exact solution 

can be expressed as 

  )1/()( 2110 −−+==
p

h rφφφφ      (2.3) 

Here 2312 // hh=hh=r  is the mesh refinement ratio. And the order of convergence p  

can be estimated as [ ] ln(r)/)/()(ln 1223 φφφφ −−=p . However, the Richardson 

extrapolation should be used with caution, after verifying the assumption of monotonic 

convergence.  

 

Example 

Consider the deflection of a slender cantilever beam with a tip load N92.3=F  at 

the free end. The length of the beam is cm30=L . The beam has a rectangular cross 

section of width cm04.3=b  and height cm0780.h = . The moment of inertia of the cross 

section is calculated to be 412 m1020.1 −×=I . The Young’s modulus is 200GPa and the 

Possion’s ratio is 0.3. Ignoring the self-weight of the beam, the theoretical result for the 

deflection at the free end is available in [39], which is cm16.12th −=y . This theoretical 

result has also been experimentally validated in [39]. 

A finite element model is created for the beam in ANSYS, including large 
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deflection effect. The problem is solved with mesh size equal to cm5.71 =h , 

cm75.32 =h  and cm875.13 =h , respectively. The corresponding deflections are 

cm22.121 −=y , cm17.122 −=y  and cm16.123 −=y . The Richardson extrapolation 

method is used to estimate the exact solution. First the mesh refinement ratio is calculated 

as 5.0// 2312 =hh=hh=r . Then the order of convergence is calculated as 

[ ] 2.32ln(r)/)/()(ln 1223 =−− φφφφ=p . Finally, the estimated exact solution is calculated 

as cm16.12)1/()( 2110 −=−−+==
p

h ryyyy , which matches the theoretical solution, thus 

illustrating the efficacy and accuracy of the Richardson extrapolation method for 

quantifying discretization error. 

 

2.4 Surrogate model prediction error  

Some engineering analyses – uncertainty quantification, sensitivity analysis, 

optimization etc. – require repeated runs of the finite element model, which can be 

prohibitively expensive. Therefore, a surrogate model, which is usually computationally 

much cheaper than FEA, is constructed to provide a closed-form expression of the 

relationship between the inputs and outputs of the original model or system. The 

difference between surrogate model prediction and the original model prediction is 

denoted as surrogate model error suε . Since the true response of the original model is 

unknown at an untrained point (within the bounds of the surrogate model training), the 

surrogate model error is modeled as a stochastic quantity.  

In this study, a polynomial chaos expansion (PCE) [33] is used as a surrogate to 
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the time-consuming finite element analysis in order to generate enough Monte Carlo 

samples needed for quantifying the uncertainty in the model output.  

PCE is a regression-based surrogate model that represents the output of a model 

with a series expansion in terms of standard random variables (SRVs). Consider a model 

)(xf=y  in which y  is the output from a numerical simulation )(xf  and 

T
kxxx=x },...,,{ 21  is a vector of input variables that follow certain probability 

distributions. Suppose PCE is constructed to replace )(xf  using n  multi-dimensional 

Hermite polynomials as basis functions 

su
0

)()( ε+=θ=y T
n

j=
jj ξφθξ∑ φ     (2.4) 

where ξ  is a vector of independent standard normal random variables which correspond 

to the original input x [21]. { }T
n= )(),...,(),()( 10 ⋅⋅⋅⋅ φφφφ  are the Hermite basis functions, 

and { }T
n= θθθ ,...,, 10θ  are the corresponding coefficients that can be estimated by the 

least squares method. A collocation point method can be used to efficiently select training 

points where the original model is evaluated [22]. Suppose that m  training points 

miyii ,...,2,1),,( =ξ  are available. Under the Gauss-Markov assumption [23], the 

surrogate model error suε  asymptotically follows a normal distribution with zero mean 

and variance given by 

)()()(][ 122
su ξφΦΦξφ −+≈ TTssVar ε     (2.5) 

where T
m )}(),...,(),({ 21 ξφξφξφΦ =  and [ ]∑ −

−

m

=i
i

T
iy

nm
=s

1

22 )(1 ξφθ . 
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In order to account for the surrogate model error, random samples of suε  are 

generated and added to the surrogate model prediction. As a result, instead of only one, a 

number of sample values of surrogate model predictions are obtained for a single input, 

and all sample values should be used for succeeding analyses and obtain a number of 

sample values of final model prediction. This approach to account for the surrogate 

model prediction error also works for other stochastic surrogate models such as Gaussian 

Process model [24] that provide the uncertainty, namely, the variance, of prediction.  

 

Example 

Consider the slender cantilever beam problem described in Section 2.3. Assume 

the concentrated force follows a normal distribution with mean 3.5 N and standard 

deviation 0.4 N. 15 samples of F are generated and 15 corresponding beam tip deflections 

are calculated using the finite element model with mesh size h = 7.5 cm. The results are 

listed in Table 1. The first 9 results are used to construct a first order PCE surrogate 

model, and the last 6 are used as validation points. The PCE model is then used to predict 

the beam tip deflection over the range of force from 3N to 4.5N. The error associated 

with each prediction is calculated based on which 90% confidence bounds are 

constructed. The results are plotted in Figure 1, and show excellent agreement between 

the surrogate model prediction and the original FEA predictions at the validation points. 
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Table 1. 15 FEA results of the slender cantilever beam problem 

 Force (N) Deflection (cm) 

Training 
points 

3.13 -10.33 
3.47 -11.18 
3.59 -11.47 
3.63 -11.56 
3.71 -11.75 
3.74 -11.82 
3.90 -12.18 
4.12 -12.65 
4.35 -13.13 

Validation 
points 

3.08 -10.20 
3.20 -10.51 
3.40 -11.01 
3.53 -11.33 
3.67 -11.66 
3.96 -12.31 

 

 

Figure 1. Surrogate model prediction and confidence bounds 
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CHAPTER III 

 

UNCERTAINTY QUANTIFICATION ERROR 

 

3.1 Introduction 

In this chapter, we discuss the error which arises when using a limited number of 

samples to estimate the mean and variance or construct the empirical CDF of a stochastic 

quantity. We denote the uncertainty quantification error uqε  as the difference between the 

empirical CDF value and the “true” CDF value. First an error estimation method is 

developed to quantify uqε .  Then based on this a method is developed for interval 

estimation of mean and variance. Furthermore, the propagation of uqε  is studied when 

resampling from the empirical CDF and using the samples for further analysis.  

