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CHAPTER I 

 

 

INTRODUCTION 

 

 

An understanding of “where we are” (spatial cognition) is a fundamental ability 

for humans.  How people determine their location changes as they get older [39]. The 

experiments performed by Cornell et al. [40,41] show that as children age they are able to 

use more stable distant landmarks (building views) while younger children tend to use 

nearby simple landmarks (e.g., a fire hydrant).  This gave the older children a better 

understanding of the world and made for a more robust means of navigation. 

Unfortunately, localization is not as simple as recognizing an unchanging environment.  

As time passes the features of objects tend to change.  A simple example would be a 

room or hallway that is frequently used being painted a different color from time to time.  

This type of change is quickly recognized by humans and accounted for.  There may be a 

moment of confusion, but it is quickly worked through.   Another aspect of a human’s 

spatial cognition is the ability to classify rooms.  Although initially the label of a kitchen 

is given to a child, people are easily able to quickly and correctly classify a different 

kitchen in a new environment.  This ability also allows people to provide meaningful 

location information to one another without the use of exact geometric measurements 

relative to the world.   

In order for a robot to achieve this type of spatial cognition, the system will need 

to be created from a bottom up design similar to human development.  Humans start as 

infants that learn to recognize objects.  Then as they grow they become mobile.  This 

mobility is what changes their view from simple scene understanding (what’s around me 
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now) to a more contextual understanding (I’m in a kitchen).  Also, because they are 

mobile their world expands to include many more objects for segmentation and locations.  

It is with this developmental paradigm in mind that this work is being proposed.   

There have been numerous robotic systems that have attempted to solve the 

localization paradigm [6,7,13,21,13,21,26,32,35].  Many have done so for the purpose of 

navigation [6,7,13,32,35].  Although navigating through a local environment is very 

important in mobile robotics, it is not the only step to spatial cognition.  These systems 

still need the ability to reliably recognize where they are in a larger contextual sense. A 

common problem to look at in the area of localization is referred to as Simultaneous 

Localization and Mapping (SLAM) [6]. The algorithms created to solve this problem are 

referred to as SLAM systems.  The objective of a SLAM system is to generate a map of 

the area while still localizing the robot within that area.  Two other means of localizing 

robots are through landmark detection or template matching.  Landmark detection aims to 

robustly extract some features out of an image and use those features to determine where 

the robot is [13,35].  The final method of localizing a robot, template matching, attempts 

to use the information in an entire image [21,26].  All three principles have been 

successful to various degrees. 

SLAM, at its roots, is based off of using a laser range finder or vision to map a 

new area and localize the robot within that area. It has been shown to be extremely useful 

in the area of navigation [6,7].  The glaring weakness of using only a range finder with 

SLAM is that without any visual appearance information, it is not capable of determining 

a difference between two geometrically identical locations.  An example of this would be 

two floors of the same building. It is not inconceivable to think that a building would 
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have multiple floors with the same geometric features. So even though SLAM will be 

able to determine exactly where the robot is on that floor, it has no means of determining 

which floor it is on. In terms of spatial cognition this is very limiting. Because of this, a 

number of systems have attempted to use visual SLAM [13,18,19].  This approach to the 

SLAM problem typically combines both a range finding sensor with a camera. The range 

finder will generate the maps while the camera is used for landmark detection to supply 

more information about an area [13,18,19].      

Landmark detection alone has also been used extensively for navigation 

[13,18,19,35].  The idea behind landmark detection is to find unique features in the 

environment and use them to localize the robot.  These features can include artificial 

landmarks in an environment [35] or natural features [13].  Once the robot understands 

where it is, it can plan its path for navigation. However this type of localization is also 

limited for multiple reasons.  The first reason is the sensitivity of finding the landmarks.  

Extracting exact information from a scene can be very difficult.  If the landmarks don’t 

appear exactly as expected, the system may need a great deal of robustness in order to 

deal with the changes.  The second limitation on landmark detection is the dependency on 

the landmarks. Because the robot has no other means of interpreting its environment, 

missing the landmarks can render the robot lost.  This dependency combined with the 

sensitivity may limit the robustness of this technique. This is why the combination of 

landmark detection with SLAM has helped with navigation. 

 At this point, it should be noted that the researchers consider these systems to be 

very good at navigation.  Replacement of these techniques is not the intention of this 

work. The work presented is looking to add a new dimension to the way robots are able 
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to perceive the overall context of the environment.  The addition of SLAM for the 

purpose of navigation should be considered once the full potential of the proposed system 

has been explored.  

There has also been some work in template matching or contextual based 

localization done using epitomes [21].  The epitome is created based on the probabilistic 

information in the training images, and is used to compare the current image to a known 

location.  However the criticism of this work is the same as that of the previously 

mentioned systems, and that is that they all limit the information used.  Although it is 

suggested that the epitomes will be able to differentiate between “my kitchen and “a 

kitchen”, there is no segmentation of individual percepts performed.  This means that 

they are essentially looking for a measure of difference.  Although this is acceptable for 

location recognition that is all this system will be able to accomplish. Once an epitome is 

created all of the other information about the individual percepts in the original image is 

lost.  Because of this weakness, it seems that the epitomes would fail to recognize an area 

if a change occurred, such as painting the walls. 

 

Objective of Visual System 

The goal of this work is to develop a system that can semi-autonomously (with 

minimal human interaction) generate a model of the world around it, and use this model 

to begin to understand the context of the world.  The visual system these functions will be 

added to, has been previously used for studying the effectiveness of a Working Memory 

application [1,2], as well as for the analysis of human motion segmentation [3].   The 

system uses a sparse representation of a very high dimensional feature space of the hue, 
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saturation, and value (HSV) domain to maximize distance between the percept’s colors.  

Because of the time requirements in processing each image, the segmentation of the 

image has been re-implemented using Nvidia’s CUDA architecture for highly parallel 

computation. 

  The system that has been built has demonstrated the ability to: learn its own 

percepts to describe a larger environment, segment a large area into smaller more 

meaningful areas, segment out the global percepts from all areas, generate local models 

of each area based on the presence of the global percepts found, and update the models 

with more training as needed.  The models of the world have successfully been used to 

determine the local area (or context) where images have been taken at different times.  In 

addition to the location recognition function, the system is also capable of detecting 

reflections caused by distant light sources based on the behavior of segmented reflection 

as the robot moves, further classifying the percept blobs based on their behavior from one 

image to the next, locating novel objects, and recognizing novel areas.  It is also worth 

noting that another goal of this system is to use as small amount of complexity while 

retaining the most information possible. The introduction of unnecessary complexity 

tends to lead to instability and fragility. Thus far all of this has been accomplished by 

only using a very high dimensional HSV-based color histogram domain.   

 

Organization of Paper 

The organization of this paper will provide a description of three types of location 

recognition systems and a review of the previous uses of the visual system used as 

Chapter II and Chapter III respectively, then three papers organized for journal 
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submission will be provided.  The first paper, Chapter IV, will cover the location 

recognition process while the second paper, Chapter V, covers the reflection detection, 

percept classification, and novelty detection.  Finally the third paper, Chapter VI, will 

provide an overview of the very high dimensional feature space and what has been 

learned about it through multiple works [1,2,3,4,5].  Then Chapter VII will provide a 

final review of the work performed and final thoughts about the work. 
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CHAPTER II 

 

 

LOCALIZATION TECHNIQUES 

  

Simultaneous Localization and Mapping 

 SLAM is a very common tool used for navigation in mobile robotics. The strength 

of the system is its ability to map out a new environment while continually localizing 

itself within that environment. This has been shown in many studies [6,13,17,18].  The 

most basic implementation of SLAM uses a laser range finder mounted on the mobile 

robot to detect all the edges nearby in order to create an extremely accurate map of the 

area and localize the robot with in that area.  As mentioned, SLAM has been used by 

many researchers and so a complete background of all implementations would be 

impossible. Therefore the work of Thrun et al. [6], will be used to describe an example of 

a SLAM architecture using a range finder.   

 Thrun et al. [6] incorporated SLAM on the mobile robot Groundhog shown in 

Figure 2-1. 

 

 
Figure 2-1: The Groundhog robot is a 1,500 pound custom-built vehicle equipped with onboard computing, 

laser range sensing, gas and sinkage sensors, and video recording equipment. [6] 
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  Groundhog’s objective is to explore coal mines that are too dangerous for humans to 

enter.  Because Groundhog will be underground, the simplest method of localization, 

GPS, is not available.   

The first level of processing that SLAM must go through is aligning identified 

points in consecutive scans acquired from the laser range finder [12,44]. It then 

minimizes the quadratic distance between each of the relative points in order to calculate 

the relative displacements and orientations [10].  This allows Groundhog to obtain two 

measurements: locally consistent maps and an estimate of Groundhog’s motion.  Because 

of the accumulation of the error in the scan matching, it is not possible to gain global 

consistency from the local maps [9,12,45]. In order to deal with the problem the system 

makes use of a Markov random field (MRF) [6].  They start by creating local maps of the 

area in five meter intervals.  An example of a local map is shown in Figure 2-2. 

 

 
Figure 2-2. An example of a local map and 2d range scan [6]  

The absolute locations and the orientation of the k-th map will be given by: 

                                                                                                           (2.1) 

Where x and y represent the Cartesian coordinates and θ is the orientation.  The set of 

coordinates for all local maps will be represented as χ = { }.From scan matching, 

the relative displacement is shown as: 
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                                                                          (2.2) 

where each delta value measures the relative displacement along its corresponding axis. 

If scan matching could be performed without errors, it would be possible to create a 

global consistency map through the following recursion (with the boundary condition 

 ): 

              (2.3) 

However, since errors are inevitable, the recursive approach is generalized into a soft 

sequence of constraints that induces a Gaussian probability distribution over  with a 

covariance ∑:                                             

 (2.4) 

The function   is referred to as a potential and is used to link the consecutive maps 

together in a soft way [6].  Creating a global map is now equivalent to finding the 

sequence of map coordinates  that minimizes the product of potentials .   

The MRF for the Bruceton Research Mine is shown in Figure 2-3. 
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Figure 2-3:  The resulting Markov random field: Each 

node is the center of a local map, acquired when traversing the Bruceton Research Mine near Pittsburgh, 

PA. [6] 

 

 

An advantage of MRF is that it models the uncertainty of the local scan 

matching’s.  This allows the map to be altered with respect to the global consistency 

constraints [6].  Therefore if there exists a k-th map that overlaps a map j < k-1, observed 

in a previous run, and a potential between maps  and , defined as  is 

obtained, the new potential can be added to the set of potentials  and 

softly enforce the displacement between  and .  The resulting MRF will then be 

described as: 

                    (2.5) 

Equation 2.5 can be thought of as the non-normalized probability over the joint global 

locations of all submaps, and the global map can now be created by minimizing this 

function over the locations χ of all submaps [6].   

 The final step in building a consistent map is defining the consistency constraints.  

This is more commonly called the data association problem [8,46].  This problem refers 

to the robot’s ability to decide if two different measurements correspond to the same 
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object.   The approach used does a lazy search through the data association tree while 

performing likelihood maximization [6].  The data association tree represents all the 

discrete data association decisions made during the global map building.  An example 

tree is shown in Figure 2-4. 

 

 
Figure 2-4. Shows the tree and a path chosen by locally determining the most 

likely data association. [6] 

As new local maps are added to the data association map, the decision of whether 

a consistency constraint is needed is made. If a consistency constraint is needed then the 

value for the constraint must also be found.  In this system’s implementation a new 

consistency constraint is created if the current map overlaps a previously found local map 

with a sufficient probability.  The next question that must be addressed is the orientation 

of the new local map with respect to the global map.  It is at this juncture where the 

maximum log-likelihood function is used to decide a branch in a tree.  In Figure 2-4 this 

can be seen at node ξ4.  In this case, the constraint  that maximizes the log-

likelihood function is associated with the branch labeled b.  Therefore, that constraint is 
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added to the set of constraints.  Unfortunately, this method alone can still render errors.  

The solution to this problem that is used keeps track of all the log-likelihoods along the 

chosen path as well as those on what they refer to as the frontier of the tree [6].  The 

frontier of the tree is the complete set of leaf nodes in the tree [6].  If the log-likelihood of 

the current leaf node exceeds the value of a frontier node, then the system will attempt to 

revise the past data association decisions to find an increased log-likelihood.  

As stated, SLAM is very good at creating maps of static environments and 

geometrically localizing a robot in those environments.  However SLAM is not without 

its weaknesses.  The first criticism of SLAM is that it has no means of determining a 

difference between geometrically identical regions.  This fact alone facilitates the need 

for a vision based system to assist in the global localization problem.  An example of this 

problem is, as stated in Chapter 1, a building with two geometrically identical floors. 

Without any type of vision based information, the robot will have no means of 

determining which floor it is on.  The next criticism is that SLAM cannot handle change 

in an open environment.  If something simple is moved then the world is no longer 

geometrically the same and SLAM has no means of determining or understanding this 

change.  The second type of change that SLAM cannot detect is that of visual features 

changing.  Although this type of change is not important for maneuvering around objects 

or generating a map, the ability to recognize such changes does indicate a level of 

contextual understanding of the environment.  The final criticism of SLAM is that it has 

no means of understanding the concept of context.  The only feedback it provides is if an 

object is there or not.  This means that ultimately SLAM assumes every edge is a 

boundary, regardless of the type of boundary. 
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 Although it has never been argued that SLAM is the solution to all spatial 

cognition, it is useful for demonstrating the need for visual information in attaining such 

a goal.  The concept of adding vision to a system using SLAM is hardly novel [13,18,19].  

Visual SLAM is an attempt to solve some of these issues.  This will be discussed in 

conjunction with landmark detection. 

 

Landmark detection 

 Landmark detection is the use of very specific features contained within an 

environment as cues to indicate the robot’s location typically with navigation in mind 

[13,18,19,35]. The objects used can be natural objects that stand out [13,18], or artificial 

objects placed within an environment [35].  As with SLAM there are many different 

implementations of using landmark detection so this paper will focus on one and offer a 

critique based on the principle of landmark detection with regard to spatial recognition.  

The work presented here was performed by Y. Lee and J. Song [13].  Their technique 

incorporates both landmark detection and SLAM to create a hybrid grid/vision map.  The 

map will be constructed using an infrared scanner (IR) and autonomously detected 

objects.   

 The objects will be detected based on five different features. Those features are 

hue, saturation, intensity, SIFT (Scale Invariant Feature Transform) keypoints, and object 

contours.  First the system must learn which objects to find.  The structure of the system 

is shown in Figure 2-5. 
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Figure 2-5 Overall structure of the proposed scheme. [13] 

From the five uncorrelated features the SIFT keypoints and contours of objects are used 

to select object candidates and the color information is the criterion used to decide 

whether an object candidate is useful or not. 

 The SIFT keypoints are used because they are invariant to scale, rotation, and 

viewpoint.  The system extracts the keypoints in a cascaded filtering approach that 

identifies candidate locations and examines them in further detail [14]. This is to reduce 

the amount of complex calculations performed.  The four main stages of feature 

extraction are scale-space extrema detection, keypoint localization, orientation 

assignment, and keypoint descriptor [14].   

 The contours of the objects are found using the Canny edge detection algorithm 

[15].  This implementation adds a scale multiplication to the Canny edge detector [16].  

Canny first demonstrated that a good edge detector should fit three criteria: good 

detection, good localization, and low spurious response [16].  The scale multiplication 

implementation modifies the original edge detection filter from Canny’s work 

 and makes it .  A small scale s1 and a large 

scale s2 are used to detect the step edge.  The responses of the scales are then multiplied 
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to provide a product Pw(x).  The purpose of the multiple scales is to reduce the amount of 

false edges allowed with too small of a filter and increase the accuracy from using too 

large of a filter.  This increases the quality of the detection, thus propagating better edge 

detection through the localization and thresholding steps [15]. 

 The color information used is the hue, saturation, and intensity. These are used 

because they are more intuitive and give more information than the RGB color domain. 

This comes from the HSI space being closer to how humans see and the three channels 

not being correlated [13].  After the conversion to the HSI space, the features from the 

hue, saturation, and intensity need to be extracted.  This is done by first convolving each 

channel with a variance of σ and 2σ.  The convolution is used to smooth the boundaries.  

The DoG convolution images are then calculated to represent the complexity of   patterns 

in each of the channels [13].  They are calculated according to equation 2.6 

                                                                                                     (2.6) 

Here L(σ) and L(2σ) are the Gaussian convolution images with mask having a variance 

of σ and 2σ respectively.  The magnitudes of the features are represented as a gray scale 

image and are shown in Figure 2-6 with the results of feature extraction shown in Figure 

7. 

 
Figure 2-6. DoG image as a primitive feature image [13] 
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Figure 2-7. Feature images; (a) Input camera image, (b) features extracted from 

hue image, (c) features extracted from saturation image, and (d) features 

extracted from intensity image. [13] 

Figure 2-7 shows the camera image and the features extracted from the hue image, 

saturation image, and intensity image in (a), (b), (c), and (d), respectively.  Before the 

feature images are combined they are normalized. This is because they represent features 

with different ranges [13].   

 The combination of the feature images is done with an adaptive weighting 

approach.  The weights are determined by the distribution of gray scale values.  This 

means that the denser the features are in the area the greater their weight will be.  The 

following equations mathematically describe this process. 

                                                                                             (2.7) 

                                                                                                  (2.8) 

                                                                                                  (2.9) 

                                                                                                 (2.10) 

I represents the feature image, is the weight of each color channel’s image, and σ 

represents the distribution of the gray scale values for each color channel.  The subscripts 

H,S,I, and F represent the hue, saturation, intensity, and combined feature image, 
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respectively.  An example of the combination of the color channels is shown in Figure 2-

8. 

 

 
Figure 2-8. Adaptive weighting; final combined image where hue, saturation, and 

intensity feature images are combined with different weights. [13] 

The SIFT features and contours are used to select the region within the yellow box. The 

variances of the three channels are then found within the selected region.  These 

variances are then used to calculate the weights according to equations 2.8, 2.9, and 2.10.  

Finally, the final combined image is created based on equation 2.7.   

 Now with each of the features Figure 2-9 demonstrates how the system 

determines whether or not to keep a candidate object, based on the color features.   
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Figure 2-9 (a) Object candidates represented as rectangles, (b) the final combined 

image where hue, saturation, and intensity feature images are combined with 

equal weights, and (c) HSI information of regions A and B in the final combined image. [13] 

 

Figure 2-9 (a) shows the original image with a region A and region B labeled.  The others 

were eliminated in order to simplify the explanation. Region A was selected based on a 

clustered region of SIFT keypoints and region B was selected based on contours detected.  

The outer yellow rectangle marks the edges of the image that were processed. This self 

imposed edge is to eliminate detecting only parts of objects because they run off the 

image.  Figure 2-9 (b) shows the three color channels combined into a single image.  

Figure 2-9 (c) shows just regions A and B of Figure 2-9(b).  From Figure 2-9 (c) it can be 

seen that region A is very salient (or has a high grey scale value for the corresponding 

pixels) while region B is not. Therefore, region A should be kept as a candidate object.   

The final step in selecting an object is to check the gradient of gray scale values 

up to 10 pixels outside the selected boundary of the object.  The purpose of this step is to 

ensure that an entire object is grabbed.  This process is shown in Figure 2-10. 
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Figure 2-10 Investigation of gradient of object candidates. [13] 

In the images to the left of Figure 2-10 (a) and (b) the arrows show the areas in which the 

gradients of the gray scale are taken.  The images on the right show the values calculated.  

Because the values outside of Figure 2-10(a) are so small that object is kept, and because 

the values outside of the object in Figure 2-10(b) are large this object is discarded.  Once 

the objects have been stored, they can then be used for navigation purposes. 

   The SLAM implementation used by this system operates on the same 

operational principles (using a range finder to map and localize the robot in the room) as 

the previously described SLAM implementation, however in this system an extended 

Kalman filter (EKF) replaces the use of the MRF and an infrared sensor (IR) is used in 

place of a laser range finder.    Because one SLAM system has already been described in 

detail please refer to [17] for more information on this implementation of SLAM.  

 In practice the system was able to create a grid/vision map of a three room area.  

This area is shown in Figure 2-11. 
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Figure 2-11 Experimental environment; (a) mobile robot platform and 

experimental environment, and (b) CAD data. [13] 

The EKF-based SLAM recreation of this room is shown in Figure 2-12. 

 

 
Figure 2-12. Indoor SLAM with autonomous object registration [13]. 

