
RESILIENT COOPERATIVE CONTROL OF NETWORKED MULTI-AGENT SYSTEMS

By

Heath J. LeBlanc

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

December, 2012

Nashville, Tennessee

Approved:

Professor Xenofon Koutsoukos

Professor Mark Ellingham

Professor Gabor Karsai

Professor Janos Sztipanovits

Professor Yuan Xue

To Jesus, whose teachings have shaped the way I live;

To my loving wife, Alison, whose wisdom and faith in me support my being;

To my mother, who I pray may know of this accomplishment;

To my grandfather, Carol J. LeBlanc, who inspired me to pursue an academic life.

“A man is a mind, not a body, capable of acceptance of responsibility,

and possessing a keen sense of duty based on the laws of God.”

- Carol J. LeBlanc (1934–2009)

ii

ACKNOWLEDGMENTS

I am grateful to all of those people with whom I have had the pleasure of working during my

time at Vanderbilt. I would like to especially thank my adviser Xenofon Koutsoukos for his advice

and guidance with this work. I would also like to thank Shreyas Sundaram and Haotian Zhang at

the University of Waterloo for the many insights and ideas shared during our collaborations. I am

grateful as well to the members of my committee: Janos Sztipanovits, Gabor Karsai, Yuan Xue, and

Mark Ellingham for their guidance. I am also obliged to my colleagues, both past and present, in the

ModEs lab and ISIS. Most especially, I express a deep appreciation to Emeka Eyisi, Derek Riley,

Ashraf Tantawy, Daniel L. C. Mack, Zhenkai Zhang, Peter Horvath, Mark Yampolskiy, Siyuan Dai,

Joe Porter, and Gabor Simko for the various discussions that have provided me feedback that has

helped in this research. I would also like to thank Rob Rioux for his guidance and mentorship early

in my academic career, and for his friendship and support throughout.

Most importantly, I am indebted to my wife Alison, whose love, support, and wisdom guides me

and motivates me to be the best I can be. Finally, this work would not have been possible without

the financial support of the National Science Foundation CAREER CNS-0347440 grant awarded to

Xenofon Koutsoukos and the National Science Foundation grants CCF-0820088 and CNS-1035655.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter

I. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Research Challenges . 2
1.3 Outline and Overview . 3
1.4 Contributions . 8
1.5 Notation . 10

II. RELATED WORK . 13

2.1 A Brief Review of Graph Theory . 13
2.2 Passivity and Wave Variables . 19

2.2.1 Introduction to Passivity and Wave Variables 19
2.2.2 Teleoperation, Virtual Environments, and Haptics 21

2.2.2.1 Haptic Interfaces . 22
2.2.2.2 Bilateral Teleoperation . 24

2.2.3 Networked Control Systems . 25
2.3 Multi-Agent Networks . 27

2.3.1 Consensus . 30
2.3.1.1 Statistical Consensus . 31
2.3.1.2 Consensus in Distributed Computing 32
2.3.1.3 Gathering in Robot Networks 36
2.3.1.4 Rendezvous . 44
2.3.1.5 Particle Flocking . 47
2.3.1.6 Linear Iterative Consensus Algorithms 48
2.3.1.7 Continuous-Time Consensus 52
2.3.1.8 Robust and Secure Consensus 56

2.3.2 Pattern Formation . 62
2.3.3 Formation Control . 63
2.3.4 Synchronization . 64

2.3.4.1 Output Synchronization 65
2.3.4.2 Synchronized Tracking 67

iv

2.3.5 Coordinated Path Following . 67
2.3.6 Biologically Inspired Objectives 69

2.3.6.1 Flocking . 69
2.3.6.2 Foraging . 69

2.3.7 Cooperative Load Transport . 70
2.4 Comparison to this Dissertation . 70

III. DEPLOYMENT OF PASSIVE SYSTEMS IN UNCERTAIN NETWORKS 71

3.1 Background . 73
3.2 System Model and Problem Statement 75

3.2.1 Multi-Agent Network Model . 75
3.2.2 Problem Statement . 75

3.3 Deployment Protocol . 76
3.4 Passivity and Stability Analysis . 80
3.5 Deployment using Steady-State Analysis 83
3.6 Design of Deployment Protocol Parameters 87
3.7 Simulations . 88
3.8 Summary . 97

IV. CONTINUOUS-TIME RESILIENT ASYMPTOTIC CONSENSUS (CTRAC) 98

4.1 System Model and Problem Statement 101
4.1.1 Multi-Agent Network Model 101
4.1.2 Update Model . 102
4.1.3 Problem Statement . 103
4.1.4 Adversary Models . 104

4.1.4.1 Threat Models . 104
4.1.4.2 Scope of Threat Models 108

4.2 Adversarial Robust Consensus Protocol (ARC-P) 110
4.3 Existence and Uniqueness of Solutions with ARC-P 113
4.4 Lyapunov Candidate . 121

4.4.1 Useful Lemmas Involving the Lyapunov Candidate 122
4.5 ARC-P in Complete Networks . 125

4.5.1 Analysis in Complete Networks 125
4.5.2 Finite Termination in Complete Networks 127
4.5.3 Simulations with Malicious Agents in Complete Networks 128

4.6 Limitations of Traditional Graph Properties for Analyzing ARC-P 134
4.6.1 Analysis of Degree Conditions in Fixed Topology 136

4.6.1.1 Necessary Conditions 139
4.6.2 Analysis of Degree Conditions in Time-Varying Network Topologies . 140
4.6.3 Examination of Degree Conditions 141

4.7 Simulation Examples . 146

v

4.8 Summary . 149

V. CONTINUOUS-TIME RAC IN ROBUST NETWORKS 151

5.1 Weighted ARC-P with Selective Reduce (ARC-P2) 152
5.1.1 Informal Description of ARC-P2 152
5.1.2 Formal Description of ARC-P2 154

5.2 Existence and Uniqueness of Solutions 156
5.3 Robust Network Topologies . 158

5.3.1 Network Robustness and Fractional Robustness 158
5.3.2 Properties of Robust Networks 168

5.4 CTRAC Results . 176
5.4.1 Necessary Conditions . 176
5.4.2 F -Total Malicious and Crash Models 178
5.4.3 F -Local Malicious and Crash Models 186
5.4.4 f -Fraction Local Malicious and Crash Models 187
5.4.5 F -Total, F -Local and f -Fraction Local Byzantine Models 188

5.5 Simulation Example . 190
5.6 Summary . 191

VI. DISCRETE-TIME RAC IN SYNCHRONOUS NETWORKS 194

6.1 Previous Work on Resilient Consensus With Only Local Information 195
6.2 System Model and Problem Statement 197

6.2.1 Synchronous Multi-Agent Network Model 197
6.2.2 Synchronous Update Model . 198
6.2.3 Adversaries in Discrete-Time Synchronous Networks 199
6.2.4 Problem Statement . 200

6.3 Resilient Synchronous Algorithm . 201
6.3.1 Description of the W-MSR Algorithm 203
6.3.2 Use of Related Algorithms . 204

6.4 Resilient Asymptotic Consensus Analysis 205
6.4.1 Necessary Conditions for Time-Invariant Synchronous Networks . . . 206
6.4.2 F -Total Malicious and Crash Models 209
6.4.3 F -Local Malicious and Crash Models 214
6.4.4 f -Fraction Local Malicious and Crash Models 216
6.4.5 F -Total, F -Local and f -Fraction Local Byzantine models 217

6.5 Simulation Examples . 219
6.6 Summary . 220

VII. DISCRETE-TIME RAC IN ASYNCHRONOUS NETWORKS 223

7.1 Malicious Nodes in Asynchronous Networks 225
7.2 System Model and Problem Statement 226

vi

7.2.1 Update Model . 227
7.2.2 Asynchronous DTRAC Problem Statement 228
7.2.3 Quantized RAC . 229

7.2.3.1 Update Model with Quantized State 229
7.2.3.2 Problem Statement . 230

7.3 Asynchronous Resilient Algorithms 230
7.3.1 Asynchronous W-MSR Algorithm 231
7.3.2 Quantized Asynchronous W-MSR Algorithm 232

7.4 Resilient Consensus Analysis . 233
7.4.1 Necessary Condition for F -Total or F -Local Malicious Model 233
7.4.2 Sufficiency for F -Total Malicious Model 234
7.4.3 Sufficient Condition for F -Local Malicious Model 237
7.4.4 RAC in Asynchronous Networks With Quantization 238

7.5 Point-to-Point Communication Model in Related Work 241
7.6 Summary . 242

VIII. RESILIENT ASYMPTOTIC SYNCHRONIZATION OF LINEAR SYSTEMS . . . 243

8.1 Background in Matrix Theory and LTI Systems 244
8.2 Multi-Agent Network Model and Problem Statement 252

8.2.1 Normal Agent Dynamics . 252
8.2.2 Resilient Asymptotic Synchronization (RAS) 254

8.3 Resilient Asymptotic Synchronization Analysis 255
8.3.1 Resilient Asymptotic Consensus with Vector States 255
8.3.2 RAS with Full State Feedback 258
8.3.3 RAS with Output Feedback . 266

8.4 Summary . 267

IX. ALGORITHMS FOR DETERMINING NETWORK ROBUSTNESS 269

9.1 Centralized Algorithms for Checking and Determining Robustness 270
9.2 Network Model . 275
9.3 A Decentralized Algorithm . 276
9.4 A Distributed Algorithm . 279
9.5 Construction of Robust Digraphs . 282
9.6 Summary . 284

X. CONCLUSIONS . 285

10.1 Summary of Contributions . 285
10.2 Directions for Future Work . 286

REFERENCES . 287

vii

LIST OF TABLES

Table Page
1. Network conditions: parameterizations used in simulations 94
2. Characteristic impedance values . 94
3. Statistics of td (s) for ε = 0.5m; designed for nominal case 95
4. Statistics of td (s) for ε = 0.5m; designed for 2% packet loss (PL) 95

viii

LIST OF FIGURES

Figure Page
1. Parallel interconnection of passive systems is passive 20
2. Negative feedback interconnection of passive systems is passive 20
3. Multiplication of inputs and outputs by a matrix and its transpose maintain passivity . . 20
4. Port-based view of bilateral teleoperation and haptic interfaces 22
5. Taxonomy of multi-agent network related work 28
6. Variations on consensus problems . 30
7. Scenario for the circumcenter algorithm . 42
8. Three agent network example with nodes i, j, and q 76
9. Agent model with protocol components for agent i 77
10. Feedback interconnection of the global agent map with the network relation 81
11. Overlay topology G of the ten agent network . 89
12. Continuous-time point mass model . 90
13. Continuous-time passive model . 90
14. Saturated discrete-time model . 91
15. Modified high-pass filter . 92
16. Modified Hi . 92
17. Agent implementation . 93
18. Distance from final position (DFP) and trajectory plots 96
19. Synchronous data flow model of ARC-P with parameter F for agent i 112
20. LCP plot where malicious agents try to drive normal agents to the unsafe set U . . . 130
21. ARC-P plot where malicious agents try to drive normal agents to the unsafe set U . . 131
22. LCP plot where malicious agents try to force normal agents to oscillate at 5 Hz . . . 131
23. ARC-P plot where malicious agents to force normal agents to oscillate at 5 Hz . . . 132
24. LCP plot where a malicious agent tries to drive 50 normal agents to oscillate in U . . 133
25. ARC-P plot where a malicious agent to drive 50 normal agents to oscillate in U . . . 134
26. Performance tradeoff for resilience given ARC-P with parameter F 135
27. Relax M1F : δin(D) = !(n + 2F)/2" − 1 . 143
28. Relax M2F : |S| = 2F and δout(D) = n− 2 144
29. Relax B1F : δin = !(n+ 3F)/2"−1 . 145
30. Relax B2F : |S| = 3F and S = S1 ∪ S2 ∪ S3 145
31. Influence network. Squares are generals and circles are troops. Node 20 is Byzantine 147
32. Byzantine general attempts to reduce morale; it succeeds with LCP, fails with ARC-P 148
33. Communication network with switching topology. Agent 5 is malicious 149
34. Malicious agent tries to prevent consensus in switching topology of Figure 33 150
35. Graph in which ARC-P with parameter F = 2 fails to converge 159
36. Digraph in which ARC-P with parameter F = 2 succeeds (without adversaries) . . . 160
37. Graph for illustrating reachability properties 161
38. A 3-robust graph in which X and Y are 3-edge reachable. Nodes 2 and 8 are crash nodes 162
39. Illustration of an (r, s)-edge reachable set of nodes 163
40. A 3-robust graph that is not (3,2)-robust . 165
41. Illustration of a p-fraction edge reachable set of nodes 167
42. Counterexample to monotonicity property for fractional robustness 171
43. (2,2)-Robust network topology used in CTRAC simulation 191

ix

44. CTRAC simulation of a time-invariant network under the F -total malicious model . . 192
45. (2,2)-Robust network topology used in DTRAC simulations 219
46. Simulation of W-MSR & LICP in a fixed network under the F -total malicious model 221
47. Simulation of W-MSR & LICP in a dynamic network under the F -total malicious model 222
48. Resilient synchronization control law of Lemma 8.8 for agent i 260
49. A (3, 2)-robust graph constructed from K5 using preferential attachment 284

x

CHAPTER I

INTRODUCTION

1.1 Motivation

In the past few decades, advances in semiconductor technology and manufacturing techniques have

fueled the digital revolution. Throughout this time, the cost of computational resources and mem-

ory have consistently decreased, while the computational performance has increased exponentially.

This simultaneous trend of decreasing cost with increasing performance has facilitated the rise of

embedded systems. The proliferation of embedded systems is profoundly affecting the modern

world, from how systems are engineered, to how people socialize. And the transformation is chang-

ing the very nature of computing, from interactive to proactive [187].

The rise of embedded systems, along with advances in networking technology, have facilitated

a paradigm shift in engineering system design, from centralized to distributed. This shift has been

propelled by low-cost, high performance embedded systems along with numerous applications, and

has lead to significant interest in the design and analysis of multi-agent networks.

A multi-agent network, or networked multi-agent system, consists of a set of individuals called

agents, or nodes.1 The agents are equipped with some means of sensing or communicating, along

with computational resources and possibly actuation. Through a medium, which is referred to as

the network, the agents share information in order to achieve specific group objectives. Some ex-

amples of group objectives include consensus, synchronization, formation control, and cooperative

load transport. In order for the group objectives to be achieved, distributed algorithms are used to

coordinate the behavior of the agents.

There are several advantages to using multiple agents over a single one. First, the objective may

be complex and challenging, or possibly even infeasible for a single agent to achieve. Second, em-

ploying many agents can provide some robustness in the case of failures or faults. Third, networked

multi-agent systems are flexible and can support reconfigurability. Finally, there are performance
1The terms ‘agent’ and ‘node’ are used synonymously throughout this manuscript, with preference toward ‘agent’

whenever the individuals have physical dynamics and ‘node’ for the more general setting in which the individuals may
be processors, robots, etc.

1

advantages that can be leveraged from multiple agents. For example, in surveillance and monitor-

ing applications, a multi-agent network provides redundancy and increased fidelity of information

[31, 99].

1.2 Research Challenges

Along with the advantages come certain challenges. Perhaps the most fundamental challenge in the

design of networked multi-agent systems is the restriction that the coordination algorithms use only

local information, i.e., information obtained by the individual agent through sensor measurements,

calculations, or communication with neighbors in the network. In this manner, the algorithms and

feedback control laws must be distributed.

A second challenge lies in the fact that not only is each agent a dynamical system, but the

network itself is dynamic. Therefore, the distributed algorithms must be designed to handle time-

varying network topologies. In particular, information may not be able to be relayed across the

dynamic network in a reliable manner. Time-varying networks arise from agent mobility and envi-

ronment factors such as interference. Since the distributed algorithms depend directly on the net-

work, this additional source of dynamics can affect the stability and performance of the networked

system.

A third challenge is caused by uncertainties introduced by the network and in the implementa-

tion of the control algorithms. As described above, the network is a dynamical system. Depending

on the different time constants involved, delays in sensing or communication may lead to instability.

Moreover, information may be lost in the network, and the implementation of the control algorithms

may be subject to quantization. How these concerns affect stability and performance is a difficult

problem.

Finally, multi-agent networks, like all large-scale distributed systems, have many entry points

for malicious attacks or intrusions. If one or more of the agents are compromised in a security

breach, it is crucial for the networked system to continue operating with minimal degradation in

performance. Most importantly, the success of the global objective should be assured. To achieve

this, it is necessary for the cooperative control algorithms to be designed in such a way that they

can withstand the compromise of a subset of the nodes and still guarantee some notion of correct

behavior at a minimum level of performance. We refer to such a multi-agent network as being

2

resilient to adversaries. Given the growing threat of malicious attacks in large-scale cyber-physical

systems, this is an important and challenging problem [30].

1.3 Outline and Overview

This section outlines the contents of this manuscript, and describes in broad terms the problems

addressed within each chapter.

Chapter 2 sets the stage for subsequent chapters by providing a detailed review of a subset of

the literature on cooperative control of networked multi-agent systems, as well as some background

in passivity. To effectively present results from the domain of multi-agent networks, which spans

several disciplines (with a myriad of differences in jargon and notation), we present a unified view

of multi-agent systems by characterizing the key aspects and attributes of such systems. We focus

mainly on consensus problems, synchronization, and passivity-based techniques, which are directly

related to the contributions of this work. We provide a background in graph theory that contains

the terminology and notation for modeling the network component of the networked multi-agent

system used throughout the manuscript. Chapter 2 ends with a brief discussion on the relationship

of the related work to the research presented here.

Chapter 3 studies the deployment of passive networked multi-agent systems in uncertain net-

works. The deployment problem requires that a set of mobile agents asymptotically converge to

predetermined points in space. For simple agent models (e.g., point mass) in an ideal environment

(e.g., deterministic), the deployment problem is trivial to solve and requires no coordination among

the agents. Indeed, each agent may simply focus on its task of converging to its preassigned point

in space, without the need for feedback from other agents (and therefore, no need for a network).

On the other hand, allowing the agents to exchange information over a network may be ben-

eficial in order to coordinate the time of arrival of the agents (i.e., when the agents arrive at their

destinations), among other reasons. But, communication networks introduce uncertainties such as

time-varying network delays and data loss. Handling network uncertainties while ensuring stability

of networked dynamical systems is a challenging problem. Chapter 3 presents a passivity-based ap-

proach to ensure global passivity and stability in the presence of data loss and time-varying delays.

Chapters 4-8 comprise our results on resilient cooperative control of networked multi-agent sys-

tems. These chapters study different cooperative control problems in the presence of compromised

3

nodes, or adversaries. The nodes are assumed to be compromised in an undetected security breach.

The goal is for the uncompromised nodes, or simply normal nodes, to still achieve the group objec-

tive in the presence of the adversary nodes. Therefore, the networked multi-agent system should be

resilient to adversaries. It is important to emphasize that the only type of security breach we study

is compromised (adversary) nodes, as opposed to attacks on the communication network (e.g., de-

nial of service or deception attacks). That being said, the models considered are general enough

so that from a local perspective (i.e., from the point of view of the individuals in the network), the

difference between compromising the node or the outgoing communications of the same node is

indistinguishable [186].

The adversary models studied here can be characterized by threat models and scope of threat

assumptions. The threat model determines the feasible behaviors of the adversary nodes. Examples

of different threat models include non-colluding [159],malicious [159, 181, 113], Byzantine [110, 1,

114, 194], or crash [1, 46] nodes. Crash nodes fail by simply stopping their movement and possibly

communication. Non-colluding nodes are unaware of the network topology, which other nodes are

misbehaving, or the states of non-neighboring nodes. On the other hand, malicious nodes have

full knowledge of the networked system and therefore, worst case behavior must be assumed. The

only difference between malicious and Byzantine nodes lies in their capacity for deceit. Malicious

nodes must convey the same information to each neighbor, whereas Byzantine can convey different

information to different neighbors. Of these threat models, the two that are worst-case models

are malicious and Byzantine nodes. Algorithms that succeed against these worst-case models also

succeed against the less general models, such as non-colluding or crash nodes.

In much of the distributed computing literature, the scope of faults (or in the context of this

research, scope of threats) is assumed to be bounded by a constant, i.e., at most F out of n nodes

fail (or are compromised) [130]. We refer to this as the F -total model. Alternatively, the scope

may be local; e.g., at most F neighbors of any normal node fail (F -local model) [210], or at most a

fraction f of neighbors are compromised (f -fraction local model) [115]. While the F -total model

typically requires certain bounds on the fraction of nodes that may be compromised, the local and

fractional models are dependent on the network topology and do not, in general, imply a bound on

the fraction of compromised nodes.

In this work, we focus on deterministic scope of threat models as opposed to stochastic models.

4

While stochastic failure models have been studied extensively, we assert that deterministic scope

of threat models are more suitable in the context of a security breach by omniscient, worst-case

adversaries. This is because worst case analysis must be performed in this case, which can be

formulated in terms of deterministic bounds. The assumptions that the adversaries are omniscient

and behave in a worst-case manner are reasonable due to the uncertain and adversarial nature of

security breaches.

We begin our study of resilient cooperative control in the presence of adversaries in Chapter

4, where we introduce, for the first time, a resilient consensus problem formulated in continuous

time. The problem formulation includes a novel definition of Byzantine agents with continuous-

time semantics. In many cases, the dynamics of the normal agents in a multi-agent network are

modeled in continuous time using Ordinary Differential Equations (ODEs) [137]. On the other

hand, consensus is a fundamental group objective. Often more complex group objectives (such

as synchronization, formation control, or coordinated path following) require solving a consensus

problem as a constituent objective. Therefore, a major advantage to the continuous-time formulation

of resilient consensus and the adversary models is that it provides a semantic framework that can be

reused to introduce the notion of resilience in more complex group objectives using ODE models

for the dynamics of the normal agents.

Chapter 4 defines the continuous-time resilient asymptotic consensus (CTRAC) problem and

introduces a resilient, continuous-time protocol, which is referred to as the Adversarial Robust

Consensus Protocol (ARC-P). The protocol, ARC-P, is very light-weight. It uses only local infor-

mation (i.e., information obtained from neighbors or computed locally), it requires no historical

information, and it is low complexity. Through the analysis of ARC-P, we show that traditional

graph theoretic metrics are inadequate to characterize the tight topological conditions under which

convergence is assured. In more detail, pathological examples are presented in which ARC-P does

not succeed in achieving consensus among the normal agents, even in the case where there are no

adversaries present. Indeed, any resilient distributed algorithm that is capable of succeeding in the

presence of adversaries, without a priori knowledge of the adversaries or network topology, must

filter the information from neighboring nodes with some measure of skepticism. This amounts to

the need for redundancy of information from neighbors in the network, and is the basis of the novel

property referred to as network robustness, introduced in [210].

5

Chapter 5 continues the study of CTRAC carried out in Chapter 4 by introducing a definition of

network robustness, or just robustness, that has finer granularity than the one introduced in [210].

Equipped with this finer granularity definition of robustness, we are able to characterize the neces-

sary and sufficient conditions on the network topology required for a variant of ARC-P, referred to

as ARC-P2, to achieve CTRAC in time-invariant networks under the malicious F -total model. We

also analyze the convergence of ARC-P2 under the crash and Byzantine threat model, in combina-

tion with the F -local and f -fraction local scope of threat models, and in both time-invariant and

time-varying robust networks. Several important properties of robust networks are given, and the

implications of robustness on other metrics, such as connectivity and minimum degree, are explored.

Chapter 6 analyzes the resilient asymptotic consensus (RAC) problem in discrete-time syn-

chronous networks. We study the class of Weighted Mean-Subsequence-Reduce (W-MSR) algo-

rithms introduced in [210]. As in Chapter 5, we study W-MSR for all combinations of threat mod-

els with scope of threat assumptions, and either fixed or dynamic networks. Some recent results

obtained in the literature for the F -total Byzantine model are restated under the unifying framework

of network robustness [194, 195].

Chapter 7 generalizes the RAC problem studied in Chapter 6 to an asynchronous setting. The

model of asynchrony studied in this work is similar to what is presented in [51], except in this

work we study communication under a local broadcast model (i.e., each node transmits the same

message to any neighbor when transmitting). The necessary and sufficient conditions for the point-

to-point model have appeared recently in [195]. The network model is asynchronous in the sense

that there is no common clock and the nodes may execute their algorithms at different rates. The

model of the network also allows for time-varying delays in transmission and out of order delivery

of messages, but assumes there is some bound on the transmission time (unknown to the nodes).

This chapter focuses only on the malicious threat model in time-invariant networks under the F -

total and F -local scope of threat assumptions. The results may readily be extended to the other

models. We also consider a quantization scheme that ensures finite-time approximate agreement,

where the maximum error is given by the precision of the quantizer.

Chapter 8 introduces the resilient asymptotic synchronization (RAS) problem in continuous

time and demonstrates how CTRAC algorithms may be used in more complex group objectives.

The key factor making RAS more complex and challenging than RAC is the additional complexity

6

in the dynamics of the normal agents. In the CTRAC problem, the agents have simple integrator

dynamics and the dynamic behavior of the normal agents arises purely from their interactions with

their neighbors. On the other hand, in RAS, the “open-loop” dynamics (i.e., the dynamics exclud-

ing the coupling with neighbors in the network) may be nontrivial. A multi-agent network achieves

RAS if the normal nodes converge to a common “open-loop” solution. In general, this problem

is very challenging (e.g., with nonlinear chaotic dynamics in time-varying networks). However, in

this chapter, we restrict our attention to linear time-invariant (LTI) systems with no unstable modes.2

In this case, it is shown that under the additional assumption of stabilizability and detectability, a

resilient dynamic control law that uses the same functions as ARC-P2 is used to reduce the synchro-

nization problem to a consensus problem. The results on RAS focus on the F -total malicious model,

but modifications may be made to apply the results to the other adversary models in an analogous

manner to the consensus results.

Throughout the dissertation, network robustness is shown to be useful, and at times the key prop-

erty for analyzing the resilient cooperative control problems studied. Because of the importance of

network robustness, Chapter 9 examines algorithms for determining the robustness of a network.

A centralized algorithm is introduced to determine the robustness of any network, regardless of its

connectedness properties, but assumes the topology of the network is given as input to the algo-

rithm. Using this centralized algorithm, a modification is given to enable the individual nodes of a

(connected) network to compute the robustness of the network by broadcasting information about

their neighborhood. Finally, a modification to this algorithm is proposed in which the individual

node only checks the reachability conditions for subsets in which it is not included. Afterwards,

the nodes broadcast their estimates of the network’s robustness and the minimum of the estimates

is taken as the true robustness of the network. The complexity of the algorithms and improvement

incurred by the distributed algorithm are analyzed. Finally, a growth model for constructing ro-

bust networks is demonstrated that entails the preferential-attachment growth model of scale-free

networks [2].

The final chapter includes a summary of the work contained in this manuscript, and provides

directions for future research.
2Observe that since in RAS, the nodes converge to an “open-loop” solution, it seems undesirable to include systems

with unstable modes. Moreover, assuming the system is stabilizable, even a system with unstable modes may be locally
stabilized and the results of the chapter are then applicable.

7

1.4 Contributions

This section enumerates the contributions of this dissertation, and is presented in terms of the chap-

ters. The technical contributions are contained in Chapters 3-9.

Chapter 3

• We prove a novel compositional result for the interconnection of discrete-time passive sys-

tems in arbitrary bidirectional networks. It is shown that under certain message passing rules

and interface components, the passivity of the networked system is maintained even in the

presence of time-varying delays and data loss.

• We demonstrate the passivity result by applying it to the deployment of passive systems in

uncertain networks. We show that deployment is possible under certain assumptions on the

dynamics of the agents and if the graph describing the overlay network is not bipartite.

Chapter 4

• We introduce, for the first time, a resilient consensus problem in continuous time, called the

Continuous-Time Resilient Asymptotic Consensus (CTRAC) problem.

• We define several continuous-time threat models, which includes, for example, the Byzantine

agent.

• We formulate the Adversarial Robust Consensus Protocol (ARC-P), which is the first resilient

consensus algorithm introduced in continuous time.

• We prove existence and uniqueness of solutions whenever normal agents use ARC-P. These

results pave the way for “continualizing” discrete algorithms that include sorting and removal

of extreme values.

• We prove that ARC-P solves the CTRAC problem in a class of network topologies defined

by degree conditions of the nodes in the network, under the F -total malicious and Byzantine

model (and therefore, also the crash model).

8

• We demonstrate that the degree conditions are sharp in the sense that if one of the conditions

is relaxed, then there exist pathological examples in which ARC-P does not assure CTRAC.

The pathological examples also motivate the need for network robustness [210].

Chapter 5

• We introduce a definition of network robustness that has finer granularity than the one intro-

duced in [210]. The novel definition is referred to as (r, s)-robustness.

• We prove several properties of robust networks, including the minimum in-degree and con-

nectivity of robust networks.

• We prove a tight necessary and sufficient condition for ARC-P2 to achieve CTRAC in time-

invariant networks under either the F -total malicious or crash models (with an additional

assumption of uniform continuity).

• We prove a sufficient condition for time-invariant robust networks under the F -local mali-

cious model.

• We prove a tight necessary and sufficient condition on the normal network (which is the sub-

network that removes the adversary nodes and any directed edges incident with an adversary

node) under the F -local and F -total Byzantine model.

• We prove separate necessary and sufficient conditions under the f -fractional malicious model.

• We prove necessary and sufficient conditions under the f -fractional Byzantine model.

• We prove sufficient conditions on all of the adversary models in time-varying networks that

satisfy certain robustness properties over time.

Chapter 6

• As in the previous chapters, we prove necessary and sufficient conditions under the various

adversary models and for both time-invariant and time-varying networks with appropriate

robustness properties.3

3Note that some of these results have been proven by other researchers. In particular, the results for the F -local and
f -fraction local models (for both malicious and Byzantine agents and both time-invariant and time-varying networks) are

9

Chapter 7

• We prove necessary and sufficient conditions for existence of an algorithm that achieves

DTRAC in asynchronous networks with the local broadcast model under the F -total mali-

cious model.

• Separate necessary and sufficient conditions are given for the F -local malicious model.

Chapter 8

• We introduce, for the first time, a resilient synchronization problem in continuous time, called

the Resilient Asymptotic Synchronization (RAS) problem.

• We show RAS is achieved in sufficiently robust networks (for both time-invariant and time-

varying networks) whenever the normal nodes are identical LTI systems with no unstable

modes, under the F -total malicious model (with uniformly continuous state, control state, and

observer state trajectories). We consider systems with full state feedback with the assumption

of stabilizability and output feedback with the additional assumption of detectability.

Chapter 9

• We define centralized algorithms for checking and determining the robustness of any network

and analyze their complexity.

• We define a decentralized algorithm that uses the centralized algorithm to determine the ro-

bustness of the network, assuming the network is connected.

• We define a distributed algorithm that distributes the calculation of robustness across the

nodes. We analyze the improvement realized from this algorithm over the decentralized one.

1.5 Notation

The set of natural numbers, integers, real numbers, and complex numbers are denoted by N =

{1, 2, . . . }, Z, R and C, respectively. Let Z>0 = N, Z≥0, R>0, and R≥0 denote the set of positive

contributions by Zhang and Sundaram in our collaborations; however, the proofs presented here are improvements to the
original proofs that demonstrate better performance of the algorithms. The first necessary and sufficient conditions under
the F -total Byzantine model are given in [194]; alternative conditions are analyzed in [195]. The sufficient condition
stated here in terms of network robustness is also a contribution of Zhang and Sundaram in our collaborations.

10

integers, nonnegative integers, positive reals, and nonnegative reals, respectively. Given z ∈ C, the

real part of z = a+ bi (with a, b ∈ R) is denoted Re(z) = a and the imaginary part of z is denoted

Im(z) = b, with i =
√
−1. Given a ∈ R, the ceiling of a, denoted 'a(, is the smallest integer that

is greater than or equal to a. Similarly, the floor of a, denoted !a", is the largest integer less than

or equal to a. The absolute value of a is denoted |a|. Given sets S1,S2, the union and intersection

of S1 and S2 are denoted S1 ∪ S2 and S1 ∩ S2, respectively. The reduction of S1 by S2 is denoted

S1 \ S2 = {x ∈ S1 : x /∈ S2}. The cardinality of a set S is given by |S|. The empty set is denoted

∅. The Cartesian product of S1 and S2 is defined as S1 × S2 = {(i, j) : i ∈ S1, j ∈ S2} and the

Cartesian product of m ∈ N copies of a set S is denoted Sm. The set containing all combinations

of pairs of distinct elements from a given set S is denoted
(S
2

)

.

The m-dimensional Euclidean space is Rm and the set of all m by n matrices over the real

numbers is Rm×n. The transpose of a (column) vector x ∈ Rm and matrix M ∈ Rm×n are denoted

xT and MT, respectively. The Hermitian transpose of complex matrix M ∈ Cm×m is denoted MH.

The determinant of a matrix A ∈ Rm×m is denoted det(M). The elements of a vector x ∈ Rm are

indexed with subscripts in {1, 2, . . . ,m}; e.g., x = [x1, x2, . . . , xm]T. The vector of ones in Rm is

denoted 1m = [1, 1, . . . , 1]T and the identity matrix in Rm×m is denoted Im. Given B ∈ Rm×n and

C ∈ Rp×q, the Kronecker product B ⊗ C ∈ Rmp×nq is defined as [80]

B ⊗C !













b11C . . . b1nC
...

bm1C . . . bmnC













.

For real number p ≥ 1 and vector x ∈ Rm, the p-norm of x is defined as

||x||p =

(

m
∑

i=1

|xi|p
)1/p

.

The spectral norm of a matrix M ∈ Cm×m is given by ||M ||2 = (max{|λ| : λ(MHM)})1/2, where,

in general, λ(A) denotes the set of eigenvalues of matrix A. The distance of a vector v ∈ Rm from

a set S ⊂ Rm is given by dist(v,S) = infy∈S ||v− y||2. The span of a set of vectors v1, v2, . . . , vN

in Rm is denoted by span{v1, v2, . . . , vN}. In particular, we will be interested in span{1m}, which

11

is referred to as the agreement space, and is the equilibrium set of interest when studying consensus

problems.

A function f with domain U and codomain Y is denoted f : U → Y . The time derivative of

a function y : R → Rm at time t ∈ R is denoted ẏ(t), or just ẏ for brevity. With an abuse of

notation, the one-sided time derivative is denoted in a similar manner. For example, we may define

the Ordinary Differential Equation (ODE) ẏ(t) = f(t, y) for t ≥ 0, and it is understood that the

right-sided derivative is used at time t = 0.

12

CHAPTER II

RELATED WORK

Applications of multi-agent networks span several disciplines, including physics, electrical en-

gineering, computer science, mechanical engineering, and the biological sciences. Therefore, the

breadth of material in the literature is exorbitant. In order to be germane, this chapter discusses

works most closely related to the contributions of this dissertation. Specifically, we focus mainly

on consensus problems, synchronization, and passivity-based techniques. For the material on con-

sensus, which is the major focus of this chapter, we provide the most detail on methods that address

faults and failures that are adversarial in nature. In addition to presenting material on multi-agent

networks, some background is provided on related topics that are important to our contributions,

such as graph theory [23], with an emphasis on algebraic graph theory [73, 36], passivity [48, 96],

wave variables [62, 147], and distributed computing [130, 19]. We begin with a brief review of

graph theory in Section 2.1. Then we discuss passivity and wave variables in Section 2.2. The

bulk of the content of the chapter is contained in Section 2.3, which discusses different research

directions within the scope of multi-agent networks by organizing along different group objectives.

Finally, Section 2.4 discusses how the contributions of this dissertation fit within the scope of the

literature.

2.1 A Brief Review of Graph Theory

In this section we review some fundamentals of graph theory germane to this manuscript. It is

common when dealing with multi-agent networks to model the networked multi-agent system with

a (finite, simple, labeled) undirected graph, or just graph, G = (V(G), E(G)) [136]. The vertex set,

or node set, V(G) = V = {1, . . . , n} abstracts the n agents as vertices, or nodes, and the edge set

E(G) = E ⊆
(V
2

)

models the information flow or influence between the agents, and is typically

realized through communication or sensing (however, in some cases influence arises from physics,

such as action-reaction force pairing in cooperative load transport [141]). Each edge e = {i, j} ∈ E

is a distinct unordered pair that links two distinct vertices in the graph; in this case i and j. An edge

models bidirectional influence or information flow. In this case, i and j are said to be incident with

13

e, and i is adjacent to j (and vice versa).

Sometimes, it is important to model directed, or unidirectional information flow. For example,

if the agents have asymmetric sensing or communication capabilities, agent i may have information

concerning agent j, but not the other way around. For this case, the mathematical abstraction used

is a directed graph, or digraph [13]. Similar to a graph, a digraph D = (V(D), E(D)) consists of a

vertex set V(D) = V = {1, . . . , n} and a directed edge set E(D) = E . In this case, a directed edge

is an ordered pair (i, j) ∈ E , such that information flows from agent i to agent j. Vertex i is called

the tail of the directed edge and vertex j is called the head. Vertex i is said to be an in-neighbor of

agent j and agent j is an out-neighbor of agent i.

There are some obvious relationships between graphs and digraphs. Given a graph G, we obtain

an orientation of the graph by replacing each undirected edge with a (single) directed one. An

orientation of G is a digraph DG . Conversely, given a digraph D, the underlying graph of D,

denoted GD, is obtained by replacing all directed edges with undirected ones (and consolidating

multiple edges created from any pairs of directed edges (i, j) and (j, i) in E(D) in the process).

Clearly, there is no unique orientation of a nontrivial graph with nonempty edge set. But, potentially

many digraphs have the same underlying graph. This is because graphs are a special subclass of

digraphs (equivalent up to isomorphism), such that the symmetry property of the edge set holds.

Namely, (i, j) ∈ E if and only if (j, i) ∈ E . Because of this, throughout the rest of the section

we introduce properties with respect to digraphs and provide the specific terminology with respect

to graphs whenever appropriate. Furthermore, we refer to the digraph (or graph) and the network

synonymously.

Next, we review certain structural properties of digraphs. We say that a digraph D1 = (V1, E1)

is a subdigraph of D, written D1 ⊆ D, if V1 ⊆ V and E1 ⊆ E . Given two subdigraphs D1 and D2,

the union D1 ∪ D2 is the subdigraph with vertex set V1 ∪ V2 and directed edge set E1 ∪ E2. The

subdigraph of D = (V, E) induced by the nonempty vertex set V ′ ⊆ V is the subdigraph of D whose

vertex set is V ′ and whose directed edge set contains only those directed edges of E whose head and

tail are both in V ′. A digraph D′ = (V ′, E ′) is isomorphic to D if there exists a bijection ψ : V → V ′

such that (i, j) ∈ E if and only if (ψ(i), ψ(j)) ∈ E ′. A sometimes useful fact is that every digraph

on n vertices is isomorphic to a subdigraph of the complete digraph, KN = (VKN
, EKN

), defined

by EKN
= {(i, j) ∈ VKN

× VKN
|i 1= j}, also referred to as the complete network (all-to-all

14

communication or sensing).

To describe the information flow in the network, both local and nonlocal properties are use-

ful. With respect to local properties, we consider the set of in-neighbors of agent j, defined by

N in
j ={i ∈ V|(i, j) ∈ E}. The in-degree of j is denoted din

j ! |N in
j | (or just dj), and the minimum

in-degree of D is denoted δin(D). Whenever the underlying graph GD is considered, the minimum

degree of GD is denoted δ(GD), with δ(GD) ≥ δin(D). Similarly, the maximum in-degree of D

and maximum degree of GD are denoted ∆in(D) and ∆(GD), respectively, with ∆(GD) ≥ ∆in(D).

Since agent j often has local feedback, the inclusive in-neighbor set, J in
j = N in

j ∪ {j}, is also of

interest. There are, of course, analogous definitions for out-neighbors, e.g., the out-degree of j is

dout
j ! |N out

j | and the minimum out-degree of D is δout(D). Other definitions of properties with

regard to out-neighbors have similar changes in notation. Whenever the in-degree is equal to the

out-degree for each node in the network, the digraph is said to be balanced. Clearly, all undirected

graphs are balanced, and for each j ∈ V(G) of an undirected graph, N in
j = N out

j ! Nj , known

simply as the neighbor set. In this case, dj ! |Nj| is the degree of j ∈ V(G).

In order to describe information flow across the network, we consider the following defini-

tions. A walk is a finite non-null sequence of vertices i0, i1, . . . , ik such that (ij , ij+1) ∈ E ,

j = 0, 1, . . . , k − 1. The end vertices of this walk are i0 and ik (possibly identical). A walk

with distinct (directed) edges is a trail. A trail in which the ends are identical but all other vertices

are distinct is a cycle. A trail with distinct vertices is a path. A trivial path is a path with just a

single vertex. Clearly, when discussing the underlying graph GD, there may be walks, trails, cycles,

and paths in GD that do not exist in D. A vertex j is said to be reachable from vertex i if there exists

a path starting at i and ending at j. Note that every vertex i is reachable from itself by the trivial

path containing i.

Connectedness

We use the notion of path to define different forms of connectedness of graphs and digraphs. Given

a vertex i in V(G), the component of i is the subgraph induced by the set of vertices reachable from

i. Because of symmetry in undirected graphs, the component of j is equal to the component of i for

any j in the component of i. Therefore, an undirected graph can be decomposed into its components.

A graph G is said to be connected if it has a single component, and disconnected otherwise. On the

15

other hand, connectedness of digraphs is more nuanced. In this case, we define strong components

by considering the property of mutual reachability between vertices. Then a strongly connected

digraph is a digraph with a single strong component. That is, for every i, j ∈ V(D), there exists a

path starting at i and ending at j, and vice versa. If, on the other hand, for every pair i, j ∈ V , there

is possibly only a path from i to j or from j to i, then D is unilateral. If the underlying graph is

connected, then D is weakly connected. Alternatively, if the underlying graph is disconnected, then

D is disconnected.

A digraph has a rooted out-branching if there exists a node r, the root, such that every i ∈ V is

reachable from r. Whether a digraph has a rooted out-branching is a particularly important property

to information dissemination in the network because it implies that a distributed algorithm executed

in the network admits information flow from the root to every other node in the network. If the

network has only one rooted out-branching, or more importantly only one root for any rooted out-

branching, then, depending on the distributed algorithm, the root may be the leader of the network.

All unilateral digraphs contain a rooted out-branching; however, the converse is not true.

To measure the robustness and redundancy of information flow, we define a vertex cut as a set

of vertices K such that the removal of K results in either a trivial digraph (a single vertex) or a

disconnected digraph. The vertex connectivity κ(D), or just connectivity κ, is the smaller of the

following two quantities: (i) the size of a minimal vertex cut, or (ii) |V| − 1. A digraph is said

to be k-vertex connected, or simply k-connected, if κ(D) ≥ k. A simple consequence of defining

connectivity in this manner is κ(D) = κ(GD) [69].4

Algebraic Graph Theory

Algebraic graph theory elucidates properties of graphs and digraphs by examining algebraic objects

associated with graphs and digraphs, such as polynomials and matrices. Of particular interest are

some of the matrices associated to graphs and digraphs, such as the adjacency matrix, degree matrix,

incidence matrix, and Laplacian [73, 36]. Using these matrices, the network feedback of many

multi-agent network control laws can be mathematically modeled. Assuming linear agent dynamics,

the closed-loop system can then be analyzed using techniques of linear system theory. For this, the
4In [69], this form of connectivity is defined as κ1(D) and other forms of connectivity in digraphs are studied (most

notably strong connectivity). For our purposes, the definition given here suffices.

16

spectra of these matrices are of special interest. In what follows, we will define these objects with

respect to a weighted digraph, Dw = (V, E , w), which has, in addition to a vertex set and directed

edge set, a weight function w : E → R. In this case, a weight wij ! w(e) ∈ R is associated to each

directed edge e = (i, j) ∈ E . For the purposes of defining the matrices, we say that a digraph D is

the specific weighted digraph in which w : E → {1}; that is, all directed edges have unit weight.

The weighted adjacency matrix, Aw(Dw) = [aij], associated with weighted digraph Dw is the

|V| × |V| matrix defined by5

aij =















wji (j, i) ∈ E ;

0 (j, i) /∈ E .
(1)

In this case, along any given row i of the weighted adjacency matrix, nonzero entries may only occur

in the columns corresponding to in-neighbors of node i. For digraphs, we define the adjacency

matrix, A(D) = [aij], or just A, as in (1), but with wji ≡ 1, for all (j, i) ∈ E . Observe that for

undirected graphs, A(G) = AT(G); that is, the adjacency matrix is a symmetric matrix. Note that

the weighted adjacency matrix of an undirected weighted graph is not necessarily symmetric.

The weighted in-degree matrix Din
w of a weighted digraph Dw is the diagonal |V| × |V| matrix

with entries along the main diagonal given by

[Din
w]ii =

∑

j∈N in
i

wji, i ∈ {1, 2, . . . , n}. (2)

Observe that Aw(Dw)1n = Diag(Din
w), where 1n is an n × 1 column vector of ones and Diag(M)

is the main diagonal of an n × n matrix M represented as an n × 1 column vector. Similarly, the

weighted out-degree matrix Dout
w is a diagonal matrix with entries

[Dout
w]ii =

∑

j∈N out
i

wij, i ∈ {1, 2, . . . , n}.

In this case, 1TnAw(Dw) = Diag(Dout
w)T. For an undirected graph, Din = Dout

w ! D is the degree

matrix of G.
5We define the weighted adjacency matrix as the transpose of the usual weighted adjacency matrix defined in most

of the literature in graph theory. This is typical in the area of multi-agent networks because local node strategies that
use linear combinations of their in-neighbors’ states or outputs can be conveniently written as a left multiplication of a
weighted adjacency matrix defined in this manner.

17

Let e1, e2, . . . , e|E(D)| denote the edges of a digraph D. Then the incidence matrix M(D) of D

is the |V| × |E| matrix M(D) = [mij] defined by

mij =































−1 if i is incident with the tail of ej in D;

1 if i is incident with the head of ej in D;

0 otherwise.

(3)

Likewise, the incidence matrix of an undirected graph G may be defined by first fixing an orientation

of the graph DG . Then, M(DG) is defined as in (3) by substituting D = DG .

Finally, the (in-degree) weighted Laplacian is the |V| × |V| matrix defined by6

L(Dw) = Din
w −Aw(Dw). (4)

A direct consequence of this definition is that 1n ∈ N (L(Dw)), where N (L(Dw)) is the null space

of L(Dw). Therefore, zero is always an eigenvalue corresponding to eigenvector 1n of L(Dw).

Likewise, we may define the (out-degree) weighted Laplacian Lout(Dw) as

Lout(Dw) = Dout
w −AT

w(Dw),

which again always has zero as an eigenvalue corresponding to eigenvector 1n. However, the struc-

ture of the (in-degree) weighted Laplacian is more useful to describe linear consensus protocols in

multi-agent networks, and therefore, we will focus our attention on it.

Whenever we consider bidirectional communication, the graph Laplacian, or just Laplacian,

L(G) is of interest (and is defined as in (4) by L(G) = D − A). In this case, L(G) is a real

symmetric matrix, so the eigenvalues are real. In fact, L(G) is symmetric and positive semidefinite,

so that all eigenvalues are nonnegative [73]. It is advantageous to label the eigenvalues of L(G) in

nondecreasing order by

λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G). (5)

As described above, λ1(G) ≡ 0. It turns out, the multiplicity of the zero eigenvalue is equal to
6Note that because we define the weighted adjacency matrix as the transpose of the usual weighted adjacency matrix,

the weighted Laplacian considered here is also the transpose of the usual weighted Laplacian.

18

the number of components of G [73]. For connected graphs, λ2(G) > 0, and is called the Fiedler

eigenvalue or the algebraic connectivity of the graph. This is because the magnitude of λ2(G) is

directly related to the sparsity of the graph. That is, λ2(G) is small for sparse graphs and large for

dense graphs.

2.2 Passivity and Wave Variables

The purpose of this section is to provide a brief introduction to passivity and wave variables, and then

present a review of some of the important works that are foundational to the passivity deployment

protocol discussed in Chapter III. Toward this end, we first describe passivity and the wave variable

formalism from a high-level perspective in Section 2.2.1. Then, we describe the related works

from teleoperation, virtual environments, and haptic interfaces in Section 2.2.2. Finally, we discuss

related works from networked control systems (NCS) in Section 2.2.3.

2.2.1 Introduction to Passivity and Wave Variables

Passivity is a system theoretic concept that is useful for constructive nonlinear control design and

analysis [48, 96]. The basic idea is that passive systems may store or dissipate “energy”, but never

create it. That is, when measuring the inputs and outputs of the system, the net energy generated

by the system, as seen from an external perspective (i.e., looking only at the inputs and outputs),

must never exceed the cumulative sum of stored and input energy. Thus, whether a given system

is passive or not often depends on how the system boundaries are defined. Moreover, a lack of

passivity in one part of a system may be compensated by additional dissipativity (also referred to as

additional passivity) elsewhere in the system. Because these intuitive properties are defined from an

input-output perspective, passive systems exhibit profound robustness to unmodeled disturbances

and uncertainties, including those arising from implementation effects [62].

Passivity has several attractive features. First, it is a sufficient condition for stability. Second,

it applies to both linear and nonlinear systems. Third, it has several nice compositional properties.

Namely, parallel and negative feedback configurations of passive systems are also passive (c.f.,

Figures 1 and 2, respectively). Furthermore, multiplying the inputs of a passive system by a matrix

and then multiplying the outputs by the transpose of the same matrix also maintains passivity (c.f.,

19

Figure 3). Together, these features facilitate conclusions concerning global passivity and stability

under appropriate compositions of subsystems based only on the passivity of the subsystems.

Figure 1: Parallel interconnection of passive systems is passive.

Figure 2: Negative feedback interconnection of passive systems is passive.

Figure 3: Multiplication of inputs and outputs by a matrix and its transpose maintain passivity.

Because of the beneficial qualities and broad-reaching underlying intuition behind passivity,

oftentimes various approaches to system-theoretic problems are unified under passivity-based tech-

niques. For example, it has been shown that various stability results dealing with congestion control

in the physical layer of computer networks may be unified under passivity theory [203]. It turns out

that many cooperative control techniques may also be unified under passivity theory. For a compre-

hensive treatment of passivity in cooperative control design – especially focusing on how passivity

enables adaptive designs – see [11].

Another useful tool – complementary to passivity – is the wave variable formalism. The main

idea behind the wave variable formalism is to transform two variables of the same dimension, often

20

the input and output variables of a system, so that the resulting variables are linear combinations

of the original variables. The canonical example is the scattering transformation, which transforms

the variables into transmitted and reflected waves, and thus are called wave variables. Whenever the

input and output variables of a system are effort and flow variables,7 the scattering transformation

has a powerful intuition. In this case, the physical unit of the square of each wave variable is Watts,

and the direction of transmission of each wave variable represents power flow. Then, the difference

of the transmitted and reflected waves is the net power flow. Even whenever the physical units do not

admit this interpretation of power flow, the notion of mathematical power flow allows the intuition

to be generalized. Because the energy of a wave is conserved when it is delayed by a constant value,

wave variables are well-suited to passivity-based techniques while providing additional robustness

to delays. As with passivity, wave variables have been used to incorporate resilience to delays in

multi-agent networks [201, 35].

2.2.2 Teleoperation, Virtual Environments, and Haptics

Teleoperation is the control of a remote robot using a local robotic device, possibly a simple remote

control. Oftentimes, in practice, the only feedback available to the operator of the local robotic

device is visual. The goal within the teleoperation literature is to design interfaces with the remote

robot that provide richer forms of feedback than just visual feedback. The premise is that mul-

tisensory feedback provides the operator with a greater sense of control of the remote robot, and

therefore improves the precision and dexterity of the operator when performing tasks remotely. Be-

cause remote surgery, or telesurgery, is one of the focal applications of teleoperation, improving the

surgeon’s ability to reliably and safely operate the surgical robot is of utmost importance.

In order to train operators in teleoperation applications, such as telesurgery or UAV remote

piloting, virtual environments are often used. In this case, the remote robot is replaced by virtual

interactions between objects in a simulated environment. As in teleoperation, it is beneficial to have

multisensory feedback.

One way to provide additional sensory information is through haptic technology, or haptics,
7Effort and flow variables are a generalization of force and velocity, and provide common terminology across multiple

physical domains, i.e., translational mechanics (force and velocity), rotational mechanics (torque and angular velocity),
electrical (voltage and current), magnetic (current and voltage), and hydraulic (pressure and volume flow). In all cases,
the product of effort and flow is power.

21

which provides tactile feedback, and may be used when interfacing with a remote robot as in tele-

operation, or with a virtual environment. In order for the haptic device to provide useful tactile

information, it is important for the operator to “feel” in some sense the forces exerted on the remote

robot (or within the virtual environment). One way to do this is by closing the loop on the forces act-

ing on the remote robot (or actuate virtual forces from the virtual environment). Teleoperation with

force feedback is known as bilateral teleoperation. Whenever a haptic device is used to interface

with a virtual environment, it is referred to as a haptic interface.

For both bilateral teleoperation systems and haptic interfaces, there is a single interface between

the operator and the environment (whether it be remote or virtual). In either case, information and

energy are exchanged bidirectionally. This property is conjugate to ideas from classical electrical

network theory, in which subsystems interact through “ports” that share effort and flow variables

when connected. This port-based perspective is well-suited to both bilateral teleoperation systems

and haptic interfaces because, as illustrated in Figure 4, in both cases the operator manipulates the

local device (effectively applying input velocities, fo) and the environment reciprocates via reactive

forces and torques, ee, which are transmitted back to the local device, and in turn the operator, eo.

Imposing an order of actions and reactions in this manner is referred to as imposing causality on

the network. The causality exhibited from the view of the operator in this example is impedance

causality, in which the input to the local device is a flow variable and the output is an effort variable.

Alternatively, effort input and flow output is known as admittance causality.

Figure 4: Port-based view of bilateral teleoperation and haptic interfaces.

2.2.2.1 Haptic Interfaces

Haptic interfaces connect an operator with a virtual environment and provide force feedback when-

ever the operator encounters virtual objects. This is done through actuators in the haptic interface.

A major issue in the design of haptic interfaces is to provide the operator with realistic force feed-

22

back for a variety of virtual objects while maintaining stable behavior. Unstable behavior such as

violent vibrations or divergent motions of the haptic device typically occur whenever the operator

encounters virtual walls, where the response must be abrupt and hard. In such a setting, passivity

can be used to maintain stable behavior. However, passivity can sometimes be overly conservative

and provide degraded performance (unrealistic feedback) of the haptic interface.

One way to get around the conservativeness of an overarching passivity approach is to monitor

the input and output variables for their energy content and only dissipate energy whenever the

cumulative energy indicates active (nonpassive) behavior. This is the technique used in the haptic

interface design of [76]. In more detail, a passivity observer is designed for the network to monitor

the passivity of the haptic interface. The passivity observer is derived using Tellegen’s Theorem,

which states that the net power created in a network of elements satisfying Kirchoff’s laws may

be observed by examining only the unterminated ports in the network (i.e., those external to the

network). The notation in the network is defined in such a way that energy generated by the system

is negative.

In order to compensate for active behavior, a passivity controller dissipates energy whenever the

cumulative energy is negative. The implementation of the passivity controller depends on whether

the virtual environment has impedance causality or admittance causality. If it has impedance causal-

ity, then the passivity controller is placed in series; if it has admittance causality, the passivity con-

troller is placed in parallel. With respect to Figure 4, the passivity controller is placed between

the local device and the environment. Whenever the local device and operator exhibit dissipative

behavior, it is helpful for performance to dissipate less energy, and therefore the threshold for the

activation of the passivity controller is changed from zero to a negative value. This value depends on

the damping of the load (haptic device and operator) and parameter estimation may be used to de-

termine it. Together, the passivity observer and passivity controller can be implemented in software

and run in real time. Some problems that can degrade the performance of the passivity controller

include actuator saturation (which prevents dissipation of all the excess energy in one time step) and

noise magnification whenever the velocity is small in magnitude.

23

2.2.2.2 Bilateral Teleoperation

Bilateral teleoperation is teleoperation with force feedback. A bilateral teleoperation system, like a

haptic interface, should be designed in such a way so as to provide the operator with realistic force

feedback in a stable manner. However, bilateral teleoperation systems have an additional source

of instability caused by the network through which the operator controls the remote robot. The

network is a source of delays and data loss, which can destabilize even passive systems. Therefore,

the wave variable formalism has been combined with passive techniques to address delays [146].

More recently, performing bilateral teleoperation over the internet has been considered [18]. In

this work, it is shown that passivity in the communication channel can be maintained with both fixed

and time-varying delays provided the controller properly manages dropped data and reordering of

data. This idea is extended to both continuous-time and discrete-time models of the teleoperation

system by using the scattering transformation with communication management modules (CMMs)

in [34]. The CMMs are introduced to properly handle the wave variables output from the network so

as to maintain passivity. The CMM consists of interpolation components and queue management.

The interpolation components allow for compensation from packet loss and time-varying delays.

The queue management helps to mitigate bursty network behavior by compressing data during peri-

ods of decreasing delay and expanding the data during periods of increasing delays and packet loss.

In this manner, the queue management prevents both extremes; namely, empty queues and queue

overflow.

Port-Hamiltonian Systems

Port-Hamiltonian systems are generalizations of port concepts from electrical network theory. The

port-Hamiltonian formalism is very expressive and is well-suited for modeling teleoperation sys-

tems and haptic interfaces. This is because port-Hamiltonian systems are inherently passive and are

easily augmented with wave variables [48]. Recently, it has been shown how to model a sampled

data system using the port-Hamiltonian formalism [175]. In [175] it is shown that the interconnec-

tion between discrete and continuous port-Hamiltonian systems can be made to preserve passivity.

An important factor for preserving passivity in a sampled data system is to ensure discrete energy

leaps are handled properly. The developed port-Hamiltonian sampled data theory is then applied to

24

telemanipulation and haptic interfaces to show that passivity is maintained even with dropped data

and time-varying delays. This is done by construction rather than requiring the passivity observer

and passivity controller as in [76].

2.2.3 Networked Control Systems

Networked control systems (NCS) are a class of control systems where the sensors, actuators, and

controllers are physically distributed and connected over a network. Unlike supervisory control and

data acquisition (SCADA) systems, which have hierarchical control structures for coordinating local

controllers over a network, NCS are flat, and real-time control is done over the network. Therefore,

NCS are susceptible to network delays and data loss. For this reason, passivity and wave variables

have been used in the design of NCS.

The first use of the scattering transformation in NCS is given in [134]. It is shown that for a

linear time-invariant (LTI) single-input, single-output (SISO) plant and controller feedback config-

uration, the scattering transformation results in a delay independent stability approach that can be

used to ensure stability (asymptotic stability) of the closed loop system. The stability (asymptotic

stability) result holds even for nonpassive plant and controller as long as a positive real (strictly

positive real) condition on the transfer function relationship, denoted K(s), induced by the scatter-

ing transformation and loop delay is satisfied. Design considerations are discussed and it is shown

that it is important for K(s) to be near unity over a large range of frequencies so as to minimize

the sensitivity with respect to time delay. Furthermore, if K(0) = 1, the steady-state performance

is the same as without delays and without the scattering transform. In fact, if K(s) = 1 then the

performance is identical to the zero delay case with a constant time shift given by the forward time

delay (i.e., the delay from controller to plant). The scattering approach is compared to delay de-

pendent approaches: the Smith predictor and PI control, and is shown to be much less sensitive to

delay. Moreover, it is shown through simulation example that the sufficient stability condition is

not overly conservative. Finally, the scattering approach is used with a single degree of freedom

pendulum and shown to produce good performance results in the presence of network delays.

In [33], passivity of the traditional feedback configuration of two continuous-time systems is

explored whenever constant and time-varying delays exist in the feedback loop. The author uses a

definition of passivity with the internal storage function and shows that with constant delays, the

25

overall configuration is always passive. For the case of increasing delays, small gains bounded

by the time derivative of the time-varying delays are used to keep the configuration passive. The

time delays are assumed to change no faster than real time (a causality condition). Even using

wave variables in continuous time, this approach requires the gains in the feedback loop to maintain

passivity with increasing delay, but cannot handle decreasing delays.

A generalization of the scattering transformation is introduced in [79] for input-feedforward

output-feedback-passive (IF-OFP) nonlinear systems (which are essentially conic systems [207]).

Here it is desired to maintain L2-stability8 in the presence of arbitrarily large and unknown constant

time delays. The approach allows for separation of concerns as follows. The controller may be de-

signed beforehand to meet very aggressive performance criteria under the assumption of no delays.

Then the generalized transform is introduced to ensure stability of the system in the presence of

constant delays and can be designed with low sensitivity to delay. By limiting the class of trans-

forms, a sufficient condition for stability is given. For SISO LTI systems, a necessary and sufficient

condition for stability is provided. The approach is compared to the traditional small-gain approach

and to the design without the generalized transform in simulations. The approach is shown to meet

much better performance criteria while maintaining stability in the presence of constant delays.

In [105], a similar approach to [79] is given for maintaining passivity. In this case, a passive

sampled data approach is used for controlling a continuous-time plant (robotic arm) over a discrete-

time network with a discrete-time controller. In order to do this, the scattering transformation is

used to produce continuous-time wave variables and passive sample-and-hold device is introduced

to transform the wave variables into discrete-time in a manner that preserves passivity. This passive

sample-and-hold borrows ideas from the sampled data approach of [175] (i.e., the port-Hamiltonian

approach). As in [175], the approach maintains passivity even with certain types of time-varying

delays and data loss. The approach is later generalized to conic systems in multirate networks in

[106].

Another approach to passive control of NCS using wave variables is given by Kottenstette and

Antsaklis in [101]. This approach seeks to maintain passivity in NCS with time-varying delays and

data loss using component based design. The goal is to be able to add and remove elements (plants
8See Chapter 3 for a definition of l2-stability, which is the discrete time version of L2-stability. L2-stability is a form

of bounded input, bounded output stability applicable to nonlinear systems

26

and controllers) from the NCS while maintaining passivity and L2-stability. To do this, a power

junction is introduced as a hub for the network, and interfaces between the plants and controllers

within the star network. The power junction is in general a dissipative element (but can be lossless)

and is essentially a wave digital filter [62], designed to guarantee passivity of the network. More

specifically, the power junction takes as input wave variables and generates the same number of

output wave variables in such a way that the output power is never more than the input power

(recall, the power of a wave variable is given by its square). In [101], an averaging power junction

is introduced, which averages the input power and generates all output waves equal to the average

input power. This lossless power junction is shown to maintain passivity in the network. It is also

shown how to distribute the functionality of the power junction over all nodes in a ring network

configuration. An extension of this work is given in [103], which provides a refined averaging

power junction that exhibits better performance in the simulations provided.

A couple of different implementations of power junctions are explored in [102]. Two lossless

power junctions, the averaging power junction and a daisy-chain power junction (called a consensus

power junction in the paper), are compared using simulations. Also, the behavior of the power

junctions is explored using steady-state analysis in order to relate the inputs and outputs. The

steady-state results are provided for both the average and daisy-chain power junctions.

2.3 Multi-Agent Networks

Research in networked multi-agent systems, from an engineering perspective, may be organized

based on the group objective of the multi-agent network. Examples of different group objectives

include consensus, pattern formation, formation control, synchronization, coordinated path track-

ing, flocking, foraging, and cooperative load transport. As we will see, consensus is related in one

way or another to nearly all of these objectives. The specific taxonomy of these group objectives

on which this section is organized is given in Figure 5. In the figure, numbered and unnumbered

section or subsection titles are written in boldface font, with the specific section numbers given if

applicable. Within the tree, child nodes are contained within sections given by parents.

Along with the group objectives given in Figure 5, there are several important aspects of multi-

agent networks that help to further delineate the related work. These attributes are: diversity of

the agents, agent dynamics, the level of uncertainty with respect to the agent behavior, assumptions

27

Figure 5: Taxonomy of multi-agent network related work.

made concerning the network, and the design or analysis methodology.

• Agent Diversity: Are the agents identical or not? Is there a leader, or is the multi-agent

network leaderless?

• Agent Dynamics: How are the dynamics of the individual agents modeled? Do the agents

evolve continuously or in discrete steps? If they are discrete, are they modeled by a discrete-

time dynamical system or a finite automaton? Are they linear or nonlinear? If they are linear,

do they have first order or higher order dynamics? Are they deterministic or nondeterministic?

• Agent Duplicity: Does the behavior of the agents adhere strictly to their dynamical models?

Or, is model uncertainty a possibility? What about faults, failures, or security breaches? Is it

possible that some of the agents are adversaries?

• Network Assumptions: Is the network continuous or discrete? Is is synchronous or asyn-

chronous? Is it bidirectional or directed? Is it fixed or is it dynamic, with time-based or

28

state-based switching? Is it stochastic, lossy, delay-ridden, or ideal?

• Design or analysis methodology: How is the distributed control protocol designed or ana-

lyzed? Does it use algebraic graph theory, passivity, Lyapunov techniques, contraction theory,

or some other techniques?

Each contribution in the literature is categorized by each of these aspects of the multi-agent net-

work, but in some cases combines multiple components of a given aspect. For example, [37] looks

at synchronized trajectory tracking as the group objective, which is a special case of coordinated

path tracking (in this case all the paths are the same). All of the agents are cooperative and modeled

as Lagrangian systems coupled over an ideal continuous (synchronous) network. The authors prove

synchronization with and without tracking, so the work could be categorized under both coordinated

path tracking and synchronization. To further complicate things, the authors consider both identical

and non-identical agent dynamics and use both contraction theory and algebraic graph theory (by

introducing the modified Laplacian) to prove exponential convergence results.

Because of the unavoidable multiplicity often seen in categorizing the related work, we orga-

nize this section by looking at different objectives, and discuss different contributions that address

these objectives. Keeping in mind the different attributes helps not only in distinguishing the in-

dividual contributions, but also provides a means to characterize research initiatives from different

communities.

Multi-agent Group Objectives

There are many possible group objectives of a multi-agent network. Here we consider several

possible group objectives, discussing each in turn. Many objectives not directly described here can

be reformulated to fit one or more of the objectives discussed. Moreover, some objectives are used

as intermediate steps or components of a more complex objective. In particular, consensus is often

used in this capacity. In what follows, we discuss consensus, synchronization, flocking, foraging,

coordinated path tracking, cooperative load transport, and distributed estimation.

29

2.3.1 Consensus

Reaching consensus is fundamental to group coordination, and involves reaching agreement on a

quantity of interest. This concept is deeply intuitive, yet imprecise. Hence, there are several vari-

ations on how consensus problems are defined. Different variations on consensus problems are

illustrated in Figure 6. The first variation concerns whether the agreement quantity is constrained or

not. At one extreme, consensus may be unconstrained, and there is no restriction on the agreement

quantity. In other cases, consensus may be partially constrained by some rule or prescribed to lie in

a set of possible agreement values that are in some way reasonable to the problem at hand. At the

other extreme, consensus may be function constrained, or χ-constrained, in which case the consen-

sus value must satisfy a particular function of the initial values of the agents [41, 178]. Examples of

χ-constrained consensus include average consensus [156, 166, 205], power-mean consensus [15],

and geometric-mean consensus [153].

Figure 6: Variations on consensus problems.

Another issue is whether the agents must reach consensus in finite-time or asymptotically. In

the distributed computing literature, finite termination is required [130], whereas in the cooperative

control literature, asymptotic consensus is more common [168, 152, 167]. This discrepancy is due to

the assumptions placed on the individual agents. In control applications, it is typical that the agents

have continuous dynamics modeled by ordinary differential equations with certain continuity and

smoothness properties, which naturally lead to asymptotic results [137]. Without imposing any

discrete modes [121], discontinuities, or nonsmoothness [39] on the continuous dynamics, the best

that can be hoped for is exponential convergence. On the other hand, a few recent promising results

use nonsmooth techniques to achieve finite-time convergence [40, 41, 84].

30

A third issue is whether the agreement quantity is fixed or dynamically changing. In most cases,

consensus is reached on a specific quantity of interest that is fixed with time, or is a limit point

to which the consensus process converges. However, in distributed estimation, and more generally

sensor network applications, the measured or estimated quantity may change dynamically over time.

We refer to this as dynamic consensus; otherwise we say the consensus is static. Each agent (or

sensor) has a measurement input (possibly multidimensional). The goal of the consensus process is

to reach agreement dynamically either on the measurements directly or on quantities being estimated

dynamically from the measurements. The feasibility of achieving dynamic consensus in this case

is dependent both on the frequency spectrum of the particular measurement signal and on the time

constants, or modes, of both the underlying process being estimated and the multi-agent network

(sensor network). The Fourier transform of the multi-agent network, when the agents are linear

systems and communication is bidirectional, is a function of the spectrum of the graph Laplacian.

Finally, an important distinction is whether the consensus process directly affects a physical

process, or not. Obviously, for the former, the agents must have state variables corresponding to

some physical process that are manipulable and dependent on the consensus process. In this case,

the consensus protocol is a control law, directly affecting a subset of the physical states of the agents.

We refer to this type of consensus as physically dependent, and is a concept that is important to

most cooperative control problems, such as rendezvous [42, 123, 124] or gathering (as it is known

in the mobile robotics community) [182, 163, 1], flocking [151], and synchronization [91, 35, 190].

Examples where the quantities are not manipulable physical state variables include consensus of

sensor measurements [206, 173], probability distributions [47], or decision values [130].

2.3.1.1 Statistical Consensus

Some of the earliest formal study of consensus lies in management science [47], in which the in-

dividual “agents” each have a probability distribution for the unknown value of a parameter. Con-

sensus in this case refers to an alignment of the distributions, resulting in statistical consensus. By

consolidating the distributions to single values, statistical consensus can also handle consensus on a

set of values as a special case. Statistical consensus is closely related to belief consensus, which is

used for distributed hypothesis testing in [153].

31

2.3.1.2 Consensus in Distributed Computing

Consensus problems also have a rich history in distributed computing [130]. In this case, the

“agents” are stationary processors modeled by finite automata, which communicate over a net-

work also modeled by a finite automaton [130]. Since neither the agents nor the network are subject

to physical constraints (i.e., no physical dynamics), the problem of reaching consensus on a set of

values is trivial in the ideal setting (a simple flooding algorithm does the trick). Therefore, in the dis-

tributed computing literature, consensus problems are defined with respect to faults and failures of

the agents and with respect to unreliable communication networks. Other ways additional complex-

ity is added to the problem is by considering different timing models (i.e., levels of synchronicity

of the network) and by either requiring determinism or allowing for randomness in the consensus

algorithms.

The consensus problems tend to be defined with conditions on agreement, validity, and termi-

nation. The validity condition effectively restricts the agreement value, thereby resulting in at least

partially constrained, and in some cases function constrained consensus problems. Within these

well-defined problem settings, computer scientists commonly provide impossibility results with re-

gard to reaching consensus under the specific conditions of a particular problem. For example, the

coordinated attack problem is a binary consensus problem in which all of the agents must decide

to commit or abort, and they coordinate in an unreliable network in which link failures are pos-

sible [130]. There are deterministic [74] and nondeterministic [198] forms of the problem, and

in the deterministic case, it is proven that no algorithm can always solve the coordinated attack

problem [74].

There are various failure models used for agent (processor) failures. Two of the most popular

models are stopping failures and Byzantine failures [130]. Stopping failures occur whenever the

agent simply stops, and models a processor crash. Byzantine failures, on the other hand, may exhibit

arbitrary behavior within the limitations of the automaton models (both the processor automaton

and the network automaton; at least the components of the network automaton to which the faulty

processor has access). In particular, Byzantine faulty processors may send different messages to

different processors in the network. Therefore, worst case executions must be considered. Because

of this, processors undergoing Byzantine failures are adversarial in nature.

32

Byzantine Consensus Problems

The earliest work on reaching consensus in the presence of Byzantine faulty processors can be found

in [161] and [110], where the Byzantine agreement problem is introduced. The term “Byzantine” is

coined in [110] to describe the problem with respect to generals in ancient Byzantium. The generals

communicate by sending messengers and want to decide on a plan of action on whether to attack or

retreat. But, a subset of the generals may be traitors, and the loyal generals want to devise a plan in

order to reliably reach an agreement on the plan of action that is not subverted by the traitors. Hence,

[110] addresses a binary Byzantine consensus problem that is partially constrained. All generals are

able to send messengers to all other generals (i.e., the communication graph is complete). It is

shown that the maximum number of traitors F , which is an upper bound on the total number of

traitors assumed a priori, must be less than one-third the total number of generals n, or n > 3F .

Thus, any algorithm which successfully solves this consensus problem must satisfy this criterion. In

[161], the authors again demonstrate this necessary bound on the number of Byzantine processors

for the case whenever the values are not necessarily binary. Both [161] and [110] use exponential

data structures in the algorithms proposed for the problem. These algorithms can handle the case

n = 3F + 1, so the condition n > 3F is also sufficient.

The necessary and sufficient condition of n > 3F derived for complete networks in [161, 110]

is shown to also hold, more generally, in synchronous networks with less connectivity in [50].