 

3.2 Error in Empirical CDF 

Suppose that an empirical CDF )(xFX  is constructed from sN  samples of a 

random variable X . And )(xFX  is referred to as the CDF value that includes the error in 

the empirical CDF. Suppose that n  samples are smaller than a specific value x ; then n  

should follow a binomial distribution [34] ( ))(,~ s xFNBn X  if we consider that the value 

of each sample is a result of Bernoulli trial. The binomial distribution approaches the 



 

19 
 

normal distribution as sN  increases. When sN  is greater than 20, the normal distribution 

( ))](1)[(),(~ ss xFxFNxFNNn XXX −  is a good approximation to the original binomial 

distribution. Since s/)( NnxFX = , we have 










 −
=

ss

)](1)[(),(~)(
N

xFxFxFN
N
nxF XX

XX    (3.1) 

Therefore uqε , the error associated with the CDF value )(xFX  can be represented as a 

normal random variable with zero mean and variance 2σ , which can be estimated from: 

[ ]
s

2 )()(1
N

xFxF XX−
=σ      (3.2) 

in which N  is the number of samples used to construct the empirical CDF of x . Note 

that the variance of this error is actually a function of x , and it goes to zero at both ends 

of the CDF curve. Or we can directly treat )(xFX  as a random variable with variance 

2σ .  

 

Example 

Suppose )1,0(~ NX  and 21 samples of X  are available. The empirical CDF of 

the samples with 90% confidence bounds are constructed using the above method. The 

result is compared to the true CDF curve in Figure 2, and show that the CDF curve lies 

between the confidence bounds. 
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Figure 2. Empirical CDF with 90% confidence bounds vs. true CDF 

 

3.3 Error Estimation for mean and variance 

The classical interval estimation method for mean and variance from samples of a 

normal variable is available in most statistics texts [34]. Recently, methods were 

developed to handle non-normal cases [35, 36]. Here we propose an estimation method 

for mean and variance, based on the error estimation for CDF established above. The 

mean and variance are modeled as random variables and their samples are obtained by 

directly integrating the empirical CDF while considering the random error in the CDF 

value. Then the samples of the mean and variance can be used to construct their 

confidence intervals. This method can be applied without knowing the specific 

distribution type of the samples. Suppose sN  samples of x  are given, then by definition, 

the estimated mean is can be obtained by  
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∫
+∞

∞−
== dxxxfXE XX )()(µ     (3.3) 

where )(xf X  is the PDF of x . According to the range of samples, the integration interval 

can be replaced by one with reasonable upper and lower bound, i.e., ],[ ul xx , such that 

0)( =lX xF  and 1)( =uX xF . Note the relationship between PDF and CDF, we have 

∫∫ == u

l

u

l

x

x X

x

x
X

X xxdFdx
dx

xdFx )()(µ     (3.4) 

Integrating by parts gives 

∫∫ −=−= u

l
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x
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x

x X
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u
XX dxxFxdxxF

x
x

xxF )()()(µ    (3.5) 

The integration term can be approximated by summation, which yields 

∑ ∆−=
i

iiXuX xxFx )(µ     (3.6) 

The summation term can be evaluated by sampling )( iX xF . The partitions ix  should be 

the same as those when )(xFX  is constructed. By repeating this process, samples of Xµ  

are obtained. 

Similarly we can estimate 2
Xσ : 
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Substituting Xµ  from Eq. (3.6) into Eq. (3.7) gives: 
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 (3.8) 

Again, by sampling the summation term, samples of 2
Xσ  are obtained. Notice that 

)( iX xF  should be the same in both terms  (use the same sample), i.e., they should have 

the same value for a given ix .  

 

Example 

An example is shown here to demonstrate how to use the proposed method to 

estimate the true mean and variance of given samples and how to construct confidence 

intervals for the estimates. In order to compare with the classical statistics method, we 

assume that 21=n  samples of a normal random variable X  are available but its variance 

is unknown. The true mean and variance of X  are denoted as Xµ  and 2
Xσ , which are 

both unknown.. And the sample mean and variance are estimated from the samples: 

5.14=X  and 75.102 =S .  From basic statistics, we know that 
nS

X X

/
µ−  follows a t-

distribution with 201 =−n  degrees of freedom; and 2

2)1(

X

Sn
σ
−  follows a chi-square 

distribution with 201 =−n  degree of freedom. The PDFs of Xµ  and 2
Xσ  are plotted in 

Figure 3 (a) and (b) respectively. And the 90% confidence intervals of both Xµ  and 2
Xσ  

are ]37.6,90.3[90.0 =>< Xµ  and ]81.19,84.6[90.0
2 =>< Xσ . 
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Using the proposed method, 1000 samples for each of Xµ  and 2
Xσ  are obtained 

using Eqs. (3.6) and (3.8), respectively. Kernel smoothing density estimates of the 

samples are computed for Xµ  and 2
Xσ , respectively, and the results are also plotted in 

Figure 3. Comparing with the classical method, the PDFs of 2
Xσ  agree quite well, while 

the PDF of  Xµ  given by the proposed method is narrower than that given by the 

classical method. From the samples, the 90% confidence intervals of Xµ  and 2
Xσ  are 

calculated to be ]66.5,60.4[90.0 =>< Xµ  and ]70.14,06.6[90.0
2 =>< Xσ . Compared to the 

results given by the classical method, the proposed method gives a narrower estimation 

for the mean. 