Figure 2-12(a) shows the initial state of the robot.  In Figure 2-12(b) the robot has built 

the map of the environment while moving around in it.  While in the area labeled as room 

2 in Figure 2-11, the robot encounters slippage due to the carpet. This creates a distortion 

in the map shown in Figure 2-12(c).  However due to the recognition of a registered 

object, the distortion is correct. This correction is shown in Figure 2-12(d).  The 



21 

 

correction of this distortion is a very good example as to why landmark detection is so 

useful when incorporated with SLAM.  It provides a solid solution to the data association 

problem faced by SLAM systems.   

 Once the map is created the ability of the robot to localize itself within the map 

needs to be determined.  Figure 2-13 shows the performance of the EKF-based SLAM 

(solid line) versus using pure odometry (dotted line) for localization. 

 

 
Figure 2-13 Comparison of robot trajectory by odometry (dotted) with that by 

EKF-based SLAM (solid). [13] 

Figure 2-13 clearly shows the superior ability of the EKF-based SLAM approach to 

localization of just pure odometry.  Although this improvement is obvious, it would have 

been helpful had the authors provided the exact position of the robot for an evaluation of 

the EKF-based SLAM to a ground truth. 

 Even without the actual position of the robot, this system shows the importance of 

visual information for a system.  In this case the visual information provided a means for 

the system to recover from an error caused by the environment. Without the visual 

information the map generated would have been off by a significant margin.  Although 
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the landmark detection proved itself to be useful it is still not adequate for generating a 

system capable of robust localization.  A few criticisms of landmark detection are that the 

systems can be fragile due to the need for a robust recognition of specific landmarks, they 

do not have any broad sense of the world or contextual knowledge of it, and because of 

the top-down nature of the processing, extracting more information will be difficult.   

 A landmark detection system is based on finding very specific features in an 

environment.  Therefore, locating those features is absolutely essential to the system 

performance.  Unfortunately, it is not always easy to identify features in an environment 

that can change, and even when it is easy, the systems are often not robust enough to be 

practical. The fragility of a landmark detection based system comes from the need to find 

these very specific features in an image of a potentially changing world.  The system 

shown previously can demonstrate this fragility.  Imagine if the system had explored 

room 2 and suffered the same slippage due to the carpets. However, when the robot came 

out of the room, the objects it was capable of recognizing were occluded from its view.  

Because of the robot’s need for specific objects it would have been incorrect in where it 

believed it was. Although in this case, SLAM may have corrected it, the weakness of 

looking for specific objects can be seen.   

 Another issue landmark detection cannot address, is any broad understanding of 

the world.  The system shown uses multiple features to extract objects out of the images.  

As long as these objects meet the threshold requirements, the robot does not care what 

they are.  Since the robot has no knowledge of the rest of the room, other than the edges, 

it has no means of knowing what type of room it is in.  An example of this would be the 

knowledge of a kitchen as mentioned in Chapter I.  Because the robot is looking for 
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specific features that allow it to segment something unique, it is unlikely the robot would 

recognize all the key objects (e.g., cabinets, sink, fridge, and stove) that belong in a 

kitchen.  Even if the robot does happen to segment out one of the objects, except for the 

stove, they can all exist in other various types of environments.  Which means in order to 

robustly recognize “a kitchen” versus “this kitchen”, the robot must be able to gain 

context from everything in the room and then determine which parts of the room are 

unnecessary.  Another feature that cannot be addressed is the notion of context change.  

This means that as with range finder based SLAM systems, the robot will not have any 

notion of a different area.  It will merely map areas and locate some objects within the 

area. This means that it will only be able to give out geographical locations, or at best, a 

location based on the landmarks it sees, which may not be of any significance in 

describing the actual location to a human being.        

 The final criticism of landmark detection is that the top down approach to 

extracting information is not efficient for spatial cognition.  It could be argued that these 

are merely tools for navigation and localization and a broad understanding could be 

added to these systems. However, finding specific features in an image first means that 

the entire image has already been processed, and in order to get a broad view of the 

image, the entire image must be reprocessed.  This reprocessing is redundant.  By taking 

a bottom up approach and gathering information on the entire image on the first pass, it is 

then possible to focus in on areas of attention.  In a worst case scenario, this would only 

require the reprocessing of the area of the image that contains the interesting information.  

This type of processing will be covered in the next section, template matching.   
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Template Matching 

Template matching is the use of information extracted from the image as a whole 

for location recognition.  As with the previous two techniques discussed, there exist 

multiple implementations of this principle [21,26,33].  The system focused on here will 

be the work of K. Ni et al. [21]. Ni et al used epitomes as a model of an environment for 

the purpose of location recognition.  This work builds on the work of Torralba et al. who 

used global gist features for training a mixture of Gaussians model to represent the 

locations [26].   

Using epitomes serves numerous purposes. The first is that it adds translation and 

scale invariance into the model of an area [21].  Also it allows for changes in viewpoint 

and illumination, motion, occlusions, and non-Lambertian effects [21].  The final 

improvement that an epitome provides is the computational efficiency that comes with 

using a compact and dense model of the area versus comparing a test image against a 

database of exemplar images [21]. 

The epitome used by [21] is derived from the work of Jojic et al [22].  Epitomes, 

according to Jojic, are a condensed representation of an image used as a generative model 

of the image. The original image is then described by the epitome and the mapping from 

the epitome to the set of pixels in the original image.  An example of an original image, 

an epitome, and a reconstructed image is shown in Figure 2-14. 
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          Figure 2-14: Appearance epitome: The input image (a), is epitomized in the texture (b), shown 

enlarged two times. The reconstructed image is shown in (c). [22] 

 

The location epitome, used by Ni et al [21], is a panoramic representation of an 

area described by the mean μ(j) and precision (inverse variance) λ(j) where j represents 

the pixels in the location epitome e.  Figure 2-15 shows the mean and variance image of a 

panoramic view. 
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Figure 2-15. (a) Panorama, (b) epitome mean, and (c) epitome variance. The input images were taken with 

a camera rotating about a fixed point. The learned epitome looks similar to the stitched panorama of Fig. 

1a, with the additional variance channel capturing uncertainties. [21] 

 

The location epitome is described as e = (μ, λ).  It is assumed that every image I with size 

N x M is generated from a Ne x Me location epitome.  A Normal Gamma prior is used 

over the epitome to guarantee the behavior of the model is well defined for unused 

locations in the epitome [21].  This is described as: 

                                        (2.11) 

where  is a Gaussian distribution over y with a mean of  and precision of . 

 The mapping from each of the location epitome pixels to the coordinates in the 

image I is defined by .  Ni’s work uses two types of mappings, 2D translations and 

scaling.  The translations are considered in both the horizontal and vertical directions, 

thus bounding them by the size of the epitome.  The scaling has three discreet levels 
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(0.8;1.0;1.3).  These levels make the computations tractable, and covers the scale 

spectrum completely enough for most scenes tested by Ni.  Finally the prior distribution 

over the mappings  is assumed to be uniform.   

 The image I is generated based on the epitome e and the mapping .  The pixels 

in I from each epitome mean have a Gaussian noise from the variance map added to them 

and are then copied according to . 

                                                              (2.12) 

 where coordinate i is defined on the input image and I(i) is the feature of the pixel i in 

the image.   is the location in the epitome of the i
th

 pixel maps to [21].   

 The next step in this work is to find a single epitome e
*
 = (μ

*
, λ

*
) that maximizes 

the probability of observations.  Using a generative model, every image is independent 

and identically distributed given an epitome e [21].  The joint distribution over e, a set of 

T images {It}, and their mappings t} is  

                                                               (2.13) 

The posterior distribution, given {It}, over e and t of {It} is  

                                                                (2.14) 

This happens as a result of the mapping of an image into an epitome being independent of 

all other images, given the epitome and the image.  Because this work is looking for the 

e
* 
that maximizes p({It}), the exact posterior distribution is approximated as  

                                            , with                           (2.15) 

                                                                                    (2.16) 

using p(e|{It}) = δ(e-e
*
). This represents a variational inference on the model and from 

[22], the log p({It}) can be bound as 
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                                                     (2.17) 

This bound can now be maximized using the Expectation Maximization algorithm. The 

maximized bound is found by iterating between finding  as shown in (2.16) 

and then updating e
*
.  For simplification Ni described the function 

                                                                    (2.18) 

which allows the update for e
*
 to be written as  

                                                                                                           (2.19) 

                                                                               (2.20) 

The epitomes do not necessarily have to model appearance information. They can 

also be used as a generative model of categorical data such as image labels [21]. This is 

done as follows: First assume training information has been obtained from K difference 

locations.  Then let e
L
 represent a label epitome with every pixel coordinate j modeling 

the discrete distribution over K labels, (j).  Also place a Dirichlet prior with 

psuedocount α over each label.  Next, given e
L 

and the mapping  an image I
L
 of discreet 

values is created according to the equation 

                                                                   (2.21) 

Then performing the same variational inference as before, the update for the location 

epitome is obtained as follows 

                                                                  (2.22) 

A final note, when there is no training data for an epitome location, the distribution over 

the K possible values is uniform with probability 1/K. 
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 It is also possible to create a joint epitome model of different features.  Each 

feature is associated with each other by means of the mappings used.  Let the epitomes 

representing F possible features be represented as e
1
,…, e

F
.  Then given the epitomes and 

mappings of the epitomes, the conditional distribution becomes 

                                                                        (2.23) 

where 0 ≤ λf ≤ 1 is the preference for a feature.  As done previously, the log of the 

probability of the observations is bounded and maximized.   

 The four types of features used were raw RGB pixels (as used in [22]), gist 

features, disparity maps, and local histograms.  The gist features used build upon 

Torralba et al. [26].  The goal of using a gist feature is to define the location without 

having to specify objects within the location.  The first step in obtaining the gist feature is 

to use a steerable pyramid [27] with six orientations and four scales.  Next in order to 

keep limited spatial information, the images are broken into 4x4 local grids and the mean 

magnitudes of the local features are averaged over the grids.  Finally the resulting gist 

features are scaled to have a zero mean and standard deviation σ= 0.115 [21].     

 A disparity map provides depth features that are more robust to changes in 

illumination [21].  The algorithm used to calculate the disparity maps is based on DP-

based stereo matching and comes from [25].  This is a dynamic programming algorithm 

designed to create a synthetic image to correct for gaze in a teleconference situation.  

Their goal was to create an image that appears to be looking directly into a monitor 

during a conversation.  Ni’s system creates the final depth features by calculating the 

local histograms of the disparity maps found during that process. 
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 The local histograms used are a combination of RGB and disparity features.  The 

use of appearance and depth local histograms provided good generalization of the data 

adding invariance to small rotation, translation, and nonrigid deformations [21].  They 

project each image into a matrix with BN x BM cells.  For the experiments performed, BN 

= 3 and BM = 2.  Within each cell, the feature responses were quantized into B bins.  For 

the RGB features B = 50, and for the disparity features B = 6.  This means that the 

training image, from which a Gaussian epitome is learned, are represented as BN x BM x 

B vectors.   

 Once the location epitomes have been generated, the final step is to create a 

location map for each epitome.  This map defines the distribution  of each 

location’s labels for the positions in the epitome.  When a new image I is presented, the 

location is found by computing .  This is done as follows 

                                                                (2.24) 

which is efficiently performed using convolution.   The process is shown in Figure 2-16. 
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Figure 2-16. The recognition process. (a) The input testing image is convolved with (b) the location 

epitome. Then the best label is found as the one that maximizes (2.29). Note that the posterior of mappings 

 tends to be very peaky, and the optimal label is usually decided by the best mapping position (the 

green rectangles in (d) the location map). In this example, the corridor class gets many more “votes” than 

cubicle. [21] 

 

Figures 2-16(a), (b), and (c) show the location epitome that maximizes (2.29) through 

convolution.  Figure 2-16(d) shows the location map indicating that the system matched 

best to the corridor class. 

 The experiments for the epitomes were performed on a data set from MIT.  The 

data provides images of 64 different locations translating into 64 location epitomes.  The 

results are shown in the precision-recall curve in Figure 2-17. 
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Figure 2-17. Location epitome versus GMM. Precision-recall curves illustrate the median recognition 

success for the nearest neighbor model, the GMM model (red) and the proposed epitome model (blue). The 

scale and translation invariance of the location epitome leads to more accurate recognition results. 

Following [26], the error bars indicate variability in accuracy across different image sequences. [21] 

 

This graph shows that the use of epitomes provides a higher precision-recall curve, 

indicating that the translation and scale invariance that epitomes provide is valuable 

information.  The next experiment performed incorporated the different features 

mentioned previously.  It was also performed on a new data set gathered by the author 

that was significantly smaller.    The results are shown in Figure 2-18. 
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Figure 2-18. Comparing RGB, Gist, and Depth features. The precision-recall curves when using RGB or 

gist features, with and without stereo disparity features. [21] 

 

Figure 2-18 implies that RGB and stereo is the best combination for epitomes, however 

because of the data set used this may be misleading.  The MIT data set had large changes 

in illumination which made the gist features easier to distinguish. The new data set did 

not have as much change in illumination.       

 Epitomes are reasonably capable of localizing a system. However, they lack some 

features necessary for true spatial cognition. First the system lacks any sense of what it is 

looking at.  Although enough information exists within an epitome to rebuild an image, 

there is no distinguishing any of the percepts.  This means that if anything is moved 

within a room there is no means for this system to recognize that movement.  Another 

criticism of this work is there was no break down of where it failed.  This would be 

useful because the system obviously broke down where the differences between like 

locations were significant.  This would have allowed for a gauging of how much change 

is necessary for the system to fail.  For example, would the system be able to handle if a 
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wall were painted a different color in the hallway?  The importance of this information 

comes from the system needing to know if it recognizes what it sees or not.  Even with 

object segmentation the system should not necessarily recognize a newly painted wall. It 

should however recognize that it does not recognize the wall and can therefore remove 

that percept from the localization process and add the percept as a novel object.  An 

epitome has no means of handling this type of situation. 

  

Final Statement 

 The goal of this system is going to be to solve some of the weaknesses of the 

three types of systems presented while still retaining the information necessary to make it 

possible to solve the other issues.   
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CHAPTER III 

 

 

PREVIOUS IMPLEMENTATIONS 

  

Overview 

 The visual system used for this work has gone through numerous stages of 

development.  It was originally developed by Dr. Mert Tugcu [1].  In [1] the original 

architecture was proposed and combined with a working memory toolkit.  The goal of the 

visual system was to create a very robust and reliable segmentation of an unmodified 

environment. Some of the main features of the architecture are that it: 

 used a 10,001 dimensional data space with 10,000 dimensions from a HSV color 

histogram and one dimension of Laplacian texture to define the percepts based on 

15x15 pixel sized patches of the image. 

 used a three way K-means nearest neighbor search tree to speed up segmentation 

 was trained using supervised learning. 

The system was then extended by Dr. Amy Wang [2].  Although she contributed far 

more than what will be covered here, the parts of her work that are pertinent to this work 

are:  

 the implementation of a minimum spanning tree classification as a means of 

unsupervised learning 

 add novel object detection 

The next work on the system was performed by Dr. Jonathan Hunter [3].  His work 

focused on using this visual system for human motion segmentation.  This work resulted 

in: 
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 improved performance using normalized feature vectors 

 improved autonomy of the minimum spanning tree 

 demonstrating the autonomous system working in a natural environment 

The final additions to this work were performed in [4].  The main contributions of this 

work that led to the current state of the system were: 

 allow the K-means search tree to be updated in real time with additional training 

and new percepts 

 add change detection to the system 

 apply maximum likelihood estimation to the classification process 

Through all of this work, the system, although not without its issues, still retains a great 

deal of potential for future applications. 

 

Vision System with Working Memory Toolkit 

 The work in [1] aimed to create a vision system that was capable of reliably 

segmenting percepts in an unaltered environment and then using that segmentation to 

learn a behavior using working memory.  Working memory is defined as “a theoretical 

framework which refers to a temporal type of storage that retains elements that are active 

and being manipulated for a short period of time” [1].  Because the current work focuses 

on improving the visual system, the working memory aspect of [1] will not be discussed 

further.    

Early on the decision was made to use a very high dimensional feature space for 

this system because it allows for a high capacity to learn.  In an adequately large space 
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very subtle differences can be detected in segmenting similar objects.  Unfortunately, this 

decision does not come without its problems. 

 The first issue to deal with is having enough data to adequately train a system 

with such a high dimensionality.  According to [47], the amount of data should be five 

times the size of the feature vector space.  Fortunately, a video sequence of images 

inherently contains a great deal of information. Therefore, extracting a data set of that 

size is relatively simple.   

  The next problem with very high dimensional feature spaces is that as the number 

of dimensions rise, parametric classifiers based on Eigen values, Eigen vectors, etc. 

become less useful [1].  Also, the calculations required for any of these techniques are 

very expensive and difficult.  A nearest neighbor (NN) classification technique, which 

only uses distance calculations, was used instead. 

 The NN technique is a very powerful technique for getting accurate results. 

Unfortunately, it is also very slow. In order to deal with the speed issue here an 

approximate NN search tree was used.  The benefits of this search tree were two-fold. 

First, it greatly reduced the processing speed while maintaining robust performance. 

Second, it was far easier to train in real time than parametric approaches.   

 The final problem associated with the very high dimensional feature space was 

the storage and calculations of such large vectors. This was dealt with by using a sparse 

vector representation.  Because this system used a color histogram extracted from 15 x 15 

pixels patches in the image, a sparse vector greatly reduced the size and calculations 

required for each vector.   
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A flowchart representing the implementation of this visual system is shown in 

Figure 3-1. 
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Figure 3-1. Flowchart of the perceptual system [1] 

Figure 3-1 shows that the process begins with the acquisition of an RGB image.  The 

RGB image is than converted into an HSV image in order to represent the image 

intuitively as the hue, saturation, and value of a color.  The hue value represents the color 

of the pixel and represents an angle from 0° to 360° although it is usually a number 

normalized between 0 and 1.  The saturation is the purity of the color and is represented 

from 0 to 1. The value parameter defines the brightness of the color, or the grayscale of 

the pixel represented.  This parameter is also represented from 0 to 1.  Figure 3-2 shows 

the HSV color map represented in a three dimensional space. 
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Figure 3-2. HSV color domain. [1] 

 Once the HSV values are obtained the feature extraction is performed. The image 

is broken into 15x15 patches that have a 10 pixel hop in both the vertical and horizontal 

directions. This means that the first patch, starting in the top left corner of the image, will 

begin at pixel coordinate (0, 0) and the second patch will begin at pixel coordinates (10, 

0).  Then when the first row is completed there will be a 10 pixel vertical hop downward.  

The overlap is used to help blend the boundaries of objects. Then a probability density 

function (pdf) of the distribution of the HSV colors in a patch is found.   The pdf is 

computed from a histogram of the HSV colors that have been quantized into 10,000 bins.  

This process is performed by first evenly distributed the hue into 100 bins, ranging from 

0 to 1. Then the saturations and values are distributed into 10 bins each, also ranging 

from 0 to 1.  Finally these three values are combined resulting in the 10,000 different 

possible color features.  Because of the 10,000 possible color features, and that, in the 

worst case scenario, the 15 x 15 patches can only provide 225 different potential color 
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features, a highly sparse representation is used here.  Therefore each patch is represented 

by a feature vector that contains two vectors. The first vector holds the index of each 

color feature detected, and the second vector holds the value of the color feature.  This 

representation provides numerous benefits.     

 The first benefit is that there is no computational cost for increasing the 

dimensionality of the feature vectors [1].  In this work, the Euclidean distance measure is 

used. Therefore given two vectors X and Y the equation to find the distance between 

them can be given as: 

                                                 (3.1) 

Because the norm of the vector only requires the non-zero elements, and the inner 

product only requires the non-zero elements that exist in both vectors, this representation 

is immune to increase computational costs due to increased dimensionality.  The only 

way to increase the computational cost is to change the size of the patches used.  So, if an 

N x N patch size is used and N
2
 unique color feature indices are found, then the worst 

case distance calculation would require 2N
2
 + 1 index fetches.  The additional one comes 

from a texture feature added to the feature vector.   

 The second advantage of the sparse feature vector representation is the amount of 

memory preserved.  In Tucgu’s work it allows the feature vectors to fit in the virtual 

memory of a computer. However the real benefit of this reduced size is demonstrated 

when the feature vectors can fit on a general purpose graphical processing unit (GPGPU).  

This will be discussed in greater detail in Chapter IV.   

 As mentioned previously, a texture measure or “roughness” of the region is used.  

This is found using a Laplacian operator.  The Laplacian operator is commonly used for 
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edge detection where the areas of the image that have quick intensity changes are 

highlighted.  The Laplacian is defined as: 

                                                      
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where I represents the pixel intensities. With the texture measure found, the size of the 

extracted feature vector is 10,001. 

 Now that the feature vectors have been extracted they need to be classified using a 

trained database for the segmentation of future images.  In Tugcu’s work the 

classification was performed by the user, making this a supervised learning system.  