Here it is shown that it is also necessary that the connectivity κ of the network be more than twice

the number of Byzantine processors, or κ > 2F . The connectivity condition is also shown to be

sufficient by using a majority voting algorithm that succeeds with κ = 2F + 1.

The Byzantine agreement problem is relaxed in [51] to allow the decision values of the nonfaulty

processors to differ within any fixed margin of error. In this case, the values are real numbers. Given

any arbitrarily small ε > 0, any pair of nonfaulty decision values must lie within ε of each other.

In addition to this agreement condition, the validity condition requires that the nonfaulty decision

values lie within the range of the initial values of the nonfaulty processors (the range of a multiset of

values is defined to be the smallest interval containing all the values). These conditions, along with

the termination condition (all nonfaulty processors eventually terminate), comprise the Byzantine

approximate agreement problem.

33

In [51], both asynchronous and synchronous forms of the Byzantine approximate agreement

problem are considered. In fact, one of the reasons [51] considers approximate agreement is because

of an impossibility result showing that guaranteed termination with exact agreement is not possible

in asynchronous networks even with a single stopping failure [64]. However, if termination with

probability one is considered, then exact agreement is possible [16, 29]. As an additional motivation,

approximate agreement is also useful for clock synchronization [129]. For a comprehensive survey

of Byzantine consensus problems in distributed computing, along with applications, see [14].

The algorithms introduced in [51] for the Byzantine approximate agreement problem are de-

signed for complete networks. The algorithms use so-called approximation functions, which iter-

atively shrink the range of values of nonfaulty processors in each round of the algorithms. (This

idea of iteratively moving toward consensus is analogous to the linear iterative strategies discussed

in Section 2.3.1.6.) The approximation functions of [51] use a composition of reduce functions,

each of which removes the largest and smallest elements of a multiset. Another function used is the

select function with respect to positive integer k > 0, which chooses the smallest element and every

kth element thereafter (in an ordered list of sorted values in ascending order).

The basic idea of the synchronous algorithm, which we refer to as the ConvergeApproxAgree-

ment algorithm (as in [130]), is for every node to share its own value with every other node in the

network (complete network) at the beginning of each round. The node’s own value is combined with

the received values in a multiset and sorted in ascending order. Since F is an upper bound on the

number of traitors, the largest and smallest F values are removed from the multiset (with ties broken

arbitrarily). Then, the select function with respect to F is applied. Finally, the selected values are

averaged to obtain the new value to be used in the subsequent round. This choice of operations

for the approximation function is shown to result in an optimal convergence rate for algorithms of

this type (that is, no other approximation function achieves faster convergence). The termination

criterion is derived by using the range of initial values from the first round, the tolerance ε, and the

known rate of convergence. The synchronous algorithm can handle the case n = 3F + 1.

The asynchronous algorithm requires n ≥ 5F +1. The asynchronous algorithm is similar to the

synchronous version, but in this case each processor cannot wait for all n−1 values to arrive at each

round. This is because there is no guarantee the faulty processors will ever send their values. So, in

each round, each processor waits until it receives n−F values. Then, the largest and smallest F of

34

these values (including its own value) are removed, the select function with respect to 2F is applied,

and the selected values are averaged to obtain the new value. Again, this choice of operations for

the approximation function is shown to result in an optimal convergence rate.

Although the Byzantine approximate agreement problem was posed more than twenty-five years

ago, the necessary and sufficient topological condition on the network for a successful iterative

algorithm to exist has eluded researchers until very recently [194, 193, 195]. Synchronous networks

are studied in [194, 193], and both synchronous and asynchronous networks are studied in [195]. In

[194], Vaidya et al. provide the tight condition required in synchronous directed networks to ensure

convergence (instead of finite termination) of any iterative consensus algorithm in the presence of

up to F Byzantine faulty nodes. In order to state the condition, we require the following definition.

Definition 2.1 ([194]). For nonempty, disjoint sets of nodes A,B ⊂ V , A r⇒ B if and only if there

exists a node v ∈ B that has at least r in-neighbors in A; i.e., |N in
v ∩A| ≥ r. A r

! B if and only if

A
r⇒ B is not true.

Given the relation of Definition 2.1, the tight condition may be stated as follows. For all quadru-

ples of sets of nodes F , L,C,R that form a partition9 of V such that 0 ≤ |F| ≤ F , |L| > 0, and

|R| > 0, at least one of the two following conditions must hold true: (i) R ∪ C
F+1⇒ L or (ii)

L∪C
F+1⇒ R. Observe that this condition requires sufficient redundancy of directed edges between

subsets of normal nodes in the network.

The necessary and sufficient condition stated above is not very intuitive. For this reason, Vaidya

et al. present an equivalent condition that has more intuitive appeal in [195], which uses the fol-

lowing concepts. The decomposition digraph Dd = (Vd, Ed) of D = (V, E) is constructed from

D by associating a node vk ∈ Vd to each strongly connected component Ck of D. A directed edge

(i, j) ∈ Ed exists if and only if there is a node in component Cj reachable from every node in com-

ponent Ci. Note that the decomposition digraph is always a directed acyclic graph [45]. A source

component of D is a strongly connected component Ck of D such that vk is not reachable from any

other node in Dd. Finally, a reduced digraph DF = (VF , EF) of D = (V, E) is any subdigraph

of D such that F ⊂ V , VF = V \ F , and EF is obtained by first removing all directed edges in E

that are incident with nodes in F and then removing up to F other incoming edges at each node in
9Here, sets S1,S2, . . . ,Sp ⊆ S are said to form a partition of set S if ∪p

i=1Si = S and Si ∩ Sj = ∅ for i %= j. Note
that in this context, some of the sets in the partition may be empty.

35

VF . The alternative condition states that every reduced digraph DF with |F| < |V| and |F| ≤ F

must contain exactly one source component. It is shown that the unique source component in any

such reduced digraph must contain at least F +1 nodes. By associating F with the set of Byzantine

nodes, these results say there must be a set of nodes (the source nodes in the reduced digraph) that

are capable of disseminating their information resiliently throughout the rest of the network. More-

over, the number of source nodes in any reduced digraph DF must outnumber the Byzantine faulty

nodes.

The synchronous algorithm studied in [194] demonstrates sufficiency of the network conditions

stated above and is similar to the ConvergeApproxAgreement algorithm. The only difference is that

the select function is not used. This algorithm has also been analyzed using transition matrices

[193]. Likewise, the asynchronous algorithm studied in [195] is similar to the asynchronous algo-

rithm of [51]. Again, the only difference between the two algorithms is that the select function is

not used. The necessary and sufficient condition for asynchronous networks can also be stated using

the relation of Definition 2.1. For all quadruples of sets of nodes F , L,C,R that form a partition of

V such that 0 ≤ |F| ≤ F , |L| > 0, and |R| > 0, at least one of the two following conditions must

hold true: (i) R ∪ C
2F+1⇒ L or (ii) L ∪ C

2F+1⇒ R.

2.3.1.3 Gathering in Robot Networks

Similar to the distributed computing community, the goal of the research pursued by the mobile

robotics community is to determine the minimal required attributes of the multi-agent network

(including the robots, the network, etc.) that are required to achieve distributed tasks in finite

time [163]. (It is assumed the robots are dimensionless, so they occupy just a single point in space,

and multiple robots may occupy the same point; the number of robots occupying a single point is

referred to as the multiplicity of the point). One such task is gathering, which is a consensus prob-

lem that requires a set of autonomous robots to gather at a single point in space in finite time [182].

Because the algorithms used to solve this problem modify the physical positions of the robots over

time, the gathering problem is an example of a physically-dependent consensus problem. Moreover,

the point at which the robots gather is unimportant, so the consensus is of the unconstrained type.

The focus of the research is on the computational models, schedulers, and high-level planning

algorithms required to eventually ensure the objective – in this case gathering – is achieved. The

36

question of whether the robots are capable of reaching the waypoints determined by the algorithms

at the desired times is ignored, or at best simple bounds on the movement are assumed. That is,

the physical dynamics of the robots are abstracted away from the problem. In this manner, the

researchers are able to answer more fundamental questions on the feasibility of coordinated tasks

under very weak assumptions.

In order to consider the weakest assumptions on the capabilities of the robots, it is common

to assume that the robots are anonymous (i.e., indistinguishable, no identifiers), have different local

coordinate frames (orientation and scale), dimensionless (points in space that neither obstruct the vi-

sion nor hinder the movement of the other robots), no communication (only sensing), and oblivious

(or memoryless, meaning the robots do not remember past observations or computations performed

in previous steps). The robots are assumed to move in either the plane or along a line. Additionally,

it is assumed that the robots have multiplicity detectors; that is, they can determine whether more

than one robot occupies a point. This is a necessary condition for gathering using deterministic

algorithms [164, 46]. The timing assumptions on the network also vary between synchronous [1],

asynchronous [163], and partially synchronous [182]. Sometimes the robots are assumed to have

unlimited visibility, and therefore know the positions of all other robots (complete network) [38].

While at other times they are assumed to have limited visibility [65]. In the case of limited visibility,

the consensus is sometimes local, allowing for gathering in each component of the mutual visibility

graph [5].

Assuming the robots are oblivious has certain advantages with regard to resilience and robust-

ness properties of the algorithms designed for such robots. Namely, if the algorithm can handle any

initial configuration, then it is necessarily self-stabilizing [182]. A self-stabilizing algorithm has the

property that the correctness of the algorithm is not jeopardized by transient uncertainties, distur-

bances, or faults in the system, as long as eventually the environment is free from such anomalies

for a long enough period of time for the goal to be achieved. This property follows from the memo-

ryless property of the robots because the anomaly-ridden history is essentially wiped clean after the

anomalies cease to be present. Another benefit of designing algorithms for oblivious robots is that

the algorithms are more amenable to a changing environment, where the robots may leave or enter

the network dynamically.

Model of Computation and Scheduler. As in the distributed computing approaches, the agents

37

are modeled discretely as finite automata, but here the network is a parallel composition of the

agent automata (instead of being an automaton itself that directly coordinates the processor au-

tomata). The evolution of individual robots occurs in computational cycles, most typically the

Look-Compute-Move cycle. In the Look stage, the robot observes the configuration (positions) of

the other robots within its visibility range. With this information, the robot computes its next desired

position using some algorithm. Finally, the robot moves to the desired position in the Move stage.

Whenever a robot is in the middle of a cycle, it is said to be activated. When a robot is not activated

it waits in a stationary position, which is sometimes referred to as the Wait stage.

The scheduler is a daemon that controls the activation times of the robots in the network [46].

The scheduler’s control over the activation times is limited by the level of synchronicity of the

network. For example, whenever the network is fully synchronous, the scheduler activates all the

robots at each step in the evolution of the multi-agent network, and the activated robots execute each

stage in lockstep throughout the cycle. In this case, the synchronicity of the network determines the

semantics of the computational model. When the network is semi-synchronous, the first condition

above is relaxed to allow only a subset of the robots to be activated, but still implies the activated

robots execute their cycle in lockstep. The asynchronous case is a bit more complicated and requires

the definition of the computational models (to be explicated shortly). Together, the scheduler and

the level of synchronicity define the parallel composition of agent automata comprising the network.

Along with the computational model, the timing semantics of the multi-agent network are fully

determined.

The two most common computational models are the ATOM model [182] and the CORDA

model [163]. In the ATOM model, the entire Look-Compute-Move sequence is executed atomically,

and any activated robots execute the sequence in lockstep. This assumption effectively forces the

execution of the system to occur in rounds, and ensures that the robots observe other robots only

whenever they are all stationary [5]. In the CORDA model, each stage of a cycle requires a (nonzero)

finite amount of time to complete, and any non-null move action results in a (nonzero) finite distance

moved. Moreover, the CORDA model is asynchronous, so the scheduler can allow another robot

to preempt an activated robot in the middle of its cycle. For example, say robot 1 begins a Look-

Compute-Move cycle. In the CORDA model, the scheduler may interrupt robot 1 at any time, say

in the middle of its compute stage. It can then activate robot 2 and have it complete an entire cycle

38

before allowing robot 1 to continue is computation. Once resumed, robot 1 may have an outdated

status on the position of robot 2.

To avoid a robot being ignored by the scheduler, it is typically assumed that the scheduler is fair.

That is, in any infinite number of cycles, each robot is activated infinitely often. Another stronger

notion of fairness is given by a k-bounded scheduler, in which case between any two activations of

a given robot, no other robot may be activated more than k times. More precisely, for each robot i,

with activation times ti,1, ti,2, . . . , no other robot has more than k activation times within the interval

[ti,j, ti,j+1), for j = 1, 2, . . . (notice the interval is closed on the left, meaning if another robot r has

a simultaneous activation time at ti,j then ti,j is counted as one of up to k activation times of robot r

allowed before ti,j+1 with a k-bounded scheduler). Another strong assumption is that the scheduler

is centralized, which means that at each configuration only a single robot is allowed to perform its

action [46]. Finally, a scheduler is bounded regular if between two consecutive activations of any

given robot, all other robots perform their actions exactly once. Thus, a bounded regular scheduler

imposes a round robin schedule.

Weak Gathering: Gathering with Faults

The gathering problem has also been studied in the presence of failures, including stopping failures

(referred to as crash faults) and Byzantine failures. In the presence of failures, the gathering problem

is defined so that only the nonfaulty robots are required to gather at a point, which is called the weak

gathering problem [46]. For Byzantine failures, the scheduler is treated as an adversary that controls

the activation times of the robots (as always), the behavior of faulty robots, as allowed by the model

of computation, and any unspecified characteristics of the nonfaulty robots. A common assumption

is that the scheduler can stop a nonfaulty robot before reaching its desired position, but only if the

desired position is further than some minimum distance [1, 27].

In the ATOM model, as described above, the scheduler cannot interrupt any activated robot.

Therefore, since the activated robots execute in lockstep, the faulty robots cannot hide their true

positions during the compute stage of a nonfaulty robot’s computation cycle. In this case, we say

the faulty robot is malicious. However, in the CORDA model, the scheduler can interrupt any

robot at any point in their computational cycles. Thus, by carefully scheduling alternately nonfaulty

robots with a particular faulty one, the scheduler can effectively make each nonfaulty robot in the

39

visibility range of a faulty robot have different beliefs on the current position of the faulty robot

when each nonfaulty robot computes its next position. (Notice this is not possible if the scheduler

is k-bounded for sufficiently small k). In this case, the faulty behavior is truly Byzantine, as defined

in the distributed computing failure model.

The first work to consider both crash and Byzantine failures for the weak gathering problem is

[1]. In this work, the typical assumptions are made concerning the robots: dimensionless, anony-

mous, oblivious, no common coordinate system, and unlimited visibility (complete network). An

algorithm is given that can handle a single crash for any network of n ≥ 3 robots using the ATOM

computational model. Then, it is shown that in a semi-synchronous network with the ATOM model,

no deterministic algorithm can solve the weak gathering problem with even a single Byzantine fail-

ure (without additional assumptions on the scheduler). Finally, under a fully-synchronous timing

model, an algorithm is given that can solve the gathering problem with up to F Byzantine failures

as long as n ≥ 3F +1 (the algorithm also solves the problem for the special case of n = 3, F = 1).

Probabilistic Gathering

Variants of the (weak) gathering problem have also been considered. For example, [46] looks at

probabilistic gathering in both fault-free and fault-prone environments, where the (nonfaulty) robots

gather at a point with probability 1. The assumptions on the robots are the same as [1]. Interestingly,

it is shown in [46] that multiplicity detection10 is not necessary for probabilistic gathering with an

algorithm that can introduce randomness as long as the scheduler is fair and k-bounded (this possi-

bility result includes the CORDA model). On the other hand, in crash prone networks, multiplicity

detection is again necessary for the deterministic case, and is also necessary in the probabilistic case

with a fair scheduler that is not k-bounded. However, whenever the scheduler is k-bounded, an algo-

rithm is provided which can handle a single crash without multiplicity detection. If the robots have

knowledge of the multiplicity of all points, then it is shown that a probabilistic algorithm can achieve

weak gathering with 2 or more crashes under any scheduler. With respect to Byzantine failures, it

is shown that no deterministic algorithm can achieve gathering with even a single Byzantine failure

with a centralized (n − 1)-bounded scheduler. Then, the necessary condition is extended to the
10The multiplicity of a point occupied by one or more robots is the number of robots at that point, and multiplicity

detection is the capability of determining whether a point occupied by one or more robots has multiplicity one or greater
than one.

40

case of F ≥ 2 failures, and lower bounds are provided on k for k-bounded, centralized schedulers

so that for any k larger than the bounds no deterministic algorithms can achieve weak gathering,

even with multiplicity knowledge. In the probabilistic case, an algorithm is given that can handle

Byzantine failures in the ATOM model with a bounded scheduler and multiplicity knowledge, as

long as n > 3F .

Point Convergence

Another variant on gathering is the point convergence problem, or just convergence, which relaxes

the assumption of gathering in finite time to allow for asymptotic convergence toward gathering [5].

More precisely, given any ε > 0 there exists a point in space c and a time tε > 0 such that for all

t ≥ tε, all nonfaulty robots lie within the ε-neighborhood of c, and therefore, the maximum distance

between any two nonfaulty robots is 2ε [26]. In [5], the usual assumptions are made concerning the

robots, except that there is a maximum distance σ that each robot can move in a single activation

cycle and the robots have limited visibility of radius r. A circumcenter algorithm is proposed for

achieving point convergence which ensures that the number of components of the mutual visibility

graph never increase. The ATOM model is assumed with a semi-synchronous fair scheduler, along

with the additional assumption that the Look-Compute-Move cycle occurs instantaneously. The

basic idea of the circumcenter algorithm is that each robot i, when activated, moves toward the

center, ci, of the smallest circle enclosing the set of points occupied by robots within its visibility

range (see Figure 7 for an example). The precise point to which it moves is constrained to be at most

a distance σ from its current position pi. For each robot j 1= i in its visibility range, define Dj to be

the circle defined with radius r/2 and center given by the midpoint mj of the line segment between

the robots i and j. Let lj denote the maximum distance robot i can move without exiting Dj .

Then the robot moves in the direction of ci with a distance given by the minimum of the following

distances: dist(ci, pi), σ, and minj{lj}. Notice that if no other robots, other than i itself, are in its

visibility range, it does not move. In this manner, the algorithm ensures local point convergence;

namely, within the components of the visibility graph.

41

Figure 7: Scenario for the circumcenter algorithm.

Byzantine Point Convergence

The Byzantine point convergence problem is first addressed in [25] for the unidimensional case

with the usual assumptions (including strong multiplicity sensor, i.e., a sensor which can detect the

exact multiplicity of each occupied point). An algorithm is introduced that uses an approximation

function – similar to the one in [51] – that can ensure point convergence in the presence of up to

F Byzantine failures in complete networks of size n with k-bounded schedulers whenever n ≥

2F + 1 for fully synchronous (ATOM), n ≥ 3F + 1 for semi-synchronous (ATOM), and n ≥

4F +1 for asynchronous timing (CORDA). The approximation function used in the algorithm uses

a composition of F reduce functions and then averages the unique positions in the resulting multiset

(called the center function) to determine the next position (see Section 2.3.1.2 for a definition of

approximation functions and the reduce function).

Algorithms that use approximation functions are said to be cautious, which means nonfaulty

42

robots always move inside the range of positions of other nonfaulty robots and eventually a non-

faulty robot will move if point convergence has not been achieved [26]. If the algorithm is also

shrinking, that is the range of the union of positions and destinations held by nonfaulty robots de-

creases by a constant factor over time (not necessarily uniformly over time), then the algorithm

achieves point convergence [26]. In [26], it is shown that n > 3F is necessary in semi-synchronous

ATOM networks with a 2-bounded scheduler. A deterministic algorithm is also given that is both

cautious and shrinking in k-bounded complete CORDA networks whenever n > 3F . The algo-

rithm uses another approximation function, similar to the one described above. Instead of always

eliminating the F positions that have largest and smallest coordinates, it only removes up to F po-

sitions larger or smaller than the given robot’s current position (starting at the largest and smallest

coordinate, respectively). This function is called the F -trimming function. Then the center function

is applied to determine the next position.

Some impossibility results for single dimensional Byzantine point convergence are given in

[27] that are similar to the results of [46] for gathering. The results focus on whether the robots

are equipped with multiplicity sensors and if so, what kind they have. A weak multiplicity sensor is

capable of detecting multiplicity of a point, but not the precise number of robots occupying the point,

whereas strong multiplicity sensors are able to detect precisely how many robots occupy a point.

In [27], it is shown that strong multiplicity sensors is a necessary condition for Byzantine point

convergence. It is also shown that n > 2F and n > 3F are necessary conditions for Byzantine point

convergence in ATOM networks with fully synchronous and semi-synchronous timing, respectively.

Finally, the analysis of Byzantine point convergence in one dimension is extended to fully asyn-

chronous complete networks with a fair scheduler (but no boundedness assumptions) in [24]. Oth-

erwise, all other assumptions are the same as before. Here it is shown that n ≥ 5F + 1 is both

necessary and sufficient for solving the Byzantine point convergence problem. For sufficiency, a

refinement of the algorithm described in the previous section is introduced. Whenever a nonfaulty

robot is activated, it observes the positions of all other robots and computes the multiset resulting

from application of the 2F -trimming function. It then uses the center function to determine the

center of the remaining points. The novel aspect of the algorithm is an election method, which

determines if the point of the given robot is an extremal point, defined as less than or equal to the

(F + 1)st smallest coordinate or greater than or equal to the (F + 1)st largest coordinate. If this is

43

the case, the robot is elected and moves to the center point calculated above.

2.3.1.4 Rendezvous

Rendezvous is an unconstrained, physically-dependent consensus problem, just as gathering and

point convergence. In fact, it is equivalent to point convergence. That is, the goal of rendezvous is

for the agents to converge to a single unspecified point in space (not necessarily in finite time). The

difference lies in the assumptions surrounding the problem and the techniques used to design and

analyze the algorithms. Typically, researchers studying rendezvous tend to focus more on limita-

tions of information dissemination (either arising from sensing or communication limitations), and

therefore employ graph theoretic methods. Also, because of this, the control laws considered are

required to maintain connectivity properties of the network as the system evolves. The researchers

also allow for communication between robots and have studied robustness to communication fail-

ures [42] and implementation effects (such as quantization [58]). But, there have not been studies

on crash or Byzantine failures, as in the mobile robotics literature [1, 46, 24]. Finally, dynamical

models have been imposed on the robots, often with nonholonomic constraints [49]. These differ-

ences are due to the fact that the rendezvous problem emerged from the control community instead

of the mobile robotics community.

The first work from the control community to describe the rendezvous problem – and, because

of this, it retains many of the assumptions and attributes of the problem from the gathering and

point convergence perspective – is given by Lin, Morse, and Anderson in [122], and addresses the

problem in both synchronous and asynchronous settings. The assumptions in [122] are similar to the

assumptions on the agents in [5] (e.g., the robots reside in the plane), except that here the assumption

of instantaneous Look-Compute-Move cycle is dropped. That is, the times required to sense other

agents in the visibility range and to move to the calculated waypoint are nonzero. These times are

synchronized to a common clock in the synchronous case and in the asynchronous case, only worst

case times are considered, with no common clock. A family of control algorithms is introduced,

whose form is a generalization of the circumcenter algorithm used in [5]. As such, it is considerably

more complicated, but has the same underlying intuition as the algorithm of [5] (described above in

Section 2.3.1.3). The main idea in the family of control laws considered is to ensure that the number

of components in the mutual visibility graph does not increase over time. To do this, it is sufficient

44

for the agents to be constrained in their movements so that no agent loses any of its neighbors

during its maneuver phase. The asynchronous case is especially difficult because this constraint

must be enforced in the state-based dynamically switching network without a common clock. To

ensure the desired connectivity properties hold in the network in such a case, the authors use a dwell

time assumption, along with some other technical assumptions similar to the synchronous case, to

maintain connectivity and prove rendezvous. This work is presented in full detail in [123] for the

synchronous case and in [124] for the asynchronous case.

Another work that extends the results of [5] is [42]. In [42], the authors analyze the circum-

center algorithm of [5], under more general conditions than considered in [5, 123]. In this paper,

the network is synchronous and the robots are again dimensionless (points in space), anonymous

(indistinguishable), oblivious (memoryless, with static feedback), sense or communicate with other

robots within radius r, and may have different coordinate systems (if information exchange arises

from sensing, but not communication). Here the robots may move in higher dimensions than the

plane and the assumptions on the visibility graph are more general. In more detail, rendezvous

is proven to occur using the notion of proximity graphs in either a finite number of rounds (i.e.,

in finite time) under more general topological conditions or asymptotically with robustness to link

failures. Specifically, as long as there exists a positive integer l such that over any l consecutive

rounds the union of the l consecutive digraphs is strongly connected, then rendezvous is achieved.

The sequence of digraphs are subdigraphs of the proximity graph and represent directed link fail-

ures. This connectivity property is referred to as periodic strong connectivity. Also, it is shown that

the robots may use different proximity graphs (under appropriate assumptions) in the circumcen-

ter algorithm and still achieve convergence. Together these results help to explain the robustness

properties observed in the simulations of [5].

In [133] and [132], a formal framework is presented for modeling synchronous robotic networks,

group objectives, and complexity of the group objectives. This model for robotic networks formally

defines control and communication laws, coordination tasks (i.e., group objectives), and time and

communication complexity. Worst-case time complexity is defined as the minimum time (number

of rounds) required to achieve the coordination task given the worst initial conditions (i.e., the initial

conditions such that the minimum time to achieve the coordination time is maximized). Within this

framework, formal definitions of the exact rendezvous task and ε-rendezvous task are given [132].

45

The exact rendezvous task is basically local gathering, whereas the ε-rendezvous task is local point

convergence. The time complexity of two distributed control laws for achieving rendezvous are

considered: the move-to-average law and the circumcenter law. The move-to-average algorithm

progresses over a proximity graph induced by the r-radius visibility assumption described above,

and at each round, each agent transmits its position to its neighbors. Then each agent moves to the

average of the points in its inclusive neighborhood (that is, including its own position). Unlike the

circumcenter algorithm, the move-to-average algorithm does not preserve components of the visi-

bility graph. The move-to-average algorithm is shown to have time complexity of O(n5) and Ω(n)

when executed in a single dimension [132].11 For the circumcenter law, two variants are considered.

In addition to the circumcenter algorithm described in the preceding paragraph, another circumcen-

ter algorithm, called the parallel circumcenter law, is introduced. In the parallel circumcenter law,

instead of moving directly to the circumcenter of the inclusive neighborhood, the positions of the

neighbors are projected onto the canonical axes of the agent’s coordinate frame. The single dimen-

sional version of the circumcenter law is applied to each canonical axis to determine the coordinates

of the next desired position. Provided the local coordinate frames of each of the agents are parallel

frames (meaning for any pair of coordinate frames of the agents, one may be obtained from the other

by a rotation of 0◦, 90◦, 180◦, or 270◦), the parallel circumcenter law is shown to maintain connec-

tivity of the visibility graph, and achieve exact rendezvous (gathering) with time complexity Θ(n)

for arbitrary number of dimensions. In a single dimension, the traditional circumcenter algorithm is

also shown to achieve exact rendezvous with time complexity Θ(n).

Another variant of the circumcenter algorithm for achieving rendezvous is considered in [131].

Here, the 1/2 circumcenter algorithm is introduced, which does not require calculation of the con-

straint sets in order to guarantee connectivity is maintained. The main idea of the 1/2 circumcenter

algorithm is for each agent i to compute its next desired position as the circumcenter given by the

midpoints of the line segments between i and neighbors in the visibility graph. Additionally, two

variants of the traditional circumcenter and 1/2 circumcenter algorithms are given that can handle

noisy measurements. The main assumption is that the measurements of any neighbor’s position lies

within the disk centered at the true position with radius σe < r (where r is the radius of visibility
11Recall, given f, g : R → R, f ∈ O(g(x)) if there exists c ∈ R>0 and x0 ∈ R such that |f(x)| ≤ c|g(x)| for all

x ≥ x0. Likewise, f ∈ Ω(g(x)) if there exists c ∈ R>0 and x0 ∈ R such that |f(x)| ≥ c|g(x)| for all x ≥ x0. Finally,
if f ∈ O(g(x)) and f ∈ Ω(g(x)), then f ∈ Θ(g(x)).

46

that induces the visibility graph). The first variant restricts even further the constraint sets to limit

the motion of each agent. In the second variant, each agent filters the measurements to ensure they

are within radius r. Both of these variants are shown to preserve connectivity with noisy measure-

ments under the assumption σe < r. Then, the variants on the circumcenter algorithms are analyzed

in a single dimension and show lower bounds on r/σe required to achieve rendezvous. Also, the

practical stability ball to which all agents converge has diameter bounded above by 2σe.

2.3.1.5 Particle Flocking

Particle flocking consists of a network of point masses moving with constant speed, where the

objective is to asymptotically align the heading of all of the “particles”. Therefore, particle flocking

is a physically dependent, partially constrained consensus problem (partially constrained because

headings must lie in the interval [0, 2π)). A simple model for demonstrating particle flocking is the

Vicsek model [199]. In [199], it is shown that particle flocking can arise given a simple discrete-

time update law, whereby each agent updates its heading at each round to be the average of the

headings in its inclusive neighborhood given by the r radius visibility graph (as in the move-to-

average algorithm described in the previous section). The updated heading is then perturbed by a

small additive random disturbance. Given this simple control law, it is shown through simulations

that particle flocking emerges. This model has motivated much of the recent study of consensus

from the cooperative control perspective.

For example, in [90], Jadbabaie, Lin, and Morse formally analyze the Vicsek model (without

the additive disturbance) using convergence properties of infinite products of nonnegative matri-

ces [204]. The agent update model is given by the first order difference equation

θi(t+ 1) =
1

di(t) + 1



θi(t) +
∑

j∈Ni(t)

θj(t)



 , (6)

where θi ∈ [0, 2π) is the heading angle of agent i and di(t) = |Ni(t)|. Note that this update rule

may at times cause the agents to abruptly change directions. For example, consider the case where

two agents with heading 0.01 and 2π − 0.01 are the only two agents in each of their inclusive

neighborhoods. Then, the updated heading for each agent in this case is π.

This work is the first consensus work to study dynamic (or switching) network topology, and

47

it is shown that as long as there exists an infinite sequence of contiguous, nonempty, bounded time

intervals [tk, tk+1), k ≥ 0, starting at t0 = 0, with the property that within any such interval the

union of the communication graphs (induced by a switching signal) is connected, then the headings

asymptotically align. Another interesting property of the Vicsek model demonstrated in [90] is that

a single particle not following the coordination law given in (6) can fix its heading as it pleases, and

so long as the conditions on the communication graph just described hold, the particle behaves as

a leader of the network. That is, all other particles converge to the leader’s heading. Obviously,

this is not a desirable property to have if it is desired that the distributed control law be resilient to

adversaries.

2.3.1.6 Linear Iterative Consensus Algorithms

The move-to-average strategy of the Vicsek model for particle flocking defined in (6) is just one

example of a broader class of linear iterative consensus strategies. Within this class of consensus

algorithms, the basic idea is to combine the values within each agent’s inclusive neighborhood

as a convex combination in order to determine the next value [191]. One benefit of linear iterative

strategies is that agents only have to transmit a single value at each iteration. This technique has been

applied to unconstrained, partially constrained, and χ-constrained consensus problems. Sometimes,

the consensus process is physically-dependent, as in particle flocking, whereas other times it is

not. Most often, these techniques are asymptotic; however, it is possible to reach consensus with

linear iterations in finite time [178]. Both synchronous and asynchronous network paradigms have

been studied using linear iterative techniques. In what follows, we first describe some synchronous

techniques and then look at asynchronous techniques.

Synchronous Linear Iterative Consensus

In general, linear iterative consensus algorithms in discrete-time synchronous multi-agent networks

can be modeled using a time-varying weighted digraph Dw(t) augmented with local feedback

weights. The weighted digraph is time-varying in the case of switching network topology. Without

loss of generality, we assume each round occurs at times given by the nonnegative integers, Z≥0.

For all t ∈ Z≥0, the weighted digraph has the same vertex set V = {1, 2, . . . , n}. Thus, switching

occurs between the possible directed edge sets. Then, for each (j, i) ∈ E(Dw(t)) and each i ∈ V , let

48

wij(t) ∈ R≥0 and wii(t) ∈ R≥0 denote the time-varying directed edge weights and local feedback

weights, respectively. That is, wij(t) is the weight i gives to information received from j ∈ N in
i

along (j, i). However, because the network topology is changing with time, it is useful to define

wij(t), i 1= j, even in the case (j, i) /∈ E(Dw(t)) (in which case we may define wij(t) = 0). For

simplicity, let xi(t) ∈ R denote the state of agent i ∈ V , and let x(t) = [x1(t), x2(t), . . . , xn(t)]T.

By combining the weights into an n × n matrix W (t) = [wij(t)], a linear iterative consensus

protocol (LICP) is given by the time-varying first order linear difference equation

x(t+ 1) = W (t)x(t). (7)

In (7), W (t) is a nonnegative matrix (meaning wij(t) ≥ 0, for all i, j) and row stochastic (row sums

are equal to 1). Additionally, the following is assumed [22]. There exists a small positive constant

α > 0 such that

• wii(t) ≥ α for all i ∈ V , t ∈ Z≥0;

• wij(t) = 0 if j /∈ N in
i (t) for all i 1= j, t ∈ Z≥0;

• wij(t) ≥ α for all j ∈ N in
i (t), t ∈ Z≥0;

•
∑N

j=1wij(t) = 1, for all i ∈ V , t ∈ Z≥0.

The lower bound on the weights, α, is given because there are counterexamples in which no con-

sensus is reached without a lower bound [127].

Xiao and Boyd study the average consensus problem with the goal of finding the optimal weights

to maximize the speed of convergence in fixed network topologies [205]. Two metrics, asymptotic

convergence factor and per-step convergence factor, are defined to characterize the optimization

problem. A theorem is proven that relates these metrics to the spectral radius and spectral norm

of the weighting matrix, thereby recasting the optimization problem into traditional matrix related

terms. By assuming a symmetric weighting matrix, both forms aforementioned collapse to a single

optimization problem that can be solved by expressing the spectral norm constraint as a linear matrix

inequality. The authors then describe heuristics for selecting sufficient weights for guaranteeing

convergence and compare the speed of convergence of these with the optimal one on a couple of

examples. Finally, one extension of the method is discussed for sparse graph design.

49

In [166], Ren and Beard address the problem of information consensus in a dynamic network

of interacting agents. Both discrete-time and continuous-time linear consensus protocols are con-

sidered. Dynamic switching topology is considered, where the only constraint is that the union

of digraphs over uniformly bounded time intervals has a rooted out-branching. These uniformly

bounded time intervals must occur infinitely often, and so this is referred to as the existence of

a rooted out-branching periodically over time. In addition, the time-varying weights in the con-

sensus protocol must be nonnegative. Under these conditions, the multi-agent network is shown

to reach unconstrained consensus asymptotically. A complementary result is given by Moreau in

[144], where it is shown for any iteration scheme that satisfies a strict convexity assumption (not

necessarily linear), the existence of a rooted out-branching periodically over time is both necessary

and sufficient to ensure asymptotic consensus is reached. In addition, it is shown by Moreau that

the periodicity of the existence of a rooted out-branching can be relaxed in the case of bidirectional

communication. In this case, a necessary and sufficient condition is for each point in time t0 ∈ Z≥0,

the union of graphs over [t0,∞) must contain a rooted out-branching.

The more general problem of distributed calculation of any function of the initial states of agents

in the network using linear iterations is studied by Sundaram and Hadjicostis in [178]. By using

observability theory, each agent i observes the evolution of values in its inclusive in-neighborhood

over a finite time interval in order to determine precisely the initial values of all nodes from which

i is reachable. The method requires fixed network topology, but works for almost any choice of

weights. The amount of time required is upper bounded by the difference between the number of

nodes to which i is reachable and the in-degree of i. Therefore, if the network is strongly connected,

all nodes in the network can calculate any function of the initial states in at most n− 1 time steps.12

This is a very general result and includes χ-consensus, for any function χ on the initial states.

Asynchronous Linear Iterative Consensus

In an asynchronous setting, there are several issues not present in the linear iteration of (7). First,

and most importantly, it is necessary to make some assumption that each agent eventually performs

an update. Otherwise, the agents that never update will obviously not reach consensus with the
12It is n− 1 instead of n because in a strongly connected digraph all nodes must have in-degree greater than or equal

to one.

50

others. Second, the values used in a given update may be outdated. Third, because there is no

common clock, it is typically assumed that agents perform pairwise updates, i.e., only using a single

neighbor’s value per update.

In [59], results from asynchronous systems theory are applied to stability properties of consen-

sus in multi-agent networks with asynchronous communication and fixed interaction topology. The

following assumptions are made:

• regularity: finite number of updating instants in any finite time interval;

• eventual update: the number of updates of an agent as time approaches infinity is unbounded

for every agent in the network;

• local state access with positive initial value: there exists at least one agent whose initial value

is greater than zero and which can access its own state without delay;

• rooted out-branching: the interaction digraph has a rooted out-branching.

By ordering the time instances in which updates are made, a one-to-one correspondence can be

made with the nonnegative integers. At each update instance, each agent i either updates its state

according to the ith row of (7) or remains the same (if it does not update at the time instance). Given

the above assumptions, the asynchronous protocol is shown to converge. Also, it is described how

synchronous protocols with time-varying interaction topologies may be cast into the asynchronous

framework proposed if the union of interaction digraphs across an infinite sequence of contigu-

ous, nonempty, bounded time intervals has a rooted out-branching. The consensus in this case is

unconstrained.

Asynchronous linear iterations are studied in [135] for the average consensus problem in packet-

switched networks. A message passing mechanism is used for communication in fixed connected

undirected network topologies. Two algorithms are studied, one with blocking and another with

no blocking. For each algorithm, the basic primitive is a pairwise update. In the first algorithm, a

blocking mechanism is used to prevent a node from concurrently participating in multiple pairwise

updates. A problem with the blocking mechanism is that it can lead to deadlock. To address this, the

authors describe a round-robin implementation of the blocking mechanism, which is deadlock-free.

The work assumes that for each link, and at any time t, there exists a finite time τ ≥ t in which an

51

update will occur on the link. The second algorithm does not have blocking, but instead requires

that each node keep in memory the sum of all pairwise updates on each channel. The first algorithm

is shown to have an exponential convergence rate. No analytical rate of convergence is provided for

the second algorithm, but in simulations it demonstrates exponential convergence.

2.3.1.7 Continuous-Time Consensus

A natural extension of the linear iterative strategies described in the previous section is to “contin-

ualize” the iterations by considering ordinary differential equations instead of difference equations.

Doing so enables the use of a vast array of tools from smooth and nonsmooth analysis to design and

analyze continuous-time consensus protocols. Moreover, if the differential equations are interpreted

as physical state dynamics of the agents, then there is a natural physical interpretation. In this case,

the agents have integrator dynamics and can be viewed as point masses or particles as in the ren-

dezvous or particle flocking problems. The tradeoff, however, is that only synchronous networks

can be analyzed in the continuous-time setting.

The canonical continuous-time linear consensus protocol (LCP) is given as follows. Let xi(t)

denote the scalar state of agent i ∈ V , which has integrator dynamics ẋi = ui. Then

ẋi(t) =
∑

j∈Ni

aij(t) (xj(t)− xi(t)) , (8)

where A(D(t)) = [aij(t)] is the (possibly) time-varying adjacency matrix. By expressing

x(t) = [x1(t), x2(t), . . . , xn(t)]
T,

we may write

ẋ = −L(D(t))x(t), (9)

which describes the global evolution of the multi-agent network. The asymptotic behavior of (9) is

studied in fixed and switching network topology in [156]. For fixed topology, the solution of (9) is

given by

x(t) = exp(−L(D)t)x(0). (10)

52

In [156], it is shown that if D is strongly connected with the Laplacian satisfying L(D)zr = 0,

zTl L(D) = 0, and zTl zr = 1 (i.e., zl and zr are the left and right eigenvectors associated with the

zero eigenvalue that satisfy the constraint zTl zr = 1), then

lim
t→∞

x(t) = zrz
T
l x(0).

Thus, if L(D) has a left and right eigenvector of 1 associated with the zero eigenvalue, then the

constraint zTl zr = 1 implies that (9) solves the average consensus problem asymptotically. It

turns out that this is true if and only if the weighted digraph is balanced. Whenever the digraph

is strongly connected, the convergence to the average of the initial values is exponential, with rate

determined by the algebraic connectivity of the symmetric part of the weighted Laplacian, i.e.,

Ls = 1/2(L(D) + L(D)T).13

The convergence properties of (9) are also studied in [156] for the case of switching network

topology. It is shown that as long as each digraph in the set of feasible digraphs is strongly con-

nected and balanced, then average consensus will be reached asymptotically with a rate of con-

vergence bounded by the smallest Fiedler eigenvalue in the set of feasible digraphs. Also, net-

works with identical constant delays are considered in [156]. Whenever the network is fixed, con-

nected, and undirected, the average consensus problem is achieved if the time delay is no larger then

π/(2λn(L)).

In order to increase the rate of convergence in average consensus, Epstein et al decompose

the (connected, undirected) network into an M -layer hierarchical network [54]. An algorithm for

implementing the canonical linear consensus protocol that utilizes this hierarchical decomposition is

shown to reach consensus faster than when implemented on the same network without the imposed

hierarchy. This is achieved by effectively increasing the algebraic connectivity in the hierarchical

subgraphs, which in turn drastically increases the rate of consensus. The tradeoff is steady-state

error. That is with the proposed algorithm the average may be reached within certain error bounds.

The consensus error is analyzed and closed-form bounds are derived.

Another approach to increasing the rate of convergence of the linear consensus protocol is to

perform a rewiring process on a regular graph in order to create a small-world network [150]. Small-
13The second smallest eigenvalue of Ls is justified to be called the algebraic connectivity of Ls because Ls is a valid

Laplacian matrix of the so-called mirror graph of D [156].

53

world networks are highly clustered, like regular graphs, but also have a small characteristic path

length, like random graphs14 [202]. It is shown in [150] that the mean of the bulk Laplacian spec-

trum is invariant throughout the rewiring process. Surprisingly, the algebraic connectivity of the

resulting small-world network can be up to three orders of magnitude larger than the regular graph.

Note that this is equivalent to increasing the rate of convergence of the consensus protocol by three

orders of magnitude.

In [143], Moreau analyzes the canonical linear consensus protocol in a network of integrators.

Here the agents communicate weighted copies of their state to their nearest neighbors. The main

contribution of this paper is to relax the constraints on the topology and still guarantee stability (i.e.,

convergence of the protocol to an aligned equilibrium). Furthermore, the case of fixed and identical

time delay in the communication between agents is shown to reach an aligned state as well, provided

the self-feedback of the individual integrators is delay-free. In this work, there is a slight difference

in the approach to analyzing the convergence properties. Olfati-Saber and others have used graph

theoretic tools like the graph Laplacian to apply convergence analysis to the network of interacting

agents, whereas Moreau takes the complementary approach of considering first the “system” (i.e.,

the multi-agent network) described by a time-varying system matrix that is Metzler (off diagonal

elements are all nonnegative and at least one is strictly positive to avoid the trivial case of the

zero matrix) with zero-row sums, and then associating to the system dynamics a directed graph

describing the communication. A nonnegative tolerance parameter is also associated to the graph

so that only weights in the system matrix which are strictly greater than the tolerance will have

associated links in the graph. To achieve the convergence results (uniform exponential stability),

the Lyapunov function of Tsitsiklis is used [191], defined as follows: Suppose there are n integrator

agents with states given by x1, x2, . . . , xn. Then define

V (x) = max{x1, x2, . . . , xn} −min{x1, x2, . . . , xn}.

With this, the milder connectivity conditions may be stated as follows. Provided there is a rooted
14The characteristic path length is the average distance between nodes in the graph, where the distance between nodes

is the length of a shortest path between the nodes. The clustering coefficient of a graph is defined as follows. Given that a
node i has degree di, the maximum number of edges within the subgraph of inclusive neighbors of i is di(di−1)/2. Then
i’s clustering coefficient is the ratio of edges in the subgraph of the inclusive neighborhood to the number of possible
edges. The clustering coefficient of the graph is then the average of this ratio over all nodes.

54

out-branching and the system matrix is Metzler with zero-row sums for every time t, then the aligned

equilibrium point is uniformly exponentially stable. Note that this paper does not address the aver-

age consensus problem, but instead the consensus is unconstrained because there is no requirement

that the network be balanced.

Wang and Slotine provide a contraction analysis of time-delayed versions of the canonical linear

consensus protocol in [201]. This work brings together much of the prior work in the literature on

consensus under a common framework. It shows how in a leaderless group the time delays can cause

the steady-state value of consensus to differ from a version of the same system without delays. Here

the time delays are not required to be identical. For leader-follower groups, the leader is able to

dictate the consensus value. In order to ensure stability (convergence), wave variables are used in

communication. The analysis is done for both continuous-time and discrete-time models.

Lee and Spong extend the unconstrained consensus results from integrator agents to more gen-

eral dynamical agents [118]. The agents are modeled as a class of linear systems and are not nec-

essarily identical. The network has directed information flow with possibly nonidentical constant

delays. The main stipulation is that each agent’s frequency response must have unity magnitude at

DC (zero frequency) and strictly less than unity magnitude for all nonzero frequencies. This may

be achieved using local feedback control to shape the closed-loop frequency response as desired.

For the agents to reach consensus, the directed information graph must have at least one rooted out-

branching. Furthermore, the information digraph is weighted to model relative reliability of link

communication amongst neighboring nodes under the following constraint: the sum of the weights

for each node’s set of neighbors is unity. This constraint means that the weighted adjacency matrix

has an eigenvalue 1 associated with 1n. Further, imposing the constraint of at least one rooted out-

branching, causes this unity eigenvalue to be simple (multiplicity one). Combining these constraints

allows for the application of Geršgorin’s disk theorem coupled with the spectral radius stability the-

orem to show that all nonzero frequencies decay over time, leaving only a DC component. Taking

this with the assumption on the weighted adjacency matrix, it is shown that consensus is reached

if and only if the digraph has a rooted out-branching. Finally, a simulation of a network of agents

with fully-actuated point-mass dynamics (double-integrator dynamics) and a simulation of a hetero-

geneous network of single and double-integrator agents is given to verify the theory applied to the

rendezvous problem.

55

Almeida et al. study the problem of reaching consensus in continuous time with communication

performed at discrete instances [3]. The main consensus variable at each node behaves as an inte-

grator. In order to deal with discrete communication instances with possibly outdated information

from neighboring nodes, an auxiliary variable is introduced that has continuous dynamics between

communication instances, but is allowed to have discrete jump discontinuities at the instances in

which communication takes place. The auxiliary variable takes into account the information from

neighboring nodes and is introduced in the main variable’s dynamics in order to drive the variables

to consensus. The results require assumptions of bounded delays, nontrivial convex interactions,

existence of a periodic rooted out-branching, and a bound in the time difference between communi-

cation instances [3].

Finally, Cortés studies continuous-time consensus under a very general framework in [41]. Here,

distributed χ-constrained consensus is considered in weighted directed networks for any continuous

function χ. In this case, the agents have integrator dynamics, but the input is not required to be con-

tinuous. In the case of discontinuous input, the solution is understood in the sense of Filippov [63].15

The feasible functions χ on which consensus may be reached are characterized using several tech-

nical assumptions for both fixed and switching topology. An algorithm – designed for the special

case of power-mean consensus – is shown to converge exponentially in weakly connected weighted

digraphs given an appropriate selection of the weights. The rate of convergence is a function of

the Fiedler eigenvalue of the symmetric part of the weighted Laplacian. A particularly noteworthy

result of [41] is that in strongly connected weighted digraphs, a nonsmooth algorithm that achieves

finite-time consensus for min and max consensus is analyzed. The time to converge is bounded by

the maximum difference of the initial values.

2.3.1.8 Robust and Secure Consensus

Robustness to uncertainties and security are two important issues to consider when designing dis-

tributed protocols for multi-agent networks. Because consensus is arguably one of the most fun-

damental group objectives, it is especially important to develop secure and robust consensus algo-

rithms. In this section we discuss consensus that is robust to uncertainties and security in multi-agent
15Given a differential equation ẋ = f(x) over an interval [t0, t1] in which the vector field f is discontinuous, the

Filippov solution is an absolutely continuous function ξ such that ξ̇ = f(ξ) for almost all t ∈ [t0, t1].

56

networks.

We have already discussed various forms of robustness to uncertainties in the consensus algo-

rithms described above. For example, in continuous-time consensus, we have discussed robust-

ness to identical constant delays [156, 143] and nonidentical constant delays [201, 118]. Because

switching topology can occur because of temporary link failures, several works already described

can handle certain types of data loss (assuming the technical assumptions for convergence are still

met) [156, 41]. Various other forms of uncertainty have been considered in consensus protocols

for multi-agent networks. Reaching average consensus in a wireless network with interference is

studied in [197]. Additive channel noise is addressed in [83]. Packet loss in ring networks is studied

in [81]. Robustness in terms of sensitivity to model uncertainty has been addressed in [85].

The problem of quantized average consensus whenever the consensus variables are integers is

studied in [94]. With quantization, it is not possible in general to consider exact average consensus.

Therefore, the authors define the notion of quantized consensus distribution, which is a distribution

for the values of the nodes such that no two values differ by more than one and the sum of the values

in the distribution is equal to the sum of the initial values. Then, given a class of algorithms that

satisfy mild assumptions, convergence to a quantized consensus distribution is shown to hold. In

particular, quantized gossip algorithms are shown to belong to this class. In addition, the authors

study expected convergence time of quantized gossip algorithms and shown that in complete and

linear (path) networks, the expected convergence time is bounded by polynomials in the number of

nodes, n.

A work that considers robust statistical consensus is [142]. We will describe this algorithm in

detail because it deals with the notion of outlier removal, which is similar to the idea behind the ap-

proximation functions used in the consensus protocols of distributed computing and the Byzantine-

resilient gathering algorithms. However, instead of considering outliers in terms of normal behavior

of the protocol, this paper considers statistical outliers. Therefore, the “outlier nodes” are considered

reliable with respect to communication.

In more detail, [142] studies robust consensus in synchronous sensor networks in which mea-

surements are taken of a phenomenon or process that is assumed to follow a consistent statistical

model. A subset of the measurements taken are assumed to be outliers with respect to this model,

and the goal is to instantiate the model that fits the inliers and reach average consensus on just the

57

inlier measurements in a distributed way, so that each node in the network – including the outliers

– have the best estimate of the the true average. The algorithm to achieve this goal is a distributed

version of the RANdom SAmple Consensus (RANSAC) algorithm, called De-RANSAC (RANSAC

is widely used in the field of computer vision). The authors demonstrate that the distributed version

achieves the same results as the centralized version of RANSAC. Because the RANSAC algorithm

requires the total number of nodes, n, the authors present a finite-time consensus protocol (appli-

cable even in switching topologies), and then combine this with a leader election mechanism to

determine n.

Before describing how De-RANSAC works, it is useful to describe the centralized version

(RANSAC) first. The RANSAC algorithm generates K hypothetical models to fit the data us-

ing random subsets of measurements, and then selects one of the models using a voting system.

RANSAC utilizes a number of assumptions in its analysis, including

(i) each measurement has independent probability, pin, of being an inlier;

(ii) there exists a procedure to estimate a hypothetical model using at least c samples;

(iii) if a model is generated using c inlier samples, then the model fits all inliers.

The number K is chosen by selecting the number of measurements, c, and the desired probability

to generate one hypothesis using only inlier measurements, psuc. Then using the equation

K =
log(1− psuc)

1− (pin)c
,

one determines K . The voting mechanism requires beforehand a threshold parameter τ and error

function. The vote on whether a measurement is an inlier with respect to a hypothetical model is a

binary result, determined by taking the measurement and hypothesis as input to the error function,

which returns a real value. If the value is less than τ , the measurement is then an inlier. The

hypothesis that receives the most votes is the winner. Finally, the hypothesis is refined using the

only the known inliers from the winning hypothesis of the voting process.

In the distributed version with switching topology, first a partial flooding algorithm is run so

that each node has a larger enough sample size of measurements to create at least K hypotheses. A

multi-hop sample sharing algorithm is proposed to do this. However, a problem arises because some

58

of the hypotheses generated may be duplicates across different nodes in the network. Therefore, a

refinement on the number of hypotheses each node must produce is necessary. The analysis of

how this should be done assumes that each node has access to all measurements and that no local

duplicates are made. The former does not hold unless the flooding algorithm is run to completion,

while the latter is easy to ensure locally. The results, which use combinatorial arguments, provide a

conservative bound on the number of hypotheses each node must produce to ensure other nodes are

able to produce enough unique hypotheses. This bound is then reduced by using Newton’s method

to find a less conservative bound. Next, the distributed, finite-time consensus on the number of

votes each hypothesis in the union of hypotheses receives is presented. The hypothesis with the

most votes is then selected. In order to perform the refinement on this hypothesis in a distributed

manner, a consensus protocol using homogeneous and normalized coordinates is given. Finally,

simulation examples for robust average consensus with outliers and robust formation of teams of

robots are given.

Next, we discuss a framework for determining the robustness of distributed algorithms given in

[75]. The framework applies to discrete-time, synchronous algorithms on undirected graphs. In the

framework, the agent, networked multi-agent system, cooperative task, and cooperative algorithm

are all formally defined, along with the notion of faulty agent and a new concept for robustness. The

consensus algorithm of [156], along with the sensor deployment algorithm of [43], are analyzed for

their robustness properties. Some discussion is given on how to render algorithms more robust by

introducing mechanisms for detection and isolation of faulty agents.

In more detail, the agent is defined as a 4-tuple (X,U,X0, f), where the state x(t) lies in space

X, the control input u(t) is in U , the initial state x0(t) is in X0, and f : X × U → X is a map

that defines the dynamics of the agent. The networked multi-agent system is a triple (I,A,Gcomm),

where

• I = {1, 2, . . . , n} is the set of unique identifiers for each of the n agents;

• A = {Ai}i∈I is the set of agents;

• Gcomm is the set of allowed communication graphs. At each time step t, the communication

graph defined by Ecomm over n vertices is an element of Gcomm. The graph may be due to

sensing or communication.

59

On top of this, there may be a set of additional variables involved in the problem specification.

These are considered environmental variables, denoted by V . The cooperative task is defined as a

cost function C defined over all state and input trajectories, initial states, and environmental vari-

ables. The minimizer of the task cost function should occur on a subset of the domain where the

networked multi-agent system achieves the task. The cooperative algorithm is an assignment of

communication and control laws to each agent. The failure modes considered in the paper are

stopping failures, constant output failures, and Byzantine failures.

The definition of robustness of an algorithm is defined as follows. The performance cost PC of

an algorithm is the difference between the task cost achieved by the algorithm and the minimum task

cost. The worst-case performance cost PCwc is the supremum of the PC as the initial conditions

and values of the environmental variables are varied across a given set. Consider an algorithm

being executed on a system of n agents out of which F agents fail according to a particular failure

model. Denote the worst-case performance cost achieved through the remaining n − F agents as

PCwc(n, F), where the supremum is taken over the initial conditions, values of the environmental

variables, and all groups of F agents that can fail. An algorithm is said to be worst-case robust to a

particular failure mode up to F agents if

PCwc(n, F) = O(PCwc(n− F)),

as n→∞. If PCwc(n, F) = Ω(PCwc(n−F)) but PCwc(n, F) 1= Θ(PCwc(n−F)), the algorithm

is said to be worst-case non-robust.

The most important results of [75] are that the consensus protocol of [156] is worst-case non-

robust if the F failures make the graph disconnected, and is worst-case robust if the F failures

do not make the graph disconnected with respect to stopping failures. It is worst-case non-robust

to constant and Byzantine failures. Because of this, there is a need for consensus protocols in

cooperative control that are robust to these types of failures.

Detecting Misbehaving Agents

Here we consider techniques for detecting and identifying misbehaving agents in multi-agent net-

works. Typically, two types of misbehaving agents have been considered: non-colluding and ma-

60

licious agents. Non-colluding agents are unaware of the network topology, the states of the other

agents, or the other misbehaving agents. Malicious agents, on the other hand, are aware of the

network topology, the states of the other agents, and which agents are adversaries. In this way,

malicious agents are similar to Byzantine agents because worst-case behavior must be considered;

however, malicious agents must transmit the same information to each neighbor, and are therefore

less devious than Byzantine agents. Each of the identification techniques requires at least some non-

local information. And, the algorithms tend to be of high complexity, i.e., exponential complexity

in the case of exact identification. But, more computationally efficient approximate algorithms have

been developed [159].

In [157], the issue of detecting and identifying a single misbehaving agent using a linear iterative

strategy in discrete-time synchronous networks is introduced. Then, Sundaram and Hadjicostis

show in [179] that κ(G) ≥ 2F + 1 is a necessary condition for detecting and identifying up to

F malicious agents using linear iterations in synchronous networks. In the companion paper [180],

κ(G) ≥ 2F+1 is shown to also be sufficient for the problem. In this case, observability properties of

the linear multi-agent network are exploited so that every node is able to calculate the initial values

exactly, and thus any function of the initial states, in at most n steps. The results of [179, 180] are

generalized in [181] to characterize under which conditions any subset of nodes can obtain all of

the initial values.

The authors of [157] later extend the analysis done in [179, 180] by characterizing the type of

behavior of the malicious agents that is most troublesome to the linear network and by character-

izing the network connectivity required to tolerate both malicious agents and non-colluding agents

in [158]. A computationally expensive but exact algorithm is presented in [158] to detect and iden-

tify up to F malicious agents in networks with connectivity at least 2F + 1. This exact algorithm

requires each node to know the topology of the entire network. In [160], two approaches are consid-

ered to reduce the computational complexity and require only partial network information. The first

assumes the network is comprised of weakly interconnected subcomponents and restricts the be-

havior of the misbehaving nodes. The second imposes a hierarchical structure to detect and isolate

the malicious agents. These results are combined and extended in [159].

The idea of using a sequence of maneuvers in order to detect faulty or malicious agents in

discrete-time linear consensus networks is considered in [67]. The so-called motion probes, defined

61

as inputs to the network, are shown to leave the stationary point of the consensus process unchanged.

However, the authors do not consider how the motion probes achieve the detection objective, and no

algorithms are given for the motion probes. Also, a fault recovery maneuver is considered, whereby

the uncompromised agents undo the effects of the malicious agents. This is achieved by maintaining

in memory for each agent, all contributions of its neighbors on its own trajectory. Under appropriate

assumptions, subtracting these contributions will recover the initial stationary point of the consensus

process including only uncompromised agents. This idea was originally used in [174] for reaching

the correct consensus value with dynamic network topology in continuous-time and later adapted to

an asynchronous setting in [135].

Another closely related research problem is the issue of security of consensus in multi-robot

systems [57]. A distributed intrusion detection system (IDS) has been developed using a hybrid

model of robotic agents that monitors neighboring agents to detect non-cooperative agents using

only local information [57]. The distributed IDS has been extended to deal with the case where

some of the monitors provide false information [56]. This paper describes a distributed service for

detecting malicious robots in multi-agent networks. The framework is a high-level architecture that

uses a set of decentralized cooperation rules to try to detect and isolate malicious robots based on

known physical behavior and logical constraints requiring a majority vote. The approach is exem-

plified using a simple automated highway example with simulations. The IDS of [56] is improved

by using past information in [55].

2.3.2 Pattern Formation

Pattern Formation, or formation stability, is a physically dependent generalization of gathering,

point convergence, and rendezvous. The goal is for the agents to autonomously and cooperatively

form a pattern in space, which could be predetermined by a desired curve or unknown prior to de-

ployment of the agents. Pattern formation has been studied in the mobile robotics community [182]

and the cooperative control community [154]. The differences between the two approaches are es-

sentially the same as the differences between gathering and rendezvous, so they will not be repeated

here.

One simple scenario is whenever the agents are point masses and they wish to achieve desired

inter-agent distances between neighbors. A simple modification of the canonical continuous-time

62

consensus protocol can achieve the objective [152]. To be concrete, let rij denote the inter-agent

distance between agents i and j desired by agent i. Then, the following protocol achieves con-

vergence to a formation with the desired inter-agent distances, assuming the directed network is

balanced:

ẋi =
∑

j∈N in
i

(xj − xi) + pi,

where pi =
∑

j∈N rij .

The basic idea described above is used in [125] to make formations about the centroid of the

group of integrators in a cyclic pursuit scenario. In this situation, the communication network forms

a directed cycle. Here the authors also consider counterclockwise and clockwise star formations

and show that collisions are avoided. Similarly, in [154], structural potential functions are used

to achieve planar formations of double-integrator agents while avoiding collisions. Another com-

pletely different approach to pattern formation uses a virtual layer for self-stabilization of a network

of robots to a desired curve [71]. In this case, the robots converge uniformly along the desired

curve, and because the algorithm is self-stabilizing, it is guaranteed to converge whenever there are

intermittent disturbances in the network that eventually subside.

2.3.3 Formation Control

Formation control is concerned with establishing and preserving a formation of the agents while the

agents perform maneuvers. Therefore, formation control requires pattern formation, or formation

stability, as a subtask. Formation control is important for coordination of spacecraft for interfer-

ometry, control of unmanned aerial vehicles (UAVs), and mobile robotics. There are four major

approaches to formation control: leader follower, virtual leaders, behavior-based, and graph theo-

retic. In the leader follower approaches, the leader provides the reference trajectory to the other

agents [185]. Virtual leaders, on the other hand, are synthesized by the multi-agent network, so

that the network is more robust to leader failure [53]. Behavior-based approaches typically have a

set of primitive actions, and the collective behavior is formed by the selection of actions made by

the individuals, with rules governing how they are selected [12]. Graph theoretic methods employ

results from algebraic graph theory in order to achieve formation control using local strategies [60].

The graph theoretic approach is the most relevant to our concerns.

63

In [60], the problem of formation stability and control is considered using graph theory. Specif-

ically, the eigenvalues of the Laplacian are used to state a Nyquist criterion on formation stability

for the proposed distributed controller. The effects of the network topology on formation control is

studied in detail, and a separation principle, which allows for the separate design of an individual

stable controlled vehicle and a stable formation network is considered. The focus of the paper is on

formation stability and control of LTI systems.

In [7], Arcak analyzes a passive interconnection structure suitable for formation control and

group agreement problems that unifies other prior work [148, 184, 155], and addresses data loss

for the agreement problem by showing that the communication topology may be time-varying, as

long as it remains connected in an integral sense. In [7], Arcak presents a passivity-based design

framework for controlling nonlinear systems which have been rendered passive through an internal

feedback configuration. The problem addressed is to satisfy two design constraints. The first deals

with zero steady-state error in velocity control. The second is a relative positioning of the agents (or

formation control) defined by a compact set. The underlying assumption is that each agent in the

network is capable of receiving a global velocity trajectory command.

2.3.4 Synchronization

Synchronization is a dynamic form of agreement on all of the state variables of the agents. From

one perspective, it is a strict generalization of consensus, where the agents have more complicated

dynamics than simply an integrator or accumulator. On the other hand, there are fewer variants of

synchronization problems. This is because synchronization problems tend to deal exclusively with

agreement on physically dependent quantities, instead of more general quantities. Therefore, more

precisely, synchronization is a strict generalization of physically dependent consensus, and entails

agreement whenever the states are oscillatory or converge to limit cycles. Because the synchroniza-

tion literature is vast, we consider only synchronization problems in multi-agent networks.

In [171], synchronization of identical linear systems is studied. Sufficient conditions for syn-

chronizing to open loop dynamics ẋ = Ax require (A,B) stabilizable, (A,C) detectable, A has all

eigenvalues in closed left-half plane, L(t) (Laplacian) piecewise continuous and bounded, and D(t)

uniformly connected (meaning there exists a time horizon T such that for all t, the union of digraphs

over [t, t+T] has a rooted in-branching). The dynamic output feedback controller uses a Luenberger

64

observer [128] and stabilizing gain matrix K . Extensions to discrete-time and static feedback law

are given without proof. Examples including double integrators and passive/nonpassive harmonic

oscillators are given to explicate the technique.

Synchronization of the agents whenever the agents are nonidentical is extremely challenging.

A recent work that looks at the asymptotic synchronization with nonidentical agents is [211]. The

agents are modeled as nonlinear input-affine systems with input given by a weighted sum of neigh-

bors’ states. Using the error dynamics, conditions for synchronization are given by matrix inequal-

ities. Two cases are considered and treated separately, (i) the agents have a common equilibrium

solution, and (ii) they do not. In the first case, the origin of the error coordinates is an equilibrium

point for the error dynamics, and an asymptotic stability approach is used. For the latter case, which

is more difficult, the error dynamics are defined with respect to the average dynamics of the net-

work of agents. In this case, synchronization is shown by proving global attractivity to the manifold

defined by the points where the error is zero. Controllers for achieving synchronization are then

developed to meet the needed criteria. The controllers may be obtained by solving an optimization

problem.

2.3.4.1 Output Synchronization

One important variant on synchronization is output synchronization. Output synchronization is less

restrictive than synchronization because it does not require all of the states to asymptotically syn-

chronize. Rather, only a subset of the outputs are required to asymptotically synchronize. One of

the first works to consider output synchronization is [35]. Here, each agent has a positive definite

storage function, which is used in the stability analysis with Lyapunov based arguments [96]. Static

linear and nonlinear control laws are considered that only act on the relative outputs of agents, so no

inertial coordinate system is required. For the linear coupling, the results prove output synchroniza-

tion on weakly connected balanced digraphs with static topology. For switching topologies with

piecewise constant switching signal (i.e., a finite number of switches in any finite interval of time),

the graph must be balanced pointwise in time and jointly connected (meaning the union of graphs

over the time interval is connected). By additionally assuming only a single path exists between any

two nodes in the communication graph, output synchronization is shown to hold with constant time

delays.

65

In the case of nonlinear coupling, all results are on undirected connected graphs. For this case, it

is assumed that the agents employ a nonlinear static control law that is odd symmetric, continuous,

locally Lipschitz, and passive. With these assumptions, stability is proven, and output synchroniza-

tion is possible given the right choice of the nonlinear function governing the control law. If, in

addition, the function is conic and zero only at zero, then output synchronization is guaranteed. By

using the scattering transformation in each of the channels of the network, the above results are

generalized to the case of constant time delay, assuming only a single path exists between any two

nodes in the communication graph. The above general results are then applied to the synchroniza-

tion of Kuramoto Oscillators and mechanical systems (Lagrangian systems). Finally, simulations of

networked pendulums and position control of robots are given.

In [87], the problem of output synchronization of rigid body holonomic robots modeled in the

special Euclidean group SE(3) is considered. A velocity control law is proposed that takes the

position and orientation measurements from the neighbors of a node and produces a velocity input

to the local controller. Each node has its own coordinate system and the rotation matrix mapping

it to an inertial coordinate system is assumed to be known. The nodes communicate in a strongly

connected weighted digraph (the weights provide information of channel quality). A passivity-

like condition is shown between the velocity and the vector form of the rigid body motion at each

node. This is used to construct a Lyapunov function. Using LaSalle’s invariant set theorem [96],

the position and orientation of each robot is shown to synchronize asymptotically, thus solving the

output synchronization problem. The approach is extended to the case where nonuniform constant

time delays exist in the channels of the network. Finally, numerical simulations and full-scale

experiments with nonholonomic robots are provided to validate the theoretical results.

Building on the results of [87], the specific case of attitude synchronization is considered in

[88]. Here, attitude synchronization means the translational velocities and orientation of all the

agents asymptotically converge to a common value. Given that all of the orientation matrices are

positive definite, a velocity input law is shown to achieve attitude synchronization in strongly con-

nected digraphs. The convergence is shown to be exponential with rate proportional to the algebraic

connectivity of the symmetric part of the weighted Laplacian matrix. Also, it is shown that leader-

following is possible if the leader has constant velocity and orientation. The control law is shown to

have certain robustness properties. For example, attitude synchronization is shown to be achieved

66

with nonuniform, time-invariant, and finite time delays. Finally, given a large enough dwell time,

switching network topology – even with some of the communication networks not strongly con-

nected – can be sustained.

Another work that addresses attitude synchronization is [10]. In [10], the design approach

described in [7] is applied to a group of rigid bodies to asymptotically synchronize the group in

a rotational maneuver in two situations. The first situation assumes each agent has access to the

desired angular velocity. The second assumes a leader-follower architecture, where the other agents

reconstruct the desired angular velocity adaptively.

2.3.4.2 Synchronized Tracking

A variant on output synchronization is synchronized tracking, or concurrent synchronization, where

the outputs of the agents must synchronize while following a common reference trajectory. Al-

though an uncoupled tracking law would “synchronize” the agents’ outputs, without explicit syn-

chronization, the cohesion of the agents’ tracking performance would not be robust to disturbances.

In [37], concurrent synchronization of Lagrangian systems is studied in networks modeled as reg-

ular balanced digraphs. The nonlinear stability tool used is contraction theory, and therefore the

convergence results are exponential [126]. A control structure to achieve concurrent synchroniza-

tion is given that uses a modified Laplacian matrix. Synchronization of the agents is shown with and

without reference tracking. Moreover, the agents may be modeled as different Lagrangian systems.

The concurrent synchronization scheme with the modified Laplacian is particularly nice because it

allows for separate tuning of the tracking and synchronization gains.

2.3.5 Coordinated Path Following

Coordinated path following, also known as synchronized path tracking, is a generalization of syn-

chronized tracking in which the entire trajectory, or path, of the reference signal is known to each

agent and may be different. This generalization is nontrivial because the paths are parameterized

by a dynamic variable, often time, speed, or acceleration, to which each agent must also conform in

addition to staying “on path.” This is often done in the interest of maintaining a particular formation

while following the desired paths, which requires synchronizing the path parameters in an indirect

67

manner in such a way that the desired formation is maintained. Because of this, coordinated path

following may also be viewed as a generalization of formation control.

In [70], coordinated path following of nonholonomic wheeled robots in connected bidirectional

networks is studied. Two goals are desired: (i) achieve asymptotic tracking of a path for each

vehicle, and (ii) coordinate the vehicles while tracking their individual paths by asymptotically

synchronizing the coordination states, which encapsulate formation information that may possibly

be time varying. The interaction between these two goals lies in the vehicles’ velocities and a

disturbance-like function of the heading and distance from path errors. First, a controller for en-

suring path following is proven to globally asymptotically stabilize the error dynamics. By using

a decomposition of the incidence matrix based on a spanning tree contained within the connected

network, uniform global asymptotic stability results are given for a synchronizing controller. This

controller synchronizes the coordination states and uses saturation to ensure the velocities satisfy

the constraints (boundedness, uniform continuity, and nonzero limit). These velocity constraints

are required so that the path following and coordination are properly decoupled and can be com-

bined. Time-varying pattern tracking is then discussed along with detailed simulations illustrating

the results.

In [89], passivity is used to design distributed controllers for synchronized path following in

a bidirectional network. Two control designs are considered. The first control law uses both path

error and synchronization error (with respect to the path parameters) formed with neighbors in the

network. There are separate gains for each error, which can be tuned to obtain the desired tradeoff

between path error and synchronization error. The drawback is this design is only applicable to static

network topology. The second control law only uses the synchronization error, but is applicable to

dynamic network topology, and therefore, data loss. It utilizes the passive design technique of [7].

Finally, a sampled data approach is applied to the first control law, in which the path parameters are

synchronized over the network in discrete time, while the rest of the control framework is modeled

in continuous time.

68

2.3.6 Biologically Inspired Objectives

2.3.6.1 Flocking

Flocking is similar to coordinated path following, but is inspired by behavior observed in nature.

Moreover, flocking has an explicit requirement that the agents avoid collisions with each other and

with obstacles. Although biologically inspired, flocking has also been studied for the purposes of

computer animation [169]. In [169], Reynolds identifies three important criteria for flocking:

• polarization (or cohesion): avoid becoming separated from the group;

• noncolliding (or separation): avoid colliding with obstacles or other members of the group;

• aggregate motion (or alignment): align velocity with the velocities of other members.16

In [151], Olfati-Saber seeks to characterize flocking from an engineering perspective. He looks

to address the three criteria of Reynolds by introducing algorithms that achieve cohesion, separa-

tion, and alignment quantitatively. To do this, first r-disk proximity graphs are used to define the

connectivity properties of the multi-agent network. Then cohesion is equivalent to maintaining con-

nectivity of the proximity graph (which is assumed to hold). To address separation, a spatial lattice

is used to specify inter-agent distances. Alignment is achieved by performing consensus on velocity.

A more recent work introduces a technique to strictly enforce cohesion by explicitly maintaining

connectivity of the proximity graph [208].

2.3.6.2 Foraging

Foraging addresses swarming behavior given utility functions that form surfaces over an environ-

ment. The basic idea is that a swarm of agents is deployed in an environment that is either rich

in resources or toxic. In the case of resource-rich environments, the agents seek to move to local

maxima of the resource utility function over the environment while interacting with the swarm. On

the other hand, in toxic environments, the agents move to minima to minimize the level of toxicity

within the environment. In either case, gradient methods are often used and are therefore sensitive

to the initial distributions of the swarms and the shape of the utility surface over the environment.
16Whereas flocking is concerned with all three behaviors described here, the special case of particle flocking (discussed

in Section 2.3.1.5) is only concerned with aggregate motion.