 

 

Figure 3. (a) PDF of Xµ ; (b) PDF of 2
Xσ  
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3.4 Propagation of UQ error 

If more realizations of x  are generated from the empirical CDF to calculate the 

distribution of another variable ( )xg=y , then uqε  is propagated through the sampling 

procedure and results in sampling error sε  in the new samples of x . If an inverse CDF 

method is used for sampling, an approximate method for quantifying the sampling error 

sε  is proposed below. 

To generate the ith sample ix , a random number iu  is first generated from a 

uniform distribution )1,0(~ Uu . By inverting )(xF=u x , a sample ix  is obtained ( )(xFx  

is the empirical CDF). However, due to the error i)( uqε  in the CDF value, the actual 

CDF curve might be along the dotted line as shown in Figure 4. As a result, the actual 

sample value  we should get can be expressed as ii +x )( sε , where i)( sε  is the sampling 

error of ix .  Since i)( uqε  reflects how much the empirical CDF deviates from the actual 

CDF at ix=x  and in its neighborhood, i)( sε  should increase as i)( uqε  increases. 

Especially, i)( sε  should tend to zero when i)( uqε  is equal to zero. In Figure 4, let i)( uqε  

and ')( uq iε  be the errors corresponding to the CDF values at ix  and ])([ s iix ε+ , 

respectively. From Eqs. (3.1) and (3.2), we know that )](,0[~)( uq ii xN σε  and 

( )])([,0~')( suq iii xN εσε + . If we let i)( uqε  and ')( uq iε  have the same percentile value 

(assuming i)( sε  is very small), then we have 
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   (3.9) 

In this equation i)( sε  is the unknown quantity to be estimated. Based on this 
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assumption a one-to-one mapping relationship is established between i)( sε  and i)( uqε  

and therefore one can calculate i)( sε  for a given i)( uqε . Since the distribution of i)( uqε  

is assumed in Section 3.2, one can obtain realizations of i)( sε  by sampling i)( uqε .  Thus 

the corrected value of ix  is [ ]ii +x )( sε , which includes the sampling error i)( sε . Now 

( )xg=y  is calculated using the corrected realization.  

This method offers a generic approach to resample from sparse data, and include 

the extra uncertainty due to UQ error into the new samples. In this research, this method 

is later applied to quantify model form error (see Section 4). A kernel density estimation 

may be performed to obtained a smoothed empirical CDF before applying this method, if 

necessary. 

 

 

Figure 4. Sampling error quantification 

 

3.5 Summary 

Using limited number of samples in sampling-based uncertainty quantification 

creates uncertainty quantification error (UQ error). This chapter defines the UQ error as 
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the error that arises in the value of the empirical CDF constructed from the samples, and 

a methodology to quantify this error is developed. Based on this, a method is proposed to 

compute the confidence intervals of the mean and variance estimates from the given 

samples. This method is nonparametric and can be applied to samples of arbitrary 

distribution. For a special case where the samples come from an underlying normal 

distribution, the result given by this method is compared to that available from classic 

statistics. The results for variance estimate agree quite well but proposed method gives a 

narrower distribution of mean estimate than classical method. More work must be done to 

include the correlation between different values of )( iX xF . Furthermore, a method is 

developed to resample from the empirical CDF considering the UQ error, in generating 

more samples for uncertainty propagation analysis.  
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CHAPTER IV 

 

MODEL FORM ERROR ESTIMATION 

 

4.1 Introduction 

Model form error is independent of the numerical solution error. As mentioned in 

Section 1.1, quantification of model form error requires comparison of model prediction 

against validation experiment observations obsy , where output measurement error omε  

needs to be taken into account. Using equating Eqs. (1.1) and (1.2), we have 

omobsmodel

c

numpred εεε +=++ y

y

y


   (4.1) 

Rearranging the terms gives: 

comobsmodel yy −+= εε     (4.2) 

This equation is evaluated by sampling each of the three terms on the right-hand side and 

samples of modelε  are obtained. Quantification of the output measurement error omε  is 

discussed in the next section. Furthermore, UQ error arises when calculating the model 

form error since a sampling-based method is used. Section 4.3 discusses how to take the 

UQ error into account when calculating model form error. 
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4.2 Output measurement error  

Output measurement error arises here when measuring the output of the physical 

system. This comes into the picture in model validation and model form error 

quantification. The output measurement error is commonly assumed to be a Gaussian 

random variable with zero mean and an assumed variance [23], based on measurement 

process and equipment. 

 

4.3 Model form error  

In most cases only the distribution of omε  might be available, and only a few 

point-valued data are available for obsy . Moreover, since the procedure of computing cy  

requires considerable computational effort, then only limited number of samples can be 

obtained. A re-sampling approach is needed to generate more samples of obsy  and cy  

from sparse data, but re-sampling could also cause another error. Therefore, the approach 

developed in Section 3.4 for re-sampling and quantifying the sampling error is used. 

Then Eq. (4.2) becomes 

])([])([ cscomobssobsmodel εεεε +−++= yy    (4.3) 

It is clear that the error sε  also contributes to the model form error.  

 

4.4 Summary 

Once the model form error statistics are calculated using Eq. (4.3), for future 

prediction purposes, the overall corrected prediction that includes both solution 
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approximation error and model form error may be computed as modelc ε+y . In this 

expression, cy  includes the contribution of various solution approximation errors and 

input error, and modelε  includes the contribution of UQ error and output measurement 

error. Of course, the UQ error is not an independent error source; it only arises due to the 

limited number of samples used in the analysis, and can be diminished by increasing the 

number of samples. 
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CHAPTER V 

 

SENSITIVITY ANALYSIS 

 

5.1 Introduction 

The previous chapters developed a methodology to quantify different errors in 

model prediction. In this chapter, sensitivity analysis is performed to estimate the 

contribution of each error source to the model prediction uncertainty.  Previous studies in 

stochastic sensitivity analysis have only considered the effect of input random variables; 

this research extends those methods to include sources of solution approximation error. 