However once the feature vectors in the database were given their appropriate labels, 

there were two issues to deal with. The first was how are the similarities between the 

training database and the new feature vectors going to be measured.  Based on [48], the 

best means of determining the relationship between the data is through the Euclidean 

distance. The second issue was, because the feature vectors represent a 10,001 

dimensional data set and according to [47] the amount of data collected should be five 

times the number of dimensions, the database was extremely large and inefficient to 

process.  An exact nearest neighbor search would take too long to be useful.  Because of 

this, an approximate 3-way nearest neighbor search tree was constructed.   The search 

tree was constructed as follows:  The first node or root node of the tree was created by 

randomly selecting three feature vectors from the training database.  The rest of the 

database was then clustered into three child nodes corresponding to whichever centroid 

they were closest to, based on the Euclidian distance, in the root node.  Then for the three 

new nodes in the second level of the tree, three new centroids were selected in the same 

way and the data segmented.  This process continued until one of three conditions 
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stopped it.  The first condition that can stop a node from propagating into child nodes is if 

all the feature vectors in that node represent the same percept.  In this case the node is 

considered a pure leaf node.  The second reason a node will cease to expand is if the 

number of feature vectors in that node is below a preset threshold.  In this case it is 

considered an impure leaf node.  Finally, the last reason the tree will cease to expand is 

that the preset maximum number of levels has been reached. This too results in impure 

leaf nodes. 

 Once this tree has been created, it is then used to segment the current image 

presented to the system.  The segmentations work as follows:  Once the feature vectors 

are extracted, the distance from the current feature vector to each of the three centroids in 

the root node are found.  The child node of the centroid that provides the shortest distance 

to the feature vector will be used next. This will continue until a leaf node is reached.  If 

that leaf node is pure then the label for the percept will become the label that represents 

the leaf node.  If the leaf node is impure then an exact NN search will be performed 

between the current feature vector and the entirety of the feature vectors represented in 

that leaf node.  The current feature vector will then be labeled by whichever feature 

vector in the node that it is found to be closest to.  Figure 3-3 shows two image 

segmentations performed by this system. 
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(a)                                             (b)                                                                                                 

 
(c)                                                                               (d) 

Figure 3-3. Typical segmentation results of the system. (a) West side of the hallway. (b) Segmented image 

of (a). (c) East side of the hallway. (d) Segmented image of (c). [1] 

These results show that in an unaltered real world environment the large objects 

are segmented well.  The areas with large reflections have difficulty, but that is to be 

expected from a system that has no understanding of the concept of a reflection. 

The final step in this iteration of the system is the ability to update the training 

information on the fly.  Building a single tree requires hours of processing time and it is 

not desirable to have to go through that every time the system is updated.  Therefore, the 

system was built so that anytime new training data is added it will propagate through the 

tree, as if it were being processed for segmentation, and then added to the leaf node that it 

is closest too.  This brings up the problem of the leaf node exploding in size and 
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rendering the tree virtually useless due to processing time. That problem was addressed in 

[4] and will be addressed later. 

This work formed the platform for all the following systems. Although it still 

needs work, it shows the ability to segment real unaltered environments while 

maintaining enough information about the training data to use those segmentations to 

complete tasks. 

 

Autonomous Visual System 

In [2], Wang used the visual system created in [1] and upgraded it. She then used 

the system along with the same WMtk to create a landmark detection system.  This form 

of landmark detection was used to help the robot get from one location to a target.  

Because the scope of this landmark detection was limited to a single area of a hallway, 

and the use of WMtk does not focus on location detection this section will focus on the 

updates and modifications [2] made to the visual system. 

The first change [2] made was using a minimum spanning tree (MST) to 

autonomously classify unlabeled training data.  [2] defined a MST as follows: 

”The minimum spanning tree method is a graph analysis of arbitrary point sets of 

data. In a graph, two points can be connected by either a direct edge or a sequence of 

edges called a path. A loop in a graph is a closed path. A connected graph has one or 

more paths between any pair of points. A tree is a connected graph without closed loops. 

A spanning tree is a tree that contains every point in the data set. If a value is assigned to 

each edge in the tree, the tree is called a weighted tree. For example, the weights for each 

edge can be the distance between the two points. The weight of a tree is the total sum of 
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edge weights in the tree. The minimum spanning tree (MST) is the spanning tree that has 

the minimal total weight among all possible spanning trees for the data set. The minimum 

spanning tree has the following property that can be used for clustering if the weight 

associated with each edge denotes the distance between the two points. That is, the 

weight associated with every edge in the minimum spanning tree will be the shortest 

distance between two sub-trees that are connected by that edge. Therefore, removal of the 

longest edge will theoretically result in a two-cluster grouping. Removal of the next 

longest edge will result in a three-cluster grouping, and so on. These correspond to 

choosing breaks where maximum weights occur in the sorted edges. When the tree is 

built, after sorting the edges in decreasing order, the edges can be cut to form clusters.” 

An example of a MST was provided in [3], and is shown in Figure 3-4. 
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Figure 3-4. An example of a minimum spanning tree. [3] 

Figure 3-4 shows how a simple MST will work. First all the data points are connected 

while maintaining the rule that only one path can exist to connect any two points. Then a 

preset number of cuts are made on the data.  The cuts are made between the data points 

that have the longest path between them. Finally the clusters fall out. In the example 

above, four groups fall out.  In [2], the number of cuts was preset by the user.  This 

method yielded the following segmentation shown in Figure 3-5.   
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Figure 3-5. Example of image segmentation using MST classification [2] 

Figure 3-5 shows the large percepts successfully segmented and the quality of the 

segmentation is comparable to that of Figure 3-3.   

 The second contribution [2] made that pertains to this work, was providing the 

system with novel object detection.  In order for a system to be functional in the real 

world it not only needs to recognize objects, but it needs to know when it doesn’t 

recognize an object and then be able to add the new object to its database.  This operation 

is based off of a calculated threshold using 80 images without the novel object present.  

The median of the distances of each patch from the feature vector it is closest to in the 

approximate NN search tree is found.  The standard deviation for each patch from the 

median of the set of medians is then found.  The threshold T finally comes from adding 

the median of the standard deviations to the median of the medians. This is shown in 

equation 3.3 

                              ),,(),,( 11 NmedianNmedian stdstdmedianddmedianT                  (3.3) 
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Now that the threshold has been calculated the robot is driven through the same 

environment, but with a novel object present.  An image of percept distances is formed 

and segmented using the threshold.  In order to determine that the object is not, noise a 

binary image is created.  The bottom half of the image is eroded twice by an 8-connected 

structure element.  Finally the largest group of connected patches remaining is selected as 

a potential novel object.  As the robot gets closer to the object, the size of the connected 

group should continue to grow. If the number of patches exceeds 100, they are stored and 

added to the training database.  This process is shown in Figure 3-6. 

 

 
Figure 3-6. (left) the original images, (middle) processed images, (right) processed images after learning. 

[2] 
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 This work showed two very important abilities of this visual system. The first is 

the ability to classify clusters without the assistance of a human user (unsupervised 

learning), and the second is the ability to add new objects to the training database.  Some 

of the weaknesses still present in the system are the time it takes to train the system and 

process the images, the need of a human user to predetermine the number of cuts for the 

MST and determine the quality of the search tree created, and the novel object detection 

can only detect one novel object at a time. 

 

Vision System for Human Motion Segmentation 

 In [3], the vision system was used to classify human motion in order to determine 

what task was being performed.  This required the system to learn and classify the motion 

of the objects in the videos.  For more information about human motion segmentation, 

please refer to [3] as this section will focus on the contributions to the visual system. 

 The first contribution [3] made to the system was recognizing the value of 

normalizing the feature vectors.  The results of this are shown in Figure3-7.   
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Figure 3-7:  (a) Original Image, (b) Segmentation without normalization (c) Segmentation with 

normalization [3] 

 

The difference in performance comes from the distance measure used and the high 

dimensionality of the system.  Because of the high dimensionality, the non-normalized 

vectors were forced toward the origin as a result of being on the L1 hyperplane.  With the 

distance from the origin to the center of the L1 norm being 
N

N
 in the N dimensional 

case, as N grows larger the separability of the feature vectors drops. This issue can easily 

be viewed in two dimensions and is shown in Figure 3-8. 



51 

 

N

N

N

1

1

1

 45

N

N

N

1

1

1

 45

 
Figure 3-8: Two Dimension Projection Example [3] 

In Figure 3-8 the plot is 2-D and thus N=2 and the distance is 
2

2
.  Because the actual 

data used is N=10,001 dimensions, the L1 hyperplane passes significantly closer to the 

origin. This means that the discriminating power of the L2 norm as a distance measure is 

greatly weakened.  Therefore by normalizing the feature vectors, they are projected out to 

the hypersphere and the distance measure will work consistently regardless of the 

dimensionality of the data. 

The second major contribution [3] made was the increased autonomy in creating 

the minimum spanning tree and approximate nearest neighbor search tree. In [2], the 

human user had to provide the training images and the number of cuts the MST tree used.  

The problem with selecting the number of cuts was that the number changed for every 

dataset. This means that the user had to use a trial and error approach to find an optimal 



52 

 

number of cuts each time a new MST search tree was to be constructed.  Once the MST 

had classified the data, [2] created an approximate nearest neighbor search tree.  Because 

the centroids were selected randomly, the quality of the tree’s segmentations was always 

random.  If the tree did not perform well the user determined this and created another 

tree.   

The first issue [3] addressed was having the system select the training images 

from the video presented.  This was done by selecting 20 images from the first quarter of 

the video and selecting 20 images from the remaining video.  This resulted in a total of 40 

training images that had all objects present.  This type of image selection was appropriate 

in this case, because of the nature of the videos having all objects present at the start of 

them.  

After the 40 images are selected, the feature vectors are extracted from them. 

Because the human motion segmentation needed a higher resolution than 15 x 15 could 

offer, a 7 x 7 patch size was used resulting in 21,004 feature vectors from each image and 

840,160 vectors total. Due to the number of feature vectors, the database was thinned. 

This was done in two steps. In the first step any feature vectors that were within 

0.0000001 of each other were reduced to a single representation. Then a threshold is 

found by using the mean distance of the vectors of the first two images.  After the 

threshold is set, any vectors whose nearest neighbor is further away then the threshold is 

removed from the database.  This resulted in a database of 48,283 vectors.  

The next issue was to resolve the trial and error method of determining the proper 

number of cuts used in [2].  This was done by looking at the distances across the MST 

from largest to smallest.  A plot of this is shown in Figure 3-9.  Ref [3] found that most of 
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the databases behaved in a similar fashion with a sharp drop in distance and then settling 

into a nearly linear decrease of distances.  Through experimentation he found that the 

best number of cuts was at the beginning of the approximately linear tail as shown in 

Figure 3-9. 
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Figure 3-9: Number of Cuts Algorithm [3] 

The number of cuts is then determined by first calculating the threshold slope.  The 

threshold slope is the slope of the last half of the distance values.  The cutoff slope is then 

determined by backtracking until the cutoff/threshold ratio was less than two.  The 

number where this occurs is then determined to be the number of cuts applied to the 

MST.  
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 From here the approximate nearest neighbor search tree was created. Although 

the tree was created in the same way as [2], a tree validation process was added.  During 

this process the created search tree results of an image segmentation were compared to an 

exact NN’s segmentation results.  If the tree provided the same labels as the NN on 98% 

of the patches then the tree was saved.  If none of the trees were capable of 98% accuracy 

after 20 trees were made then the tree that had the highest accuracy was saved.   

The final contribution [3] made regarding the visual system was to demonstrate 

the performance of the autonomous system in real world environments.   The 

environments tested were the third floor hallway of Featheringill hall on Vanderbilt 

University campus and the walkway outside Featheringill hall.   The results are shown in 

Figure 3-10. 



55 

 

 
Figure 3-10. Natural Scene Segmentation Examples; (a) Indoor Atrium, (b) Indoor Atrium Segmentation, 

(c) Indoor Jacob Hall, (d) Indoor Jacob Hall Segmentation, (e) Outdoor FGH, (f) Outdoor FGH 

Segmentation [3] 

 

Figure 3-10 shows the system adequately performing in multiple real world settings.  

Although noise is present, the large objects are well segmented in all three images.   

This work showed the effectiveness of normalizing the feature vectors which will greatly 

affect the works presented in the rest of this document. This work also shows that the 

system is able to behave in a largely autonomous manner and still provide meaningful 

results.  The greatest weakness of this process is that it takes an extremely long time to 

process any information. The times reported for each step are as follows: 
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 Thinning of feature vectors ~ 1 day 

 Creating MST ~ 4 hours 

 Creating approximate nearest neighbor search tree ~ 1.5 days 

According to these times it will take more than two days just to classify and set up the 

training data for use.  This time does not even include the processing time of each new 

image. So clearly time is a serious issue that must be addressed.   

 

Implementing Change Detection into the Visual System  

 The final modifications to the visual system, before the current work began, were 

done in [4].  The focus of [4] was to solve some of the previous issues with the system as 

well as add change detection to the system.  The two issues this work aimed to address 

were to allow the tree to expand in real time instead of collecting all the new training 

vectors in their respective leaf nodes, and to try and speed up the processing time of each 

image using maximum likelihood estimation at the leaf nodes of the approximate nearest 

neighbor search tree.  The change detection made use of the novel object detection 

implemented in [2] while allowing more than one novel object to be detected at the same 

time, additionally a means of determining when objects were moved in a room was 

developed.  The assumption for this system was that it was used on a stationary humanoid 

robot. In this case the system was run on the humanoid robot ISAC at Vanderbilt 

University.  It should also be noted that this work was done at the same time as the 

human motion segmentation work so those results were not implemented in this system. 

 In both [1] and [2], the tree could only be created after the training database had 

been developed and classified, whether by supervised or unsupervised means. Then when 
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new feature vectors were added, to improve the current system or to add novel objects, 

they were all added to the leaf node in the tree that they were closest to according to the 

distance measure previously described.   There are two problems with this method of 

generating a tree and updating the training database.  The first problem is in the 

supervised training mode. Since the user has to create the entire database, they need to 

guess at which feature vectors in the training images will help produce the most useful 

tree.  The second problem with this comes from the exact NN procedure used on each 

leaf node.  As the leaf node grows, the performance of the system will suffer.  A better 

way to allow training on the fly is to permit the tree to continue to expand in real time. 

This means that if new training vectors are added to the system the leaf nodes can simply 

expand.  This ability also solves the supervised training problem as the user can 

continually check the performance of the search tree and train on the objects that are not 

performing as well as desired.   

 As mentioned multiple times, the processing time of the system is of great 

concern.  After testing it was found that a significant amount of the processing time was 

devoted to the exact nearest neighbor searches at the leaf nodes.  Because of this a quasi 

maximum likelihood estimation (MLE) approach was taken to speed up the processing. 

This was done by finding out which percept was represented most in each leaf node and 

classifying that leaf node as that percept. This way the only processing performed was 

done while propagating through the tree.  This approach provided results that were 

comparable to using the exact nearest neighbor, as scene in Figure 3-11.  
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(a) 

 
(b) 

Figure 3-11. (a) Processed image with MLE tree. (b) processed image using the original search tree and 

detecting the movement of the printer [4] 

 

In Figure 3-11, the objects that have been trained on and their respective representative 

colors are presented in Table 3-1. 
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Table 3-1: List of percepts and representative colors [4] 

Object(s) Color Representation 

Wall, White Erase Boards, Printer Gray 

Floor Black 

Trash Cans, Chair Green 

Power Strip Orange 

 

An issue with this environment was how similar all the objects were to each other. This 

resulted in combining multiple objects and made getting a good segmentation extremely 

difficult regardless of the search tree method.  Even so the difference in segmentation 

quality can be seen in the chair and trash cans. In Figure 3-11(a) both of these objects are 

not segmented correctly while in Figure 3-11(b) they are.  Although there is a difference 

in segmentation quality, depending on the application the difference in processing time 

may make it worth while. Using the MLE tree this image took five seconds to process.  

The same image with the exact NN search tree took 12 seconds to process. Unfortunately 

depending on the application, neither time may be acceptable which means further study 

into this issue is required. 

 The final addition to the system done in [4] was adding change detection.  The 

two aspects of change detection added to this system were novel object detection and 

moved object detection.  The novel object detection was implemented the same way as 

[2], but slightly modified.  The first modification was in setting the threshold distance to 

determine if an object was novel.  In [2] the method for calculating the threshold is 

shown in Eq 3.4. However in this environment adding the standard deviation of the mean 

feature vector distance to the mean of the feature vector distances did not result in very 
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good results. Therefore, two times the standard deviation was used to start with then the 

threshold was modified by trial and error until an acceptable threshold was found. 

 The second addition to the novel object in [2] was the addition of the ability to 

locate more than one novel object at a time.  This was done by using a size constraint on 

the patches that exceeded the threshold instead of finding the largest group of patches that 

exceeded the threshold as in [2].  In [4] the requirement for a novel object was that there 

were seven connected patches that all exceeded the set threshold.   Figure 3-12 shows an 

example of the novel object detection. 

 

 
Figure 3-12. Example of novel object detection [4] 

The novel objects are represented as white and the rest of the segmentations are 

according to Table 3-1.  The reason the white blobs are so small relative to the objects is 

because of a patch erosion process performed around the white blobs to prevent noise 

from being considered. In the example both the ball and person are detected correctly as 

novel objects in the scene. 
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 The next aspect of change detection implemented on the system was moved 

object detection. This is the ability of the system to determine if an object that it 

recognized had been moved in the environment.  This was done using a look up table 

(LUT) to store the labels that the system would expect to see at a patch. The LUT was 

populated using 10 training images of the room.  Then when the new image was 

processed the resulting labels were compared to the LUT. If seven or more connected 

patches had labels that were not represented in the LUT then the object was considered to 

be a moved object.  This is shown in Figure 3-13. 

 

 
Figure 3-13. Example image of both moved object detection and novel object detection. [4] 

Figure 3-13 shows that the system has recognized the trash cans as being moved out from 

under the table where they were expected.  It also demonstrates the systems ability to 

detect a novel object at the same time.  The false novel object in the image comes from 

the use of the HSV color space and the distance measure used in the system.  According 

to Figure 3-2, white can appear with any hue so long as the value is high and the 
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saturation is low. This means that the distance measure will record distance measures 

greater than the threshold if the hue values are different at each patch.  One possible 

solution to this problem would be to map the equivalent white values in the feature vector 

to one bin, however this was not implemented by [4]. 

 This work showed that the system was capable of reliably performing more visual 

tasks than simple segmentation. It demonstrated the ability to learn an environment and 

determine when change had occurred, whether that change is a new object introduced to 

the environment or a known object being moved in the environment.  This means the 

system has the information necessary to determine the context of what it perceives. It also 

showed that simple tricks using the search tree were not going to yield the speed desired 

for a real time visual system.  Other techniques such as using a general purpose graphical 

processing unit (GPGPU) are going to be necessary to help speed the segmentation times 

up to acceptable speeds.  

 

Conclusion 

 All of these works combine to show the potential of using a very high 

dimensional feature space as a means of segmentation. They show that the segmentations 

can be autonomous, reliable, and retain a significant amount of information about the 

environment.  A serious issue to address is the processing speed and solving that problem 

will be discussed in Chapter III.  Beyond that draw back, this system shows promise to be 

able to perform numerous applications robustly and reliably. 
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Abstract 

This paper will focus on autonomously generating local models of regions of a 

larger more global world as seen through the camera of a mobile robot driven around a 

building. Subsequently, these local models are used to visually recognize the location the 

robot is currently in.  The models are based on what the system determines to be the 

“dominant” percepts from the global region. These dominant percepts are also used as 

local percepts within each smaller region, although refined for each local region.  These 

percept models are constructed via clustering in a very high dimensional space (e.g., 

10,000 features).  The global region is autonomously segmented into local regions using 

a relative perceptual difference measure between the current image and prior images 

taken take from a video obtained from driving around the building.  Once the local 

regions have been segmented local representations of the global percepts that exist in 

each region will be created and used for the location recognition process.   

 

Introduction 

The goal of this work is to create a developmental location recognition system 

that is capable of autonomously clustering percepts that provide highly useful 

information about the environment in a reasonable amount of time, autonomously 

segmenting a global region into local regions, and visually recognizing which local 

region the robot is currently in based on percepts seen.  The percepts that are extracted 

will be representations of the large objects present in the global region, in this case 

multiple hallways on the third floor of Featheringill Hall (FGH) at Vanderbilt University. 

The significance of this type of segmentation is that it is aiming to extract general 
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information about an entire environment instead of focusing on providing an aesthetically 

pleasing segmentation of a single image.  This type of extraction will allow for this 

information to be used in the autonomous development of a model representing each of 

the hallways in a location recognition system, thus demonstrating an incremental learning 

process. 