69

In [68], an attractant/repellent profile over an arbitrary dimensional environment is studied. In

this work, the motion of individual agents is determined by long distance attraction, short distance

repulsion, and attraction to resource-rich areas (or repulsion from toxic regions). The stability be-

havior of the swarm is determined by these factors. The authors analyze conditions for convergence

given specific nutrient profiles, such as a plane profile, quadratic profile, Gaussian profile, and multi-

modal Gaussian profile. For more information on foraging, and more generally swarming behavior,

see [68].

2.3.7 Cooperative Load Transport

Cooperative load transport is an objective in which the agents attempt to cooperatively move an

object in space, and interact only through incident and reactive forces on the load. Therefore, the

information exchange is inherently bidirectional. Although it has essentially no relation to the work

of this dissertation, it is an interesting example of a group objective in which the communication

in the network arises implicitly by mutual interactions with the payload. The interested reader is

referred to [11] for more details.

2.4 Comparison to this Dissertation

The goal of the research presented in this dissertation is to develop distributed multi-agent network

consensus and synchronization algorithms that are resilient to malicious attacks and uncertainties

caused by implementation effects. While some of the literature has focused on uncertainties caused

by implementation effects, there are few works dealing with resilient consensus and synchroniza-

tion. The work here differs from these related works because, as described in Section 2.3.1.8, no

cooperative control methods have been developed to handle adversaries resiliently using only local

information. Moreover, as of yet, no researchers have studied synchronization in the presence of

adversaries.17

17Resilient clock synchronization has been studied [129, 109, 120]. However, these techniques achieve agreement
resiliently on logical clock values, instead of agreement on the oscillator dynamics. In the jargon of this manuscript, this
type of clock synchronization is physically dependent consensus, but not synchronization.

70

CHAPTER III

DEPLOYMENT OF PASSIVE SYSTEMS IN UNCERTAIN NETWORKS

Modern surveillance and convoy tracking applications often require deploying groups of un-

manned robotic vehicles, such as unmanned aerial vehicles (UAVs). The benefit of using multiple

vehicles is redundancy, which reduces the likelihood of missing interesting events on the ground,

in the presence of obstructions caused by nonuniform terrain, vegetation, or man-made structures.

Further, the additional vehicles provide greater breadth of coverage and increased fidelity of infor-

mation [31, 99]. A central task for such multi-agent systems is to establish a formation around

an area of interest. For example, an n-gon with a target as its center, at the appropriate radius,

may simultaneously provide significant redundancy and breadth of coverage. While there are many

benefits to networked multi-agent systems in such scenarios, there are also many challenges. One

major challenge concerns implementation. For any distributed control approach to be feasible over

packet-switched networks, the protocol should be robust with respect to network uncertainties, such

as time-varying delays and data loss.

Many works recently have sought to at least partially address network uncertainties, while fo-

cusing on specific classes of coordination tasks. In [7], Arcak analyzes a passive interconnection

structure suitable for formation control and group agreement problems that unifies other prior work

[148, 184, 155], and addresses data loss for the agreement problem by showing that the commu-

nication topology may be time-varying, as long as it remains connected in an integral sense. The

passive design technique of [7] is used in one of the designs in [89] for synchronized path follow-

ing, and likewise, can tolerate data loss. A similar work, predating [7], is [35], which studies output

synchronization of passive agents with linear and nonlinear coupling among agents and can han-

dle switching topology and constant time delays under appropriate assumptions. In [88], attitude

synchronization is studied in the presence of constant time delays and data loss. Using partial con-

traction analysis and wave variables, the agreement problem with time delays is studied in [201].

In [200], an iterative algorithm is proposed to dynamically track the average of the time-varying

signals measured by individual sensors whenever the directed links are subjected to multiplicative

and additive noise.

71

The implementation challenge in multi-agent networks is a special case of the more general

integration problem in Cyber-Physical Systems (CPS) [183]. As in CPS, the agents in a multi-agent

network have physical dynamics, and the control computation and coordination is done using em-

bedded microprocessors and communication devices. This inherent heterogeneity leads to complex

cross-layer interactions between the cyber layers of the system (e.g., the software, network, and

platform) and the physical layers of the system (e.g., control and actuation). Because of the high

cost of integration, it is important to develop methods that decouple the design concerns across lay-

ers without neglecting the interactions that arise in integration. The work presented in this chapter

makes a step in this direction by focusing on decoupling the stability of the networked multi-agent

system from uncertainties in the network.

The coordination task studied in this chapter is for the networked multi-agent system to achieve

deployment. The deployment problem is similar to pattern formation [182] or formation stabiliza-

tion [154] (see Section 2.3.2), which are generalizations of the rendezvous problem [42, 123, 124]

(see Section 2.3.1.4). Specifically, the deployment problem requires that a set of mobile agents

asymptotically converge to predetermined points in space.18 Since the destinations are known be-

forehand, it is not necessary that the agents coordinate to achieve this objective. However, network-

ing the agents may be beneficial in order to coordinate the time of arrival of the agents (i.e., when

the agents arrive at their destinations), among other reasons. But, the introduction of the network is

accompanied by associated uncertainties such as time-varying network delays and data loss.

In contrast to what has been studied in the literature, we consider persistent network distur-

bances in the form of both time-varying delays and data loss [111, 112]. Here, each agent is as-

sumed to know its destination beforehand, and communicates with other agents in the network in

order to approximately synchronize the agents’ times of arrival at their destination. We propose a

passivity-based deployment coordination algorithm, or protocol, that leverages the inherent stability

and compositionality properties of passive systems. In order to make the communication robust to

network uncertainties, we use the wave variable formalism that has been used successfully in bilat-

eral teleoperation [34], port-Hamiltonian systems [175], and network control [103, 79, 108, 104].

The main contribution of this work is that we demonstrate through our deployment protocol the
18Deployment differs from pattern formation because in the deployment problem, the points to which the individual

agents converge are preassigned. In pattern formation, the formation pattern may be given beforehand, but the specific
destinations of the agents are not predetermined.

72

feasibility of maintaining passivity and stability in general bidirectional networks in the presence of

both time-varying delays and data loss. Under appropriate assumptions, we show that the protocol

achieves deployment in connected, non-bipartite overlay networks in the presence of uncertainties.

We further demonstrate through a set of simulation examples that the protocol induces an emergent

flocking-like behavior in which the agents arrive at their destinations at approximately the same

time. For these examples, we discuss how to parameterize the protocol to achieve good performance

in this regard, and describe how to implement the protocol without algebraic loops.

The rest of the chapter is organized as follows. Section 3.1 provides background material on

passivity and l2-stability needed for the technical results. The system model and problem statement

are given in Section 3.2. The deployment protocol is described in Section 3.3. The analytical

results on passivity and stability are given in Section 3.4, and the deployment results are presented

in Section 3.5. Section 3.6 discusses the design concerns when parameterizing the protocol to

achieve good performance. The design techniques described in Section 3.6 are then used in a set of

simulations of a network of velocity-limited vehicles in Section 3.7. The network of planar vehicles

is simulated over a range of network conditions. Finally, a summary is provided in Section 3.8.

3.1 Background

Recall that a signal f : Z≥0 → Rm is in the l2-space of functions if it has finite energy; i.e.,

∞
∑

t=0

fT(t)f(t) <∞.

Because l2 includes only a subset of those functions that asymptotically approach zero, it is useful

to consider the extended l2-space of functions, denoted l2e (or lm2e to emphasize the dimensionality

of the signals). A signal is in lm2e whenever any finite truncation of the signal has finite energy.

Therefore, lm2e includes all signals that do not have finite escape time. In formal terms, define the

N -truncation operator (·)N , N ∈ N, which nullifies function values for indices larger than N − 1.

That is,

(f)N =















f(t) 0 ≤ t ≤ N − 1;

0 otherwise.

73

For all signals f and g in lm2e define

〈f, g〉N !

N−1
∑

t=0

fT(t)g(t)

and

‖(f)N‖22 ! 〈f, f〉N .

Then, f ∈ lm2e whenever ‖(f)N‖22 < ∞ for all N ∈ Z≥0. The agents communicate and process

signals in lm2e.

Because of the nondeterministic nature of network uncertainties, it is useful to formulate the

relationships between inputs and outputs of the network in terms of relations instead of maps. A

relation R is a subset of lm2e × lm2e which identifies the set of possible outputs in lm2e for each input

u ∈ lm2e. We use definitions for lm2 -stability and passivity for discrete-time systems, which are

analogous to the continuous-time counterparts in [48]:

Definition 3.1. The discrete-time system with relation R ⊂ lm2e × lm2e is lm2 -stable if

u ∈ lm2 , (u, y) ∈ R =⇒ y ∈ lm2 .

Definition 3.2. Let R ⊂ lm2e × lm2e. Then,

1. R is passive if there exists some constant β ∈ R≥0 (the bias) such that

〈y, u〉N ≥ −β, ∀(u, y) ∈ R and N ∈ N;

2. R is strictly output passive if there exists some constants β ∈ R≥0 and ε > 0 such that

〈y, u〉N ≥ ε‖(y)N‖22 − β, ∀(u, y) ∈ R and N ∈ N.

Finally, all signals are assumed to be zero for all t < 0.

74

3.2 System Model and Problem Statement

3.2.1 Multi-Agent Network Model

The agents share an inertial coordinate system, have ideal clocks, and communicate over a syn-

chronous network, where execution progresses in discrete time steps of size T ∈ R>0 and indexed

by t ∈ Z≥0. The network is modeled by a connected undirected graph G = (V, E), where the

node set V = {1, 2, . . . , n} describes the n agents and E ⊆
(V
2

)

models the bidirectional commu-

nication. The network G is a logical overlay graph that describes how packets are routed in the

network. Therefore, {i, j} ∈ E indicates that information can be exchanged between agents i and

j, possibly over multiple hops in the network. It is assumed that the physical layer of the network

maintains the appropriate connectivity to ensure the logical overlay network remains connected.

Additionally, time-varying, nonnegative integer weights on the directed edges of the associated di-

graph D = (V, ED) of G19 are used to model asymmetric, time-varying delays required to route the

packets throughout the network. The delays are denoted by dij(t) ∈ Z≥0 for each directed edge

(i, j) ∈ ED. In order to denote packet loss and delays, we define the outgoing value sent from

node i to node j on directed edge (i, j) ∈ ED at time t ∈ Z≥0 by uij(t) ∈ Rm. The incoming

value received by node j from node i on directed edge (i, j) ∈ ED at time t ∈ Z≥0 is denoted

vij(t) ∈ Rm. Since it is entirely possible that no value is received by node j from node i at time

t, we set vij(t) = 0 for those time indices t ∈ Z≥0 whenever no value is received (either because

the value is delayed in the channel, or it has been lost). To illustrate the notation, consider the three

node example with nodes i, j, and q in Figure 8.

3.2.2 Problem Statement

The problem of deployment of a networked multi-agent system is defined as follows.

Definition 3.3. A networked multi-agent system with overlay network modeled by graph G =

(V, E), is said to achieve deployment if

lim
t→∞

||pi(t)− νi||2 = 0, ∀i ∈ V, (11)

19ED contains directed edges (i, j) and (j, i) for each undirected edge {i, j} ∈ E .

75

Figure 8: Three agent network example with nodes i, j, and q.

where the position of agent i ∈ V is denoted pi(t) and its destination is given by νi.

For a multi-agent network to achieve deployment in the presence of time-varying delays and

data loss, (11) must be satisfied for a given model of the time-varying delays and data loss. For the

time-varying delays this amounts to constraining the set of allowable delays to some set ∆ ⊆ Z≥0,

for all dij(t) such that (i, j) ∈ ED, t ∈ Z≥0. Associated with ∆ is a sequence of probability

mass functions defined on Z≥0 from which the values of dij(t) ∈ ∆ are drawn to determine the

delay of uij(t) at time t on the directed edge (i, j) ∈ ED. In the absence of data loss, we have

vij(t) = uij(t − dij(t)). To introduce data loss, associate to each pair (t, dij(t)) ∈ Z≥0 × ∆ a

binary mass function that determines vij(t) ∈ {uij(t − dij(t)), 0}. For the sake of generality, we

allow for ∆ = Z≥0, and place no restrictions on the probability mass functions that determine the

values of either dij(t) ∈ ∆ or vij(t) ∈ {uij(t − dij(t)), 0}. Note that if two or more messages

arrive at the same time, we assume that all messages except the latest message are dropped.

3.3 Deployment Protocol

Figure 9 illustrates the agent model, in which ri is the reference input, xi is the network feedback,

yi is the output, and Hi : lm2e → lm2e is the agent input-output map that describes the agent dynamics.

The variables xi and yi are transformed into the wave domain through the scattering transforma-

76

Figure 9: Agent model with protocol components for agent i.

tion [147]. The main idea behind the scattering transformation is to combine two variables (xi and

yi), as linear combinations, in such a way that models transmitted and reflected waves, uii and vii,

respectively. Because the energy of a wave is conserved upon delay (assuming no attenuation), wave

variables are well-suited to passivity-based techniques while providing additional robustness to de-

lays. The agent’s wave variables uii and vii are coupled to neighboring agents through the power

junction, PJi [103]. The deployment protocol combines these transformations and wave variable

manipulations with assumptions on the message passing mechanism and agent dynamics. First, we

describe the scattering transformation and power junction. Then, we state the assumptions on the

packet handling and agent dynamics before formally defining the protocol.

Definition 3.4. For each i ∈ V , the scattering transformation relates yi and vii to xi and uii by

xi(t) = bi(t) yi(t)−
√

2bi(t) vii(t), (12a)

uii(t) =
√

2bi(t) yi(t)− vii(t). (12b)

This definition is similar to the one in [147], but expressed with the outputs as functions of the

inputs. Additionally, the characteristic impedance, bi(t) ≥ 0, is allowed to be time-varying. The

characteristic impedance has a physical interpretation whenever the variables xi and yi are effort

and flow20 variables, respectively. In this case, the product of bi(t) with a flow variable is an effort
20Effort and flow variables are a generalization of force and velocity, and provide common terminology across multiple

physical domains, e.g., translational mechanics (force and velocity), rotational mechanics (torque and angular velocity),
electrical (voltage and current), magnetic (current and voltage), and hydraulic (pressure and volume flow). In all cases,

77

variable, and the scattering transformation has a powerful intuition. The physical unit of the square

of each wave variable is Watts, and the direction of transmission of each wave variable represents

power flow. Then, the difference of the transmitted and reflected waves, uii − vii is the net power

flow (where the sign determines the direction in which the net energy is flowing). Even whenever the

physical units of xi and yi do not admit this interpretation of power flow, the notion of mathematical

power flow allows the intuition to be generalized. In the latter case, the scattering transformation

and characteristic impedance bi(t) lose their physical interpretation, but the wave variables retain

the robustness properties with respect to time delays.

Next, we define the power junction, which allows two or more systems to be connected in the

wave domain in a passivity-preserving manner [103]. The intuition behind the power junction is to

ensure that the net (mathematical) power flow into the junction is always greater than or equal to

the net (mathematical) power flow out of the junction. That is, the power junction is defined so that

passivity is conserved.

Definition 3.5. Let m, p ∈ N, p ≥ 2. Then, a power junction is a map F : lmp
2e → lmp

2e , which

satisfies for all ξ ∈ lmp
2e and all t ∈ Z≥0 the inequality ξT(t)ξ(t) ≥ F (ξ(t))TF (ξ(t)).

In the definition of the power junction, ξ(t) is formed by concatenating the p inputs of size m×1.

For analyzing the system, it is useful to pair the p inputs to their corresponding outputs in F (ξ(t)).

For each agent i ∈ V , the power junction inputs uii and vji with j ∈ Ni correspond, respectively,

to the power junction outputs vii and uij with j ∈ Ni. We implement each agent’s power junction

as a linear set of equations in order to simplify the steady-state analysis. Specifically, we use the

following equations. For each i ∈ V , j ∈ Ni, and t ∈ Z≥0, the output waves are computed as

uij(t) =
1√
di
uii(t), (13a)

vii(t) =
1√
di

∑

j∈Ni

vji(t). (13b)

Assuming that G is connected ensures di > 0. Recall from Section 3.2.1 that vji(t) = 0 in those

time instances t whenever no value is received at node i from node j. We now prove that (13)

implements a power junction.

the product of effort and flow is power.

78

Lemma 3.6. The implementation defined by (13) satisfies the power junction constraint.

Proof. From the remarks following the power junction definition, we must show for all t ∈ Z≥0,

uTii(t)uii(t)+
∑

j∈Ni

vTji(t)vji(t) ≥ vTii(t)vii(t)+
∑

j∈Ni

uTij(t)uij(t). (14)

Clearly, a sufficient condition for satisfying (14) is to enforce the following constraints for each

component l = 1, 2, . . . ,m:

∑

j∈Ni

u2ijl(t) ≤ u2iil(t) and v2iil(t) ≤
∑

j∈Ni

v2jil(t).

The first inequality holds with equality by direct substitution of uij from (13a). To show the second

inequality, combine (13b) with the Cauchy-Schwarz inequality to get

v2iil(t) =
1
di





∑

j∈Ni

vjil(t)





2

≤
∑

j∈Ni

v2jil(t).

We now discuss the assumptions on the message passing mechanism. Due to the presence of

time-varying delays and data loss, some (or all) of the vji(t) may not be received at time t, in which

case vji(t) = 0. The assumptions on packet handling are summarized as follows:

A1: No retransmission of packets.

A2: Process null packets whenever input buffers are empty.

These assumptions ensure that each channel (i, j) ∈ E satisfies the following passive inequality

despite time-varying delays and data loss, as described in [34]:

‖(vij)N‖22 ≤ ‖(uij)N‖22, ∀N ∈ Z>0, (15)

where

vij(t) ∈ {uij(t− dij(t)), 0} ∀t ∈ Z>0.

Note that reordering of packets is allowed.

79

Finally, we outline the assumptions on the agent dynamics, which require the following defini-

tion.

Definition 3.7. A dynamic system defined by mapH : lm2e → lm2e with input u and output y settles at

steady state with steady-state gain matrix G ∈ Rm×m if

lim
t→∞

y(t) = G
(

lim
t→∞

u(t)
)

,

whenever limt→∞ u(t) exists.

For each agent i ∈ V , Hi is assumed to be a causal strictly output passive mapping, which

settles at steady state with diagonal positive-definite steady-state gain matrix Gi. Furthermore, we

assume that the position of the agent pi is equal to the output yi at steady state. We are now able to

formally define the deployment protocol as follows:

Definition 3.8. The Deployment Protocol is given by the 6-tuple, (V, E ,M,H,S,PJ), which

consists of

• V = {1, 2, . . . , n}, a set of n agents;

• E , the edge set that models the bidirectional overlay routing scheme and must result in a

connected graph G = (V, E);

• M, a message passing mechanism ensuring assumptions A1 and A2 hold;

• H = {H1,H2, . . . ,Hn}, a set of causal, strictly output passive maps describing the agents’

dynamics, with diagonal, positive-definite steady-state gain matrices G1,G2,. . . ,Gn, respec-

tively, such that yi = pi at steady state ∀i ∈ V;

• S , a set of n scattering transformations defined by (12), in which bi(t) ≥ 0 may be time-

varying for each agent i ∈ V;

• PJ , a set of n power junctions implemented as in (13) for each agent i ∈ V .

3.4 Passivity and Stability Analysis

In this section, we present the main contribution of the chapter; namely, that the deployment protocol

ensures strict output passivity and lm2 -stability of the networked multi-agent system in the presence

80

of network uncertainties. For compactness we use the following notation. Define the global input

r and output y by r = [rT1 , . . . , r
T
n]

T and y = [yT1 , . . . , y
T
n]

T, respectively. Similarly, define x =

[xT1 , . . . , x
T
n]

T and e = [eT1 , . . . , e
T
n]

T. Denote the mapping H : lnm2e → lnm2e , where y = H(e) is

defined by each agent mapping yi = Hi(ei) for each i ∈ V . Finally, denote the relation relating r

to y by Rry ⊂ lnm2e × lnm2e . The following lemma proves that the network, described by the relation

Ryx shown in Figure 10, is passive despite time-varying delays and data loss.21

Figure 10: Feedback interconnection of the global agent map with the network relation.

Lemma 3.9. Consider a multi-agent system modeled by connected graph G = (V, E) that satisfies

the deployment protocol of Definition 3.8. Then,

n
∑

i=1

(

‖(uii)N‖22 − ‖(vii)N‖22
)

≥ 0, ∀N ∈ N, (16)

even in the presence of time-varying delays and data loss. Moreover, the relation Ryx relating y to

x is passive.

Proof. Sum the power constraints (14) of each agent i from time t = 0 to t = N − 1 and then sum

the resulting inequalities over all i ∈ V . Then, invoke (15) to obtain

n
∑

i=1

(‖(uii)N‖22 − ‖(vii)N‖22)

≥
n

∑

i=1

∑

j∈Ni

(

‖(uij)N‖22 − ‖(vij)N‖22
)

≥ 0, ∀N ∈ N.

To show that Ryx is passive, consider the following power constraint, which may easily be derived
21Observe that Ryx is a relation and not a map because of the nondeterminism caused by network uncertainties.

81

from (12a) and (12b), regardless of the value of bi(t):

1
2(u

T
ii(t)uii(t)− vTii(t)vii(t)) = xTi (t)yi(t), ∀t ∈ N. (17)

Substitute (17) into (16) to obtain

n
∑

i=1

〈xi, yi〉N ≥ 0, ∀N ∈ N. (18)

Then, it follows that 〈x, y〉N ≥ 0, which is true with network uncertainties, and therefore holds for

all (y, x) ∈ Ryx, which satisfies the definition of passivity in Definition 3.2, with β = 0.

Next, we show that the networked multi-agent system, illustrated in Figure 10, is strictly output

passive and lm2 -stable.

Theorem 3.10 (Passivity and Stability). The relation Rry is strictly output passive and lm2 -stable

despite time-varying delays and data loss.

Proof. First we show that Rry is strictly output passive and then show that this implies lm2 -stability.

Since each Hi is strictly output passive, there exists εi > 0 and βi, for all i ∈ V , such that

〈yi, ei〉N ≥ εi‖(yi)N‖22 − βi, ∀N ∈ N.

Summing this inequality over all i ∈ V leads to

〈y, e〉N ≥ ε‖(y)N‖22 − β, ∀N ∈ N,

in which ε = mini{εi} and β =
∑n

i=1 βi. This proves that H in Figure 10 is strictly output passive.

Now, rewriting this inequality by substituting e = r − x, then adding 〈x, y〉N to both sides of the

resulting inequality, and finally invoking (18) results in

〈y, r〉N ≥ ε‖(y)N‖22 − β, ∀N ∈ N,

which is true with network uncertainties, and therefore holds for all (r, y) ∈ Rry.

82

Now, it is well known in continuous-time [48] and has been shown for discrete-time [100] that a

sufficient condition for a system to have finite lm2 -gain is for the system to be strictly output passive.

Moreover, finite lm2 -gain is a sufficient condition for lm2 -stability [48, 100].

Although the agents are strictly output passive and therefore lm2 -stable, the results of this section

ensure that the interactions through the network do not destabilize the system of agents. Next, we

address the deployment problem.

3.5 Deployment using Steady-State Analysis

To analyze the behavior of the networked multi-agent system, we consider the system at steady

state by assuming the network is ideal. Without network uncertainties, the relations, Ryx and Rry,

become mappings Hyx and Hry, respectively. By assuming Hyx and Hry settle at steady state, we

have the following result. For notational brevity, define limt→∞ fi(t) = fi,∞ for any function fi

for which the limit exists.

Theorem 3.11. Suppose the multi-agent network is modeled by connected graph G = (V, E) and

satisfies the deployment protocol of Definition 3.8. Further, suppose there are no network uncer-

tainties, and that bothHyx andHry settle at steady state. Assume that limits bi,∞ and ri,∞ exist for

all i ∈ V , and either bi,∞ = 0 for all i ∈ V or bi,∞ > 0 for all i ∈ V . Then the steady-state output

of agent i is given by

yi,∞ =















Mi

(

ri,∞ +
√

2bi,∞√
di

∑

j∈Ni

1√
2bj,∞dj

(rj,∞ +Kjyj,∞)

)

if bi,∞ > 0, ∀i ∈ V;

Giri,∞ if bi,∞ = 0, ∀i ∈ V;
(19)

whereMi = (bi,∞Gi+Im)−1Gi,Kj = (bj,∞Gj−Im)G−1
j , and Im is the identity matrix inRm×m.

Proof. Since Hry and Hyx settle at steady state and ri,∞ exists for all i ∈ V , it follows that y∞

exists and, in turn, x∞ also exists. Therefore, e∞ exists. For the case bi,∞ = 0 for all i ∈ V , it

follows from (12a) that xi,∞ = 0 for all i ∈ V . Using ei,∞ = ri,∞ − xi,∞ and yi,∞ = Giei,∞, we

conclude yi,∞ = Giri,∞.

If, on the other hand, bi,∞ > 0 for all i ∈ V , we deduce from (12) and (13) that all steady-state

values of wave variables exist. Using ei,∞ = ri,∞ − xi,∞ and yi,∞ = Giei,∞ we get yi,∞ =

83

Gi(ri,∞ − xi,∞). Substitute (12a) into yi,∞ = Gi(ri,∞ − xi,∞), and solve for yi,∞ to get

yi,∞ = (bi,∞Gi + Im)−1Gi

(

ri,∞ +
√

2bi,∞vii,∞
)

. (20)

Combining vji,∞ = uji,∞ with (13a) at node j (roles of j and i are reversed) produces vji,∞ =

ujj,∞/
√

dj . Substituting this into (13b) for node i yields

vii,∞ = 1√
di

∑

j∈Ni

1√
dj
ujj,∞. (21)

Now, solve (12a) at node j for vjj,∞ and substitute the result into (12b) at node j to get

ujj,∞ =
1

√

2bj,∞
(xj,∞ + bj,∞yj,∞) .

Then, solve yj,∞ = Gj(rj,∞ − xj,∞) for xj,∞ and substitute into the previous result to get

ujj,∞ =
1

√

2bj,∞

(

rj,∞ + (bj,∞Gj − Im)G−1
j yj,∞

)

.

Substitute this into (21) to get

vii,∞ = 1√
di

∑

j∈Ni

1√
2bj,∞dj

(

rj,∞ + (bj,∞Gj − Im)G−1
j yj,∞

)

.

Finally, substitute this equation into (20) to obtain the first case of (19).

Theorem 3.11 provides a system of equations for a network of non-identical agents at steady

state. The following theorem characterizes the system of equations for a network of identical agents.

Before stating the theorem, we require the definition of the Kronecker product of two matrices.

Given B ∈ Rm×n and C ∈ Rp×q, the Kronecker product B ⊗ C ∈ Rmp×nq is defined as [80]

B ⊗C !













b11C . . . b1nC
...

bm1C . . . bmnC













.

Theorem 3.12 (Identical Agents). Given the assumptions of Theorem 3.11, but with identical agents

84

(i.e., Gi ≡ G, bi,∞ ≡ b∞ ∀i ∈ V), let Aw = ∆−1/2A∆−1/2, where A is the adjacency matrix and

∆ is the degree matrix of the connected graph G = (V, E). Define M = (b∞G+ Im)−1G and

K = (b∞G− Im)G−1. Then, whenever b∞ > 0,

y∞ = ((Aw + In)⊗M) r∞ + (Aw ⊗MK)y∞. (22)

Assuming the inverse of (Aw+In) exists, then the limit r∞ that ensures that the agents will converge

to the desired locations p∞ = [pT1,∞, . . . , pTn,∞]T is given by

r∞ =
(

(Aw + In)
−1 ⊗M−1

)

(Imn − (Aw ⊗MK)) p∞. (23)

If b∞ = 0, then ri,∞ = G−1
i pi,∞.

Proof. If b∞ = 0, it follows directly from Theorem 3.11 that ri,∞ = G−1
i yi,∞. Since we assume

yi,∞ = pi,∞ for all i ∈ V (see Definition 3.8), the result follows. Therefore, assume b∞ > 00, and

observe the following equivalencies:

1√
di

∑

j∈Ni

1√
dj
rj,∞, ∀i ∈ V ⇐⇒ (∆−1/2A∆−1/2 ⊗ Im)r∞,

Mri,∞, ∀i ∈ V ⇐⇒ (In ⊗M)r∞.

An analogous equivalency holds for left multiplication by K . Therefore, the system of steady-state

equations is given by

y∞ = (In ⊗M) (r∞ + (Aw ⊗ Im)(r∞ + (In ⊗K)y∞)) .

This equation can be reduced to (22) by using the distributive property along with the following

property of Kronecker products: (B ⊗ C)(D ⊗ F) = BD ⊗ CF , which holds whenever the

dimensions of the matrix products agree [80]. Finally, (23) follows from (22) by the fact that

p∞ = y∞ and the following property: ((Aw + In)⊗M)−1 = (Aw+ In)−1⊗M−1, which is valid

by hypothesis since G and (Aw + In) are invertible.

Theorem 3.12 lays the groundwork necessary to show the class of overlay networks in which

85

deployment is achieved.

Theorem 3.13 (Deployment of Identical Agents with No Uncertainties). Consider a multi-agent

network of identical agents (i.e., Gi ≡ G, bi ≡ b ∀i ∈ V) modeled by connected graph G = (V, E).

Suppose the networked multi-agent system satisfies the deployment protocol of Definition 3.8 and

there are no network uncertainties present. Suppose further that Hyx andHry settle at steady state,

and that b∞ exists. Then deployment is achieved whenever G is non-bipartite, with r given by

r(t) =
(

(Aw + In)
−1 ⊗M−1

)

(Imn − (Aw ⊗MK)) ν, (24)

for all t ≥ 0, with ν = [νT1 , ν
T
2 , . . . , ν

T
n]

T,M = (b∞G+ Im)−1G, and K = (b∞G− Im)G−1.

Proof. To prove the result, we first show that Aw + In is invertible if and only if G is not bipartite.

To this end, we show that Aw has spectral radius ρ(Aw) = 1, so that Aw + In is singular if and

only if −ρ(Aw) is an eigenvalue of Aw. Indeed, the Laplacian is defined as In −Aw in [36] and is

shown to have its spectrum within the interval [0, 2], with 2 as an eigenvalue if and only if there is a

connected component of G that is bipartite and nontrivial [36, Lemma 1.7]. Therefore, (24) is well

defined. Since r(t) ≡ r∞, the conditions of Theorem 3.12 are met. Substituting the value for r in

(24) into (22) yields

y∞ − ν = (Aw ⊗MK)(y − ν),

which has solution y − ν 1= 0 if and only if 1 is an eigenvalue of (Aw ⊗MK). By the reasoning

above, the spectrum of Aw lies within the interval (−1, 1] for non-bipartite communication graphs.

A simple calculation shows that the eigenvalues of MK have the form (b∞gi − 1)/(b∞gi + 1), in

which gi are the positive diagonal entries of G, for i = 1, 2, . . . ,m. Since b∞gi ≥ 0, the spectrum

of MK lies within the interval [−1, 1). Thus, no product of eigenvalues of Aw and MK can be

unity. Hence, pi,∞ = yi,∞ = νi for all i ∈ V , and (11) is satisfied.

Next, we consider the problem of eliminating steady-state error in the presence of network

uncertainties, which is achieved by using a time-varying characteristic impedance and eventually

setting it to zero.

Theorem 3.14 (Deployment of Identical Agents with Uncertainties). Consider a multi-agent net-

work of identical agents modeled by connected graph G = (V, E) in which the deployment protocol

86

of Definition 3.8 is satisfied. Then (11) is achieved in the presence of network uncertainties22 by

setting bi(t) = 0 and ri(t) = G−1
i νi for all t ≥ t0, in which t0 ∈ Z≥0.

Proof. Since xi(t) ≡ 0 whenever bi(t) = 0 (c.f., (12a) and Figure9), it follows that

lim
t→∞

pi(t) = lim
t→∞

yi(t) = lim
t→∞

Giri(t) = νi, ∀i ∈ V.

3.6 Design of Deployment Protocol Parameters

In Section 3.5, we showed how the protocol can achieve (11) in the presence of network uncer-

tainties. In this section, we examine qualitatively how the network connectivity, characteristic

impedance b(t), and the times to switch between these values affect how well the deployment pro-

tocol achieves synchronized deployment in networks of identical agents. Synchronized deployment

is defined as follows.

Definition 3.15. A networked multi-agent system achieves (ε, δ)-synchronized deployment if (11)

is satisfied and td = tmax − tmin < δ, in which

tmin = min
t

{t ∈ Z≥0 | |pi(t)− νi|2 < ε, i ∈ V} ,

tmax = max
t

{t ∈ Z≥0 | |pi(t)− νi|2 ≥ ε, i ∈ V} .

We refer to td as the time difference of arrival, where tmin is the minimum ε-rise time and tmax

is the maximum ε-settling time. Note that ε and δ are independent of each other in the definition

of synchronized deployment. These parameters are used to compare the synchronized deployment

performance between different protocols and scenarios. Clearly, smaller values of δ for any small

fixed ε indicate better performance.

The network connectivity determines how y affects x in the feedback connection of Figure 10.

This influence is complicated by the scattering transformation and manipulations performed by the

power junction. However, to clarify, the power junction produces a weighted average of the wave
22Recall from Section 3.2.2 that the class of network uncertainties considered allow for ∆ = {dij(t) ∈ Z≥0 : (i, j) ∈

ED, t ∈ Z≥0}, and place no restrictions on the probability mass functions that determine the values of either dij(t) ∈ ∆
or vij(t+ dij(t)) ∈ {uij(t), 0}.

87

variables of neighboring agents, causing neighboring agents to cluster as they progress toward their

destinations. For this reason, it is beneficial to have at least one highly connected agent to better

synchronize the time of arrival.

The characteristic impedance, b(t), modulates the amount of influence the network feedback

component, xi, has on the error term, ei. For realistic networks, with packet loss and time-varying

delays, it is important to maintain b(t) ≤ 1 to limit the degradation of performance caused by

a lossy and delay-ridden network. However, a larger b strengthens the coupling in the network,

thereby improving synchronization. Hence, there is a natural tradeoff between maintaining a small

b for robustness to uncertainties and ensuring b is large for improving synchronization. By switching

the values of b over time, it is possible to mitigate these factors and achieve better performance.

For adjusting the times to switch between values of b(t), we use an approach based on the initial

and final positions of the agents, and the maximum velocity of the agents in each direction, all of

which are assumed to be known by the command center. The method considers two time horizons:

trel, the minimum time for the farthest agent to reach the initial coordinate of the closest agent (or a

preset value if the closest agent is too close) in each dimension and tm, the minimum time for the

farthest agent to reach its destination. Both of these times are easily calculated using the maximum

velocity, vmax of the agent as follows. Let pmax denote the largest difference between the initial

and final positions in all dimensions. Similarly, let pmin denote the smallest difference between the

initial and final positions for the dimension corresponding to pmax (or a preset value if the closest

agent is too close). Then,

trel =
pmax − pmin

vmax
and tm =

pmax
vmax

. (26)

Using these time horizons as a baseline, the switching times can be set to occur at fractions of trel or

tm, or at fractions between the two times, in the interval [trel, tm]. By experimenting with different

switching times, one can determine a set of switching times providing reasonable performance.

3.7 Simulations

The simulations evaluate how well the deployment protocol achieves synchronized deployment in

a network of identical agents. We consider two designs of the protocol parameters: the nominal

88

Figure 11: Overlay topology G of the ten agent network.

design, which is designed for the ideal network, and the 2% packet loss (PL) design, which is de-

signed for a moderate level of network uncertainties. Finally, we compare the deployment protocol

with the case where the agents deploy without a network to show the importance of the network in

(ε, δ)-synchronized deployment.

Scenario. The experimental setup involves a network of ten identical velocity-limited vehicles

with communication overlay network given by the undirected graph shown in Figure 11. The agents

move in the plane, and the goal is to form a decagon with each agent 30m from a target centered at

the point (500m, 500m) in an inertial coordinate frame. The initial points of the agents in the inertial

coordinate frame are (-270m,-300m), (-100m,100m), (-50m,350m), (50m,150m), (350m,450m),

(390m,160m), (340m,-150m), (485m,470m), (500m,125m), and (490m,-180m), respectively. We

implement the agent dynamics in Simulink, while TrueTime [149] is used to simulate the network

dynamics and communication between agents. The network protocol used is IEEE 802.11b, with a

speed of 11 Mbps. The network sampling interval is set to T = 0.01s.

Agent Design. For simplicity, each agent i ∈ V is modeled as the point mass, HMi
: fi → pi,

in which fi ∈ R2 is the control force, M is the mass of the vehicle, and pi ∈ R2 is the position, as

depicted in Figure 12. The equations of motion are

ṗi(t) = vi(t),

Mv̇i(t) = fi(t).

With this model, we design the position control system Hcpi , shown in Figure 12. The inner

89

Figure 12: Continuous-time point mass model.

loop gain of the compensator is ωcM (ωc > 0) and the outer loop gain ωc/2. The dynamics,

p̈i = −ωcṗi − ω2
c/2(pi − ei) = −2ζωnṗi − ω2

n(pi − ei),

indicate a stable second order system with natural frequency ωn = ωc/
√
2 and damping coefficient

ζ = 1/
√
2, where pi,∞ = ei,∞. It can be shown that the position control system is inside the sector

[a, 1], where a = −1/(2 + 2
√
2) [207], [107]. Therefore, Hcpi is not strictly output passive, but by

adding a high-pass filter in parallel, the system may be rendered strictly output passive, as depicted

in Figure 13. Since ei,∞ = pi,∞ = yi,∞, it follows that G = I2.

Figure 13: Continuous-time passive model.

Next, we discretize the continuous-time design above using a zero-order hold, which in this

case maintains strict output passivity. To prevent a feedforward term in the transfer function of the

double integrator, we treat each integrator in the point mass model separately, with zero-order holds.

90

Figure 14: Saturated discrete-time model.

This model is necessary to prevent algebraic loops once the saturation blocks and scattering trans-

formation are incorporated into the model. The saturated point mass model is shown in Figure 14.

The saturation in the inner loop bounds the control input so that the magnitude for each degree of

freedom is at most umax. The saturation in the outer loop bounds the maximum velocity, vmax, of

the vehicle in each direction.

Agent Implementation. Because the scattering transformation and power junction introduce

algebraic loops when implemented as described in Section 3.3, it is necessary to combine the two

components in the software implementation. Additionally, due to the feedforward term in the dis-

cretized high-pass filter, it is necessary to integrate the feedback term of the scattering transforma-

tion, b(t)yi(t). Since it is not straightforward to integrate this feedback term with the saturated point

mass, and yi = pi + yHPi , we integrate the feedback of the high-pass filter output locally, which is

shown in Figure 15. The modified transfer function of the high-pass filter is then

HmHPi
(z) =

2|a|
(

1 + z−1
)

2b|a| + 1− (2b|a| + e−ωcT)z−1
.

Finally, Figure 16 shows how the feedback term is implemented to form Hmi
. The modified high-

pass filter output is saturated using the velocity bound of the vehicle.

In order to combine the scattering transformation with the power junction, first define

xmi(t) = xi(t)− b(t)yi(t)

as the modified network feedback. By substituting (13b) into (12a), and then substituting the result

91

Figure 15: Modified high-pass filter.

Figure 16: Modified Hi.

92

Figure 17: Agent implementation.

into the expression for xmi, we get

xmi(t) = −

√

2b(t)

di

∑

j∈Ni

vji(t).

Similarly, by substituting (13b) into(12b) and then substituting the result into (13a), we get

uij(t) =

√

2b(t)

di
yi(t)−

1

di

∑

j∈Ni

vji(t), ∀j ∈ Ni.

The final implementation is illustrated in Figure 17, where the parameters used for simulation are

ωc = 6.283Hz, M = 1.826kg, and umax = 40N (which gives vmax = 3.49m/s). These parameters

closely match those of a Hummingbird quadrotor that we have in the lab.

Network Implementation. The network dynamics are implemented using both Simulink and

TrueTime. We implement constant delays using Simulink, whereas the rest of the network dynamics

are implemented using TrueTime (e.g., message passing, packet loss, time-varying delays). Since

we do not focus on the physical layer of the network, we set all of the positions of the agents in

TrueTime at the origin. We then implement packet loss using Bernoulli random variables in each

of the channels of the overlay network. For time-varying delays, we introduce a disturbance node

in the network. The disturbance node floods the network with disturbance packets of size Pd with

93

Table 1: Network conditions: parameterizations used in simulations
Label PL Constant Delay Td (s) Pd (bits)

Nominal 0% 0 – –
1% PL 1% 10ms–500ms 0.01 1000
2% PL 2% 500ms–1s 0.01 2000
10% PL 10% 1s–2s 0.01 10000
25% PL 25% 1s–2s 0.01 10000

Table 2: Characteristic impedance values
bnom(t) Inom (t ∈ Inom) b2%(t) I2% (t ∈ I2%)

1 [0, 159.47) 1 [0, 148.08)
0.8 [159.47, 189.08) 0.5 [148.08, 170.86)
0.6 [189.08, 209.59) 0.2 [170.86, 182.25)
0.3 [209.59, 227.81) 0.1 [182.25, 193.64)
0.2 [227.81, 228.63) 0.05 [193.64, 205.03)
0.05 [228.63, 229.04) 0.01 [205.03, 225.53)

0 [229.04,∞) 0 [225.53,∞)

probability 0.5 at each sampling instance given by sampling interval Td, which is an integer multiple

of the network sampling interval T .

Evaluation. For evaluating the deployment protocol, we analyze the synchronized deployment

performance by considering statistics on the time difference of arrival, td, over a set of simulation

runs. To do this, we consider five different operating conditions for the network, shown in Table 1.

For each parameterization of the network, we compare the statistics of td, for two different de-

signs: the first designed for an ideal network (nominal design) and the second for moderate network

uncertainties (2% PL case).

The parameterization for the two designs is summarized in Table 2 with the values of the charac-

teristic impedance and the switching times. In order to compare the performance of the deployment

protocol for the two designs, we performed 20 simulations for each design at each operating con-

dition (except for the nominal network, for which we only ran one simulation). We summarize the

statistics on the time difference of arrival, td, for the nominal design in Table 3 and for the 2% PL

design in Table 4, in which ε = 0.5m.

As one may expect, in each case, the performance is best at the operating condition for which

it was designed. The nominal design has a very small time difference of arrival for the nominal

network, at just 2.88s. But, the mean of td increases an order of magnitude with even small amounts

94

Table 3: Statistics of td (s) for ε = 0.5m; designed for nominal case
Net. Cond. mean std dev median min max
Nominal 2.88 0.0 2.88 2.88 2.88
1% PL 27.51 12.82 22.70 11.37 54.81
2% PL 26.20 16.67 19.54 7.74 61.73

10% PL 25.83 11.15 21.78 15.63 56.98
25% PL 26.46 7.50 27.08 10.77 45.17

Table 4: Statistics of td (s) for ε = 0.5m; designed for 2% packet loss (PL)
Net. Cond. mean std dev median min max
Nominal 31.98 0.0 31.98 31.98 31.98
1% PL 15.96 19.53 6.29 3.25 73.93
2% PL 12.69 11.43 7.39 3.75 40.48

10% PL 16.85 19.34 7.16 3.36 66.35
25% PL 17.60 20.76 8.07 3.71 83.23

of network uncertainty. However, after the initial drop in performance, the design is robust to

increasing network uncertainty. Similarly, the protocol designed for 2% PL performs the best at 2%

PL with a sample mean of 12.69s, which is less than half the sample mean of the nominal design

under the same network conditions. This design is also robust to increasing network uncertainty,

although not as much so as the nominal design. Perhaps the most surprising statistic is how poorly

the 2% PL design performs in the nominal case. This is caused by setting b(t) too small.

Consider the distance from final position (DFP) and trajectory plots shown in Figures 18(a)-(d),

where we examine only the network with 2% PL conditions. Figures 18(a)-(b) show the DFP plot

for the nominal design and Figure 18(c) shows the DPF plot for the 2% PL design. In these figures,

we can see the tradeoffs in selecting b(t). Keeping b(t) too large for too long in the presence of

network uncertainties can cause the agents to maintain a larger distance from their destinations,

degrading the performance as seen in Figure 18(b). On the other hand, selecting b(t) too small can

sufficiently decouple the agents from each other so that some of the agents enter the ε-neighborhood

of their destination. This nearly happens around 177s in Figure 18(c), and is generally why the 2%

PL design has greater standard deviation.

Finally, we compare the synchronized deployment performance of the deployment protocol with

a simple approach not requiring a network. Since each agent has steady-state gain matrix G = I2,

deployment may be achieved by setting the input of each agent as its destination. But, without the

network feedback, the agents do not coordinate to reduce td, as seen in Figures 18(e)-(f). In this case

95

0 50 100 150 200 250
0

200

400

600

800

1000

1200

time (s)

D
FP

 (m
)

(a) Nominal design DFP with 2%PL.

160 180 200 220 240
0

5

10

15

20

25

30

35

40

time (s)

D
FP

 (m
)

(b) Nominal design DFP with 2%PL.

160 180 200 220 240
0

5

10

15

20

25

30

35

40

time (s)

D
FP

 (m
)

(c) 2%PL design DFP with 2%PL.

−400 −200 0 200 400 600
−300

−200

−100

0

100

200

300

400

500

x−axis (m)

y−
ax

is
(m

)

(d) Nominal design trajectory with 2%PL.

−200 0 200 400 600
−300

−200

−100

0

100

200

300

400

500

x−axis (m)

y−
ax

is
(m

)

(e) Trajectory with no network.

0 50 100 150 200 250
0

200

400

600

800

1000

1200

time (s)

D
FP

 (m
)

(f) DFP with no network.

Figure 18: Distance from final position (DFP) and trajectory plots.

96

td is 227.17s, an order of magnitude greater than the mean of either design using the deployment

protocol and two orders of magnitude greater than the nominal design with an ideal network.

3.8 Summary

In this chapter, we present a discrete-time, passivity-based protocol for networked multi-agent sys-

tems to address deployment in the presence of network uncertainties. We prove that the deploy-

ment protocol ensures passivity and stability of the networked system. We show that deployment

is achieved despite network uncertainties for all connected non-bipartite overlay network topolo-

gies. Finally, we illustrate the performance qualitatively using simulations of a network of velocity-

limited vehicles. The simulations are automatically generated using a modeling language developed

in the Generic Modeling Environment (GME) [117] with an interpreter that creates simulation code

in Simulink [188] and TrueTime [149].

97

CHAPTER IV

CONTINUOUS-TIME RESILIENT ASYMPTOTIC CONSENSUS

Due to recent improvements in computation and communication, control system design has

made a shift in many applications from centralized to decentralized and distributed approaches.

This trend has been fueled by the need for increased flexibility, reliability, and performance in

applications such as coordination of vehicle formations [60] and flocking [93]. For these applica-

tions and many others, reaching some form of consensus is fundamental to coordination [130, 152].

However, large-scale distributed systems have many entry points for malicious attacks and intru-

sions. If a security breach occurs, traditional consensus algorithms fail to produce desirable results,

and therefore lack robustness [75]. Hence, there is a need for resilient consensus algorithms that

guarantee correct behavior even after sustaining security breaches.

Of course, there is a long history in distributed computing of studying consensus problems in

the presence of faults and adversarial processors [161, 130]. The most potentially harmful form of

adversary is the Byzantine processor, which may behave arbitrarily within the limitations set by the

model of computation [110]. Therefore, worst case executions must be considered. Typically, the

number of processors that may be Byzantine are bounded and fundamental tight bounds have been

established on the ratio of Byzantine to normal processors [110, 50], as well as on the connectivity

of the graph representing the communication network [50]. Specifically, the number of Byzantine

processors must be less than one third the total number of processors and less than one half the

graph connectivity.

From a control theoretic viewpoint, consensus in the presence of adversaries has only been

considered recently, and has focused on detection and identification of misbehaving agents in linear

consensus networks [157, 158, 160, 159, 181, 186]. While detection is clearly an important problem,

these techniques require each agent to have information of the network topology beyond its local

neighborhood. This requirement of nonlocal information renders these techniques inapplicable to

general time-varying networks. Further, the detection algorithms are computationally expensive and

do not consider safety constraints on the states of the agents. Using these approaches, it is possible

that the adversaries may drive the states of the agents outside of a predetermined safe set during the

98

detection phase, which may not be suitable for certain safety critical applications.

In this chapter, we study a consensus protocol that is low complexity and uses only local infor-

mation to achieve resilience against adversaries in the network. In order to codify a notion of correct

behavior of the normal agents in the presence of adversaries, we define a continuous-time resilient

consensus problem that has conditions on agreement and safety. For this problem, we study both

time-invariant and time-varying (or switching) network topologies with directed information flow.

The agents have continuous dynamics and convey state information to each other over a network

that switches between a finite number of discrete topologies.

The adversaries studied in this work model compromised nodes that are hijacked in a security

breach. The model for the adversaries consists of a threat model and a scope of threat assumption.

The threat model defines the types of behaviors allowed by the adversaries. We study Byzantine,

malicious, and crash threat models. A Byzantine adversary is similar to a Byzantine fault; it may

behave in an arbitrary fashion (within the scope of the model of computation) and may convey

different information to different neighbors in the network. The malicious adversary is similar

to the Byzantine model, but malicious nodes must convey the same information to all neighbors

(i.e., the malicious adversary is a local broadcast version of the Byzantine adversary). Finally, the

crash adversary may select a time to crash the compromised node, which forces the states of the

compromised node to remain constant. All adversaries are considered omniscient. This means they

have access to global information concerning the multi-agent network, including the full network

topology, the algorithms used by the other nodes, the states of the other nodes, which nodes are

compromised, and the plans of the other adversary nodes. One may take the viewpoint that the

individual adversary nodes are controlled by a central commanding adversary. Therefore, worst-

case executions must be accounted for.

The scope of threat assumptions bound the number or fraction of compromised nodes either

in the entire network or in the neighborhood of any normal node. Whenever, the total number

of compromised nodes in the network is assumed to be bounded above by some constant F ∈

Z≥0, we say the adversaries satisfy the F -total model. In cases where it is preferable to make

no global assumptions, we are interested in other threat assumptions that are strictly local. For

example, whenever each node assumes that at most F nodes in its neighborhood are compromised

(but there is no other bound on the total number of compromised nodes), the scope of threat is

99

F -local. Alternatively, if it is assumed that there is an upper bound on the fraction, 0 ≤ f ≤ 1,

of compromised nodes in any normal node’s neighborhood, we say the adversaries satisfy the f -

fraction local model.

This chapter does not include our most general results for the continuous-time resilient asymp-

totic consensus problem. The purpose of this chapter is to introduce the novel continuous-time

consensus protocol, the Adversarial Robust Consensus Protocol (ARC-P), and to motivate the need

for the novel graph theoretic property of network robustness (introduced in [210] and extended in

[116, 115]). While this chapter is in large part a bridge to the more general results of the follow-

ing chapter, it provides considerable insight into the nature of the problem and the limitations of

classical graph theoretic properties for studying this problem. Moreover, the results of this chapter

show exponential convergence rather than just asymptotic convergence. From this perspective, the

performance results of this chapter are superior to those presented in the following chapter.

The consensus protocol, ARC-P, is inspired by the ConvergeApproxAgreement algorithm [51,

130] and the linear consensus protocol (LCP) [156] (refer to equation (8) on page 52). Specifically,

it combines the elimination of extreme values used in the ConvergeApproxAgreement algorithm in

distributed computing [130, 51], with the standard consensus technique in cooperative control of

summing the neighboring relative states as input to an integrator agent [152]. By combining these

ideas from distributed computing and control, we obtain a new consensus protocol that is resilient

to adversaries, and can be analyzed using system theoretic techniques. In particular, we analyze the

Lipschitz continuity of the protocol to ensure the uniqueness of solutions. We prove that ARC-P

yields a unique solution that solves the Continuous-Time Resilient Asymptotic Consensus (CTRAC)

problem with an exponential rate of convergence (under restricted network topologies).

The rest of the chapter is organized as follows. Section 4.1 outlines the multi-agent network

model, the update mode, the CTRAC problem statement, and the adversary models. Section 4.2

describes and defines a simple resilient consensus protocol, ARC-P. Section 4.3 studies the existence

and uniqueness of solutions and Lipschitz continuity whenever ARC-P is used in the dynamics of

the normal nodes. Section 4.4 defines the Lyapunov candidate function and presents a couple of

useful lemmas dealing with the Lyapunov candidate. Section 4.5 then focuses on the special case

of complete networks. Section 4.6 studies the limitations of traditional graph theoretic metrics

for characterizing the topologies under which ARC-P achieves agreement. To do this, we first

100

consider classes of network topologies defined by in-degree and out-degree conditions and examine

the exponential convergence of ARC-P in these classes of networks in Sections 4.6.1–4.6.2. Then,

in Section 4.6.3, we examine the degree conditions and present pathological examples of digraphs

with high (weak) connectivity that do not enable ARC-P to achieve consensus. Finally, Section 4.7

illustrates the results through simulation, and Section 4.8 summarizes the work.

4.1 System Model and Problem Statement

4.1.1 Multi-Agent Network Model

Consider a time-varying network modeled by the digraph D(t) = (V, E(t)), where V = {1, ..., n}

is the node set and E(t) ⊂ V × V is the directed edge set at time t. The nodes represent the agents

in the multi-agent network. Without loss of generality, the node set is partitioned into a set of N

normal agents N = {1, 2, . . . , N} and a set of M adversary agents A = {N + 1, N + 2, . . . , n},

with M = n − N . The directed edges model the influence relationships between the nodes. Each

directed edge (j, i) ∈ E(t) indicates that node i can be influenced by node j at time t. In this case,

we say that agent j conveys information to agent i. Let Γn = {D1, . . . ,Dd} denote the set of all

digraphs on n nodes, which is of course a finite set. Note that D(t) ∈ Γn for all t ∈ R≥0.

The time-varying topology of the network is governed by a piecewise constant switching signal

σ : R≥0 → {1, . . . , d}. At each point in time t, σ(t) dictates the topology of the network at time

t, and σ is continuous from the right everywhere. In order to emphasize the role of the switching

signal, we denote Dσ(t) = D(t). Note that time-invariant networks are represented by defining

Dσ(t) ≡ D, or by simply dropping the dependence on time t.

The agents share state information with one another according to the topology of the network.

Each normal agent’s state (or value23) at time t is denoted xi(t) ∈ R. However, in order to handle

the deceptive Byzantine adversaries, we let x(j,i)(t) denote the state of agent j intended for agent

i at time t. For consistency of notation, we define x(j,i)(t) for all24 j, i ∈ V , even if (j, i) /∈ E(t).

In the case that j ∈ N is normal, we define x(j,i)(t) ≡ xj(t) (and, in particular, x(j,j)(t) ≡ xj(t)).

On the other hand, if j ∈ A is an adversary, then x(j,i)(t) is the state trajectory that adversary j

23Throughout this manuscript we refer to a agent’s value and state interchangeably.
24Although we are not concerned with the values received by adversaries, we still define x(j,i)(t) for i ∈ A for

consistency.

101

would like to convey to agent i, but the topological constraints on the network prevent it from doing

so. With this terminology, we denote the collective states of all agents in N , A, and V intended for

agent i by

x(N ,i)(t) = [x(1,i)(t), . . . , x(N,i)(t)]
T = [x1(t), . . . , xN (t)]T ∈ R

N ,

x(A,i)(t) = [x(N+1,i)(t), . . . , x(n,i)(t)]
T ∈ R

M ,

and

x(V ,i)(t) = [x(1,i)(t), . . . , x(n,i)(t)]
T ∈ R

n,

respectively. Since x(N ,i)(t) ≡ x(N ,j)(t) for all i, j ∈ V , we unambiguously define xN (t) =

x(N ,i)(t) for any i ∈ V . Finally, we denote the vector containing all adversary states intended for

the normal agents by x(A,N)(t) = [xT(A,1)(t), . . . , x
T

(A,N)(t)]
T ∈ RMN .

4.1.2 Update Model

Each normal agent i ∈ N has scalar state xi(t) ∈ R and integrator dynamics given by ẋi = ui,

where ui = fi,σ(t)(t, xN , x(A,i)) is a control input. The states of the neighboring adversaries, within

x(A,i), are analyzed as uncertain inputs; however, because there is no prior knowledge about which

agents are adversaries, the control input must treat the state information from neighboring agents in

the same manner. The dynamics of the system of normal agents are then defined for t ∈ R≥0 by

ẋN (t) = fσ(t)(t, xN , x(A,N)), xN (0) ∈ R
N ,Dσ(t) ∈ Γn, (27)

where fσ(t)(·) = [f1,σ(t)(·), . . . , fN,σ(t)(·)]T. Each of the functions fi,σ(t)(·) must satisfy appropri-

ate assumptions to ensure existence of solutions, and may be different for each agent, depending

on its role in the network. These functions should be designed a priori so that the normal agents

reach consensus, without prior knowledge about the identities of the adversaries.25 Observe that the

dynamics of (27) define a switched system without impulse effects, so the trajectory of any solution

is absolutely continuous [121].
25Note that for existence of solutions on R≥0, the fi,σ(t)(·)’s must be bounded and piecewise continuous with respect

to the adversaries’ trajectories.

102

4.1.3 Problem Statement

The Continuous-Time Resilient Asymptotic Consensus (CTRAC) problem is a continuous-time

analogue to the Byzantine approximate agreement problem [130, 51], and is defined as follows.

Let MN (t) and mN (t) be the maximum and minimum values of the normal agents at time t, respec-

tively. That is,

MN (t) = max
i∈N

{xi(t)},

and

mN (t) = min
i∈N

{xi(t)}.

Definition 4.1 (CTRAC). The normal agents are said to achieve continuous-time resilient asymp-

totic consensus (CTRAC) in the presence of adversary agents (given a particular adversary model)

if

(i) ∃L ∈ R such that limt→∞ xi(t) = L for all i ∈ N , and

(ii) xi(t) ∈ I0 = [mN (0),MN (0)] for all t ∈ R≥0, i ∈ N (i.e., I0 is a positively invariant set for

each normal agent),

for any choice of initial values xN (0) ∈ RN .

The CTRAC problem is defined by two conditions, agreement and safety, along with the type

of adversary considered. Condition (i) in Definition 4.1 is an agreement condition that requires the

states of the normal agents to converge to a common limit, despite the influence of the adversaries.

Condition (ii) is a safety condition that requires the state trajectory of each normal agent to be

contained in the interval formed by the initial states of the normal agents, despite the influence

of the adversaries. Equivalently, the safety condition can be stated in terms of xN . Let H0 =

IN
0 ⊂ RN denote the hypercube formed by the Cartesian product of N copies of I0. Then the

safety condition requires xN (t) ∈ H0 for all t ≥ 0, despite the influence of the adversaries. In

the agreement condition it is important to explicitly require that the limit exists because a single

asymptotic consensus value is desired.

The safety condition in (ii) is similar to the validity condition defined in [113], which in turn is

motivated by the validity condition of the Byzantine approximate agreement problem [130, 51]. The

103

definition ensures that the value chosen by each normal agent lies within the range of good values.

This is important in applications where the values are measurements and only measurements within

the range obtained by the normal agents are considered valid. The safety condition entails this notion

along with an invariant condition, which is important for safety critical applications. Specifically, it

is applicable whenever I0 is a known safe set.

4.1.4 Adversary Models

The adversary models studied throughout this work have two aspects: a threat model and scope

of threat model. The threat model defines the behavioral semantics of the individual compromised

nodes. The scope of threat model defines the topological semantics of the adversary model. That

is, the scope of threat model may stipulate the number of adversaries (nodes), or the number of

interactions among other nodes (directed edges) that are allowed under the model. The scope, in

terms of either nodes or directed edges, may be limited by global or local bounds, and the scope may

also be fractional in nature. Put simply, the scope of threat model limits the scope of the adversaries.

4.1.4.1 Threat Models

The threat model defines the types of behaviors allowed by the individual adversary node. The

behavior of the adversaries may be quantified in terms of limitations on their dynamics (or state

trajectories) as well as how the adversaries are allowed to convey information, or more generally,

how they interact with the network. One important aspect of their dynamics is the timing semantics

(e.g., continuous or discrete time). In this chapter, we are interested only in continuous-time be-

havior. Therefore, we define the threat models here in terms of continuous-time semantics. In later

chapters, we revisit these threat models under different timing semantics and with different degrees

of synchrony of the multi-agent network.

There are three threat models that we consider in this work. The least general threat is the

crash adversary. The inspiration for the crash adversary is the crash fault, which is studied in

mobile robotics; e.g., in consensus problems such as gathering [1, 46]. As a fault model, crash-

faulty robots fail by simply stopping their movement. In an analogous manner, we define a crash

adversary as a node that behaves normally until it is compromised. Once compromised, the crash

node stops changing its state. We assume that the crash adversary has control over when the node

104

is compromised, but otherwise cannot modify the state of the compromised agent or the values

conveyed to other nodes. Therefore, the same values are conveyed to each out-going neighbor and

the values remain fixed for all time in the interval [t0,∞), where the crash time t0 ≥ 0 is chosen

by the adversary. Finally, crash adversaries are assumed to be omniscient (i.e., they know all other

states and the full network topology; they are aware of the update rules fi,σ(t)(·), ∀i ∈ N ; they are

aware of which other agents are adversaries; and they know the plans of the other adversaries26). For

this reason, the worst case crash times for the adversaries must be considered when analyzing multi-

agent networks with crash adversaries. This behavior is summarized in the following definition.

Definition 4.2 (Continuous-Time Crash Adversary). An agent k ∈ A is a crash adversary (or

simply crash node) if it is omniscient, and there exists tk ∈ R≥0, selected by the adversary, such

that

• agent k behaves normally before t = tk, according to its prescribed update rule; i.e.,

ẋk = fk,σ(t)(t, xN , x(A,k)) for all t < tk;

• agent k stops changing its state for all t ≥ tk; i.e., xk(t) = xk(tk) for all t ≥ tk;

• agent k conveys the same state to each out-neighbor (i.e., x(k,i) ≡ x(k,j) for all i, j ∈ N out
k);

Conversely, the most general threat studied here is the Byzantine adversary. The Byzantine

adversary is motivated by Byzantine faulty nodes studied in distributed computing [110, 130, 165,

16, 61, 17], communication networks [82, 92], and mobile robotics [1, 46, 27]. As a fault model,

Byzantine faulty nodes are allowed to behave arbitrarily within the limits set by the model of compu-

tation. For networked automata, this means that the Byzantine node’s state-transition and message-

generation functions may be modified in an arbitrary – or even worst-case – manner [130]. Byzan-

tine nodes are capable of deceit. Specifically, the values conveyed to out-neighbors need not be the

same. These behaviors make Byzantine faults adversarial in nature. Therefore, no modification to

the Byzantine model is needed for its interpretation as an adversary.

As far as the author is aware, Byzantine nodes have not been studied in continuous-time systems

prior to this work. For the switched system model of (27), a couple of additional assumptions are
26One may take the viewpoint that a centralized omniscient adversary informs and directs the behavior of the individual

adversary agents.

105

needed. In discrete-time systems (such as networked automata), it is possible for Byzantine nodes

to choose whether to send messages or not at any given time step or round. For the switched system

model of (27) the most obvious way to mathematically model this behavior is through the switching

signal (i.e., allow the topology of the network to change by the temporary removal of outgoing edges

from a Byzantine node at time instances in which it chooses not to convey its state). Because the

switching signal is piecewise constant, this limits the switching behavior an adversary is capable of

inducing. At times, we require stronger assumptions on the switching signal (such as imposing a

dwell time assumption). A limitation to this model of a Byzantine agent’s capability of selectively

withholding information is that in time-invariant networks, whenever Dσ(t) ≡ D, this capability is

effectively eliminated.

A second assumption deals with the continuity of the state trajectories of Byzantine agents.

Technically, only piecewise continuity of the trajectories of x(A,N)(t) (combined with certain regu-

larity conditions on fσ(t)(·)) is needed for existence of solutions to (27). However, stronger continu-

ity assumptions are sometimes needed for analysis. Moreover, the trajectories of normal nodes are

continuous; therefore, it is feasible that normal nodes could use discontinuities in the state trajec-

tories to detect adversaries. For these reasons, we restrict the trajectories of Byzantine adversaries

to be continuous for all t. The behavior of Byzantine agents in continuous time is summarized as

follows.

Definition 4.3 (Continuous-Time Byzantine Agent). An agent k ∈ A is a Byzantine adversary (or

just Byzantine node) if it is omniscient, and

• agent k always conveys state information to out-neighbors in the network;

• agent k may selectively remove directed edges incident with itself in time-varying networks,

but must maintain piecewise continuity of the switching signal σ(t);

• agent k’s state trajectory intended for i may be different than the one intended for j (i.e.,

x(k,i)(t) 1= x(k,j)(t) is allowed);

• agent k’s state trajectories intended for other nodes, {x(k,i)(t) : i ∈ V}, are continuous

functions of time on [0,∞);

106

Note that we allow the possibility that a Byzantine agent behaves exactly as prescribed (so that

it is indistinguishable from a normal agent).

The third and final threat model studied here is the malicious adversary, or malicious node. The

malicious node is essentially a Byzantine node restricted to a local broadcast model of conveying

information. A malicious adversary may behave arbitrarily and is omniscient, in the same manner

as a Byzantine adversary. However, malicious nodes are not capable of deceit; i.e., every out-

neighbor receives the same information. Furthermore, the additional assumptions on continuous-

time Byzantine nodes are also imposed on the malicious model. The malicious adversary is defined

as follows.

Definition 4.4 (Continuous-Time Malicious Agent). An agent k ∈ A is a Byzantine adversary (or

just Byzantine node) if it is omniscient, and

• agent k always conveys state information to out-neighbors in the network;

• agent k may selectively remove directed edges incident with itself in time-varying networks,

but must maintain piecewise continuity of the switching signal σ(t);

• agent k’s state trajectory intended for i must be the same as the one intended for j; i.e.,

x(k,i)(t) ≡ x(k,j)(t);

• agent k’s state trajectories intended for other nodes, {x(k,i)(t) : i ∈ V}, are continuous

functions of time on [0,∞);

Like the Byzantine adversary, it is possible that a malicious node behaves exactly as prescribed

(so that it is indistinguishable from a normal agent).

The malicious adversary is the main threat model that has been considered in prior works from

the point of view of security. In particular, malicious nodes have been studied in the context of

detection and identification of misbehaving nodes in linear consensus networks [157, 179, 180,

158, 160, 181, 159, 186]. In these works, a malicious node is modeled with the same update rule

as the normal nodes, but with a disturbance on the output. The disturbance allows the malicious

node to convey essentially any information it chooses. The general approach used in these works is

for the normal nodes to use unknown input observers, along with nonlocal topological information

concerning the (time-invariant) network, in order ‘invert’ the dynamics and detect the malicious

107

nodes. Clearly, for this approach to be successful it is necessary for a malicious node to behave

abnormally at some point in time. Otherwise, the malicious nodes cannot be distinguished from

normal ones. For this reason, it is commonly assumed in these works that malicious nodes cannot

always behave normally. We do not require this restriction here. Note that malicious adversaries

have also been studied in resilient asymptotic consensus problems [113, 114, 116, 115, 210].

From the point of view of analysis, Byzantine adversaries are the worst-case threat model con-

sidered in this work. Note that malicious and crash adversaries are particular restrictions to the

Byzantine model. Therefore, any sufficient condition proven to hold in the presence of Byzantine

adversaries must also hold for malicious and crash adversaries. Conversely, any necessary condition

shown to hold in the presence of crash nodes also holds for malicious and Byzantine nodes.

4.1.4.2 Scope of Threat Models

Having defined the limitations on the behavior of the threat models, we now look at the scope of

threat assumptions. The scope of threat model defines the topological assumptions placed on the

adversaries. While stochastic models may be used, we consider only deterministic scope of threat

models. This is in large part because deterministic bounds are well-suited to worst-case analysis.

Given the omniscient types of threat models studied, this restriction is reasonable.

A simple scope of threat model is to assume there are at most F < n adversaries in the entire

network. We refer to this scope of threat model as the F -total model. The F -total model has been

studied extensively with respect to node failures [130]. Alternatively, the scope may be local; e.g.,

at most F neighbors of any normal node fail. This is referred to as the F -local model [210]. To

account for varying degrees of different nodes, we also introduce a fault model that considers an

upper bound on the fraction of compromised nodes in any node’s neighborhood. This is called

the f -fraction local model [115]. While the F -total model typically requires certain bounds on the

fraction of nodes that may be compromised (e.g., n > 3F for Byzantine nodes and n > 2F for

malicious nodes), the local and fractional models are dependent on the network topology and do

not, in general, imply a bound on the fraction of nodes compromised in the entire network.

In what follows, we first define subsets of nodes as either F -total, F -local, or f -fraction local.

From these definitions, we then define the scope of threat models.

108

Definition 4.5 (F -Total Set). A set S ⊂ V is F -total if and only if it contains at most F nodes in

the network, i.e., |S| ≤ F , F ∈ Z≥0.

Definition 4.6 (F -Local Set). A set S ⊂ V is F -local if and only if it contains at most F nodes in

the neighborhood of the other nodes for all t, i.e., |N in
i (t)

⋂

S| ≤ F , ∀i ∈ V \ S , F ∈ Z≥0.

Definition 4.7 (f -Fraction Local Set). A set S ⊂ V is f -fraction local if and only if it contains at

most a fraction f of agents in the neighborhood of the other agents for all t, i.e., |N in
i (t)

⋂

S| ≤

!f |N in
i (t)|", ∀i ∈ V \ S , f ∈ [0, 1].

It should be emphasized that in time-varying network topologies, the local properties defining

an F -local set (or an f -fraction local set) must hold for all points in time. These definitions facilitate

the following scope of threat models.

Definition 4.8 (Scope of Threat Models). A set of adversary nodes A is F -totally bounded, F -

locally bounded or f -fraction locally bounded if and only if it is an F -total set, F -local set or

f -fraction local set, respectively. We refer to these scope of threat models as the F -total, F -local,

and f -fraction local models, respectively.

F -totally bounded faults have been studied in distributed computing [110, 130, 194] and mo-

bile robotics [1, 46, 27] for crash, Byzantine, and stopping failures. The F -locally bounded fault

model has been studied in the context of fault-tolerant (or resilient) broadcasting [162, 86, 210] and

resilient consensus [210]. The f -fraction local model is proposed by Zhang and Sundaram [115].

It is inspired from ideas pertaining to contagion in social and economic networks [52], where a

node accepts some new information (behavior or technology) if more than a certain fraction of its

neighbors has adopted it.

A scope of threat model similar to the f -fraction local model is proposed in [120] for resilient

clock synchronization in the presence of Byzantine nodes. The network in [120] is hierarchical

and there are two types of nodes: tamper-proof nodes and normal nodes. Either type of node may

be compromised, but a tamper-proof node can be trusted because it will destroy itself upon being

compromised. The tamper-proof nodes act as leaders of clusters of nodes, where it is assumed that

(a) each normal node belongs to a cluster whose head is tamper-proof, (b) any two tamper-proof

nodes are within two hops from one another, and (c) at most one-third of the shared neighbors of

109

any pair of tamper-proof nodes can be compromised. Assumption (c) differs from the 1
3 -fraction

local model because in the latter, at most one-third of all neighbors of any normal node may be

compromised. The f -fraction local model does not assume a hierarchical network. Instead, the

normal nodes are effectively identical. Notice that in the hierarchical network of [120], it is possible

that the compromise of a single tamper-proof node results in some uncompromised normal nodes

that cannot participate in the consensus process. This precludes the possibility of achieving resilient

asymptotic consensus as defined in this work (since all normal nodes must reach consensus).

4.2 Adversarial Robust Consensus Protocol (ARC-P)

Here, we describe the Adversarial Robust Consensus Protocol (ARC-P) with respect to parameter

F ∈ Z≥0 and with respect to parameter f ∈ [0, 1]. The main idea of the protocol is for each

normal agent i ∈ N to sort the relative states of its inclusive in-neighbors and then remove some

of the extreme values (i.e., the largest and smallest values). The remaining relative state values are

summed to determine the first order dynamics of the agent.

The parameter F (or f) of the algorithm determines the number (or fraction) of largest and

smallest values that are removed. For consistency in notation, let Fi(t) ≡ F if ARC-P with param-

eter F is used by normal node i, and let Fi(t) = !fdi(t)" whenever ARC-P with parameter f is is

used by normal node i (note that all normal nodes either use one parameter or the other, depending

on the scope of threat model assumed). Given this notation, each normal node i using ARC-P (re-

gardless of the parameter) removes the Fi(t) largest and Fi(t) smallest values in its neighborhood

(breaking ties arbitrarily). If di(t) ≥ 2Fi(t), this results in di(t) − 2Fi(t) + 1 relative states that

are summed to determine the control input ui. To make the protocol well-defined for all network

topologies, i.e., whenever di(t) < 2Fi(t), in this case the agent removes all neighboring values from

consideration and the input is zero. This approach adheres to the philosophy that whenever there

is insufficient information to act in a way that is resilient to adversarial influence, it is best to do

nothing. In order to formulate ARC-P with parameter F (or f), we require the following definitions.