The sensitivity analysis is done in terms of the contribution to uncertainty in the corrected 

model prediction cy  (defined in Eq. (2.1)). Since the UQ error and model form error are 

computed only after the computation of cy , this sensitivity analysis is only with respect 

to solution approximation errors, and does not include UQ error or model form error. 

In this chapter, two local and two global sensitivity measures are studied. In order 

to perform sensitivity analysis a model output that considers all errors is needed, which is 

cy  (see Chapter 2). For the sake of demonstration, a generic model 

),...,,( 21 kXXXfY =  is assumed, where iX  can be either model input, error or model 

parameter with uncertainty.  
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5.2 Local sensitivity analysis 

 

5.2.1 Change in variance 

The change of variance in the model prediction due to the ith input is defined as: 

)|()()(
~

2
iiXi xXYVarYVar

i
=−=∆σ     (5.1) 

This equation provides a measure of the change in variance of Y  if the ith input is 

ignored. Ignoring iX  means fixing it at its mean value (usually zero for an error term). 

The second term in right hand side of Eq. (5.1) is a conditional variance of Y  given iX , 

and is taken over iX ~  (all X  but iX ). The greater i)( 2σ∆  is, the more important iX  is. 

However, this measure is only in terms of variance and ignores other uncertainty 

information such as mean, skewness, kurtosis etc, Also, the result depends on where iX  

is fixed, and in occasional cases, it is possible that )()|(
~

YVarxXYVar iiX i
>= . For 

example, consider a model 21 XXY ⋅=  with two inputs )1,0(~1 NX  and )1,0(~2 NX . It 

is easy to verify that 1)(4)2|( 1 =>== YVarXYVar . But due to its simplicity, change 

of variance i)( 2σ∆  is still an applicable scalar measurement of the effect due to each 

contributing source of uncertainty. Since iX  is fixed at a single value, the change of 

variance is a local sensitivity measure. 

 

5.2.2 Kullback-Leibler divergence 

The Kullback-Leibler divergence (K-L divergence) [30], adopted from 

information theory, measures the difference between two probability density functions 



 

32 
 

)(xp  and )(xq , in the sense of the relative information entropy (uncertainty) of )(xp  

with respect to )(xq . It is defined by 

( ) ∫
∞

∞−
dx

xq
xpxp=QPD
)(
)(log)(||KL     (5.2) 

The K-L divergence is nonnegative, and it is zero if and only if )(xp  and )(xq  

are exactly the same. As illustrated in Figure 5, the area to be integrated clearly reflects 

the difference in shape between )(xp  and )(xq . It is sensitive to both differences in 

mean value and in variance.  

 

 

Figure 5. Illustration of K-L divergence ( )QPD ||KL , which is equal to the integral of the 

showed area in the left figure. 

 

The K-L divergence has been used in sensitivity analysis [27] to measure the 

contribution of an individual source to the uncertainty in the model prediction. In order to 

compare with the measure of change of variance, the K-L divergence is used to assess the 
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total sensitivity of Y to iX , which is given by [ ]YxXYD iiXi
||)|(KL = . This compares the 

difference over the entire distributions of Y  and the conditional )|( ii xXY = , in which 

iX  is fixed at a value (usually its mean). A larger value of the KL divergence means Y  is 

more sensitive to iX . 

 

5.3 Global sensitivity analysis 

 

5.3.1 Main effect and total effect measures 

The drawbacks of change of variance motivate the need for a better sensitivity 

measure. Instead of fixing iX  at a single value, we can average the conditional variance 

)|(
~ iX XYVar

i
 over the entire distribution of iX . This is denoted as )]|([

~ iXX XYVarE
ii

, 

and it no longer depends on the where iX  is fixed, so that it is “global” over the range of 

iX . Starting with this and based on variance decomposition [26], the variance of Y  can 

be decomposed into two terms, with respect of iX  [37], 

)]|([)]|([)(
~~ iXXiXX XYEVarXYVarEYVar

iiii
+=    (5.3) 

Here both terms are complimentary of each other. Either a smaller first term or a bigger 

second term indicates a more important iX . By normalizing the second we obtain the 

main effect sensitivity index: 

)(
)]|([

~

YVar
XYEVar

S iXX
i

ii=  (5.4) 

which is always between 0 and 1. The main effect is also referred to as first-order effect. 

Note that a low main effect index does not imply that the variable is not important. A 
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variable with a low main effect might make a bigger contribution to the model output 

through interaction with other variables. Therefore a more comprehensive sensitivity 

measure which includes the main effect and the interaction effect is needed, which is the 

total effect index. If we swap iX  and iX ~  in Eq. (5.3), another way of decomposing the 

variance of Y  is discovered: 

)]|([)]|([)( ~~ ~~ iXXiXX XYEVarXYVarEYVar
iiii

+=    (5.5) 

By normalizing the first term we obtain the total effect sensitivity index: 

)(
)]|([ ~

T
~

i YVar
XYVarE

S iXX ii=      (5.6) 

The total effect index becomes valuable when the sum of individual main effect indices is 

not close to 1, which implies that strong interaction effects exist among variables. Since 

the total effect index accounts for the total contribution to the output due to the input iX , 

the condition 0
iT =S  is a necessary and sufficient condition for iX  being negligible, i.e., 

fixing iX  at a particular value has almost no influence to the model output.  

By brute force, evaluation of both )]|([
~ iXX XYEVar

ii
 and )]|([ ~~ iXX XYVarE

ii
 request a 

nest-loop Monte Carlo simulation. If N  samples are needed to calculate both the 

expectation and the variance, then totally NN ×  runs of computing the model output Y  

are needed. To accelerate the process, an efficient method was developed in [38].  