  There have been numerous robotic systems that have attempted to solve the 

localization paradigm [6,7,13,21,26,32,35].  Many have done so for the purpose of 

navigation [6,7,13,32,35].  Although navigating through a local environment is very 

important in mobile robotics, it is not the only step to spatial cognition.  These systems 

still need the ability to reliably recognize where they are in a larger contextual sense. A 

common approach to localization is referred to as Simultaneous Localization and 

Mapping (SLAM) [6]. The objective of a SLAM system is to generate a map of the area 

while localizing the robot within that area.  Two other means of localizing robots are 

through landmark detection and template matching.  Landmark detection aims to robustly 

extract some features out of an image and use those features to determine where the robot 

is [13,35].  The third method of localizing a robot, template matching, attempts to use the 

information in an entire image [21,26].  All three approaches have been used 

successfully. 

SLAM, at its roots, is typically based off of using a laser range finder or vision to 

map a new area and localize the robot within that area. It has been shown to be extremely 

useful in the area of navigation [6,7].  The weakness of using only a range finder with 

SLAM is that without any visual appearance information, it is not capable of determining 

the difference between two geometrically identical locations.  Often, then is not much of 
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a weakness, however some problematic situations can occur.  An example of this would 

be two floors of the same building. It is not inconceivable to think that a tall building 

would have multiple floors with the same geometric layout. So, even though a range 

finder-based SLAM will be able to determine exactly where the robot is on that floor, it 

has no means of determining which floor it is on. A number of systems have proposed to 

use visual SLAM [13,18,19] which would be likely to overcome this problem.  This 

approach to the SLAM problem typically combines both a range finding sensor with a 

camera. The range finder will generate the maps while the camera is used for landmark 

detection to supply more information about an area [13,18,19].      

Landmark detection has also been used extensively for navigation [13,18,19,35].  

The idea behind landmark detection is to find unique features in the environment and use 

them to localize the robot.  These features can include artificial landmarks in an 

environment [35] or natural features [13].  Once the robot understands where it is, it can 

plan its path for navigation. However this type of localization may suffer from several 

difficulties.  The first is sensitivity in finding the landmarks.  Extracting exact 

information from a scene can be very difficult.  If the landmarks don’t appear exactly as 

expected, the system may not detect some landmarks, which in turn may compromise the 

performance of the system. This implies that the system should have a high degree of 

robustness in landmark detection for successful application.  The second difficulty in 

landmark detection is the localization dependency on the landmarks. Because the robot 

has no other means of interpreting its environment, failing to detect landmarks can render 

the robot lost.  This dependency combined with the aforementioned detection sensitivity 
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may limit the robustness of this technique. This is why the combination of landmark 

detection with SLAM can help with navigation. 

At this point, it should be noted that the authors consider these systems to be very 

good at navigation.  Replacement of these techniques is not the intention of this work. 

The work presented in this paper seeks to add a new dimension to the way robots are able 

to perceive the overall context of the environment.  The addition of SLAM for the 

purpose of navigation should be considered once the full potential of the proposed system 

has been explored.  

There has also been some work in template matching or contextual based 

localization done using epitomes [21].  The epitome is created based on the probabilistic 

information in the training images, and is used to compare the current image to a known 

location. However the criticism of this work is the same as that of the previously 

mentioned systems, and that is that they all limit the information used.  Although it is 

suggested that the epitomes will be able to differentiate between “my kitchen and “a 

kitchen”, there is no segmentation of individual percepts performed.  This means that 

they are essentially looking for a measure of difference.  Although this is acceptable for 

location recognition it may limit what such a system will be able to accomplish. Once an 

epitome is created all of the other information about the individual percepts in the 

original image is lost.  Because of this weakness, it seems that the epitomes would fail to 

recognize an area if a partial change occurred, such as painting the walls a different color. 

The vision system used will be an extension of the work performed in [1,2,3,4].  

This work uses very high dimensional sparse feature vectors extracted from overlapping 

15x15 patches of in the image.  These sparse vectors are then classified using various 



68 

 

methods.  In [1] and [4], supervised learning was used to train the system, and in [2] and 

[3] an unsupervised minimum spanning tree (MST) was used.   

These previous works have demonstrated the advantages of using the very high 

dimensional feature space while noting the training time and processing speed of the 

image segmentation as an issue. Therefore another goal of this work will be to focus on 

autonomous training methods that provide results in the fastest possible manner and 

reduce the processing times to functional real time speeds.  Also because the potential of 

using this very high dimensional feature space representation remains relatively 

unknown, only the information inherent in this representation will be used.  

In this work a training database of ~600,000-900,000 sparse feature vectors from 

600 images was gathered.  The images come from capturing video while driving the 

robot around a building.  The database was over-segmented using a K= 40 K-means 

clustering algorithm.  K was deliberately set to over-segment the data because the number 

of useful dominant percepts is unknown.  Empirically, K=40 has been found to be much 

larger than the number of dominant percepts in a global region. After the first, over 

segmented, set of clusters were obtained, they were deleted or merged based on size and 

distance measures. 

With regard to learning the dominant percepts, this method has shown the ability 

to extract information from the overall environment that was crucial for the system to 

recognize its location within the global region. Additionally, it reduced the training time 

for learning the dominant percepts from approximately 4 days in [3] to less than an hour. 

This reduction in time came with the penalty of a less aesthetically pleasing 
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segmentation.  However, for the sake of location recognition the most visually aesthetic 

segmentation is not necessarily the best segmentation. 

The global region that the 600 training images were gathered from will be 

segmented into local regions determined by the system.  This is done using an overall 

image perceptual difference measurement based on the current image and four prior 

images. Once the global percepts and the local regions have been established the global 

percepts present in each local region are modeled within that region and used to 

recognize the local region on future trials.   

This paper will be organized as follows. Section II describes the previous 

implementations of the visual system.  Section III illustrates the current implementation 

of the system.  Section IV will cover the results of Section III. Section V will provide a 

conclusion and future works. 

 

Background 

A. Overview 

The vision system used for the current work is an extension of [1,2,3,4].  Each of 

these works applied the same general vision system to different applications [5].  The 

flowchart of the vision portion of these systems can be seen in Figure 4-1.  The 

applications the vision system has been used for are: combining the  
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Figure 4-1.Flowchart of vision system. [1] 

 

vision system with a working memory toolkit to find open space in the environment with 

supervised learning [1], learning the open space in the environment with unsupervised 

learning [2], human motion segmentation [3], and change detection [4].     Because each 

of them inspired different parts of this work, in the following background sections, only 

the most relevant system to the current work will be described in order to avoid repeating 

information describing all parts of each system. 

B.    Feature Extraction 

   The decision made in [1] to use a very high dimensional feature space has been 

the root of the entire visual system.  This very high dimensional feature space system has 

shown good segmenting abilities in [1,2,3,4].  Each implementation has provided its own 

set of changes to the feature vectors and therefore this section will largely reference [1] 

while providing the necessary background on them. 
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The feature vectors that represent the data points in the feature space are 10,001 

dimensions.  The first 10,000 bins represent HSV color values as a very high dimension 

histogram of the colors in an NxN patch of pixels. The last bin is a Laplacian texture 

feature.  The typical size for N is N=15.In the current work only the HSV-based features 

are used so please refer to [5] to learn more about the features. 

Because the 10,001 dimensional feature vectors are large, slow and impractical to 

use, a sparse vector representation was adopted.  This representation of the data allowed 

the system to retain all of the segmenting power while reducing the memory costs and 

fixing the worst case scenario calculation costs.  Now instead of the size of the feature 

space determining the calculation costs, the size of the patches puts a ceiling on the worst 

case cost.  If the patches are set at NxN pixels and assuming each pixel in a patch is a 

distinct color, the largest size a sparse vector could be is N
2
+1, where the 1 comes from 

the Laplacian texture feature [1].  Therefore the worst case number of indices that need to 

be accessed by the CPU when calculating vector distances would be 2N
2
+1. 

C.    Training  

In [1] and [4] the system was trained using supervised learning. In [2] and [3] the 

system used a MST for unsupervised learning.  Although [2] initially pioneered this 

approach, [3] is the most up to date implementation.  So this work will be the focus of 

this section. 

The first step in training the system was thinning the database of feature vectors.  

The exact method for this can be found in [3] and resulted in 840,160 feature vectors 

being reduced to ~ 400,000 feature vectors in approximately1 day of processing. 
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The next step in training the system involved creating a MST [3].  Clusters are 

formed from the MST by cutting links between points sequentially, starting with the 

largest link. The difference between [2] and [3] in regard to the MST was in [2] the 

human user chose the number of cuts while in [3] this process was automated. The time it 

took to create a MST was approximately 40 hours. Also, even though this process worked 

well for the human motion segmentation environments, when used in the natural 

environments shown in Figure 4-2 some human intervention was necessary due to under 

segmentation [3]. 
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Figure. 4-2. Natural Scene Segmentation Examples; (a) Indoor Atrium, (b) Indoor Atrium Segmentation, 

(c) Indoor Jacob Hall, (d) Indoor Jacob Hall Segmentation, (e) Outdoor FGH, (f) Outdoor FGH 

Segmentation [3] 

 

The final step in training the visual system is to organize the clusters found into a more 

meaningful representation.  Reference [3] used a K=3 K-means search tree.   

This process resulted in all the feature vectors being assigned to a percept class 

and organized in an approximate nearest neighbor (a-NN) search tree for image 

segmentation. This step of creating the tree took about 1.5 days to complete, and thus the 

technique was clearly not fast enough for practicality.  As an alternative, a quasi-

maximum likelihood estimation (MLE) tree was created as [4].  The MLE tree is 

constructed in the same way as the a-NN search tree except for the final leaf nodes of the 
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tree.  In the a-NN tree, many leaf nodes contained training vectors from different classes, 

and were designated as an impure node.  Upon arriving at such an impure leaf node a 

nearest neighbor search is performed over the vectors in the impure node in order to 

select the class decision.  While the a-NN search tree keeps all of the feature vectors in 

the impure node for an e-NN comparison, the MLE search tree finds the class with the 

highest number of feature vectors present in the leaf node. Then during segmentation, if a 

new vector arrives at that node it will automatically be assigned to the class most 

represented in that node.  During segmentation processing, the MLE tree will be 

somewhat faster than the a-NN tree. 

D.    Image Segmentation 

Now that the training data has been classified and organized a new image is ready 

to be segmented.  This process begins with the image being broken down into 15x15 (i.e., 

N=15) patches and extracting the feature vectors.  Each feature vector is then parsed 

through the search tree with a percept label assigned based on the leaf node reached. 

E.    Image Segmentation Results 

This technique has resulted in the segmentation of large objects in natural 

environments, as shown in Figure 4-2.  The environments used are a hallway on the third 

floor of FGH, Figure 4-2 (a) and (c), and a walkway right outside the building, Figure 4-2 

(e).  The segmented results are shown in Figure 4-2 (b), (d), and (f). These results show 

the ability of the methodology used to segment objects, but the problem is still the time 

required to segment an image.  In [4], this was looked at more closely.  It was found that 

using the a-NN search tree to segment six objects in an image required ~12 seconds [4].  

This was far too long for any practical real-time vision system.  So the MLE search tree 
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was created to solve this problem. The MLE tree sped the process up to ~5 seconds per 

image [4].  The segmentation of an image using the a-NN compared the MLE approach is 

shown in Figure 4-3.  Unfortunately, this is still too slow for a real-time system.  

Therefore, the next step was to  

 

 
(a)                                                                       (b) 

Figure 4-3. (a) Approximate nearest neighbor search tree segmentation of a lab. (b) MLE search tree 

segmentation of a lab. [4] 

 

move this system to a general purpose graphical processing unit (GPGPU) such as 

NVIDIA’s CUDA architecture. 

F.     CUDA 

CUDA stands for “compute unified device architecture” and was designed by 

NVIDIA to manage parallel computations [15].  This architecture was designed in a 

single instruction multiple data (SIMD) format. The only requirement for this parallel 

architecture to improve a serial process is that the data must have a high arithmetic cost 

relative to the data fetching cost.  This is due to the design of the processor.  A typical 
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CPU has a large cache for data fetching relative to the number of arithmetic logic units 

(ALU) while the CUDA device was designed with a large number ALUs relative to a 

small cache.  This means there is a relatively small amount of space to store the data in 

fast memory increasing the cost of having to fetch that data.  Because each patch goes 

through the same set of instructions, in principle the design presented is well suited for 

this architecture.  Although CUDA did help significantly, yielding segmentation times of 

50 to 100 milliseconds per image, a number of changes needed to be made to the process 

in order to run under CUDA. These changes will be explained in the next section. 

 

Implementation of the System 

A.  Overview 

The goal of this work is to autonomously create a model of the world seen 

through the view of a mobile robot in a reasonable amount of time.   The flowchart for 

training this system is shown in Figure 4-4.   

 

 
Figure 4-4. Flowchart for training the location recognition system 
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The process begins by first collecting the training images. Next the database of extracted 

feature vectors needs to be thinned and the global percepts classified.  Then the local 

areas need to be determined. Once the global percepts and local regions have been 

segmented the percepts present in each local region are used to model that region.   

The data for this work was collected from a video camera mounted on top of a 

Pioneer 2-AT mobile robot that was guided around the third floor of FGH.  Although a 

wandering algorithm could have been implemented, this was deemed unnecessary 

instead adopting a philosophy more resembling a human being guided around a building.  

The path taken is shown in Figure 4-5.  The path required about 6 minutes and 20 

seconds to travel.  From that video 600 evenly spaced images were collected resulting in 

an image about every foot of travel.  

 

 
 

Figure 4-5.  A diagram of the path taken by the mobile robot on the third floor of FGH at Vanderbilt 

University with the numbers providing a label for each hallway. E represents elevators and because this 

diagram is incomplete some rooms have been labeled for orientation. 
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This method will allow the system to learn a general understanding of the 

percepts common throughout the entire floor (i.e., wall color, floor color, etc.) so that 

when the global region is segmented into smaller more local regions, it will be able to 

understand that even if a blue colored wall looks slightly different locally in multiple 

regions, globally it is the same percept.  The significance of this relates to the system’s 

ability to connect percepts somewhat like humans do.   

B.     Feature Extraction 

The current state of the vision system extracts a 10,000 dimensional HSV color 

histogram from a 15x15 patch.  The texture feature was removed in order to simplify the 

processing.  Also, it was found that by normalizing the feature vectors to have an L2 or 

Euclidean length of 1, they would retain more separation for segmentation [3]. 

C.   Thinning 

Because such a high dimensional feature space has not often been used before, the 

previous works focused on determining whether such a feature space was useful for 

vision applications.  This means that the approaches taken were well known and very 

thorough in processing the data to provide the best results, rather than the most efficient 

processing. This is evident in the training phase taking more than 4 days in [3] and each 

image requiring approximately 5-12 seconds to process depending on the method [4].  

Therefore, instead of focusing on the best possible results, this work will focus on getting 

good meaningful results in the least amount of time.   

The first step in training the system is thinning the 2,002,200 feature vectors 

gathered from the 600 images. The previous method required gathering all of the data and 

then arduously finding the distances between every feature vector in the database.  The 
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proposed method here will thin the database relative to each image gathered rather then to 

the entire database.   

The purpose of thinning the data is to remove the more isolated feature vectors 

that do not clearly correspond to an object.  Such isolated vectors occur very rarely in the 

training data and thus it is likely they do not represent robust dominant percepts.   In fact, 

they may be interpreted as distracting noise. Therefore removing such noise from each 

image as that image arrives, will remove the noise from the overall database.  Although 

this method will not remove as many feature vectors as processing the entire database as 

a whole, it will still thin the database substantially, keeping only tightly clustered feature 

vectors.   

The first step in thinning each image is to extract the feature vectors and find each 

feature vector’s shortest distance to any other feature vector from that image.  Then all 

the minimum distances are averaged and divided by 20.  The value of 20 was found 

empirically and repeatedly resulted in roughly a third of the feature vectors from each 

image being kept.  This thinning process resulted in about 600,000-900,000 feature 

vectors retained and required only about 10 minutes total computation time.   

D.    Clustering the Data 

The next step in training the system is to cluster the thinned data points.  With 

about 400,000 feature vectors the MST took approximately 40 hours. Therefore, with the 

thinned database being almost twice as big as that in [3], the processing time of the MST 

was even less practical.  So in order to decrease the processing time a K=40 K-means 

clustering was used.  Because the number of objects is unknown, K=40 is meant to over-

segment the data initially. The value of 40 was found empirically to perform well. 
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Once the number of clusters is set, the K-means algorithm will randomly select K 

feature vectors and make them the centroids.  Next, the remaining feature vectors will be 

assigned to the cluster that has the centroid that feature vector is closest to.  As soon as all 

the feature vectors have been assigned to a cluster, the mean of each cluster is calculated 

and the feature vectors are clustered again.  This process continues until the clusters 

converge and the means no longer change.  

Next, the over-segmented clusters can be merged into a smaller number of 

significant clusters.  This is explained in detail in Section III.F below. 

E.   Modeling the Clusters 

At this point in the previous works, the next step would be to create a search tree 

of the database in order to optimize the structure of the data for processing.  However, 

none of the search trees attempted were fast enough for real-time applications.  The 

solution to this problem was to use CUDA.  Because of the memory limitations of the 

GPGPU, it was not possible to port the entire search tree onto the GPGPU and efficiently 

access the feature vectors within it.  So a nearest mean classification technique was 

implemented. Nearest mean classification is equivalent to assuming that each percept is 

modeled with a Gaussian distribution with different means and all covariance matrices 

equal to an identity matrix.  Clearly, this is usually going to be a suboptimal assumption, 

however, the use of a very high dimensional feature space provides greater separation 

than low dimensional spaces, and we found the nearest mean approach to yield both 

efficient and good quality results. 

The nearest mean classification calculates the mean vector of each of the clusters 

and uses that as a model of that percept.  Then when a new feature vector is being 
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processed, it will be classified according to the percept mean vector that it is closest too.  

An example of an image segmented using the nearest mean technique compared to the 

same image segmented using an exact NN classification is shown in Figure 4-6.  

 

      
(a)                                                              (b) 

Figure 4-6.  (a) An image of the hallway using an exact nearest neighbor classification. (b) The same image 

of the hallway using nearest mean classification.  Note:  The labels in the nearest mean were assigned 

randomly. The clusters represented were checked and found to be the same as the exact nearest neighbor. 

 

In this example, the database gathered and labeled for Figure 4-6 (a) was done by a 

human user.  The feature vectors representing each cluster were then averaged and those 

percept mean vectors were assigned a random label.  Because of the random labeling 

algorithm used for display purposes, the percepts in Figure 4-6(b) appear in different 

colors, but the clusters that represent each object are the same. 

F.    Combining the Clusters 

When the K clusters mean vectors have been found, some clusters needed to be 

merged or removed due to the over-segmentation.  The first means of reducing the 

number of mean vectors is a simple threshold. If a cluster does not have at least 1,000 
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feature vectors represented by the mean vector, that mean vector is deleted.  This is done 

to remove small clusters of feature vectors that do not occur very often in the training 

data.  The interpretation is that these clusters do not represent dominant percepts.  The 

value of 1000 was found empirically and represents a very tiny fraction of the thinned 

database of 600,000 to 900,000 vectors. 

Next, the distances between all the remaining mean vectors relative to each other 

are found.  If a mean vector is orthogonal to all the other mean vectors it is automatically 

kept as a distinct cluster.  All the other mean vectors that do not have another mean 

vector less than a distance of 1 to it, are also kept.  Those mean vectors that have other 

mean vectors that are < 1 from them are merged by averaging with the mean vectors 

within that distance.  The distance of 1 was experimentally found to provide 16-19 

percepts for the global area which is roughly the same as the human user found prior to 

this technique. 

This method takes about 10-15 minutes to provide the mean vectors of the large 

objects where the MST approach reported in [3] took about 40 hours.   

G.     Processing an Image 

When segmenting an image, the goal is to find the nearest percept mean vector to 

each feature vector computed from the patches in the image.  The mean vectors are 

represented by xi for i=1, …, M, thus M designates the number of percepts.  The vector yp 

is the feature vector from the p
th

 patch in the image. The minimum exact distance, Dp, 

between the set of normalized mean vectors {xi} and the normalized feature vector yp 

would be calculated as follows: 

                            i=1,…,M                    (4.1) 
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Since the feature vectors have been normalized, . This leaves the dot 

product as the main computation remaining. Based on this equation, finding the largest 

dot product will result in the minimum distance.  Therefore (4.2) is equivalent to the 

distance calculation used: 

                                                                                                       (4.2) 

The sparse vector representation, nearest mean criterion and dot product 

computation resulted in greater efficiency, significantly less storage space on the 

GPGPU, and far fewer memory fetches.  In fact, the entire dot product calculation is 

based on only the indices in xi and yp where both elements in the vectors are nonzero. 