Definition 4.9. Let k ∈ N, Fi ∈ Z≥0, and m = max{k − 2Fi, 1}. Denote the elements of vectors

z, ξi ∈ Rk by zl and ξli, respectively, for l = 1, 2, . . . , k. Then:

(i) The (ascending) sorting function on k elements, ρk : Rk → Rk, is defined by ξi = ρk(z) such

110

that ξi is a permutation of z which satisfies

ξ1i ≤ ξ2i ≤ · · · ≤ ξki ; (28)

(ii) The reduce function with respect to Fi and k is defined by rFi,k : R
k → Rm, which satisfies

rFi,k(ξi) = 0 if k ≤ 2Fi, and if k > 2Fi, then

rFi,k(ξi) = [ξFi+1
i , ξFi+2

i , . . . , ξk−Fi
i]T ;

(iii) The sum function, Σm : Rm → R, is defined for y ∈ Rm by

Σm(y) =
m

∑

l=1

yl;

(iv) The composition of the sorting, reduce, and sum functions with respect to Fi and k is defined

by φFi,k : R
k → R, which satisfies for all z ∈ Rk,

φk
Fi
(z) = (Σm ◦ rFi,k ◦ ρk)(z) =















∑k−Fi

l=Fi+1 ξ
l
i k > 2Fi;

0 k ≤ 2Fi.

The switched system that defines the dynamics of the normal agents is given by

ẋN = fσ(t)(xN , x(A,N)), xN (0) = x0 ∈ R
N ,Dσ(t) ∈ Γn

where fσ(t)(xN , x(A,N)) = [f1,σ(t)(xN , x(A,1)), . . . , fN,σ(t)(xN , x(A,N))]
T and the x(A,i)(t), i ∈

N , are adversary trajectories intended for i. Then, ARC-P with parameter F ∈ Z≥0 (or f ∈ [0, 1])

determines ui=fi,σ(t)(xN , x(A,i)) for each normal agent i ∈ N at each point in time t by

fi,σ(t)(xN , x(A,i)) = φdi(t)+1
Fi(t)

(

Ji(t)(x(V ,i)(t)− xi(t)1n)
)

=















∑di(t)+1−Fi(t)
l=Fi(t)+1

(

ξli(t)− xi(t)
)

di(t) ≥ 2Fi(t);

0 di(t) < 2Fi(t).
(29)

111

where ξi(t) = ρdi(t)+1(Ji(t)x(V ,i)(t)) with elements ξ1i , ξ
2
i , . . . , ξ

di(t)+1
i , Fi(t) ≡ F or Fi(t) =

!fdi(t)" if the parameter is F or f , respectively, 1n ∈ Rn is the vector of ones, and Ji(t) ∈

R(di(t)+1)×n is a time-varying sparse matrix with each row corresponding to a distinct j ∈ J in
i (t)

such that each row has a single 1 in the j-th column. There is a one-to-one correspondence between

j ∈ J in
i (t) and rows in Ji(t).

Figure 19 illustrates the computation that occurs at time t for normal agent i whenever di(t) ≥

2Fi(t). In the figure, the state, xi(t), of the agent, whose dynamics are ẋi(t) = ui(t), is subtracted

from each of the other states in its inclusive neighborhood, with each of the in-neighbors denoted

xji , j = 1, 2, . . . , di(t). The resulting relative state values are sorted and then reduced by eliminating

the largest and smallest Fi(t) elements. Finally, the remaining elements are summed to produce the

control input ui(t) to the integrator agent. The only difference if di(t) < 2Fi(t) is that the output

of the Reduce block is 0.

Figure 19: Synchronous data flow model of ARC-P with parameter F (or f) for agent i.

From a complexity standpoint, ARC-P consists of low complexity operations in both time and

space, including sort, reduce, and sum methods (see Figure 19). The worst performing subroutine

of ARC-P is the sort method. But, if quicksort is used, it is worst-case quadratic in time and linear

in space, with respect to the size of the inclusive in-neighborhood. Therefore, ARC-P is also worst-

case quadratic in time and linear in space, and hence low complexity.

112

4.3 Existence and Uniqueness of Solutions with ARC-P

This section examines the issue of existence and uniqueness of solutions to the switched system

(27) where the component functions are given by ARC-P with parameter F (or f) as defined in

(29). Since the switched system (27) is absent of impulse effects, the trajectory of any solution is

continuous everywhere [121]. However, because fσ(t)(·) is not a continuous function of time, we

do not consider the usual notion of “solution” (i.e., in the sense of Peano). Instead, we mean an

absolutely continuous function ψ : [0, T]→ RN such that

ψ(t) = ψ(0) +

∫ t

0
fσ(τ)(ψ(τ), x(A,N)(τ))dτ, ∀t ∈ [0, T]. (30)

Such a function ψ is known as a Carathéodory solution to (27) on the interval [0, T]. A Carathéodory

solution is differentiable almost everywhere (a.e.)27 and its derivative is Lebesgue integrable on the

interval [0, T] (i.e., the integration in (30) is in the sense of Lebesgue). The following classical result

provides sufficient conditions for existence and uniqueness of a Carathéodory solution [78].

Theorem 4.10 (Carathéodory Solutions). Consider the ordinary differential equation

ẋ = g(t, x), x(0) = x̄ ∈ R
N , t ∈ [0, T],

where g : [0, T]× RN → RN is a bounded function. Then:

(i) If the map t =→ g(t, x) is measurable for each x and the map x =→ g(t, x) is continuous for

each t, then the ODE has at least one Carathéodory solution.

(ii) If the map t =→ g(t, x) is measurable for each x and the map x =→ g(t, x) is Lipschitz contin-

uous for each t, with a uniform Lipschitz constant, then the ODE has a unique Carathéodory

solution.

In what follows, we show that fσ(t)(·) is piecewise continuous in time, and hence measurable

for each xN (observe that the time-dependent nature of fσ(t)(·) is induced by the piecewise con-

stant switching signal σ(t) and the continuous adversary trajectories intended for the normal nodes,
27A property is said to hold almost everywhere (a.e.) if the set of elements for which the property does not hold has

measure zero.

113

x(A,N)). We also show in Theorem 4.15 that fσ(t)(·) is globally Lipschitz continuous in xN for

each t. Then we show in Lemma 4.16 that fσ(t)(·) is bounded for each t by a function of xN . After

this, we consider the minimal hypercube in RN that contains the initial values of the normal agents,

denoted H0. Lemma 4.16 is then used in the proof of Lemma 4.18 to show that fσ(t)(xN , x(A,N))

is directed toward the interior or along the boundary of H0 for all points xN on the boundary of

H0. From Lemmas 4.16 and 4.18 we are able to deduce that fσ(t)(xN , x(A,N)) is bounded on

the time interval [0,∞) by a function of xN (0). We conclude from Theorem 4.10 that there is a

unique Carathéodory solution on [0, T] for all T ∈ R≥0 and hence the solution is unique on the

entire interval [0,∞) (of course, unique up to the switching signal and the trajectories chosen by

the adversaries). We begin by recalling the definition of Lipschitz continuity.

Definition 4.11 (Lipschitz Continuity). Let || · || denote any norm defined on a Euclidean space,

and let g(t, x, u), g : R × Rn × Rp → Rq, be a piecewise continuous function in t and u. Then g

satisfies a global Lipschitz condition with Lipschitz constant L ∈ R≥0 if the following condition

holds for all z, y ∈ Rn, t ∈ R≥0, u ∈ Rq:

||g(t, z, u) − g(t, y, u)|| ≤ L||z − y||.

In order to show that ARC-P satisfies a Lipschitz condition, we must show that the sorting

function is Lipschitz continuous. First, we consider an interesting property of the sorting function;

namely, given any two vectors, then the angle between the vectors will never increase by sorting the

vectors. This result is then used to show Lipschitz continuity of the sorting function.

Lemma 4.12. Given x, x0 ∈ Rn, n ∈ Z>0, with ξ = ρn(x) and ξ0 = ρn(x0), then28

ξTξ0 =
n

∑

i=1

ξiξ0i ≥
n

∑

i=1

xix0i = xTx0. (31)

Proof. We prove the result by induction on n. The base step (n = 1) is obvious (since ξ = x,

ξ0 = x0). Now, suppose (31) is true for 1 ≤ n ≤ m, and let n = m+ 1, with x, x0, ξ, ξ0 ∈ Rm+1.

Let j (and k) denote the index of the element with minimum value in x (x0). If there are multiple
28The inequality in (31) is known as the rearrangement inequality [77]. A slightly different proof is given here for

completeness.

114

elements with minimum values in either vector, arbitrarily fix the index to correspond to one of the

minimum values. There are two cases: j 1= k and j = k.

Case 1, j 1= k: Swap the elements xj and xk in x so that the minimum values of x and x0 occur

in the same index (k in this case). Remove the kth element from each vector and denote the resulting

vectors by x′, x′0 ∈ Rm, and their corresponding sorted versions by ξ′ and ξ′0 respectively. Then, by

the inductive hypothesis
m

∑

i=1

ξ′iξ
′
0i ≥

m
∑

i=1

x′ix
′
0i . (32)

But the terms in (32) are related to the terms in xTx0 and ξTξ0 as follows. For the right-hand side,

the only elements altered in x are xj and xk, which have been swapped (with xj removed), and only

x0k has been removed from x0, with no other changes to x0. Thus, we have

m
∑

i=1

x′ix
′
0i =

m+1
∑

i=1

i#=j,k

xix0i + xkx0j . (33)

Similarly, for the left-hand side of (32), only one minimum value of each vector has been removed;

therefore, the inner product of the resulting sorted vectors (ξ′Tξ′0) contain the same terms as ξTξ0,

except for the term xjx0k = ξ1ξ01 . Hence,

m
∑

i=1

ξ′iξ
′
0i =

m+1
∑

i=2

ξiξ0i . (34)

Substituting (33) and (34) into (32) and adding xjx0k = ξ1ξ01 to both sides of the inequality yields

m+1
∑

i=1

ξiξ0i ≥
m+1
∑

i=1

i#=j,k

xix0i + xkx0j + xjx0k . (35)

Now, since xk ≥ xj and x0j ≥ x0k , we have

(xk − xj)(x0j − x0k) ≥ 0

=⇒ xkx0j + xjx0k ≥ xkx0k + xjx0j .

115

Finally, combining this with (35) produces the desired result

m+1
∑

i=1

ξiξ0i ≥
m+1
∑

i=1

xix0i , (37)

which completes the inductive step.

Case 2, j = k: Fix x′ and x′0 by removing the kth element (the minimum value) of x and x0,

respectively. Then, (32) is true by the inductive hypothesis. Analogous to Case 1, (34) also holds.

In this case, the right-hand side of (32) is given by

m
∑

i=1

x′ix
′
0i =

m+1
∑

i=1

i#=k

xix0i . (38)

Substituting (34) and (38) into (32) and adding xkx0k = ξ1ξ01 to both sides of the inequality yields

(37), which completes the inductive step and the proof.

Lemma 4.13. The sorting function, ξ = ρn(x) ∈ Rn, defined by (28), satisfies a Lipschitz condition

in x ∈ Rn.

Proof. Fix x, x0 ∈ Rn and let ρn(x) = ξ, ρn(x0) = ξ0. Then, using the norm preservation property

of permutations and Lemma 4.12, we have

||ξ − ξ0||2 =
(

ξTξ + ξT0 ξ0 − 2ξTξ0
)

1
2

≤
(

xTx+ xT0 x0 − 2xTx0
)

1
2
= ||x− x0||2.

Lemma 4.14. Each function fi,σ(t)(xN , x(A,i)) for i ∈ N defined in (29) with parameter F ∈ Z≥0

(or f ∈ [0, 1]), satisfies a global Lipschitz condition in x = [xTN , xT(A,i)]
T, xN , and x(A,i).

Proof. Fix i ∈ N . Since the switching signal σ(t) is piecewise constant, it follows that fi,σ(t)(·) is

piecewise continuous in time t. Fix t ∈ R≥0, Fi(t) = F ∈ Z≥0, and din
i (t)+1 = k. The argument to

φk
F (·), the reduce function with to F and k, and the sum function are all linear transformations, and

are therefore Lipschitz. The sorting function is Lipschitz by Lemma 4.13. Since the composition

116

of Lipschitz functions is Lipschitz, it follows that fi,σ(t)(·) satisfies a Lipschitz condition in x =

[xTN , xT(A,i)]
T. Therefore, there exists L ∈ R≥0 such that

||fi,σ(t)(y, x(A,i))− fi,σ(t)(z, x(A,i))||1

≤ L

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







y

x(A,i)






−







z

x(A,i)







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

= L||y − z||1,

for any t ∈ R≥0, y, z ∈ RN , x(A,i) ∈ RM . Likewise, for any t ∈ R≥0, xN ∈ RN ,y, z ∈ RM we

have

||fi,σ(t)(xN , y)− fi,σ(t)(xN , z)||1

≤ L

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







xN

y






−







xN

z







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

= L||y − z||1.

Theorem 4.15 (Lipschitz Continuity of ARC-P). The function fσ(t)(xN , x(A,N)) that defines the

dynamics of the normal agents, with fi,σ(t)(·) defined in (29) with parameter F ∈ Z≥0 (or f ∈

[0, 1]) and any threat model such that x(A,N) is piecewise continuous, satisfies a global Lipschitz

condition in xN .

Proof. Since the switching signal σ(t) is piecewise constant, fi,σ(t)(xN , x(A,i)) is Lipschitz in

x(A,i) for all i ∈ N , and x(A,i) is piecewise continuous in t for all i ∈ N , it follows that

fi,σ(t)(xN , x(A,i)(t)) is piecewise continuous in t. Therefore, fσ(t)(·) is also piecewise continu-

ous in t. By Lemma 4.14, we know that for t ∈ R≥0, yN , zN ∈ RN and x(A,i) ∈ RM for i ∈ N ,

117

there exists L ∈ R≥0 such that

||fσ(t)(yN , x(A,N))− fσ(t)(zN , x(A,N))||1 =
N

∑

i=1

|fi,σ(t)(yN , x(A,i))− fi,σ(t)(zN , x(A,i))|

≤
N

∑

i=1

L

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







yN

x(A,i)






−







zN

x(A,i)







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
N

∑

i=1

L





N
∑

j=1

|yj − zj |



 = nL||yN − zN ||1.

From this we conclude that fσ(t)(xN , x(A,N)) satisfies a Lipschitz condition in xN .

Theorem 4.15 shows that fσ(t)(·) is piecewise continuous in t and Lipschitz in xN . We show

next in Lemma 4.16 that fσ(t)(·) is bounded by the current normal values xN (t) for t ∈ R≥0. From

these facts, we conclude the local existence and uniqueness of solutions of (27) for all i ∈ N .

Then, we show in Lemma 4.18 that any solution is confined to a compact set, from which we

conclude global existence and uniqueness of solutions. For these results, and indeed for the analysis

throughout, we define mN (t) = minj∈N{xj(t)}, and MN (t) = maxk∈N {xk(t)}.

Lemma 4.16. Consider the normal agent i ∈ N using ARC-P with parameter F ∈ Z≥0 under

the F ′-local or F ′-total models where F ′ ≤ F , or parameter f ∈ [0, 1] under the f ′-fraction local

model where f ′ ≤ f . Define Fi(t) ≡ F or Fi(t) = !fdi(t)" whenever the parameter is F or f ,

respectively. Then, for each t ∈ R≥0

B(mN (t)− xi(t)) ≤ fi,σ(t)(xN , x(A,i)) ≤ B(MN (t)− xi(t)),

where B = n− 2mini∈N {Fi(t)}.

Proof. If di(t) < 2Fi(t), then fi,σ(t)(xN , x(A,i)) = 0, and the result follows. Therefore, assume

di(t) ≥ 2Fi(t) and at least one value not equal to xi(t) is used in the update at time t, say xj(t) =

ξli(t) for some l ∈ {Fi(t) + 1, Fi(t) + 2, . . . , di(t) + 1 − Fi(t)}. Suppose ξli(t) > MN (t). Then,

by definition j must be an adversary and ξli(t) > xi(t). Since i uses ξli(t) at time t, there must be

at least Fi(t) more agents in the neighborhood of i with values at least as large as ξli(t). Hence,

these agents must also be adversaries, which contradicts the assumption of at most Fi(t) adversary

118

agents in the neighborhood of i at time t. Thus, ξli(t) ≤ MN (t). Similarly, we can show that

ξli(t) ≥ mN (t). Since there are at most n agents in i’s inclusive in-neighborhood, of which 2Fi(t)

values are removed, it follows that

(n− 2Fi(t))(mN (t)− xi(t)) ≤
di(t)+1−Fi(t)

∑

l=Fi(t)+1

(

ξli(t)− xi(t)
)

≤ (n− 2Fi(t))(MN (t)− xi(t)).

Lemma 4.16 bounds fσ(t)(·) as a function of the total number of nodes n, the smallest up-

per bound on the number of adversaries in the neighborhood of any normal agent mini∈N {Fi(t)},

and the current state of the normal agent values xN (t). The next result shows that for any point

xN along boundary of the hypercube H0, which is given by [mN (0),MN (0)]N , the function

fσ(t)(xN , x(A,N)) is always directed either toward the interior of H0 or along the boundary. From

this, we conclude that H0 is a robustly positively invariant set, which is defined as follows.

Definition 4.17 (Robustly Positively Invariant Set). The set S ⊂ RN is robustly positively invariant

for the system given by (27) if for all xN (0) ∈ S , x(A,N)(t), any solution satisfies xN (t) ∈ S for

all t ≥ 0.

Lemma 4.18 (Invariant Set). Suppose the normal agents inN use ARC-P with parameter F ∈ Z≥0

under the F ′-local or F ′-total models where F ′ ≤ F , or parameter f ∈ [0, 1] under the f ′-fraction

local model where f ′ ≤ f . Then, the hypercube H0 = [mN (0),MN (0)]N defined by

H0 = {y ∈ R
N : mN (0) ≤ yi ≤MN (0), i = 1, 2, . . . , N},

is robustly positively invariant for the system of normal agents.

Proof. Since H0 is compact and any solution of (27) using (29) is continuous with xN (0) ∈ H0, we

must show that fσ(t)(·) is not directed outside of H0, whenever xN (t) ∈ ∂H0, for all Dσ(t) ∈ Γn

and all x(A,N) ∈ RMN . The boundary of H0 is given by

∂H0 = {y ∈ H0 : ∃i ∈ {1, 2, . . . , N} s.t. yi ∈ {mN (0),MN (0)}}.

119

Now, fix xN ∈ ∂H0 for some t ∈ R≥0. Let ej denote the j-th canonical basis vector and denote

IN ,min,IN ,max ⊆ {1, 2, . . . , N} as the sets defined by

j ∈ IN ,min ⇔ xj = mN (0) and k ∈ IN ,max ⇔ xk = MN (0).

Then, from the geometry of the hypercube, we require

eTj fσ(t)(xN , x(A,N)) ≥ 0 ∀j ∈ IN ,min,

eTk fσ(t)(t, xN , x(A,N)) ≤ 0 ∀k ∈ IN ,max.

These conditions are true for all Dσ(t) ∈ Γn and x(A,N) under any of the scope of threat models

(assuming the corresponding parameter for ARC-P is used) by Lemma 4.16, in which the lower

bound is used for j ∈ IN ,min (since xj = mN (0)), and the upper bound is used for k ∈ IN ,max

(since xk = MN (0)).

Remark 4.1. Lemma 4.18 guarantees that ARC-P (with sufficiently large parameter) always guar-

antees the safety condition (i.e., condition (ii) of Definition 4.1). Therefore, the remaining question

is under what conditions does ARC-P guarantee the agreement condition.

The argument made in Lemma 4.16 implies that any time an adversary under any of the scope

of threat models is outside of It = [mN (t),MN (t)], its influence is guaranteed to be removed by

its normal neighbors (provided the corresponding parameter of ARC-P is large enough). Therefore

each adversary has the same effect as if it were on the boundary of It. Using Lemma 4.18 we

conclude It ⊆ I0, ∀t ≥ 0. Hence, each adversary is effectively restricted to the compact set

I0. This fact enables us to allow adversary states x(A,i) ∈ RM for i ∈ N rather than explicitly

restricting them to a compact set (which is typically the assumption made for systems with uncertain

inputs [21]), while still ensuring existence and uniqueness of solutions. The preceding results along

with the argument made after stating Theorem 4.10 implies the following result.

Theorem 4.19 (Existence and Uniqueness). Suppose the adversaries have piecewise continuous

trajectories on [0,∞). Suppose each normal agent uses ARC-P with parameter F ∈ Z≥0 under

the F ′-local or F ′-total models where F ′ ≤ F , or parameter f ∈ [0, 1] under the f ′-fraction local

120

model where f ′ ≤ f . Then, the switched system (27) with component functions given in (29) has a

unique Carathéodory solution on [0,∞) (given the choice of σ(t) and x(A,N)(t) for t ∈ R≥0).

4.4 Lyapunov Candidate

Much of the analysis of ARC-P (and its variants) hinges upon the behavior of a Lyapunov candidate

function that characterizes the maximum disagreement among the normal values. Define Ψ: RN →

R by

Ψ(xN) = MN (t)−mN (t), (39)

where mN (t) = minj∈N{xj(t)} and MN (t) = maxk∈N{xk(t)}. It can be readily shown that the

function Ψ has the following attractive properties (for example, property (ii) below can be shown

easily using Lemma 4.13):

(i) Ψ is nonnegative with Ψ(xN) = 0 for all xN ∈ span{1N} and Ψ(xN) > 0 for all xN /∈

span{1N};

(ii) Ψ is Lipschitz;

(iii) Ψ is increasing away from span{1N} in the sense that Ψ(y1) > Ψ(y2), ∀y1, y2 ∈ RN satis-

fying dist(y1, span{1N}) > dist(y2, span{1N});

(iv) Ψ is radially unbounded away from span{1N} in the sense that

Ψ(y)→∞ as dist(y, span{1N})→∞.

These properties make Ψ an excellent Lyapunov candidate for proving global convergence to the

agreement space, span{1N}. Indeed, Ψ has been used to prove convergence of asynchronous con-

sensus algorithms whenever all agents are normal [191].

One issue with Ψ is that it is not everywhere differentiable. Therefore, to study the monotonicity

of ψ(t) = Ψ(xN (t)), we consider the upper-right Dini derivative D+ψ(t) of ψ at t, defined by

D+ψ(t) = lim sup
h→0+

ψ(t+ h)− ψ(t)

h
,

121

and the upper-directional derivative of Ψ with respect to (27):

D+Ψ(xN , x(A,N)) = lim sup
h→0+

Ψ(xN + hfσ(t)(xN , x(A,N)))−Ψ(xN)

h
.

The motivation for considering the upper directional derivative of Ψ is that

D+ψ(t) = D+Ψ(xN , x(A,N))

for almost all t along solutions of (27) since Ψ is locally Lipschitz [170]. In this case,

D+Ψ(xN , x(A,N)) = lim sup
h→0+

N1(h)

h
+ lim sup

h→0+

N2(h)

h
, (40)

with

N1(h) = max
i∈N

{xi + hfi,σ(t)(xN , x(A,i))} −MN (t),

N2(h) = mN −min
i∈N

{xi + hfi,σ(t)(xN , x(A,i))}.

4.4.1 Useful Lemmas Involving the Lyapunov Candidate

In this section, we prove a couple of useful lemmas related to the Lyapunov candidate of (39). The

first result characterizes the upper Dini derivative of the Lyapunov candidate whenever ARC-P is

used. The characterization is valid for all network topologies and all adversary models. The second

lemma bounds the Lyapunov candidate between two functions of the distance from agreement. This

result is useful for proving exponential convergence to the agreement space.

Lemma 4.20. Fix t ∈ R≥0 and xN (t) ∈ RN . Suppose each normal agent in N uses ARC-P with

parameter F ∈ Z≥0 under the F ′-local or F ′-total models where F ′ ≤ F , or parameter f ∈ [0, 1]

under the f ′-fraction local model where f ′ ≤ f . Let Dσ(t) ∈ Γn and define Smin(t),Smax(t) : R →

{1, . . . , N} by

j ∈ Smin(t)⇔ xj(t) = mN (t),

k ∈ Smax(t)⇔ xk(t) = MN (t).

122

Fix jt ∈ Smin(t) such that

fjt,σ(t)(xN , x(A,jt)) ≤ fj,σ(t)(xN , x(A,j)), ∀j ∈ Smin(t).

Likewise, fix kt ∈ Smax(t) such that

fkt,σ(t)(xN , x(A,kt) ≥ fk,σ(t)(xN , x(A,k)), ∀k ∈ Smax(t).

Then, at time t, we have

D+Ψ(xN (t), x(A,N)(t))=fkt,σ(t)(xN , x(A,kt))− fjt,σ(t)(xN , x(A,jt)), (41)

and D+Ψ(xN , x(A,N)) ≤ 0 for all t ∈ R≥0.

Proof. Lemma 4.16 implies that

−nΨ(xN) ≤ fi,σ(t)(xN , x(A,i)) ≤ nΨ(xN)

holds ∀i ∈ N and under any of the scope of threat models (with sufficiently large parameter). If

xN (t) /∈ span{1N}, then there exists εmin > 0 such that xi − xj ≥ εmin > 0 for all j ∈ Smin(t) and

i ∈ N \ Smin(t). Similarly, there exists εmax > 0 such that xk − xi ≥ εmax for all k ∈ Smax(t) and

i ∈ N \ Smax(t). Then, by letting ε = min{εmin, εmax} and taking h ≤ ε/(2nΨ(xN (t))), we may

write

xi + hfi,σ(t)(xN , x(A,i)) ≥ xi − hnΨ(xN (t))

≥ xi − ε/2

≥ xj + ε/2

≥ xj + hnΨ(xN (t))

≥ xj + hfj,σ(t)(xN , x(A,j))

≥ xjt + hfjt,σ(t)(xN , x(A,jt))

123

for all i ∈ N \ Smin(t), j ∈ Smin(t). Therefore, at time t

min
i∈N

{xi + hfi,σ(t)(xN , x(A,i))} = xjt + hfjt,σ(t)(xN , x(A,jt)).

Following a similar argument, we deduce

max
i∈N

{xi + hfi,σ(t)(xN , x(A,i))} = xkt + hfkt,σ(t)(xN , x(A,kt)).

Combining this with (40), gives (41). On the other hand, if xN (t) ∈ span{1N} then both Ψ(xN) and

D+Ψ(xN , x(A,N)) are zero. Finally, applying Lemma 4.16 for node jt and kt with xjt = mN (t)

and xkt = MN (t), respectively, shows that D+Ψ(xN , x(A,N)) ≤ 0.

Notice in (41) that the agents acting as kt and jt may change with time. It is important in any

convergence argument to show that bounds on D+Ψ(xN , x(A,N)) hold for all t ∈ R≥0, regardless

of which normal agents fill the roles of kt and jt. Next, we show that Ψ(xN) is bounded by

scaled versions of dist(xN , span{1N}) = infy∈span{1N} ||xN − y||2. For this argument, we use the

following properties of the min and max functions. If α ∈ R, then

min
i∈N

{xi + α} = min
i∈N

{xi}+ α

max
i∈N

{xi + α} = max
i∈N

{xi}+ α.

(42)

Lemma 4.21. Given xN ∈ RN , Ψ(xN) is bounded by

1√
N
dist(xN , span{1N}) ≤ Ψ(xN) ≤ 2dist(xN , span{1N}), (43)

Proof. Consider the decomposition of xN : xN = v1N + v⊥1N , in which v1N ∈ span{1N} and

v⊥1N ∈ span{1N}⊥. Given this decomposition, we conclude ‖v⊥1N ‖2 = dist(xN , span{1N}) and

∃γ ∈ R such that v1N = γ1N . Because of this, we can use (42) to write

Ψ(xN) = max
i∈N

{(v⊥1N)i} −min
i∈N

{(v⊥1N)i}, (44)

124

in which (v⊥1N)i is the i-th element of v⊥1N . From this, we obtain the upper bound

Ψ(xN) ≤ max
i∈N

{(v⊥1N)i}+ |min
i∈N

{(v⊥1N)i}| ≤ 2‖v⊥1N ‖2.

On the other hand, since v⊥1N ∈ span{1N}⊥,
∑N

i=1(v
⊥
1N

)i = 0, so that

max
i∈N

{(v⊥1N)i} ≥ 0 and min
i∈N

{(v⊥1N)i} ≤ 0.

From this and (44) we conclude Ψ(xN) ≥ |(v⊥1N)j | for all j ∈ N . Thus, we obtain the lower bound

1√
N
‖v⊥1N ‖2 ≤

1√
N

√

NΨ2(xN) = Ψ(xN).

4.5 ARC-P in Complete Networks

Before analyzing ARC-P in more general networks, we first look at complete networks. Restricting

our attention to this special case enables us to build some intuition about the protocol, which is

helpful in understanding the more general results. Additionally, for the case of complete networks

we may state a result that enables us to terminate the protocol in finite time with a guaranteed ε-

approximate solution. This result is particular to complete networks because of the availability of

global information.

4.5.1 Analysis in Complete Networks

In this section, we prove that ARC-P achieves CTRAC under all of the adversary models. We show

that the error between the normal values exponentially vanishes. For the malicious (and crash)

model we show that the rate of convergence depends on the number of nodes and the parameter

of ARC-P. Then, we prove that the nodes converge to a single limit, which when combined with

Lemma 4.18 shows that CTRAC is achieved.

Observe that in complete networks, the different scope of threat models are equivalent. To show

125

this, first observe that for any normal node i,

N in
i ∩ A = A.

From this, it follows that A is F -local if and only if it is F -total. Suppose A is F -local . Then, for

all i ∈ N ,

|N in
i ∩ A| ≤ F ≤ !F " ≤

⌊(

F

n− 1

)

(n− 1)

⌋

≤
⌊(

F

n− 1

)

|N in
i |

⌋

.

Therefore, A is (F
n−1)-fraction local. Since N is nonempty, it follows that A may be at most (n−1)-

local, which corresponds to it also being 1-fraction local. Conversely, suppose A is f -fraction local,

with f ∈ [0, 1]. Let F = !f(n − 1)". Then, F is between 0 and n − 1, and A is F -local. From

this, it follows that ARC-P with parameter F ∈ {0, 1, 2, . . . , n − 1} is equivalent to ARC-P with

parameter f ∈ [F
n−1 ,

F+1
n−1) ∩ [0, 1] (because in the latter case Fi = ! F

n−1di" = F).

Theorem 4.22 (CTRAC in Complete Networks). Consider a complete network where each normal

node updates its value according to ARC-P with parameter F ∈ Z≥0 under the F ′-local or F ′-total

models where F ′ ≤ F < n/2, or parameter f ∈ [0, 1] under the f ′-fraction local model where

f ′ ≤ f (and we assume f ∈ [F
n−1 ,

F+1
n−1) ∩ [0, 1] for some F < n/2 so that the parameters are

equivalent). If n > 3F for Byzantine adversaries or n > 2F for malicious adversaries, then the

states of the normal agents converge exponentially to the agreement space and CTRAC is achieved.

Whenever the adversaries are malicious (or crash) nodes, the rate of convergence is n− 2F .

Proof. First, assume the adversaries are malicious and n > 2F ≥ 2F ′. Then all of the normal

nodes have the same multiset of values that are used to form the relative states used in the update.

Fix i, j ∈ N and define the error term eij(t) = xi(t) − xj(t). It then follows that the error

dynamics are ėij(t) = −(n − 2F)eij(t). Therefore, the normal nodes converge to the agreement

space exponentially with rate n− 2F ≥ 1.

Now, assume the adversaries are Byzantine and n > 3F ≥ 3F ′. Since there are at most

F ′ ≤ F < n
3 adversaries, it follows that there are at least 2F + 1 normal nodes. Because the

network is complete, all of the normal nodes are influenced by these values. Since ARC-P with

parameter F removes at most 2F values in the neighborhood, it follows that at least one common

126

normal value among the normal nodes is used at each point in time. In particular, for nodes jt and

kt of Lemma 4.20, there is a common value, say ξmt

kt
= ξltjt . Combining this with the expression for

D+Ψ(·) at time t from Lemma 4.20 yields

D+Ψ(xN , x(A,N)) =

dkt (t)+1−F
∑

m=F+1

m#=mt

(ξmkt − xkt)−
djt (t)+1−F

∑

l=F+1

l #=lt

(ξljt − xjt)

+
(

ξmt

kt
− ξltjt

)

−Ψ(xN) ≤ −Ψ(xN).

Since for each t there exists some ξmt

kt
= ξltjt for the jt and kt valid at t, it follow that this inequality

holds for all t ≥ 0. Therefore, it can be shown that (see, for example, [21, Theorem 2.18] and make

the appropriate changes for convergence to the set span{1N})

Ψ(xN (t)) ≤ Ψ(xN (0))e−t.

From this, we conclude that xN exponentially converges to span{1N}.

Finally, in either case (Byzantine or malicious) the normal values remain in I0 by Lemma 4.18.

It follows from Lemma 4.16 that MN (t) is a nonincreasing function of time and mN (t) is a non-

decreasing function of time. Therefore, there is a common limit to which the normal values con-

verge.

4.5.2 Finite Termination in Complete Networks

In this section, we derive an upper bound on the performance of ARC-P in order to terminate

in finite time while ensuring an ε-approximate solution to CTRAC. By Theorem 4.22, the rate of

convergence is exponential with rate no smaller than one. With this, the upper bound on convergence

can be made precise.

Corollary 4.23. Consider a complete network where each normal node updates its value according

to ARC-P with parameter F ∈ Z≥0 under the F ′-local or F ′-total models where F ′ ≤ F < n/2,

or parameter f ∈ [0, 1] under the f ′-fraction local model where f ′ ≤ f (and we assume f ∈

[F
n−1 ,

F+1
n−1) ∩ [0, 1] for some F < n/2 so that the parameters are equivalent). Suppose n > 3F

with Byzantine adversaries or n > 2F with malicious adversaries. Define γ = maxk∈V{xk(0)} −

127

minj∈V{xj(0)}. Then,

max
i,j∈N

eij(t) ≤ γe−t, ∀t ≥ 0.

with Byzantine adversaries, or

max
i,j∈N

eij(t) ≤ γe−(n−2F)t, ∀t ≥ 0.

with malicious adversaries.

Proof. For all i, j ∈ N , with at most F ′ ≤ F Byzantine adversaries, we have

eij(t) ≤ eij(0)e
−t ≤ γe−t, ∀t ≥ 0.

With at most F ′ ≤ F malicious adversaries, the upper bound is γe−(n−2F)t.

Using Corollary 4.23, an ε-approximate solution to CTRAC can be obtained in finite time.

Specifically, to ensure that the maximum pairwise error between the values of normal agents is less

than ε > 0, Corollary 4.23 implies that any normal agent may terminate at any time greater than

| log(εγ)| with Byzantine adversaries or 1
n−2F | log(

ε
γ)| with malicious adversaries (provided γ 1= 0,

in which case xN (0) ∈ span{1N}). It is important to emphasize that this method of terminating

in finite time is only applicable in complete networks, where all initial values are known to each

normal agent, so that γ may be determined.

4.5.3 Simulations with Malicious Agents in Complete Networks

To illustrate the resilience of ARC-P, we consider three examples in which a subset of the agents

have been overtaken by malicious agents and redesigned with dubious intent, and a fourth example

that illustrates the performance tradeoff for resilience incurred by ARC-P with parameter F . Three

out of the four examples consider an eight agent complete network. In this case, at most three

agents can be compromised by malicious agents while guaranteeing CTRAC whenever ARC-P

with parameter F = 3 is used (since n > 2F is required). The first scenario considers the case

where two out of the eight agents are malicious adversaries and their goal is to drive the consensus

state of the normal agents to an unsafe set U . In the second scenario, three of the agents have been

128

redesigned as oscillators in order to force the normal agents to oscillate at the desired frequency.

Finally, in the third scenario a single adversary in a large network tries to force the other agents to

follow a sinusoidal trajectory in the unsafe set.

To motivate the need for a consensus protocol that is resilient to adversaries, we compare ARC-P

with the linear consensus protocol (LCP) given by

ẋi(t) =
∑

j∈N in
i

(

x(j,i)(t)− xi(t)
)

, ∀i ∈ N .

It is shown that LCP achieves the agreement condition in spite of the behavior of the adversaries,

but not the safety condition, under the same conditions applied to ARC-P. For LCP, the states of the

normal agents effectively converge to the average of the adversaries’ trajectories. Thus, in all three

scenarios, the adversaries are able to achieve their goal.

Example 4.1. Consider a multi-agent network with eight agents, each with unique identifier in

{1, 2, . . . , 8}, and with initial states equal to their identifier (e.g., for agent 1, x1(0) = 1). Suppose

that agents 7 and 8 have been compromised and are malicious (i.e., A= {7, 8}). The malicious

agents are redesigned with

ẋi = −10xi + 10ui, ∀i ∈ A,

where the reference inputs ui for the malicious agents are u7 = 25 and u8 = 26. Therefore, the

malicious agents converge exponentially to 25 and 26, respectively, with rate 10.

The goal of the malicious agents is to drive the states of the normal agents into the unsafe set

U={y ∈ R|y ≥ 20}. The results for LCP and ARC-P are shown in Figures 20 and 21, respectively.

The malicious agents are able to achieve their goal only with LCP. The normal agents use ARC-

P with parameter F = 2 to achieve both the agreement and safety conditions. Because both of

the adversaries always have larger state values, the consensus process for the normal agents is

unaffected and the final consensus state is the average of the n− 2F = 4 initial states of the agents

kept by ARC-P; in this case, 4.5. Also, the rate of convergence is n− 2F = 4.

Example 4.2. Consider the same multi-agent network as Example 4.1, with the same initial condi-

tions, but with agents 6, 7, and 8 as malicious agents (i.e., A= {6, 7, 8}). This time the malicious

129

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

t (s)

sta
te

Figure 20: LCP plot where malicious agents try to drive normal agents to the unsafe set U .

agents’ dynamics are designed as

ẍi = −100π2xi, ∀i ∈ A.

Thus, they are oscillators with natural frequency 5Hz and amplitude given by their initial state. The

goal of the malicious agents is to force the states of the normal agents to oscillate at 5 Hz.

The results for LCP and ARC-P are shown in Figures 22 and 23, respectively. As can be seen

in Figure 22, the normal agents using LCP synchronize and begin oscillating at 5 Hz, with a phase

lag of 90◦ with respect to the malicious agents. However, for the case of ARC-P with parameter

F = 3, the normal agents achieve the agreement and safety conditions. As the malicious agents

move their states inside the range of the values of the normal agents, the limit point for the normal

agents is shifted, which can be seen in Figure 23 as a change in the shape of the exponential decay

each time the malicious agents move through this range. This shifts the limit point from 3 to 2.6,

without affecting the rate of consensus.

Example 4.3. Consider a multi-agent network with 51 agents, where only agent 51 is an adversary.

The initial states of the normal agents are x1(0) = −1, x2(0) = −2, . . . , x50(0) = −50. The

130

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

t (s)

sta
te

Figure 21: ARC-P plot where malicious agents try to drive normal agents to the unsafe set U .

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

8

t (s)

sta
te

Figure 22: LCP plot where malicious agents try to force normal agents to oscillate at 5 Hz.

131

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

8

t (s)

sta
te

Figure 23: ARC-P plot where malicious agents try to force normal agents to oscillate at 5 Hz.

malicious agents is designed with time-varying dynamics given by the following expressions:

ẍ51 = −0.25π2x51 if 0 ≤ t < 1;

ẋ51 = −0.4π sin(0.2π(t − 1)) if t ≥ 1;

and initial conditions x51(0) = 0, ẋ51(0) = 15π. The resulting trajectory is

x51(t) =















30 sin(0.5πt) if t < 1;

2 cos(0.2π(t − 1)) + 28 if t ≥ 1.

The objective of the malicious agent is to bring the states of the normal agents into the unsafe set

U (as in Example 4.1), and force them to oscillate at a frequency of 0.1 Hz. The results for LCP

and ARC-P with parameter F = 1 are shown in Figures 24 and 25, respectively. In this case,

the convergence rates for LCP and ARC-P are 51 and 49, respectively, so the pairwise difference

between the states of normal agents becomes negligible by 0.1 s (approximately five time constants)

into the simulation. The result is that the trajectory of the normal agents appears to be a single curve

132

0 5 10 15 20 25
−50

−40

−30

−20

−10

0

10

20

30

t (s)

sta
te

Figure 24: LCP plot where a malicious agent tries to drive 50 normal agents to oscillate in U .

in the figure. Clearly, the adversary is able to achieve its objective only with LCP. The consensus

limit point for ARC-P is −25; i.e., the average of x1(0),. . . ,x49(0).

Example 4.4. We consider the performance tradeoff required for resilience to adversaries incurred

by ARC-P with parameter F . For this purpose, consider the same multi-agent network of Exam-

ple 4.1, but with no adversaries. As shown in Theorem 4.22, the rate of exponential convergence is

n− 2F . The change in the rate of convergence with F is illustrated in Figure 26 for the eight agent

network. Note that ARC-P reduces to LCP in the case F = 0 (in the upper-left plot of Figure 26). It

is also important to note that although the limit observed in the figures is the same in all four cases,

this would not be the case with asymmetries in the initial conditions.

By scaling ARC-P with parameter F in (29) by the factor n
n−2F , we may eliminate the tradeoff

in performance for robustness to adversaries, and make ARC-P perform as well as LCP. However,

LCP may also be scaled to improve its rate of convergence. Moreover, scaling ARC-P incurs a

reduction in robustness to time delays as it does with LCP. Indeed, scaling LCP scales the largest

eigenvalue of the Laplacian, which reduces the robustness to time delays [150].

133

0 5 10 15 20 25
−50

−40

−30

−20

−10

0

10

20

30

t (s)

sta
te

Figure 25: ARC-P plot where a malicious agent tries to drive 50 normal agents to oscillate in U .

4.6 Limitations of Traditional Graph Properties for Analyzing ARC-P

So far we have analyzed ARC-P in complete networks. This analysis shows that ARC-P can achieve

CTRAC under any of the adversary models studied in this work (provided the parameter of ARC-P

is sufficiently large and the number of adversaries actually present is sufficiently small). However,

tighter conditions on the topology require new graph theoretic metrics (which are introduced in

Chapter V). The remainder of this chapter is devoted to motivating the need for new metrics. To do

this, we introduce conditions on the network topology involving degree properties (i.e., in-degree

and out-degree) of nodes in the network and show that these conditions are sufficient to achieve

CTRAC using ARC-P with parameter F ≥ F ′ under the F ′-total model. Then we show that these

degree conditions are sharp in the sense that relaxing any of the conditions, even minimally, results

in pathological examples where no consensus is reached. For this analysis, we focus on malicious

and Byzantine adversaries under the F ′-total scope of threat assumption.

The CTRAC analysis proceeds as follows. First, we consider fixed network topology, and prove

exponential convergence of xN (t) to span{1N} whenever the degree conditions are satisfied. This

analysis uses properties of Ψ(xN) and D+Ψ(xN , x(A,N)). We prove safety using an invariant set

134

0 1 2 30

2

4

6

8

t(s)

sta
te

F = 0, n− 2F = 8

0 1 2 30

2

4

6

8

t(s)

sta
te

F = 1, n− 2F = 6

0 1 2 30

2

4

6

8

t(s)

sta
te

F = 2, n− 2F = 4

0 1 2 30

2

4

6

8

t(s)

sta
te

F = 3, n− 2F = 2

Figure 26: Performance tradeoff for resilience given ARC-P with parameter F

135

argument. Afterwards, we provide a necessary degree condition, and then generalize the results to

the case of time-varying (or switching) topology by using Ψ as a common Lyapunov function.

4.6.1 Analysis of Degree Conditions in Fixed Topology

In this section, we assume that σ(t) ≡ s and Ds belongs to ΓM,F ⊂ Γn or ΓB,F ⊂ Γn whenever

there are at most F ′ ≤ F malicious or Byzantine adversaries, respectively, in the network (F ′-total

model). Whenever the digraph belongs to one of these sets, we show that ARC-P with parameter

F achieves CTRAC. In particular, when dealing with malicious agents, we consider the following

class of digraphs with restricted in-degrees or out-degrees, defined by

ΓM,F = {Dk ∈ Γn| at least one of M1F and M2F holds}, (45)

where

M1F : δ
in(Dk) ≥ !(n+ 2F)/2";

M2F : ∃S ⊆ V, |S| ≥ 2F+1, such that dout
i =n−1,∀i ∈ S.

When dealing with Byzantine agents, we require stronger assumptions on the in-degrees and

out-degrees. In this case, we define

ΓB,F = {Dk ∈ Γn| at least one of B1F and B2F holds}, (46)

where

B1F : δ
in(Dk) ≥ !(n + 3F)/2";

B2F : ∃S ⊆ V, |S| ≥ 3F+1, such that dout
i =n−1,∀i ∈ S.

It follows from these definitions that ΓB,F ⊆ ΓM,F . Additionally, the conditions in (45) and

(46) implicitly bound the parameter F of ARC-P by a function of the total number of agents n.

136

Specifically, property M1F implies

n− 1 ≥ δin(Ds) ≥ !n/2" + F =⇒ F ≤ 'n/2(− 1.

Similarly, property M2F implies

n ≥ |S| ≥ 2F + 1 =⇒ 2F ≤ n− 1.

In either case, n > 2F ≥ 2F ′. Analogously, the properties B1F and B2F imply n > 3F ≥

3F ′. Therefore, it follows that in the following analysis, we require F ≤ 'n/2(− 1 whenever

Ds ∈ ΓM,F , and F ≤ 'n/3(−1 whenever Ds ∈ ΓB,F . A consequence of this is that δin(Ds) ≥ 2F

for all Ds ∈ ΓM,F (or Ds ∈ ΓB,F). Therefore, the first case of (29) always holds under these

assumptions. From this, (41) may be rewritten using (29) as

D+Ψ(xN , x(A,N)) =

dkt (t)+1−F
∑

m=F+1

(

ξmkt − xkt
)

−
djt (t)+1−F

∑

l=F+1

(

ξljt − xjt

)

. (47)

This equation is the basis of the agreement argument below. Here we combine Lemmas 4.20 and

4.21 with the assumption Ds ∈ ΓM,F or Ds ∈ ΓB,F for malicious or Byzantine adversaries, respec-

tively, in order to show global exponential convergence of xN to span{1N}.

Theorem 4.24. Consider a time-invariant network topology given by D. Suppose each normal

agent in N uses ARC-P with parameter F under the F ′-total model, where F ′ ≤ F . Assume that

(i) n > 2F and D ∈ ΓM,F if the adversaries are malicious (or crash nodes), or (ii) n > 3F

and D ∈ ΓB,F if the adversaries are Byzantine. Then xN globally exponentially converges to the

agreement space span{1N} and CTRAC is achieved. Moreover, the convergence to the agreement

space is bounded by

dist(xN (t), span{1N}) ≤ 2
√
N dist(xN (0), span{1N})e−t. (48)

Proof. (i) Fix t ≥ 0 and consider (47). Since there are at most F ′ ≤ F malicious agents, each

term in the first sum is nonpositive and each term in the second sum is nonnegative. If at least one

of the sorted values in the second sum is greater than or equal to any of the values in the first, say

137

ξm
′

kt
≤ ξl

′

jt , then

D+Ψ(xN , x(A,N)) ≤ −Ψ(xN), (49)

since, in this case,

D+Ψ(xN , x(A,N)) =

dkt (t)+1−F
∑

m=F+1

m#=m′

(ξmkt − xkt)−
djt (t)+1−F

∑

l=F+1

l #=l′

(ξljt − xjt)

+
(

ξm
′

kt − ξl
′

jt

)

−Ψ(xN) ≤ −Ψ(xN).

A sufficient condition for this to hold, given that all agents convey the same values to all neigh-

bors, is to ensure there is a common value in the two sums, e.g., ξm′

kt
= ξl

′

jt . This is guaranteed if

|J in
jt ∩ J in

kt | > 2F , which is obviously true if property M2F holds. If only property M1F holds, it

must also be the case, since otherwise, we reach the contradiction

n ≥ |J in
jt ∪ J in

kt | = |J in
jt |+ |J in

kt | − |J in
jt ∩ J in

kt |

≥ 2(!n
2
"+ F + 1)− 2F ≥ n+ 1.

Therefore, (49) holds for all t ≥ 0, and hence it can be shown that

Ψ(xN (t)) ≤ Ψ(xN (0))e−t.

Using (43), we conclude (48). Thus, we have shown global exponential convergence of xN to

span{1N}. Finally, the normal values remain in I0 by Lemma 4.18, and it follows from Lemma 4.16

that MN (t) is a nonincreasing function of time and mN (t) is a nondecreasing function of time.

Therefore, there is a common limit to which the normal values converge, and CTRAC is achieved.

(ii) The argument is identical to (i), except here to ensure there exists m′ and l′ such that

ξm
′

kt
= ξl

′

jt and thereby guarantee (49), we need |J in
jt ∩ J in

kt
| > 3F . This is required if there

are F ′ = F Byzantine agents in the intersection because of the following argument. Suppose

F of the normal agents’ states are strictly greater than F other normal agents in the intersection.

Then there are 3F agents in the intersection, and the adversaries may create 2F different values all

strictly between these two sets of normal agent states. Thus, at least one more normal agent in the

138

intersection is necessary to ensure a common value. Analogously to (i), property B2F guarantees

|J in
jt ∩J

in
kt
| > 3F by construction, and so does property B1F . Otherwise, we reach the contradiction

n ≥ 2(!(n + 3F)/2" + 1)− 3F ≥ n+ 1.

Notice in the proof of Theorem 4.24 that it is not necessary that there exists a common in-

neighbor in the reduced set of in-neighbors of jt and kt to show (49), and therefore (48). All that

is required is that there exist ξm′

kt and ξl
′

jt such that ξm′

kt ≤ ξl
′

jt . However, because this must hold

globally (i.e., for all xN (0) ∈ RN and x(A,i)(t) ∈ RM for i ∈ N) and for all t ≥ 0, it is untenable

to depend on the values in those neighborhoods without insisting that there is a normal agent as a

common in-neighbor.

4.6.1.1 Necessary Conditions

Next, we consider the following necessary conditions for ARC-P to achieve agreement in networks

with fixed topology whenever the adversaries are crash nodes. Clearly, these necessary conditions

also hold for malicious and Byzantine nodes.

Theorem 4.25 (n > 2F and δin(D) ≥ 2F are Necessary Conditions). Consider a time-invariant

network topology given by D. Suppose each normal agent in N uses ARC-P with parameter F

under the F ′-total or F ′-local crash model, where F ′ ≤ F . If the agreement condition is satisfied,

then δin(D) ≥ 2F and n > 2F .

Proof. The case F = 0 is vacuously true, so assume F ≥ 1. If n ≤ 2F , then each normal node

using ARC-P with parameter F removes all of its influence from its neighbors so that its input is

always zero. Therefore, agreement is not achieved for any initial values not in span{1N}. Therefore,

assume n > 2F . Suppose ∃i ∈ N with di < 2F and ∃ε > 0 such that xj(0) − xi(0) > ε for all

j ∈ N \ {i}. If di ≥ F − 1, let F − 1 of i’s in-neighbors be crash adversaries with values smaller

than xi(0) and assume they are compromised at time t0 = 0. Then, ẋi ≡ 0 since both the normal

and adversary values are removed. On the other hand, using Lemma 4.18 while treating i as an

adversary, ensures xj(t)− xi(t) > ε ∀j ∈ N \ {i} and t ≥ 0.

139

Recall that the sufficient conditions imply the necessary condition, δin(D) ≥ 2F . However, the

converse is clearly not true. The question then arises, are the sufficient conditions also necessary?

The answer is no, but we delay further discussion of the conservativeness of the sufficient conditions

until Section 4.6.3. Next, we study the sufficient conditions under time-varying network topologies.

4.6.2 Analysis of Degree Conditions in Time-Varying Network Topologies

Switching network topologies can arise from a number of factors: temporary removal of edges due

to lossy communication channels, the addition or loss of edges caused by mobile agents, and so on.

The results of the previous section may be extended to switching topologies in a straightforward

manner by assuming Dσ(t) ∈ ΓM,F or Dσ(t) ∈ ΓB,F for t ∈ R≥0 whenever the adversaries are

malicious or Byzantine, respectively. It is shown in Theorem 4.24 that Ψ is a Lyapunov function

for each possible digraph D ∈ ΓM,F or D ∈ ΓB,F . Further, the upper bound on convergence of

xN to span{1N} (48) holds globally and for each digraph D ∈ ΓM,F or D ∈ ΓB,F . Therefore, Ψ

is a common Lyapunov function, thus proving global exponential convergence of xN to span{1N}

for the switched system (27). On the other hand, Lemmas 4.16 and 4.18 hold for all network

topologies. Therefore, the same argument used in the proof of Theorem 4.24 may be used for the

case of switching topologies. Hence, we have the following result.

Corollary 4.26. Suppose each normal agent in N uses ARC-P with parameter F under the F ′-

total model, where F ′ ≤ F . Assume that (i) n > 2F and Dσ(t) ∈ ΓM,F for all t ∈ R≥0 if the

adversaries are malicious (or crash nodes), or (ii) n > 3F and Dσ(t) ∈ ΓB,F for all t ∈ R≥0 if

the adversaries are Byzantine. Then the agreement condition is satisfied with the convergence to

the agreement space bounded by (48), and the safety condition is satisfied. Therefore, under these

conditions, ARC-P achieves CTRAC.

So far we have studied explicit switching in the network topology when the range of the switch-

ing signal is appropriately restricted (i.e., Dσ(t) ∈ ΓM,F or Dσ(t) ∈ ΓB,F for all t ∈ R≥0). But, even

in fixed network topology, the algorithm ARC-P may be viewed as the linear consensus protocol of

[152] with state-dependent switching. In ARC-P, the sort and reduce functions effectively remove

the influence of a subset of neighbors based on the state values of those neighbors. The remaining

relative states are summed as input to the integrator in the same manner as all of the neighbors are

140

in the linear consensus protocol of [152], which justifies the analogy. Hence, the results of Sec-

tion 4.6.1 provide new insight into the convergence of the protocol of [152] with state-dependent

switching.

4.6.3 Examination of Degree Conditions

In this section, we examine the degree conditions M1F and M2F that define ΓM,F and B1F and

B2F that define ΓB,F . Important questions arise with regard to these properties:

(i) How do these conditions relate to known conditions on the maximum number of Byzantine

processors in the network [110, 50];

(ii) How do they relate to conditions on the connectivity of the network when reaching agreement

with Byzantine processors [50], or detecting and isolating malicious agents [159, 181];

(iii) How conservative are the conditions with respect to achieving the adversarial agreement prob-

lem using ARC-P;

(iv) How applicable are the conditions to networks of interest?

The first question has been answered in Section 4.6.1, where we showed that B1F and B2F imply

n > 3F , which is a necessary condition when dealing with Byzantine behavior of finite automata

in synchronous networks [110, 50]. The rest of this section is devoted to addressing the remaining

questions.

To address (ii), we show that M1F and M2F –and therefore also B1F and B2F –imply κ(G) ≥

2F + 1 whenever the network is bidirectional. This is a necessary and sufficient condition for the

existence of an algorithm that can (a) ensure agreement of the nonfaulty agents in the presence

of at most F Byzantine agents in synchronous networks [50], or (b) detect and isolate up to F

malicious agents in linear consensus networks [159, 181]. However, the conditions B1F and B2F

do not imply 2F + 1-strong connectivity in digraphs. Indeed, conditions M2F and B2F do not

even guarantee δout(D) > 0. In fact, an example of a network with δout(D) = 0 is given in the

following section that illustrates our results. For such networks, detection of malicious agents in

linear consensus networks is not possible [159, 181]. Therefore, CTRAC is achievable in cases

where detection is not possible.

141

Theorem 4.27. If F ∈ {0, 1, . . . , !n/2" − 1} and the digraph satisfies (i) M1F or (ii) M2F , then

the underlying graph G is 2F + 1-connected.

Proof. (i) Fix F ∈ {0, 1, . . . , !n/2" − 1} and consider the underlying graph G, which must satisfy

δ(G) ≥ !n/2" + F . By Menger’s Theorem, κ(G) ≥ 2F + 1 is equivalent to G having at least

2F + 1 vertex-disjoint paths between any distinct vertices i, j ∈ V . Indeed, this is the case if

|Ji ∩ Jj| ≥ 2F + 2 for all i, j ∈ V . On the other hand, we know that |Ji ∩ Jj| ≥ 2F + 1 (c.f.

the proof of Theorem 4.24). From this we conclude that if (i, j) /∈ EG then there are at least 2F +1

vertex-disjoint paths between i and j. Therefore, assume there exists i, j ∈ V such that (i, j) ∈ EG

and |Ji ∩Jj | = 2F +1. In this case, there are 2F vertex-disjoint paths accounted for with vertices

in Ji ∩ Jj . But, because F ≤ !n/2" − 1, we know

|Ji|, |Jj | ≥ !n/2"+ F + 1 ≥ 2F + 2,

which means there exists i′ ∈ Ji\Ji∩Jj and j′ ∈ Jj \Ji∩Jj . If (i′, j′) ∈ EG , then i, i′, j′, j is the

last vertex-disjoint path necessary to conclude 2F + 1-connectivity. If (i′, j′) /∈ EG , then we know

that |Ji′ ∩ Jj′| ≥ 2F + 1, and there are at most 2F − 1 vertices in (Ji′ ∩Jj′)∩ (Ji ∩ Jj) because

i and j cannot be in Ji′ ∩ Jj′ . Hence, there exists m ∈ Ji′ ∩ Jj′ \ Ji ∩ Jj , so that i, i′,m, j′, j is

the last vertex-disjoint path necessary to conclude 2F + 1-connectivity.29

(ii) Any vertex cut must contain at least 2F +1 vertices, because otherwise a vertex remains in

S adjacent to all other vertices.

To address the conservativeness of the conditions with respect to convergence of ARC-P, we

show that we can do no better using traditional metrics such as in-degree, out-degree, or connectivity

(of the underlying graph). We do this by demonstrating that minimally relaxing these conditions

leads to pathological examples with high connectivity in which ARC-P does not achieve agreement.

Example 4.5 (Relax M1F with δin(D) = !(n + 2F)/2" − 1). 30 Consider the network topology

in Figure 27, in which K+n/2, is the complete digraph on 'n/2(vertices, and each vertex in X

has exactly F neighbors in Y and each vertex in Y has either F − 1 or F neighbors in X. Now,
29A similar result appears in Theorem 6 of [69], which is ascribed to Chartrand and Harary [32]. The theorem states

that if δ(G) ≥ (n− 2 + q)/2 where 1 ≤ q ≤ n− 1, then κ(G) ≥ q.
30This pathological example was suggested by Sundaram in personal correspondence and later appeared in [210].

142

Figure 27: Relax M1F : δin(D) = !(n+ 2F)/2" − 1.

assume there are no adversaries and let all states in X have value 0 and all states in Y have value

1. Then, by (29), all agents in X will remove the influence of their neighbor in Y and vice versa.

Hence, no consensus is reached, and no agent even changes its state. Furthermore, this graph is

(!n/2" + F − 1)-connected, which for large n may be much larger than κ(G) ≥ 2F + 1.

From this example, we see that reducing the minimum in-degree by just one from M1F is not

sufficient for global convergence of xN to span{1N}. Additionally, in this example, the connectivity

is very high. This suggests that the minimum in-degree and connectivity are not appropriate metrics

to use in characterizing the network topologies in which ARC-P achieves agreement. The following

example demonstrates that the minimum out-degree is also inadequate and further emphasizes the

inadequacy of connectivity. Here, the number of nodes in S from M2F is reduced by one.

Example 4.6 (Relax M2F with |S| = 2F and dout
i = n− 2, ∀i ∈ V \ S , so that δout(D) = n− 2).

Consider the example of Figure 28, which has |S| = 2F , with S = S ′ ∪ {j} and dini = n − 2,

∀i ∈ V \ S , so that δout(D) = n − 2. Since dinj = 2F − 1, this example does not satisfy the

necessary condition of Theorem 4.25. The argument in the proof shows that the agreement condition

is not satisfied. Since the underlying graph is complete, this digraph is (n − 1)-connected, which

emphasizes the inadequacy of connectivity in characterizing the convergence properties of ARC-P.

Example 4.7 (Relax B1F with δin(D) = !(n + 3F)/2" − 1). Consider the digraph shown in

Figure 29. In the figure, the digraph is partitioned into 3 cliques (i.e., complete subdigraphs),

143

Figure 28: Relax M2F : |S| = 2F and δout(D) = n− 2.

D = X1∪X2∪X3, and each clique has !n/2"−!F/2", F , and 'n/2(−'F/2(nodes, respectively.

For clarity, we do not show edges internal to the cliques. We only show one representative node from

the sets X1 andX3, but all nodes in each of these sets have F in-neighbors in each of the other two

sets–which is possible since n > 3F . This leads to an in-degree of dini = !n/2" + '3F/2(− 1 for

each i ∈ X1, and an in-degree of dinj = 'n/2(+!3F/2"−1 for each j ∈ X3. On the other hand, the

nodes in X2 exchange information bidirectionally with all other nodes, so that dink = doutk = n − 1

for all k ∈ X2. Therefore, the minimum in-degree depends on the parity of n and F . If they

have the same parity, |X1| = |X3|, and δin(D) = !(n + 3F)/2" − 1. If n is odd and F is even,

|X3| = |X1|+1, and δin(D) = !(n+3F)/2"−1. Finally, if n is even and F is odd, |X3| = |X1|−1,

and δin(D) = !(n + 3F)/2" − 1, which means, in any case, B1F is minimally relaxed.

To show that ARC-P may not achieve agreement in this digraph, let each node in X1 and X3

have initial value 1 and 3, respectively. Suppose all nodes in X2 are Byzantine, and they transmit a

constant trajectory of 1 to nodes inX1 and 3 to nodes inX3. Then nodes inX1 remove the influence

from their F neighbors in X3 and vice versa, so that agreement fails.

Example 4.8 (Relax B2F with |S| = 3F and S = S1∪S2∪S3). Consider the digraph in Figure 30.

In this example, S = S1 ∪ S2 ∪ S3, with |Si| = F for i = 1, 2, 3. The remaining nodes in V \ S

form a clique, Kn−3F . Nodes in S1 and S3 have value 1 and 3, respectively, and nodes in V \ S

have value 2. Nodes in S2 are Byzantine and send values 1, 2, and 3, respectively, to nodes in S1,

V \ S , and S3. Clearly, as in the previous examples, the normal nodes do not reach agreement, but

remain fixed at their initial values.

Although this section is replete with pathological examples in which ARC-P fails to achieve

agreement–even when the networks have high minimum degrees and high connectivity–the news

144

Figure 29: Relax B1F : δin = !(n + 3F)/2"−1.

Figure 30: Relax B2F : |S| = 3F and S = S1 ∪ S2 ∪ S3.

is not all bad. First, we now know that the sufficient conditions studied in Section 4.6.1 are the

best we can have using minimum degrees and connectivity. Second, we can discern a pattern in

the various examples. A common property is that there are pairs of subsets with high connectivity

within the subsets, but nodes in each subset have relatively few in-neighbors outside of their subsets.

Therefore, new topological conditions for digraphs that deal with (a) pairs of subsets of nodes and

(b) the number of nodes with “enough” in-neighbors outside of their respective subset are essential

to characterize under what conditions resilient distributed algorithms, such as ARC-P, converge.

145

4.7 Simulation Examples

In this section we present a couple of simulation examples to illustrate the results of this chapter.

The first example looks at a time-invariant topology with a single Byzantine agent and the second

example considers a malicious agent in time-varying networks.

Example 4.9 (Morale dynamics on fixed topology with single Byzantine agent). Consider a varia-

tion of the Byzantine generals problem in which the loyal generals attempt to improve the morale of

their troops and reach consensus on the level of morale despite the influence of a subset of Byzantine

generals. In addition, the troops have no knowledge of the goal of the generals. For the purposes

of this example, the state value represents the level of morale. The sign of the value indicates either

good (positive) or bad (negative) morale and the magnitude signifies the relative levels of morale.

Here, we assume that the morale dynamics of each agent behave as an integrator with the input

(influence) either given by ARC-P, as in (29), or simply by the sum of relative morale values:

ẋi(t) =
∑

j∈N in
i

(

x(j,i)(t)− xi(t)
)

, xi(0) = x0i ,

where xi(t) is the morale value of agent i and x0i is the initial morale value of agent i. We refer

to the influence rule above as the linear consensus protocol (LCP), which is a special case of the

weighted sum of relative states studied extensively in the literature [152].

Each general is able to continuously influence all of the troops and the other generals, and the

generals can provide different influence to different individuals. The influence network is shown in

Figure 31, in which nodes 17 through 20 form a clique and are the generals (shown as squares).

The other nodes are the troops (shown as circles). Troop i has initial morale −i, for i = 1, . . . , 16,

and the generals have initial morale of 1, 2, 3, and 4, respectively, for nodes 17, 18, 19, and 20.

The central question of this example is whether either LCP or ARC-P can ensure that the troops

reach asymptotic consensus on a positive morale given that it is possible that one of the generals

is Byzantine (i.e., F = 1). Observe that the network of Figure 31 satisfies B2F whenever F = 1,

with S = {17, 18, 19, 20}, and can therefore sustain the compromise of a single agent as Byzantine

whenever the troops and loyal generals use ARC-P. In this case, we choose node 20 to be the

Byzantine general. In order to elude detection, the Byzantine general conveys a morale trajectory

146

Figure 31: Influence network. Squares are generals and circles are troops. Node 20 is Byzantine.

that satisfies the preassigned strategy–either ARC-P or LCP–to the other generals. But, to the

troops, the Byzantine general conveys a highly negative morale of −87.5. The results for LCP and

ARC-P are shown in Figure 32. The Byzantine morale trajectory shown in the figures is the one

conveyed to the other generals. Using LCP, the troops reach consensus at a negative morale of −20

and the generals reach consensus at 2.5, whereas with ARC-P the troops reach consensus at the

same value of the other generals at 2.5.

This example illustrates an important property of ARC-P: It only requires local information

for resilience against adversaries. In contrast, without nonlocal information, the detection and

identification techniques of [157, 158, 160, 159, 179, 180, 181, 186] would not successfully detect

the Byzantine general. This is because from the perspective of the loyal generals, the Byzantine

general behaves as it should and they receive no feedback from the troops. From the perspective of

the troops, the Byzantine general appears to be influenced by no other node. Hence, without prior

knowledge of at least some nonlocal aspects of the network topology, the Byzantine general remains

undetected.

147

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

−15

−10

−5

0

5

t (s)

m
or

al
e

Byzantine general
Loyal generals
Troops

(a) LCP.

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

−15

−10

−5

0

5

t (s)

m
or

al
e

Byzantine general
Loyal generals
Troops

(b) ARC-P.

Figure 32: Byzantine general attempts to reduce morale; it succeeds with LCP, fails with ARC-P.

148

Figure 33: Communication network with switching topology. Agent 5 is malicious.

Example 4.10 (Malicious Damped Oscillator). In this example, we consider time-varying networks.

We assume that the topology switches as illustrated in Figure 33, where node 5 is malicious. The

minimum degree in each digraph in the sequence is 3; therefore, all topologies satisfy M1F with

F = 1. Hence, Corollary 4.26 implies that whenever ARC-P with parameter F ∈ {1, 2} is used by

each normal node, and at most one node is malicious, then CTRAC is assured. For the sake of illus-

tration, we demonstrate this result for the case of a malicious damped oscillator that has frequency

5 Hz. The malicious agent’s trajectory decays at a slower rate than the consensus dynamics, as

shown in Figure 34. As expected, the normal agents using ARC-P with parameter F = 1 achieve

CTRAC with an exponential rate of convergence.

4.8 Summary

In this chapter, we introduce a novel continuous-time consensus problem, the Continuous-Time Re-

silient Asymptotic Consensus (CTRAC), which is formulated in terms of compromised nodes (or

adversaries). We define several adversary models and introduce a continuous-time consensus proto-

col. This protocol, referred to as the Adversarial Robust Consensus Protocol (ARC-P), demonstrates

resilience to extreme influence from adversaries under sufficient topological conditions. We prove

that the protocol is well formed in the sense that existence and uniqueness of solutions are assured.

We analyze ARC-P for the special case of complete networks under all of the variations of adversary

models, and show that for the specific class of complete networks, it is possible to terminate in finite

time with an ε-approximate solution. Then, we analyze ARC-P in a class of networks characterized

by their degree properties and show that ARC-P with parameter F achieves CTRAC whenever the

149

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

t (s)

sta
te

Malicious agent
Normal agents

Figure 34: Malicious agent tries to prevent consensus in switching topology of Figure 33.

parameter is sufficiently large (but not too large) and the bound on the total number of adversaries is

no more than F . These results apply also to time-varying networks, as long as the networks always

satisfy the degree conditions. Finally, we demonstrate the need for new topological conditions that

provide sufficient local redundancy so that sufficient information remains after the removal of ex-

treme values in the neighborhood. The following chapter addresses this need with the introduction

of network robustness.

150

CHAPTER V

CONTINUOUS-TIME RESILIENT ASYMPTOTIC CONSENSUS IN ROBUST NETWORKS

This chapter continues our study of Continuous-Time Resilient Asymptotic Consensus (CTRAC).

In the previous chapter, we introduced the Adversarial Robust Consensus Protocol (ARC-P), which

mitigates adversarial influence by eliminating the extreme values in the neighborhood of the node.

We demonstrated the effectiveness of ARC-P under several different adversary models. However,

the conditions that ensure CTRAC is achieved are quite conservative and do not capture the essential

topological conditions required by ARC-P (or other algorithms that use only local information).

In this chapter, we introduce a novel graph theoretic property referred to as network robustness,

or just robustness [210, 116, 115]. Network robustness formalizes the notion of sufficient local

redundancy of information flow in the network. This property of sufficient local redundancy is im-

portant for algorithms such as ARC-P that remove local information in order to maintain resilience

against faults or adversaries.

We also introduce a variant of ARC-P that is more selective in how it removes extreme values.

Because this modification of ARC-P also uses weights, we refer to the algorithm as weighted ARC-

P with selective reduce, or just ARC-P2 for brevity. Using robustness, we fully characterize the

network topologies in which ARC-P2 is able to achieve CTRAC under the F -total malicious and

crash models. The selective nature of ARC-P2 is crucial for this analysis, and therefore, the version

of ARC-P studied in Chapter IV is not studied here. Robustness also enables the formulation of the

tight necessary and sufficient conditions on the normal network for CTRAC to be achieved in the

presence of Byzantine adversaries under any of the scope of threat assumptions. Separate necessary

and sufficient conditions are presented for the F -local and f -fraction local malicious models.

The chapter is organized as follows. Section 5.1 motivates and defines the definition of ARC-P2.

Section 5.2 revisits the issue of existence and uniqueness of solutions whenever ARC-P2 is used by

the normal nodes. Section 5.3 defines the various notions of network robustness and demonstrates

several useful properties of robust networks. The resilient consensus results are presented in Sec-

tion 5.4. A simulation example is given in Section 5.5. Finally, Section 5.6 concludes the chapter.

151

5.1 Weighted ARC-P with Selective Reduce (ARC-P2)

Linear consensus algorithms have attracted significant interest in recent years [152, 168], due to

their applicability in a variety of contexts. In such strategies, at time t, each node senses or receives

information from its neighbors, and changes its value according to the Linear Consensus Protocol

(LCP)

ẋi(t) =
∑

j∈N in
i (t)

w(j,i)(t)
(

x(j,i)(t)− xi(t)
)

, (50)

where x(j,i)(t) − xi(t) is the relative state of agent j with respect to agent i and w(j,i)(t) is a

piecewise continuous weight assigned to the relative state at time t.

Different conditions have been reported in the literature to ensure asymptotic consensus is

reached [166, 143, 90]. It is common to assume that the weights are nonnegative, uniformly

bounded, and piecewise continuous. That is, there exist constants α, β ∈ R>0, with β ≥ α, such

that the following conditions hold:

• w(j,i)(t) = 0 whenever j 1∈ N in
i (t), i ∈ N , t ∈ R≥0;

• α ≤ w(j,i)(t) ≤ β, ∀j ∈ N in
i (t), i ∈ N , t ∈ R≥0;

One problem with LCP given in (50) is that it is not resilient to misbehaving nodes. In fact, it is

shown in [90, 75] that a single ‘leader’ node can cause all agents to reach consensus on an arbitrary

value of its choosing (potentially resulting in a dangerous situation in physical systems).

5.1.1 Informal Description of ARC-P2

As shown in the last chapter, ARC-P achieves CTRAC under appropriate topological conditions.