 

5.4 An intuitive understanding of the sensitivity measures 

Scatter plots can be used to help explain the above sensitivity measures, except 
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for total effect index, which cannot be illustrated in a 2-D plot. Suppose that adequate 

samples of Y  are generated by Monte Carlo simulation; the scatter plot of Y  versus iX  

is shown in Figure 6(a). In this figure, consider a thin strip centered at the mean value of 

iX . If the strip is thin enough, the samples that fall within the strip could be considered 

as the samples of )|( ii xXY = . Actually, the change of variance measure compares the 

variance of the samples that fall within the strip vs. the variance of all samples, both with 

respect to Y . If PDFs are constructed for the samples of both Y  and )|( ii xXY = , then 

the KL divergence measure can be calculated by comparing the two distributions. 

Similarly, we can calculate the mean value of the samples in the strip, which is 

given by )|(
~ iiX xXYE

i
= . Then if the position of the strip varies, the samples of 

)|(
~ iX XYE

i
 are obtained as shown in Figure 6(c). Finally if the position of the strip 

varies according to the distribution of iX  (as shown in Figure 6(b)) then we can calculate 

the variance of )|(
~ iX XYE

i
 with respect to iX , which is the main effect 

)]|([
~ iXX XYEVar

ii
. 

However, none of the above sensitivity measures is perfect. Change of variance 

measures the local sensitivity at a particular iX , and only addresses the variance but 

ignores other information. The main effect and total effect sensitivity index is “global” 

over the entire range of iX , but again it addresses only the variance. The KL divergence 

compares the entire distribution which makes it “global” with respect to Y , but it is still 

local with respect to iX  since it is calculated at a particular value of iX . 
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Figure 6. Scatter plots: (a) Y  versus iX  with a slice cut at 0=iX ; (b) Y  versus iX  with 

slices cut at different iX ; (c) )|(
~ iX XYE

i
 versus iX . 

 

5.5 Deterministic and stochastic errors in sensitivity analysis 

It was mentioned in Section 1.1 that deterministic errors (such as discretization 

error) are corrected, whereas stochastic errors are accounted for through sampling, in 

order to compute the corrected model prediction cy . In this case, only local sensitivity 

measures can be calculated corresponding to deterministic errors, which obviously have 

only fixed values for fixed model inputs. The corrected model prediction is calculated 

with and without correcting for the deterministic error, and the corresponding change in 

variance or K-L distance can be computed.  

For stochastic errors, it is more appropriate compute global sensitivity measures 

instead of at one particular value (typically the mean). However, this creates a difficulty 

in comparing the relative contributions of the deterministic vs. stochastic errors to the 

overall model prediction uncertainty, when resource allocation decisions are needed for 
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activities such as model refinement and data collection. Therefore, an approximate 

approach is proposed below to compute global sensitivity measures for even 

deterministic errors. 

In global sensitivity analysis with stochastic variables, samples of the variables 

are generated based on their distributions. But deterministic variables do not have a 

distribution to sample from, such as discretization error. An approximate approach is to 

obtain samples of hε  corresponding to samples of random inputs to the FEA model; these 

samples of hε are used to construct the distribution of hε .  

Another interesting problem occurs in calculating global sensivity measures with 

respect to the surrogate model error suε , even it is stochastic. This is because the 

distribution of suε  is local at a particular prediction of the surrogate model, which 

depends on the input. The overall distribution of suε  is not available over the entire range 

of the input, thus hindering global sensivity analysis. To overcome this difficulty, an 

approximate approach is to obtain samples of suε  corresponding to samples of random 

inputs to the surrogate model; these samples of suε  are used to construct the overall 

distribution of suε . 

 

5.5.1 Example: sensitivity analysis on deterministic error and stochastic error 

Suppose that the computational model has the form of  

65.1)( 2 +== xxfy      (5.6) 
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where )1,3(~ Nx is the input variable. Assume three errors arise in this model: 

1. A deterministic error: )2sin(21 xπε = ; 

2. A stochastic error: )1,0(~2 Nε ; 

3. A stochastic error whose distribution depends on x : )4.03,0(~3 xN −ε . 

Accounting for all three errors, suppose the corrected model output is 

321c )( εεε +++= xfy     (5.7) 

Samples of the corrected model output cy  can be obtained by sampling the input x . For 

a given input, the computational model )(xf  is first evaluated. Then the deterministic 

error 1ε  is calculated and the stochastic error 2ε  is directly sampled. As for the stochastic 

error 3ε , its standard deviation is first calculated and then 3ε  is sampled. Finally, sample 

values of all three errors are added to )(xf  to obtain the corrected model output cy . The 

PDF of cy  is plotted in Figure 7. 

 

Local sensitivity analysis 

The two local sensitivity analysis methods introduced in Section 5.2, which are 

change of variance and KL-divergence, are used here to assess the contribution of each 

error to the uncertainty of the corrected model output cy . To obtain cy  without correcting 

for or without including a particular error, the error is simply fixed at zero in the example. 

Thus we obtain the conditional cy  with respect to each of the three errors as below: 

321c )()0|( εεε ++== xfy : cy  without correcting for the deterministic error 1ε ; 
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312c )()0|( εεε ++== xfy : cy  without including the stochastic error 2ε ; 

213c )()0|( εεε ++== xfy : cy  without including the stochastic error 3ε . 

Similarly, by sampling the input x , samples of each conditional cy  are obtained 

and their PDFs are also plotted in Figure 7. The change of variance is calculated by 

comparing the sample variance of cy  and that of each conditional cy . And the KL-

divergence is calculated by comparing the PDF of cy  and the PDF of each conditional 

cy . The results are listed in Table 2. 

 

Figure 7. PDFs of cy   and conditional cy  

 

Global sensitivity analysis 

As discussed in Section 5.5, in order to perform global sensitivity analysis, overall 

distributions must be obtained for the deterministic error 1ε  and the stochastic error 3ε . 