This means that only these nonzero elements need be multiplied.   

  The time results based on this implementation improved the system greatly.  As 

reported, previously it took 12 seconds and 5 seconds for the a-NN and MLE search trees 

respectively [4], the parallelized GPGPU system was able to segment images at ~10-20 

images/second (i.e., 50 to 100 msec).  Whereas in the search trees the time was based on 

how deep the tree was and how many feature vectors exist in a leaf node, the new system 

is dependant on how many potential percepts are present and how many nonzero indices 

there are in a feature vector.  For the estimated times reported there were between 12-18 

objects in any given segmentation. 

H.    Finding the Local Regions 

Now that the global percept mean vectors have been found the next step is to 

classify the large global area shown in Figure 4-5 into smaller areas that are determined 

by the system.  This is done by comparing what the system currently sees to what it saw 

in its recent past.  If the change in the environment is significant, a border will be created. 
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In order to do this, first assume that N (N = 600 in this case) images have been 

gathered and Q (Q= 3337 in this case) feature vectors have been extracted from each 

image.  Then each image is represented as In (n = 1,…, N), and each feature vector is 

represented as xn,q (q = 1,…, Q).  Now the average perceptual change rn between image In 

and images Im, where m represents the indices of four images that occurred prior to In (m 

= {n-10,n-15,n-20,n-25} in this case), can be calculated.  

The first step in finding rn is to find the individual relative perceptual distances 

ρn,m between In and each of the four prior images used.  This value is calculated as the 

symmetrical sum of the sum of distances between each feature vector in In and its closest 

feature vector in Im and the sum of distances between each feature vector in Im and its 

closest feature vector in In. This is shown in (4.3).     

                                               (4.3) 

Once ρn,m has been found for each value of m they are averaged together to find the 

average perceptual change between In and each image in Im.  This is shown in (4.4) 

                                                             (4.4) 

The results of (4.4) are plotted in Figure 4-7(a).  The horizontal axis indicates the image 

number and the vertical axis is ρn,m.  The plot is smoothed using an averaging filter, and 

only the peaks in areas of the plot that have an average perceptual change that is trending 

up followed by a downward trend are required.  This results in the image shown in Figure 

4-7 (b). 
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(a) 

 

 
(b) 

Figure 4-7. (a) A plot of the average perceptual change over 600 images.  (b) (a) after being smoothed by 

an averaging filter. 

 

Figure 4-7 (b) shows multiple large peaks representing different points of change.  The 

first set of peaks at roughly image 110 represents the left turn going from area 1 to area 2 

in Figure 4-5.  This change is very sharp because of the turning motion performed. The 

changes at images ~360, 475, and 535 are from turning as well.  The change at image 
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~280 was due to passing from an area with a sky light into a hallway with no natural light 

sources.  In a separate experiment, the system was driven from a hallway straight into 

another room and the context change from the hallway to the room was enough to 

indicate a new environment.  These results were consistent over multiple trials, indicating 

this method can effectively detect context changes in this environment. 

The current problem using this method is finding the best way to determine which 

image is the cutoff point, or border, between two regions. Currently, the criterion for 

creating an area is if there are 10 images with consecutively rising distances prior to the 

current image and 10 images with consecutively falling distances after the current image 

then that peak image is the cutoff. This technique does a reasonable job of locating the 

peaks, but is not robust enough to work without some minimal user assistance. 

I.    Modeling Local Regions 

The final step for training this system is to create the local models. This is done 

by calculating the mean vectors of the percepts that are local to each area.  These are 

called the local percept mean vectors.  To do this, first assume that there are M percepts, J 

local regions and that the global percept mean vectors are represented as , where i= 

1,…,M.  Then the local percept mean vectors are represented as , where j=1,…,J.  

Next, the local percept mean vectors,  for an area are found by first segmenting all the 

images found to be in that area using the global percept mean vectors,  .  Then all the 

feature vectors, from all the images in an area that are associated with each percept M, 

are averaged.  These averaged vectors are then used as the local percept mean vectors 

modeling an area.  
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J.    Recognizing Locations 

Now that the system has a model of each area, we are ready to segment new 

images and determine the area the robot is in at each new image.  The flowchart to 

explain this process is shown in Figure 4-8. 

 

 
Figure 4-8. Flowchart for processing each new image seen by the system. 

 

This process begins with simply acquiring an image from the camera. That image is then 

segmented for each assumed area j’ using each assumed area’s local percept mean 

vectors, . In the case of the hallway described previously J=6 areas.  After the 

segmentations are performed the feature vectors associated to each percept are averaged.  

This step provides J new sets of mean vectors for the current image called the image 

percept mean vectors, .  The new mean vectors represent what the system believes it 

sees if the robot is in the area of the assumed local percept mean vectors used for the 

segmentation.  The six new sets of image percept mean vectors are then compared to  . 

The distance metric used is the sum of the distance of each percept in  to its respective 
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percept in .  Whichever area, j’ , provides the shortest local area distance Aj’, is 

determined to be the current area.  The equation for Aj’ is shown in (4.5). 

                                                                        (4.5) 

Obviously, it is very desirable to have a system that can be easily updated after 

the initial training.  The means of currently updating the training data base is to collect a 

new set of images and create new local percept mean vectors for that set of images.  

Finally, average the new set of local percept mean vectors with the current set of local 

percept mean vectors.  

 

Explanation of Results 

A.     Processing Time Results 

The reason very high dimensional feature spaces are not used frequently is 

because of the cost of processing high dimensional data.  The amount of data quickly 

overwhelms the CPU and renders solutions far too slow for practical use in both training 

the system and processing new data.  This system offers a solution to that problem.  By 

expanding the dimensionality to such a high level, most of the mathematical complexity 

other systems need to use for segmentation become infeasible.  Therefore, simple 

methods with proper implementation, such as GPGPU, have been able to largely reduce 

the time issues.   

The first place this can be seen is in the training phase.  Table 4-1 shows the 

processing times comparing the training phase of the systems presented.  The total time 

to train the system in [3] is ~100  
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Table 4-1: Training phase times 

Training Phase Time (hrs) 

Previous System 

Thinning 

MST 

Creating Search Tree 

Total 

Current System 

Thinning 

K-means 

Total 

 

~24 

~40 

~36 

~100 

 

~0.16 

~0.16 

~0.32 

 

hours or ~4 days while the current implementation requires ~0.32 hours or ~ 20-25 

minutes.  This is a significant increase in training time that comes without significant loss 

of segmentation quality, with quality defined as providing information to the system 

rather then aesthetics to humans.  

The second improvement regarding processing time is seen in the image 

segmentation phase.  The processing times comparing image segmentations are shown in 

Table 4-2.  The previous methods using a-NN  

 

Table 4-2: Image segmentation times 

Technique   Time (msec) 

    

Approximate Nearest Neighbor   12,000 

MLE   5,000 

Nearest Mean   50-100 

 

and MLE required 12 seconds and 5 seconds respectively segmenting an image.  This is 

not fast enough for any system to operate in real time. By changing the model of the data 

to mean vectors and implementing the distance calculations using CUDA this time was 

reduced to 50-100 milliseconds.  It is also believed that optimizing the implementation on 

CUDA will improve this processing speed even more. 
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B.   Image Segmentation Results 

Upon first inspection of all the segmented images in Figure 4-9, it would be 

perfectly reasonable to conclude that the segmentations retain little if any useful 

information.  However that is not the case.   
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(a)                                               (b) 

 
(c)                                              (d) 

 
(e)                                               (f) 

 
(g)                                             (h) 

 
(i)                                            (j) 

 
(k)                                          (l) 

Figure 4-9.  (a) image of hallway 1 in FGH. (b) segmented image of (a).  (c) image of  hallway 2.  

(d)segmented image of (c). (e) image of hallway 3. (f) segmented image of (e).  (g) image of hallway 4. (h) 

segmented image of (g).  (i) image of hallway 5. (j) segmented image of (i).  (k) image of hallway 6. (l) 

segmented image of (k) 
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Although these segmentations do not directly reflect the original image, they do retain a 

good amount of information about the original image.  Comparing the segmented images 

of Figure 4-9 to those in Figure 4-2, Figure 4-9’s images do not appear to be segmented 

as cleanly.  There are two reasons for this.  The first is that the patch size in Figure 4-2 is 

7x7. This means those images are segmented at a much higher resolution and single 

errors do not stand out as much.  This resolution is not used here because high resolution 

information is not necessary for location recognition and increases the number of feature 

vectors per image from 3337 to 21,004. The second reason is because the number of cuts 

in the MST was selected by the human user in the case of natural environments.  The 

autonomous method worked very well for the human motion segmentation work in [3], 

but when tried in a natural environment the algorithm under-segmented the images.  The 

clustering method presented here required no human interaction.  It should be noted that 

the reason the proposed system’s segmentation is not aesthetically pleasing is that the K-

means clustering selects different percept clusters from those selected under the MST 

clustering technique.  However, the K-means derived clusters still contain a great deal of 

useful information and result in much more efficient processing. 

 The real significance of this work is what the segmented images mean and what 

information they provide.  Frequently when images are segmented, the goal is to find 

very specific objects that stand out from the environment.  In this case the goal is to 

recognize the environment itself.  Following that approach, it was shown in [2] that this 

system is capable of novel object detection.  By observing the entire environment the 

novel object would then stand out as what it does not know, i.e., it doesn’t belong to the 

known percepts.  Then once the object is learned, it too will be recognized and used as 
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necessary, whereas an approach of looking specifically for that object disregards all the 

other information from the world around the robot.  

Another implication of this type of processing is the relation of objects that are 

classified as the same but are not actually the same singular object. An example of this 

would be the white wall seen in Figures 4-9 (e) and (g).  Although they are both white 

wall, they are not both the same white wall.  As it stands, with just the global percept 

mean vectors they are both considered the same thing. However the single global percept 

will develop local percept models of each object present thus providing the system with 

the philosophical understanding that even though these are the same object they may 

appear differently in different environments.  

C.  Location Recognition Results 

The results for the location recognition are presented in Table 4-3. These results 

were obtained from a  

 

Table 4-3: Results of Location Recognition on Untrained Images 

 1 Training Set 

% Correct 

3 Combined 

Training Sets 

% Correct 

4 Combined 

Training Sets 

%Correct 

Area 1 (97 images) 74%  91.8% 92.8% 

Area 2 (183 images) 59.3% 86.8% 92.9% 

Area 3 (69 images) 52.9% 91.2% 91.4% 

Area 4 (101 images) 96% 98% 98% 

Area 5 (66 images) 3% 50.8% 69.2% 

Area 6 (84 images) 0% 71.1% 53% 

Overall 48.6% 81.6% 83.3% 

 

series of untrained images extracted from a video of the hallways.  Four such videos were 

made over the same area and on different days, resulting in four training sets.  Training 

sets 2 through 4 are used to update the system initially trained on set 1.  As seen in Table 
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4-3 the system is able locate itself with respect to autonomously predetermined areas.  

The performance in areas 1-4, after updating the database, indicates that the system is 

capable of recognizing what local area it is present in based solely on the percepts that are 

found in that area.   

The poor performance in areas 5 and 6 relative to the rest of the areas was due to 

the initial training.  The first video was taken on a cloudy day and both area 5 and 6 have 

part natural lighting and part non natural light.  The result of the clouds reduced the size 

of the peaks in Figure 4-7(b) at images ~500 and 600.  When the other training videos 

were taken there were prominent peaks at those locations indicating that areas 5 and 6 

should have been split into two more areas.  Because the system is not currently capable 

of handling such a situation on its own at the current time the decision was made to keep 

the results as they are and use this event to devise a means of dealing with this situation 

as part of future work.    

 

Conclusion and Future Work 

This work has shown an efficient means of representing the world for a mobile 

robot.  With the model created, the robot is able to quickly segment the world around it 

and use that information for useful purposes.  The models of the objects in the world are 

10,000 dimensional pdfs, or histograms, of the HSV color space mean vectors.  These are 

then used to segment a new image using nearest mean classification.  The results showed 

practical segmentations and significantly improved processing times. 

This model is then used to semi-autonomously partition the hallways in Figure 4-

5 into 6 smaller regions, develop local percept models of the global percepts, decide 
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which of the 6 smaller regions the robot is currently located in, and incrementally learn 

more about each area of the hallway, with each new pass through it improving the 

location recognition system. 

The next step to be taken in this work will be to implement methods to detect both 

novel objects and novel areas.  This will include using the method of novel object 

detection from [2] and [4], detecting completely novel areas, detecting a new area even if 

the percepts are recognized (i.e., further extensions of the hallways in Figure 4-5 that 

complete the entire floor plan), and determining if the current model of the region is the 

best model.  Once this work is completed the system will then be able to learn and 

recognize more areas. 

  Also a few more additions will be made with respect to the vision system.  

Obviously understanding of functionality can not come through vision alone. However 

recognizing behaviors through vision is possible. With this in mind the system will be 

able to start recognizing what it believes to be reflections based on their behavior as the 

robot travels.  Also when objects are seen at a distance, due to various lighting 

conditions, they can be segmented incorrectly.  Therefore a method of tracking how areas 

are segmented is being developed in order to track whether or not mean percept vectors 

should be combined, split, or marked as similar. 
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Abstract 

This paper will focus on two new aspects of the vision system described in [59] 

which focuses on creating a developmental location recognition system.  The first 

addition is a further classification of the autonomously learned percepts.  Because they 

were learned in an unsupervised manner through vision alone, it is necessary for the 

system to error check itself and determine if the segmented percepts are in fact actual 

percepts. This includes deciding if a percept is a reflection, a different aberration of light, 

or an actual percept.  This stage of processing will be done by tracking the percepts as the 

robot moves and classifying each percept blob based on its behavior. The second addition 

presented here will be a means of detecting both novel objects and novel regions. The 

implementation of the novel object detection will be similar to the work in [2,4], but has 

been modified to only detect objects of a certain size.  The novel area detection will use a 

threshold and consistency measure to determine if an area should be considered a novel 

region.  This method resulted in accurately reducing previously learned regions into more 

accurate regions, detecting novel regions on the same floor as the initial training, and 

detecting novel regions in different areas. 

 

Introduction 

Numerous location recognition systems have been and are currently being 

developed [6,7,13,18,21,26,32,33,38].  As described in [59], three general types of 

location recognition used are SLAM, landmark detection, and template matching. These 

types of systems have all had success to varying degrees, but still lack certain aspects of 

location recognition that are important.  SLAM has been found to be extremely useful, 
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and will be added to this vision system as a future work, but SLAM by itself is entirely 

based on geometric shape.  Because of this numerous visual SLAM techniques have been 

developed [13,18,19], and although these systems tend to use vision to improve the exact 

location of the robot relative to its surroundings, a system using SLAM that aims to 

provide a general description of the robots location, e.g. by the elevator, was not found.  

Landmark detection has also had a good amount of success.  This technique involves 

using specific objects or qualifying features to define a region.  The problems with 

landmark detection has been selecting robust enough landmarks and finding those 

landmarks in application [13,35]. Also landmark detection has been largely used for 

navigation purposes versus defining an actual location. Template matching is the 

matching of a current image to a set of training images and, based on some set of 

features, determining the location of the robot. This technique has been used to define 

areas through the use of epitomes [21].  The issue with this method is that it does not 

provide any type of percept segmentation.  

With these works in mind, the goal of this location recognition system is to create 

a system that is capable of segmenting the percepts in an image and, based on the 

percepts observed, determine what area the robot is currently in.  The vision system used 

was created in [1], and has been used for multiple works [2,3,4,5].  This vision system 

has shown the ability to reliably segment trained percepts using both supervised and 

unsupervised training methods.  

As discussed in [59], the problem with the previous unsupervised methods was 

the length of time required to train the system.  Therefore a fast K-means classification 

with K reduction was performed in [59].  This resulted in segmentations that were useful 
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for location recognition, but were not very good at object segmentation.  Therefore this 

work will also include methods of further classifying the percepts segmented by 

determining whether a reflection is present, as well as determining if segmented percepts 

are actual objects, aberrations of light, or if the system is uncertain whether it sees an 

object or not.  This will be done by tracking the percepts as the robot moves and 

classifying them based on their behavior.   

The location recognition system introduced in [59] was able to autonomously 

learn the percepts within a training region, segment the training region into local regions, 

create models of the local regions based on the percepts recognized from training, and 

finally visually recognizes each local region with a high degree of reliability based on the 

local models.  Now that the system is able to learn an initial set of regions, it needs to be 

able to recognize if it is in a new region.  This process involves multiple aspects.   

First, the system must be able to determine if novel objects are present.  A novel 

object detection scheme was introduced in [2,4], and will be included in this work.  Next, 

the system needs to be able to determine if it is in a region that it recognizes that simply 

has a novel object present.  Then, the system needs to determine if it is in a novel region.  

There are three types of novel regions that need to be determined.  The first type of novel 

region is determining if a known region was originally trained incorrectly and should 

have been learned as two separate regions.  In this case, the system should then separate 

the known region into two new regions and recognize them as such.  The second case is a 

novel region that has the known percepts present, but is in an untrained area.   This could 

be different hallways in the same building.  The final type of novel region that needs to 

be recognized is a truly different area, such as a different building.   
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The implementation of these additions and the results will be discussed in the 

following sections.  The rest of the paper will be organized as follows.  Section II will 

describe the location recognition system and provide all of the background information 

necessary.  Section III will explain how the reflection detection and percept 

classifications were implemented and the results.  Section IV will explain the novel 

object detection and novel area detection scheme along with their results.  Section V will 

give conclusions as well as future works.   

 

Related Works 

A.     Vision System 

The vision system used in [59] uses color information extracted from patches of 

15x15 pixels.  The feature vectors used are 10,000 dimensional feature vectors 

representing the pdf, or the histogram, of the hue, saturation, and value (HSV) color 

space present in each patch of pixels.  The primary focus is on the true colors present in 

each patch and therefore the hue is quantized into 100 bins with the saturation and value 

being quantized into 10 bins each.  As stated in [1] the high dimensionality is used 

because of the robustness it offers for classifying percepts.  

Using this level of dimensionality presents its own challenges.  First, gathering 

enough training data.  Second, all 2
nd

 order calculations have become extremely 

expensive and difficult to calculate.  Third, the size of the data can quickly overwhelm 

the memory of a system.  Finally, segmenting the images at frame rate speeds is difficult.   

The first issue is discussed more in [1], and in summary there is no issue.  Images 

are full of information.  So much so that systems often try to limit the information used.  
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Therefore, collecting enough information for properly training the system is not an issue 

for this work.   

Next, due to the size of the feature vectors calculations such as covariance 

matrices, Eigen values, Eigen vectors, etc. become impractical.  This is dealt with by 

using a Euclidian distance measure and a nearest mean classification.  Although distance 

measures in such high dimensionality are known to have problems [23,24], they were not 

largely experienced in this system [63]. 

The size of the feature vectors was dealt with by using a sparse representation of 

the data.  Because the information was extracted from a patch of 15x15 pixels, in the 

worst case scenario a sparse vector would have 225 bins.  Therefore using this method 

affords the segmenting power of a 10,000 dimensional space while only having to deal 

with vector sizes of 225 nonzero bins.  It is worth noting that most feature vectors have 

only 30-40 bins reducing the memory requirements even more.  For more information 

about the benefits of this space see [1,2,5,63].  

As far as processing the data, frame rate image segmentation has been the most 

challenging aspect of the high dimensionality.  Multiple attempts have been made 

including nearest neighbor (NN) searches, approximate nearest neighbor (a-NN) search 

tree, and maximum likelihood estimation (MLE) search tree [5].  None of these methods 

were able to reduce the segmentation times to the desired level.  As described in [59], a 

nearest mean approach has been implemented on the CUDA architecture which has sped 

the image segmentation up to acceptable speeds while retaining acceptable quality.     

B.    Percept Classification 
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The training database of feature vectors for the vision system has been clustered 

using three different methods.   The first method used supervised learning [1,4].  This 

method provided robust and reliable results.   Because of the success of the supervised 

method, unsupervised techniques were implemented. The first unsupervised clustering 

technique used was a minimum spanning tree [2,3].  This technique also resulted in 

robust and reliable segmentations.  The problem with this technique was that it took days 

to train the system and if a problem arose the training had to be restarted.  So because of 

the time required to get the results, the decision was made to see how the system would 

perform using a simpler and faster clustering method, K-means [59].  This method was 

implemented as follows. 