Using ARC-P with parameter F , a normal node i always removes 2F values in its inclusive neigh-

borhood J in
i (t) (i.e., the F largest and smallest), regardless of the normal node’s value. In partic-

ular, node i’s own value may be removed, and if node i has one of the extreme normal values (i.e.,

xi(t) ∈ {mN (t),MN (t)} where mN (t) = minj∈N{xj(t)} and MN (t) = maxj∈N {xj(t)}), then

potentially more than F values greater or less than xi(t) may be removed. This is unnecessary to

ensure safety. Therefore, weighted ARC-P with selective reduce (ARC-P2) and parameter F mod-

ifies this behavior by using the fact that the normal node i is sure that its own value is good, and

therefore should be kept. Instead of always removing the F largest and smallest values, only F

152

values strictly larger or smaller than its own value are removed. In cases where a normal node is an

extreme value of its neighborhood, F or fewer values are removed with ARC-P2.

ARC-P2 also differs from ARC-P because ARC-P2 has time-varying, piecewise continuous,

nonnegative, uniformly bounded weights w(j,i)(t) ∈ R≥0 associated to each pair (j, i) ∈ V × N .

The weights are uniformly bounded above by β ∈ R>0. We define (without loss of generality)

w(j,i)(t) ≡ 0 for j /∈ N in
i (t). Whenever j ∈ N in

i (t), there is the uniform lower bound α ∈ R>0, so

the weights are bounded as 0 < α ≤ w(j,i),k(t) ≤ β.

As with ARC-P, we consider ARC-P2 with either parameter F ∈ Z≥0 or f ∈ [0, 1]. For

consistency in notation, let Fi(t) ≡ F if the parameter is F , and let Fi(t) = !fdi(t)" if the

parameter is f (note that all normal nodes either use one parameter or the other, depending on

the scope of threat model assumed). Whenever the normal nodes assume the F -total or F -local

models, at most F of node i’s neighbors may be compromised, and the parameter used is F .31

Similarly, whenever the normal nodes assume the f -fraction local model, at most !fdi(t)" of node

i’s neighbors may be compromised, and the parameter used is f . Since node i is unsure of which

neighbors may be compromised, it removes the extreme values with respect to its own value. The

following steps describe ARC-P2.

1. At time t, each normal node i obtains the values of its in-neighbors, and forms a sorted list.

2. If there are less than Fi(t) values strictly larger than its own value, xi(t), then normal node

i removes all values that are strictly larger than its own. Otherwise, it removes precisely the

largest Fi(t) values in the sorted list.32 Likewise, if there are less than Fi(t) values strictly

smaller than its own value, then node i removes all values that are strictly smaller than its

own. Otherwise, it removes precisely the smallest Fi(t) values.

3. Let Ri(t) denote the set of nodes whose values were removed by normal node i in step 2 at
31Of course, if the scope of threat model assumed (i.e., at design time) is not the true scope of threat, then ARC-P2

may fail to be resilient.
32Ties may be broken arbitrarily; however, it is required that the algorithm is able to match the correct weights to the

values kept.

153

time t. Each normal node i applies the update33

ẋi(t) =
∑

j∈N in
i (t)\Ri(t)

w(j,i)(t)
(

x(j,i)(t)− xi(t)
)

, (51)

Observe that the set of nodes removed by normal node i, Ri(t), is possibly time-varying. Hence,

even though the underlying network topology may be fixed, ARC-P effectively induces switching

behavior, and can be viewed as the linear update of (50) with a specific rule for state-dependent

switching (the rule given in step 2).

5.1.2 Formal Description of ARC-P2

The previous section outlined the steps taken in ARC-P2 to remove the influence of nodes with

extreme values. In order to analyze (27) for existence and uniqueness of solutions whenever the

normal agents use ARC-P2, it is useful to express ARC-P2 as a composition of functions. For this,

we require the following definitions, which are analogous to the functions defined in Definition 4.9

on page 110.

Definition 5.1. Let k ∈ N and Fi ∈ Z≥0. Denote the elements of vectors ξ, w, z ∈ Rk by ξl, wl,

and zl, respectively, for l = 1, 2, . . . , k. Then:

(i) The (ascending) sorting function on k elements, ρk : Rk → Rk, is defined by ξ = ρk(z) such

that ξ is a permutation of z which satisfies

ξ1 ≤ ξ2 ≤ · · · ≤ ξk;

(ii) The weighted zero-selective reduce function with respect to Fi and k, rk0,Fi
: Rk × Rk → R,

is defined by (52), where 1≥0(α) and 1≤0(α) are indicator functions, and the weights are

uniformly bounded by 0 < α ≤ wl ≤ β, ∀l.
33Note that if all neighboring values are removed, then ẋi(t) = 0.

154

rk0,Fi
(z, w) =































∑Fi

l=1wl1≥0(zl)zl +
∑k−Fi

l=Fi+1 wlzl +
∑k

l=k−Fi+1 wl1≤0(zl)zl k > 2Fi;
∑k−Fi

l=1 wl1≥0(zl)zl +
∑k

l=Fi+1wl1≤0(zl)zl F < k ≤ 2Fi;

0 k ≤ Fi;
(52)

(iii) The composition of the sorting and weighted zero-selective reduce functions with respect

to Fi and k is defined by φk
0,Fi

: Rk × Rk → R, which is defined for all z ∈ Rk and

w ∈ Rk such that 0 < α ≤ wl ≤ β by

φk
0,Fi

(z, w) = rk0,Fi
(ρk(z), w).

The update rule of ARC-P2 with either parameter F ∈ Z≥0 or f ∈ [0, 1] determines

ui = fi,σ(t)(xN , x(A,i))

for each normal agent i ∈ N at each point in time t ∈ R≥0 by

fi,σ(t)(t, xN , xA) = φdi(t)
0,Fi(t)

(

Ni(t)(x(V ,i)(t)− xi(t)1n), wi(t)
)

, (53)

where 1n ∈ Rn is the vector of ones, Fi(t) ≡ F if the parameter is F , Fi(t) = !fdi(t)" if the

parameter is f , and Ni(t) ∈ Rdi(t)×n is a time-varying sparse matrix with each row corresponding

to a distinct j ∈ N in
i (t) such that each row has a single 1 in the j-th column. Thus, there is a

one-to-one correspondence between j ∈ N in
i (t) and rows in Ni(t). The time-varying weight vector

wi(t) = [w(i1(t),i)(t), w(i2(t),i)(t), . . . , w(idi(t)(t),i)
(t)]T,

satisfies the bound 0 < α ≤ w(ij(t),i) ≤ β for all j = 1, 2, . . . , di(t), where i1(t), i2(t), . . . , idi(t)(t)

are the node indices of the neighbors of node i in the order determined by the sorting function at

time t (i.e., according to (28) such that the weights match the corresponding neighbor). These terms

are defined so that (53) is equivalent to (51) for all t ∈ R≥0.

155

5.2 Existence and Uniqueness of Solutions

The argument for existence and uniqueness of solution of (27) whenever the normal nodes use ARC-

P2 is identical to the one given for ARC-P in Section 4.3 on page 113. Therefore, we proceed by

providing the results and illustrating the differences from ARC-P.

Lemma 5.2 (Analogue to Lemma 4.14). Each function fi,σ(t)(xN , x(A,i)) for i ∈ N defined in

(53) (or (51)) with parameter F ∈ Z≥0 (or f ∈ [0, 1]), satisfies a global Lipschitz condition in

x = [xTN , xT(A,i)]
T, xN , and x(A,i).

Proof. Because the weights are piecewise continuous, it follows that fi,σ(t)(·) is piecewise contin-

uous in time t just as it is with ARC-P. All that remains to be shown is that the weighted zero-

selective reduce function is Lipschitz. To do this, fix t ∈ R≥0, Fi(t) = F ∈ Z≥0, di(t) = k, and

wi(t) = w ∈ Rk. The argument to φk
0,F (·, w) is linear and the sorting function is Lipschitz. Fix

z, y ∈ Rk. The key observation is that

1≥0(zl)zl − 1≥0(yl)yl ≤ |zl − yl|,

for each l = 1, 2, . . . , k, which is trivial to show by checking the four cases depending on the signs

of zl and yl. Since 0 < α ≤ wl ≤ β, it follows that

wl1≥0(zl)zl − wl1≥0(yl)yl ≤ β|zl − yl|,

Likewise, the inequality holds when the indicator function is 1≤0(·) instead of 1≥0(·). Combining

this with the triangle inequality, it is straightforward to show using the Manhattan norm that rk0,F is

Lipschitz with Lipschitz constant β. The remaining argument follows that of Lemma 4.14.

Theorem 5.3. The function fσ(t)(t, xN , x(A,N)) that defines the dynamics of the normal agents,

with fi,σ(t)(·) defined in (53) (or (51)) with parameter F ∈ Z≥0 (or f ∈ [0, 1]) and any threat

model such that x(A,N) is piecewise continuous, satisfies a global Lipschitz condition in xN .

Proof. The proof follows the same argument as Theorem 4.15, using Lemma 5.2 and the fact that

the weights are piecewise continuous.

Next, we present the analogue to Lemma 4.16.

156

Lemma 5.4. Consider the normal agent i ∈ N using ARC-P2 with parameter F ∈ Z≥0 under

the F ′-local or F ′-total models where F ′ ≤ F , or parameter f ∈ [0, 1] under the f ′-fraction local

model where f ′ ≤ f . Define Fi(t) ≡ F or Fi(t) = !fdi(t)" whenever the parameter is F or f ,

respectively. Then, for each t ∈ R≥0

B(mN (t)− xi(t)) ≤ fi,σ(t)(t, xN , x(A,i)) ≤ B(MN (t)− xi(t)),

where B = β(n − 1−mini∈N{Fi(t)}).

Proof. If di(t) ≤ Fi(t), or if Fi(t) < di(t) ≤ 2Fi(t) and there are at most Fi(t) neighbors with

larger and smaller values than xi(t), then fi,σ(t)(t, xN , x(A,i)) = 0, and the result follows. There-

fore, assume di(t) > Fi(t) and at least one value not equal to xi(t) is used in the update at time

t, say x(j,i)(t). As in the proof of Lemma 4.16, we can show that mN (t) ≤ x(j,i)(t) ≤ MN (t).

Since there at most n − 1 neighbors of i, at least Fi(t) values are removed or equal to xi(t) (since

di(t) > Fi(t)), and w(j,i)(t) ≤ β for all j ∈ N in
i (t), it follows that

B(mN (t)− xi(t)) ≤
∑

j∈N in
i (t)\Ri(t)

w(j,i)(t)(x(j,i)(t)− xi(t)) ≤ B(MN (t)− xi(t)).

Next, we present the analogue to the invariant set result of Lemma 4.18. Just as Lemma 4.18

ensures the safety condition holds for ARC-P, Lemma 5.5 ensures the safety condition for ARC-P2.

Lemma 5.5 (Invariant Set). Suppose the normal agents inN use ARC-P2 with parameter F ∈ Z≥0

under the F ′-local or F ′-total models where F ′ ≤ F , or parameter f ∈ [0, 1] under the f ′-fraction

local model where f ′ ≤ f . Then, the hypercube H0 = [mN (0),MN (0)]N defined by

H0 = {y ∈ R
N : mN (0) ≤ yi ≤MN (0), i = 1, 2, . . . , N},

is robustly positively invariant for the system of normal agents. Therefore, under these assumptions,

the safety condition of the CTRAC problem is ensured.

Proof. The proof follows the argument of Lemma 4.18, using Lemma 5.4 instead of Lemma 4.16.

157

Remark 5.1. Lemma 5.4 implies that MN (t) is a nonincreasing function of time and mN (t) is

a nondecreasing function of time. Therefore, whenever agreement among the normal nodes is

achieved, there is a common limit to which the normal values converge.

It follows from these results and the argument presented in Section 4.3 that ARC-P2 ensures

existence and uniqueness of solutions.

Corollary 5.6 (Existence and Uniqueness). Suppose the adversaries have piecewise continuous

trajectories on [0,∞). Suppose each normal agent uses ARC-P2 with parameter F ∈ Z≥0 under

the F ′-local or F ′-total models where F ′ ≤ F , or parameter f ∈ [0, 1] under the f ′-fraction local

model where f ′ ≤ f . Then, the switched system (27) with component functions given in (53) (or

(51)) has a unique Carathéodory solution on [0,∞) (given the choice of bounded, nonnegative,

piecewise continuous weights, piecewise constant switching signal σ(t), and x(A,N)(t) for t ∈

R≥0).

5.3 Robust Network Topologies

Traditionally, network connectivity has been the key metric for studying robustness of distributed

algorithms. This is because connectivity formalizes the notion of redundant information flow across

the network through independent paths. Due to the fact that each independent path may include

multiple intermediate nodes, network connectivity is well-suited for studying resilient distributed

algorithms that assume such nonlocal information is available (for example, by explicitly relaying

information across multiple hops in the network [130], by ‘inverting’ the dynamics on the network

to recover the needed information [181, 159], or by resiliently encoding information along multiple

paths [92]). However, when the nodes in the network use only local information (as in ARC-P),

connectivity does not capture the notion of local redundancy needed for such algorithms to succeed.

For this, we consider network robustness [210].

5.3.1 Network Robustness and Fractional Robustness

Network robustness formalizes the notion of sufficient local redundancy of information flow in the

network. Therefore, this property is useful for the study of resilient distributed algorithms that use

only local information. To motivate the technical details involved with defining robustness, recall the

158

Figure 35: Graph in which ARC-P with parameter F = 2 fails to converge.

pathological examples studied in Section 4.6.3. In each of the examples, there are pairs of subsets

of nodes with high connectivity within the subsets, but all nodes in each subset have relatively few

neighbors outside of their respective subsets.

For concreteness, consider the graph of Figure 35, which illustrates a specific graph in the class

of graphs studied in Example 4.5 of Section 4.6.3 (see Figure 27 on page 143 for the illustration

of the class of graphs). In Figure 35, there are n = 8 nodes divided into two cliques (complete

subgraphs), X = K4 and Y = K4, where Kn is the complete graph on n nodes. The graph is

highly connected, with κ(G) = 5. Each node in X has exactly F = 2 neighbors in Y , and vice

versa. One can see that if the initial values of nodes in X and Y are a ∈ R and b ∈ R, respectively,

with a < b, then asymptotic consensus is not achieved whenever ARC-P is used with parameter F ,

even in the absence of adversaries. This is because each node views the values of its F neighbors

from the opposing set as extreme, and removes all of these values in order to maintain safety under

the F -total or F -local models. The only remaining values for each node are from its own set, and

thus no node ever changes its value.

Now consider the digraph in Figure 36 and assume the nodes begin with initial values a and b, as

in the graph of Figure 35. Suppose all nodes are normal and each node uses ARC-P with parameter

F = 2. This digraph has one more directed edge than the graph of Figure 35 – the directed edge

(5,2) – which in this case facilitates consensus. In informal terms, node 2 in X has three neighbors

in Y , of which only two are removed from consideration. The additional outside influence causes

159

Figure 36: Digraph in which ARC-P with parameter F = 2 succeeds (without adversaries).

its value to increase toward b. This trend propagates to the other nodes in X through the influence

of node 2, thereby facilitating asymptotic consensus. Therefore, existence of a node with sufficient

outside influence is an important property for subsets of nodes to have whenever ARC-P is used

(or other distributed algorithms that achieve resilience under the F -total and F -local models). This

motivates the definition of r-edge reachable sets [210].34

Definition 5.7 (r-edge reachable set). Given a nontrivial digraph D and a nonempty subset S of

nodes of D, we say S is an r-edge reachable set if there exists i ∈ S such that |N in
i \ S| ≥ r, where

r ∈ Z≥0.

A set S is r-edge reachable if it contains a node that has at least r in-neighbors outside of S .

The parameter r quantifies the local redundancy of information from nodes outside S to some node

inside S . Intuitively, the r-edge reachability property captures the idea that some node inside the

set is influenced by a sufficiently large number of nodes from outside the set. The fact that X is

3-edge reachable in Figure 36, yet only 2-edge reachable in Figure 35, is precisely the difference

that enables convergence toward consensus in one, but not the other.

To further illustrate r-edge reachability, consider the sets S1, S2, and S3 in Figure 37. S1 is

3-edge reachable because node 3 has three neighbors outside of S1 (nodes 4, 7, and 8). S2 is 5-edge

reachable because node 8 has five neighbors outside S2 (nodes 3, 4, 5, 6, and 7). Lastly, S3 is 5-edge
34In [210], edge reachability is defined as reachability. We modify the terminology to avoid confusion with reachability

properties defined with respect to directed paths.

160

Figure 37: Graph for illustrating reachability properties.

reachable, because node 5 has five neighbors, all of which are outside the singleton S3.

The fact that X is 3-edge reachable in Figure 36 is not the only reason that asymptotic con-

sensus is achieved in this digraph (whenever ARC-P with parameter F = 2 is used). In fact, it is

the cumulative effect of edge reachability properties of many subsets of nodes in the network that

ensures consensus is always achievable.35 If there is any nonempty, disjoint pair of subsets of nodes

such that neither set is 3-edge reachable, then we could assign different initial values to nodes in

each set (as in Figure 35) and prevent consensus (whenever the consensus algorithm is designed to

be resilient under the F -total or F -local models with F = 2). Therefore, in order to generalize the

notion of sufficient local redundancy of information in the network, we must consider every pair

of nonempty and disjoint subsets of nodes and insist that at least one of the subsets has the r-edge

reachability property. This is the definition of r-robustness [210].

Definition 5.8 (r-robustness). A nonempty, nontrivial digraph D = (V, E) on n nodes (n ≥ 2)

is r-robust, with r ∈ Z≥0, if for every pair of nonempty, disjoint subsets of V , at least one of the

subsets is r-edge reachable. By convention, if D is empty or trivial (n ≤ 1), then D is 0-robust. The

trivial graph is also 1-robust.36

35Consensus is always achievable (for all initial conditions) in the digraph of Figure 36 whenever ARC-P with param-
eter F is used and all nodes are normal. If adversaries are present, then more robustness is needed.

36The trivial graph is defined to be both 0-robust and 1-robust for consistency with properties shown to hold for larger
digraphs in the sequel.

161

Figure 38: A 3-robust graph in which X and Y are 3-edge reachable. Nodes 2 and 8 are crash
nodes.

However, if there are adversary nodes in the network, then the situation becomes more complex.

For example, consider the network modeled by the graph in Figure 38. One can verify that the graph

is 3-robust by checking every possible pair of disjoint subsets, and confirming that at least one of

them is 3-edge reachable. Consider the disjoint subsets X and Y shown in the figure, and note that

both of the sets are 3-edge reachable – nodes 2 and 8 each have three neighbors outside of their

respective sets. However, no other nodes in those two sets have more than two neighbors outside

their set. Therefore, nodes 2 and 8 are the only ones with access to sufficient information outside

their set. Suppose these two nodes (2 and 8) are crash nodes and the initial values of nodes in X

and Y are a and b, respectively. Then, by stubbornly maintaining their initial values, nodes 2 and

8 are able to prevent consensus whenever the normal nodes use ARC-P with parameter F = 2.

One way to remedy this is to require the whole network to be more robust. Another way is to

introduce another form of information redundancy by specifying a minimum number of nodes that

are sufficiently influenced from outside their set. In order to capture this intuition, we define the

following concept.

Definition 5.9 ((r, s)-edge reachable set). Given a nontrivial digraph D and a nonempty subset of

nodes S , we say that S is an (r, s)-edge reachable set if there are at least s nodes in S with at least

r in-neighbors outside of S , where r, s ∈ Z≥0; i.e., given X r
S = {i ∈ S : |N in

i \ S| ≥ r}, then

|X r
S | ≥ s.

A general illustration of an (r, s)-edge reachable set of nodes is shown in Figure 39. The pa-

162

Figure 39: Illustration of an (r, s)-edge reachable set of nodes.

rameter s in the definition of (r, s)-edge reachability quantifies a lower bound on the number of

nodes in the set with at least r in-neighbors outside S . Observe that, in general, a set is (r, s′)-edge

reachable, for s′ ≤ s, if it is (r, s)-edge reachable. At one extreme, whenever there are no nodes

in S with at least r in-neighbors outside of S , then S is only (r, 0)-edge reachable. At the other

extreme, S can be at most (r, |S|)-edge reachable. Also note that r-edge reachability is equivalent

to (r, 1)-edge reachability. Hence, (r, s)-edge reachability provides finer granularity than r-edge

reachability by specifying not only the existence of a node with sufficient outside influence, but a

lower bound on the number of such nodes.

For a more specific example, consider again the graph in Figure 37 (on page 161). Now we

may characterize S1 as (3, 3)-edge reachable (all nodes have three neighbors outside S1). S2 is

both (5, 1)-edge reachable (due to node 8) and (4, 2)-edge reachable. Depending on the situation

(in terms of the scope of threat model and algorithm used), one characterization may be preferred

over the other. Again, S3 is (5, 1)-edge reachable.

The notion of (r, s)-edge reachability characterizes the class of sets that are r-edge reachable

with greater specificity on the number of nodes that have sufficient outside influence. This addi-

tional specificity is useful for defining (r, s)-robustness, which is analogous to r-robustness, but has

greater specificity on the number of nodes in the pair of subsets that have enough neighbors outside

their respective sets. Because s is a lower bound on the number of nodes in set S with at least r

in-neighbors outside, the maximal s such that set S is (r, s)-edge reachable is the exact number of

nodes with at least r in-neighbors outside S . In the definition of (r, s)-robustness, we are interested

in the exact number of such nodes.

163

Definition 5.10 ((r, s)-robustness). A nonempty, nontrivial digraph D = (V, E) on n nodes (n ≥ 2)

is (r, s)-robust, for nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for every pair of nonempty, disjoint

subsets S1 and S2 of V at least one of the following holds (recall X r
Sk

= {i ∈ Sk : |N in
i \ Sk| ≥ r}

for k ∈ {1, 2}):

(i) |X r
S1
| = |S1|;

(ii) |X r
S2
| = |S2|;

(iii) |X r
S1
|+ |X r

S2
| ≥ s.

By convention, if D is empty or trivial (n ≤ 1), then D is (0,1)-robust. If D is trivial, D is also

(1,1)-robust.37

A few remarks are in order with respect to this definition. The properties required of each

nonempty, disjoint pair of subsets of nodes are codified by conditions (i)-(iii). Condition (iii)

captures the main idea behind the definition. In an (r, s)-robust network, it is generally required

that there are at least s nodes in the pair of nonempty, disjoint subsets S1,S2 ⊂ V that have at least

r in-neighbors outside their respective sets. However, there are cases in which this condition cannot

be satisfied. A simple example is when |S1 ∪ S2| < s (i.e., whenever the sets are small relative to

s). Conditions (i) and (ii) are included to handle these special cases. Whenever condition (i) or

(ii) is satisfied, it means that all nodes in the respective subset have at least r in-neighbors from

outside. It follows that for large subsets relative to s, conditions (i) and (ii) are conservative, and it

is sufficient for condition (iii) to hold. The downside to introducing conditions (i) and (ii), which

do not depend on s, is that for some values of r there are digraphs such that every pair of nonempty,

disjoint subsets satisfies either condition (i) or (ii). In these examples, there is no meaning behind

the parameter s. For this reason, s is restricted to lie between 1 and n.38

An example of a graph that is (2, s)-robust, for all 1 ≤ s ≤ n is the graph of Figure 35. Indeed,

it satisfies conditions (i) or (ii) for all pairs of nonempty, disjoint subsets of nodes. Therefore,
37The trivial graph is defined to be both (0,1)-robust and (1,1)-robust for consistency with properties shown to hold for

larger digraphs in the sequel.
38Note that s = 0 is not allowed in (r, s)-robustness because in that case any digraph on n ≥ 2 nodes satisfies the

definition for any r ∈ Z≥0, which subverts the interpretation of the parameter r. At the other extreme, the maximal
meaningful value of s is s = n since condition (iii) can never be satisfied with s > n.

164

Figure 40: A 3-robust graph that is not (3,2)-robust.

condition (iii) in Definition 5.10 is never needed, and the definition is satisfied with r = 2 for all

valid values of s.

The reader may then wonder whether the introduction of conditions (i) and (ii) in the defini-

tion of (r, s)-robustness prevents a meaningful comparison with r-robustness. On the contrary, if

s = 1, then conditions (i) − (iii) collapse to (iii) (since S1 and S2 are nonempty). In this case,

condition (iii) holds if and only if one of the sets is r-edge reachable. Therefore, (r, 1)-robustness

is equivalent to r-robustness. In more general terms, a digraph is (r, s′)-robust and (r′, s)-robust

if it is (r, s)-robust, for s′ ≤ s and r′ ≤ r (see Property 5.13 in the sequel). Therefore, a digraph

is r-robust whenever it is (r, s)-robust. The converse, however, is not true. Consider the graph in

Figure 40. This graph is 3-robust, but is not (3, 2)-robust. For example, let S1 = {1, 3, 5, 6, 7} and

S2 = {2, 4}. Then, only node 2 has at least three nodes outside of its set, so all of the conditions

(i)− (iii) fail to hold for this pair.

Consider again the examples of Figures 35 and 40. The graph of Figure 35 is (2, 8)-robust, but

is not 3-robust, which can be shown by selecting S1 = X and S2 = Y . On the other hand, the

graph in Figure 40 is 3-robust, but is not (2,5)-robust (e.g., let S1 = {1, 5, 6} and S2 = {2, 3, 4};

then only nodes 2, 3, 5, and 6 have two or more neighbors outside their set). The question then

arises, which graph is more robust? More generally, how does one compare relative robustness?

Clearly, if digraph D1 is (r1, s1)-robust and digraph D2 is (r2, s2)-robust with maximal rk and sk

for k ∈ {1, 2}, where r1 > r2 and s1 > s2, then one can conclude that D1 is more robust than

165

D2. We adopt the convention that r-robustness (with maximal r) takes precedence in the total order

that determines relative robustness. The maximal s in (r, s)-robustness is then used for ordering

the robustness of two r-robust digraphs with the same value of r. The reason for adopting this

convention is twofold. As exemplified by the graph in Figure 35, there are digraphs in which the

parameter s may take on any value, and in such cases s loses its precise meaning. On the other

hand, there are properties shown in the following section that show the utility of the parameter r

in characterizing the robustness of a given digraph. For example, there is an upper bound on the

value of r for any digraph on n nodes (Property 5.19). Moreover, if a digraph is sufficiently robust,

in terms of r-robustness, then this implies a minimum value of s > 1 for smaller values r′ < r in

terms of (r′, s)-robustness (Property 5.21). Property 5.20 indicates that parameter r may be traded

for greater values of the parameter s. The converse is obviously not true, as demonstrated by the

graph of Figure 35 (recall it is (2, 8)-robust, but is not 3-robust). Therefore, r is the more essential

parameter in characterizing the robustness of a network.39

Given this total order on the robustness of networks, the graph in Figure 40, which is 3-robust,

is more robust than the graph of Figure 35. Yet, the graph of Figure 40 is only 3-connected, whereas

the graph of Figure 35 is 5-connected. Hence, it is possible that a digraph with less connectivity is

more robust. In the sequel, we further explore the relationship between connectivity and robustness.

Fractional Edge Reachability and Robustness

As demonstrated by the motivating examples at the beginning of this section, the edge reachability

and robustness properties described so far are useful to describe resilience properties under the F -

local and F -total models. With these scope of threat assumptions, there is a fixed upper bound on

the number of compromised nodes in any normal node’s neighborhood. To maintain safety under

these threat models requires the normal nodes to be skeptical of values different from their own. To

facilitate convergence, enough neighbors with different values are needed to assure the node that it

is safe to change its value. This requirement is codified by network robustness. However, for the

f -fraction local model, there is no absolute bound on the number of neighbors that may be compro-

mised. Rather, it stipulates a bound on the fraction of neighbors that may be compromised. Hence,

for the f -fraction local model, we require a fractional notion of edge reachability and robustness.
39While Properties 5.20 and 5.21 do not fully justify this total order, it is convenient nonetheless to impose a total order.

166

Figure 41: Illustration of a p-fraction edge reachable set of nodes.

First, we define a p-fraction edge reachable set.

Definition 5.11 (p-fraction edge reachable set). Given a nonempty digraph D and a nonempty

subset S of nodes of D, we say S is a p-fraction edge reachable set if there exists i ∈ S such that

|N in
i | > 0 and |N in

i \ S| ≥ 'p|N in
i |(, where 0 ≤ p ≤ 1. If |N in

i | = 0 or |N in
i \ S| = 0 for all i ∈ S ,

then S is 0-fraction edge reachable.

A set S is p-fraction edge reachable if it contains a non-isolated node i (i.e., di > 0) that has at

least 'pdi(neighbors outside of S . The parameter p quantifies the ratio of influence from neighbors

outside S to neighbors inside S for at least one node inside S . To illustrate this definition, consider

Figure 41 where node i ∈ S is a node with at least 'pdi(neighbors outside of S . In the figure,

dSi and dS̄i denote the neighbors of i inside and outside S , respectively. Given this notation, node i

satisfies the inequality
dS̄i
di
≥ p.

Note that if no such i ∈ S (with di > 0) satisfies this inequality, then S is not p-fraction edge

reachable.

To further illustrate p-fraction edge reachability, consider once again the sets S1, S2, and S3

in Figure 37 (on page 161). Each node in S1 has three-fifths of its neighbors outside S1; so S1 is
3
5 -fraction edge reachable. Node 8 has five-sixths of its neighbors outside of S2, so S2 is 5

6 -fraction

edge reachable. Finally, S3 is a non-isolated singleton; therefore, S3 is 1-fraction edge reachable.

The p-fraction edge reachability property is defined with respect to a specific set S ⊆ V . As

was the case with r-robustness and (r, s)-robustness, to demonstrate fractional robustness of the

167

network requires checking fractional edge reachability properties of every nonempty, disjoint pair

of subsets of nodes. In this case, at least one of the subsets in each pair must be p-fraction edge

reachable. This is the definition of p-fraction robustness.

Definition 5.12 (p-fraction robustness). A nonempty, nontrivial digraph D = (V, E) on n nodes

(n ≥ 2) is p-fraction robust, with 0 ≤ p ≤ 1, if for every pair of nonempty, disjoint subsets of V ,

at least one of the subsets is p-fraction edge reachable. If D is empty or trivial (n ≤ 1), then D is

0-fraction robust.

5.3.2 Properties of Robust Networks

In this section, we demonstrate some properties of robust and fractional robust digraphs, with greater

focus on robustness. In particular, we explore relationships between robustness and other graph

theoretic metrics such as connectivity and minimum degree. We also consider the implications of

how directed edge removal and other modifications to a digraph relate to robustness. We begin by

establishing an inheritance property of (r, s)-robust and p-fraction robust digraphs.

Property 5.13. Every (r, s)-robust digraph D = (V, E) is also (r′, s′)-robust when 0 ≤ r′ ≤ r,

1 ≤ s′ ≤ s. Every p-fraction robust digraph is also p′-fraction robust when 0 ≤ p′ ≤ p.

Proof. If D is empty or trivial, there is nothing to prove, so assume D is nonempty and nontrivial.

Fix any nonempty, disjoint pair S1,S2 ⊂ V . If D is (r, s)-robust, then at least one of the three

conditions (i)–(iii) of Definition 5.10 holds. Observe that |X r′
Sk
| ≥ |X r

Sk
| for k = 1, 2. Hence if (i)

or (ii) hold, then |X r′
Sk
| ≥ |X r

Sk
| = |Sk| ≥ |X r′

Sk
|, which implies |X r′

Sk
| = |Sk|. If (iii) holds, then

|X r′
S1
|+ |X r′

S2
| ≥ |X r

S1
|+ |X r

S2
| ≥ s ≥ s′.

Thus, any pair of nonempty, disjoint subsets of nodes in D satisfy Definition 5.10 with r and s

replaced by r′ and s′. Therefore, D is (r′, s′)-robust.

Similarly, if D is p-fraction robust, then at least one of S1 or S2 is p-fraction edge reachable.

Whichever set is p-fraction edge reachable is also p′-fraction edge reachable, and the result follows.

168

The next two results demonstrate the utility of robustness in analyzing linear consensus pro-

tocols. Recall that when there are no misbehaving nodes, the Linear Consensus Protocol given in

(50) achieves consensus in time-invariant networks if and only if the network contains a rooted out-

branching. The following result shows that 1-robustness is equivalent to the existence of a rooted

out-branching. This result is proved in [210]. We include here a similar result for p-fraction robust

digraphs. The proof of this property follows the same argument used in [210].

Property 5.14 ([210]). A digraph D is 1-robust if and only if D contains a rooted-out branching.

Property 5.15. A digraph D is p-fraction robust for some 0 < p ≤ 1 if and only if D contains a

rooted-out branching.

Proof. If D is p-fraction robust for some 0 < p ≤ 1, we prove that D has a rooted out-branching by

contradiction. Assume that D does not have a rooted out-branching. Decompose D into its strongly

connected components, and note that since D does not have a rooted out-branching, there must

be at least two components that have no incoming edges from any other components. However,

this contradicts the assumption that D is p-fraction robust for some p > 0 (at least one of the two

subsets must have a node with at least one neighbor outside its set). Hence, there exists a rooted

out-branching.

Next, assume D contains a rooted out-branching, but is at most 0-fraction robust. Then we can

find two subsets of nodes that do not have neighbors from outside, which contradicts the assumption

that D contains a rooted out-branching.

Remark 5.2. The proof of Property 5.14 given in [210] is a more direct version of the proof of

Theorem 5 in [144].

The next two results demonstrate how modifications to the digraph affect the robustness of the

digraph. The first result deals with the amount of robustness guaranteed upon removal of directed

edges from nodes in the network. Conversely, the second result considers the addition of directed

edges. The first result is proven for r-robust digraphs in [210]. Here, we extend the result to (r, s)-

robust and p-fraction robust digraphs.

Property 5.16 (Directed Edge Removal). Given an (r, s)-robust digraph D, let D′ be the digraph

produced by removing up to k incoming edges from each node in D, where 0 ≤ k < r. Then D′ is

169

(r − k, s)-robust. Similarly, suppose D is p-fraction robust and D′ is produced by removing up to a

q-fraction of incoming edges from each node in D, with 0 ≤ q < p ≤ 1. Then D′ is (p− q)-fraction

robust.

Proof. From the definition of (r, s)-edge reachable sets, we know that if a set is (r, s)-edge reach-

able, then by removing up to k incoming edges from each node in D, where 0 ≤ k < r, the set is

(r−k, s)-edge reachable. Then, the result follows from the definition of (r, s)-robustness. Similarly,

if at most a q-fraction of incoming edges are removed from each node of a p-fraction edge reachable

set, with 0 ≤ q < p ≤ 1, then the set is still (p− q)-fraction edge reachable. The result then follows

from the definition of p-fraction robustness.

The following result formalizes the intuition that adding links to a robust network can never

reduce the robustness of the network. The same does not hold true for fractional robustness.

Property 5.17 (Monotonicity). Suppose D = (V, E) is an (r, s)-robust spanning subdigraph of

D′ = (V, E ′), where E ′ = E ∪ E ′′ and |E ′′| ≥ 0. Then D′ is (r, s)-robust.

Proof. Suppose D′ is not (r, s)-robust. Then there exists a pair of nonempty, disjoint subsets

S1,S2 ⊂ V such that all of the conditions (i)-(iii) in Definition 5.10 fail to hold with r and s.

By removing directed edges in E ′′, the number of nodes in X r
S1

and X r
S2

can only decrease, and

therefore none of conditions (i)-(iii) hold for the pair S1,S2 in D. Hence, D is not (r, s)-robust,

which is a contradiction.

Note that the monotonicity property above does not generally hold for fractional robustness.

To construct a counterexample, we first show that all cycle graphs on n > 3 nodes are 1
2 -fraction

robust. Our counterexample will be constructed from a cycle graph.

Property 5.18 (Cycle graphs are 1
2 -fraction robust). Let Cn = (V, E) denote the cycle graph on n

nodes. Then, Cn is 1
2 -fraction robust whenever n > 3 and 1-fraction robust for n ∈ {2, 3}.

Proof. First, observe that C2 and C3 are 1-fraction robust because at least one of the subsets in any

pair of nonempty, disjoint subsets is a non-isolated singleton. To show that Cn is 1
2 -fraction robust

for n > 3, note that each node in Cn has degree 2. Given any nonempty subset of nodes S ⊂ V , if

there is some node i ∈ S such that one of the neighbors of the node is inside its set, but the other

170

Figure 42: Counterexample to monotonicity property for fractional robustness.

is outside, then S is 1
2 -fraction edge reachable. On the other hand, if all neighbors are outside the

set, then the set is 1-fraction edge reachable. Note that Cn cannot be (at most) 0-fraction robust

because it is connected. Hence, there are two possibilities for Cn; it is either 1- or 1
2–fraction robust

(since every proper, nonempty subset of nodes in Cn must be either 1- or 1
2 -fraction edge reachable).

Existence of a single nonempty, disjoint pair S1,S2 ⊂ V such that both S1 and S2 are 1
2 -fraction

edge reachable then implies the result. Let S1 be constructed by taking some node i and one of its

neighbors. From the remaining nodes construct S2 by selecting some node j ∈ V \ S1 and one of

j’s neighbors in V \S1. Since n ≥ 4, this construction is possible. It follows that both nodes in each

set have one neighbor inside and one neighbor outside their set. Thus, both S1 and S2 are 1
2 -fraction

edge reachable.

Given Property 5.18, we obtain a counterexample to the monotonicity property as follows. Con-

struct G′ = (V ′, E ′) from C6 as shown in Figure 42. Each subset of V ′ shown in Figure 42 is
1
3 -fraction edge reachable (all nodes with neighbors outside their set have only one-third of their

neighbors outside). Therefore, starting with C6 and adding edges {1, 5} and {2, 4}, actually re-

duces the fractional robustness of the graph.

Next, we look at the maximum amount of robustness one can expect from a network with n

nodes. As one would expected, the complete digraph Kn is the most robust topology on n nodes.

Property 5.19 (Maximum robustness). No digraph D = (V, E) on n nodes is ('n/2(+ 1)-robust.

Conversely, the complete digraph, denoted Kn = (V, EKn), with EKn = {(i, j) ∈ V × V : i 1= j},

171

is ('n/2(, s)-robust, for 1 ≤ s ≤ n. Furthermore, whenever n > 1 is odd, Kn is the only digraph

on n nodes that is ('n/2(, s)-robust with s ≥ !n/2".

Proof. Assume D is nonempty and nontrivial (otherwise, the result holds by definition). Pick S1 and

S2 by taking any bipartition of V such that |S1| = 'n/2(and |S2| = !n/2". Neither S1 nor S2 have

'n/2(+1 nodes; therefore, neither one is ('n/2(+1)-edge reachable. Hence, D is not ('n/2(+1)-

robust. Now suppose D = Kn. For any nonempty, disjoint S1,S2 ⊂ V , |V \ Si| ≥ 'n/2(holds

for at least one of i ∈ {1, 2}. For whichever i this holds, |X +n/2,
Si

| = |Si|, so that Kn is ('n/2(, s)-

robust, for 1 ≤ s ≤ n. For the last statement, we show that whenever n > 1 is odd, removing any

directed edge from Kn causes the resulting digraph to lose ('n/2(, !n/2")-robustness. Suppose

e = (i, j) is the directed edge removed from EKn to form D′′ = (V, E ′′), with E ′′ = EKn \ {e}.

Choose S1 and S2 by taking any bipartition of V in D′′ such that |S1| = 'n/2(, |S2| = !n/2",

i ∈ S1, and j ∈ S2. Then, |X +n/2,
S1

| = 0 and |X +n/2,
S2

| = !n/2" − 1 < |S2|. Therefore, D′′

is not ('n/2(, s)-robust for s ≥ !n/2". This is sufficient to prove the statement because of the

monotonicity result of Property 5.17, combined with the fact that any spanning subdigraph of Kn,

D′ = (V, E ′) ⊂ Kn, can be obtained from a directed edge removal process starting with some

directed edge e = (i, j) /∈ E ′.

Now that we have shown the limit on the amount of robustness one can expect from a digraph

on n nodes, we next explore the relationship between parameters r and s in (r, s)-robustness. The

following property shows that robustness in terms of parameter r can be traded for larger values of

parameter s.

Property 5.20 ((r, s)-robust implies (r− 1, s+ 1)-robust). Suppose D = (V, E) is an (r, s)-robust

digraph on n nodes with r ∈ N, 1 ≤ s ≤ n. Then D is (r − 1, s + 1)-robust.

Proof. Fix any disjoint and nonempty subsets of nodes S1,S2 ⊂ V . If |X r
Sk
| = |Sk| or |X r−1

Sk
| =

|Sk| for k ∈ {1, 2}, then the pair satisfies at least one of the conditions of (r− 1, s+ 1)-robustness.

So, assume |X r
Sk
| < |Sk| and |X r−1

Sk
| < |Sk| for k ∈ {1, 2}. Then, we must have

|X r
S1
|+ |X r

S2
| ≥ s.

Since s ≥ 1, at least one of X r
S1

or X r
S2

is nonempty. Without loss of generality, assume X r
S1

is

172

nonempty, and fix i ∈ X r
S1

. Define S ′
1 = S1 \ {i} and S ′

2 = S2. Since |X r
S1
| < |S1|, it follows

that S ′
1 and S ′

2 are disjoint and nonempty. Observe that if j ∈ X r
S′
1
, then j ∈ X r−1

S1
(because node

i is the only difference between S ′
1 and S1, and so even if i ∈ N in

j , j still has at least r − 1 other

in-neighbors from outside). Therefore, |X r
S′
1
| < |S ′

1| (otherwise |X r−1
S1

| = |S1|) and |X r
S′
2
| < |S ′

2|

(since S ′
2 = S2). It follows that

|X r
S′
1
|+ |X r

S′
2
| ≥ s.

By including i ∈ X r
S1
⊆ X r−1

S1
back into the set (i.e., by considering S1 instead of S ′

1), we have

|X r−1
S1

|+ |X r−1
S2

| ≥ s+ 1.

Property 5.20 enables the following property that relates r-robustness to (r′, s)-robustness when-

ever r′ ≤ r and s = r − r′ + 1.

Property 5.21 ((r + s − 1)-robust implies (r, s)-robust). If D is (r + s − 1)-robust with r ∈ Z≥0,

s ∈ N, and 1 ≤ r + s− 1 ≤ 'n/2(, then D is (r, s)-robust.

Proof. The result follows from repeated application (exactly s times) of Property 5.20, since (r +

s− 1)-robust is equivalent to (r + s− 1, 1)-robust.

The remaining properties in this section examine the relationship between robustness and other

graph theoretic metrics. In particular, we study degree properties and connectivity. The following

result indicates some degree properties of robust digraphs.

Property 5.22 (Robustness Implies Degree Properties). Given an (r, s)-robust digraphD = (V, E),

with 0 ≤ r ≤ 'n/2(and 1 ≤ s ≤ n, the minimum in-degree of D, δin(D), is at least

δin(D) ≥















r + s− 1 if s < r;

2r − 2 if s ≥ r.

Furthermore, whenever n > 1 and s ≥ r, at least one of the following holds for each j ∈ V: (a)

dinj ≥ 2r − 1; (b) ∃k ∈ N out
j with k /∈ N in

j ; or (c) doutj ≥ r.

173

Proof. For the first statement, whenever r ∈ {0, 1}, there is nothing to prove. Also, if n ≤ 2,

then r ≤ 1. Therefore, assume n ≥ 3 and 2 ≤ r ≤ 'n/2(. Fix j ∈ V . First, let S1 = {j} and

S2 = V \ S1. Then, |X r
S2
| = 0 so that |X r

S1
| = |S1|. This proves |N in

j | ≥ r. Next, whenever

s < r, form S1 by choosing s− 1 of node j’s in-neighbors along with j itself. Take S2 = V \ S1 as

before. Since |S1| = s < r, again |X r
S2
| = 0 so that |X r

S1
| = |S1|. This implies j has an additional

r in-neighbors outside of S1, thereby guaranteeing |N in
j | ≥ r+ s− 1. On the other hand, whenever

s ≥ r, form S1 by choosing r − 2 of node j’s in-neighbors along with j itself. Again, choose

S2 = V \ S1. Since |S1| < r and s ≥ r, again |X r
S2
| = 0 so that |X r

S1
| = |S1|. This implies j has

an additional r in-neighbors outside of S1, thereby guaranteeing |N in
j | ≥ 2r − 2. Since j ∈ V is

arbitrary, the bound on δin(D) follows.

Whenever n > 1 and r ≤ s ≤ n, form S0
1 by choosing r − 1 of node j’s in-neighbors along

with j itself, and take S0
2 = V \ S0

1 . There are three cases. If |X r
S0
1
| = |S0

1 | or j ∈ X r
S0
1
, then

din
j ≥ 2r − 1. If |X r

S0
2
| = |S0

2 |, then dout
j ≥ n − r ≥ !n/2". If n is odd and r = 'n/2(, then

D must be complete (by Property 5.19), in which case (c) holds. Otherwise, |X r
S0
2
| = |S0

2 | implies

dout
j ≥ r. Finally, suppose |X r

S0
1
| + |X r

S0
2
| ≥ s ≥ r and j /∈ X r

S0
1
. In this case, |X r

S0
2
| ≥ 1, so

there exists k1 ∈ S0
2 such that (j, k1) ∈ E . If k1 /∈ N in

j , we are done. Otherwise, construct S1
1 by

swapping k1 with one of j’s in-neighbors in S0
1 , and take S1

2 = V \ S1
1 . By the same arguments,

the first two cases imply at least one of (a), (b), or (c) hold. So, assume |X r
S1
1
| + |X r

S1
2
| ≥ s and

j /∈ X r
S1
1
. Then, there exists k2 ∈ S1

2 such that (j, k2) ∈ E . If k2 /∈ N in
j , we are done. Otherwise,

we continue to construct Sm
1 for m = 2, . . . , r − 2 by swapping km with one of the nodes in

Sm−1
1 \ {j, k1, k2, . . . , km−1} and construct Sm

2 = V \ Sm
1 until (a) or (c) holds (by one of the first

two cases), or we find km /∈ N in
j with (j, km) ∈ E (i.e., (b) holds), or we reach m = r − 1, in

which case we may construct Sr−1
1 = {j, k1, k2, . . . , kr−1} and Sr−1

2 = V \ Sr−1
1 . At this point j

has r − 1 out-neighbors in Sr−1
1 , so if |X r

Sr−1
2

| ≥ 1, then there is at least one more out-neighbor, so

(c) holds. Otherwise, |X r
Sr−1
1

| = |Sr−1
1 | and (a) holds.

The previous result demonstrates some of the degree properties of a robust digraph. The next

result shows that a sufficiently large minimum in-degree implies a certain amount of robustness.

Property 5.23 (Large Minimum In-Degree Implies Robustness). If a nontrivial digraphD = (V, E)

has minimum in-degree δin(D) ≥ !n/2" + r − 1 with 0 ≤ r ≤ 'n/2(, then D is (r, s)-robust, for

174

all 1 ≤ s ≤ n.

Proof. Fix any disjoint and nonempty subsets of nodes S1,S2 ⊂ V . The smaller of the two subsets

must contain no more than !n/2" nodes. Without loss of generality, assume |S1| ≤ !n/2". At

most !n/2" − 1 neighbors of any node in S1 are also in S1. Since δin(D) ≥ !n/2" + r − 1, there

are at least r additional neighbors outside of S1 for every node in S1. Therefore, condition (i) of

Definition 5.10 is satisfied, and D is (r, s)-robust.

Finally, we relate the robustness of the underlying graph to its connectivity.

Property 5.24 (Connectivity of Robust Networks). Suppose D = (V, E) is an r-robust digraph,

with 0 ≤ r ≤ 'n/2(. Then the underlying graph GD is at least r-connected. Furthermore, if D is

(r, r)-robust, with 3 ≤ r ≤ 'n/2(, then GD is at least ('3r/2(− 1)-connected.

Proof. If r = 0, the first statement is vacuously true, and if r = 1, it holds by Property 5.14.

Therefore, assume r ≥ 2. By Property 5.17, the underlying graph GD = (V, EG) is r-robust. By

Property 5.13 and Property 5.14, the graph is connected. Suppose there is a vertex cut K ⊂ V such

that |K| < r, and denote the k ≥ 2 connected components remaining after the removal of K by

C1, C2, . . . , Ck. Let S1 = C1 and S2 = C2. Since GD is r-robust, either S1 or S2 is r-edge reachable,

which contradicts the fact that K is a vertex cut. Hence, any vertex cut K must satisfy |K| ≥ r, so

that GD is at least r-connected.

For the second statement, suppose there is a vertex cut K ⊂ V such that r ≤ |K| ≤ '3r/2(− 2,

and denote the k ≥ 2 connected components remaining after the removal of K by C1, C2, . . . , Ck.

Partition K into K = K1 ∪ K2 ∪ K3 such that |K1| = |K2| = 'r/2(− 1 > 0 (since r ≥ 3) and the

remaining nodes go to K3; i.e., 1 ≤ |K3| ≤ !r/2". Then form S1 = C1 ∪ K1 and S2 = C2 ∪ K2.

Because |K| ≤ '3r/2(− 2 and δ(GD) ≥ 2r − 2 by Property 5.22, it follows that |Ci| ≥ !r/2" + 1

for all 1 ≤ i ≤ k (since there are at most '3r/2(− 2 neighbors in K). Therefore, |S1|, |S2| ≥

r. Combining this with the fact that GD is (r, r)-robust (by Property 5.17), we are guaranteed

|X r
S1
|+ |X r

S2
| ≥ r.

Because |K1 ∪ K2| ≤ r − 1, there is v ∈ C1 ∪ C2 such that v has at least r in-neighbors outside

of its set. Without loss of generality, assume v ∈ C1. Since |K2|+ |K3| ≤ r− 1, ∃j ∈ C2 ∪ · · · ∪ Ck

such that (j, v) ∈ E , which contradicts the fact that K is a vertex cut whose removal results in

components C1, C2, . . . , Ck. Hence, GD is at least ('3r/2(− 1)-connected.

175

5.4 CTRAC Results

We demonstrate in this section that the (r, s)-robustness property is the key property for analyzing

ARC-P2 with parameter F under the F -total model. We also show that r-robustness is useful for

analyzing ARC-P2 with parameter F under the F -local model, and p-fraction robustness is useful

under the f -fraction local model. More specifically, we show that (F + 1, F + 1)-robustness of

the network is both necessary and sufficient for normal nodes using ARC-P2 with parameter F to

achieve CTRAC in time-invariant networks in the presence of malicious nodes under the F -total

model. In fact, (F + 1, F + 1)-robustness is a necessary condition in time-invariant networks

under the F -total or F -local crash models (and therefore necessary for the malicious and Byzantine

models). We show that (2F +1)-robustness is sufficient under the F -local malicious model. For the

f -fraction local model, f -fraction robust is necessary in the presence of crash adversaries and 2f -

fraction robust is sufficient in the presence of malicious adversaries. For Byzantine adversaries, it is

necessary and sufficient for the normal network (i.e., the network containing only the normal nodes

and directed edges whose head and tail are both normal) to be (F + 1)-robust under the F -total

or F -local models. For the f -fraction local model, f -fraction robustness of the normal network is

necessary and p′-fraction robustness is sufficient, if p′ > f .

Recall that Lemma 5.5 shows that ARC-P2 with parameter F (or f) ensures the safety condi-

tion of CTRAC holds under the F -total and F -local models (or f -fraction local model). It follows

from Lemma 5.4 that MN (·) is nonincreasing with time, and mN (·) is nondecreasing with time.

Therefore, if agreement is achieved among the normal agents, then the values of the normal agents

must converge to a common limit. For this reason, we focus on proving that the Lyapunov candidate

Ψ(t) = MN (t) − mN (t) asymptotically vanishes (i.e., agreement is achieved). In the following

sections, we show that this Lyapunov function decreases over sufficiently large time intervals when-

ever the normal nodes update their values according to ARC-P2, provided the network is sufficiently

robust.

5.4.1 Necessary Conditions

In this section, we present some necessary conditions for any of the adversary models whenever

ARC-P2 is used in time-invariant networks. The first result shows that whenever the normal nodes

176

use ARC-P2 with parameter F under the F -total or F -local model – with any of the threat models

studied here – then (F + 1, F + 1)-robustness is a necessary condition. Moreover, n > 2F is also

necessary. The second result shows that in the case of parameter f under the f -fraction local model,

f -robustness is necessary.

Theorem 5.25 (Necessary Conditions for ARC-P2 with Parameter F under the F -Total and F -Local

Crash Model). Consider a time-invariant network modeled by digraph D = (V, E) where each nor-

mal node updates its value according to ARC-P2 with parameter F ∈ Z≥0. If CTRAC is achieved

under the F -total or F -local crash model then the network topology is (F + 1, F + 1)-robust and

n > 2F .

Proof. If D is not (F + 1, F + 1)-robust, then there are nonempty, disjoint S1,S2 ⊂ V such that

none of the conditions (i)− (iii) of Definition 5.10 hold (with r = F +1 and s = F +1). Suppose

the initial value of each node in S1 is a and each node in S2 is b, with a < b. Let all other nodes

have initial values taken from the interval [a, b]. Since |XF+1
S1

| + |XF+1
S2

| ≤ F , suppose all nodes

in XF+1
S1

and XF+1
S2

are crash nodes that compromise these nodes at t0 = 0 (and therefore keep

their values constant for all t ≥ 0). With this assignment of adversaries, there is still at least one

normal node in both S1 and S2 since |XF+1
S1

| < |S1| and |XF+1
S2

| < |S2|, respectively. Therefore,

each normal node in S1 removes the F or less values greater than a from outside and each normal

node in S2 removes the F or less values less than b from outside. Therefore, the normal nodes in

S1 maintain the value of a and the normal nodes in S2 maintain the value of b for all t ≥ 0. Hence,

consensus among normal nodes is not achieved, which contradicts the assumption.

Since (F + 1, F + 1)-robustness is a necessary condition, it follows from Property 5.19 that

n > 2('n/2(− 1) ≥ 2F.

Therefore, n > 2F is also necessary.

Theorem 5.26 (Necessary Conditions for ARC-P2 with Parameter f under the f -Fraction Local

Crash Model). Consider a time-invariant network modeled by digraph D = (V, E) where each

normal node updates its value according to ARC-P2 with parameter f ∈ [0, 1] in the presence of

crash adversaries under the f -fraction local model. If CTRAC is achieved, then D is f -fraction

177

robust.

Proof. Suppose that D is not f -fraction robust. Then, there exists nonempty, disjoint subsets

S1,S2 ⊂ V such that neither S1 nor S2 is f -fraction edge reachable. This means that for every

i ∈ Sk, |N in
i \ Sk| < 'fdi(, for k ∈ {1, 2}. From this, it follows that |N in

i \ Sk| ≤ !fdi" for all

i ∈ Sk. Suppose the initial value of each node in S1 is a and each node in S2 is b, with a < b. Let

all other nodes have initial values taken from the interval [a, b]. Assume all nodes are normal. Then,

using ARC-P2 with parameter f , each node i in S1 removes the !fdi" or less values greater than

a from outside S1. Likewise, each node j in S2 removes the !fdj" or less values less than b from

outside S2. Therefore, as in Theorem 5.25, it follows that all nodes in S1 keep the value a and each

node in S2 keeps the value b for all t ≥ 0. Therefore, CTRAC is not achieved.

5.4.2 F -Total Malicious and Crash Models

This section presents the main result for the F -total malicious and crash models in time-invariant

and time-varying networks. We show that (F +1, F +1)-robustness is both necessary and sufficient

for ARC-P2 to achieve CTRAC under the F -total malicious model in time-invariant networks under

the additional continuity assumption requiring uniform continuity of the malicious adversaries’ state

trajectories. Afterwards, we show that in time-varying networks that satisfy a dwell time assump-

tion, it is sufficient for the switching topologies to eventually switch between (F +1, F +1)-robust

topologies for all t ≥ t0 ≥ 0.

Theorem 5.27 (Tight Conditions for ARC-P2 under F -Total Malicious and Crash Model). Con-

sider a time-invariant network modeled by digraph D = (V, E) where the adversaries satisfy the

F -total malicious or crash model and have uniformly continuous trajectories on [0,∞). Suppose

each normal node updates its value according to ARC-P2 with parameter F . Then, CTRAC is

achieved if and only if the network topology is (F + 1, F + 1)-robust.

Proof. Necessity follows from Theorem 5.25. For sufficiency, we know from Lemmas 5.4 and 5.5

that both MN (·) and mN (·) are monotone and bounded functions of t. Therefore each of them has

a limit, denoted by AM and Am, respectively. Note that if AM = Am, then CTRAC is achieved.

We prove by contradiction that this must be the case. The main idea behind the proof is to use

the gap between AM and Am and combine this with both the uniform continuity assumption on the

178

malicious nodes’ value trajectories and a careful selection of subsets of nodes to show that Ψ(t) will

shrink to be smaller than the gap AM − Am in finite time (a contradiction). To this end, suppose

that AM 1= Am (note that AM > Am by definition). Since MN (t)→ AM monotonically, we have

MN (t) ≥ AM for all t ≥ 0. Similarly, mN (t) ≤ Am for all t ≥ 0. Moreover, for each ε > 0 there

exists tε > 0 such that MN (t) < AM + ε and mN (t) > Am − ε, ∀t ≥ tε. Next, define constant

ε0 = (AM −Am)/4 > 0, which satisfies

MN (t)− ε0 ≥ mN (t) + ε0 + (AM −Am)/2. (54)

This inequality informs the choice of subsets of nodes to be defined shortly in order to limit the

influence of the malicious nodes. Indeed, since the adversary trajectory40 xk is uniformly continuous

on [0,∞) for k ∈ A, it follows that for each ν > 0, there exists δk(ν) > 0 such that |xk(t1) −

xk(t2)| < ν whenever |t1 − t2| < δk(ν). Define δ(ν) = mink∈A{δk(ν)}.

Next, we define the sets of nodes that are vital to the proof. For any t0 ≥ 0, t ≥ t0, ∆ > 0, and

η > 0, define

XM (t, t0,∆, η)={i ∈ V : ∃t′ ∈ [t, t+ ∆] s.t. xi(t′) > MN (t0)− η}

and

Xm(t, t0,∆, η)={i ∈ V : ∃t′ ∈ [t, t+ ∆] s.t. xi(t′) < mN (t0) + η}.

Observe that if we choose η ≤ ε0 = (AM − Am)/4, ν < (AM − Am)/2, and ∆ < δ(ν), then

we are guaranteed by the uniform continuity assumption and (54) that for any t0 ≥ 0 and t ≥ t0,

XM (t, t0,∆, η)∩Xm(t, t0,∆, η)∩A = ∅. That is, with these choices of η, ν, and ∆, no malicious

node can be in both XM (t, t0,∆, η) and Xm(t, t0,∆, η). This follows because otherwise there exists

t1, t2 ∈ [t, t + ∆] and k ∈ A such that xk(t1) > MN (t0) − η and xk(t2) < mN (t0) + η, from

which we reach the contradiction to the uniform continuity assumption

xk(t1)− xk(t2) > MN (t0)−mN (t0)− 2η ≥ AM −Am

2
> ν.

40Since the adversaries in this case are not deceptive, x(k,i) ≡ x(k,j) for all i, j ∈ N . Therefore, the trajectory of
adversary k ∈ A is uniquely defined as xk with no confusion.

179

We now proceed by showing that if we choose η, ν, and ∆ small enough, then no normal node

can be in both XM (t, t0,∆, η) and Xm(t, t0,∆, η) for any t0 ≥ 0 and t ≥ t0. First, we require

some generic bounds on the normal node trajectories. For i ∈ N , we know from Lemma 5.4 that

for τ ∈ [t′, t],

ẋi(τ) =
∑

j∈N in
i \Ri(τ)

w(j,i)(τ)
(

x(j,i)(τ)− xi(τ)
)

≤ B(MN (τ)− xi(τ)) ≤ B(MN (t′)− xi(τ)),

whenever the derivative exists41, where B = (n − F − 1)β. Using the integrating factor eB(τ−t′),

and integrating in the sense of Lebesgue over the time interval [t′, t], we have

xi(t) ≤ xi(t
′)e−B(t−t′) +MN (t′)(1− e−B(t−t′)), ∀t ≥ t′. (55)

By interchanging the roles of t and t′, we have

xi(t) ≥ xi(t
′)eB(t′−t) +MN (t)(1 − eB(t′−t)), ∀t ≤ t′. (56)

Similarly, we can show that for i ∈ N ,

xi(t) ≥ xi(t
′)e−B(t−t′) +mN (t′)(1− e−B(t−t′)), ∀t ≥ t′, (57)

and

xi(t) ≤ xi(t
′)eB(t′−t) +mN (t)(1 − eB(t′−t)), ∀t ≤ t′, (58)

Now fix η ≤ ε0 = (AM − Am)/4, ν < (AM − Am)/2, and ∆ < min{δ(ν), log(3)/B}, and

suppose i ∈ N ∩XM(t, t0,∆, η). Then ∃t′ ∈ [t, t+∆] such that xi(t′) > MN (t0)−η. Combining
41Recall, the solutions of the normal nodes’ trajectories are understood in the sense of Carathéodory. Hence, it is

possible that the derivative of the solution does not exist on a set of points in time of Lebesgue measure zero.

180

this with (57), it follows that for s ∈ [t′, t+ ∆],

xi(s) ≥ xi(t
′)e−B(s−t′) +mN (t′)(1− e−B(s−t′))

> (MN (t0)− η)e−B(s−t′) +mN (t0)(1− e−B(s−t′))

≥ (AM − η)e−B(s−t′) +mN (t0)−Ame−B(s−t′)

≥ mN (t0) + (AM −Am)e−B(s−t′) − AM −Am

4
e−B(s−t′)

≥ mN (t0) +
3

4
(AM −Am)e−B∆

> mN (t0) +
AM −Am

4

≥ mN (t0) + η,

where we have used the fact that ∆ < log(3)/B in deriving the last line. Similarly, using (56), it

follows that for s ∈ [t, t′],

xi(s) ≥ xi(t
′)eB(t′−s) +MN (s)(1− eB(t′−s))

> (MN (t0)− η)eB(t′−s) +MN (s)(1− eB(t′−s))

≥MN (s)− ηeB(t′−s)

≥MN (s)− AM −Am

4
eB∆

> AM − 3

4
(AM −Am)

≥ Am +
1

4
(AM −Am)

≥ mN (t0) + η.

Therefore, i /∈ Xm(t, t0,∆, η).

Similarly, with the given choices for η, ν, and ∆, if j ∈ N∩Xm(t, t0,∆, η), then ∃t′ ∈ [t, t+∆]

181

such that xi(t′) < mN (t0) + η. It follows from (55) that for s ∈ [t′, t+ ∆],

xj(s) ≤ xj(t
′)e−B(s−t′) +MN (t′)(1 − e−B(s−t′))

< (mN (t0) + η)e−B(s−t′) +MN (t0)(1− e−B(s−t′))

≤MN (t0)− (MN (t0)−mN (t0))e
−B(s−t′) + ηe−B(s−t′)

≤MN (t0)− (AM −Am)e−B(s−t′) +
AM −Am

4
e−B(s−t′)

≤MN (t0)−
3

4
(AM −Am)e−B∆

< MN (t0)−
AM −Am

4

≤MN (t0)− η,

where we have used the fact that ∆ < log(3)/B in deriving the last line. Finally, using (58), it

follows that for s ∈ [t, t′],

xj(s) ≤ xj(t
′)eB(t′−s) +mN (s)(1 − eB(t′−s))

< (mN (t0) + η)eB(t′−s) +mN (s)(1− eB(t′−s))

≤ mN (s) + ηeB(t′−s)

≤ Am +
AM −Am

4
eB∆

< Am +
3

4
(AM −Am)

≤MN (t0)−
AM −Am

4

≤MN (t0)− η.

Thus, j /∈ XM(t, t0,∆, η). This shows that XM (t, t0,∆, η) and Xm(t, t0,∆, η) are disjoint for

appropriate choices of the parameters.

Next, we show that by choosing ε small enough, we can define a sequence of sets,

{XM (tε + k∆, tε,∆, εk)}k=N
k=0

and

{Xm(tε + k∆, tε,∆, εk)}k=N
k=0 ,

182

where N = |N |, so that we are guaranteed that by the N th step, at least one of the sets contains no

normal nodes. This will be used to show that Ψ has shrunk below AM − Am. Toward this end, let

ε0 = (AM −Am)/4, ν < (AM −Am)/2, and ∆ < min{δ(ν), log(3)/B}. Then fix

ε <
1

2

[α

B
(1− e−B∆)e−B∆

]2N
ε0.

For k = 0, 1, 2, . . . , N , define εk = [αB (1− e−B∆)e−B∆]2kε0, which results in

ε0 > ε1 > · · · > εN > 2ε > 0.

For brevity, define

X k
M = XM (tε + k∆, tε,∆, εk)

and

X k
m = Xm(tε + k∆, tε,∆, εk)

for k = 0, 1, . . . , N . Observe that by definition, there is at least one normal node (the ones with

extreme values) in X 0
M and X 0

m, and we have shown above that all of the X k
M and X k

m are disjoint.

It follows from the fact that there are at most F malicious nodes in the network (F -total model) and

D is (F + 1, F + 1)-robust, that either ∃i ∈ X 0
M ∩ N or ∃i ∈ X 0

m ∩ N (or both) such that i has at

least F +1 neighbors outside of its set. That is, either i has at least F +1 neighbors i1, i2, . . . , iF+1

such that xik(t) ≤MN (tε)− ε0 for all t ∈ [tε, tε + ∆] (if i ∈ X 0
M ∩ N), or xik(t) ≥ mN (tε) + ε0

for all t ∈ [tε, tε + ∆] (if i ∈ X 0
m ∩ N). Assume i ∈ X 0

M ∩ N and suppose that none of the F + 1

(or more) neighbors outside of X 0
M are used in its update at some time t′ ∈ [tε, tε + ∆] at which

the derivative exists. Then, xi(t′) ≤MN (tε)− ε0 (otherwise, it would use at least one of its F + 1

neighbors’ values outside of X 0
M). It follows from (55) that

xi(tε + ∆) ≤MN (tε)− ε0e
−B∆.

Using this with (55) to upper bound xi(t) for t ∈ [tε + ∆, tε + 2∆], we see that

xi(t) ≤MN (tε)− ε0e
−2B∆ ≤MN (tε)− ε1.

183

Therefore, in this case i /∈ X 1
M . Alternatively, assume at least one of the values from its neighbors

outside of X 0
M is used for almost all t ∈ [tε, tε + ∆]. Then,

ẋi(t) ≤ α(MN (tε)− ε0 − xi(t)) + (B − α)(MN (tε)− xi(t))

≤ −Bxi(t) +BMN (tε)− αε0,

for almost all t ∈ [tε, tε + ∆]. Using this, we can show

xi(tε + ∆) ≤ xi(tε)e
−B∆ + (MN (tε)− αε0

B)(1 − e−B∆)

≤MN (tε)− α
B (1− e−B∆)ε0.

Using this with (55) to upper bound xi(t) for t ∈ [tε + ∆, tε + 2∆], we see that for all t ∈

[tε + ∆, tε + 2∆],

xi(t) ≤MN (tε)− α
B (1− e−B∆)e−B(t−tε−∆)ε0

≤MN (tε)− α
B (1− e−B∆)e−B∆ε0

≤MN (tε)− ε1.

Thus, in either case i /∈ X 1
M . The final step is to show that j /∈ X 1

m whenever j is a normal node

with j /∈ X 0
m. Whenever j /∈ X 0

m, it means that xj(tε + ∆) ≥ mN (tε) + ε0. Using this with (57) to

lower bound xj(t) for t ∈ [tε + ∆, tε + 2∆], we see that

xj(t) ≥ mN (tε) + ε0e
−B∆ ≥ mN (tε) + ε1.

Hence, j is also not in X 1
m, as claimed. Likewise, we can show using (55) that j /∈ X 1

M whenever j

is a normal node with j /∈ X 0
M . Therefore, if i ∈ X 0

M ∩ N has at least F + 1 neighbors outside of

its set, we are guaranteed that |X 1
M ∩N| < |X 0

M ∩N| and |X 1
m ∩N| ≤ |X 0

m ∩N|. Using a similar

argument, we can show that if i ∈ X 0
m ∩ N has at least F + 1 neighbors outside of its set, we are

guaranteed that |X 1
m ∩N| < |X 0

m ∩N| and |X 1
M ∩ N| ≤ |X 0

M ∩ N|.

184

Now, if both X 1
M ∩ N and X 1

m ∩ N are nonempty, we can repeat the above argument to show

that either |X 2
m ∩ N| < |X 1

m ∩ N| or |X 2
M ∩ N| < |X 1

M ∩ N|, or both. It follows by induction

that as long as both X j
M ∩ N and X j

m ∩ N are nonempty, then either |X j+1
m ∩ N| < |X j

m ∩ N| or

|X j+1
M ∩ N| < |X j

M ∩ N| (or both), for j = 1, 2, Since |X 0
m ∩ N| + |X 0

M ∩ N| ≤ N , there

exists T < N such that at least one of X T
M ∩ N and X T

m ∩ N is empty. If X T
M ∩ N = ∅, then

MN (tε + T∆) ≤MN (tε)− εT < MN (tε)− 2ε. Similarly, if X T
m ∩N = ∅, then mN (tε + T∆) ≥

mN (tε) + εT > mN (tε) + 2ε. In either case, Ψ(tε + T∆) < AM − Am and we reach the desired

contradiction.

When the network is time-varying, one can state the following theorem.

Theorem 5.28. Consider a time-varying network modeled by D(t) = (V, E(t)) where the adver-

saries satisfy the F -total malicious or crash model and have uniformly continuous trajectories on

[0,∞). Let {tk} denote the switching times of σ(t) and assume that tk+1 − tk ≥ τ for all k. Sup-

pose each normal node updates its value according to ARC-P2 with parameter F . Then, CTRAC is

achieved if there exists t0 ≥ 0 such that D(t) is (F + 1, F + 1)-robust, ∀t ≥ t0.

Proof. The proof follows the contradiction argument of the proof of Theorem 5.27, but here we use

the dwell time assumption. In this case, let

∆ < min{δ(ν), log(3)/B, τN }.

Fix

ε <
1

2

[α

B
(1− e−B∆)e−B∆

]2N
ε0,

and let t′ε ≥ 0 be a point in time such that MN (t) < AM + ε and mN (t) > Am − ε for all

t ≥ t′ε. Define t′ = max{t0, t′ε}. Then, associated to the switching signal σ(t), we define tε as

the next switching instance after t′, or t′ itself if there are no switching instances after t′. Since

∆ < τ/N , the same sequence of calculations can be used (as in the proof of Theorem 5.27) to show

that Ψ(tε + T∆) < AM −Am.

To illustrate these results on the examples of Section 5.3, the graphs in Figures 35 and 40 can

withstand the compromise of at most 1 malicious node in the network using ARC-P2 with parameter

185

F = 1 (each graph is (2,2)-robust but not (3,3)-robust). This is not to say that it is impossible for

the normal nodes to reach consensus if there are, for example, two nodes that are compromised.

Instead, these results say that it is not possible that any two nodes can be compromised and still

guarantee CTRAC using ARC-P2 with parameter F = 2.

5.4.3 F -Local Malicious and Crash Models

Theorem 5.29 (Sufficient Conditions for ARC-P2 under F -Local Malicious and Crash Model).

Consider a time-invariant network modeled by digraph D = (V, E) where the adversaries satisfy

the F -local malicious or crash model. Suppose each normal node updates its value according to

ARC-P2 with parameter F . Then, CTRAC is achieved if the network topology is (2F + 1)-robust.

Proof. The proof follows the same line as that of Theorem 5.27. The main difference is that the

sets of nodes XM and Xm include only normal nodes. That is, for any t0 ≥ 0, t ≥ t0, ∆ > 0, and

η > 0, define

XM(t, t0,∆, η)={i ∈ N : ∃t′ ∈ [t, t+ ∆] s.t. xi(t′) > MN (t0)− η}

and

Xm(t, t0,∆, η)={i ∈ N : ∃t′ ∈ [t, t+ ∆] s.t. xi(t′) < mN (t0) + η}.

Likewise, for k = 1, 2, . . . , N , the definitions of X k
M and X k

m are modified to include only nor-

mal nodes. The analysis showing that X k
M and X k

m are disjoint still holds, and in this case does

not require the uniform continuity assumption (since adversaries are excluded from the sets). By

definition, it follows that X 0
M and X 0

m are nonempty. Since the network is (2F + 1)-robust, either

∃i ∈ X 0
M or ∃i ∈ X 0

m, or both, such that i has at least 2F + 1 neighbors outside of its set. If such i

is in X 0
M , then at most F of the neighbors are malicious (F -local model) and the others are normal

with value xj(t) ≤MN (tε)− ε0 for t ∈ [tε, tε+∆]. The remaining argument follows the same line

as that of Theorem 5.27.

As with the F -total model, we have the following result for time-varying networks (whose proof

follows the same line as that of Theorem 5.28).