Samples of 1ε  can be obtained by sampling the input x  and the overall distribution of  1ε   
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can be estimated from the samples as shown in Figure 8(a). As for 3ε  a nested-loop 

sampling is performed. First the input x  is sampled and the standard deviation of 3ε  is 

calculated, and then 10 samples of 3ε  are generated. By repeating this procedure 100 

times, 1000 samples of 3ε  are obtained. Finally the overall distribution of 3ε  is estimated 

from the samples as shown in Figure 8(b). The overall distribution of 1ε  and 3ε  are both 

independent of the input x .  

Based on the above calculation, both 1ε  and 3ε  are treated as ordinary random 

variables similar to 2ε . This treatment makes calculating the global sensitivity indices 

possible using Eq. (5.4) and Eq. (5.6), since the fixed value of the error can now be varied 

according to its distribution. The results are listed in Table 2. In this simple example, all 

sensitivity analyses give the same ranking of importance among the three errors. 

 

 

Figure 8. Overall distributions of 1ε  and 3ε  
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Table 2. Sensitivity analysis results 

Error 
Change of 
Variance 

KL Distance Main Effect Total Effect 

Index Ranking Index Ranking Index Ranking Index Ranking 

1ε  1.98 2 0.55 2 0.26 2 0.32 2 

2ε  1.31 3 0.48 3 0.15 3 0.16 3 

3ε  3.40 1 0.79 1 0.44 1 0.51 1 

 

5.6 Summary 

Both local and global sensitivity analysis methods are introduced to identify the 

contribution of each error to the overall error and thus to rank the important of each error. 

The ranking is helpful for an efficient model improvement. 

The need to compare the various sources of error with the same sensitivity 

measure creates two issues. Local sensitivity measures are not appropriate for stochastic 

errors, and calculation of global sensitivity measures is not straightforward for 

deterministic errors. The proposed treatment in Section 5.5 provides a convenient way of 

including discretization error and surrogate model error into global sensitivity analysis, 

thus making the various error sources comparable under the same sensitivity measure. An 

example is shown in Section 5.6 to demonstrate the proposed procedure. 
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CHAPTER VI 

 

NUMERICAL EXAMPLES 

 

6.1 Introduction 

Two numerical examples are used to demonstrate the proposed methods for error 

quantification. The first example is a cantilever beam model. Quantification of numerical 

error, model form error and UQ error is demonstrated in this example. The second 

example considers fatigue crack growth in an airplane wing spar. Error and uncertainty 

quantification, as well as sensitivity analysis are demonstrated in this example.  

 

6.2 Cantilever beam 

The tip deflection δ  of a cantilever beam shown in Figure 9 is of interest. The 

beam has length in 192=L , cross sectional moment of inertia 3in 300=I  and Poisson’s 

ratio 0.3=ν . The Young’s modulus E  is assumed to be a normal random variable with 

mean value Ksi 29000  and COV 0.06. The self-weight )(xw  is assumed to be a one-

dimensional Gaussian random field, with mean value lb/in 75  and COV 0.05, as well as 

an exponential covariance function defined by )/exp()( 2 bxxC ∆−=∆ σ , in which 2σ  is 

the variance and b  is the correlation length of the random field. In this example, b  is 
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assumed to be equal to the length of the beam. The concentrated load P  at the beam tip is 

the input to the model, which is a normal random variable with mean lb 1000  and COV 

0.16. For the sake of illustration, assume an error Pε  arises when measuring the input P , 

which is also a normal random variable with zero mean and a variance equal to 20% of 

variance of P [31]. Similarly, the output (i.e., deflection) measurement error is also 

assumed to be a normal random variable with zero mean and standard deviation of 

in 0.01 .  

A finite element model is constructed with 4 beam elements of equal length and a 

first order polynomial chaos expansion with Hermite bases is constructed as the surrogate 

computational model.  

),,(pred wEPh=δ      (6.3) 

9 training points are selected by the collocation method to run the FEA model for training 

the surrogate model [22]. Then the surrogate model is used to generate samples of model 

predictions by sampling the inputs. The distribution of model prediction is estimated 

from the samples to have a mean value of -1.74 and standard deviation of 1.23E-1.  

 

 

Figure 9. Cantilever beam 
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6.3.1. Numerical error estimation 

In this example, the numerical error in the model prediction is assumed to come 

from three error sources, surrogate model error suε , discretization error in FEA hε , and 

input error Pε . First, a Richardson extrapolation technique is used to correct the 

discretization error in FEA. For each of the 9 training points, 2 more FEM runs are made 

with 8 elements and 16 elements, respectively (original number of elements is 4) to 

calculate hε .  A new set of 9 training points is obtained by adding the discretization error 

to the original training points and a new surrogate model hPCE  is built with the 

corrected training data. Then Pε  and suε  are also included and finally the corrected 

model prediction cδ  is given by: 

suhc ),,(PCE εεδ +wE+P= P     (6.4) 

The numerical error can be calculated as predcnum δδ=ε − , where predδ  is the raw model 

prediction. By randomly generating samples of numε , the mean and standard deviation of 

numε  are estimated to be -4.01E-3 and 1.78E-1, respectively. 

 

6.3.2. Sensitivity analysis of errors 

In this example the computation of change of variance, KL-divergence and main 

effect index is demonstrated using scatter plots. However calculating the total effect 

indices cannot be illustrated using scatter plots. 10,000 samples of cδ  were generated in 

order to perform the sensitivity analysis. The scatter plots of cδ  versus Pε , hε  and suε  

are shown in Figure 10. A vertical thin strip centered at 0 on the horizontal axis is cut 
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from each of the scatter plots to calculate the sensitivity indices by the change of variance 

method and KL divergence method. The widths of the strips are 4, 0.01e-3 and 0.02e-3 

for Pε , hε  and suε , and would remain the same in the following analysis. 226, 224 and 

288 samples of Pε , hε  and suε  fall into the strips, respectively. To obtain the change of 

variance, the variance of cδ  is calculated from the samples in the strips and is compared 

against the variance calculated using the total 10,000 samples of cδ . The results are listed 

in Table 3. Similarly, KL distances are calculated for each of the three errors by 

comparing the distributions of the samples in the strips and the overall distribution of cδ . 