After the feature vectors were extracted from the images, the database was 

thinned to be more manageable.  Then a K = 40 K-means classification was performed on 

the data.  This resulted in over segmenting the database.  As a result the mean feature 

vectors that were close to each other in the feature space were combined to represent a 

single percept.  This resulted in a single mean percept vector representing each percept 

classified.  The mean percept vectors were then normalized resulting in a set of 

normalized mean percept vectors.   

When segmenting an image, the goal is to find the nearest percept mean vector to 

each feature vector computed from the patches in the image.  The mean vectors are 

represented by xi for i=1, …, M, thus M designates the number of percepts.  The vector yp 

is the feature vector from the p
th

 patch in the image. The minimum exact distance, Dp, 

between the set of normalized mean vectors {xi} and the normalized feature vector yp 

would be calculated as follows: 
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                                  i=1,…,M                           (5.1) 

Since the feature vectors have been normalized, . This leaves the dot 

product as the main computation remaining. Based on this equation, finding the largest 

dot product will result in the minimum distance.  Therefore (5.2) is equivalent to the 

distance calculation used: 

                                                                                                             (5.2) 

For further explanation please refer to [59].    Examples of the resulting segmentations 

can be seen in Figure 5-4. 

Accepting that the clustering was going to yield errors meant that methods of 

dealing with such errors would become necessary. It is accepted that without being able 

to truly interact with the environment the robot would be limited in how much it could 

visually correct, but a method of classifying each percept has been developed. 

Because of the simplicity of the clustering, reflections and other aberrations had a 

great deal of influence on the results.  Therefore schemes for classifying these events 

were focused on.  There does not exist a lot of research in this type of classification. 

Therefore, the goal of furthering this vision system has been divided into two tasks, 

reflection detection and determining if a percept is actually a percept or light.  

C.     Location Recognition System 

As mentioned, numerous methods of location recognition exist.  What makes the 

method presented in [59] different is that it focuses on visually defining the environment 

based on the overall percepts present.  It also autonomously defines each local region 

based on overall visual differences in the images.   
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For a full description of the system see [59].  To summarize the location 

recognition system it begins with first finding the global percept mean vectors.  This is 

done as described in section B.  The next step is to divide the global region into local 

regions.  The segmentation of the area is performed using a relative perceptual difference 

measure, rn, as follows copied from [59]: 

In order to do this first assume that N (N = 600 in this case) images have been 

gathered and Q (Q= 3337 in this case) feature vectors have been extracted from each 

image.  Then each image is represented as In (n = 1,…, N), and each feature vector is 

represented as xn,q (q = 1,…, Q).  Now the average perceptual change rn between image In 

and images Im, where m represents the indices of four images that occurred prior to In (m 

= {n-10,n-15,n-20,n-25} in this case), can be calculated.  

The first step in finding rn is to find the individual relative perceptual distances 

ρn,m between In and each of the four prior images used.  This value is calculated as the 

symmetrical sum of the sum of distances between each feature vector in In and its closest 

feature vector in Im and the sum of distances between each feature vector in Im and its 

closest feature vector in In. This is shown in (5.3).     

                                                            (5.3) 

Once ρn,m has been found for each value of m they are averaged together to find the 

average perceptual change between In and each image in Im.  This is shown in (5.4) 

                                                                         (5.4) 

An averaging filter is then applied to rn and the resulting peaks in the data are used to 

define the lines between regions.    Figure 5-1 shows how part of the 3
rd

 floor of 

Featheringill Hall at Vanderbilt University was segmented.   
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Figure 5-1.  A diagram of the path taken by the mobile robot on the third floor of Featheringill Hall at 

Vanderbilt University with the numbers providing a label for each hallway. E represents elevators and 

because this diagram is incomplete some rooms have been labeled for orientation. [59] 

 

The final step for training this system is to create the local models. This is done 

by calculating the mean vectors of the percepts that are local to each area.  These are 

called the local percept mean vectors.  To do this, first assume that there are M percepts, J 

local regions and that the global percept mean vectors are represented as , where i= 

1,…,M.  Then the local percept mean vectors are represented as , where j=1,…,J.  

Next, the local percept mean vectors,  for an area are found by first segmenting all the 

images found to be in that area using the global percept mean vectors,  .  Then all the 

feature vectors, from all the images in an area that are associated with each percept M, 

are averaged.  These averaged vectors are then used as the local percept mean vectors 

modeling an area. 

With the models of the local regions generated the next step is to recognize the 

locations that each image was taken from.  This is done as follows: 
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This process begins with simply acquiring an image from the camera. That image 

is then segmented for each assumed area j’ using each assumed area’s local percept mean 

vectors, . After the segmentations are performed the feature vectors associated to each 

percept are averaged.  This step provides J new sets of mean vectors for the current image 

called the image percept mean vectors, .  The new mean vectors represent what the 

system believes it sees if the robot is in the area of the assumed local percept mean 

vectors used for the segmentation.  The six new sets of image percept mean vectors are 

then compared to  . The distance metric used is the sum of the distance of each percept 

in  to its respective percept in .  Whichever area, j’ , provides the shortest local area 

distance Aj’, is determined to be the current area.  The equation for Aj’ is shown in (5.5). 

                                                                                                      (5.5) 

The next step for this location recognition system to take is to be able to handle novel 

objects and novel regions. 

D.    Novel Object Detection 

Object detection is a field that has been studied extensively [52,53,54,55].  The 

implementation as performed in [2,4] will be used for the location recognition system.  

This operation is based off of a calculated threshold using a series of images without the 

novel object present.  The median of the distances of each patch from the feature vector it 

is closest to is found.  The standard deviation for each patch from the median of the set of 

medians is then found.  The threshold T finally comes from adding the median of the 

standard deviations to the median of the medians. This is shown in (5.6).        

                  (5.6) 
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Now that the threshold has been calculated the robot is driven through the same 

environment, but with a novel object present.  An image of percept distances is formed 

and segmented using the threshold.  In order to determine that the object is not noise, a 

binary image is created.  The bottom half of the image is eroded twice by an 8-connected 

structure element.  Finally the largest group of connected patches remaining is selected as 

a potential novel object.  As the robot gets closer to the object, the size of the connected 

group should continue to grow. If the number of patches exceeds 100, they are stored and 

added to the training database.  This process is shown in Figure 5-2. 

 

       
Figure 5-2. (left) the original images, (middle) processed images, (right) processed images after learning. 

[2] 
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As shown this method worked well in discovering a single novel object in the 

environment.  Unfortunately it was limited to a single object.  In [4], this scheme was 

expanded to find multiple novel objects at the same time. This was done by using a size 

constraint on the patches that exceeded the threshold instead of finding the largest group 

of patches that exceeded the threshold as in [2].  In [4] the requirement for a novel object 

was that there were seven connected patches that all exceeded the set threshold.  This 

allowed for multiple novel objects to be found simultaneously.   

E.   Novel Area Detection 

Novel area detection, for our purposes, is defined as the recognition of areas not 

previously trained on.  This is similar to novel object detection only this is the study of 

recognizing entire areas as new.  SLAM is capable of recognizing novel areas, but in a 

philosophically different way.  SLAM is able to detect that it does not recognize the 

geometric shape of an area it is in, but as far as it is concerned the map that it is using is 

one large region and it will simply add another piece to that map.  This work aims to 

recognize each region as a perceptually distinct region. This aspect of location 

recognition has not garnered much attention largely because systems performing this type 

of location recognition typically provide the regions already segmented and then devise a 

means of telling them apart [21,26]. In this work the boundaries of the regions were 

found by the system.  Therefore the system must also be capable of defining new 

boundaries for novel regions.  There are three incidences of novel areas that this work 

focused on; correcting previously defined areas, detecting novel areas where the percepts 

are largely known, and detected completely novel areas where nothing is recognized. 
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Whenever a system makes decisions it is important to have error correcting 

methods.  In this case, it is the recognition that an area defined in the initial training may 

be better off as two separate areas.  This incidence occurred in [59] and it is the aim of 

this work to deal with this type of error. 

The second type of novel area detection is recognizing that an area is novel even 

when the percepts are recognized.  This can often occur inside a building.  The floor 

initially used in [59] was the third floor of Featheringill Hall at Vanderbilt University.  

The second floor appears to be largely the same.   

 The third type of novel area detection is recognizing an area that is completely 

unknown.  This involves recognizing that the percepts are entirely unknown and therefore 

the region is completely unknown.  

 

Additions to the Vision System 

A.  Reflection Detection 

Based on observations of the percepts in the image sequence as the robot moves 

forward, it appears as though there are three distinct behaviors of reflections: 

1. Reflections caused by lights directly overhead 

a. Tend to be long static reflections 

b. Look like a distinct objects in the environment 

2. Moderately distant objects reflecting in the floor 

a. Moves within the image as the robot moves forward 

b. Looks like actual object 

3. Reflections from a distant light source 

a. Small reflections 
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b. Don’t move much within the image as the  robot moves forward 

Each type of reflection can be seen in Figure 5-3. The Type 1 reflection shown is due to  

 

 
Figure 5-3. Demonstrates each type of reflection.  Type 1 is a result of overhead fluorescent lighting. Type 

2 results from the wall reflecting off the tiles. Type 3 results from distant light sources 

 

the fluorescent light source directly above the floor.  This type of reflection is very 

consistent and appears to behave as any other percept in the image. Therefore it will be 

considered an acceptable object.  The second type of reflection is labeled as Type 2 and 

comes from the actual percepts reflecting off the tiles.  This type of reflection closely 

resembles the actual percept that it reflects and is often segmented as that percept.  This 

type of reflection can be detected due to its behavior, because it does not move as an 

actual percept would, but that will be left as future work.  The final type of reflection is 

labeled Type 3. This reflection comes from a light source a long distance from the robot 

that generates a reflection due to its angle of incidence off the floor. These reflections are 

the type of reflection that will be detected.  The method used to detect these reflections 
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will be based on the observed behavior of this type of reflection.  As the robot moves in a 

straight line down the hallway, this type of reflection will appear to remain static in the 

processed image while all the actual objects appear to get closer to the robot.  Therefore, 

a reflection can be detected by tracking the segmented percepts and observing that a 

percept is not moving while still persisting over an extended period of time. 

The obvious argument against this method would be that the percept being 

tracked could just as easily be an object moving at the same speed as the robot.  While 

that argument is true, as described in [59], the purpose of this system is to be a 

developmental robot.  Therefore, it is assumed that the robot is in its initial stages of 

learning its surroundings.  This means that the system is still operating under the 

assumption that everything present is still a part of the static environment.   Dealing with 

more complex dynamic environments has been left as future work. 

Detecting this type of reflection is important for the robot to begin to understand 

that what appears to be seen is not always accurate.  As a robotic system it has no concept 

of object permanence, therefore by recognizing that it can never actually reach these 

visually present percepts, the association can begin to be made. 

The hallway labeled 2 in Figure 5-1 will be the example used to discuss this 

implementation.  The video of the hallway was taken in the reverse direction of the 

training arrow.  This was done because there is a window at the end of the hallway 

providing a very clear reflection on the floor.  An example of an image from hallway 2 

and its segmentations are shown in Figure 5-4 (a,b).  It is the goal of this part of the work 

to have the system determine that the windows reflection is in fact a reflection and 
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                              (a)                                                                         (b) 

 

 
                                             (c)                                                                 (d) 

 

 
                                           (e)                                                                        (f) 

Figure 5-4.  (a)Hallway 2 in Featheringill Hall (b) (a) segmented (c) Hallway 5 going from left to right (d) 

(c) segmented  (e) Hallway 5 going from right to left (f) (e) segmented. 

 

not the percept itself.   

After the video was taken, the images were extracted at 20 images/sec.  This was 

roughly equivalent to 20 images/ft.  The next step in this process is to extract the percept 

blobs and track them.  As stated, only the reflections coming from a distant light source 

are being sought.  Therefore, only the region of the image in which this type of reflection 

is likely to be found in will be searched.  This means that of the 47x71 pixels that make 
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up the segmented image the top 15 rows, left 20 columns, and right 20 columns will not 

be looked at in this process.        

The method of extracting the most relevant percept blobs was first done in [3].  This 

method begins with creating an object image for each percept label.  The object image is 

a binary image with a 1 at each pixel determined to be that object and a 0 every where 

else.  In order to reduce noise in the process an averaging filter is applied.  This is done as 

follows:  

1. An n x n filter size is chosen by the user.  The general rule is to use a size 

equivalent to the patch size or smaller for the application. 

2. In order for a group of pixels to be kept as a relevant blob, that group must fill a 

percentage (P1) of the filter. 

3. If the condition from 2 is met, the largest value (M) from the filtered object image 

is found and all values in the filtered object image that are greater than a 

percentage (P2) of M are changed into a value of 1 while the others are stored as 0 

creating a filtered binary object image. 

4. This new image is grouped using a connected component labeling algorithm. 

Statistics about each group are stored into the object descriptor class (i.e., width, 

height, and (x,y) centroid of each group)   

For this process the averaging filter is set at 15 x 15.   

Once the percept blobs have been extracted their centroids are tracked from one 

image to the next.  In this case only the centroids that do not move within the image are 

of interest.   The most a percept blob’s centroid can move for it to be considered a 

reflection is 10 pixels up/down and 10 pixels left/right relative to the centroid’s initial 



114 

 

position.  The up/down measure is based on the motion of the robot as any actual percept 

was experimentally tracked to move far more.  The left/right motion largely indicates that 

the robot is not driving perfectly straight, but it also measures variances in the shape of 

the segmented percept blobs.  After tracking each percept if any of them persists long 

enough without movement it is then considered to be a reflection. The reason that object 

permanence is important here is because of the length of multiple percepts.  For example, 

consider the yellow floor tiles.  The only time they are broken up is when the black stripe 

is present, so the minimum distance of changes in the tracked environment sets the 

threshold for the duration that the percept blob must remain.  In this case the distance 

from one set of tiles to another is ~20 feet or 400 images.  So if a percept’s centroid 

remains steady and persists for longer than 400 images continuously then that percept is 

considered a reflection. The results going down multiple hallways are shown in Table 5-

1. Refer to Figure 5-8 for the corresponding hallway. 

 

Table 5-1: Reflections detected in hallways 

Hallway # of 

Images 

# Clusters 

Tracked 

# of Reflections 

Detected 

# of Reflections Detected 

That Were False 

2 1041 21 2 0 

5 (lt to rt) 1561 18 1 0 

5 (rt to lt) 1801 24 3 2 

 

This method applied to the hallway used for Figure 5-4 (a) resulted in two objects 

being tracked.  The first is the white blob in the middle representing the reflection of the 

window in the floor, and the second percept blob is the orange blob next to the white 

blob.  The second percept blob represents the reflection of the wall that is next to the 
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window, therefore this is an accurate reflection detection.  The details of these reflections 

and the reflections detected in the other hallways are shown in Table 5-2.   

 

Table 5-2: Details of the reflections detected 

Percept 

Color 

Tracked 

Hallway # of Cons. 

Images 

Observed 

In 

Total 

Centroid 

Motion (in 

pixels) 

Up/Down 

Pixel  

Motion 

Left/Right 

Pixel 

Motion 

White 2 483 9 5 dn 4 lt 

Orange 2 627 8 0 8 rt 

Orange 5(lt to rt) 1232 18 8 dn 10 rt 

Green 5(rt to lt) 702 3 3 dn 0 

Purple 5(rt to lt) 559 1 1 dn 0 

White 5(rt to lt) 401 2 1 dn 1 rt 

 

The total centroid motion tracked in Table 5-2 is based on the number of pixels 

the centroid of the tracked percept blob moves from its initial position.  Therefore if the 

centroid of a percept moves down 5 pixels and left 4 pixels relative to its initial centroid 

pixel location, the percepts total centroid motion will be 9 pixels.  As stated if either the 

up/down motion or the left/right motion exceeds 10 pixels in any single direction then 

percept blob will not be considered a reflection.  Table 5-2 shows that all six of the 

percept blobs presented meet the criteria to be considered reflections.  Figure 5-4 (c-f) 

shows images taken from hallway 5 in both directions as well as a segmentation that 

contains the percept blobs tracked as reflections in that hallway. 

The results show for hallway 2 that both reflections detected persisted for some 

time.  The only reason the number of images is not longer is because the video ended.  
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Also the results show that the percept blobs did not move in the manner expected of true 

percepts based on the motion of the robot.  In the case of the white percept blob the 

centroid of the blob moved a total of 5 pixels down and 4 pixels to the left while the 

orange percept blob moved a total of 8 pixels to the right.  Over the course of that many 

images any natural stationary object should have moved more. 

While the robot was going from left to right in hallway 5 only one reflection 

percept was detected.  That percept is the orange blob in the middle of the hallway shown 

in Figure 5-4 (d).   This percept represents the reflection created from the light at the end 

of the hallway.  The relatively large amount of motion recorded for this percept blob was 

largely due to the changing shape of the percept blob.  The shape was not consistent 

because this reflective percept blobs is made up of reflections from multiple objects (e.g. 

door, wall, light source) and based on the changing light can be classified as the actual 

objects. 

With the robot going from right to left in hallway 5, three reflective percepts were 

detected.  The first two are the green and purple segmented percepts in Figure 5-4 (f).  

The reason these percepts were detected is because they are a reflection from the light 

directly above the floor.  So it is accurate to call this a reflection however this is not the 

type of reflection this system is aiming to find.  Therefore this is considered an error. The 

white percept blob representing the window however is correctly labeled as a reflection.   

B.  Percept Classification 

Based on the segmentations shown in Figure 5-4 (b,d,f)  the need for further 

classification of the percepts is obvious.   Some of the objects from the original image 

can be seen in the segmented images, but the actual objects are not what are segmented.  
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Therefore if there is a method of combining the known percepts to represent the objects 

that exist in the original image, that would be ideal.  It is understood that different initial 

classification methods could be used to improve the segmentations, but no matter what 

method is used, in an area with as many reflections as are present here, errors will occur 

and the need to deal with them is present.  Therefore instead of going back to simply 

reclassify the data the decision was made instead to improve the original classification.  

The first step in the process is to develop a means of determining whether a percept is in 

fact a percept or an aberration of light.  This will be dealt with by tracking the motion of 

the percepts.   

To start with, because the segmentations at the top of the image are largely 

unreliable due to their distance from the robot, the top 20 rows will not be tracked.  Next, 

a similar tracking method used in the reflection detection will be used here.  The method 

for extracting the percepts blobs will remain the same except because the goal is to track 

all the blobs that appear, the averaging filter will be 5x5.  Also, the (x,y) pixel locations 

defining each group will be stored. This is needed because previously the assumption was 

made that the only reflections to be tracked were light sources from a distance. So it 

could be inferred that the reflection percept blob would persist and not be separated or 

undergo significant changes as the robot moved forward.  Unfortunately, this is not the 

case while trying to track objects that have to deal with changes in lighting conditions.  

Therefore, a method for detecting when a single percept blob separates and a method for 

determining when separate percept blobs merge was also implemented and required 

knowledge of all the pixels in a group to do so. 
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Once the statistics of all the percepts blobs have been calculated, tracking the 

centroids as done before is the next step.  Because of the rate of motion of the robot, a 

single centroid should not move greater than three pixels in any direction.  This is the 

basis for tracking each percept blob from one image to the next.   In order to track if a 

percept blob had separated into multiple percept blobs with the same label, the pixel 

locations of the percept blob from the prior image are compared to the pixel locations of 

the current percept blob. If the percept blob from the prior image shares 20% of the same 

pixel locations and that prior percept blob had already been matched to a different current 

image percept blob then a split has occurred.  The same process is used to detect if two 

percept blobs merge, only instead of checking if two current percept blobs match to a 

single prior percept blob the check is for one current percept blob that matches to two 

separate prior percept blobs.  Again this check requires the current percept blob to match 

the location of the prior percept blob’s centroid or 20% of each of the prior percept blobs 

pixel location’s must match  to pixel locations of the current percept blob. 

  Now with the ability to accurately track the blobs as the robot moves, four 

different classifications for the percepts blobs have been created.  The 4 classifications 

then break down into 10 overall classifications.  The break down is as follows: 

1. Percept 

a. Normal percept 

Percept blob starts above the 28
th

 row and moves through the image as 

expected. 

b. Long normal percept 
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Percept blob starts and moves as expected, but lasts longer then a 

normal percept would 

2. Probably a percept 

a. Late starting percept 

Percept starts lower in the image than expected (greater then row 28 

and less then or equal to row 33) and moves through the image as 

expected. 

b. Long late starting percept 

Percept starts lower in the image than expected (greater then row 28 

and less then or equal to row 33), but lasts longer then a normal 

percept would. 