186

Theorem 5.30 (Time-Varying Sufficient Condition for F -Local Malicious or Crash Model). Con-

sider a time-varying network modeled byD(t) = (V, E(t)) where the adversaries satisfy the F -local

malicious or crash model. Let {tk} denote the switching times of σ(t) and assume that tk+1−tk ≥ τ

for all k. Suppose each normal node updates its value according to ARC-P2 with parameter F .

Then, CTRAC is achieved if there exists t0 ≥ 0 such that D(t) is (2F + 1)-robust, ∀t ≥ t0.

To illustrate these results, consider the 3-robust graph of Figure 40. Recall that this graph cannot

generally sustain 2 malicious nodes as specified by the 2-total model; it is not (3,3)-robust. However,

under the 1-local model, it can sustain two malicious nodes if the right nodes are compromised. For

example, nodes 1 and 4 may be compromised under the 1-local model and the normal nodes will

still reach consensus. This example illustrates the advantage of the F -local model, where there is

no concern about global assumptions. If a digraph is (2F + 1)-robust, then up to F nodes may be

compromised in any node’s neighborhood, possibly resulting in more than F malicious nodes in the

network (as in this example).

5.4.4 f -Fraction Local Malicious and Crash Models

We proved in Theorem 5.26 that f -fraction robustness is a necessary condition for ARC-P2 with

parameter f to achieve CTRAC in time-invariant networks under the f -fraction local crash model.

We now show that p-fraction robustness, with p > 2f , is sufficient.

Theorem 5.31 (Sufficient Condition for ARC-P2 under the f -Fraction Local Malicious and Crash

Model). Consider a time-invariant network modeled by digraph D = (V, E) where the adversaries

satisfy the f -fraction local malicious or crash model. Suppose each normal node updates its value

according to ARC-P2 with parameter f . Then, CTRAC is achieved if the network topology is p-

fraction robust, where 2f < p ≤ 1.

Proof. The proof follows the same argument as the proof of Theorems 5.27 and 5.29. In this

case, the definitions of X k
M and X k

m are modified to include only normal nodes. Therefore, as

in Theorem 5.29, the uniform continuity assumption is not needed. Then, the p-fraction robust

assumption (with p > 2f) ensures that there exists a (normal) node in either X k
M or X k

m with at least

'pdi(neighbors outside of either X k
M or X k

m, respectively. Here, at most 2!fdi" of these values

are thrown away (with at most !fdi" of them as adversaries, under the f -fraction local model, and

187

at most !fdi" of these strictly smaller, or larger, than node i’s value). Because p > 2f , it follows

that 'pdi(− 2!fdi" ≥ 1. Therefore, at least one normal value outside of i’s set (either X k
M or

X k
m) is used. The rest of the analysis is identical to the proof of Theorem 5.29 (which follows

Theorem 5.27).

As with the other adversary models, we may state the following result for time-varying net-

works.

Theorem 5.32 (Sufficiency with f -Fraction Local Malicious Model in Time-Varying Networks).

Consider a time-varying network modeled by D(t) = (V, E(t)) where the adversaries satisfy the

f -fraction local malicious or crash model. Let {tk} denote the switching times of σ(t) and assume

that tk+1− tk ≥ τ for all k. Suppose each normal node updates its value according to ARC-P2 with

parameter F . Then, CTRAC is achieved if there exists t0 ≥ 0 such that D(t) is p-fraction robust,

where 2f < p ≤ 1, for all t ≥ t0.

5.4.5 F -Total, F -Local and f -Fraction Local Byzantine Models

The results so far have focused on malicious and crash adversaries. In this section, we consider

Byzantine adversaries. Here, we state the results with regard to the normal network, defined as

follows.

Definition 5.33 (Normal Network). For a network D = (V, E), define the normal network of D,

denoted by DN , as the network induced by the normal nodes, i.e., DN = (N , EN), where EN

contains those directed edges whose tail and head are both normal nodes.

Theorem 5.34 (Necessary and Sufficient Condition with F -Total Byzantine Model). Consider a

time-invariant network modeled by digraph D = (V, E) where the adversaries satisfy the F -total

Byzantine model. Suppose each normal node updates its value according to ARC-P2 with parameter

F . Then, CTRAC is achieved if and only if the topology of the normal network is (F + 1)-robust.

Proof. Necessity follows from an analogous argument as the proof of Theorem 5.25 whenever there

are no Byzantine nodes present (i.e., the normal network is the network).

Sufficiency follows the same argument of Theorem 5.29, where X k
M and X k

m are modified to

include only normal nodes. Until one of these sets is empty, there will always be a normal value

188

used by one of the nodes in each, which facilitates an argument following that of Theorem 5.27.

As in Theorem 5.29, uniform continuity is not needed since X k
M and X k

m include only normal

nodes.

The following results are straightforward extensions of the above result to the local models and

time-varying networks.

Theorem 5.35 (Necessary and Sufficient Condition with F -Local Byzantine Model). Consider a

time-invariant network modeled by digraph D = (V, E) where the adversaries satisfy the F -local

Byzantine model. Suppose each normal node updates its value according to ARC-P2 with parameter

F . Then, CTRAC is achieved if and only if the topology of the normal network is (F + 1)-robust.

Proof. The proof is identical to the proof of Theorem 5.34.

Theorem 5.36 (Necessary and Sufficient Condition with f -Fraction Local Byzantine Model). Con-

sider a time-invariant network modeled by digraph D = (V, E) where the adversaries satisfy the

f -fraction local Byzantine model. Suppose each normal node updates its value according to ARC-

P2 with parameter f . Then, CTRAC is achieved if the normal network is p-fraction robust, where

p > f , and a necessary condition is for the normal network to be f -fraction robust.

Proof. Necessity follows from Theorem 5.26. For sufficiency, the definitions of X k
M and X k

m are

modified from the proof of Theorem 5.27 to include only normal nodes. Therefore, as in Theo-

rem 5.29, the uniform continuity assumption is not needed. Then, the p-fraction robust assumption

(with p > f) ensures that there exists a normal node in either X k
M or X k

m with at least 'pdi(normal

neighbors outside of either X k
M or X k

m, respectively. Since 'pdi(− !fdi" ≥ 1, we can use a similar

argument as in the proof of Theorem 5.27 to show that regardless of whether this normal value is

used, either X k+1
M or X k+1

M must decrease by at least one. Thus, the same induction argument holds

to show the contradiction.

Theorem 5.37 (Sufficiency with F -Total, F -Local, and f -Fraction Local Byzantine Model in Time–

Varying Networks). Consider a time-varying network modeled by D(t) = (V, E(t)) where the ad-

versaries satisfy either the (i) F -total or F -local, or (ii) f -fraction local Byzantine model. Let

{tk} denote the switching times of σ(t) and assume that tk+1 − tk ≥ τ for all k. Suppose each

189

normal node updates its value according to ARC-P2 with parameter (i) F or (ii) f . Then, CTRAC

is achieved if there exists t0 ≥ 0 such that D(t) is (i) (2F + 1)-robust or (ii) p-fraction robust,

where 2f < p ≤ 1, for all t ≥ t0.

Proof. The time-varying arguments required in Theorems 5.30 and 5.32 are sufficient for the Byzan-

tine case as well.

5.5 Simulation Example

This section presents a numerical example to illustrate the F -total crash model. In this example, the

network is given by the (2,2)-robust graph shown in Figure 43. To verify that this graph is (2,2)-

robust one must exhaustively check every nonempty, disjoint pair of subsets of nodes to make sure

that either every node in one of the sets has at least 2 neighbors outside of its set, or that there are

at least 2 nodes in the union of the subsets that have 2 or more neighbors outside of their respective

sets. For example, the pair of sets {6} and V \{6} passes this test since all nodes in the first set (just

node 6) has at least 2 neighbors outside of its set (in this case just node 6’s neighbors). For another

example, the pair of sets {1, 2, 11, 12} and {5, 6} passes since node 11 and node 5 each have 2 or

more neighbors outside of their respective sets.

Since the network is (2,2)-robust, it can sustain a single crash node in the network under the

1-total model. Suppose that the node with the largest degree, node 14, is compromised at t0 = 0 so

that its value remains constant at x14(0) = 2 for all t ≥ 0. The nodes have continuous dynamics

and the normal nodes use either the Linear Consensus Protocol (LCP) given in (50) or ARC-P2 with

parameter F = 1 for their control input. In either case, the weights are selected to be unity for all

neighboring nodes that are kept. The initial values of the nodes are shown in Figure 43 beneath the

label of the node’s value. The goal of the crash adversary is to drive the values of the normal nodes

to its value.

The results for this example are shown in Figure 44. It is clear in Figure 44(a) that the crash

node is able to drive the values of the normal nodes to its value of 2 whenever LCP is used. On the

other hand, the crash node is unable to achieve its goal whenever ARC-P2 is used. Note that due to

the large degree of the crash node, it has the potential to drive the consensus process to any value in

the interval [0, 1] by choosing the desired value as its initial value and remaining constant. However,

190

Figure 43: (2,2)-Robust network topology used in CTRAC simulation.

this is allowed with CTRAC (because the consensus value is within the range of the initial values

held by normal nodes). Another observation is that the consensus process in the case of ARC-P2

is slower than LCP; this is to be expected, due to the fact that ARC-P2 effectively removes several

edges from the network at each time instance, thereby reducing the algebraic connectivity of the

Laplacian of the mirror graph [156].

5.6 Summary

The notion of graph connectivity has long been the backbone of investigations into fault tolerant

and secure distributed algorithms. Indeed, under the assumption of full knowledge of the network

topology, connectivity is the key metric in determining whether a fixed number of malicious or

Byzantine adversaries can be overcome. However, in large scale systems and complex networks,

it is not practical for the various nodes to obtain knowledge of the global network topology. This

necessitates the development of algorithms that allow the nodes to operate on purely local informa-

tion. This chapter continues and extends the work started in [51, 97, 8, 9, 113, 114, 210, 116, 194],

and represents a step in this direction for the particular application of distributed consensus. In this

chapter, we have presented a modification to ARC-P, which we refer to as ARC-P2. The version of

ARC-P studied in this chapter (ARC-P2) has time-varying, piecewise continuous, bounded weights

and is more selective in the local filtering process (by using a node’s own value as a control on how

many values to remove).

191

0 5 10 15 20 25 30
0

0.5

1

1.5

2

t (s)

sta
te

Malicious agent
Normal agents

(a) LCP.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

t (s)

sta
te

Malicious agent
Normal agents

(b) ARC-P2.

Figure 44: CTRAC simulation of a time-invariant network under the F -total malicious model.

192

We have also studied the property of network robustness introduced in [210], and we have intro-

duced two extensions to the notion of robustness. The first, referred to as (r, s)-robustness, provides

finer granularity in specifying the amount of redundancy of nodes with sufficient local redundancy

of information (through the parameter s). The second is a fractional version of robustness (p-fraction

robustness) that is well suited to the f -fraction local scope of threat model. Using these various def-

initions of network robustness, we provide necessary/sufficient conditions for the normal nodes in

large-scale networks to mitigate the influence of adversaries. We show that the various versions of

network robustness are the appropriate analogues to graph connectivity when considering purely

local filtering rules at each node in the network. Just as connectivity has played a central role in the

existing analysis of reliable distributed algorithms with global topological knowledge, we believe

that robust digraphs (and its variants) will play an important role in the investigation of purely local

algorithms.

193

CHAPTER VI

DISCRETE-TIME RAC IN SYNCHRONOUS NETWORKS

Engineering system design has witnessed a paradigm shift from centralized to distributed, which

has been propelled by advances in networking and low-cost, high performance embedded systems.

These advances have enabled a transition from end-to-end routing of information in large-scale

networked systems to in-network computation of aggregate quantities of interest [72]. In-network

computing offers certain performance advantages, including reduced latency, less communication

overhead, and greater robustness to node and link failures.

A fundamental challenge of in-network computation is that the quantities of interest must be

calculated using only local information, i.e., information obtained by each node through sensor

measurements, calculations, or communication only with neighbors in the network. Another im-

portant challenge is that large-scale distributed systems have many potential vulnerable points for

failures or attacks. To obtain the desired computational result, it is important to design the in-

network algorithms to be able to withstand the compromise of a subset of the nodes and still ensure

some notion of correctness (possibly at a degraded level of performance). We refer to such a net-

worked system as being resilient to adversaries. Given the growing threat of malicious attacks in

large-scale cyber-physical systems, this is an important and challenging problem [30].

One of the most important objectives in networked systems is to reach consensus on a quan-

tity of interest [130, 152, 191, 178]. Consensus is fundamental to diverse applications such as

data aggregation [95], distributed estimation [172], distributed optimization [192], distributed clas-

sification [66], and flocking [90]. Reaching consensus (and more generally, transmitting informa-

tion) resiliently in the presence of faulty or misbehaving nodes has been studied extensively in

distributed computing [110, 130, 165, 16, 61, 17], communication networks [82, 92], and mobile

robotics [1, 46, 27]. Among other things, it has been shown that given F (worst-case) adversarial

nodes, there exists a strategy for these nodes to disrupt consensus if the network connectivity42 is

2F or less. Conversely, if the network connectivity is at least 2F + 1, then there exist strategies
42The network connectivity is defined as the smaller of the two following values: (i) the size of a minimal vertex cut

and (ii) n− 1, where n is the number of nodes in the network.

194

for the normal nodes to use that ensure consensus is reached (under the local broadcast model of

communication) [130, 181, 159]. However, these consensus algorithms either require that normal

nodes have at least some nonlocal information (e.g., knowledge of multiple independent paths in the

network between themselves and other nodes) or assume that the network is complete, i.e., all-to-all

communication or sensing [110, 113, 1, 46, 27]. Moreover, these algorithms tend to be computation-

ally expensive. Therefore, there is a need for resilient consensus algorithms that are low complexity

and operate using only local information (i.e., without knowledge of the network topology and the

identities of non-neighboring nodes). A key challenge is to characterize fundamental topological

properties that allow the normal nodes to compute an appropriate consensus value in an in-network

manner, despite the influence of misbehaving nodes.

The faulty or misbehaving nodes can be characterized by threat models and scope of threat

assumptions. Examples of fault or threat models include non-colluding [159], malicious [159, 181,

113], Byzantine [110, 1, 114, 194], or crash [1, 46] nodes. Typically, the scope of the faults or threats

is assumed to be bounded by a constant, i.e., at most F out of n nodes fail or are compromised. We

refer to this as the F -total model. Alternatively, the scope may be local; e.g., at most F neighbors

of any normal node fail (F -local model), or at most a fraction f of neighbors are compromised

(f -fraction local model).

6.1 Previous Work on Resilient Consensus With Only Local Information

In [51], the authors introduced the Approximate Byzantine Consensus problem, in which the normal

nodes are required to achieve approximate agreement43 (i.e., they should converge to a relatively

small convex hull contained in their initial values) in the presence of F -total Byzantine faults in

finite time. They consider only complete networks (where there is a direct connection between ev-

ery pair of nodes), and they propose the following algorithm: each node disregards the largest and

smallest F values received from its neighbors and updates its state to be the average of a carefully

chosen subset of the remaining values. This algorithm was extended to a family of algorithms,

named the Mean-Subsequence-Reduced (MSR) algorithms, in [98]. Although the research on Ap-

proximate Byzantine Consensus for complete networks is mature, there are few papers that have
43If the network is synchronous, and if one allows t → ∞, then approximate agreement is equivalent to asymptotic

consensus.

195

attempted to analyze this algorithm in more general topologies [97], and even then, only certain

special networks have been investigated.

Recently, we have studied resilient algorithms in the presence of misbehaving nodes. In [113],

we propose a continuous-time variation of the MSR algorithms, named the Adversarial Robust Con-

sensus Protocol (ARC-P), to solve asymptotic consensus under the F -total malicious model. The

results of [113] are extended to both malicious and Byzantine threat models in networks with con-

strained information flow and dynamic network topology in [114]. The sufficient conditions studied

in [114] are stated in terms of in-degrees and out-degrees of nodes in the network and are shown to

be sharp; i.e., if the conditions are relaxed, even minimally, then there are examples in which the

relaxed conditions are not sufficient. In [210], we generalize the MSR algorithm as the Weighted-

Mean-Subsequence-Reduced (W-MSR) algorithm and study general distributed algorithms with F -

local malicious adversaries.

In a recent paper, developed independently of our work, Vaidya et al. have characterized tight

conditions for resilient consensus using the MSR algorithm whenever the threat model is Byzantine

and the scope is F -total [194]. The network constructions used in [194] are very similar to the

robust digraphs presented here. In particular, the networks in [194] also require redundancy of

direct information exchange between subsets of nodes in the network.

In contrast to the deterministic approach taken here, gossip algorithms have been studied for

in-network computation of aggregate functions such as sums, averages, and quantiles [95]. In such

algorithms, each node chooses at random a single neighbor to communicate with in each round.

This scheme limits the required computational, communication, and energy resources, and provides

some robustness against time-varying topologies and random node and link failures [28]. However,

we are not aware of any work that studies the resilience of gossip-based algorithms to malicious

attacks.

This chapter continues our study of resilient consensus. Specifically, we study the resilient

asymptotic consensus problem in discrete-time synchronous networks, referred to as DTRAC. For

DTRAC, we study W-MSR and demonstrate similar results for discrete time as we showed in Chap-

ter V for continuous time.

196

Organization

The rest of the chapter is organized as follows. Section 6.2 introduces the model of the synchronous

multi-agent network, the update model for the class of synchronous algorithms considered, the prob-

lem statement, and the adversary models within the synchronous framework. Section 6.3 presents

the W-MSR algorithm, and compares it to related algorithms in the literature. The main results are

given in Section 6.4. A simulation example is presented in Section 6.5. Finally, a summary is given

in Section 6.6.

6.2 System Model and Problem Statement

6.2.1 Synchronous Multi-Agent Network Model

Consider a time-varying network modeled by D(t) = (V, E(t)), where V = {1, 2, . . . , n} is the

node set and E(t) ⊂ V × V is the directed edge set at time t. Each directed edge (j, i) ∈ E(t)

models information flow and indicates that node i can be influenced by (or receive information

from) node j at time t. Without loss of generality, the node set is comprised of a nonempty set of N

normal nodes, N = {1, 2, . . . , N}, and a set of M adversary nodes, A = {N + 1, N + 2, . . . , n},

such that V = N ∪ A and M = n −N . Let Γn = {D1, . . . ,Dd} denote the set of all digraphs on

n nodes, which is of course a finite set. Note that D(t) ∈ Γn for all t ∈ Z≥0.

The time-varying topology of the network is governed by a piecewise constant switching signal

σ(·), which is defined on Z≥0 and takes values in {1, . . . , d}. In order to emphasize the role of the

switching signal, we denote Dσ(t) = D(t). Note that time-invariant networks are represented by

defining Dσ(t) ≡ Ds, or by simply dropping the dependence on time t.

Suppose that each node i ∈ N begins with some scalar value xi(0) ∈ R called the initial value

of node i. The execution of the nodes proceeds in a sequence of rounds, or time steps t ∈ Z≥0,

in which each normal node conveys its current value (or state) xi(t) ∈ R to its out-neighbors,

perceives the values of its in-neighbors, and updates its value. The network is synchronous in the

sense that all normal nodes execute rounds at a uniform rate and they are perfectly synchronized

(which justifies the common notion of time t ∈ Z≥0). The network is assumed to be reliable

(meaning all conveyed values are perceived without distortion or noise), and values are conveyed

instantaneously. Each node must convey at most one value (but not necessarily the same value) to

197

each of its out-neighbors in any given round. Each normal node i ∈ N conveys the same value

xi(t) to each of its out-neighbors in round t.

The value xi(t) ∈ R of node i ∈ V at time t ∈ Z≥0 defines unambiguously the state of node i

at time t for any node that is not deceptive (e.g., a normal node or malicious adversary). However,

in order to handle the deceptive Byzantine adversaries, we let x(j,i)(t) denote the state of node j

intended for node i at time t. Note that even if (j, i) /∈ E(t), x(j,i)(t) is still defined. In the case

that j ∈ N is normal, we define x(j,i)(t) ≡ xj(t). On the other hand, if j ∈ A is an adversary, then

x(j,i)(t) is the state trajectory that adversary j would like to convey to node i, but the topological

constraints on the network prevent it from doing so. With this terminology, we denote the collective

states of all nodes in N , A, and V intended for agent i by

x(N ,i)(t) = [x(1,i)(t), . . . , x(N,i)(t)]
T = [x1(t), . . . , xN (t)]T ∈ R

N ,

x(A,i)(t) = [x(N+1,i)(t), . . . , x(n,i)(t)]
T ∈ R

M ,

and

x(V ,i)(t) = [x(1,i)(t), . . . , x(n,i)(t)]
T ∈ R

n,

respectively. Since x(N ,i)(t) ≡ x(N ,j)(t) for all i, j ∈ V , we unambiguously define xN (t) =

x(N ,i)(t) for any i ∈ V . Finally, we denote the vector containing all adversary states intended for

normal nodes by x(A,N)(t) = [xT(A,1)(t), . . . , x
T

(A,N)(t)]
T ∈ RMN .

6.2.2 Synchronous Update Model

At the beginning of each time step t ∈ Z≥0, each normal node i conveys its value to its out-neighbors

in the network. Once each normal node i conveys its value, it then collects the values perceived into

a multiset. If the network is time invariant, then we assume the nodes are aware of their in-degrees.

Therefore, if an adversary k chooses not to transmit a value to a normal out-neighbor i in round t,

the normal node i selects some (possibly predetermined) value to use for x(k,i)(t) in the update of

round t. If the network is time varying, then the nodes are not aware of their in-neighbors for round

t prior to the round. Hence, if an adversary k chooses not to transmit a value to a normal node i in

round t (but otherwise could), then by convention we say i /∈ N out
k (t) and k /∈ N in

i (t). The multiset

198

of perceived (and possibly fabricated) values is then {x(j,i)(t)}, j ∈ N in
i (t). At the end of round

t ∈ Z≥0, normal node i updates its values for round t+ 1 according to the prescribed rule

xi(t+ 1) = fi,σ(t)(t, xi(t), {x(j,i)(t)}), i ∈ N , j ∈ N in
i (t), t ∈ Z≥0,Dσ(t) ∈ Γn. (59)

The update rule fi,σ(t)(·) can be an arbitrary function, and may be different for each node, depending

on its role in the network. These functions are designed a priori with the intent that the normal nodes

reach consensus (perhaps on a function of interest). However, some of the nodes may not follow

the prescribed strategy if they are compromised by an adversary. Such adversary nodes threaten the

group objective, and it is important to design the fi,σ(t)(·)’s in such a way that the influence of such

nodes can be eliminated or reduced without prior knowledge about their identities.

6.2.3 Adversaries in Discrete-Time Synchronous Networks

The discrete-time synchronous adversary model consists of a threat model (either Byzantine, mali-

cious, or crash model) and scope of threat assumption (either F -total, F -local, or f -fraction local

model). The scope of threat models defined in discrete time are completely analogous to the def-

initions in continuous time, so they are not repeated here.44 However, there are some nontrivial

differences in the definitions of the threat models, which are discussed here. Recall that for contin-

uous time, we require that if k ∈ J in
i (t), then agent k conveys its state to agent i at time t. This

requirement implies that if the network is time invariant and k ∈ J in
i , then agent k must convey its

state to agent i for all t ∈ R≥0.

In time-invariant,45 discrete-time networks we allow for the possibility that adversary node k

does not convey its value to node i whenever k ∈ J in
i in any round of its choosing. This possibility

is handled in the update rule of normal node i by substituting a value in place of the absent one in

its multiset {x(j,i)(t)}, j ∈ N in
i (t), of time step t. On the other hand, we do impose the restriction

that at most one value may be conveyed to each out-neighbor in a given round. This restriction

distinguishes the threat models studied here from flooding attacks (e.g., denial-of-service attacks).

The assumption may be reasonable if, for instance, the time length of the round is too short to
44The F -total model is identical. The only difference in the F -local and f -fraction local models is that t ∈ Z≥0 instead

of t ∈ R≥0.
45Observe that with time-varying networks, the time-varying nature of the directed edges encapsulates the ability of an

adversary node to avoid conveying its value to would-be out-neighbors.

199

reliably convey multiple values to a single out-neighbor.46

6.2.4 Problem Statement

The discrete-time resilient asymptotic consensus (DTRAC) problem in synchronous networks is

similar to its continuous-time counterpart and is defined as follows. Let MN (t) and mN (t) be the

maximum and minimum values of the normal nodes at time t, respectively. As in continuous time,

we also consider the Lyapunov certificate Ψ(t) = MN (t)−mN (t).

Definition 6.1 (Discrete-Time Resilient Asymptotic Consensus in Synchronous Networks). The

normal nodes are said to achieve discrete-time resilient asymptotic consensus (DTRAC) in the

presence of adversary nodes (given a particular adversary model) if

(i) limt→∞Ψ(t) = 0, and

(ii) xi(t+ 1) ∈ It = [mN (t),MN (t)] for all t ∈ Z≥0, i ∈ N ,

for any choice of initial values xi(0) ∈ R for i ∈ N .

A distributed algorithm that follows an update rule of the form given by (59) is said to be

a successful DTRAC algorithm with respect to Dσ(t) if it achieves DTRAC in the sequence of

digraphs determined by σ(t).

The two conditions of the DTRAC problem have several important implications. First, condition

(i) implies that the normal nodes reach consensus asymptotically. This is a condition on agreement.

Condition (ii) requires that a (successful) update rule fi,σ(t)(·) must select the next value so that

the interval containing the normal nodes at time t, denoted It, does not grow. Observe that if

this condition is satisfied, then It+1 ⊆ It. By recursively applying this property, one obtains the

condition It ⊆ I0 for all t ∈ Z≥0. Therefore, the interval I0 containing the initial values of the

normal nodes is an invariant set for t ≥ 0. This invariance property is a safety condition on the

values of the normal nodes. It is important when the current estimate of the consensus value is used

in a safety critical process and the interval I0 is known to be safe.
46Alternatively, if the directed edges are assumed to be authenticated (meaning the node conveying its value is identi-

fiable to the perceiving node), then under the synchronous network model defined here, an adversary that conveys more
than one value could easily be detected. In such case, the adversary is effectively reduced to a flooding node.

200

Also, observe that if condition (ii) is satisfied then mN (t) is a nondecreasing function of time,

and MN (t) is a nonincreasing function of time. Together with the agreement condition (i), this

implies that the values of the normal nodes converge to a common limit C ∈ I0 (called the consen-

sus value). The condition C ∈ I0 establishes validity of the consensus value C . Furthermore, this

validity condition (i.e., C ∈ I0) establishes the DTRAC problem, like the CTRAC problem, as a

partially constrained consensus problem.

The validity condition is reasonable in applications where the consensus value must lie in the

range given by the initial values of the normal nodes. For example, consider a sensor network in

which real-valued measurements are taken of the environment, and the nodes must reach agreement

on the measurement value. If the range of measurements taken by normal sensors is relatively small,

it may be the case that any value selected within the range of normal sensors is reasonable to choose

as the measurement value. On the other hand, if an adversary node is able to arbitrarily bias the

estimate, then an arbitrarily large error may be introduced into the estimation process.

Alternatively, suppose the nodes seek to minimize some (convex) objective function
∑

hi(θ),

where each of the hi’s is a local convex function and θ is the optimization variable. Further, suppose

the initial value of each node i is the value of θ that minimizes hi. Then, any value of θ in the interval

I0 is a convex combination of the estimates, and represents an estimate of the optimal value of θ,

within bounded error (where the bound on the error is a function of the size of I0). However, if the

adversary nodes are able to drive the consensus value outside of I0 at an arbitrary distance from I0,

then the value of the objective function will also be arbitrarily far from its minimum.

6.3 Resilient Synchronous Algorithm

While there are many algorithms that facilitate consensus, a class of linear iterative algorithms

has attracted significant interest in recent years [152, 168]. In such strategies, each node senses or

receives information from its neighbors at each time step, and updates its value according to

xi(t+ 1) =
∑

j∈J in
i (t)

w(j,i)(t)x(j,i)(t), (60)

where w(j,i)(t) is the weight assigned to node j’s value received by node i at time step t, and w(i,i)(t)

is the weight assigned to its own value at time step t. The above strategy is the so-called Linear

201

Iterative Consensus Protocol (LICP) (see (7) on page 49).

Different conditions have been reported in the literature to ensure asymptotic consensus is

reached [205, 166, 144, 90, 191]. In discrete time, it is common to assume that there exists a

constant α ∈ R, 0 < α < 1 such that all of the following conditions hold:

• w(j,i)(t) = 0 whenever j 1∈ J in
i (t), i ∈ N , t ∈ Z≥0;

• w(j,i)(t) ≥ α, ∀j ∈ J in
i (t), i ∈ N , t ∈ Z≥0;

•
∑n

j=1w(j,i)(t) = 1, ∀i ∈ N , t ∈ Z≥0;

where it is assumed that all nodes are normal (i.e., N = V).

Given these conditions, a necessary and sufficient condition for reaching asymptotic consensus

in time-invariant networks is that the digraph has a rooted out-branching, also called a rooted di-

rected spanning tree [168]. In light of Property 5.14, 1-robustness is an equivalent necessary and

sufficient condition. The case of dynamic networks is not quite as straightforward. In this case, un-

der the conditions stated above, a sufficient condition for reaching asymptotic consensus is that there

exists a uniformly bounded sequence of contiguous time intervals such that the union of digraphs

across each interval has a rooted out-branching [166]. Recently, a more general condition referred to

as the infinite flow property has been shown to be both necessary and sufficient for asymptotic con-

sensus for a class of discrete-time stochastic models [189]. Finally, the lower bound on the weights

is needed because there are examples of asymptotically vanishing weights in which consensus is

not reached [127]. Later in this chapter, we show that consensus is reached for a class of networks

where only some of the weights have a lower bound.

The values of the weights in the update rule affect the rate of consensus. Given a fixed, bidi-

rectional network topology, the selection of the optimal weights in (60) with respect to the speed

of the consensus process can be done by solving a semidefinite program (SDP) [205]. However,

this SDP is solved at design time with global knowledge of the network topology. A simple subop-

timal choice of weights that requires only local information is to let w(j,i)(t) = 1/(1 + di(t)) for

j ∈ J in
i (t).

One problem with the linear update given in (60) is that it is not resilient to adversary nodes. In

fact, it was shown in [90, 75] that a single ‘leader’ node can cause all agents to reach consensus on

202

an arbitrary value of its choosing (potentially resulting in a dangerous situation in physical systems)

simply by holding its value constant. Thus the dynamics given by (60) do not facilitate DTRAC for

any of the fault models. We now describe a simple modification to the update rule, and then provide

a comprehensive characterization of network topologies in which DTRAC is achieved under such

dynamics.

6.3.1 Description of the W-MSR Algorithm

At every time step t ∈ Z≥0, each normal node i obtains the values of other nodes in its neighbor-

hood. Given the scope of threat models, there may be at most Fi adversary nodes in the neighbor-

hood of normal node i (where Fi = F with the F -total or F -local models and Fi = !fdi(t)" with

the f -fraction local model); however, node i is unsure of which neighbors may be compromised.

To ensure that node i updates its value in a safe manner, we consider a protocol where each node

removes the extreme values with respect to its own value. More specifically:

1. At each time step t, each normal node i obtains the values of its neighbors. Any value not

received (from adversary neighbors in time-invariant networks) is replaced by the normal

node’s own value, xi(t). Node i forms a sorted list from the multiset {x(j,i)(t)}, j ∈ N in
i (t).

2. If there are less than Fi values strictly larger than its own value, xi(t), then normal node i

removes all values that are strictly larger than its own. Otherwise, it removes precisely the

largest Fi values in the sorted list (breaking ties arbitrarily). Likewise, if there are less than

Fi values strictly smaller than its own value, then node i removes all values that are strictly

smaller than its own. Otherwise, it removes precisely the smallest Fi values.

3. Let Ri(t) denote the set of nodes whose values were removed by normal node i in step 2 at

time step t. Each normal node i applies the update

xi(t+ 1) = w(i,i)(t)xi(t) +
∑

j∈N in
i (t)\Ri(t)

w(j,i)(t)x(j,i)(t), (61)

where the weights w(j,i)(t) satisfy the conditions47

47In this case, a simple choice for the weights is to let w(j,i)(t) = 1/(1 + di(t)− |Ri(t)|) for j ∈ J in
i (t) \ Ri(t).

203

• w(j,i)(t) = 0 whenever j 1∈ J in
i (t) or j ∈ Ri(t), and for all i ∈ N , t ∈ Z≥0;

• w(j,i)(t) ≥ α, whenever j ∈ J in
i (t) \ Ri(t), and for all i ∈ N , t ∈ Z≥0;

•
∑n

j=1w(j,i)(t) = 1, ∀i ∈ N , t ∈ Z≥0;

As a matter of terminology, we refer to the bound on the number (or fraction) of larger or smaller

values that could be thrown away as the parameter of the algorithm. The parameter of W-MSR with

the F -local and F -total models is F , whereas the parameter with the f -fraction local model is f ,

and the meaning of the parameter will be clear from the context. The above algorithm is extremely

lightweight, and does not require any normal node to have any knowledge of the network topology

or of the identities of nodes. The only knowledge assumed is that each normal node is aware of its

in-degree whenever the network is fixed (so that the node knows if it needs to substitute its value for

missing values in the multiset {x(j,i)(t)}, j ∈ N in
i (t)).

Observe that the set of nodes removed by normal node i, Ri(t), is possibly time-varying. Hence,

even if the underlying network topology is fixed, the W-MSR algorithm effectively induces switch-

ing behavior, and can be viewed as the linear update of (60) with a specific rule for state-dependent

switching (the rule given in step 2).

6.3.2 Use of Related Algorithms

The W-MSR algorithm is introduced in [210] by Zhang and Sundaram, where it is studied in the

presence of F -local malicious nodes. The W-MSR algorithm is a discrete-time version of weighted

ARC-P with selective reduce, and is in fact the inspiration for this modification of ARC-P.

The use of other algorithms that remove extreme values and then form an average from a subset

of the remaining values have been studied for decades. In [51], functions that perform this type of

operation are referred to as approximation functions, and both synchronous and asynchronous algo-

rithms are studied that use these approximation functions in complete networks for resilience to F -

total Byzantine faults. These approximation functions are used in the family of Mean-Subsequence-

Reduced (MSR) algorithms [98]. There are a few key differences between the operations used in

the W-MSR algorithm and the MSR algorithm of [98]. First, W-MSR does not always remove the

largest and smallest F values as in the MSR algorithm [98] (and as in the original form of ARC-P).

Instead, only the extreme values that are strictly larger or strictly smaller than the given node’s value

204

are removed (as in weighted ARC-P with selective reduce). Since the node’s own value may be one

of the F extreme values, the MSR algorithm may throw away this useful (correct) information. Sec-

ond, W-MSR uses all values retained after removing the extreme values. MSR, on the other hand,

may select only a subsequence of the remaining values to use in the update. However, because the

lower bound on the weights, α > 0, may be arbitrarily small, W-MSR can come arbitrarily close to

selecting only a subsequence of remaining values by setting the appropriate weights to α (instead

of 0 as would be done in MSR). Finally, MSR averages the remaining values instead of allowing for

weighted averages as in W-MSR.

MSR algorithms have also been used for Byzantine point convergence of mobile robots in com-

plete networks [27]. Besides Byzantine faults, some works also consider other threat models and

a combination of these faults [98]. However, few papers have addressed the convergence of MSR

algorithms in less restrictive (non-complete) networks. Some exceptions include [97, 8, 9]. In

[97], the authors studied local convergence (convergence of a subset of nodes) in undirected reg-

ular graphs48; the results are extended to asynchronous networks in [9] and global convergence of

a class of undirected regular graphs, named Partially Fully Connected Networks (PFCN), in [8].

More recently, [194] provides necessary and sufficient conditions on the network topology required

for a special case of the MSR algorithm (which retains all of the values after removing the extreme

ones) to achieve consensus in the presence of F -total Byzantine faults.

Finally, it is worth noting the relationship between the W-MSR algorithm and robust consensus

algorithms designed to withstand outliers [119, 142]. The problem of robust consensus to outliers

does not assume a threat model, such as malicious or Byzantine nodes. Instead, some measurements

may be statistical outliers caused by noisy measurements and the goal is to reach consensus on the

measurements in a manner that reduces the error introduced by the outliers. In these works the nodes

with outlier measurements are cooperative in the consensus process. Therefore, such techniques are

not designed to work in the presence of adversary nodes.

6.4 Resilient Consensus Analysis

We start with the following result showing that W-MSR always satisfies the safety condition for

DTRAC under any of the adversary models considered here. Because the crash and malicious
48A regular graph is a graph where each vertex has the same number of neighbors.

205

adversaries are special cases of the Byzantine adversary, the only threat model we need to consider

is the Byzantine model. Recall that MN (t) and mN (t) are the maximum and minimum values of

the normal nodes at time step t, respectively.

Theorem 6.2 (Safety Condition Always Satisfied by W-MSR). Suppose each normal node updates

its value according to the W-MSR algorithm with parameter F under the F -total or F -local Byzan-

tine model, or with parameter f under the f -fraction local Byzantine model. Then, for each node

i ∈ N , xi(t+ 1) ∈ It = [mN (t),MN (t)], for all t ∈ Z≥0, regardless of the network topology.

Proof. Since the update of W-MSR forms a convex combination of the values in J in
i (t) \ Ri(t)

(which is never empty since node i always uses its own value), it is sufficient to show that all of the

values in J in
i (t) \ Ri(t) must lie in It. Define Fi = F if the scope of threat is F -total or F -local,

and define Fi = !fdi(t)" if the scope of threat is f -fraction local. Fix x(j,i)(t) ∈ J in
i (t)\Ri(t) and

suppose that x(j,i)(t) > MN (t). Then, by definition j must be an adversary and x(j,i)(t) > xi(t).

Since i uses x(j,i)(t) in round t, there must be at least Fi more nodes in the neighborhood of i

with values at least as large as x(j,i)(t) (otherwise, it would be removed). Hence, these nodes must

also be adversaries, which contradicts the assumption that there are at most Fi adversary nodes

in the neighborhood of i at time t. Thus, x(j,i)(t) ≤ MN (t). Similarly, we can show that if

x(j,i)(t) ∈ J in
i (t) \ Ri(t), then x(j,i)(t) ≥ mN (t).

Having guaranteed the safety condition, we now provide a characterization of networks in which

the agreement condition (and thus, the validity condition) is satisfied for each of the adversary

models. First we provide necessary conditions for time-invariant networks formulated in terms of

network robustness for the existence of a successful algorithm that solves DTRAC. We then show

that the necessary conditions are also sufficient for some of the adversary models by showing that

W-MSR achieves DTRAC under the necessary conditions. For the remaining adversary models we

provide weaker sufficient conditions.

6.4.1 Necessary Conditions for Time-Invariant Synchronous Networks

In this section, we present a couple of necessary conditions. The first result provides a necessary

condition on the network topology for any successful DTRAC algorithm with respect to D under

206

the F -total or F -local crash model. The second result is a necessary condition for the success of

W-MSR with parameter f under the f -fraction local model.

In more detail, the following result shows that (F+1, F+1)-robustness is a necessary condition

for any synchronous distributed algorithm to achieve DTRAC under the F -total or F -local crash

model in time-invariant synchronous networks. Since Byzantine and malicious nodes are strictly

more expressive than crash adversaries, the result is also necessary with Byzantine and malicious

adversaries.

Theorem 6.3 (Necessity with F -Total and F -Local Crash Adversaries). Consider a time-invariant

synchronous network modeled by a digraph D = (V, E) in the presence of crash adversaries un-

der the F -total or F -local model. Suppose each normal node i updates its value according to a

successful DTRAC algorithm with respect to D. Then, D is (F + 1, F + 1)-robust.

Proof. Suppose D is not (F + 1, F + 1)-robust. Then, there are nonempty, disjoint S1,S2 ⊂ V

such that none of the conditions (i)− (iii) in Definition 5.10 hold (with r = F +1 and s = F +1).

Consider two scenarios. In the first scenario (which is the primary scenario of interest), suppose

the initial value of each node in S1 is a and each node in S2 is b, with a < b. Let all other nodes

have initial values taken from the interval [a, b]. Since |XF+1
S1

| + |XF+1
S2

| ≤ F , suppose all nodes

in XF+1
S1

and XF+1
S2

are crash nodes (which is allowed under both the F -total and F -local models).

The crash adversaries in XF+1
S1

and XF+1
S2

keep their values constant at a and b, respectively, and

choose to always convey their values. With this assignment of adversaries, there is still at least one

normal node in both S1 and S2 since |XF+1
S1

| < |S1| and |XF+1
S2

| < |S2|, respectively. Therefore,

consider a specific normal node i ∈ S1 \ XF+1
S1

.

For scenario 2, suppose all of normal node i’s neighbors outside of S1 are crash adversaries

(there are at most F such neighbors), they have the same initial values as scenario 1, and they all

convey their values (so that all neighbors of i convey their values to i in both scenarios). Let all

other nodes (including i) have initial value a. Therefore, scenarios 1 and 2 are identical from the

perspective of node i. Furthermore, in scenario 2, the normal nodes are in agreement. Hence, the

update rule must select xi(1) = a in either scenario to ensure the safety condition.49 In a similar
49Note that even a nondeterministic algorithm must choose xi(1) = a in scenario 1 because if it can choose xi(1) %= a

in scenario 1, it may do so in scenario 2 (because its inputs and state are identical in each case), which would violate the
safety condition.

207

manner, one can argue that any normal node j ∈ S2 \ XF+1
S2

in scenario 1 must select xj(1) = b.

Finally, any normal node k in V \ (S1 ∪ S2) in scenario 1 must set its value xk(1) ∈ [a, b] to ensure

safety (since [mN (0),MN (0)] = [a, b]). Therefore, round 1 has the same distribution of values

as round 0. By induction, we conclude that for each round r ∈ Z≥0 each node in S1 has value a,

each node in S2 has value b, and all other nodes have values in [a, b]. Therefore, no consensus is

achieved, which contradicts the assumption that DTRAC is achieved. Therefore, the network must

be (F + 1, F + 1)-robust.

The necessary condition we would like to show for the f -fraction local model is the following.

If any successful DTRAC algorithm achieves DTRAC in D, then D is f -robust. However, this

necessary condition is not provable using the construction of scenarios 1 and 2 as in the proof of

Theorem 6.3. This is because there is no absolute bound on the number of adversaries in any node’s

neighborhood (rather the bound is fractional, and therefore depends on the degrees of the nodes).

It is possible that the bound !fdi" on the number of adversaries in node i’s neighborhood may be

much larger than the bound allowed for some other node j. If dj < di and j shares the !fdi" or less

nodes we would like to assign as adversaries, then it is possible that this assignment of adversaries

violates the f -fraction local model. However, for W-MSR with parameter f , we have no problem

using a similar argument to Theorem 6.3. This is because each node i will remove up to !fdi"

values in its neighborhood that are strictly larger or smaller than its own value.

Theorem 6.4 (Necessary Condition for W-MSR with Parameter f under the f -Fraction Local Crash

Model). Consider a time-invariant synchronous network modeled by a digraph D = (V, E) in

the presence of crash adversaries under the f -fraction local model. Suppose each normal node i

updates its value according to W-MSR with parameter f . If DTRAC is achieved, thenD is f -fraction

robust.

Proof. Suppose that D is not f -fraction robust. Then, there exists nonempty, disjoint subsets

S1,S2 ⊂ V such that neither S1 nor S2 is f -fraction edge reachable. This means that for every

i ∈ Sk, |N in
i \ Sk| < 'fdi(, for k ∈ {1, 2}. From this, it follows that |N in

i \ Sk| ≤ !fdi" for all

i ∈ Sk. Suppose the initial value of each node in S1 is a and each node in S2 is b, with a < b. Let

all other nodes have initial values taken from the interval [a, b]. Assume all nodes are normal. Then,

using W-MSR with parameter f , each node i in S1 removes the !fdi" or less values greater than

208

a from outside S1. Likewise, each node j in S2 removes the !fdj" or less values less than b from

outside S2. The remaining nodes select values in [a, b] by Theorem 6.2. By induction, it follows that

all nodes in S1 keep the value a and each node in S2 keeps the value b for all time steps. Therefore,

DTRAC is not achieved.

6.4.2 F -Total Malicious and Crash Models

The following result is one of the major contributions of the chapter. It provides, for the first

time, a necessary and sufficient condition on the time-invariant network topology for the W-MSR

algorithm to succeed under the F-total malicious model. In light of Theorem 6.3, this result shows

that (F + 1, F + 1)-robustness is both necessary and sufficient for the existence of a synchronous

algorithm that achieves DTRAC in time-invariant synchronous networks. Note that we use the

Lyapunov function Ψ(t) = MN (t)−mN (t) in the analysis.

Theorem 6.5 (Sufficiency with F -Total Malicious and Crash Model). Consider a time-invariant

network modeled by a digraph D = (V, E) where each normal node updates its value according to

the W-MSR algorithm with parameter F . Under the F -total malicious model, DTRAC is achieved

if and only if the network topology is (F + 1, F + 1)-robust.

Proof. Necessity follows from Theorem 6.3. For sufficiency, recall that Ψ is a nonincreasing func-

tion of t. Therefore, whenever the normal nodes are in agreement at time tk, then consensus is

maintained for t ≥ tk. Hence, fix tk ≥ 0 and assume Ψ(tk) > 0.

For t ≥ tk and η > 0, define XM (t, tk, η) = {j ∈ V : xj(t) > MN (tk)−η} and Xm(t, tk, η) =

{j ∈ V : xj(t) < mN (tk) + η}. Define ε0 = Ψ(tk)/2 and let εj = αεj−1 for j = 1, 2, . . . , N −

1, where N = N . It follows that εj = αjε0 > 0. By definition, the sets XM (tk, tk, ε0) and

Xm(tk, tk, ε0) are nonempty and disjoint. Because D is (F + 1, F + 1)-robust and there are at

most F malicious nodes in the network (F -total model), it follows that either there exists i ∈

XM (tk, tk, ε0) ∩ N or there exists i ∈ Xm(tk, tk, ε0) ∩ N , or there exists such i in both, such that

i has at least F + 1 neighbors outside of its set. Therefore, if i ∈ XM (tk, tk, ε0) ∩ N (with at least

209

F + 1 neighbors outside its set), then

xi(tk + 1) = w(i,i)(tk)xi(tk) +
∑

j∈N in
i \Ri(tk)

w(j,i)(tk)x(j,i)(tk)

≤ α(MN (tk)− ε0) + (1− α)MN (tk)

≤MN (tk)− αε0 = MN (tk)− ε1.

Note that for any normal node not in XM (tk, tk, ε0), the above inequality holds because any normal

node always uses its own value in the update. From this, we conclude

|XM (tk + 1, tk, ε1) ∩ N| < |XM (tk, tk, ε0) ∩ N|.

Similarly, if i ∈ Xm(tk, tk, ε0) ∩ N (with at least F + 1 neighbors outside its set), then

xi(tk + 1) = w(i,i)(tk)xi(tk) +
∑

j∈N in
i \Ri(tk)

w(j,i)(tk)x(j,i)(tk)

≥ α(mN (tk) + ε0) + (1− α)mN (tk)

≥ mN (tk) + αε0 = mN (tk) + ε1.

Similarly as above, this inequality holds for any normal node not in Xm(tk, tk, ε0). From this, we

conclude

|Xm(tk + 1, tk, ε1) ∩ N| < |Xm(tk, tk, ε0) ∩ N|.

By repeating this analysis, we can show by induction that as long as both XM (tk + j, tk, εj) ∩ N

and Xm(tk + j, tk, εj) ∩ N are both nonempty, then either

|XM (tk + j + 1, tk, εj+1) ∩N| < |XM (tk + j, tk, εj) ∩ N|,

or

|Xm(tk + j + 1, tk, εj+1) ∩N| < |Xm(tk + j, tk, εj) ∩ N|,

or both. Since |XM (tk, tk, ε0)∩N|+|Xm(tk, tk, ε0)∩N| ≤ |N | = N , there exists T < N such that

210

one of the sets XM (tk+T, tk, εT)∩N , Xm(tk+T, tk, εT)∩N , or both, is empty. It follows that in

the former case, MN (tk+T) ≤MN (tk)− εT , and in the latter case, mN (tk+T) ≥ mN (tk)+ εT .

Since

ε0 > ε1 > · · · > εT ≥ εN−1 > 0,

we have

Ψ(tk +N − 1)−Ψ(tk) ≤ Ψ(tk + T)−Ψ(tk)

≤ (MN (tk + T)−MN (tk)) + (mN (tk)−mN (tk + T))

≤ −εT

≤ −εN−1.

Therefore, Ψ(tk + N − 1) ≤ Ψ(tk)(1 − αN−1/2). Define γ = (1 − αN−1/2). Since γ is not a

function of tk, and tk was chosen arbitrarily, it follows that

Ψ(tk + j(N − 1)) ≤ γjΨ(tk),

for all j ∈ Z≥0. Because γ < 1, it follows that Ψ(t)→ 0 as t→∞.

This result establishes the notion of network robustness introduced in Definition 5.10 as the ap-

propriate metric for reasoning about purely local distributed algorithms, supplanting the traditional

metric of connectivity. When the network is time-varying, one can state the following theorem.

Theorem 6.6 (Sufficiency with F -total malicious model in time-varying networks). Consider a

time-varying network modeled by D(t) = (V, E(t)) where each normal node updates its value

according to the W-MSR algorithm with parameter F . Let {tk} denote the set of time steps in which

D(tk) is (F + 1, F + 1)-robust. Then, under the F -total malicious model, DTRAC is achieved if

|{tk}| =∞ and |tk+1 − tk| ≤ c, ∀k,

for some c ∈ N.

Proof. Fix tk ∈ {tk} such that D(tk) is (F + 1, F + 1)-robust. Assume Ψ(tk) > 0 (otherwise,

211

consensus is maintained for all t ≥ tk). Define XM(t, tk, η), Xm(t, tk, η), and ε0 = Ψ(t0)/2 as

in the proof of Theorem 6.5. In this case, define εj = αcεj−1 for j = 1, 2, . . . , N − 1, where

N = N . Because D(tk) is (F + 1, F + 1)-robust and there are at most F malicious nodes in the

network (F -total model), it follows that either there exists i ∈ XM (tk, tk, ε0) ∩ N or there exists

i ∈ Xm(tk, tk, ε0)∩N , or there exists such i in both, such that i has at least F +1 neighbors outside

of its set. As in the proof of Theorem 6.5, we can show in the former case (i ∈ XM(tk, tk, ε0) ∩ N

with at least F + 1 neighbors outside its set) that

xi(tk + 1) ≤MN (tk)− αε0.

Because node i always uses its own value in its update, we can show that if xi(tk + j) ≤MN (tk +

j)− αjε0, then

xi(tk + j + 1) = w(i,i)(tk + j)xi(tk + j) +
∑

j∈N in
i \Ri(tk+j)

w(j,i)(tk + j)x(j,i)(tk + j)

≤ α(MN (tk + j) − αjε0) + (1− α)MN (tk + j)

≤MN (tk)− αj+1ε0,

even in time steps when the network is not (F + 1, F + 1)-robust. By induction, it follows that

xi(tk+ j) ≤MN (tk)−αjε0 for all j ∈ Z≥0. Note that this inequality holds as well for any normal

node i /∈ XM(tk, tk, ε0) (since it uses its own value). In a similar manner, we can show in the

latter case (i ∈ Xm(tk, tk, ε0) ∩ N with at least F + 1 neighbors outside its set) that xi(tk + j) ≥

mN (tk) + αjε0 for all j ∈ Z≥0 (and this holds as well for i /∈ Xm(tk, tk, ε0)).

By hypothesis, there exists tk+1 ∈ {tk+1, tk+2, . . . , tk+c} such that D(tk+1) is (F+1, F+1)-

robust. Since |tk+1 − tk| ≤ c, at least one of the inequalities

|XM (tk+1, tk, ε1) ∩ N| < |XM (tk, tk, ε0) ∩ N|,

or

|Xm(tk+1, tk, ε1) ∩ N| < |Xm(tk, tk, ε0) ∩ N|

212

holds. By repeating this analysis, we can show by induction that as long as both XM (tk+j, tk, εj)∩

N and Xm(tk+j, tk, εj) ∩N are both nonempty, then either

|XM (tk+j+1, tk, εj+1) ∩ N| < |XM (tk+j, tk, εj) ∩N|,

or

|Xm(tk+j+1, tk, εj+1) ∩ N| < |Xm(tk+j, tk, εj) ∩ N|,

or both. Since |XM (tk, tk, ε0) ∩ N| + |Xm(tk, tk, ε0) ∩ N| ≤ |N | = N , there exists T < N such

that one of the sets XM (tk+T , tk, εT)∩N , Xm(tk+T , tk, εT)∩N , or both, is empty. It follows that

in the former case, MN (tk+T) ≤MN (tk)− εT , and in the latter case, mN (tk+T) ≥ mN (tk) + εT .

Since

ε0 > ε1 > · · · > εT ≥ εN−1 > 0,

we have

Ψ(tk+N−1)−Ψ(tk) ≤ Ψ(tk+T)−Ψ(tk)

≤ (MN (tk+T)−MN (tk)) + (mN (tk)−mN (tk+T))

≤ −εT

≤ −εN−1.

Therefore, Ψ(tk+N−1) ≤ Ψ(tk)(1 − αc(N−1)/2). Define γ = (1 − αc(N−1)/2). Since γ is not a

function of tk, |{tk}| =∞, |tk+1− tk| ≤ c for any tk ∈ {tk}, and tk was chosen arbitrarily in {tk},

it follows that

Ψ(tk + jc(N − 1)) ≤ Ψ(tk+j(N−1)) ≤ γjΨ(tk),

for all j ∈ Z≥0. Because γ < 1, it follows that Ψ(t)→ 0 as t→∞.

To illustrate these results consider the graphs in Figures 35 and 40 (on pages 159 and 165,

respectively). These graphs can withstand the compromise of F = 1 malicious node in the network

using the W-MSR algorithm with parameter F = 1 (each graph is (2,2)-robust but not (3,3)-robust).

This is not to say that it is impossible for the normal nodes to reach consensus if there are, for

213

example, two nodes that are compromised. Instead, these results say that there are two specific nodes

that can be compromised by an adversary to prevent consensus (e.g., nodes 5 and 6 in Figure 40).

6.4.3 F -Local Malicious and Crash Models

The previous results (Theorems 6.3 and 6.5) fully characterize those time-invariant synchronous

network topologies that are able to handle F -total malicious (or crash) adversaries. In order to

deal with the possibility that the total number of adversaries is quite large, we now consider the

F -local and f -fraction local malicious models. Since there is no upper bound on the total number

of adversaries under these models, we cannot rely on a “sufficient” number of nodes in each set

having enough neighbors outside. Therefore, the parameter s in the definition of (r, s)-robust has

no impact. Instead, we use r-robustness (and p-fraction robustness), and increase the lower bound

on the number of neighbors in the edge reachability properties (i.e., the value of r or p).

The following result shows that (2F + 1)-robustness is a sufficient condition under the F -local

malicious model (and therefore also with crash adversaries) to ensure DTRAC is achieved in time-

invariant synchronous networks. This result is proved by Zhang and Sundaram in [210] using a

contradiction argument. We provide here an alternative proof that provides a minimum guaranteed

performance bound (i.e., geometric decay of the Lyapunov certificate Ψ(t) over large enough time

intervals).

Theorem 6.7 ([210], Sufficiency with F -Local Malicious Model). Consider a time-invariant net-

work modeled by a digraph D = (V, E) where each normal node updates its value according to the

W-MSR algorithm with parameter F . Under the F -local malicious model, DTRAC is achieved if

the topology of the network is (2F + 1)-robust.

Proof. The proof follows the same argument as the proof of Theorem 6.5. In this case, the sets

XM (t, tk, η) and Xm(t, tk, η) are defined to include only normal nodes. Then, the (2F + 1)-robust

assumption ensures that there exists a node in either XM or Xm with at least 2F + 1 neighbors

outside of either XM or Xm, respectively. Since at most 2F of these values are thrown away (with

at most F of them as adversaries, under the F -local model, and at most F of these strictly smaller,

or larger, than node i’s value), it follows that at least one normal value outside of i’s set (either XM

or Xm) will be used in the update. The rest of the analysis is identical to the proof of Theorem 6.5.

214

Therefore, we can show that for γ = (1− αN−1/2) and any tk ∈ Z≥0

Ψ(tk + j(N − 1)) ≤ γjΨ(tk),

for all j ∈ Z≥0. Because γ < 1, it follows that Ψ(t)→ 0 as t→∞.

Following the argument of Theorem 6.6 with the modifications described in the proof of Theo-

rem 6.7, we can show the following result for time-varying networks.

Theorem 6.8 ([210], Sufficiency with F -Local Malicious Model in Time-Varying Networks). Con-

sider a time-varying network modeled by D(t) = (V, E(t)) where each normal node updates its

value according to the W-MSR algorithm with parameter F . Let {tk} denote the set of time steps in

which D(t) is (2F + 1)-robust. Then, under the F -local malicious model, DTRAC is achieved if

|{tk}| =∞ and |tk+1 − tk| ≤ c, ∀k,

for some c ∈ N.

The sufficient condition of Theorem 6.7 does not match the necessary condition of Theorem 6.3.

However, according to Property 5.21 (on page 173), the sufficient condition implies the necessary

one. The following result from [210] indicates that (2F + 1)-robustness is sharp for W-MSR in

time-invariant synchronous networks under the F -local malicious model. This indicates (as was

the case for the topological conditions ΓM and ΓB studied in Chapter IV) that a new topological

property (other than r-robustness or (r, s)-robustness) is needed to characterize the tight conditions

for a successful DTRAC algorithm under the F -local malicious model.

Proposition 6.9 ([210]). For every F ∈ Z>0, there exists a 2F -robust network that fails to reach

consensus using the W-MSR algorithm with parameter F .

To illustrate the results of this section, consider the 3-robust graph of Figure 40 (on page 165).

Recall that this graph cannot generally sustain 2 malicious nodes as specified by the 2-total model

(it is not (3,3)-robust). However, under the 1-local model, it can sustain two malicious nodes if the

right nodes are compromised. For example, nodes 1 and 4 may be compromised under the 1-local

model and the normal nodes will still reach consensus. This example illustrates the advantage of the

215

F -local model, where there is no concern about global assumptions. If a digraph is (2F +1)-robust,

then up to F nodes may be compromised in any node’s neighborhood, possibly resulting in more

than F malicious nodes in the network (as in the previous example).

6.4.4 f -Fraction Local Malicious and Crash Models

We proved in Theorem 6.4 that f -fraction robustness is a necessary condition for the W-MSR al-

gorithm with parameter f to achieve DTRAC in time-invariant networks under the f -fraction local

malicious model. We now show that p-fraction robustness, with p > 2f , is sufficient.

Theorem 6.10 (Sufficiency with f -Fraction Local Malicious and Crash Models). Consider a time-

invariant network modeled by a digraph D = (V, E) where each normal node updates its value

according to the W-MSR algorithm with parameter f . Under the f -fraction local malicious model,

DTRAC is achieved if the topology of the network is p-fraction robust, where 2f < p ≤ 1.

Proof. The proof follows the same argument as the proof of Theorem 6.5. In this case, the sets

XM (t, tk, η) and Xm(t, tk, η) are defined to include only normal nodes. Then, the p-fraction robust

assumption ensures that there exists a (normal) node in either XM or Xm with at least 'pdi(neigh-

bors outside of either XM or Xm, respectively. Here, at most 2!fdi" of these values are thrown

away (with at most !fdi" of them as adversaries, under the f -fraction local model, and at most

!fdi" of these strictly smaller, or larger, than node i’s value). Because p > 2f , it follows that

'pdi(− 2!fdi" ≥ 1. Therefore, at least one normal value outside of i’s set (either XM or Xm) will

be used in the update . The rest of the analysis is identical to the proof of Theorem 6.5. Therefore,

we can show that for γ = (1− αN−1/2) and any tk ∈ Z≥0

Ψ(tk + j(N − 1)) ≤ γjΨ(tk),

for all j ∈ Z≥0. Because γ < 1, it follows that Ψ(t)→ 0 as t→∞.

As with the other adversary models, we may state the following result for time-varying net-

works.

Theorem 6.11 (Sufficiency with f -Fraction Local Malicious Model in Time-Varying Networks).

Consider a time-varying network modeled by D(t) = (V, E(t)) where each normal node updates

216

its value according to the W-MSR algorithm with parameter f . Let {tk} denote the set of time steps

in which D(t) is p-fraction robust, where 2f < p ≤ 1. Then, under the f -fraction local malicious

model, DTRAC is achieved if

|{tk}| =∞ and |tk+1 − tk| ≤ c, ∀k,

for some c ∈ N.

6.4.5 F -Total, F -Local and f -Fraction Local Byzantine Models

The results so far have focused on malicious adversaries. In this section, we consider Byzantine ad-

versaries. The recent paper [194] investigates a similar algorithm in the context of F -total Byzantine

adversaries, and provides necessary and sufficient conditions for the algorithm to succeed. While

their proof techniques are different, the main result can be stated succinctly using robustness as

follows. This formulation and proof of the necessary and sufficient conditions is due to Zhang and

Sundaram. The result uses the normal network, as given in Definition 5.33 on page 188.

Theorem 6.12 ([194], Necessary and Sufficient Condition with F -Total Byzantine Model). Con-

sider a time-invariant network modeled by a digraph D = (V, E) where each normal node updates

its value according to the W-MSR algorithm with parameter F . Under the F -total Byzantine model,

DTRAC is achieved if and only if the topology of the normal network is (F + 1)-robust.

Proof. To prove sufficiency, besides the method used in [194, 193], we can also use the approach

proposed in the proof of Theorem 6.5. Note that when the original network is (2F + 1)-robust, the

normal network is (F + 1)-robust.

To prove necessity, if the normal network is not (F + 1)-robust, we can assign the two disjoint

sets that are not (F +1)-edge reachable the maximum and minimum values, respectively. Since the

Byzantine nodes can send different values to different neighbors, suppose they send the maximum

and minimum values to the maximum and minimum sets, respectively. Then, nodes in these two

sets never use any values from outside their own sets and consensus is not reached.

The following results are straightforward extensions of the above result from [194] to the local

models and time-varying networks.

217

Theorem 6.13 (Necessary and Sufficient Condition with F -Local Byzantine Model). Consider a

time-invariant network modeled by a digraph D = (V, E) where each normal node updates its value

according to the W-MSR algorithm with parameter F . Under the F -local Byzantine model, DTRAC

is achieved if and only if the topology of the normal network is (F + 1)-robust.

Proof. The proof is identical to the proof of Theorem 6.12.

Theorem 6.14 (Necessary and Sufficient Condition with f -Fraction Local Byzantine Model). Con-

sider a time-invariant network modeled by a digraph D = (V, E) where each normal node updates

its value according to the W-MSR algorithm with parameter f . Under the f -fraction local Byzan-

tine model, DTRAC is achieved if the normal network is p-fraction robust, where p > f , and a

necessary condition is for the normal network to be f -fraction robust.

Proof. Necessity follows from Theorem 6.4. For sufficiency, the definitions of XM and Xm are

modified to include only normal nodes. Then, the p-fraction robust assumption (with p > f)

ensures that there exists a normal node in either X k
M or X k

m with at least 'pdi(normal neighbors

outside of either XM or Xm, respectively. Since 'pdi(− !fdi" ≥ 1, a similar argument to the proof

of Theorem 6.5 may be used to prove the result.

Theorem 6.15 (Sufficiency with F -Total, F -Local, and f -Fraction Local Byzantine Model in Time–

Varying Networks). Consider a time-varying network modeled by D(t) = (V, E(t)) where each

normal node updates its value according to the W-MSR algorithm with parameter F (or parameter

f for the f -fraction local model). Let {tk} denote the set of time steps in which D(t) is either (i)

(2F+1)-robust, or (ii) p-fraction robust, where 2f < p ≤ 1. Then, under (i) the F -total or F -local

Byzantine model, or (iii) the f -fraction local Byzantine model, respectively, DTRAC is achieved if

|{tk}| =∞ and |tk+1 − tk| ≤ c, ∀k,

for some c ∈ N.

Proof. The time-varying arguments required in Theorems 6.8 and 6.11 are sufficient for the Byzan-

tine case as well.

218

6.5 Simulation Examples

This section presents a numerical example to illustrate our results. In this example, the network is

given by the (2,2)-robust graph shown in Figure 45, in which the node set is V = {1, 2, . . . , 14}

and node i ∈ V has initial value xi(0) shown in the circle representing the node. This is the same

network topology of Figure 43 used in the simulation example of Section 5.5. Instead of consider-

ing a crash adversary, as is done in the previous example, we now consider a single malicious node,

and look at both time-invariant and time-varying networks. Since the network is (2,2)-robust, The-

orem 6.5 indicates it can generally sustain at most a single malicious node in the network. Suppose

that the node with the largest degree, node 14, is compromised and turns malicious. The normal

nodes use either LICP given in (60) or W-MSR with parameter F = 1 for their update rule. Each

normal node i ∈ N uses the weights w(j,i)(t) = |J in
i (t)|−1 for each j ∈ J in

i (t) with LICP and

w(j,i)(t) = (|J in
i (t)\Ri(t)|)−1 for each j ∈ J in

i (t)\Ri(t) with W-MSR. The malicious node’s ob-

jective is to prevent the normal nodes from reaching consensus and to drive the normal node values

outside of the range of their initial values.

Figure 45: (2,2)-Robust network topology used in DTRAC simulations.

The results for the time-invariant network of Figure 45 are shown in Figure 46. It is clear in

Figure 46(a) that the malicious node is able to drive the values of the normal nodes outside of

the range of initial values and prevent consensus whenever LICP is used. On the other hand, the

malicious node is unable to achieve its goal whenever W-MSR is used. Note that although consensus

can be reached, the malicious node still has the potential to drive the consensus process to any

219

value in the interval [0, 1] by choosing the desired value as its initial value and remaining constant.

However, this is allowed with resilient asymptotic consensus (because the consensus value is within

the range of the initial values held by normal nodes).

Finally, we illustrate the time-varying network result for the 1-total malicious model by remov-

ing approximately half of the directed edges in 9 out of every 10 consecutive time steps. To do this,

we check whether the time step is equal to 0 modulo 10. If it is not, then we model directed edge

removal by a Bernoulli process with parameter p = 0.5, so that approximately half of the directed

edges are removed in these time steps. The results are illustrated in Figure 47, and show that only

the speed of convergence is affected when using W-MSR.

6.6 Summary

This chapter extends the Resilient Asymptotic Consensus (RAC) problem to discrete-time syn-

chronous networks, called DTRAC. Analogous results are presented as was shown for the continuous-

time case.

220

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

time step

va
lu

es

Malicious node
Normal nodes

(a) LICP.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

time step

va
lu

es

Malicious node
Normal nodes

(b) W-MSR.

Figure 46: Simulation of W-MSR & LICP in a fixed network under the F -total malicious model.

221

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

time step

va
lu

es

Malicious node
Normal nodes

(a) LICP.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

time step

va
lu

es

Malicious node
Normal nodes

(b) W-MSR.

Figure 47: Simulation of W-MSR & LICP in a dynamic network under the F -total malicious model.

222

CHAPTER VII

DISCRETE-TIME RAC IN ASYNCHRONOUS NETWORKS

Consensus problems have a rich history in distributed computing [130] and communication [82].

More recently, consensus has become an active area of control research [152, 168]. This is because

reaching agreement is a fundamental task in distributed and multi-agent systems, and arises in di-

verse applications such as agent flocking [90, 151], synchronized path following [89], distributed

estimation [172], and load balancing for parallel processors [19]. A major concern in large-scale

distributed systems is whether the group objectives can be achieved in the presence of uncertainties

such as communication delays, data loss, or node failures. While researchers in control have stud-

ied consensus algorithms that have been shown to be resilient to communication delays [145], data

loss [156], and quantization [94], the robustness of such algorithms to node failures has been shown

to be lacking [75].

Of course, consensus algorithms that are robust to node failures have been studied in distributed

computing [161, 130], communication networks [92], and mobile robotics [1, 46, 27]. In these

works, the faulty nodes may be characterized by fault models and scope of fault assumptions. Two

common fault models are the crash fault [1, 46] and the Byzantine fault [110, 51, 1, 194]. Whenever

a node suffers a crash fault, it simply stops somewhere in its execution (this is also referred to as

a stopping failure [130]). A Byzantine faulty node, on the other hand, may behave in an arbitrary

manner. Therefore, worst case executions must be considered. The scope of the faults is usually

assumed to satisfy some global bound; for example, at most F out of n nodes fail. We refer to

this as the F -total model. A local bound on the number of faulty nodes has been considered in

fault-tolerant broadcasting [162, 86, 210], where it is assumed that at most F of any normal node’s

neighbors fail. We refer to this as the F -local model.

Another important concern in large-scale networked systems is the issue of malicious attacks

and security breaches [30]. Attacks on the network may include jamming [20], denial-of-service [4],

false data injection [138], replay [139], or deception [212]. In jamming and denial-of-service at-

tacks, the attacker reduces (or even destroys) the availability of data from the communication net-

work. False data injection and deception attacks affect the integrity of the data. Likewise, replay

223

attacks inject incorrect and outdated information by repeating previously transmitted data.

In the context of security, it is also important to consider security breaches in which a subset

of nodes are compromised and behave as adversaries. In this case, the compromised nodes may be

characterized by threat models and scope of threat assumptions. For such a scenario, the Byzantine

model is a suitable threat model. But, depending on the communication realization, the full general-

ity of the Byzantine model may not be necessary. In general, Byzantine nodes may simultaneously

send different information to different neighbors in the network [130]. However, if the nodes broad-

cast their information to neighbors, then duplicity (of this type) is not possible. We refer to the

Byzantine node under the local broadcast model as a malicious node [181, 210, 114, 116, 115].

There are two general approaches to designing distributed algorithms that are resilient to com-

promised nodes. Either the compromised nodes may be detected and identified so that their influ-

ence may be removed, or the algorithms must filter the information received from neighbors in such

a way that ensures resilience. The problem of detecting misbehavior and identifying compromised

nodes in linear consensus networks has been studied in [181, 159]. The paper [181] considers the

problem of distributed function calculation in the presence of up to F malicious nodes (i.e., F -total

model). On the other hand, [159] focuses on the special case of consensus, but considers both ma-

licious nodes and non-colluding nodes under the F -total model. The focus of these works is to

characterize the conditions on the network topology under which the compromised nodes can be

identified from calculations performed by an iterative linear consensus protocol, and then design

algorithms that can overcome the adversaries.

While identifying compromised nodes is clearly an interesting and important approach, these de-

tection and identification techniques require each node to have information of the network topology

beyond its local neighborhood. This requirement of nonlocal information may not be suitable for

large-scale networks. Furthermore, the detection algorithms are computationally expensive. On the

other hand, algorithms that filter the information received from neighbors to ensure resilience only

require local information and may be computationally efficient [113, 210, 114, 116, 115]. A class

of such algorithms were originally used in the study of the approximate agreement problem [51],

and were extended to a family of algorithms, called the Mean-Subsequence-Reduced (MSR) al-

gorithms [98]. In [115], we generalize the MSR algorithm as the Weighted-Mean-Subsequence-

Reduced (W-MSR) algorithm, and study its convergence properties in synchronous networks under

224

various threat models and scope of threat assumptions.

This chapter considers a consensus problem, referred to as resilient asymptotic consensus, which

is closely related to the approximate agreement problem. The main difference is that in this case

we ignore the requirement of finite termination. Instead, we consider the asymptotic performance

of the networked system. Another minor difference lies in semantics. Instead of viewing some of

the nodes as suffering faults, we make the interpretation that the nodes have been compromised in

a security breach and behave as adversaries. Note that classical results [51] as well as very recent

results in approximate agreement [194, 193, 195] may also be interpreted in this manner.

The contributions of this chapter are as follows. First, we formulate the resilient asymptotic con-

sensus problem in an asynchronous framework, with a local broadcast model of communication.50

Then, we characterize, for the first time, the necessary and sufficient condition on the network topol-

ogy for the existence of an algorithm that achieves resilient asymptotic consensus in time-invariant

asynchronous networks under the local broadcast model of communication, and in the presence of

up to F malicious nodes (F -local model). To show sufficiency, we adapt the W-MSR algorithm

to an asynchronous setting and prove that the algorithm succeeds under the necessary condition.

Finally, we provide a sufficient condition for the existence of an algorithm that achieves resilient

asymptotic consensus in the asynchronous network model under the F -local model. Note that the

results can readily be extended to the other adversary models, similarly as was done in previous

chapters.

The rest of the chapter is organized as follows. Section 7.1 recalls the meaning of a malicious

adversary, and discusses details and assumptions placed on the threat model in asynchronous net-

works. Section 7.3 describes how the W-MSR algorithm is adapted to an asynchronous setting.

Section 7.4 contains the main results. Section 7.5 provides context for how these results relate to

the literature. Finally, Section 7.6 summarizes the chapter.