Then results are listed in Table 3. 
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Figure 10. Scatter plots of cδ  versus Pε , hε  and suε . 

 

To calculate the main effect sensitivity index the location of the strip is varied and 

expected value of cδ  is calculated within each strip. The scatter plots of the expected 

values versus the corresponding errors are shown in Figure 11. The main effect sensitivity 

index is obtained by taking the variance of the expected values. The strip location is 

varied according to the distribution of each error so as that the variance is calculated with 

respect to the error. The results are listed in Table 3. For a given input to the model, there 
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is only one fixed discretization error. However, as the input to the model varies, the 

resulting discretization error also varies. Thus the scatter of the discretization error is due 

to the randomness in the input variables.  

 

 

Figure 11. Scatter plots of ]|[ c εδE  versus Pε , hε  and suε . 

 

Finally the total effect sensitivity indices are computed by Monte Carlo sampling. 

The results are also listed in Table 3. It is seen that all methods indicate that the 
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discretization error affects the model solution the most.  

 

Table 3. Sensitivity analysis results 

Error 
Change of 
Variance 

KL Distance Main Effect Total Effect 

Index Ranking Index Ranking Index Ranking Index Ranking 

Pε  5.35e-3 1 10.44 1 0.0296 2 0.104 3 

hε  2.11e-5 2 5.48 2 0.1614 1 0.131 1 

suε  1.60e-6 3 3.50 3 0.0115 3 0.126 2 

 

6.3.3. Model form error and UQ error estimation 

Model form error can be estimated from Eq. (4.2); this also needs to take the 

uncertainty quantification errors into account. Assume 9 experimental observations of 

beam deflection obsδ  are available, and assume 20 samples of cδ  are taken from the error 

quantification procedure for resampling cδ .  Further assume that the output measurement 

error omε  follows a normal distribution with zero mean and standard deviation 0.01. For 

comparison, samples of model form error without considering the uncertainty 

quantification error are also generated by ignoring the sampling errors in Eq. (4.2). The 

CDFs of model form error with and without considering uncertainty quantification error 

are plotted in Figure 12 (a). 1000 samples of model form error were generated for each 

case. The PDFs of sampling error for obsδ  and cδ  are also plotted in Figure 12 (b). 

Statistical results are summarized in Table 4. Since less data is available for obsδ  than cδ , 

the variance of sampling error for obsδ  is significantly greater than cδ . It is noticed that 
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including the UQ error (due to limited sampling) resulted in an increase in the variance of 

the estimated model form error since more randomness was introduced. Finally, since the 

mean and variance of modelε  with uqε  are estimated from 1000 samples, errors arise in 

their estimates. By the method proposed in Section 3.4, the mean and variance of the 

mean of modelε  (including the effect of uqε ) are calculated to be 2.72e-3 and 3.18e-7, 

respectively; and the mean and variance of the variance of modelε  (including the effect 

of uqε ) are calculated to be 5.75e-2 and 1.48e-7, respectively. 

 

 

Figure 12. (a): PDFs for model form error  (b): PDFs for sampling errors 

 

Table 4. Statistics of model form error and sampling errors 

Variable Mean Variance 
modelε  without uqε  3.44e-3 5.19e-2 

modelε  with uqε  2.74e-3 5.76e-2 

sε  for obsδ  -7.21e-4 1.09e-2 

sε  for cδ  -0.20e-4 5.52e-5 

(a) (b) 
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6.3 Crack growth in an airplane wing spar 

In this example, quantification and sensitivity analysis of errors in crack growth 

prediction in a part of an airplane wing is of interest. In crack growth analysis, sensitivity 

analysis of errors faces a major difficulty because different sample values of the same 

error are input into the analysis in each cycle. This issue will be discussed in detail later. 

The wing spar plays a key role in connecting the wing to the fuselage, and is subjected to 

cyclic loading during flight. The final crack size Na  that grows from an initial size 

in 0.050 =a  after a given load history is studied. Due to various uncertainties and errors 

arising in the analysis, Na  is a random variable. 

The analysis consists of two modules: structural stress analysis and fatigue crack 

growth analysis, as shown in Figure 13. The errors and uncertainty considered in this 

example are input error, discretization error in FEA, surrogate model error, and 

uncertainty in the crack growth law parameter.  

 

 

Figure 13. Component analyses and associated sources of error and uncertainty 

 

Load 
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6.3.1 Structural analysis 

In this example, the load history is measured in aerodynamics analysis. The loads 

on the structure are a bending load B  and a pulling load P  both over the range of 

approximately 0 to 400 lb. 85,000 load cycles for both loads are recorded as plotted in 

Figure 14. During the measuring process, instrumentation errors Bε  and Pε  arise on B  

and P , respectively. This kind of error is modeled as a random error with zero mean, and 

follows a normal distribution. The standard deviation of Bε  is assumed equal to 30% of 

the value of B , and the standard deviation of Pε  is equal to 15% of the value of P . 

 

 

Figure 14. Loading history on the structure 

 

The loads B  and P  are inputs to the structural model. The output of structural 

analysis is the first principal stress in the critical region (hot spot). The analysis is carried 
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out by a surrogate model trained by 9 FEA runs. To quantify the discretization errors in 

the finite element analysis using Richardson extrapolation, for each of the training points 

the finite element analysis is repeated with finer meshes with two levels of refinement. 

The refinement ratio is 0.75, which means the element size is multiplied by 0.75 in each 

refinement.  