3. Probably an aberration of light 

a. Very late starting percept, but then moves as a percept should 

Percept starts greater then row 33 but moves as a percept should 

b. Very late starting and long lasting percept, but moves as a percept should 

Percept starts greater then row 33 and lasts for a long time but moves 

as a percept should 

c. Far away starting and ending percept 

Percept begins less then row 28 and ends less then row 28 

d. Starts as a normal percept but disappears suddenly 

e. Starts late and moves as a percept would but suddenly disappears 

4. Aberration of light 
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Percept starts greater then row 28 and moves in ways that static percepts 

cannot move (e.g., up in the image) 

These classifications covered all the possible outcomes of tracking the percepts.  This 

tracking method was tested using the same images from the hallways as the reflection 

detection and the results are shown in Table 5-3.   

 

Table 5-3: Percept Classifications 

Hallway Percepts 

tracked 

#  

Percepts 

# 

Probably 

Percepts 

# 

Probably 

Light 

# Aberration 

of light 

2 34 6 6 20 2 

5(lt to rt) 42 11 6 22 3 

5(rt to lt) 42 8 6 26 2 

 

The results in Table 5-3 show that the majority of percepts detected behave in an odd 

manor.  Based on the amount of reflectivity observed in the images in Figure 5-4, these 

results are not surprising.   

C.  Interpretation of the Results 

At this point the system is able to identify when percepts are not behaving in the 

manner expected.   It can identify reflections caused by distant light sources, percepts 

behaving as expected, percepts that are behaving almost as expected, and percepts not 

behaving at all as expected.  With this foundation the next step is to develop a means of 

using this information.   

 The first use could be taking the obvious percepts and using them to improve the 

segmentations.   An example would be of the black stripe in Figure 5-4(a) being 

segmented blue.  The same label is then used to segment out multiple other locations in 
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the same image.  By recognizing that the black stripe segmentation behaves as a percept 

should, the system could possibly use all the other feature vectors that are classified by 

the same blue label and create a new centroid mean vector from them.  Another use of 

this information could come from tracking the 10 subclasses of the percept blob.  An 

example here would be if a blob were classified as 3.d. and then a new blob started where 

it disappeared and was tracked as either 2.a. or 3.a. then this could indicate that a single 

percept was dealing with refractions of light and based on further investigation by the 

system either the percept labels can be combined as a single percept or be marked as 

indicating aberrations of light or actual percepts.  

    

Novelty Detection 

A.  Novel Object Detection 

Novel object detection using this vision system has already been implemented in 

[2,4].  Therefore, it has only been modified for more practical use in this implementation.  

Figure 5-5 demonstrates the  

 

 
Figure 5-5 (a) Mobile robotics lab at Vanderbilt University (b) Segmented image of (a)  

 

general effectiveness of this method in detecting multiple untrained objects in a single 

image.  This image was taken from room 304 represented in Figure 5-1.  The room has 
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not been trained on, but the floor which has been globally learned from the training for 

the hallway is largely recognized.  As demonstrated, after the erosion of the 

segmentation, all three cones, the ball, and the poster are recognized as novel objects.    

As stated, the goal of this system is to be a developmental location recognition 

system.  This means that only large percepts within the environment are sought after.  

With that in mind it was empirically found that the desired distinct percepts from the 

environment were made up of at least 50 connected pixels.  Therefore, only novel object 

percept blobs that exceed 50 connected pixels in a single image are kept for further 

tracking. Also the threshold as described in (5.6) was increased to be sure that only 

objects that appeared significantly different were found. 

As of writing this paper, the tracking of the novel objects from one image to the 

next has not been implemented.  That aspect of this work will be included in future 

works.  At this point this system has demonstrated the ability to accurately detect novel 

percepts in both regions that have been trained on and regions that it has not been trained 

on.  Examples of this are shown in Figure 5-6. 

 

 

 

 



123 

 

 
                          (a)                                                                           (b) 

 

 
 (c)                                                                                 (d) 

 

 
(e)                                                                                           (f)  

Figure 5-6 (a) Hallway on the 2
nd

 floor of Featheringill Hall with blue recycling bins present (b) 

segmentation of (a) with the recycling bins represented by the color indicating novel object. (c) Region 6 of 

the 3
rd

 floor of Featheringill Hall. (d) Segmentation indicating the blue wall in the top right corner in a 

novel object. (e)  Outside of Featheringill Hall. (f) segmentation of (e) indicating the image is largely 

composed of novel objects. 

 

Image (a) of Figure 5-6 shows hallway 9 from Figure 5-10. By comparison to 

Figure 5-4 (c) and (e) this hallway looks largely similar to the 3
rd

 floor of Featheringill 

Hall.  The blue recycling bins in the top left corner however are novel objects.  In Figure 

5-6 (b) they are segmented with the dark green color randomly selected to visually 

indicate that a novel object is present.  In Figure 5-6 (c) the image is taken from the 
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hallway labeled 6 in Figure 5-1.  According to the segmentation in Figure 5-6 (d) the blue 

wall in the top right corner is a novel object. Although the blue wall was learned 

previously, because of the direct sunlight from the sunroof on the wall it is currently 

considered a novel object.  Finally an outdoor image was used in Figure 5-6 (e).  Figure 

5-6(f) shows virtually the entire image as a novel object.    

 These are just three examples of thousands of processed images.  They do 

however cover the three situations most commonly encountered.  Figure 5-6 (a,b) 

demonstrate an actual novel object present and accurately found in a region, Figure 5-6 

(c,d) represent a false novel object recognized due to a change of lighting, and Figure 5-6 

(e,f) represent an entirely novel area being observed.   

It is because of these three situations that it is not possible to simply find the mean 

feature vector of the novel object blob and add it to the known percepts.  Therefore as 

mentioned, the novel objects will be tracked over a series of images.  If they persist then 

the mean vector of all the feature vectors gathered will be found and used to represent the 

new object.  When the majority of the image is considered a novel object the system will 

have two cases to deal with.  The first is the possibility of multiple novel objects near 

each other in a known region, and the second is that the robot is in an unknown region.  

In the former case a classification technique will need to be used to segment the multiple 

objects and add their mean feature vectors to the database.  In the latter event, the system 

should process all of the new information to model the new regions as performed in [59]. 

B.  Novel Region Detection 

Systems such as SLAM are capable of mapping novel areas and localizing a 

system within that area.  The type of localization used is to pinpoint the robot’s exact 
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location on a generated map.  The difference between that type of system and the goal of 

this work is the ability to visually recognize the region in a perceptual sense.  Therefore, 

the type of novel region detection used for SLAM does not apply here. As far as SLAM 

is concerned the entire map is one large region whereas in this system the area has been 

segmented as shown in [59].  The goal now is to have the system detect when it is not 

present in one of the known regions.  The experiments will test the system in three ways. 

The first problem is error checking the original classification of areas. As 

explained in [59], the models representing the areas labeled 5 and 6 in Figure 5-1 

performed poorly when being used to classify new images from those regions.  It was 

found the in the initial training both regions should have been split into two more regions.  

Therefore the ability to detect previous mistakes will be looked at. 

The second problem will be the ability to detect when the robot is in a novel 

location that appears very similar to the trained area.  An example of this type of 

similarity can be seen in Figure 5-7.  The image  
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                                           (a)                                                                             (b)  

 

 
(c)                                                                              (d) 

Figure 5-7 (a) Hallway 1 on the 3
rd

 floor of Featheringill Hall. (b) Hallway 1 on the 2
nd

 floor of 

Featheringill Hall. (c) Image from hallway 6 (d) Image from new area found in hallway 6. 

 

in Figure 5-7(a) came from the 3
rd

 floor of Featheringill Hall while the image in Figure 5-

7 (b) came from the 2
nd

 floor.   

 The final type of novel location recognition will be the ability of the system to 

determine when it is in completely novel regions.          

     A novel region will be declared if three criteria are met.  The first is that a pre-

set distance threshold set for the value found using (5.5) has been crossed.  This threshold 

was first set using equation (5.6), but was modified by the user.  The second is that a 

novel area must be detected for at least 25 images.  Based on the frame rate extraction 

speed (~1 frame/sec) and speed of the robot (~1ft/sec) this equated to roughly 25 ft.  This 

means that if an area is not at least 25 feet long it will not be considered a new area.  The 

final criteria necessary to declare a novel area is that the dominant label classifying that 
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area must represent it in less than 70% of the images exceeding the threshold.  The 70% 

threshold was empirically found to work well as trained areas have ~90% accuracy while 

untrained areas perform with significantly less accuracy.  

 The first experiment was performed on the 3
rd

 floor of Featheringill Hall.   Figure 

5-1 shows the areas of the 3
rd

 floor that were trained on.  Figure 5-8 shows a map of the 

entire floor and the resulting  

 

 
Figure 5-8.  Featheringill Hall 3

rd
 floor including classification of untrained areas.   

 

segmentation of the floor.  This shows that the system correctly identified the extended 

untrained area of hallways 4 and 5. This also shows that three novel areas were detected.  

Although we would consider hallway 5 to be one continuous hallway, based on the 

images the system is correct to identify them as new regions.  Firstly the new region to 

the left of hallway 5 has a large window providing a very large reflection as seen in 

Figure 5-4(e).  As the robot approaches that change, the hallway appears to be very 
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different.  It is also windows in the middle of hallway 5 that create the novel area.  The 

split in hallway 6 comes from a genuine change in appearance.  This can be seen in 

Figure 5-7 (c) and (d) where Figure 5-7 (c) is what the top of hallway 6 appears as and 

Figure 5-7 (d) is what it looks like in the newly declared region.  Table 5-4 provides the 

results of processing the images while only including the floors that had at least 25 novel 

area images found.  

 

Table 5-4: Results from processing the 3
rd

 floor of Featheringill Hall with novel region 

detection 
Hallway # 

Images 

% 

Labeled 

Correct 

# Novel 

Area 

Images 

% of 

Novel 

Area 

Images 

Labeled 

1 

% of 

Novel 

Area 

Images 

Labeled 

2 

% of 

Novel 

Area 

Images 

Labeled 

3 

% of 

Novel 

Area 

Images 

Labeled 

4 

% of 

Novel 

Area 

Images 

Labeled 

5 

% of 

Novel 

Area 

Images 

Labeled 

6 

New 

Region 

Created 

2 150 86% 119 3% 87% 8% 0 2% 0 No 

5 (trained 

region) 

67 72% 26 7% 43% 0 0 50% 0 Yes 

5 

(untrained 

region) 

180 66% 43 60% 0 6% 0 12% 21% Yes 

6 92 66% 25 36% 0 0 0 48% 16% Yes 

 

 Hallway 2 was the first hallway to have processed images exceed the set 

threshold. Of the 150 images taken from hallway 2 119 of them crossed the threshold.  

The reason for such a high number is because there is a skylight above this hallway 

providing a great deal of natural light and although it is still able to recognize the 

hallway, the light skews the distance calculations.  This hallway is a good example of the 

importance of keeping track of the label changes as the hallway is processed.  As seen in 

Table 5-4, although the images exceed the threshold, of the 119 that do, 87% are still 

classified as hallway 2.  Because of this a new region is not declared.   

         The next hallway to observe a potential new area is hallway 5 after making a left 

turn from hallway 4.  This new region is a result of an error in the original training that 
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was noted in [59].  The region labeled 5 in Figure 5-1 should have been split from the 

start.  In this case 26 images are declared to come from a novel region with 50% of them 

being labeled as hallway 5.  Therefore a new area has been declared. 

       The second novel area created in hallway 5 is due to the window at the end of the 

hallway as seen in Figure 5-4 (e).  The light coming through the window changes the 

visual properties of the hallway to such an extent that this is considered an appropriate 

novel region.   

    The last new area generated on this floor is in hallway 6.  This split is again due to 

the initial training.  As shown in Figure 5-7 (c) and (d) the areas are visually distinct 

regions, and based on the criteria a new region has been created. 

       The second test of the novel region detection was performed on the 2
nd

 floor of 

Featheringill Hall.   The layout of this floor is different, but all of the color schemes are 

exactly the same as seen in Figure 5-7 (a) (b).  Figure 5-9 shows the layout of this floor.   

 

 
Figure 5-9.  Floor layout of 2

nd
 floor of Featheringill Hall. 
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Because the floors appear so similar only hallway 12 was considered a novel area.  This 

is because it is the only hallway without an exact counterpart on the 3
rd

 floor.  An image 

of this hallway is shown in Figure 5-10.  As a note, even though hallway 13 does not  

 

 
(a)                                                                                 (b) 

Figure 5-10 (a) Featheringill Hall 2
nd

 floor, hallway 12 (b) Segmentation of (a) 

 

exist on the 3
rd

 floor, its entire make up matches hallway 4 on the 3
rd

 floor and it is 

classified as such.   

       With such a high level of similarity it unreasonable to expect the system to 

recognize that it does not know these areas.  By comparing Figure 5-7 (a) to Figure 5-7 

(b), the only discernable difference is a single panel of wall that is blue on one floor and 

white on the other.  Therefore the results are not surprising.  What does indicate some 

measure of success with this technique is that hallway 12 was identified as a novel 

region.  Of the 159 images comprising hallway 12, 131 of them exceeded the novel area 

threshold.  Of those 131 images the known region that they were segmented most as was 

hallway 3 with 37% of the images.  Also as shown in Figure 5-10(b), all the percepts in 

this image are known and the hallway is still identified as a novel region.   Therefore the 

system is capable of detecting novel regions comprised of known percepts with the 

caveat that obviously there must be some discernable difference.  
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       The final test of the novel region detection is testing the system on completely 

novel regions.  This was done by driving the system around what the author classified as 

11 novel regions starting on the 1
st
 floor of Featheringill Hall and comprised of driving 

the system outdoors as well as through multiple hallways of another building.  In total 

2005 images were gathered and of them 1786 images were considered novel images with 

a high degree of variance over the regions that the system believed itself to be in.  This 

means that the system successfully identified that it was is areas that it did not know. 

B.  Interpretation of the Results 

        The overall goal of this system is to develop a truly developmental vision system 

that is capable of learning its environment without any help or limited help from a human 

user.  To that end the detection of novel objects and novel regions is a very important 

step.  This system has demonstrated the ability to identify both novel objects and novel 

regions based on the methods presented.  In the case of novel object detection, a 

threshold is set and if 50 or more connected pixels exceed that threshold then the novel 

object is counted.  For novel region detection a similar threshold is used based on the 

distance the overall image is from the known region model that it is closest too.  If the 

threshold is exceeded for more then 25 images and a single known region does not 

represent at least 70% of the images considered to be in a processed region, then that area 

is considered novel.  

        The results show that both systems work well at this stage.  As shown in Figure 5-

6 numerous novel objects were accurately identified.  Although it is possible for light 

changes to cause false novel objects to be found, by adding a tracking system and making 

sure that the novel object persists over a series of images, this should be limited. 
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     The results of the novel region detection presented show that the three criteria 

used will work.  It was able to detect errors in previously trained data, a new hallway in a 

region with known percepts, and detect completely novel regions.  Therefore the next 

step of this vision system will be to start incorporating the information gathered.   

 

Conclusions and Future Work 

The goal of this work is to create a system that is capable of visually learning the 

environment around it in a manner that will allow it to visually recognize places at a later 

time.  The system, as presented in [59], starts by first classifying the percepts and regions 

from a training region.  It then develops a model of each region using the percepts present 

in that region.  Therefore the next step was to improve the system, giving it the ability to 

start to interpret what it is segmenting as well as the ability to learn new objects and 

regions.   

     The first improvement to the vision system was the ability to detect reflections 

caused by distant light sources.  This was done based on the behavior of the reflections 

created.  It was observed that as the robot moves through the environment, these percepts 

tended to stay in the same pixel locations in the image.  Therefore by tracking the 

centroids of the percept blobs and noticing when there was no movement relative to the 

robots movement, a reflection was detected.  This was run using three hallways and in all 

three cases reflections were accurately identified.   

     The second addition to the vision system was a classification system for all the 

percept blobs as the system moved.  This method classified the blobs into four main 

categories with 10 subcategories present.   Again this classification was based on the 
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movement of the percepts as the robot moved.  If the percepts moved as expected they 

were classified objects, and if they did not they were classified as probably a percept, 

probably an aberration of light, or an aberration of light.    

     The third addition to the system was the inclusion of a previously implemented 

novel object detection method.  As shown this method was able to detect the presence of 

multiple novel objects while being tested over a large series of images.  The next step in 

this process will be tracking the objects to reduce false identification and then 

incorporating the novel objects into the database.  

     The final addition to the system was the addition of novel region detection.  The 

three criteria that a series of images must meet are first that a pre-set distance threshold 

set for the distance between the processed image and the model of the region that image 

has been classified as has been crossed.  The second is that a novel area must be detected 

for at least 25 images.  The final criteria necessary to declare a novel area is that the 

dominant label classifying that area must represent it at in at least 70% of the images 

exceeding the threshold.  Based on these criteria the system was able to detect errors in 

the previously created models, find a new hallway in a region composed entirely of 

known percepts, and detect multiple novel regions where the majority of percepts were 

unknown. 

       As the focus of this work was to detect events and provide information about the 

environment, the next step will be to use this information in meaningful ways.  The first 

step will be to track the novel objects in order to limit false detections.  Once that has 

been completed the novel objects will need to be learned and added to the database.  This 

will involve implementing a classification technique to determine if one or more novel 
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percepts were detected, and then adding the mean vector of the percepts found to the 

database.  Because the number of percept vectors should be relatively low a technique 

such as a minimum spanning tree will probably work best in this scenario.  Simply using 

K-means again will result in over-segmentation and further need for processing 

information. 

      The next step to take with the novel region detection will be to add the newly 

discovered regions to the database as well.  This will be a little bit more involved as there 

are numerous cases to consider.  First the series of novel images will need to be passed 

through the relative perceptual difference measures shown in (3) to determine if more 

than one novel region has been found.  Then if novel objects are present they will need to 

be added to the database.  Finally with all the objects and regions segmented, the models 

of the newly found regions can be generated. 

      With the addition of the novel regions and object detection implemented the 

information from the reflections and percept classifications can become useful.  Making 

use of distant light sources can be used to aid the novel region detection.  For example 

hallway 5 on the 3
rd

 floor, as shown this new region at the end of the hallway was 

generated because of the reflection modifying the view of the hallway.   By recognizing 

that a reflection was present a method of removing it could be developed to allow the 

system to recognize that as a continuation of the same hallway.  It is recognized that 

numerous methods for this exist (e.g., SLAM), but it is one of the goals of this work to 

get as far as possible just using vision. 
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     The final addition will be incorporating the classifications of the percept blobs.  

An example was given in section 3-C of how the combination of percept classifications 

could lead to combinations of percepts thus cleaning up the segmentations.   
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Abstract 

It’s no secret that knowing every detail of an environment will provide higher 

percept segmenting accuracy than a system with minimal information. The problem is 

that the curse of dimensionality makes it very difficult to operate in very high 

dimensional spaces.  Because of this most systems aim to model features based on very 

specific data that requires more complex pattern recognition techniques oftentimes 

reducing robustness of the system.  However proper modeling combined with the power 

of graphical processing units (GPUs) now allows for much higher dimensional data to be 

used in real time situations.   This paper will describe the strengths and weaknesses as 

well as efficient methods of using a very high dimensional feature space.  This work will 

use the hue, saturation, and value color space domain quantized into a 10,000 

dimensional feature space, and explain the benefits and weaknesses of the various 

classification, and data processing methods used while designing systems ranging from 

human motion segmentation [3] to location recognition [59]. 

 

Introduction 

There are numerous methods for segmenting percepts in images using many 

different features. Some of those features are color [1,2], texture [1,2], shape [6,15], SIFT 

[14], and so-on.  Often, multiple features are combined in the segmentation process 

[13,21].  These result in various sizes of dimensionality for processing occasionally 

resulting in hundreds of dimensions being used.  However, the question of what if the 

feature space was made even larger has not largely been looked at. This has mostly been 

because of the inability to process such high dimensional data, but with appropriate 
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modeling and implementation it is possible to expand the dimensionality of the feature 

space to at least 10,000 features while still operating at real time speeds. 

The feature vectors used in the work will represent a pdf of the histogram of the 

hue, saturation, and value (HSV) color space quantized into a 10,000 dimensional feature 

space with equal sized bins extracted from a 15x15 patch of pixels.  Based on the size of 

this data set two problems need to be addressed.  The first is the “curse of 

dimensionality”.  This applies to the difficulty of appropriately processing high 

dimensional data [56].  This will be addressed both in the modeling of the data and in the 

classification techniques used, and will be discussed later. The second problem with 

using this high of a dimensionality is the amount of training data required to properly 

train a system.   