7.1 Malicious Nodes in Asynchronous Networks

The assumptions on the malicious nodes need to be clarified for the asynchronous framework. Ma-

licious nodes are still omniscient adversaries. In particular, they know all other values and the
50We do not consider a point-to-point model of communication because this problem is recently solved in [195]. See

Section 7.5 for more details.

225

full network topology; they are aware of the update rules fi(·), ∀i ∈ N ; they are aware of which

other nodes are adversaries; and they know the plans of the other adversaries.51 Although mali-

cious nodes have complete knowledge, their ability to affect other nodes is limited. Specifically,

a malicious node k ∈ A may choose whether or not to broadcast its value to its out-neighbors

in any round r ∈ Z≥0, but if it does, it must send at most one value xk(r) tagged with round r

(otherwise, the normal nodes receiving more than one value from node k in round r would know

that k is an adversary). Additionally, in any finite time interval, a malicious node must send a fi-

nite number of messages. Finally, a malicious node may update its value in an arbitrary fashion.

Since it is omniscient, one must assume that the update is one that causes the most disruption to the

normal nodes (perhaps with respect to some disruption objective function). Observe that malicious

nodes are Byzantine nodes restricted to the local broadcast model. Byzantine nodes differ in that

they are capable of sending different messages to different out-neighbors, which is possible under a

point-to-point communication model [195].

7.2 System Model and Problem Statement

The digraph D = (V, E) models the communication subsystem of the networked system. The

nodes communicate under a local broadcast model, in which the out-neighbors of each node i in

D are precisely those nodes capable of receiving messages from i. The communication is assumed

to be reliable (meaning all transmitted messages are eventually delivered successfully), but the

messages may incur different (arbitrary) delays in transmission to different nodes and messages may

be received out of order. It is further assumed that the messages are signed and that the signature of

each normal node is unforgeable.

For the class of algorithms studied in this work, the execution of each node proceeds in a se-

quence of rounds r ∈ Z≥0 that consists of transmit, receive, and update stages. A node (or subset

of nodes) that is in the process of executing its algorithm (i.e., it is in either the transmit, receive, or

update stage of some round r ∈ Z≥0) is said to be active. The networked system is asynchronous,

meaning the nodes do not necessarily execute rounds at the same rate and the nodes are not syn-

chronized. Therefore, at any point in real time t ∈ R≥0, the nodes may be in different stages of
51One may take the viewpoint that a centralized omniscient adversary informs and directs the behavior of the malicious

nodes.

226

different rounds. The reference time t = 0 is defined as the point in time at which the first subset of

normal nodes becomes active. Because there is no synchrony among the nodes, it is possible that

at some time t > 0, some of the nodes may have not yet become active. To handle this situation,

we assume there exists a dormant stage of round r = 0, in which nodes may accumulate messages

from in-neighbors but do not act upon them until becoming active. Note that we place no limitations

on the amount of storage available at each node.

In order to keep track of the messages corresponding to a given round, each message is tagged

by the round r ∈ Z≥0 in which it is sent. Every node (including adversary nodes) sends at most

one message to its out-neighbors in each round, and each normal node sends exactly one message

per round. Since the normal nodes follow this protocol, any adversary node that sends multiple

messages tagged by a single round would be easily detected as an adversary. However, an adversary

may skip rounds without detection (in finite time) because the messages may be received out of

order and with arbitrary delay. Moreover, an adversary may decide at some point in time to stop

sending messages altogether.

7.2.1 Update Model

Suppose that each node i ∈ V maintains a scalar value xi(r) ∈ R called the state of node i in

round r. In particular, each node begins with the private value xi(0) (which could represent a

measurement, optimization variable, etc.). At the beginning of each round r ∈ Z≥0 (once the

node becomes active), each normal node i broadcasts its value to its out-neighbors in the network

(transmit stage). The value sent by node j in round r ∈ Z≥0 is denoted xj(r). Once each normal

node i transmits its value, it then waits52 to receive d∗i < di values (receive stage) from its in-

neighbors (d∗i depends on the adversary model, scope of threat assumptions, and size of N in
i).

Observe that d∗i should be small enough so as to avoid deadlock. Once node i ∈ N collects d∗i

values from in-neighbors, it updates its value for round r + 1 according to the prescribed rule

xi(r + 1) = fi (xi(r), {xj(r)}) , i ∈ N , j ∈ V∗
i (r),

52If node i is one of the last normal nodes to become active, it is possible that it may have already received at least
di − F messages from in-neighbors for multiple rounds. In such a case, there is no need for node i to wait.

227

where V∗
i (r) is the set of nodes corresponding to the d∗i values received from node i’s in-neighbors

in round r. The update rule fi(·) can be an arbitrary function, and may be different for each node,

depending on its role in the network. These functions are designed a priori so that the normal

nodes reach consensus. However, some of the nodes may not follow the prescribed strategy if they

are compromised by an adversary. Such misbehaving nodes threaten the group objective, and it is

important to design the fi(·)’s in such a way that the influence of such nodes can be eliminated or

reduced without prior knowledge about their identities.

7.2.2 Asynchronous DTRAC Problem Statement

The discrete-time resilient asymptotic consensus problem in asynchronous networks differs slightly

in its formulation from the synchronous version of the problem. In this case, let MN (r) and mN (r)

be the maximum and minimum values of the normal nodes in round r, respectively.

Definition 7.1 (Discrete-Time Resilient Asymptotic Consensus in Asynchronous Networks). The

normal nodes are said to achieve resilient asymptotic consensus in the presence of adversary nodes

(given a particular adversary model) if

(i) mN (r + 1) ≥ mN (r) andMN (r + 1) ≤MN (r), for r ∈ Z≥0, and

(ii) limr→∞MN (r)−mN (r) = 0,

for any choice of initial values.

The RAC problem consists of two conditions. The first (i) is a validity or safety condition. If

it is satisfied, then the states of the normal nodes remain inside the initial interval [mN (0),MN (0)]

(safety), and any value selected (i.e., through termination) is guaranteed to lie in this interval (va-

lidity). The second (ii) is a convergence condition on agreement. Observe that any asynchronous

algorithm that achieves resilient asymptotic consensus in the presence of F -totally bounded mali-

cious nodes must wait for no more than d∗i = di − F values in its receive stage in order to avoid

deadlock.

228

7.2.3 Quantized RAC

In the case of quantized consensus, we establish the same network model as described above. The

model still allows infinite precision computation and infinite-rate transmission; however the consen-

sus value at each node is quantized. To describe the quantization scheme, we require the following

definition of a δ-set [142].

Definition 7.2. A set ∆ ⊂ R is a δ-set for δ ∈ R if ∀v, v′ ∈ ∆,

|v − v′|
δ

∈ Z≥0.

Let q∆ : R → ∆ be a quantizer that rounds a real number x to its closest value in δ-set ∆, and

rounds up whenever x lies at the midpoint between two values in ∆. The quantizer is given by

q∆(x) = max{argmin
v∈∆

|v − x|}. (62)

7.2.3.1 Update Model with Quantized State

Suppose that each node i ∈ V maintains a scalar value xi(r) ∈ R for all rounds r ∈ Z≥0 and a

quantized value vi(r) for rounds r ∈ Z>0. In particular, each node begins with the private value

xi(0). At the beginning of each round r ∈ Z≥0 (once the node becomes active), each normal node

i broadcasts its value to its out-neighbors in the network (transmit stage). The value sent by node

j in round r ∈ Z≥0 is denoted xj(r). Once each normal node i transmits its value, it then waits to

receive d∗i < di values (receive stage) from its in-neighbors (d∗i depends on the adversary model,

scope of threat assumptions, and size of N in
i). Observe that d∗i should be small enough so as to

avoid deadlock. Once node i ∈ N collects d∗i values from in-neighbors, it updates its values for

round r + 1 according to the prescribed rules

xi(r + 1) = fi (xi(r), {xj(r)}) , i ∈ N , j ∈ V∗
i (r),

vi(r + 1) = q∆(xi(r + 1)).

where V∗
i (r) is the set of nodes corresponding to the d∗i values received from node i’s in-neighbors

in round r. The update rule fi(·) can be an arbitrary function, and may be different for each node,

229

depending on its role in the network. These functions are designed a priori so that the normal

nodes reach consensus. However, some of the nodes may not follow the prescribed strategy if they

are compromised by an adversary. Such misbehaving nodes threaten the group objective, and it is

important to design the fi(·)’s in such a way that the influence of such nodes can be eliminated or

reduced without prior knowledge about their identities.

7.2.3.2 Problem Statement

The discrete-time quantized resilient asymptotic consensus (QRAC) problem in asynchronous net-

works differs slightly in its formulation from the version without quantization. In this case, we

require that the quantized values agree with a maximum error given by the precision of the quan-

tizer (i.e., no values differ by more than δ).

Definition 7.3 (Discrete-Time Quantized Resilient Asymptotic Consensus in Asynchronous Net-

works). The normal nodes are said to achieve quantized resilient asymptotic consensus (QRAC)

in the presence of adversary nodes (given a particular adversary model) if

(i) q∆(mN (r + 1)) ≥ q∆(mN (r)) and q∆(MN (r + 1)) ≤ q∆(MN (r)), for r ∈ Z≥0, and

(ii) limr→∞ q∆(MN (r))− q∆(mN (r)) ≤ δ,

for some δ-set ∆ and for any choice of initial values xi(0), i ∈ N .

7.3 Asynchronous Resilient Algorithms

In this section, we modify the Weighted Mean-Subsequence-Reduce (W-MSR) algorithm that we

studied in synchronous networks [115, 116] (described in the previous chapter). The modifica-

tions are made to accommodate asynchrony and are similar to the modifications done for similar

algorithms [51, 195], and consist of the following two changes: (i) the messages are tagged with

the corresponding round index, and (ii) each normal node j waits to receive only d∗j = dj − F

messages from in-neighbors for a given round r before updating its value. After this, we describe

another variation of the algorithm in which each node maintains a quantized state value along with

the unquantized one.

230

7.3.1 Asynchronous W-MSR Algorithm

Asynchronous W-MSR with parameter F :

In each round r ∈ Z≥0, once active, normal node i performs the following steps:

1. Transmit step: Send current value xi(r) to outgoing neighbors, along with round index r.

2. Receive step: Wait53 to receive exactly d∗i = di−F messages from different nodes tagged by

round index r, and break ties arbitrarily. Sort the di − F values in ascending order. If there

are less than F values strictly larger than its own value, xi(r), then normal node i removes

all values that are strictly larger than its own. Otherwise, it removes precisely the largest F

values in the sorted list (breaking ties arbitrarily). Likewise, if there are less than F values

strictly smaller than its own value, then node i removes all values that are strictly smaller than

its own. Otherwise, it removes precisely the smallest F values.

3. Update step: Let Ri(r) denote the set of nodes whose values were removed or disregarded

by normal node i in step 2 of round r. Each normal node i applies the update

xi(r + 1) =
∑

j∈J in
i \Ri(r)

wij(r)xj(r), (63)

where the weights wij(r) satisfy the following conditions for all rounds r ∈ Z≥0 and for

some 0 < α << 1.

• wij(r) = 0 whenever j 1∈ J in
i or j ∈ Ri(r);

• wij(r) ≥ α, ∀j ∈ J in
i \ Ri(r), i ∈ N ;

•
∑n

j=1wij(r) = 1, ∀i ∈ N .

Together, these conditions imply that the updated value is a convex combination of values in

J in
i \ Ri(r) with a uniform lower bound on the weights given by α.

53If node i is one of the last normal nodes to become active, it is possible that it may have already received at least
di − F messages from in-neighbors for multiple rounds. In such a case, there is no need for node i to wait.

231

7.3.2 Quantized Asynchronous W-MSR Algorithm

Let q∆ : R → ∆ be a quantizer that rounds a real number x to its closest value in δ-set ∆ (recall

the definition of a δ-set given on page 229), and rounds up whenever x lies at the midpoint between

two values in ∆. The quantizer is given by

q∆(x) = max{argmin
v∈∆

|v − x|}.

The quantized version of the algorithm is described as follows.

Quantized Asynchronous W-MSR with parameter F :

Each node i ∈ V begins with value xi(0) ∈ R and quantized value vi(0) = q∆(xi(0)) ∈ ∆. Once

active, normal node i performs the following steps in each round r ∈ Z≥0:

1. Transmit step: Send current value xi(r) to outgoing neighbors, along with round index r.

2. Receive step: Wait to receive exactly d∗i = di − F messages from different nodes tagged by

round index r, and break ties arbitrarily. Sort the di − F values in ascending order. If there

are less than F values strictly larger than its own value, xi(r), then normal node i removes

all values that are strictly larger than its own. Otherwise, it removes precisely the largest F

values in the sorted list (breaking ties arbitrarily). Likewise, if there are less than F values

strictly smaller than its own value, then node i removes all values that are strictly smaller than

its own. Otherwise, it removes precisely the smallest F values.

3. Update step: Let Ri(r) denote the set of nodes whose values were removed or disregarded

by normal node i in step 2 of round r. Each normal node i applies the update of (63) and then

quantizes The value of xi(r + 1) is then quantized as

vi(r + 1) = q∆(xi(r + 1)).

The rest of the chapter is concerned with analyzing necessary and sufficient conditions on the

network topology for the normal nodes using Asynchronous W-MSR (or Quantized Asynchronous

W-MSR) with parameter F to achieve RAC (or QRAC).

232

7.4 Resilient Consensus Analysis

We start with the following result showing that W-MSR always satisfies the validity condition for

resilient asymptotic consensus. We then provide the definition of robustness used in the analysis.

Recall that MN (r) and mN (r) are the maximum and minimum values of the normal nodes in round

r, respectively.

Lemma 7.4. Suppose each normal node updates its value according to the Asynchronous W-MSR

algorithm with parameter F under the F -total or F -local model. Then, for each normal node

i ∈ N , xi(r + 1) ∈ [mN (r),MN (r)], regardless of the network topology. From this we conclude

mN (r + 1) ≥ mN (r) andMN (r + 1) ≤MN (r).

Proof. Suppose that one value, say xj(r), used in the update (63) satisfies xj(r) > MN (r). Then,

by definition of MN (r), j must be an adversary and xj(r) > xi(r). Since i uses xj(r) in round

r, there must be at least F more nodes in the neighborhood of i with values at least as large as

xj(r). Hence, these nodes must also be adversaries, which contradicts the assumption that at most

F in-neighbors of i are adversary nodes. Thus, xj(r) ≤ MN (r). Similarly, we can show that

xj(r) ≥ mN (r). The result follows since xi(r + 1) in (63) is a convex combination of values in

[mN (r),MN (r)].

7.4.1 Necessary Condition for F -Total or F -Local Malicious Model

The following is the major contribution of the chapter and provides, for the first time, a necessary

and sufficient condition for there to exist an algorithm that can achieve resilient asymptotic con-

sensus in asynchronous networks with a local broadcast communication model under the F-total

malicious model. First, we prove necessity. Then we show sufficiency by demonstrating that Asyn-

chronous W-MSR achieves resilient asymptotic consensus with this condition.

Theorem 7.5. If an asynchronous algorithm achieves resilient asymptotic consensus under the F -

total or F -local malicious model in a nontrivial (n ≥ 2) time-invariant asynchronous network under

the local broadcast model, then the network is (2F + 1, F + 1)-robust.

Proof. Suppose there exists an asynchronous algorithm that achieves resilient asymptotic consensus

in a nontrivial network that is not (2F + 1, F + 1)-robust. Then, there are nonempty, disjoint

233

S1,S2 ⊂ V such that none of the conditions (i)−(iii) in Definition 5.10 hold (with r = 2F +1 and

s = F + 1). Suppose the initial value of each node in S1 is a and each node in S2 is b, with a < b.

Let all other nodes have initial values taken from the interval [a, b]. Since |X 2F+1
S1

|+ |X 2F+1
S2

| ≤ F ,

suppose all nodes in X 2F+1
S1

and X 2F+1
S2

are malicious (which is allowed under both the F -total and

F -local models) and keep their values constant for all rounds. With this assignment of adversaries,

there is still at least one normal node in both S1 and S2 since |X 2F+1
S1

| < |S1| and |X 2F+1
S2

| < |S2|,

respectively.

Fix any normal node i ∈ S1 (and therefore, i ∈ S1 \ X 2F+1
S1

), and note that |N in
i \ S1| ≤ 2F .

Suppose the delays for messages from qi = min{F, |N in
i \ S1|} nodes in N in

i \ S1 are arbitrarily

large compared to all the other incoming messages to node i in round 0 (and the delays are large

enough so that node i has become active). Then N in
i \ Ri(0) includes at most |N in

i \ S1| − qi ≤ F

values outside of S1 (which from the perspective of the update rule could all be adversary values).

Other values used by the update rule for node i are from inside S1 (including node i’s own value),

so they have value a. Therefore, the update rule must set xi(1) = a to ensure the validity condition

(more specifically, to ensure MN (1) ≤MN (0)). In a similar manner, one can argue that any normal

node j ∈ S2 \ X 2F+1
S2

must select xj(1) = b. Finally, since [mN (0),MN (0)] = [a, b], any normal

node k in V \ (S1 ∪S2) must set its value xk(1) ∈ [a, b] to ensure the validity condition. Therefore,

round 1 has the same distribution of values as round 0. By induction, we conclude that for each

round r ∈ Z≥0 each node in S1 has value a, each node in S2 has value b, and all other nodes have

values in [a, b]. Therefore, no consensus is achieved, which contradicts the assumption that there

exists an asynchronous algorithm that achieves resilient asymptotic consensus in a network that is

not (2F + 1, F + 1)-robust.

7.4.2 Sufficiency for F -Total Malicious Model

Theorem 7.6 (Sufficiency). Consider a time-invariant asynchronous network under the local broad-

cast model. Suppose the communication is described by a digraph D = (V, E), where each normal

node uses the Asynchronous W-MSR algorithm with parameter F . Then, under the F -total mali-

cious model, resilient asymptotic consensus is achieved if the network topology is (2F +1, F +1)-

robust.

234

Proof. Define Ψ(r) = MN (r) − mN (r), which is a nonincreasing function of r by Lemma 7.4.

Whenever the normal nodes are in agreement at some round r0 ∈ Z≥0, then consensus is maintained

in future rounds r ≥ r0. In the analysis that follows, recall that r is the round index and does not

correspond to a common point in real time among the nodes. The difference in real time between

when any two nodes actually execute round r may be quite large. The main point is that eventually

each node will execute round r ∈ Z>0 because the network delay is finite and normal nodes only

wait for at most di − F incoming messages from neighbors. With this in mind, fix r0 ≥ 0 and

assume Ψ(r0) > 0. For r ≥ r0 and η > 0, define XM (r, r0, η) = {j ∈ V : xj(r) > MN (r0)− η}

and Xm(r, r0, η) = {j ∈ V : xj(r) < mN (r0) + η}. Define ε0 = Ψ(r0)/2 and define εj = αεj−1

for j = 1, 2, . . . , N − 1, where N = N . It follows that εj = αjε0 > 0. By definition, the sets

XM (r0, r0, ε0) and Xm(r0, r0, ε0) are nonempty and disjoint. Because D is (2F +1, F +1)-robust

and there are at most F malicious nodes in the network (F -total model), it follows that either there

exists i ∈ XM (r0, r0, ε0) ∩ N or there exists i ∈ Xm(r0, r0, ε0) ∩ N , or there exists such i in both,

such that i has at least 2F +1 neighbors outside of its set. Suppose first that i ∈ XM(r0, r0, ε0)∩N

has at least 2F + 1 neighbors outside its set. Since at most 2F of these values will be ignored

or removed (up to F ignored due to delays and F removed for being the smallest values in the

in-neighborhood of node i), it follows that

xi(r0 + 1) =
∑

j∈J in
i \Ri(r0)

wij(r0)xj(r0)

≤ α(MN (r0)− ε0) + (1− α)MN (r0)

≤MN (r0)− αε0 = MN (r0)− ε1.

Note that for any normal node not in XM (r0, r0, ε0), the above inequality holds as well because any

normal node always uses its own value in the update. From this, we conclude

|XM (r0 + 1, r0, ε1) ∩ N| < |XM (r0, r0, ε0) ∩ N|.

235

Similarly, if i ∈ Xm(r0, r0, ε0) ∩ N has at least 2F + 1 neighbors outside its set, then

xi(r0 + 1) =
∑

j∈J in
i \Ri(r0)

wij(r0)xj(r0)

≥ α(mN (r0) + ε0) + (1− α)mN (r0)

≥ mN (r0) + αε0 = mN (r0) + ε1.

Similarly as above, this inequality holds for any normal node not in Xm(r0, r0, ε0). From this, we

conclude

|Xm(r0 + 1, r0, ε1) ∩ N| < |Xm(r0, r0, ε0) ∩ N|.

By repeating this analysis, we can show by induction that as long as XM (r0+ j, r0, εj)∩N and

Xm(r0 + j, r0, εj) ∩ N are both nonempty, then either

|XM (r0 + j + 1, r0, εj+1) ∩N| < |XM (r0 + j, r0, εj) ∩ N|,

or

|Xm(r0 + j + 1, r0, εj+1) ∩N| < |Xm(r0 + j, r0, εj) ∩ N|,

or both hold. Since

|XM (r0, r0, ε0) ∩N|+ |Xm(r0, r0, ε0) ∩ N| ≤ |N | = N,

there exists T < N such that one of the sets

XM (r0 + T, r0, εT) ∩ N ,

Xm(r0 + T, r0, εT) ∩ N ,

or both, is empty. It follows that in the former case,

MN (r0 + T) ≤MN (r0)− εT ,

236

and in the latter case,

mN (r0 + T) ≥ mN (r0) + εT .

Since

ε0 > ε1 > · · · > εT ≥ εN−1 > 0,

we have

Ψ(r0+N − 1)−Ψ(r0) ≤ Ψ(r0 + T)−Ψ(r0)

≤ (MN (r0 + T)−MN (r0))

+ (mN (r0)−mN (r0 + T))

≤ −εT

≤ −εN−1.

Therefore,

Ψ(r0 +N − 1) ≤ Ψ(r0)(1− αN−1/2).

Define c = (1 − αN−1/2). Since c is not a function of r0 and r0 was chosen arbitrarily, it follows

that

Ψ(r0 + k(N − 1)) ≤ ckΨ(r0),

for all k ∈ Z≥0. Because c < 1, it follows that Ψ(r)→ 0 as r →∞.

7.4.3 Sufficient Condition for F -Local Malicious Model

Theorem 7.7 (Sufficient Condition, F -Local). Consider a time-invariant asynchronous network

under the local broadcast model. Suppose the communication is described by a digraphD = (V, E),

where each normal node uses the Asynchronous W-MSR algorithm with parameter F . Then, under

the F -local malicious model, resilient asymptotic consensus is achieved if the network topology is

(3F + 1)-robust.

Proof. In this case, the sets XM and Xm are defined to include only normal nodes. Then, the

(3F + 1)-robust assumption under the F -local model ensures at least one normal value outside of

237

either XM or Xm will be used in the update (at most up to F values could be from adversaries and

have values greater than MN (r), F smallest or largest values are removed, and F values are ignored

due to time delays, leaving still one normal value outside that is used). The rest of the analysis is

identical to the proof of Theorem 7.6.

7.4.4 RAC in Asynchronous Networks With Quantization

In this section, we show that if the processor can compute the exact values used in update (63),

then by rounding this estimate, the quantized values will converge in finite time to values that are

approximately equal, up to the quantization precision of the quantizer. In the special case where the

limit to which the unquantized consensus process converges is equal to its quantized value, exact

consensus is shown to hold. In order to analyze this situation, we require the following definitions.

Let

I∆ ! [min∆,max∆],

and for x ∈ I∆ define 'x(∆ = argmin{v ∈ ∆: v ≥ x}, !x"∆ = argmax{v ∈ ∆: v ≤ x}, and

µ(x) = ('x(∆ + !x"∆)/2. For x /∈ I∆, define 'x(∆ = !x"∆ = µ(x) = max∆ whenever x >

max∆, and 'x(∆ = !x"∆ = µ(x) = min∆ whenever x < min∆. Note that 'x(∆ − !x"∆ = 0 if

x ∈ ∆ or x /∈ I∆, and 'x(∆ − !x"∆ = δ otherwise. The following lemma is important in the main

result.

Lemma 7.8. Given a known δ-set ∆, with quantizer q∆, then for any x ∈ I∆, the following

inequality holds:

|q∆(x)− x|+ |x− µ(x)| ≤ δ/2.

Proof. Observe that q∆(x) ∈ {!x"∆, 'x(∆}, so that |q∆(x) − µ(x)| = δ/2 if x 1= q∆(x) and

|q∆(x) − µ(x)| = 0 if x = q∆(x). Thus, |q∆(x) − x| + |x − µ(x)| = 0 whenever x = q∆(x);

so, assume x 1= q∆(x) (and therefore x 1= 'x(∆ and x 1= !x"∆). If x ∈ (!x"∆, µ(x)), then

238

q∆(x) = !x"∆, so that

|q∆(x)− x|+ |x− µ(x)| = |!x"∆ − x|+ |x− µ(x)|

= x− !x"∆ + µ(x)− x

= µ(x)− !x"∆

= δ/2.

Likewise, if x ∈ [µ(x), 'x(∆), then q∆(x) = 'x(∆, so that

|q∆(x)− x|+ |x− µ(x)| = |'x(∆ − x|+ |x− µ(x)|

= 'x(∆ − x+ x− µ(x)

= 'x(∆ − µ(x)

= δ/2.

Theorem 7.9. Consider a time-invariant asynchronous network under the local broadcast model

and in the presence of malicious adversaries under the F -total model. Suppose the communication

is described by a digraph D = (V, E), where each normal node uses the Quantized Asynchronous

W-MSR algorithm with parameter F . Let ∆ be some δ-set. Then, whenever D is (2F + 1, F + 1)-

robust there exists a round r′ ∈ Z>0 such that for all r ≥ r′, QRAC is achieved. Moreover, if L is

not a midpoint of two values in ∆, then for all r ≥ r′, |vi(r) − vj(r)| = 0 for i, j ∈ N , where L

denotes the limit to which the values in xN (r) converge (guaranteed by Theorem 7.6).

Proof. The values xi(r) converge to a common limit by Theorem 7.6, which we call L. Hence, for

all ε > 0, there exists rε ∈ Z>0 such that for all r ≥ rε, |xi(r)−L| < ε. First, suppose that L /∈ ∆.

There are two cases to consider: L ∈ I∆ = [min∆,max∆] or L /∈ I∆. Suppose first that L ∈ I∆

and that L = µ(L). Let ε = δ/2, which implies that for r ≥ rδ/2, xi(r) ∈ (!L"∆, 'L(∆) ⊂ I∆ so

239

that µ(xi(r)) = µ(L) = L for all i ∈ N . It follows that for all r ≥ rδ/2 and all i, j ∈ N ,

|vi(r)− vj(r)| = |q∆(xi(r))− q∆(xj(r))|

≤ |q∆(xi(r))− L|+ |L− q∆(xj(r))|

≤ |q∆(xi(r))− xi(r)|+ |xi(r)− L|+ |L− xj(r)|+ |xj(r)− q∆(xj(r))|

≤ δ/2 − |xi(r)− µ(xi(r))|+ |xi(r)− L|+ |L− xj(r)|+ δ/2 − |xj(r)− µ(xj(r))|

≤ δ − |xi(r)− L|+ |xi(r)− L|+ |L− xj(r)| − |xj(r)− L|

≤ δ

where we have used Lemma 7.8 in going from the third to the fourth line, and the fact that µ(xi(r)) =

µ(L) = L in going from the fourth to the fifth line.

Next, suppose L ∈ I∆, L /∈ ∆, and L 1= µ(L). Then, let ε = min(|L − µ(L)|, |L − q∆(L)|),

which implies that for r ≥ rδ/2, xi(r) is not only in (!L"∆, 'L(∆) ⊂ I∆, but in the same δ/2

length subinterval as L for all i ∈ N (i.e., either in (!L"∆, µ(L)) if L ∈ (!L"∆, µ(L)) or in

(µ(L), 'L(∆) if L ∈ (µ(L), 'L(∆)). It follows that q∆(xi(r)) = q∆(L) for all i ∈ N , and hence

|vi(r)− vj(r)| = 0 for i, j ∈ N whenever r ≥ rε.

If L /∈ I∆, then fix ε < minv∈∆ |v − L| = dist(L,∆). Then, for all r ≥ rε, it follows from the

definition of q∆ that q∆(xi(r)) = q∆(xj(r)) for i, j ∈ N .

Finally, if L ∈ ∆, then set ε = δ/2, which implies that for all r ≥ rε, xi(r) ∈ (L−δ/2, L+δ/2)

for i ∈ N . Suppose L 1= q∆(xi(r)) for some i ∈ N and some r ≥ rε. Then there exists v ∈ ∆

with v 1= L such that |v − xi(r)| ≤ |L− xi(r)| < δ/2. Then,

|v − L| ≤ |v − xi(r)|+ |xi(r)− L| < δ,

which contradicts the fact that ∆ is a δ-set. Therefore, L = q∆(xi(t)) for all i ∈ N and r ≥ rε, so

that |vi(r)− vj(r)| = 0 for i, j ∈ N whenever r ≥ rε.

Note that we cannot do better than the error of δ with this approach because if L is the midpoint

of two values v1, v2 ∈ ∆ with v2 − v1 = δ, then values converging to L from below are rounded to

v1 while values converging to L from above are rounded to v2, for all r ∈ Z>0.

240

7.5 Point-to-Point Communication Model in Related Work

Although the Byzantine approximate agreement problem was posed more than twenty-five years

ago, the necessary and sufficient topological condition on a time-invariant network for a successful

iterative algorithm to exist in the presence of up to F Byzantine nodes has been an open problem

(for both synchronous and asynchronous networks) until very recently [194, 193, 195]. Synchronous

networks under the F -total Byzantine model are studied in [194, 193], and both synchronous and

asynchronous networks are studied in [195]. In [194], Vaidya et al. provide the tight condition

required in synchronous directed networks to ensure convergence (instead of finite termination) of

any iterative consensus algorithm in the presence of up to F Byzantine faulty nodes. In order to

state the condition, we require the following definition, which provides a common notation from

the definitions considered separately in [194] and [195].

Definition 7.10. For nonempty, disjoint sets of nodes A,B ⊂ V , A r⇒ B if and only if there exists a

node v ∈ B that has at least r in-neighbors in A; i.e., |N in
v ∩A| ≥ r. A r

! B if and only if A r⇒ B

is not true.

Given the relation of Definition 2.1, the tight condition may be stated as follows. For all quadru-

ples of sets of nodes F , L,C,R that form a partition54 of V such that 0 ≤ |F| ≤ F , |L| > 0, and

|R| > 0, at least one of the two following conditions must hold true: (i) R ∪ C
F+1⇒ L or (ii)

L ∪ C
F+1⇒ R. Observe that this condition requires sufficient redundancy of directed edges be-

tween subsets of normal nodes in the network. Note that the condition can be restated in terms of

robustness; i.e., the subdigraph induced by the normal nodes must be (F + 1)-robust.

The necessary and sufficient condition for time-invariant asynchronous networks with a point-

to-point communication model in the presence of up to F Byzantine nodes is given in [195]. The

condition can also be stated using the relation of Definition 2.1. For all quadruples of sets of nodes

F , L,C,R that form a partition of V such that 0 ≤ |F| ≤ F , |L| > 0, and |R| > 0, at least one of

the two following conditions must hold true: (i) R∪C
2F+1⇒ L or (ii) L∪C

2F+1⇒ R. Note that the

condition can be restated in terms of robustness; i.e., the subdigraph induced by the normal nodes

must be (2F + 1)-robust.
54Here, sets S1,S2, . . . ,Sp ⊆ S are said to form a partition of set S if ∪p

i=1Si = S and Si ∩ Sj = ∅ for i %= j. Note
that in this context, some of the sets in the partition may be empty.

241

The concept of robust networks is introduced by Zhang and Sundaram in [210], where it is

shown to be a useful property in studying the resilience of distributed algorithms (including consen-

sus and broadcast algorithms) in the presence of F -local adversaries. A refined definition (which is

the one presented here, with finer granularity through the introduction of parameter s) is given in

[116, 115], in order to formulate the necessary and sufficient condition to achieve resilient asymp-

totic consensus in time-invariant synchronous networks under the F -total malicious model. Note

that robust networks are quite common. In [210, 116, 115], it is shown that the robustness of the

seed graph in the well-known preferential attachment model for scale-free networks [2] is main-

tained throughout the growth of the network. Moreover, it is shown in [209] that random networks

also exhibit robustness properties.

7.6 Summary

In this chapter, we studied the problem of reaching consensus asymptotically in the presence of

adversary nodes whenever the network is asynchronous under a local broadcast model of commu-

nication. The type of adversary considered is omniscient and may collude with other adversaries

to achieve the goal of disrupting consensus among the normal nodes. The main limitation on the

behavior of the adversary nodes is that whenever the adversary nodes communicate with neigh-

bors, they must broadcast their messages so that all neighbors receive the same information. The

asynchronous consensus algorithm studied here uses local strategies to ensure resilience against the

adversary nodes. The class of topologies studied are those that are robust. Network robustness for-

malizes the notion of redundancy of direct information exchange between subsets of nodes in the

network, and is an important property for analyzing the behavior of resilient distributed algorithms

that use only local information. We also considered a quantization scheme to terminate in finite

time while ensuring approximate agreement with the maximum error given by the precision of the

quantizer.

242

CHAPTER VIII

RESILIENT ASYMPTOTIC SYNCHRONIZATION OF LINEAR SYSTEMS

Synchronization, like consensus, is a group objective where the agents seek to agree on their

state values. Synchronization differs from consensus in the fact that the state values dynamically

change in the absence of influence from neighboring agents in the network. Whereas consensus is

an agreement process on values, synchronization is an agreement process on the underlying dynam-

ics. Most often, synchronization phenomena arise in physical or biological systems where complex

interactions in the coupled dynamics of the underlying physical processes cause the agents to syn-

chronize. At times this behavior is undesirable and even harmful, such as the synchronization that

occurs in the brain of an epileptic patient. Other times, synchronization is explicitly sought, and

appropriate control laws or algorithms are designed to drive the agents to synchrony [171, 211].

A major challenge in the synchronization objective in multi-agent networks is the design of local

coupling rules (controllers) that facilitate synchronization of the agents’ dynamics. One aspect to

this challenge is the possibility of complex and dynamic interaction topologies. Of course, this

is a common issue with consensus objectives. A second aspect, unique to synchronization, is the

complication of nonlinear, possibly chaotic, agent dynamics [176]. Further, if the agents are not

identical, then synchronization to common dynamics may not be feasible, e.g., if the individual

agents have no common equilibrium and a synchronization manifold does not exist [211]. Instead,

in these cases, the error dynamics of each agent with respect to the average dynamics should be

bounded near the origin [211].

Another major challenge is achieving synchronization resiliently in the presence of compro-

mised nodes, or adversaries. As far as the author is aware, this problem has not been previously

studied.55 However, the need for resilient synchronization algorithms increases with the increasing

number of applications in which synchronization is required. It is not difficult to imagine the damage

that could be caused by a Stuxnet-like worm56 insinuated into a networked multi-agent system with
55Resilient clock synchronization has been studied [129, 109, 120]. However, these techniques achieve agreement

resiliently on logical clock values, instead of agreement on the oscillator dynamics. In the jargon of this manuscript, this
type of clock synchronization is physically dependent consensus, but not synchronization.

56See http://en.wikipedia.org/wiki/Stuxnet and the references therein (accessed July 26, 2012).

243

synchronization algorithms that are not resilient. Instead of only destroying the infected nodes, the

entire networked system could be destroyed. Therefore, the formulation of resilient synchronization

problems and the design of controllers that ensure resilience are of utmost importance.

In this chapter, we study resilient asymptotic synchronization (RAS) of linear time-invariant

(LTI) systems. The normal agents in the network are identical LTI systems. The goal is for each

normal agent to asymptotically synchronize to a common open-loop trajectory of the system (i.e.,

a trajectory of the unforced system, with zero input) despite the influence of adversary agents. It

is assumed that each LTI system is weakly stable, stabilizable, and detectable. Resilient synchro-

nization controllers are designed for both full-state and output feedback. In the case of output

feedback, a resilient Luenberger observer is introduced to construct an estimate of the full state.

The weighted Adversarial Robust Consensus Protocol with selective reduce (ARC-P2) is used in

the resilient synchronization controller in order to ensure resilience to adversaries. This chapter

focuses on the F -total malicious model, and it is shown that RAS is achieved in the same robust

network topologies as the consensus results for synchronous networks as shown in Chapters V and

VI. The results of the chapter may readily be extended to the other adversary models as was done

in previous chapters.

8.1 Background in Matrix Theory and LTI Systems

In this section we recall pertinent definitions, terminologies, and results from matrix theory [80]

and LTI system theory [6]. We use the following notations common in numerical analysis [177,

196, 140]. The set of eigenvalues of matrix A ∈ Rm×m is λ(A) = {λ ∈ C : det(A − λI) = 0}.

The largest real part of any eigenvalue of A is denoted α(A) = max{Re(λ) : λ ∈ λ(A)}. The

dimension of the eigenspace of A corresponding to a particular eigenvalue is referred to as the

geometric multiplicity of the eigenvalue. On the other hand, the multiplicity of an eigenvalue as a

root of the characteristic polynomial of A is called the algebraic multiplicity of the eigenvalue. If

the geometric multiplicity of any eigenvalue of A is strictly less than its algebraic multiplicity, then

A is said to be defective. Such an eigenvalue (with smaller geometric multiplicity than algebraic

multiplicity) is said to be defect [177].

244

The state-space form of an LTI system is given by

ẋ = Ax+Bu,

y = Cx+Du,

where x ∈ Rm is the state, u ∈ Rr is the control input, y ∈ Rs is the output, A ∈ Rm×m,

B ∈ Rm×r, C ∈ Rs×m, and D ∈ Rs×r. We assume from here on that D ≡ 0. For each initial

condition x(0) = x0 ∈ Rm and for any given input u : R → Rr the LTI system has a unique

solution for all t ∈ R; i.e., x : R→ Rm exists and is unique. The exponential of matrix A ∈ Rm×m

is defined by

eAt =
∞
∑

k=0

(At)k/k! for t ∈ R≥0.

For an LTI system, the matrix exponential of A commutes with A. That is,

AeAt = eAtA.

Further, eAt is the state transition matrix that characterizes the solution of the system [6]; i.e.,

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bui(τ)dτ, for t ∈ R≥0,

and, in particular, if the system is unforced (i.e., u ≡ 0)

x(t) = eAtx(0), for t ∈ R≥0.

Therefore, bounds on the matrix exponential can be useful for bounding the trajectory of the linear

system.

An important bound, derived by Dahlquist [44], is

||eAt||2 ≤ eµ(A)t, ∀t ∈ R≥0, (65)

245

where || · ||2 is the spectral norm and

µ(A) = max{µ : µ ∈ λ((AH +A)/2)}.

is the logarithmic norm of A [177]. Note that AH is the conjugate transpose, orHermitian transpose,

of A, so that (AH +A)/2 is a real-symmetric matrix and therefore has real eigenvalues [80]; hence

µ(A) ∈ R.

Next, we define what it means for a matrix to be stable, or weakly stable.

Definition 8.1 ([177]). The matrix A ∈ Rm×m is a stable matrix if α(A) < 0. The matrix A is said

to be weakly stable if it is stable or if α(A) = 0 but no eigenvalue λ with Re(λ) = α(A) is defect.

We refer to an eigenvalue λ ∈ λ(A) as stable if Re(λ) < 0, weakly stable if Re(λ) = 0 but λ is

non-defect, and unstable otherwise. We present a couple of examples to explicate these definitions.

Example 8.1. Consider the double integrator with state x = [x1, x2]T and input u ∈ R described

by the system






ẋ1

ẋ2






= Ax+Bu =







0 1

0 0













x1

x2






+







0

1






u.

The solution of the unforced system (i.e., u ≡ 0) is







x1(t)

x2(t)






=







x1(0) + x2(0)t

x2(0)






.

which grows unbounded for nontrivial initial condition x2(0) 1= 0. The matrix A has a single defect

eigenvalue 0 with algebraic multiplicity 2 and geometric multiplicity 1. Thus, A is not weakly stable

and 0 is an unstable eigenvalue.

Example 8.2. Consider the linear oscillator with frequency ω/(2π), where ω ∈ R>0, and state

x = [x1, x2]T. The system is given by







ẋ1

ẋ2






= Ax =







0 −ω

ω 0













x1

x2






,

246

and has solution






x1(t)

x2(t)






=







x1(0) cos(ωt)− x2(0) sin(ωt)

x1(0) sin(ωt) + x2(0) cos(ωt)






.

In this case, A has eigenvalues ±ωi (where i =
√
−1), so that α(A) = 0. Note that A is nondefec-

tive. Therefore, A is weakly stable and both eigenvalues are weakly stable.

To complete our review of the relationships between the stability of an LTI system, the matrix A,

and its matrix exponential, we recall that eAt is bounded only if A is weakly stable and approaches

zero asymptotically only if A is stable [177]. This fact may readily be deduced from (65) and the

following theorem.

Theorem 8.2 ([177]). A matrix A ∈ Rm×m is stable (weakly stable) if and only if µ(A) < 0

(µ(A) ≤ 0).

We now recall some facts about stabilizability and detectability of LTI systems. If the pair

(A,B) is stabilizable, then the unstable eigenvalues of A can be arbitrarily assigned (and therefore

made stable) in the matrix A + BK for some gain matrix K ∈ Rr×m [6]. If the pair (A,C) is

detectable, then the unobservable eigenvalues are stable. This means there exists an observability

matrix H ∈ Rm×s such that the estimated state x̂ of the Luenberger observer

˙̂x = Ax̂+Bu+H(ŷ − y),

with estimate output ŷ = Cx̂ converges asymptotically to the true state x [6]. Thus, the error

e(t) = x(t)− x̂(t) vanishes asymptotically.

In the remainder of this section, we review the Jordan canonical form [80] and demonstrate a

related block diagonal form that proves useful in the design of our resilient synchronization control

law. The Jordan decomposition theorem states that any square complex-valued matrix is similar to

a block diagonal matrix containing Jordan blocks. A Jordan block Jj(λ) is a j × j upper triangular

247

matrix of the form [80]

Jj(λ) =

























λ 1 . . . 0 0

0 λ . . . 0 0
...

...
...

0 0 . . . λ 1

0 0 . . . 0 λ

























. (66)

Thus, for any square matrix A ∈ Cm×m there exists an invertible m×m matrix P such that

J = P−1AP,

where J is a Jordan matrix given by

J =



















Jm1(λ1) 0 . . . 0

0 Jm2(λ2) . . . 0
...

...

0 0 . . . Jmk
(λk)



















, (67)

such that m1 +m2 + · · ·+mk = m. The orders of the mi may not be distinct and the eigenvalues

λi need not be distinct [80]. The number of Jordan blocks corresponding to eigenvalue λi is equal

to the geometric multiplicity λi. The sum of the sizes of the Jordan blocks with eigenvalue λi

is the algebraic multiplicity of λi. These facts imply that if A is weakly stable, then the Jordan

blocks corresponding to eigenvalues on the imaginary axis must be 1× 1 matrices containing only

the corresponding eigenvalue. This fact is useful in obtaining a block diagonal form related to the

Jordan form.

Lemma 8.3. For any square, real-valued, weakly stable matrix A ∈ Rm×m, there exists an invert-

iblem×m matrix Q such that

R = Q−1AQ,

248

where R is a block diagonal matrix given by

R =







































Jm1(λ1) 0 . . . 0 0 . . . 0

0 Jm2(λ2) . . . 0 0 . . . 0
...

...
...

0 0 . . . Jmp(λp) 0 . . . 0

0 0 . . . 0 R2(λp+1, λp+2) . . . 0
...

...
...

0 0 . . . 0 0 . . . R2(λp+2q−1, λp+2q)







































.

Each Jmi
(λi), for i = 1, . . . , p, is a Jordan block of the form (66) corresponding to eigenvalue λi

either with negative real part or with λi = 0. If λi = 0, then mi = 1 and Jmi
(λi) is a 1 × 1 zero

matrix. The first z Jordan blocks (with 0 ≤ z ≤ p) account for the zero eigenvalues. The remaining

p − z Jordan blocks correspond to eigenvalues with negative real part. Each R2(λp+2j−1, λp+2j),

for j = 1, 2, . . . , q, is a 2× 2 matrix of the form

R2(λp+2j−1, λp+2j) =







0 −ωj

ωj 0






, (68)

where λp+2j−1 = −ωj i and λp+2j = ωj i, with ωj 1= 0 and i =
√
−1.

Proof. Since A is weakly stable, all eigenvalues have nonpositive real parts and any eigenvalues

with zero real part are non-defect. This implies that any zero eigenvalue corresponds to a 1 × 1

Jordan block. Further, because A is real-valued, any complex eigenvalues occur in conjugate pairs.

By the Jordan decomposition theorem, there exists a Jordan matrix J = P−1AP of the form of (67)

such that

(a) Jmi
(λi), for i = z + 1, . . . , p, is a Jordan block of the form (66) corresponding to eigenvalue

λi with negative real part;

(b) If z ≥ 1 (i.e., A has at least one zero eigenvalue), then Jmi
(λi) = 0 is a 1 × 1 zero matrix for

i = 1, . . . , z;

(c) Jml
(λl), for l = p + 1, p + 2, . . . , k, is a 1 × 1 Jordan block containing a nonzero eigenvalue

249

on the imaginary axis. The λl’s are ordered so that λp+2j−1 = −ωj i and λp+2j = ωj i, for

j = 1, 2, . . . , q, where k = p+ 2q. Note that the ωj’s in different pairs need not be distinct.

For each 2× 2 matrix defined in (68) there exists a 2× 2 invertible matrix Qωj such that

JR2(λp+2j−1, λp+2j) = Q−1
ωj R2(λp+2j−1, λp+2j)Qωj

=







−ωji 0

0 ωji






=







Jmp+2j−1(λp+2j−1) 0

0 Jmp+2j (λp+2j)






.

Define

P ′ =







































Im1 0 . . . 0 0 . . . 0

0 Im2 . . . 0 0 . . . 0
...

...
...

0 0 . . . Imp 0 . . . 0

0 0 . . . 0 Q−1
ω1 . . . 0

...
...

...

0 0 . . . 0 0 . . . Q−1
ωq)







































,

where Imj
is the identity matrix in Rmj×mj . Then a straightforward calculation shows that Q =

PP ′ yields the result.

Using the modified Jordan form of Lemma 8.3, we can change the coordinate system of an LTI

system with weakly stable A ∈ Rm×m so that it consists of decoupled LTI subsystems.57 To see

this, suppose R = Q−1AQ is the modified Jordan form of A given in Lemma 8.3, and consider the

coordinate transformation

x = Qx̄.

Then, the dynamics in terms of x̄ are

˙̄x = Rx̄+B′u, (69a)

y = C ′x̄+Du, (69b)

57Of course, any LTI system may be decoupled using the Jordan form. The utility of the decomposition described here
is demonstrated in subsequent sections.

250

where B′ = Q−1B and C ′ = CQ. Let

x̄ =







































x̄m1

x̄m2

...

x̄mp

x̄mp+1

...

x̄mp+q







































and B′ =







































B′
m1

B′
m2

...

B′
mp

B′
mp+1

...

B′
mp+q







































,

where x̄mi
∈ Rmi and B′

mi
∈ Rmi×r for i = 1, 2, . . . , p, and x̄mp+j

∈ R2 and B′
mp+j

∈ R2×2

for j = 1, 2, . . . , q. Each of these components corresponds to a block in the matrix R. Using this

notation, we may rewrite the state equation (69a) above as p+ q decoupled state equations, where

˙̄xmi
= Jmi

(λi)x̄mi
+B′

mi
u, i = 1, 2, . . . , p, (70a)

˙̄xmp+j
= R2(λp+2j−1, λp+2j)x̄mp+j

+B′
mp+j

u, j = 1, 2, . . . , q. (70b)

Note that if A has at least one zero eigenvalue (i.e., z ≥ 1), then x̄mi
∈ R in (70a) has integrator

dynamics for i = 1, . . . , z. On the other hand, if A has at least one eigenvalue with negative real

part, then x̄mj
has exponentially stable dynamics for j = z+1, . . . , p. This can be shown using the

matrix exponential of a Jordan block Jmj
(λ), which has the form [6]

eJmj
(λ)t = eλt



















1 t . . . tmj−1

(mj−1)!

0 1 . . . tmj−2

(mj−2)!
...

...

0 0 . . . 1



















. (71)

In general, if λ is a stable eigenvalue, then any norm of the matrix exponential eJmj
(λ)t converges

exponentially to zero. It follows that each subsystem in (70a) with stable eigenvalue converges

exponentially to zero whenever u ≡ 0.

The matrix exponential of R2(λp+2j−1, λp+2j) where λp+2j−1 = −ωj i and λp+2j = ωj i, with

251

ωj 1= 0 and i =
√
−1, is given by

eR2(λp+2j−1,λp+2j)t =







cos(ωjt) − sin(ωjt)

sin(ωjt) cos(ωjt)






. (72)

This matrix exponential is a time-varying rotation matrix with angular frequency ωj . The unforced

solution (u ≡ 0) of the weakly stable subsystems in (70b) has the form

x̄mp+j
(t) =







cos(ωjt) − sin(ωjt)

sin(ωjt) cos(ωjt)






x̄mp+j

(0), j = 1, 2, . . . , q.

8.2 Multi-Agent Network Model and Problem Statement

Consider a time-varying network modeled by the (finite, simple) digraph, D(t) = (V, E(t)), where

V = {1, ..., n} is the node set and E(t) ⊂ V × V is the directed edge set at time t. Each directed

edge (j, i) ∈ E(t) models information flow and indicates that node i can be influenced by (or

receive information from) node j at time t. The node set is partitioned into a set of N normal nodes

N = {1, 2, . . . , N} and a set of M adversary nodesA = {N+1, N+2, . . . , n}, with M = n−N .

Let Γn = {D1, . . . ,Dd} denote the set of all digraphs on n nodes, which is of course a finite set.

Note that D(t) ∈ Γn for all t ∈ R≥0.

The time-varying topology of the network is governed by a piecewise constant switching signal

σ(·), which is defined on R≥0 and takes values in {1, . . . , d}. In order to emphasize the role of the

switching signal, we denote Dσ(t) = D(t). Note that time-invariant networks are represented by

defining Dσ(t) ≡ Ds, or by simply dropping the dependence on time t.

8.2.1 Normal Agent Dynamics

The agents are assumed to be identical. Each normal agent i ∈ N has state xi ∈ Rm, control input

ui ∈ Rr, and output yi ∈ Rs. The dynamics of each normal agent i ∈ N is given by the linear

252

time-invariant (LTI) system

ẋi = Axi +Bui, (73a)

yi = Cxi. (73b)

We assume (i) A is weakly stable, (ii) (A,B) is stabilizable, and (iii) (A,C) is detectable.

The state xi(t) ∈ Rm of normal agent i ∈ N at time t has components xi,1, xi,2, . . . , xi,m.

Similarly, its output yi(t) ∈ Rs has components yi,1, yi,2, . . . , yi,s. This notation defines unambigu-

ously the state and output of node i at time t for any node that is not deceptive (e.g., a normal node

or malicious adversary). However, in order to handle deceptive adversaries, we let x(j,i),k(t) and

y(j,i),k(t) denote, respectively, the k-th component of the state and output of agent j intended for

agent i at time t. Whenever (j, i) ∈ E(t), y(j,i),k(t) is the k-th component of the output of agent j

conveyed to agent i at time t. Note that even if (j, i) /∈ E(t), y(j,i),k(t) and x(j,i),k(t) are still defined

for all k. In the case that j ∈ N is normal, we define y(j,i),k(t) ≡ yj,k(t) and x(j,i),k(t) ≡ xj,k(t).

On the other hand, if j ∈ A is an adversary, then x(j,i),k(t) and y(j,i),k(t) is the k-th component of

the state and output trajectory, respectively, that adversary j would like to convey to agent i, but the

topological constraints on the network prevent it from doing so. Observe that either agent i receives

y(j,i),k(t) for all components k ∈ {1, 2, . . . , s} (if j ∈ N in
i (t)), or for none of the components (if

j /∈ N in
i (t)). With this terminology, we denote the vector containing the k-th component of the

states of all nodes in N , A, or V intended for agent i by

x(N ,i),k(t) = [x(1,i),k(t), . . . , x(N,i),k(t)]
T = [x1,k(t), . . . , xN,k(t)]

T ∈ R
N ,

x(A,i),k(t) = [x(N+1,i),k(t), . . . , x(n,i),k(t)]
T ∈ R

M ,

or

x(V ,i),k(t) = [x(1,i),k(t), . . . , x(n,i),k(t)]
T ∈ R

n,

respectively. The overall state vector of N , A, or V intended for agent i is denoted

xN (t) = x(N ,i)(t) = [xT(N ,i),1(t), . . . , x
T

(N ,i),m(t)]T ∈ R
Nm,

253

x(A,i)(t) = [xT(A,i),1(t), . . . , x
T

(A,i),m(t)]T ∈ R
Mm,

or

x(V ,i)(t) = [xT(V ,i),1(t), . . . , x
T

(V ,i),m(t)]T ∈ R
nm,

respectively. Since x(N ,i)(t) ≡ x(N ,j)(t) for all i, j ∈ N , we unambiguously define xN (t) =

x(N ,i)(t) for any i ∈ V . Finally, we denote the vector containing all adversary states intended for

normal nodes by x(A,N)(t) = [xT(A,1)(t), . . . , x
T

(A,N)(t)]
T ∈ RMNm. In a similar manner, we define

the k-th component of the collective outputs of N , A, or V intended for agent i, and so on.

8.2.2 Resilient Asymptotic Synchronization (RAS)

For Resilient Asymptotic Synchronization (RAS), we consider the intervals It,k defined by the k-th

component of the states of the normal nodes at time t as follows. Let It,k = [mN ,k(t),MN ,k(t)],

where mN ,k(t) = mini∈N {xi,k(t)} and MN ,k(t) = maxi∈N {xi,k(t)} are the minimum and maxi-

mum values, respectively, of the k-th component of the states of the normal nodes at time t. Then,

for each t we define the m-dimensional orthotope (or hyperrectangle) Ht,N constructed from the

intervals It,k by

Ht,N = It,1 × It,2 × · · · × It,m.

In RAS there is no restriction on the initial states of the normal nodes; i.e., it is allowed that xi(0) ∈

Rm for all i ∈ N . However, it is implicitly assumed that the normal states are safe in the sense

that they lie in some safe set S0,N ⊂ Rm. It is further assumed that the safe set S0,N contains the

orthotope defined by the initial states of the normal nodes, H0,N ; i.e., H0,N ⊆ S0,N . With these

concepts, the RAS problem is defined as follows.

Definition 8.4 (Resilient Asymptotic Synchronization). Suppose the normal agents are identical

LTI systems described by (73) and have initial states xi(0) ∈ Rm for i ∈ N . Let S0,N ⊂ Rm

be a safe set that contains the orthotope H0,N ; i.e., H0,N ⊆ S0,N . Then the normal agents are

said to achieve resilient asymptotic synchronization (RAS) in the presence of adversary nodes

(given a particular adversary model) if there exists an (open-loop) trajectory x0(t) that satisfies

ẋ0(t) = Ax0(t) for all t ∈ R≥0 with x0(0) ∈ S0,N , such that the normal states asymptotically

254

converge to x0. That is,

lim
t→∞

||xi(t)− x0(t)||2 = 0, ∀i ∈ N . (74)

A few remarks are in order with respect to the RAS problem. First, because the normal agents

converge to an “open-loop” trajectory of the system, it is important that the “open-loop” system has

no unstable modes. However, it is possible that the matrix A in the LTI system of (73) is a result

local stabilization through an appropriate feedback controller, so that the “open-loop” system is in

fact a closed-loop feedback control system. Regardless of whether (73) defines the dynamics of a

plant or a feedback control system, the control input ui is viewed as the feedback control input from

the multi-agent network.

The RAS problem is related to the resilient asymptotic consensus (RAC) problem. Instead of

converging to a common limit as in RAC, the states of the normal agents must converge to the

open-loop trajectory x0(t) (and therefore common dynamics). Also, observe that the the open-loop

trajectory x0(t) to which the normal agents must converge satisfies the safety condition x0(0) ∈

S0,N . The safety condition requires that the adversaries are not able to drive the normal agents to

follow an open-loop trajectory with extreme initial values.

8.3 Resilient Asymptotic Synchronization Analysis

In this section, we analyze resilient control laws that achieve RAS in the presence of up to F

malicious nodes (F -total model). The control input uses weighted ARC-P with selective reduce

(ARC-P2) as one component of the control law. Therefore, we first revisit resilient asymptotic con-

sensus with multi-dimensional signals. After this, we study RAS in the case of full-state feedback.

Finally, we examine RAS with only output feedback.

8.3.1 Resilient Asymptotic Consensus with Vector States

It is shown in Chapter 5 that network robustness is the key property for characterizing ARC-P2 in

time-invariant networks with scalar states under the F -total malicious model. It turns out the results

of Chapter 5 are easily extended to the case of multi-dimensional states. The intuition is as follows.

Each component of the state vector may be handled independently of the others by applying the

resilient scalar consensus algorithm on each component of the vector state. To be more precise, we

255

present a generalization of RAC for vector states. For this definition, as in Chapter 5, we assume that

the nodes have access to the states in their inclusive neighborhood and that the nodes are integrators;

i.e., ẋi = ui. Further, let MN ,k(t) and mN ,k(t) be the maximum and minimum values of the k-th

component (k ∈ {1, . . . ,m}) of the states of the normal nodes at time t, respectively.

Definition 8.5 (Vector-Valued Continuous-Time Resilient Asymptotic Consensus (VVCTRAC)).

The normal agents are said to achieve vector-valued continuous-time resilient asymptotic consen-

sus (VVCTRAC) in the presence of adversary nodes (given a particular adversary model) if for each

k ∈ {1, . . . ,m}

(i) ∃Lk ∈ R such that limt→∞ xik(t) = Lk for all i ∈ N , and

(ii) xik(t) ∈ I0,k = [mN ,k(0),MN ,k(0)] for all t ∈ R≥0, i ∈ N (i.e., I0,k is a positively invariant

set for each component k ∈ {1, 2, . . . ,m} of the normal nodes’ states),

for any choice of initial states xi(0) ∈ Rm, for i ∈ N , and any choice of adversary trajectories,

x(A,N)(t) for t ∈ R≥0.

To achieve VVCTRAC, we apply ARC-P2 on each component of the state vectors. To define

the weights in the protocol, we assume there is a nonnegative, bounded, and piecewise continuous

weight vector w(j,i)(t) associated to each pair (j, i) ∈ V × N . The k-th component of the weight

vector w(j,i)(t) is denoted w(j,i),k(t) and is uniformly bounded above by β ∈ R>0. We define

(without loss of generality) w(j,i)(t) ≡ 0 for j /∈ N in
i (t). Whenever j ∈ N in

i (t), there is the

uniform lower bound α ∈ R>0, so the weights are bounded as 0 < α ≤ w(j,i),k(t) ≤ β.

Recall the notation for the ascending sorting function, ρk(z) for z ∈ Rk, the weighted zero-

selective reduce function with respect to F ∈ Z≥0 and k ∈ Z>0, rk0,F (z, w) for z ∈ Rk, w ∈ Rk,

and composition of the two, φk
0,F (z, w) = rk0,F (ρk(z), w), given in Definition 5.1 on page 154.

Extend this definition to the composite vectors z, w ∈ Rkm with z = [zT1 , . . . , z
T
m]T and w =

[wT
1 , . . . , w

T
m]T such that zi, wi ∈ Rk for i = 1, . . . ,m, by defining Φk,m

0,F : Rkm → Rm such that

Φk,m
0,F : Rkm(z, w) =













φk
0,F (z1, w1)

...

φk
0,F (zm, wm)













. (75)

256

Also, recall the definition of the Kronecker product [80]. Given B ∈ Rm×n and C ∈ Rp×q, the

Kronecker product B ⊗ C ∈ Rmp×nq is defined as

B ⊗C !













b11C . . . b1nC
...

bm1C . . . bmnC













.

Then, the update rule of the vector valued version of weighted ARC-P with selective reduce and

parameter F is given by

ẋi = fi,σ(t)(t, xN , x(A,i)) = Φdi(t),m
0,F

(

[Im ⊗Ni(t)]x(V ,i)(t)− [xi(t)⊗ 1di(t)], wi(t)
)

=













φdi(t)
0,F

(

Ni(t)x(V ,i),1(t)− xi,1(t)1di(t), wi,1(t)
)

...

φdi(t)
0,F

(

Ni(t)x(V ,i),m(t)− xi,m(t)1di(t), wi,m(t)
)













, (76)

for each normal node i ∈ N for t ∈ R≥0. The time-varying weight vector

wi(t) = [wT
i,1(t), . . . , w

T
i,m(t)]T

with

wi,k(t) = [w(i1,k(t),i),k(t), w(i2,k(t),i),k(t), . . . , w(idi(t),k(t),i),k
(t)]T,

satisfies the bound 0 < α ≤ w(ij,k(t),i),k(t) ≤ β for all j = 1, 2, . . . , di(t) and k = 1, 2, . . . ,m,

where i1,k(t), i2,k(t), . . . , idi(t),k(t) are the node indices of the neighbors of node i in the order

determined by the sorting function of component k at time t. For example, if the k-th component of

neighbor j ∈ N in
i (t) has the second smallest value in the neighborhood of i at time t (as determined

by the sorting function), then the weight w(i2,k(t),i),k(t) is equal to w(j,i),k(t). Finally, recall that

Ni(t) ∈ Rdi(t)×n is a sparse matrix with each row corresponding to a distinct j ∈ N in
i (t) such that

each row has a single 1 in the j-th column. Thus, there is a one-to-one correspondence between

j ∈ N in
i (t) and rows in Ni(t).

With these definitions and notation, it is straightforward to recreate all of the results of Chapter 5

for the vector case by applying the scalar results as m independent consensus problems. Thus, we

257

may state the following results.

Corollary 8.6 (VVTRAC Safety with F -Total or F -Local Byzantine Model). Suppose each normal

node updates its value according to the vector-value ARC-P2 with parameter F under the F ′-total

or F ′-local Byzantine model, where F ′ ≤ F . Then, for each normal node i ∈ N , xi(t) ∈ H0,N for

all t ∈ R≥0, regardless of the network topology.

Corollary 8.7 (VVTRAC Agreement with F -Total Malicious Model). Consider a time-invariant

network modeled by a directed graph D = (V, E) where each normal node updates its value ac-

cording to ARC-P2 with parameter F . Then, VVCTRAC is achieved under the F -total uniformly

continuous malicious model if and only if the network topology is (F + 1, F + 1)-robust.

8.3.2 RAS with Full State Feedback

In this section, we study RAS whenever full-state feedback is available; i.e., C = Im so that yi = xi

for all i ∈ N . The resilient control law uses the modified Jordan form of Lemma 8.3. Specifically,

for A in (73a), there exists invertible Q such that

R = Q−1AQ

has the form of Lemma 8.3. The main idea of the resilient control law is to decouple the dynamics

and allow the stable components to converge to zero unforced. The weakly stable components

are the only ones that explicitly require synchronization. If λi = 0, for i = 1, . . . , z, then these

weakly stable components have integrator dynamics, and correspond to the first z blocks in R. The

remaining weakly stable components correspond to blocks R2(λp+2j−1, λp+2j) in R, as defined in

(68). For these components, we consider its matrix exponential (given in (72)), and the inverse of

258

its matrix exponential. We define the following modified exponential matrices:

ER(t) =







































E1 0 . . . 0 0 . . . 0

0 E2 . . . 0 0 . . . 0
...

...
...

0 0 . . . Ep 0 . . . 0

0 0 . . . 0 eR2(λp+1,λp+2)t . . . 0
...

...
...

0 0 . . . 0 0 . . . eR2(λp+2q−1,λp+2q)t







































(77)

and

FR(t) =







































E1 0 . . . 0 0 . . . 0

0 E2 . . . 0 0 . . . 0
...

...
...

0 0 . . . Ep 0 . . . 0

0 0 . . . 0 e−R2(λp+1,λp+2)t . . . 0
...

...
...

0 0 . . . 0 0 . . . e−R2(λp+2q−1,λp+2q)t







































, (78)

where Ei = 1 if λi = 0, and Ei = 0 otherwise (in the latter case, mi > 1 is possible so Ei is an

mi ×mi zero matrix). In either case,

ER(t)FR(t) = FR(t)ER(t) =

























E1 0 . . . 0 0

0 E2 . . . 0 0
...

...
...

0 0 . . . Ep 0

0 0 . . . 0 I2q

























.

Moreover, both ER(t) and FR(t) commute with R. That is,

RER(t) = ER(t)R

259

Figure 48: Resilient synchronization control law of Lemma 8.8 for agent i.

and

RFR(t) = FR(t)R.

The modified exponential matrices ER(t) and FR(t) are the keys to reducing resilient synchro-

nization to resilient consensus. The following lemma demonstrates how the modified exponential

matrices may be combined with vector-valued ARC-P2 to achieve RAS whenever the matrices B

and C are invertible. The resilient synchronization controller introduced in the lemma is shown for

normal agent i in Figure 48.

Lemma 8.8. Suppose each agent i ∈ N is an LTI system as in (73) and there are at most F

uniformly continuous malicious agents (F -total model). LetB,C ∈ Rm×m be nonsingular matrices

and suppose that A is weakly stable. Assume that the multi-agent network is time-invariant and

modeled by digraph D that is (F + 1, F + 1)-robust. Further, suppose each normal agent i ∈ N

uses the following control law for all t ∈ R≥0:

ui(t) = B′−1ER(t)Φ
di,m
0,F

(

Ñi[In ⊗ (FR(t)C
′−1)]y(V ,i)(t)− [(FR(t)C

′−1yi(t)) ⊗ 1di], wi(t)
)

,

(79)

where Ñi = Im ⊗ Ni, R = Q−1AQ is given as in Lemma 8.3, B′ = Q−1B, C ′ = CQ, ER(t) is

defined by (77), FR(t) is given in (78), and Φdi,m
0,F (·, ·) is the vector-valued ARC-P2 function defined

in (75) with k = di and parameter F . Then RAS is achieved.

260

Proof. The closed-loop system for normal node i is given by

ẋi(t) = Axi(t)+QER(t)Φ
di,m
0,F

(

Ñi[In ⊗ FR(t)Q
−1]x(V ,i)(t)− [(FR(t)Q

−1xi(t))⊗ 1di], wi(t)
)

(80)

Make the change in coordinates for all i ∈ V

xi = Qx̄i.

The closed-loop system may be rewritten as

˙̄xi(t) = Rx̄i(t) + ER(t)Φ
di,m
0,F

(

Ñi[In ⊗ FR(t)]x̄(V ,i)(t)− [(FR(t)x̄i(t))⊗ 1di], wi(t)
)

. (81)

To facilitate analysis of the decoupled system in the x̄i coordinates, let

x̄i =







































x̄m1
i

x̄m2
i

...

x̄
mp

i

x̄
mp+1

i

...

x̄
mp+q

i







































, i ∈ N

with elements x̄
mj

i = [x̄
mj

i,1 , x̄
mj

i,2 , . . . , x̄
mj

i,mj
]T ∈ Rmj . Notice in (81) that the stable components

of x̄i (i.e., x̄mj

i for j = z + 1, . . . , p) are allowed to evolve freely, and only the weakly stable

components are affected by the control law. In the following analysis, we show that each of the

components x̄
mj

i asymptotically synchronize to a corresponding component of an open-loop solu-

tion of ˙̄x0 = Rx̄0 such that the initial condition of each element x̄0,k satisfies

x̄0,k(0) ∈
[

min
i∈N

{x̄i,k(0)},max
i∈N

{x̄i,k(0)}
]

.

261

To facilitate this analysis, denote

x̄0 =







































x̄m1
0

x̄m2
0

...

x̄
mp

0

x̄
mp+1

0

...

x̄
mp+q

0







































.

For each stable component x̄mj

i ∈ Rmj , for j = z+1, . . . , p, the Jordan block Jmj
(λj) contains

a stable eigenvalue. The matrix exponential is given by (71), which implies that these components

exponentially converge to zero. Thus, for any open-loop trajectory of

˙̄x
mj

0 = Jmj
(λj)x̄

mj

0 ,

there exists κj : R≥0 → R≥0 with κj(t)→ 0 as t→∞, such that for all t ≥ 0

||x̄mj

i (t)− eJmj
(λj)tx̄

mj

0 (0)||2 ≤ κj(t)||x̄
mj

i (0) − x̄
mj

0 (0)||2, ∀i ∈ N .

In particular, there exists an open-loop solution that satisfies the above inequality with initial values

x̄
mj

0,k(0), for k = 1, 2, . . . ,mj , such that

x̄
mj

0,k(0) ∈
[

min
i∈N

{x̄mj

i,k (0)},max
i∈N

{x̄mj

i,k (0)}
]

.

If A has z ≥ 1 (non-defect) zero eigenvalues, then each component x̄mk
i (t) ∈ R, k = 1, . . . , z,

evolves as an integrator using ARC-P2. It follows from Corollary 8.6 and 8.7 that there exists

x̄mk
0 (0) ∈ [mini∈N {x̄mk

i (0)},maxi∈N {x̄mk
i (0)}] and κk : R≥0 → R≥0 with κk(t)→ 0 as t→∞,

such that for all t ≥ 0

||x̄mk
i (t)− x̄mk

0 (0)||2 ≤ κk(t)||x̄mk
i (0)− x̄mk

0 (0)||2, ∀i ∈ N .

Next, consider the remaining weakly stable components x̄
mp+j

i ∈ R2, for j = 1, 2, . . . , q, and

262

denote R2(λp+2j−1, λp+2j) = R2,j for brevity. The closed-loop system for this component is given

by

˙̄x
mp+j

i = R2,jx̄
mp+j

i

+ eR2,jtΦdi,2
0,F

(

[I2 ⊗Ni][In ⊗ e−R2,j t]x̄
mp+j

(V ,i) (t)− [(e−R2,j tx̄
mp+j

i (t))⊗ 1di], wi(t)
)

.

Consider the change of variable

zji (t) = e−R2,jtx̄
mp+j

i (t), i ∈ V.

Then, for all i ∈ N

żji = −R2,je
−R2,jtx̄

mp+j

i

+ e−R2,jt
(

R2,j x̄
mp+j

i + eR2,j tΦdi,2
0,F

(

[I2 ⊗Ni]z
j
(V ,i)(t)− [zji (t)⊗ 1di], wi(t)

))

= Φdi,2
0,F

(

[I2 ⊗Ni]z
j
(V ,i)(t)− [zji (t)⊗ 1di], wi(t)

)

where we have used the fact that R2,je−R2,jt = e−R2,jtR2,j [6] in going from the first to second

equality. It follows from Corollary 8.7 that the zji ’s asymptotically converge to a common value

x̄
mp+j

0 (0) ∈ R2. Since zji (0) = x̄
mp+j

i (0) for all i ∈ N , Corollary 8.6 implies that the common

limit of the consensus process x̄mp+j

0 (0) satisfies for each element k ∈ {1, 2},

x̄
mp+j

0,k (0) ∈
[

min
i∈N

{x̄mp+j

i,k (0)},max
i∈N

{x̄mp+j

i,k (0)}
]

.

Because the zji ’s asymptotically converge to x̄
mp+j

0 (0), there exists a positive-definite function

κp+j : R≥0 → R≥0 that satisfies κp+j(t)→ 0 as t→∞, such that for all t ≥ 0

||zji (t)− x̄
mp+j

0 (0)||2 ≤ κp+j(t)||zji (0)− x̄
mp+j

0 (0)||2, ∀i ∈ N .

By multiplying each side of the inequality by ||eR2,j t||2 and using the submultiplicative property of

263

matrix norms [80], it follows that

||x̄mp+j

i (t)− eR2,jtx̄
mp+j

0 (0)||2 ≤ κp+j(t)||eR2,j t||2||x̄
mp+j

i (0)− x̄
mp+j

0 (0)||2, ∀i ∈ N ,

where we have also used the fact that zji (0) = x̄
mp+j

i (0). It follows from Theorem 8.2 and (65) that

there exists δp+j ≥ 0 such that

||x̄mp+j

i (t)− eR2,j tx̄
mp+j

0 (0)||2 ≤ κp+j(t)e
−δp+jt||x̄mp+j

i (0)− x̄
mp+j

0 (0)||2, ∀i ∈ N

Since κp+j(t) → 0 as t → ∞, resilient asymptotic synchronization is achieved for each weakly

stable component x̄mp+j

i ∈ R2 for j = 1, 2, . . . , q in the x̄i coordinates.