 

6.3.2 Crack growth analysis 

Before proceeding with the crack growth analysis, the stress intensity factor K∆  

is calculated first from the structural analysis result (in the context of linear elastic 

fracture mechanics). This is given by 

πasβ=K ∆∆      (6.5) 

where s  is the stress at crack tip, a  is the crack length, and β  depends geometry and 

crack length. In this example, β  available from [32]. The Paris' law is used here to 

illustrate the crack growth calculation: 

nKC=
dN
da )(∆      (6.6) 

The parameter n  is assumed to be deterministic at 3.2. Due to fitting error the parameter 

C  is assumed to be a random variable that follows a lognormal distribution, with a mean 

1.0E-7 and a COV of 0.24.  
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6.3.3 Correction of errors 

The following states the procedure of calculating Na  that is corrected for all error. 

At the beginning, a random sample of C  is generated, which stays constant throughout 

all cycles. In each cycle, first the mean values of B  and P  are obtained from a given 

variable amplitude load history. Random samples of Bε  and Pε  are generated, and are 

added to B  and P , respectively. The corrected B  and P  are then fed into the surrogate 

model. The surrogate model outputs the stress prediction s , as well as the associated 

prediction error. Next Eq. (6.5) is used to calculate the stress intensity factor, which is 

input to the crack growth law. To accelerate the computation, the increment of crack 

length da  is calculated in blocks of every 10 cycles, i.e., dN  is set to 10 in Eq. (6.6). 

Finally, the crack length is updated until the end of the load history. The analysis is 

repeated to generate 10,000 such samples of Na . 

 

6.3.4 Results and sensitivity analysis 

The Na  obtained in the previous section that is corrected for all errors is denoted as 

ca  in the following discussion. However, the structure of the crack growth problem is not 

like that of the previous example due to the cycle by cycle analysis. A small example 

would explain this special case. Let ε+=+ )(1 ii aga  be a crack growth model, in which 

ia  and 1+ia  are the crack sizes in the previous and the next cycle, and ε  is a random 

error. Supposed that after three cycles the crack grows from 0a  to 3a , we have 
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)3()2()1(
03 )))((( εεε +++= aggga     (6.7) 

in which )1(ε , )2(ε  and )3(ε  are three samples of the error ε  but they are generated 

independently. Or we can say 3a  is function of four input variables 

),,,( )3()2()1(
033 εεεaga = . The existing sensitivity methods are only able to estimate the 

sensitivity of 3a  with respect to each of )1(ε , )2(ε  and )3(ε individually. However, the 

sensitivity of 3a  to the overall error ε  is what we are actually interested in. An 

approximate approach to overcome this hurdle is to assume that all samples of the same 

error have the same value throughout all cycles. This makes it possible to compute the 

sensitivity with respect to a single error term ε  over all cycles.   

The results in Table 5 show that all four sensitivity measures are able to indicate 

that the final crack size is most sensitive to the parameter C  in Paris’s Law, and is least 

sensitive to the discretization error in FEA. This implies that in order to achieve a more 

accurate prediction of the final crack size, a more precise parameter C  (i.e., narrower 

scatter) is needed. In contrast, the discretization error in FEA is almost negligible.  

 

Table 5. Sensitivity analysis results 

Error 
/Uncertianty 

Change in 
variance K-L divergence Main Effect Total Effect 

Index Ranking Index Ranking Index Ranking Index Ranking 

Bε  0.17e-3 4 6.85 3 4.69e-2 4 8.36e-1 4 

Pε  0.32e-3 3 6.29 4 4.18e-1 2 9.13e-1 2 
C  2.95e-3 1 37.54 1 9.69e-1 1 9.88e-1 1 

suε  2.82e-3 2 36.63 2 3.80e-1 3 9.09e-1 3 

hε  8.36e-5 5 6.15 5 1.07e-3 5 2.48e-1 5 
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CHAPTER VII 

 

CONCLUSION 

 

This research studied some of the errors that arise in mechanics computational 

models. There are three major contributions in this research. The first is that the errors are 

clearly separated and a quantification method is developed for each of the errors, 

including model form error and three typical sources of numerical error. Some of these 

errors are random and some are deterministic. Deterministic error is corrected by adding 

it to the prediction; and random error is included in the model output through sampling. 

By correcting or accounting for all the errors the corrected model output is obtained. The 

corrected model outputs together with observed data are used to estimate model form 

error through sampling, where uncertainty quantification error arises. A methodology to 

quantify and propagate the UQ error is developed (this is the second contribution). 

Moreover, based on the quantification of UQ error an efficient method is proposed for 

interval estimation for mean and variance of given limited number of samples.  

The third major contribution of this research is that sensitivity analysis methods 

are developed to rank the contribution of each error. Past work in global sensitivity 

analysis has only considered the influence of input random variables on output 
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uncertainty; this research extends the methods to include model errors. Two local and two 

global probabilistic sensitivity measures (three variance-based and one entropy-based) 

are adopted. Approximation approaches are developed for fatigue crack growth analysis 

that requires repetition of error terms in each cycle. The proposed error quantification and 

sensitivity analysis framework would be beneficial for multi-level models to help 

determine where low fidelity analyses are sufficient and where high fidelity analyses are 

needed, thus balancing computational effort and prediction accuracy.  

In this research multi-disciplinary models with feed-back coupling relationships 

are not considered. However, such models are commonly seen, such as in fluid-structure 

interaction problems, where the output of one model is the input to the other model, and 

several iterations are needed until the solution converges. Errors arise in both models, and 

accumulate through the iterations between the two models. An efficient and accurate 

methodology to quantify the solution error in this case needs to be developed.  

Other sources of error need to be considered in this methodology, such as 

truncation and round-off errors. Also, some of the errors considered, such as experimental 

errors and solution errors can be decomposed further into several components, related to 

different experiments or different computational modules. Future work needs to address 

this, especially for multi-level, multi-scale, multi-physics models. However, the 

methodology developed in this thesis can still serve as a template for combining the 

various sources of error and uncertainty. 
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