Combining the above inequalities, it follows that there exists κ : R≥0 → R≥0 with κ(t)→ 0 as

t→∞, such that for all t ≥ 0

||x̄i(t)− eRtx̄0(0)||2 ≤ κ(t)||x̄i(0)− x̄0(0)||2, ∀i ∈ N ,

where the elements x̄0,k for k = 1, 2, . . . ,m have initial values that satisfy

x̄0,k(0) ∈
[

min
i∈N

{x̄i,k(0)},max
i∈N

{x̄i,k(0)}
]

,

so that

x0,k(0) ∈ [mN ,k(t),MN ,k(t)] ,

where x0 = Qx̄0. Finally, multiplying each side of the above inequality by ||Q||2, using again the

submultiplicative property of matrix norms, and substituting x̄0(t) = eRtx̄0(0), it follows that

||xi(t)− eAtx0(0)||2 ≤ κ(t)||Q||2||Q−1||2||xi(0)− x0(0)||2, ∀i ∈ N .

Since κ(t)→ 0 as t→∞, RAS is achieved.

Theorem 8.9. Suppose each agent i ∈ N is an LTI system as in (73) with full-state feedback (i.e.,

C = Im) and there are at most F malicious nodes (F -total model) with uniformly continuous state

264

xk and controller state ηk for k ∈ A. Assume thatA is weakly stable, the pair (A,B) is stabilizable,

and let K ∈ Rm×r be a stabilizing matrix such that A + BK is Hurwitz. Assume that the multi-

agent network is modeled by digraph D that is (F +1, F +1)-robust. Further, suppose each normal

agent i ∈ N executes the dynamic control law with controller state ηi that is initially relaxed (i.e.,

ηi(0) = 0 for all i ∈ N), and is given by

η̇i = (A+BK)ηi −QERΦdi,m
0,F

(

Ñi[In ⊗ FRQ
−1]s(V ,i) − [(FRQ

−1si)⊗ 1dini], wi

)

ui = Kηi,

(82)

where Ñi = Im ⊗Ni, sj = xj − ηj for j ∈ V , s(V ,i) = [sT1 , s
T
2 , . . . , s

T
n]

T, ER(t) is defined by (77),

FR(t) is given in (78), and Φdi,m
0,F (·, ·) is the filter applied in vector-valued ARC-P2 and defined in

(75) with k = di. Then RAS is achieved.

Proof. The dynamics of xi and si for each normal agent i ∈ N may be rewritten as

ẋi(t) = (A+BK)xi(t)−BKsi(t) (83a)

ṡi(t) = Asi(t) +QER(t)Φ
di,m
0,F

(

Ñi[In ⊗ FR(t)Q
−1]s(V ,i)(t)− [(FR(t)Q

−1si(t))⊗ 1din
i
], wi(t)

)

(83b)

Observe that (83b) is decoupled from (83a) and matches (80) in the proof of Lemma 8.8. Note that

since ηi(0) = 0, it follows that si(0) = xi(0) for all i ∈ N . Therefore, Lemma 8.8 implies that

the solutions of (83b) converge to a solution of ṡ0 = As0 such that s0(0) ∈ S0,N . Because the si’s

synchronize, it follows that the consensus term in (82) converges to zero. Combining this with the

fact that A + BK is Hurwitz, implies that ηi → 0 as t → ∞. Thus, for any ε > 0 there exists

T ∈ R>0 such that for all t > T ,

||si(t)− eAts0(0)||2 < ε/2 and ||ηi(t)|| < ε/2 for all i ∈ N .

Therefore, for t > T

||xi(t)−eAts0(0)||2 = ||si(t)+ηi(t)−eAts0(0)||2 ≤ ||si(t)−eAts0(0)||2+ ||ηi(t)||2 < ε ∀i ∈ N ,

265

so that RAS is achieved.

8.3.3 RAS with Output Feedback

Theorem 8.10. Suppose each agent i ∈ N is an LTI system as in (73) with output feedback and

there are at most F malicious nodes (F -total model) with uniformly continuous observer state x̂k

and controller state ηk for k ∈ A. Assume that A is weakly stable, the pair (A,B) is stabilizable,

the pair (A,C) is detectable, and let K ∈ Rm×r and H ∈ Rm×s be a stabilizing and observer

matrix, respectively, such that A + BK and A + HC are Hurwitz. Assume that the multi-agent

network is modeled by digraph D that is (F +1, F +1)-robust. Further, suppose each normal agent

i ∈ N executes the dynamic control law given below with controller state ηi that is initially relaxed

(i.e., ηi(0) = 0 for all i ∈ N) and Luenberger observer with observer states x̂i for i ∈ N that are

contained in some orthotope within the safe set S0,N . Let

η̇i = (A+BK)ηi +H(ŷi − yi) (84)

−QER(t)Φ
di,m
0,F

(

Ñi[In ⊗ FR(t)Q
−1]ŝ(V ,i)(t)− [(FR(t)Q

−1ŝi(t))⊗ 1di], wi(t)
)

˙̂xi = Ax̂i +Bui +H(ŷi − yi) (85a)

ui = Kηi (85b)

ŷi = Cx̂i, (85c)

where Ñi = Im ⊗Ni, ŝj = x̂j − ηj for j ∈ V , ŝ(V ,i) = [ŝT1 , ŝ
T
2 , . . . , ŝ

T
n]

T, ER(t) is defined by (77),

FR(t) is given in (78), and Φdi,m
0,F (·, ·) is the filter applied in vector-valued ARC-P2 and defined in

(75) with k = di. Then RAS is achieved.

Proof. Define ei = xi − x̂i. Then, the dynamics of xi, ŝi, and ei for each normal agent i ∈ N may

266

be rewritten as

ẋi(t) = (A+BK)xi(t)−BK(ei(t)ŝi(t)) (86a)

˙̂si(t) = Aŝi(t) +QER(t)Φ
di,m
0,F

(

Ñi[In ⊗ FR(t)Q
−1]ŝ(V ,i)(t)− [(FR(t)Q

−1ŝi(t))⊗ 1di], wi(t)
)

(86b)

ėi(t) = (A+HC)ei(t) (86c)

Observe that (86b) and (86c) are decoupled from each other and from (86a). Note that (86b) matches

(80) in the proof of Lemma 8.8. Since ηi(0) = 0, it follows that ŝi(0) = x̂i(0) for all i ∈ N .

Therefore, Lemma 8.8 implies that the solutions of (83b) converge to a solution of ˙̂s0 = Aŝ0 such

that ŝ0(0) ∈ S0,N (since the x̂i(0)’s are in some orthotope within S0,N). The ei’s converge to zero

because A+HC is Hurwitz. Therefore, the observer error term in (84) converges to zero. Because

the ŝi’s synchronize, it follows also that the consensus term in (84) converges to zero. Combining

these with the fact that A + BK is Hurwitz, implies that ηi → 0 as t → ∞. Thus, for any ε > 0

there exists T ∈ R>0 such that for all t > T ,

||ŝi(t)− eAtŝ0(0)||2 < ε/3, ||ei(t)||2 < ε/3, and ||ηi(t)|| < ε/3 for all i ∈ N .

Therefore, for t > T

||xi(t)− eAtŝ0(0)||2 = ||x̂i(t) + ei(t)− eAtŝ0(0)||2

= ||ŝi(t) + ηi(t) + ei(t)− eAtŝ0(0)||2

≤ ||ŝi(t)− eAtŝ0(0)||2 + ||ei(t)||2 + ||ηi(t)||2

< ε ∀i ∈ N ,

so that RAS is achieved.

8.4 Summary

In this chapter, we demonstrate how resilient consensus may be used in more complex group ob-

jectives. In particular, we focus on resilient synchronization and show that weighted ARC-P with

267

selective reduce may be used as part of a dynamics control law to ensure asymptotic synchronization

of the states of the normal agents. To do this, we first formulate the resilient asymptotic consensus

problem on vector states and show how to extend weighted ARC-P with selective reduce to the

vector case. The adversary model considered in this chapter is the malicious agent under the F -total

model with the additional restriction that the variables shared with the normal nodes are uniformly

continuous. This technical assumption enables the reuse of the consensus results of previous chap-

ters to ensure resilient asymptotic consensus in networks that are (F +1, F +1)-robust. The results

of this chapter may be easily extended to time-varying networks and other threat models as was

done in previous chapters on consensus.

268

CHAPTER IX

ALGORITHMS FOR DETERMINING NETWORK ROBUSTNESS

Network connectivity has long been the key metric in the analysis of fault-tolerant and secure

distributed algorithms [50]. This is because (strong) connectivity formalizes the notion of redun-

dant information flow across a network through independent paths. Thus, for algorithms that seek

to relay or encode information across multiple hops in the network, connectivity precisely captures

the necessary property for analysis [50, 92]. More generally, for tasks that require nonlocal infor-

mation, such as detection of adversary nodes, connectivity is the central property for characterizing

the necessary topologies [181, 159]. However, whenever purely local strategies are employed,

connectivity is no longer the key metric.

For algorithms that use purely local information, the agents make decisions and act based on

their sensor measurements, calculations, dynamics, and direct interactions with neighbors in the

network. No global information is shared or assumed to be known. Instead, information is dissemi-

nated within components of the network in an iterative or diffusive manner, rather than being relayed

or routed across the network. Therefore, purely local algorithms are well suited to large-scale dy-

namic networks. Indeed, purely local strategies appear to be the strategies favored in biology and

nature [169]. Flocking of birds and fish is postulated to arise from local interaction rules [169].

From an engineering perspective, one example of a class of algorithms that are explicitly designed

to use purely local strategies is the iterative function calculation and consensus algorithms [178].

Edge reachability and network robustness are important properties for analyzing algorithms that

use purely local strategies. It has been shown that any nontrivially robust network has a directed

spanning tree [210]. In fact, 1-robustness is equivalent to existence of a directed spanning tree [210].

Moreover, for iterative consensus algorithms in a fixed network, existence of a directed spanning tree

is a necessary and sufficient condition for achieving agreement among the nodes [168]. However,

the full utility of edge reachability and network robustness is realized only when considering fault-

tolerant and resilient dissemination of information in a network through purely local strategies. This

is because edge reachability – which is defined for a nonempty set – captures the requirement that

enough nodes inside the set are sufficiently influenced from outside the set. There are two forms of

269

redundancy present in the definition of edge reachability: redundancy of ingoing edges from outside

and redundancy of such nodes with redundant ingoing edges from outside. Robustness is a network-

wide property that stipulates a lower bound on the edge reachability properties of a sufficiently large

number of subsets of nodes.

Throughout this work, we have demonstrated the utility of edge reachability and network ro-

bustness as metrics for analysis of resilient distributed algorithms that use only local information.

In this chapter we propose algorithms that determine the robustness of a given network, and we

extend ways to explicitly construct robust networks. In particular, two centralized algorithms are

introduced. The first algorithm checks for a given amount of robustness and the second one deter-

mines the robustness of any network, regardless of its connectedness properties. These algorithms

assume the topology of the network is given as input to the algorithm (encoded by the adjacency

matrix). A decentralized algorithm is proposed that enables the individual nodes of an undirected,

connected network to compute the robustness of the network in a decentralized manner by broad-

casting information about their neighborhood in order to locally reconstruct the network topology.

The centralized algorithm is then used at each node to determine the overall robustness. A modifica-

tion to this decentralized algorithm is proposed in which each individual node only checks the edge

reachability conditions for subsets in which it is not included, thus resulting in a truly distributed al-

gorithm. For these algorithms, we analyze their complexity and examine the improvement gained by

the distributed algorithm. Finally, we extend a method of Zhang and Sundaram for constructing r-

robust networks [210] to the case of (r, s)-robustness. This result demonstrates that many complex

networks are robust because the robust network growth model entails the preferential attachment

growth model of scale-free networks [2].

9.1 Centralized Algorithms for Checking and Determining Robustness

In this section, we present centralized algorithms for checking and determining robustness. The

direct manner to check a digraph to determine whether it is (r, s)-robust is a combinatorial problem.

Because the sets in each pair considered are required to be nonempty and disjoint, the total number

270

of pairs R(n) that must be checked is

R(n) =
n

∑

k=2

(

n

k

)

(

2k−1 − 1
)

, (87)

where

• n = |V| is the number of nodes;

• each k = 2, 3, . . . , n in the sum is the size of the k-subsets of V = {1, 2, . . . , n}. Each

k-subset of V is partitioned into exactly two nonempty parts, S1 and S2;

•
(n
k

)

is the number of k-subsets of {1, 2, . . . , n};

• 2k−1 − 1 = S(k, 2) is a Stirling number of the second kind, and is the number of ways to

partition a k-set into exactly two nonempty unlabeled subsets (swapping the labels S1 and S2

results in the same pair)58.

The form of (87) implies an algorithm for checking (r, s)-robustness of a digraph, CheckRobustness,

which is shown in Algorithm 9.1. CheckRobustness takes as input values of r and s59 and the

adjacency matrix of the digraph, A(D). It returns a Boolean variable indicating whether the digraph

is (r, s)-robust along with a pair of sets with which the conditions fail. If the digraph is (r, s)-robust,

the sets returned are empty sets. The algorithm iterates through all possible pairs of nonempty

disjoint subsets, S1,S2 ⊂ V , and checks conditions (i)-(iii) of Definition 5.10 (on page 163) using

the adjacency matrix. To improve the performance on digraphs that fail the test, the algorithm

returns the first pair that fails.

The second algorithm, called DetermineRobustness (and given in Algorithm 9.2), determines

(r, s)-robustness of any digraph, regardless of the number of components of the digraph. To do this,

it requires the adjacency matrix A(D) as input. DetermineRobustness first initializes r and s to the

maximum values possible for any digraph on n nodes (see Property 5.19 on page 171). Then, as

in CheckRobustness, DetermineRobustness iterates through all possible pairs of nonempty disjoint
58The quantity may be argued directly by noticing that for each of the k elements, we have two choices: S1 or S2. But,

we have to subtract the two sequences of choices resulting in S1 = ∅ or S2 = ∅. Finally, because the labels on the sets
S1 and S2 are unimportant to the uniqueness of the nonempty partition, we divide by 2.

59Since all digraphs are 0-robust, and by Property 5.19 no digraph is r-robust with r > -n/2., it follows that one
should only check 1 ≤ r ≤ -n/2., 1 ≤ s ≤ n.

271

subsets, S1,S2 ⊂ V , and checks conditions (i)-(iii) of Definition 5.10. In this case, instead of

terminating upon a failing condition, the value of s is first decremented. Once all values of s are

checked for the given value of r, the algorithm decrements r and restores s to its maximal value of

n. If the digraph has no directed spanning tree (i.e., if it is not 1-robust), then DetermineRobustness

returns (r = 0, s = n). Using this approach, DetermineRobustness returns the maximal values r

and s such that D is (r, s)-robust.60

60Recall from Section 5.3.1 that the partial order on robustness compares the value of r first, and then compares the
value of s for networks with the same r.

272

Algorithm 9.1: CHECKROBUSTNESS(A(D), r, s)

procedure ROBUSTNESSHOLDS(A(D),S1,S2, r, s)

isRSRobust← false , sr,1 ← 0, sr,2 ← 0

for each k ∈ {1, 2}

do























for each i ∈ Sk

do











if
∑

j∈N in
i \Sk

aij ≥ r

then sr,k ← sr,k + 1

if (sr,1 == |S1|) or (sr,2 == |S2|) or (sr,1 + sr,2 ≥ s)

then isRSRobust← true

return (isRSRobust)

main

isRSRobust← true

for k ← 2 to n

do



































































































for each Ki ∈ Kk (i = 1, 2, . . . ,
(n
k

)

)

comment:Kk is the set of
(n
k

)

unique k-subsets of V

do







































































for each Pj ∈ PKi
(j = 1, 2, . . . , 2k−1 − 1)

comment: PKi
is the set of partitions of Ki with exactly two nonempty parts

do







































comment: Pj = {S1,S2}

if not ROBUSTNESSHOLDS(A(D),S1,S2, r, s)

then











isRSRobust← false

return (isRSRobust,S1,S2)

S1 ← ∅,S2 ← ∅

return (isRSRobust,S1,S2)

273

Algorithm 9.2: DETERMINEROBUSTNESS(A(D))

r ← min{δin(D), 'n/2(}

s← n

for k ← 2 to n

do











































































































































































































































for each Ki ∈ Kk (i = 1, 2, . . . ,
(n
k

)

)

comment:Kk is the set of
(n
k

)

unique k-subsets of V

do











































































































































































































for each Pj ∈ PKi
(j = 1, 2, . . . , 2k−1 − 1)

comment: PKi
is the set of partitions of Ki with exactly two nonempty parts

do















































































































































































comment: Pj = {S1,S2}

isRSRobust← ROBUSTNESSHOLDS(A(D),S1,S2, r, s)

if (isRSRobust == false) and (s > 0)

then s← s− 1

while (isRSRobust == false) and (r > 0)

do











































































while (isRSRobust == false) and (s > 0)

do























isRSRobust← ROBUSTNESSHOLDS(A(D),S1,S2, r, s)

if not isRSRobust

then s← s− 1

if (isRSRobust == false)

then











r ← r − 1

s← n

if r == 0

then return (r, s)

return (r, s)

It is clear from the form of R(n) in (87) that these algorithms are not efficient. In fact, the

algorithms are exponential in the square root of the size of the input (in this case, the adjacency

matrix, which has size n2). To analyze the complexity of the algorithms, we recall the following

definition.

274

Definition 9.1 (Big-O Notation). Given f, g : R → R, then f ∈ O(g(x)) if there exists c ∈ R>0

and x0 ∈ R such that |f(x)| ≤ c|g(x)| for all x ≥ x0.

We define the worst-case complexity of an algorithm as the maximal number of steps T (m) re-

quired to complete the algorithm whenever the input is of size m. We say the worst-case complexity

of an algorithm is O(g(m)) if T (m) ∈ O(g(m)).

Proposition 9.2. Algorithms 9.1 and 9.2 have worst-case complexity O(m3
√
m) where m = n2 is

the size of the input (the adjacency matrix).

Sketch of Proof: The procedure RobustnessHolds requires O(n2) steps because Sk contains O(n)

elements and the summation in the if statement requires O(n) steps. In worst-case, there will

be R(n) calls to RobustnessHolds in Algorithm 9.1 and R(n) + g(n) in Algorithm 9.2, where

g(n) ∈ O(n2) (since in Algorithm 9.2 there will be at most an additional ('n/2(− r)(n) + n− s

calls to RobustnessHolds in an (r, s)-robust digraph caused by decrementing the values of r and s

from their initial values). Therefore, in either case, there are O(R(n)) calls to RobustnessHolds, and

hence, O(n2R(n)) steps in the worst case. Finally, to bound R(n), we use the Binomial Theorem

to obtain

R(n) =
n

∑

k=2

(

n

k

)

(2k−1 − 1)

≤
n

∑

k=2

(

n

k

)

2k1n−k

≤ 3n.

Therefore, Algorithms 9.1 and 9.2 are O(m3
√
m), where m = n2.

9.2 Network Model

The remaining algorithms operate in a decentralized manner in a time-invariant network. To model

the network, we consider the undirected graph G = (V, E), where V = {1, ..., n} is the node set and

E ⊂
(V
2

)

is the edge set. Each edge {i, j} ∈ E indicates that nodes i and j can exchange information.

Each node i ∈ V is aware of its own identifier i ∈ V and its neighbor set Ni. The diameter of the

graph is denoted diam. Additionally, all nodes are normal; i.e., V = N . The network is assumed

275

to be connected and fully synchronous with reliable communication. The execution of distributed

algorithms in the synchronous network progresses in rounds mapped to the nonnegative integers,

Z≥0. We assume multiple messages may be sent in a given round and that messages may be of

arbitrary size.

9.3 A Decentralized Algorithm

In this section, we present a decentralized algorithm for determining the robustness of a connected

network. The main idea of the algorithm is for the nodes to share information about their neigh-

borhood in such a way so that each node obtains the topological information about the network.

Once this information is obtained, the centralized algorithm, DetermineRobustness, may be used to

determine the robustness. The decentralized algorithm, DecentralDetermineRobustness is shown in

Algorithm 9.3. The algorithm uses several procedures: LeaderElectBFSTree, InitiateConvergecast,

ParticipateConvergecast, Broadcast, ParticipateBroadcast, and DetermineRobustness.

Algorithm 9.3: DECENTRALDETERMINEROBUSTNESS(nodeIDi,Ni)

(Leader, Parent, Children)← LEADERELECTBFSTREE(nodeIDi,Ni)

if (Leader == nodeIDi)

then











A(G)← INITIATECONVERGECAST(nodeIDi, Children)

BROADCAST(A(G), Children)

else











PARTICIPATECONVERGECAST(nodeIDi,Ni, Parent, Children)

A(G)← PARTICIPATEBROADCAST(Parent, Children)

(r, s)← DETERMINEROBUSTNESS(A(G))

return (r, s)

The first procedure is LeaderElectBFSTree. LeaderElectBFSTree takes as input the node’s ID

and its neighbor set, and outputs a leader ID, a parent node, and a set of children nodes. Lead-

erElectBFSTree elects a leader in the network using parallel executions of Breadth-First Searches

(BFSs) [130]. Each node initiates a modification of the SynchBFS algorithm of [130]. To do this, a

calculation of the maximum ID is bootstrapped to the Breadth-First Search (BFS) tree construction.

276

The node with the maximum ID is declared the leader, and the BFS tree with the leader as the root

node is the BFS tree used in the subsequent convergecast and broadcast procedures.

In LeaderElectBFSTree all variables are associated to the initiating node’s ID because n par-

allel executions run simultaneously. There are three types of messages involved in the BFS tree

construction: search, respond, and propagate messages. The search message, with node i as the

initiating node, contains the sending node’s ID (initially i), the maximum ID seen so far (initially i),

and the initiating node’s ID (also i in the first round). Each node (other than i) is initially unmarked.

Whenever an unmarked node receives a search message (or possibly multiple search messages from

different neighbors), it becomes marked. The receiving node sets the maximum ID variable as the

max of the received maximum IDs and chooses one of the senders as its parent. It then sends a

respond message to each neighbor from which it received a search message. The respond message

contains its ID, a binary variable indicating whether the node was selected as parent, and the ID of

the initiating node i. The next round, the marked node sends a search message to all of its neigh-

bors to continue the construction of the BFS tree. Whenever a marked node receives a respond

message, it checks to see if it is selected as the node’s parent, and if so, it adds the node’s ID to

its children list. After each node sends its search message, it waits to receive all respond messages

from neighbors. Once it receives all of its respond messages, it knows whether it is a leaf node

in the BFS tree (i.e., if none of its neighbors selects it as parent). If a node is not a leaf node, it

waits to receive propagate messages from all of its children. If it is a leaf node, it sends a propagate

message to its parent, which contains the maximum ID it has seen. Once a non-leaf node receives

propagate messages from all of its children, it takes the max of the maximum IDs and sends a prop-

agate messages to its parent. Eventually, the initiating node i receives propagate messages from

all of its children and then knows the maximum ID in the network. The node with the maximum

ID asserts itself as the leader. The parent and children variables returned by LeaderElectBFSTree

correspond to the node’s parent and children in the BFS tree with the leader as the initiating node.

If i is the leader, it selects itself as the parent (or the null symbol). LeaderElectBFSTree requires

O(diam) rounds and O(diam|E|) messages for each of the n parallel executions [130]. Hence, in

total, LeaderElectBFSTree requires O(diam) rounds and O(n× diam|E|) messages

Once LeaderElectBFSTree terminates, the leader node is determined and its BFS tree is con-

structed, which provides an efficient mechanism for convergecast and broadcast. In DecentralDe-

277

termineRobustness, if node i is the leader, it initiates a convergecast using InitiateConvergecast.

If node i is not the leader it participates in the convergecast using ParticipateConvergecast. Ini-

tiateConvergecast takes as input the leader’s own node ID and the children list (which is just the

neighbor set of the leader node). ParticipateConvergecast takes as input the node’s own ID and

its neighbor set, as well as the parent and children determined by LeaderElectBFSTree. In Initi-

ateConvergecast and ParticipateConvergecast, there are two types of messages: downstream and

upstream messages. Downstream messages are sent in the direction of leaf nodes, and upstream

messages are sent in the direction of the leader (root) node. The leader node starts the convergecast

by sending a downstream message containing its node ID and neighbor set to its children of the

BFS tree constructed by LeaderElectBFSTree. Each node is initially unmarked and waits to receive

a downstream message from its parent. Each downstream message contains a list of pairs, each

containing a node ID and the neighbors of the node ID. Once a downstream message is received

from its parent, the node becomes marked. The node adds it own node ID and neighbor set to the

list of pairs, and sends this list in its downstream message to its children. Once the downstream

message is sent, the node waits to receive upstream messages from all of its children. Whenever a

leaf node receives its downstream message, it similarly adds its pair and sends the upstream mes-

sage to its parents. The upstream messages are created by consolidating the neighbor lists in the

upstream messages received from all of the node’s children. Once the leader (root) node receives

the upstream messages from its children, it can construct the adjacency matrix A(G), which is the

quantity returned in InitiateConvergecast. Once each non-leader node sends its upstream message,

it begins its ParticipateBroadcast procedure. The convergecast procedure requires O(diam) rounds

and O(|E|) messages [130].

After the convergecast procedure terminates, the leader node has the adjacency matrix A(G). It

then initiates a broadcast using the BFS tree to provide the other nodes with the adjacency matrix.

Each non-leader node waits for the adjacency matrix to arrive from its parent, and then relays the

information to its children. Upon sending its message, the node then calls DetermineRobustness to

obtain the values of r and s. The broadcast operation requires O(diam) rounds and O(|E|) mes-

sages [130]. By combining the message and round complexity of the procedures in DecentralDe-

termineRobustness, it follows that DecentralDetermineRobustness requires O(diam) rounds and

O(n× diam|E|) messages. Of course, DecentralDetermineRobustness also inherits the worst-case

278

complexity of DetermineRobustness given in Proposition 9.2.

9.4 A Distributed Algorithm

Here, we present a distributed algorithm for determining the robustness of a connected network. In-

stead of simply using the centralized algorithm, DetermineRobustness, after obtaining the adjacency

matrix, as was done in Algorithm 9.3, in this case the computation required to determine robustness

is reduced by only checking the edge reachability properties in subsets in which the node is not a

member. The BFS tree construction is again used to elect a leader and provide an efficient means to

broadcast information. In this algorithm, however, a second convergecast/broadcast sequence must

be performed after the estimates of r and s are determined in order for the nodes to obtain the true

values of r and s. DistributedDetermineRobustness is given in Algorithm 9.4.

Before describing DeterminePartialRobustness, we explain the difference in the second con-

vergecast/broadcast sequence. In the second sequence, the nodes must determine the true values of r

and s from their estimates. Therefore, the downstream and upstream messages of InitiateConverge-

cast2 and ParticipateConvergecast2 contain the minimum value of r seen along the downstream

path, along with the minimum value of s seen for the given minimum value of r. For example, if a

node’s estimate is (r̂ = 4, ŝ = 1) and it receives a downstream message containing (r̂ = 3, ŝ = 3),

then the pair sent in the next downstream message is (r̂ = 3, ŝ = 3). Similarly, once the down-

stream paths reach leaf nodes, the upstream messages are determined similarly. Once the leader

node receives the upstream messages from its children, it can determine the true values of r and s.

These values are used in the second broadcast.

DeterminePartialRobustness is shown in Algorithm 9.5. Because the network is assumed to be

connected, the network is at least 1-robust. Therefore, all subsets not including node i are always

checked in DeterminePartialRobustness when called from DistributedDetermineRobustness under

the assumption of a connected network. This implies that all nodes require finish within O(n2)

steps of each other.

For the performance improvement of DeterminePartialRobustness, observe that by eliminating

the sets in which i is an element, DeterminePartialRobustness effectively reduces the problem from

size n to n−1. That is, there are R(n−1) pairs of subsets to check in DeterminePartialRobustness,

279

instead of R(n) pairs of subsets, as in DetermineRobustness. By using Pascal’s Rule

(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

,

we can show that the number of pairs of subsets that are avoided in DeterminePartialRobustness is

R(n)−R(n− 1) =
n−1
∑

k=1

(

n− 1

k

)

(2k − 1).

Notice that the number of pairs above is also the number of subsets in which i is a member. The

difference between this number and R(n− 1) is

n− 1 +
n−1
∑

k=2

(

n− 1

k

)

(2k−1 + 1) > R(n− 1)

Therefore, it is more than twice as efficient to check the subsets in which i is not member rather than

checking only subsets in which it is a member. However, the worst-case complexity of the algorithm

is not improved. Also, the round and message complexity for rounds in which communication is

needed coincide with the round and message complexity of the decentralized algorithm.

280

Algorithm 9.4: DISTRIBUTEDDETERMINEROBUSTNESS(nodeIDi,Ni)

(Leader, Parent, Children)← LEADERELECTBFSTREE(nodeIDi,Ni)

if (Leader == nodeIDi)

then











A(G)← INITIATECONVERGECAST(nodeIDi, Children)

BROADCAST(A(G), Children)

else











PARTICIPATECONVERGECAST(nodeIDi,Ni, Parent, Children)

A(G)← PARTICIPATEBROADCAST(Parent, Children)

(r̂, ŝ)← DETERMINEPARTIALROBUSTNESS(A(G), nodeIDi)

if (Leader == nodeIDi)

then











(r, s)← INITIATECONVERGECAST2(r̂, ŝ, Children)

BROADCAST2(r, s, Children)

else











PARTICIPATECONVERGECAST2(r̂, ŝ, Parent, Children)

(r, s)← PARTICIPATEBROADCAST2(Parent, Children)

return (r, s)

281

Algorithm 9.5: DETERMINEPARTIALROBUSTNESS(A(D), i)

r ← min{δin(D), 'n/2(}

s← n

for k ← 2 to n− 1

do











































































































































































































































for each K ′
i ∈ K′

k (i = 1, 2, . . . ,
(n−1

k

)

)

comment:K′
k is the set of

(n−1
k

)

unique k-subsets of V \ {i}

do











































































































































































































for each P ′
j ∈ P ′

Ki
(j = 1, 2, . . . , 2k−1 − 1)

comment: P ′
Ki

is the set of partitions of K ′
i with exactly two nonempty parts

do















































































































































































comment: P ′
j = {S1,S2}

isRSRobust← ROBUSTNESSHOLDS(A(D),S1,S2, r, s)

if (isRSRobust == false) and (s > 0)

then s← s− 1

while (isRSRobust == false) and (r > 0)

do











































































while (isRSRobust == false) and (s > 0)

do























isRSRobust← ROBUSTNESSHOLDS(A(D),S1,S2, r, s)

if not isRSRobust

then s← s− 1

if (isRSRobust == false)

then











r ← r − 1

s← n

if r == 0

then return (r, s)

return (r, s)

9.5 Construction of Robust Digraphs

Robustness requires checking every possible nonempty disjoint pair of subsets of nodes in the di-

graph for edge reachability conditions. Proposition 9.2 shows that the direct manner to check for

282

robustness is O(n23n). Therefore, constructive methods of building robust networks are highly de-

sirable. In [210] it is shown that the common preferential-attachment model for complex networks

(e.g., [2]) produces r-robust graphs, provided that a sufficient number of links are added to new

nodes as they are attached. Here we show that preferential attachment also leads to (r, s)-robust

graphs.

Theorem 9.3 (Robust Network Growth). Let D = (V, E) be a nonempty, nontrivial (r, s)-robust

digraph. Then the digraph D′ = (V ∪ {vnew}, E ∪ Enew), where vnew is a new vertex added to D

and Enew is the directed edge set related to vnew, is (r, s)-robust if dinvnew
≥ r + s− 1.

Proof. For a pair of nonempty, disjoint sets S1 and S2, there are three cases to check: vnew 1∈ Si,

{vnew} = Si and vnew ∈ Si, i ∈ {1, 2}. In the first case, since D is (r, s)-robust, the conditions

in Definition 5.10 must hold. In the second case, X r
Si

= Si, and we are done. In the third case,

suppose, without loss of generality, S2 = S ′
2 ∪ {vnew}. Since D is (r, s)-robust, at least one of the

following conditions hold: |X r
S1
|+|X r

S′
2
| ≥ s, |X r

S1
| = |S1|, or |X r

S′
2
| = |S ′

2|. If either of the first two

hold, then the corresponding conditions hold for the pair S1,S2 in D′. So assume only |X r
S′
2
| = |S ′

2|

holds. Then, the negation of the first condition |X r
S1
|+ |X r

S′
2
| ≥ s implies |X r

S′
2
| = |S ′

2| < s. Hence,

|N in
vnew \ S2| ≥ r, and |X r

S2
| = |S2|, completing the proof.

The above result indicates that to construct an (r, s)-robust digraph with n nodes (where n > r),

we can start with an (r, s)-robust digraph with relatively smaller order (such as a complete graph),

and continually add new nodes with incoming edges from at least r + s − 1 nodes in the exist-

ing digraph. Note that this method does not specify which existing nodes should be chosen. The

preferential-attachment model corresponds to the case when the nodes are selected with a proba-

bility proportional to the number of edges that they already have. This leads to the formation of

so-called scale-free networks [2], and is cited as a plausible mechanism for the formation of many

real-world complex networks. Theorem 9.3 indicates that a large class of scale-free networks are

resilient to the threat models studied in this dissertation (provided the number of edges added in

each round is sufficiently large when the network is forming).

For example, Figure 49 illustrates a (3, 2)-robust graph constructed using preferential attachment

by starting with the complete graph on 5 nodes K5 – which is also (3,3)-robust and is the only (3,2)-

robust digraph on 5 nodes (recall Property 5.19 on page 171) – and by adding 4 new edges to each

283

Figure 49: A (3, 2)-robust graph constructed from K5 using preferential attachment.

new node in each step. Note that this graph is also 4-robust, which could not be predicted from

Theorem 9.3 since K5 is not 4-robust. Therefore, it is possible (but not guaranteed) to end up with

a more robust digraph than the initial one using the preferential-attachment growth model.

9.6 Summary

In this chapter we have presented several algorithms for checking and determining robustness of

a network. We presented two centralized algorithms, a decentralized algorithm, and a distributed

one. All algorithms are inefficient; they are O(m3
√
m) in the size of the input. The structure of

the problem of determining robustness suggests that it may be NP-hard. Proving this, however, is

beyond the scope of this work.

We also looked at a growth model for robust networks that entails the preferential-attachment

growth model of scale-free networks. Constructive methods such as the one given in Theorem 9.3

are advantageous, in particular given the inefficiency of determining the robustness of an existing

network. Another recent result of Zhang and Sundaram shows that random networks exhibit a

thresholding behavior with respect to robustness [209]. In particular, robustness and connectivity

coincide in random networks [209].

284

CHAPTER X

CONCLUSIONS

The last decade has seen a surge of research in the cooperative control of networked multi-agent

systems. Over this time, many researchers have studied robustness and resilience to certain imple-

mentation effects. However, the issue of security has just recently begun to be explored. The work

presented here takes an important step by defining group objectives for multi-agent networks that

provide explicit requirements on resilience in the presence of adversaries. We have introduced and

studied algorithms that can be employed to ensure resilience against both adversaries and imple-

mentation effects. We foresee that these resilient consensus and synchronization control protocols

will be applicable to power networks, mobile robotics, and sensor networks.

10.1 Summary of Contributions

The contributions of the dissertation may be broken into four categories: resilient consensus, re-

silient synchronization, network robustness, and compositionality of passivity,.

Resilient Consensus. We provide several contributions in resilient consensus under different

timing models, including continuous time, synchronous discrete time, and asynchronous discrete

time. We introduce a novel Continuous-Time Resilient Asymptotic Consensus (CTRAC) problem,

along with new adversary models in continuous time. We formulate the Adversarial Robust Consen-

sus Protocol (ARC-P) and its variant, ARC-P2. We demonstrate necessary and sufficient conditions

under which ARC-P2 achieves CTRAC for the various adversary models studied. Similarly, we

study the W-MSR algorithm in discrete-time synchronous networks in the presence of adversaries.

We study an asynchronous version of W-MSR, applicable in asynchronous networks under the local

broadcast model. Finally, we provide a quantization result that enables the normal nodes to achieve

approximate agreement, where the error is at most one quantization step of the quantizer used in the

algorithm.

Resilient Synchronization. We demonstrate how resilient consensus can be used in resilient

synchronization of linear time-invariant (LTI) systems. In particular, we provide a dynamic resilient

synchronization control law that uses ARC-P2 as one component of the control law. We analyze

285

resilient asymptotic synchronization of the identical normal nodes under the control law, where the

states of the normal nodes synchronize to a common open-loop solution of their local dynamics.

Both full state feedback and output feedback is considered under the F -total malicious model.

Network Robustness. We introduce a definition of network robustness that has finer granular-

ity than the one introduced in [210]. We prove several properties of robust networks, including the

minimum in-degree and connectivity of robust networks. We present several algorithms for check-

ing and determining robustness of a network. We give two centralized algorithms, a decentralized

algorithm, and a distributed one. We also extend a method for constructing robust networks (in-

troduced in [210]) to the finer granularity definition of robustness. The growth model entails the

preferential-attachment growth model of scale-free networks [2].

Compositionality of passivity. We prove a novel compositional result for the interconnection

of discrete-time passive systems in arbitrary bidirectional networks. It is shown that under certain

message passing rules and interface components, the passivity of the networked system is main-

tained even in the presence of time-varying delays and data loss.

10.2 Directions for Future Work

There are several interesting directions for future work. The techniques for resilience studied in

the dissertation may be extended to more complex group objectives such as flocking, formation

control and coordinated path tracking. In these objectives the agents are always mobile, which

leads to an important codependence between the locality of the agents and the topology of the

network. Examining ways to maintain network robustness under spatial constraints is an interesting

and important research problem.

Another interesting direction is resilient clock synchronization in multi-agent networks. Re-

silient clock synchronization has been studied [129, 109, 120]. However, these techniques achieve

agreement resiliently on logical clock values, instead of agreement on the oscillator dynamics. This

type of clock synchronization is a physically dependent consensus problem, but is not synchroniza-

tion. A more interesting direction would be to study resilient synchronization of the physical clocks

using phase-locked loops.

286

REFERENCES

[1] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots.
SIAM Journal on Computing, 36(1):56–82, July 2006.

[2] R. Albert and A. L. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys.,
74(1):47–97, Jan. 2002.

[3] J. Almeida, C. Silvestre, A. M. Pascoal, and P. J. Antsaklis. Continuous-time consensus
with discrete-time communication. In European Control Conference (ECC), pages 749–754,
Budapest, Hungary, Aug. 2009.

[4] S. Amin, A. A. Cárdenas, and S. S. Sastry. Safe and secure networked control systems under
denial-of-service attacks. In Proceedings of the 12th International Conference on Hybrid
Systems: Computation and Control, HSCC ’09, pages 31–45, San Francisco, CA, 2009.

[5] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point convergence
algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Au-
tomation, 15(5):818–828, Oct. 1999.

[6] P. J. Antsaklis and A. N. Michel. Linear systems. McGraw-Hill,, New York, 1997.

[7] M. Arcak. Passivity as a design tool for group coordination. IEEE Transactions on Automatic
Control,, 52(8):1380–1390, Aug. 2007.

[8] A. H. Azadmanesh and H. Bajwa. Global convergence in partially fully connected networks
(pfcn) with limited relays. The 27th Annual Conference of the IEEE Industrial Electronics
Society, 3:2022–2025, 2001.

[9] M. H. Azadmanesh and R. M. Kieckhafer. Asynchronous approximate agreement in par-
tially connected networks. International Journal of Parallel and Distributed Systems and
Networks, 5(1):26–34, 2002.

[10] H. Bai, M. Arcak, and J. T. Wen. Rigid body attitude coordination without inertial frame
information. Automatica, 44(12):3170–3175, 2008.

[11] H. Bai, M. Arcak, and J. T. Wen. Cooperative Control Design: A Systematic, Passivity-Based
Approach. Communication and Control Engineering. Springer, New York, NY, 2011.

[12] T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams. IEEE
Transactions on Robotics and Automation, 14(6):926–939, Dec. 1998.

[13] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms, and Applications. Springer-
Verlag, New York, NY, 2007.

[14] M. Barborak, A. Dahbura, and M. Malek. The consensus problem in fault-tolerant comput-
ing. ACM Computing Surveys, 25(2):171–220, 1993.

[15] D. Bauso, L. Giarré, and R. Pesenti. Nonlinear protocols for optimal distributed consensus
in networks of dynamic agents. Systems & Control Letters, 55(11):918–928, Nov.

287

[16] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement proto-
cols. In Proceedings of the 2nd annual ACM symposium on Principles of distributed comput-
ing, (PODC), pages 27–30, Montreal, Quebec, Canada, 1983.

[17] M. Ben-Or, D. Dolev, and E. N. Hoch. Simple gradecast based algorithms. CoRR,
abs/1007.1049, 2010.

[18] P. Berestesky, N. Chopra, and M. W. Spong. Discrete time passivity in bilateral teleoperation
over the internet. In Int. Conference on Robotics and Automation (ICRA), volume 5, pages
4557–4564, New Orleans, LA, 2004.

[19] D. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

[20] S. Bhattacharya and T. Başar. Spatial approaches to broadband jamming in heterogeneous
mobile networks: a game-theoretic approach. Autonomous Robots, 31(4):367–381, 2011.

[21] F. Blanchini and S. Miani. Set-Theoretic Methods in Control. Birkhauser, Boston, Mas-
sachusetts, 2008.

[22] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis. Convergence in multiagent
coordination, consensus, and flocking. In IEEE Conference on Decision and Control and the
European Control Conference, pages 2996–3000, Seville, Spain, Dec. 2005.

[23] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier Science Publish-
ing Co., Inc., New York, NY, 1976.

[24] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Byzantine convergence in robot networks:
The price of asynchrony. In International Conference on Principles of Distributed Systems,
pages 54–70, Nimes, France, Dec. 2009.

[25] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Byzantine-resilient convergence in oblivi-
ous robot networks. In V. Garg, R. Wattenhofer, and K. Kothapalli, editors, Distributed Com-
puting and Networking, volume 5408 of Lecture Notes in Computer Science, pages 275–280.
Springer Berlin / Heidelberg, Jan. 2009.

[26] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Optimal Byzantine resilient convergence
in asynchronous robots networks. Stabilization, Safety, and Security of Distributed Systems,
pages 165–179, 2009.

[27] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Optimal Byzantine-resilient convergence
in uni-dimensional robot networks. Theoretical Computer Science, 411(34-36):3154–3168,
July 2010.

[28] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE
Transactions on Information Theory, 52(6):2508–2530, June 2006.

[29] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. Journal of the
ACM, 32:824–840, Oct. 1985.

[30] A. A. Cárdenas, S. Amin, and S. S. Sastry. Research challenges for the security of control
systems. In Proceedings of the 3rd conference on Hot topics in security, pages 1–6, San Jose,
CA, July 2008.

288

[31] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. Mclain, S. M. Li, and R. Mehra. Co-
operative forest fire surveillance using a team of small unmanned air vehicles. International
Journal of Systems Sciences, 37(6):351–360, May 2006.

[32] G. Chartrand and F. Harary. Graphs with prescribed connectivities. In Theory of Graphs,
pages 61–63. Akadémiai Kiadó, Budapest, 1968.

[33] N. Chopra. Passivity results for interconnected systems with time delay. In IEEE Conference
on Decision and Control, Dec. 2008.

[34] N. Chopra, P. Berestesky, and M. W. Spong. Bilateral teleoperation over unreliable com-
munication networks. IEEE Transactions on Control Systems Technology., 16(2):304–313,
2008.

[35] N. Chopra and M. W. Spong. Passivity-based control of multi-agent systems. In Advances
in Robot Control, From Everyday Physics to Human-Like Movements, S. Kawamura and M.
Svinin (Eds.), pages 107–134. Springer Verlag, Berlin, 2006.

[36] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, Providence, RI,
1997.

[37] S. J. Chung and J. J. E. Slotine. Cooperative robot control and concurrent synchronization of
lagrangian systems. IEEE Transactions on Robotics, 25(3):686–700, 2009.

[38] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots gathering prob-
lem. In Proc. 30th International Colloquium on Automata, Languages and Programming
(ICALP ’03), pages 1181–1196, 2003.

[39] F. H. Clarke. Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series
of Monographs and Advanced Texts. John Wiley and Sons, Inc., New York, NY, 1983.

[40] J. Cortés. Finite-time convergent gradient flows with applications to network consensus.
Automatica, 42(11):1993–2000, 2006.

[41] J. Cortés. Distributed algorithms for reaching consensus on general functions. Automatica,
44(3):726–737, 2008.

[42] J. Cortés, S. Martı́nez, and F. Bullo. Robust rendezvous for mobile autonomous agents
via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control,
51(8):1289–1298, Aug. 2006.

[43] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo. Coverage control for mobile sensing net-
works. IEEE Transactions on Robotics and Automation, 20(2):243–255, April 2004.

[44] G. Dahlquist. Stability and error bounds in the numerical integration of ordinary differential
equations. In Trans. Royal Institute of Technology, number 130, Stockholm, Sweden, 1959.

[45] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill Higher Education,
2006.

[46] X. Défago, M. Gradinariu, S. Messika, and P. Raipin-Parvédy. Fault-tolerant and self-
stabilizing mobile robots gathering. In S. Dolev, editor, Distributed Computing, volume 4167
of Lecture Notes in Computer Science, pages 46–60. Springer Berlin, Heidelberg, 2006.

289

[47] M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Association,
69(345):118–121, 1974.

[48] A. J. Van der Schaft. L2-Gain and Passivity in Nonlinear Control. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1999.

[49] D. V. Dimarogonas and K. J. Kyriakopoulos. On the rendezvous problem for multiple non-
holonomic agents. IEEE Transactions on Automatic Control, 52(5):916–922, May 2007.

[50] D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14–30, 1982.

[51] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching approximate
agreement in the presence of faults. Journal of the ACM, 33(3):499–516, 1986.

[52] D. Easley and J. Kleinberg. Networks, Crowds and Markets: Reasoning about a Highly
Connected World. Cambridge University Press, 2010.

[53] M. Egerstedt, X. Hu, and A. Stotsky. Control of mobile platforms using a virtual vehicle
approach. IEEE Transactions on Automatic Control, 46(11):1777–1782, Nov. 2001.

[54] M. Epstein, K. Lynch, K. H. Johansson, and R. M. Murray. Using hierarchical decomposition
to speed up average consensus. In Proceedings of the 17th IFAC World Congress, 2008.

[55] A. Fagiolini, F. Babboni, and A. Bicchi. Dynamic distributed intrusion detection for secure
multi-robot systems. In Int. Conference on Robotics and Automation, pages 2723–2728,
Kobe, Japan, May 2009.

[56] A. Fagiolini, A. Bicchi, G. Dini, and I. M. Savino. Tolerating malicious monitors in detecting
misbehaving robots. In IEEE Int. Workshop on Safety, Security, and Rescue Robotics, pages
108–114, Sendai, Japan, Oct. 2008.

[57] A. Fagiolini, M. Pellinacci, M. Valenti, G. Dini, and A. Bicchi. Consensus-based distributed
intrusion detection for multi-robot systems. In Int. Conference on Robotics and Automation,
pages 120–127, Pasadena, California, May 2008.

[58] F. Fagnani, K. H. Johansson, A. Speranzon, and S. Zampieri. On multi-vehicle rendezvous
under quantized communication. In Proc. Mathematical Theory of Networks and Systems,
Leuven, Belgium, July 2004. Electronic Proceedings.

[59] L. Fang and P. J. Antsaklis. Information consensus of asynchronous discrete-time multi-agent
systems. In Proceedings of the American Control Conference, volume 3, pages 1883–1888,
Portland, OR, June 2005.

[60] J. A. Fax and R. M. Murray. Information flow and cooperative control of vehicle formations.
IEEE Transactions on Automatic Control, 49(9):1465–1476, 2004.

[61] A. D. Fekete. Asymptotically optimal algorithms for approximate agreement. Distributed
Computing, 4:9–29, Mar. 1990.

[62] A. Fettweis. Wave digital filters: theory and practice. Proceedings of the IEEE, 74(2):270–
327, 1986.

[63] A. F. Filippov. Differential equations with discontinuous right-hand side. Mathematics and
its applications (Vol. 18). Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.

290

[64] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32:374–382, April 1985.

[65] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots
with limited visibility. Theoretical Computer Science, 337:147–168, June 2005.

[66] P. A. Forero, A. Cano, and G. B. Giannakis. Consensus-based distributed support vector
machines. The Journal of Machine Learning Research, 11:1663–1707, August 2010.

[67] M. Franceschelli, M. Egerstedt, and A. Giua. Motion probes for fault detection and recovery
in networked control systems. In Proceedings of the American Control Conference, pages
4358–4363, Seattle, WA, June 2008.

[68] V. Gazi and K. M. Passino. Stability analysis of social foraging swarms. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1):539–557, Feb. 2004.

[69] D. Geller and F. Harary. Connectivity in digraphs. In Recent Trends in Graph Theory, volume
186 of Lecture Notes in Mathematics, pages 105–115. Springer Berlin / Heidelberg, 1971.

[70] R. Ghabcheloo, A. Pascoal, C. Silvestre, and I. Kaminer. Non-linear co-ordinated path fol-
lowing control of multiple wheeled robots with bidirectional communication constraints. In-
ternational Journal of Adaptive Control and Signal Processing, 21(2-3):133–157, 2007.

[71] S. Gilbert, N. Lynch, S. Mitra, and T. Nolte. Self-stabilizing robot formations over unreliable
networks. ACMTransactions on Autonomous and Adaptive Systems (TAAS), 4(3):1–29, 2009.

[72] A. Giridhar and P. R. Kumar. Toward a theory of in-network computation in wireless sensor
networks. IEEE Communications Magazine, 44(4):98–107, April 2006.

[73] C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag New York, Inc., 2001.

[74] J. Gray. Notes on data base operating systems. In Operating Systems: An Advanced Course,
volume 60 of Lecture Notes in Computer Science, pages 393–481. Springer-Verlag, New
York, 1978.

[75] V. Gupta, C. Langbort, and R. M. Murray. On the robustness of distributed algorithms. In
IEEE Conference on Decision and Control, pages 3473–3478, San Diego, California, Dec.
2006.

[76] B. Hannaford and J. H. Ryu. Time-domain passivity control of haptic interfaces. IEEE
Transactions on Robotics and Automation, 18(1):1–10, Feb. 2002.

[77] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 1952.
Second Edition.

[78] P. Hartman. Ordinary Differential Equations. Birkhauser, Boston, Massachusetts, 1982.
Second Edition.

[79] S. Hirche, T. Matiakis, and M. Buss. A distributed controller approach for delay-independent
stability of networked control systems. Automatica, 45(8):1828–1836, 2009.

[80] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

291

[81] P. Hovareshti, J. S. Baras, and V. Gupta. Average consensus over small world networks:
A probabilistic framework. In IEEE Conference on Decision and Control, pages 375–380,
Cancun, Mexico, Dec. 2008.

[82] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger. Dissemination of Information
in Communication Networks. Springer-Verlag, 2005.

[83] M. Huang and J. H. Manton. Stochastic Lyapunov analysis for consensus algorithms with
noisy measurements. In Proceedings of the American Control Conference, pages 1419–1424,
New York City, NY, July 2007.

[84] Q. Hui. Finite-time rendezvous algorithms for mobile autonomous agents. IEEE Transactions
on Automatic Control, 56(1):207–211, Jan. 2011.

[85] Q. Hui, W. M. Haddad, and S. P. Bhat. On robust control algorithms for nonlinear network
consensus protocols. Int. J. Robust Nonlinear Control, 20(3):269–284, 2010.

[86] A. Ichimura and M. Shigeno. A new parameter for a broadcast algorithm with locally
bounded Byzantine faults. Information Processing Letters, 110:514–517, 2010.

[87] Y. Igarashi, T. Hatanaka, M. Fujita, and M. W. Spong. Passivity-based output synchronization
in SE(3). In Proceedings of the American Control Conference, pages 723–728, Seattle, WA,
June 2008.

[88] Y. Igarashi, T. Hatanaka, M. Fujita, and M. W. Spong. Passivity-based attitude synchroniza-
tion in SE(3). IEEE Transactions on Control Systems Technology, 17(5):1119–1134, Sept.
2009.

[89] I. A. F. Ihle, M. Arcak, and T. I. Fossen. Passivity-based designs for synchronized path-
following. Automatica, 43(9):1508–1518, 2007.

[90] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6):988–1001,
June 2003.

[91] A. Jadbabaie, N. Motee, and M. Barahona. On the stability of the Kuramoto model of coupled
nonlinear oscillators. In Proceedings of the American Control Conference, volume 5, pages
4296–4301, Boston, MA, July 2004.

[92] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard. Resilient network cod-
ing in the presence of Byzantine adversaries. In 26th IEEE International Conference on
Computer Communications, INFOCOM, Anchorage, AL, May 2007.

[93] T. T. Johnson and S. Mitra. Safe flocking in spite of actuator faults using directional failure
detectors. Journal of Nonlinear Systems and Applications, 2(1-2):73–95, April 2011.

[94] A. Kashyap, T. Başar, and R. Srikant. Quantized consensus. Automatica, 43(7):1192–1203,
2007.

[95] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In
44th Annual IEEE Symposium on Foundations of Computer Science, pages 482–491, Cam-
bridge, MA, Oct. 2003.

292

[96] H. Khalil. Nonlinear Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, 2002.

[97] R. M. Kieckhafer and M. H. Azadmanesh. Low cost approximate agreement in partially
connected networks. Journal of Computing and Information, 3(1):53–85, 1993.

[98] R. M. Kieckhafer and M. H. Azadmanesh. Reaching approximate agreement with mixed
mode faults. IEEE Transactions on Parallel and Distributed Systems, 5(1):53–63, 1994.

[99] D. Kingston, R. W. Beard, and R. S. Holt. Decentralized perimeter surveillance using a team
of UAVs. IEEE Transactions on Robotics, 24(6):1394–1404, Dec. 2008.

[100] N. Kottenstette and P. J. Antsaklis. Stable digital control networks for continuous passive
plants subject to delays and data dropouts. In IEEE Conference on Decision and Control,
pages 4433–4440, New Orleans, LA, Dec. 2007.

[101] N. Kottenstette and P. J. Antsaklis. Control of multiple networked passive plants with delays
and data dropouts. In Proceedings of the American Control Conference, pages 3126–3132,
Seattle, Washington, June 2008.

[102] N. Kottenstette and N. Chopra. Lm2-stable digital-control networks for multiple continuous
passive plants. In 1st IFAC Workshop on Estimation and Control of Networked Systems
(NecSys’09), pages 120–125, Venice, Italy, Sept. 2009. International Federation of Automatic
Control, International Federation of Automatic Control.

[103] N. Kottenstette, J. Hall, X. Koutsoukos, P. J. Antsaklis, and J. Sztipanovits. Digital control
of multiple discrete passive plants over networks. International Journal of Systems, Control
and Communications, 3(2):194–228, April 2011.

[104] N. Kottenstette, J. Hall, X. Koutsoukos, J. Sztipanovits, and P. J. Antsaklis. Design of net-
worked control systems using passivity. IEEE Transactions on Control Systems Technology.
Accepted for publication.

[105] N. Kottenstette, X. Koutsoukos, J. Hall, J. Sztipanovits, and P. Antsaklis. Passivity-based
design of wireless networked control systems for robustness to time-varying delays. In Real-
Time Systems Symposium, pages 15–24, Washington D.C., USA, Dec. 2008.

[106] N. Kottenstette, H. J. LeBlanc, E. Eyisi, and X. Koutsoukos. Multi-rate networked control
of conic (dissipative) systems. In Proceedings of the American Control Conference, San
Francisco, CA, July 2011.

[107] N. Kottenstette and J. Porter. Digital passive attitude and altitude control schemes for quadro-
tor aircraft. In 7th International Conference on Control and Automation (ICCA), pages 1761–
1768, Christchurch, New Zealand, Dec. 2009.

[108] X. Koutsoukos, N. Kottenstette, J. Hall, E. Eyisi, H. J. LeBlanc, J. Porter, and J. Szti-
panovits. A passivity approach for model-based compositional design of networked control
systems. ACMTransactions on Embedded Computing Systems, Special Issue on the Synthesis
of Cyber-Physical Systems. Accepted for publication.

[109] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults. Journal
of the ACM, 32(1):52–78, Jan. 1985.

293

[110] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst., 4(2):382–401, 1982.

[111] H. J. LeBlanc, E. Eyisi, N. Kottenstette, X. Koutsoukos, and J. Sztipanovits. A passivity-
based approach to deployment in multi-agent networks. In 7th International Conference on
Informatics in Control, Automation and Robotics, volume 1, pages 53–62, Funchal, Madeira
- Portugal, 2010.

[112] H. J. LeBlanc, E. Eyisi, N. Kottenstette, X. Koutsoukos, and J. Sztipanovits. A passivity-
based approach to group coordination in multi-agent networks. In Informatics in Control,
Automation and Robotics, volume 89 of Lecture Notes in Electrical Engineering, pages 135–
149. Springer Berlin Heidelberg, 2011.

[113] H. J. LeBlanc and X. D. Koutsoukos. Consensus in networked multi-agent systems with
adversaries. In Proceedings of the 14th international conference on Hybrid systems: compu-
tation and control, (HSCC ’11), pages 281–290, Chicago, IL, 2011.

[114] H. J. LeBlanc and X. D. Koutsoukos. Low complexity resilient consensus in networked
multi-agent systems with adversaries. In Proceedings of the 15th international conference on
Hybrid systems: computation and control, (HSCC ’12), pages 5–14, Beijing, China, 2012.

[115] H. J. LeBlanc, H. Zhang, X. D. Koutsoukos, and S. Sundaram. Resilient asymptotic consen-
sus in robust networks. IEEE Journal on Selected Areas in Communications, 2012. Submitted
and under review.

[116] H. J. LeBlanc, H. Zhang, S. Sundaram, and D. Koutsoukos, X. Consensus of multi-agent
networks in the presence of adversaries using only local information. In Proceedings of the
1st International Conference on High Confidence Networked Systems (HiCoNS), pages 1–10,
Beijing, China, 2012.

[117] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason IV, G. Nordstrom,
J. Sprinkle, and P. Volgyesi. The generic modeling environment. Workshop on Intelligent
Signal Processing, May 2001.

[118] D. Lee and M. W. Spong. Agreement with non-uniform information delays. In Proceedings
of the American Control Conference, pages 756–761, Minneapolis, MN, June 2006.

[119] J. Li, E. Elhamifar, I. J. Wang, and R. Vidal. Consensus with robustness to outliers via
distributed optimization. In IEEE Conference on Decision and Control, pages 2111–2117,
Atlanta, GA, Dec. 2010.

[120] Q. Li and D. Rus. Global clock synchronization in sensor networks. IEEE Transactions on
Computers, 55(2):214–226, Feb. 2006.

[121] D. Liberzon. Switching in Systems and Control. Birkhauser, Boston, MA, USA, 2003.

[122] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous problem. In IEEE
Conference on Decision and Control, volume 2, pages 1508–1513, Maui, Hawaii, Dec. 2003.

[123] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous problem. Part 1:
The synchronous case. SIAM Journal on Control and Optimization, 46(6):2096–2119, 2007.

294

[124] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous problem. Part 2:
The asynchronous case. SIAM Journal on Control and Optimization, 46:2120–2147, 2007.

[125] Z. Lin, M. Broucke, and B. Francis. Local control strategies for groups of mobile autonomous
agents. IEEE Transactions on Automatic Control, 49(4):622–629, April 2004.

[126] W. Lohmiller and J. J. E. Slotine. On contraction analysis for nonlinear systems. Automatica,
34(6):683–696, June 1998.

[127] J. Lorenz and D. A. Lorenz. On conditions for convergence to consensus. IEEE Transactions
on Automatic Control, 55(7):1651–1656, July 2010.

[128] D. Luenberger. An introduction to observers. IEEE Transactions on Automatic Control,
16(6):596–602, Dec. 1971.

[129] J. Lundelius and N. A. Lynch. A new fault-tolerant algorithm for clock synchronization. In
Proceedings of the 3rd ACM symposium on Principles of distributed computing, (PODC),
pages 75–88, Vancouver, British Columbia, Canada, 1984.

[130] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
California, 1997.

[131] S. Martı́nez. Practical multiagent rendezvous through modified circumcenter algorithms.
Automatica, 45(9):2010–2017, 2009.

[132] S. Martı́nez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic networks - Part
II: Time complexity of rendezvous and deployment algorithms. IEEE Transactions on Auto-
matic Control, 52(12):2214–2226, Dec. 2007.

[133] S. Martı́nez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic networks Part I:
Models, tasks, and complexity. IEEE Transactions on Automatic Control, 52(12):2199–2213,
Dec. 2007.

[134] T. Matiakis, S. Hirche, and M. Buss. The scattering transformation for networked control
systems. In Proceedings of the IEEE Conference on Control Applications (CCA), pages 705–
710, Aug. 2005.

[135] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray. Asynchronous dis-
tributed averaging on communication networks. IEEE/ACM Transactions on Networking,
15(3):512–520, June 2007.

[136] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Multiagent Networks. Princeton
University Press, Princeton, New Jersey, 2010.

[137] R. K. Miller and A. N. Michel. Ordinary Differential Equations. Dover Publications, Inc.,
Mineola, New York, 1982.

[138] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli. False data injection attacks against state
estimation in wireless sensor networks. In IEEE Conference on Decision and Control, pages
5967–5972, Dec. 2010.

[139] Y. Mo and B. Sinopoli. Secure control against replay attacks. In 47th Annual Allerton
Conference on Communication, Control, and Computing, pages 911–918, Sept. 2009.

295

[140] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review, 45(1):3–49, 2003.

[141] G. Montemayor and J. T. Wen. Decentralized collaborative load transport by multiple robots.
In Int. Conference on Robotics and Automation (ICRA), pages 372–377, Barcelona, Spain,
April 2005.

[142] E. Montijano, S. Martı́nez, and S. Sagués. De-RANSAC: robust distributed consensus in
sensor networks. European Journal of Control. Submitted 2012.

[143] L. Moreau. Stability of continuous-time distributed consensus algorithms. In IEEE Confer-
ence on Decision and Control, volume 4, pages 3998–4003, Dec. 2004.

[144] L. Moreau. Stability of multiagent systems with time-dependent communication links. IEEE
Transactions on Automatic Control, 50(2):169–182, Feb. 2005.

[145] U. Münz, A. Papachristodoulou, and F. Allgöwer. Delay robustness in consensus problems.
Automatica, 46(8):1252–1265, 2010.

[146] G. Niemeyer and J. J. E. Slotine. Stable adaptive teleoperation. IEEE Journal of Oceanic
Engineering, 16(1):152–162, Jan. 1991.

[147] G. Niemeyer and J. J. E. Slotine. Telemanipulation with time delays. International Journal
of Robotics Research, 23(9):873–890, 2004.

[148] P. Ogren, E. Fiorelli, and N. E. Leonard. Cooperative control of mobile sensor networks:
Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic
Control, 49(8):1292–1302, Aug. 2004.

[149] M. Ohlin, D. Henriksson, and A. Cervin. TrueTime 1.5 Reference Manual. Dept. of Auto-
matic Control, Lund University, Sweden, Jan. 2007. http://www.control.lth.se/truetime/.

[150] R. Olfati-Saber. Ultrafast consensus in small-world networks. In Proceedings of the Ameri-
can Control Conference, pages 2371–2378, Portland, OR, June 2005.

[151] R. Olfati-Saber. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE
Transactions on Automatic Control, 51(3):401–420, March 2006.

[152] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[153] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. Shamma. Belief consensus and distributed
hypothesis testing in sensor networks. In Networked Embedded Sensing and Control, volume
331 of Lecture Notes in Control and Information Sciences, pages 169–182. Springer Berlin /
Heidelberg, 2006.

[154] R. Olfati-Saber and R. M. Murray. Distributed cooperative control of multiple vehicle for-
mations using structural potential functions. In IFAC World Congress, 2002.

[155] R. Olfati-Saber and R. M. Murray. Consensus protocols for networks of dynamic agents. In
Proceedings of the American Control Conference, pages 951–956, Denver, CO, 2003.

296

[156] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching
topology and time-delays. IEEE Transactions on Automatic Control, 49(9):1520–1533, Sep.
2004.

[157] F. Pasqualetti, A. Bicchi, and F. Bullo. Distributed intrusion detection for secure consen-
sus computations. In IEEE Conference on Decision and Control, pages 5594–5599, New
Orleans, LA, Dec. 2007.

[158] F. Pasqualetti, A. Bicchi, and F. Bullo. On the security of linear consensus networks. In IEEE
Conference on Decision and Control, pages 4894–4901, Shangai, China, Dec. 2009.

[159] F. Pasqualetti, A. Bicchi, and F. Bullo. Consensus computation in unreliable networks: A
system theoretic approach. IEEE Transactions on Automatic Control, 57(1):90–104, Jan.
2012.

[160] F. Pasqualetti, R. Carli, A. Bicchi, and F. Bullo. Identifying cyber attacks under local model
information. In IEEE Conference on Decision and Control, pages 5961–5966, Atlanta, GA,
Dec. 2010.

[161] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, 1980.

[162] A. Pelc and D. Peleg. Broadcasting with locally bounded Byzantine faults. In Information
Processing Letters, pages 109–115, 2005.

[163] G. Prencipe. CORDA: Distributed coordination of a set of autonomous mobile robots. In
Proc. 4th European Research Seminar on Advances in Distributed Systems (ERSADS), pages
185–190, May 2001.

[164] G. Prencipe. On the feasibility of gathering by autonomous mobile robots. In A. Pelc and
M. Raynal, editors, Structural Information and Communication Complexity, volume 3499 of
Lecture Notes in Computer Science, pages 246–261. Springer, Mont Saint-Michel, France,
2005.

[165] M. O. Rabin. Randomized Byzantine generals. In 24th Annual Symposium on Foundations
of Computer Science, pages 403–409, Nov. 1983.

[166] W. Ren and R. W. Beard. Consensus seeking in multiagent systems under dynamically chang-
ing interaction topologies. IEEE Transactions on Automatic Control, 50(5):655–661, May
2005.

[167] W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems in multi-agent
coordination. In Proceedings of the American Control Conference, volume 3, pages 1859–
1864, Portland, OR, June 2005.

[168] W. Ren, R. W. Beard, and E. M. Atkins. Information consensus in multivehicle cooperative
control. IEEE Control Systems Magazine, 27(2):71–82, April 2007.

[169] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. SIGGRAPH
Comput. Graph., 21:25–34, August 1987.

[170] N. Rouche, P. Habets, and M. Laloy. Stability Theory by Liapunov’s Direct Method, vol-
ume 22 of Applied Mathematical Sciences. Springer-Verlag, New York, NY, 1977.

297

[171] L. Scardovi and R. Sepulchre. Synchronization in networks of identical linear systems. Au-
tomatica, 45(11):2557–2562, 2009.

[172] I. D. Schizas, G. Mateos, and G. B. Giannakis. Distributed LMS for consensus-based in-
network adaptive processing. IEEE Transactions on Signal Processing, 57(6):2365–2382,
June 2009.

[173] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Approximate distributed Kalman filtering
in sensor networks with quantifiable performance. In 4th Int. Symposium on Information
Processing in Sensor Networks, pages 133–139, Los Angeles, CA, April 2005.

[174] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Dynamic consensus on mobile networks.
In Proc. IFAC, 2005.

[175] S. Stramigioli, C. Secchi, A. J. van der Schaft, and C. Fantuzzi. Sampled data systems
passivity and discrete port-Hamiltonian systems. IEEE Transactions on Robotics, 21(4):574–
587, 2005.

[176] S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in
populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(1):1–20, 2000.

[177] T. Ström. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741–753,
1975.

[178] S. Sundaram and C. N. Hadjicostis. Distributed function calculation and consensus using
linear iterative strategies. IEEE Journal on Selected Areas in Communications, 26(4):650–
660, May 2008.

[179] S. Sundaram and C. N. Hadjicostis. Distributed function calculation via linear iterations
in the presence of malicious agents; Part I: Attacking the network. In Proceedings of the
American Control Conference, pages 1350–1355, Seattle, WA, June 2008.

[180] S. Sundaram and C. N. Hadjicostis. Distributed function calculation via linear iterations in
the presence of malicious agents; Part II: Overcoming malicious behavior. In Proceedings of
the American Control Conference, pages 1356–1361, Seattle, WA, June 2008.

[181] S. Sundaram and C. N. Hadjicostis. Distributed function calculation via linear iterative
strategies in the presence of malicious agents. IEEE Transactions on Automatic Control,
56(7):1495–1508, July 2011.

[182] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation
of geometric patterns. SIAM Journal on Computing, 28:1347–1363, 1999.

[183] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. J. Antsaklis, V. Gupta, B. Good-
wine, J. Baras, and S. Wang. Toward a science of cyber-physical system integration. Pro-
ceedings of the IEEE, 100(1):29–44, Jan. 2012.

[184] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching networks.
IEEE Transactions on Automatic Control, 52(5):863–868, 2007.

[185] H. G. Tanner, G. J. Pappas, and V. Kumar. Leader-to-formation stability. IEEE Transactions
on Robotics and Automation, 20(3):443–455, 2004.

298

[186] A. Teixeira, H. Sandberg, and K. H. Johansson. Networked control systems under cyber
attacks with applications to power networks. In Proceedings of the American Control Con-
ference, pages 3690–3696, Baltimore, MD, July 2010.

[187] D. Tennenhouse. Proactive computing. Communications of the ACM, 43:43–50, May 2000.

[188] The MathWorks, Inc. Simulink. http://www.mathworks.com.

[189] B. Touri and A. Nedić. On ergodicity, infinite flow, and consensus in random models. IEEE
Transactions on Automatic Control, 56(7):1593–1605, July 2011.

[190] B. I. Triplett, D. J. Klein, and K. A. Morgansen. Discrete time Kuramoto models with delay.
In Network Embedded Sensing and Control (Proceedings of NESC’05 Workshop), volume
331 of Lecture Notes in Control and Information Sciences, pages 9–24. Springer, New York,
NY, 2006.

[191] J. N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD thesis,
Department of EECS, MIT, 1984.

[192] J. N. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control,
31(9):803–812, 1986.

[193] N. H. Vaidya. Matrix representation of iterative approximate Byzantine consensus in directed
graphs. CoRR, abs/1201.1888, 2012.

[194] N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate Byzantine consensus in arbitrary
directed graphs. CoRR, abs/1201.4183, 2012.

[195] N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate Byzantine consensus in arbitrary
directed graphs - Part II: Synchronous and asynchronous systems. CoRR, abs/1202.6094,
2012.

[196] C. Van Loan. The sensitivity of the matrix exponential. SIAM Journal on Numerical Analysis,
14(6):971–981, 1977.

[197] S. Vanka, V. Gupta, and M. Haenggi. Power-delay analysis of consensus algorithms on
wireless networks with interference. Int. Journal of Systems, Control and Communications,
2(1/2/3):256–274, 2010.

[198] G. Varghese and N. A. Lynch. A tradeoff between safety and liveness for randomized coor-
dinated attack. Information and Computation, 128:57–71, 1996.

[199] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition
in a system of self-driven particles. Phys. Rev. Lett., 75(6):1226–1229, Aug. 1995.

[200] J. Wang and N. Elia. Dynamic average consensus over random networks with additive noise.
In IEEE Conference on Decision and Control, pages 4789–4794, Atlanta, GA, Dec. 2010.

[201] W. Wang and J. J. E. Slotine. Contraction analysis of time-delayed communications and
group cooperation. IEEE Transactions on Automatic Control, 51(4):712–717, April 2006.

[202] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442, 1998.

299

[203] J. T. Wen and M. Arcak. A unifying passivity framework for network flow control. IEEE
Transactions on Automatic Control, 49(2):162–174, Feb. 2004.

[204] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices. Proceedings of
the American Mathematical Society, 14(5):733–737, 1963.

[205] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems & Control
Letters, 53:65–78, 2004.

[206] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based on average
consensus. In 4th Int. Symposium on Information Processing in Sensor Networks, pages 63–
70, Los Angeles, CA, April 2005.

[207] G. Zames. On the input-output stability of time-varying nonlinear feedback systems Part one:
Conditions derived using concepts of loop gain, conicity, and positivity. IEEE Transactions
on Automatic Control, 11(2):228–238, April 1966.

[208] M. M. Zavlanos, H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Hybrid control for connectiv-
ity preserving flocking. IEEE Transactions on Automatic Control, 54(12):2869–2875, Dec.
2009.

[209] H. Zhang and S. Sundaram. Robustness of complex networks: Reaching consensus despite
adversaries. CoRR, abs/1203.6119. submitted to the 2012 Conference on Decision and Con-
trol.

[210] H. Zhang and S. Sundaram. Robustness of information diffusion algorithms to locally
bounded adversaries. In Proceedings of the American Control Conference, June 2012. to
appear.

[211] J. Zhao, D. J. Hill, and T. Liu. Synchronization of dynamical networks with nonidentical
nodes: Criteria and control. IEEE Transactions on Circuits and Systems I: Regular Papers,
58(3):584–594, March 2011.

[212] M. Zhu and S. Martinez. Attack-resilient distributed formation control via online adapta-
tion. In IEEE Conference on Decision and Control and European Control Conference (CDC-
ECC), pages 6624–6629, Orlando, FL, Dec. 2011.

300