  Because it is easier to answer, the problem of gathering enough training data will 

be addressed here.  The answer is that for applications involving large amounts of data, 

such as video, there is in fact no problem. This is due to the systems use of images which 

are inherently loaded with information.  In fact, most applications aim to reduce the 

amount of information extracted from an image to specific points so that it is easier to use 

[21,22,26,33,38].  Therefore extracting at least five times the number of dimensions as 

suggested in [47] will not be difficult. 

     Now that the main problems introduced by such a high dimensionality have been 

mentioned, it is time to mention the benefits.  The most obvious benefit is the segmenting 

power of the feature space.  The quantization process includes 100 hue bins, 10 saturation 

bins, and 10 value bins resulting in 10,000 bins.  This puts the emphasis of segmentation 
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on the color spectrum allowing for very similar color objects to still be segmented.  An 

example of this can be seen in Figure 6-1.  The green ball on the right of Figure 6-1(a)  

 

 
(a)                                                                                    (b) 

Figure 6-1.The result of using a very high dimensional space. (a) The system is only trained for green ball 

located at the right section. (b) The system does not segment the ball on the left at all. [1] 

 

was trained while the ball on the left was not.  The segmented image in Figure 6-1(b) 

shows the correct ball was segmented while the other very similar ball was not.   

The other benefit is the ease of segmenting the percepts.  Although time is an 

issue that requires a great deal of consideration, the massive size of the data space means 

that only very similar percepts will have any overlap at all.  This means that most clusters 

will be orthogonal to each other and will allow for the use of very simple pattern 

recognition techniques that typically do not perform very well in lower dimensions.  For 

all the works done using this system, a simple Euclidian distance measure between 

feature vectors is the only calculation performed [1,2,3,4,5,59]. 

    The next section will provide the required background information. Section III 

will provide a high level description of each of the implementations and a review of their 

performance.  The final section will describe the strengths and weaknesses found in using 

very high dimensionality for percept segmentation. 
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Background 

A.  Curse of Dimensionality 

The curse of dimensionality, introduced in [56], refers to the complications that 

arise by the exponential increase in volume that comes from increasing the dimensions of 

the feature space.  The term now commonly refers to all the challenges posed when 

processing high dimensional data [50].  There have been numerous studies on the effects 

of the use of distance calculations with high dimensional data, more specifically the 

nearest neighbor (NN). 

      The work in [51] describes the faults in using NN calculations in high dimensions 

and how the results can begin to erode in as few as 10-15 dimensions.  The underlying 

reason for this, as shown in [51], comes from the distances from a single point to all data 

points converging to the same distance.  The exception to this problem is if the majority 

of the data points lie outside of some set threshold distance derived from the min NN 

distance.  If this holds true then there is enough separation to provide meaningful results, 

and if it does not, then distance calculations on the data set as a whole will not yield 

useful results. Although the current work did not calculate a threshold distance from 

which to compare all of the data point distances, the quality of the results imply that they 

do meet this criterion, and that distance calculations can be used. 

     The next issue with very high dimensional data is the problem of both outliers and 

hubs.  Outliers are data points that exist on the fringe of the expected cluster region 

potentially crossing into another cluster’s feature space.  The primary means of dealing 

with outliers is to thin the data set before use [50]. Numerous methods of performing this 
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have been studied [57], and a simple thinning method devised has been implemented 

[3,59] in the works using the very high dimension vision system.  

Hubs are formed by points that appear in more query point k-NN lists than other 

points [49].  Although they have not been studied extensively they have been noticed in 

research using high dimensional spaces [60,61], in ref [49] it is suggested that “bad” hubs 

are caused by two factors.  The first is violating the cluster assumption [58].  This 

roughly states that most pairs of points in a cluster should be in the same class.  The 

second factor is the high intrinsic dimensionality of the feature space.  This means that 

the high dimensionality will exacerbate the effects of violating the cluster assumption 

more so than in a lower dimensional feature space resulting in incorrect classifications.  

Again based on the assumption that our model creates enough separation of the recorded 

data, we have not yet experienced these effects. 

      The final aspect of the curse of dimensionality has to do with practical 

application.  Although the effects on the calculations are important to consider, so too is 

the implementation.  In this work a 10,000 dimensional feature space is used, and based 

on the rule of requiring a training database at least five times the dimensionality of data, 

memory quickly becomes a problem that needs to be addressed.  Also, attempting to 

perform any type of vector calculations on 10,000 length vectors is very impractical.  

Therefore a sparse vector representation will be used and what it means will be discussed 

when explaining the vision system in Section III. 

B.  K-Mean Clustering 

   The goal of K-means clustering is to partition the data into K clusters [36]. This is 

done by first selecting K mean vectors, μk. This can be done randomly or some other 
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defined method [1,2].  The next step is to assign all other feature vectors to the μk vector 

that they are closest too.  When all of the feature vectors have been clustered the mean of 

each cluster is recalculated and this process repeats until the data converges.   

    K-means is a powerful clustering algorithm commonly used in machine learning 

applications.  Its simplicity makes it very robust and fast to process, especially when 

random means are used, for many applications.  The weakness is that K must be preset.  

This means that the exact number of classes present must either be known beforehand or 

a method of determining K must be devised.  Another problem with K-means is that it is 

very reliant upon the cluster assumption mentioned.  If the data does not have very much 

separation then the clusters formed will not be very useful, or will be the equivalent of a 

“bad” hub. Because of this K-means is not suited for all applications.  Given these issues 

with K-means, it is used here largely because the results of the segmentations were 

sufficient to provide enough information for further processing, e.g., location recognition 

[59], and we wanted to compare a simple fast method of processing the data to a slow and 

precise method.  In this case it was a minimum spanning tree classification. 

C.  Minimum Spanning Tree (MST) 

     A MST is a graphical analysis of random point sets of data [3].  Each point in the 

data set is connected to another point in way that only one path can exist to connect any 

two data points.  For the tree to be a minimum spanning tree the connections between 

each data point are minimized and the distances between all the data points are used to 

determine the weight or quality of the tree.  Once the points are all connected a preset 

number of cuts between the points are made.  This means that if N cuts are set to be made 
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then the longest N distances between any two points will be cut.  The connected points 

that are left will then be considered a cluster of data points. 

      The first benefit of this method of classification is that the number of clusters does 

not need to be known before the process.   Another benefit of this method is that it is very 

accurate.  Due to the rigorous processing method the clusters retained are typically very 

useful for segmenting images.   

       The drawback to this method of processing data is the length of time it takes to 

generate a MST.  Depending on the size of the database this can take from hours to days.  

The other problem with this method is that the number of cuts still needs to be 

predetermined, although this was addressed in [3]. 

D.    Nearest Neighbor (NN) Classification 

     The NN classification method is a well known method that provides very accurate 

results.  This method is considered to provide the best possible results with the drawback 

of requiring an unrealistic amount of time to process the information.  This method 

calculates the distance between each untrained feature vector xi to every feature vector yj 

in a labeled data set.  The label of the yj that provides the minimum distance D for each xi 

is then set as the label of that xi.  This is shown in Eq (6.1) 

                                                                          (6.1) 

The results of this method are often very accurate for large amounts of training data.  The 

drawback it the length of time it takes to perform this technique for large training data 

sets.  Although it can be quite useful for systems that require great accuracy without time 

constraints, it is not very useful when time is a primary concern.   

E. K-Means Search Trees 



144 

 

Anytime a large amount of data is present for a NN classification to be used, the 

data can be segmented into a search tree to speed the process up.  It has been found that a 

k=3 K-means search tree was the optimal tree for the work.  The proof as provided from 

[5] is as follows: 

C=cost of calculating one distance between two vectors 

k=# of distance calculations per node 

N=total number of training vectors 

L=# of levels in the tree 

TC=total distance calculation cost 

The number of levels in the tree, as a function of k and N 

is given by 

                                                             L = logkN                                                           (6.2) 

Thus, the total computational cost is 

                                                    TC = C · k · L = C · k · logkN                                    (6.3) 

Assuming that C and N are constants and k ∈  Z (i.e., k is an integer), the value of k that 

produces the minimum TC is empirically determined to be approximately 3. If k is 

allowed to be real-valued we obtain 

                                                                                           (6.4)  

which simplifies to 

                                                                                                                         (6.5) 

Thus 

                                                               k = e ≈ 2.7183                                                  (6.6) 
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       With k set, the tree is easily generated as follows:  The first node or root node of 

the tree was created by randomly selecting three feature vectors from the training 

database.  The rest of the database was then clustered into three child nodes 

corresponding to whichever centroid they were closest to, based on the Euclidian 

distance, in the root node.  Then for the three new nodes in the second level of the tree, 

three new centroids were selected in the same way and the data segmented.  This process 

continued until one of three conditions stopped it.  The first condition that can stop a 

node from propagating into child nodes is if all the feature vectors in that node represent 

the same percept.  In this case the node is considered a pure leaf node.  The second reason 

a node will cease to expand is if the number of feature vectors in that node is below a 

preset threshold.  In this case it is considered an impure leaf node.  Finally, the last reason 

the tree will cease to expand is that the preset maximum number of levels has been 

reached. This too results in impure leaf nodes. 

F. Nearest Mean (NM) Classification 

       The NM classification technique is quite often not a very good means of 

segmenting data.  This is because it does not have any information regarding the fringe 

area of the clusters It only has information on the core.  The benefit of this method 

though is the small amount of data needing to be stored (one feature vector per cluster) 

and the time required to segment images using this method.   

    NM is processed the same as NN in (6.1) only yj represents the mean vector of 

cluster j.  The typically small number of clusters (in our case about 18) explains the 

substantial reduction in processing time.   
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Vision System 

A.     Overview 

The works using this very high dimensional feature space have been demonstrated 

in [1,2,3,4,5,59].  With the aim of this paper to consolidate all that has been learned about 

the use of such a high dimensional feature space, the systems it has been used with must 

first be addressed.  Due to the fact that not all of the works provided the final 

implementation of a method used, only those works directly addressing the training 

classification and data classification methods will be described.  This chapter will start by 

describing the representation of the 10,000 dimensional feature vectors extracted from 

each image.  This process is the same across all implementations.  Second, the original 

system created in [1] will describe the system as trained under supervised learning and 

using the a-NN search tree.  Then the use of the MST in [3] will be explained.  Next the 

implementation of the MLE search tree will be discussed.  Finally the work in [59] will 

discuss the use of K-means classification and the NM image segmentation approach.  The 

results of each of these systems and their implications on the use of the very high 

dimensional feature space will then be discussed in the next section.  

B.    Feature Extraction 

      The process of extracting the feature vectors begins with the acquisition of an 

RGB image.  The RGB image is than converted into an HSV image in order to represent 

the image intuitively as the hue, saturation, and value of a color. Once the HSV values 

are obtained the feature extraction is performed. The image is broken into 15x15 patches 

that have a 10 pixel hop in both the vertical and horizontal directions. This means that the 

first patch, starting in the top left corner of the image, will begin at pixel coordinate (0, 0) 
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and the second patch will begin at pixel coordinates (10, 0).  Then when the first row is 

completed there will be a 10 pixel vertical hop downward.  The overlap is used to help 

blend the boundaries of objects. Then a probability density function (pdf) of the 

distribution of the HSV colors in a patch is found.   The pdf is computed from a 

histogram of the HSV colors that have been quantized into 10,000 bins.  This process is 

performed by first evenly distributed the hue into 100 bins, ranging from 0 to 1. Then the 

saturations and values are distributed into 10 bins each, also ranging from 0 to 1.  Finally 

these three values are combined resulting in the 10,000 different possible color features.  

Because of the 10,000 possible color features, and that, in the worst case scenario, the 15 

x 15 patches can only provide 225 different potential color features, a highly sparse 

representation is used here.  Therefore each patch is represented by a feature vector that 

contains two vectors. The first vector holds the index of each color feature detected, and 

the second vector holds the value of the color feature.  This representation provides 

numerous benefits.     

The first benefit is that there is no computational cost for increasing the 

dimensionality of the feature vectors [1].  In all works using the very high dimensional 

feature space, the Euclidean distance measure is used. Therefore given two vectors x and 

y the equation to find the distance between them can be given as: 

                                                                                          (6.7) 

Because the norm of the vector only requires the non-zero elements, and the inner 

product only requires the non-zero elements that exist in both vectors, this representation 

is immune to increased computational costs due to increased dimensionality.  The only 

way to increase the computational cost is to change the size of the patches used.  So, if an 
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N x N patch size is used and N
2
 unique color feature indices are found, then the worst 

case distance calculation would require 2N
2
 + 1 index fetches [1].  The additional one 

comes from a Laplacian texture feature added to the feature vector which was used in 

[1,3]. 

B.    Under Supervised Learning and Segmented Using an a-NN Search Tree 

The use of such a high dimensional feature space was originally implemented by 

[1].  The method of training the system was through direct supervised learning. In other 

words, a user selected regions of a set of images and provided labels for those regions.  

Because the database should be at least 50,000 feature vectors (according to [47]) the NN 

classification approach required too much time.  So the approximate NN (a-NN) search 

tree as described was used.   

With the data represented in this format when a new feature vector was 

introduced, it was processed as follows: Once the feature vectors are extracted, the 

distance from the current feature vector to each of the three centroids in the root node are 

found.  The child node of the centroid that provides the shortest distance to the feature 

vector will be used next. This will continue until a leaf node is reached.  If that leaf node 

is pure then the label for the percept will become the label that represents the leaf node.  

If the leaf node is impure then an exact NN search will be performed between the current 

feature vector and the entirety of the feature vectors represented in that leaf node.  The 

current feature vector will then be labeled by whichever feature vector in the node that it 

is found to be closest to.  Figure 6-2 shows two image segmentations performed by this 

system. 
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(a)                                                                                        (b) 

 

 
(c)                                                                                              (d) 

Figure 6-2. Typical segmentation results of the system under supervised learning using an a-NN search 

tree. (a) West side of the hallway. (b) Segmented image of (a). (c) East side of the hallway. (d) Segmented 

image of (c).[1] 

 

C.    Unsupervised Learning Using MST 

     In the work of [2] the use of the MST for unsupervised learning was introduced. 

However the work of [3] improved this implementation and will therefore be the basis for 

comparison in this review.  To start, it is important to mention the use of this vision 

system was human motion segmentation.  Therefore the resolution of the segmented 

images was increased by reducing the patch sizes to 7x7.  This was the only change made 

to the feature extraction.  The next step was to show that the system was able to be 

accurately trained using unsupervised learning methods.   

    The unsupervised learning technique used was the MST.  Because the minimum 

spanning tree requires a preset number of cuts for the algorithm to work, a method for 

autonomously determining this number was devised [3].  Once the number of cuts 
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necessary was known the MST then clustered the data.  Once the data was clustered an a-

NN search tree was created for use in segmenting the images.  An example of this 

method of segmenting the environment is shown in Figure 6-3.  These images show this  
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(c)                                                                               (d) 

Figure 6-3 Natural Scene Segmentation Examples; (a) Indoor Atrium, (b) Indoor Atrium Segmentation, (c) 

Indoor Jacob Hall, (d) Indoor Jacob Hall Segmentation [3] 

 

method being applied in the same hallway as the images taken in Figure 6-2.  The 

segmentations are quite comparable with those in Figure 6-3 coming from a completely 

autonomous system. 

C.    Supervised Learning Using MLE Search Tree for Segmentation 



151 

 

The goal of the work in [4] was to speed up the image segmentation.  Therefore 

supervised learning was used and a MLE search tree was implemented.  This search tree 

is created in the same manner as the a-NN. The only difference is how the information in 

the tree is used.  In the case of the MLE search tree, when an impure leaf node is reached, 

instead of performing an exact NN search, the label that has the highest number of feature 

vectors present in that leaf node is automatically assigned to represent the current patch.  

Figure 6-4 shows an example of an image being segmented by both an a-NN search tree  

 

 
(a)                                                                              (b) 

 
(c)                                                                                (d) 

Figure 6-4 (a) Robotics lab in Featheringill Hall at Vanderbilt University. (b) Segmented (a) using a-NN 

search tree (c) Same as (a) (d) segmented (c) using MLE search tree [4] 

 

as well as a MLE search tree. 

D. Unsupervised Learning Using K-means clustering with NM segmentation 

Implementation 
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After the success of the MST and search tree methods of processing the data, the 

focus became speed in both training the system and segmenting an image.  In both cases 

it was found that although the results provided by the methods used were good, the time 

it took to employ those methods was not acceptable for real time applications.  Because 

of this the decision was made to use fast known clustering and segmentation algorithms 

and observe the results. The goal was to significantly reduce computational cost with 

little or not sacrifice of performance.  This led to the use of a K=40 K-means clustering 

being used to train the data with a cluster merging technique to deal with over-

segmentation, and the use of NM for segmenting the images [59].  

       To validate the use of NM an image was segmented using a supervised training 

database and comparing the NN segmentation to the NM segmentation.  The results are 

shown in Figure 6-5. Note that the display labels of each of the percepts are randomly set  

 

 
(a) 

 

 
(b)                                                                             (c) 

Figure 6-5(a) Image of a hallway in Featheringill hall at Vanderbilt University (b) Segmentation of (a) 

using NN (c) Segmentation of (a) using NM [59] 



153 

 

and the segmented structures are what indicate the similarities in the processes.  Figure 6-

5 (b) is the image segmented using NN and Figure 6-5 (c) is the image segmented using 

the NM.  These images show that the NM segmentation used on the very high 

dimensional data can perform very well. 

The application of the vision system in this case was a location recognition 

system that was successfully able to determine what hallway it was in based on the 

percepts segmented.   The results of the image segmentation are shown in Figure 6-6.  

 

 
(a)                                                                           (b) 

 

 
(c)                                                                          (d) 

Figure 6-6.  (a) image of hallway 1 in FGH. (b) segmented image of (a) using data trained with K-means 

clustering and NM segmentation.  (c) image of  hallway 2.  (d)segmented image of (c) using data trained 

with K-means clustering and NM segmentation [59] 

 

 

 
Comparing Results 

A. Results from Supervised Training, MST, and K-means Training 
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   Throughout these works three types of training methods have been performed.  

Those methods are supervised learning, MST, and K-means.  The supervised learning 

was first used to determine if the use of this type of high dimensionality for the purpose 

of object segmentation was even useful.  As shown in [1] and Figure 6-2, we conclude 

that it is.  The next step was to develop an autonomous means of training this system.  

Therefore one of the most rigorous methods of training, the MST, was applied to the 

system [2,3].  Again this method demonstrated the ability to segment the percepts in the 

environment.  As will be discussed, the main drawback to both methods was the time 

required to train the system.  With strictly speed in mind the next questions became how 

fast can the system be trained and what will the quality of the segmentation be?  So the 

fastest, albeit not best, method was used, K-means [59].  The degraded quality can be 

seen in Fig.6 however based on the time improvements and the percepts still being 

determinable, the loss of quality is acceptable. 

     The timing results of these works as reported in [3,59] and through personal 

experience in supervising the training of the system in [4] are shown in Table 6-1.   The  
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Table 6-1: Training phase times 

Training Phase Time 

(hrs) 

Supervised Learning  

Gathering Data >12 

Creating Search Tree >10 

Total >34 

Unsupervised MST System  

Thinning ~24 

MST ~40 

Creating Search Tree ~36 

Total ~100 

Unsupervised K-means System  

Thinning ~0.16 

K-means ~0.16 

Total ~0.32 

 

results for the supervised learning show that in total this process took greater than 22 

hours.  This was a very rigorous process of selecting and labeling parts of multiple 

images.  Creating the search tree could also require much longer to process as it was 

totally dependant on the number of feature vectors extracted by the user.  The times 

reported were those found to adequately train the system for use on the images in Figure 

6-4.  The benefit of this method is the quality of the results.  Figure 6-2 provides the best 

example of this.  It was found in [4] that large amount of white in the room used for 

Figure 6-4 made this room very difficult to segment using just the HSV domain.        

     The MST method of training required three steps to have a fully training system.  

These steps are thinning the collected data, using the MST to label the data, and finally 

creating a search tree from the data.  This method, as reported in [3], required ~100 hours 

to complete.  The quality of this method was shown to be quite high as it was used for 

human motion segmentation in [3].  Figure 6-3 shows this.  Again though, the length of 
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time required to train this system is very high.  If the initial training is not adequate then 

it will require another 4 days to retrain the system.   

    Finally, the K-means training method required ~20 minutes to train the system.  

Part of this is due to using a different thinning method, but even if this thinning method 

were applied to the MST training method that would still require ~76 hours.  So it is still 

much faster for generating a useable trained database.  In this case, the weakness was 

segmentation quality.  As shown in Figure 6-6, this method produces far more cluttered 

images. Although the images do provide enough information for location recognition and 

methods for dealing with the quality have been presented in [59,62].  

Based on the results observed, the best method of training will depend on the goal 

of the system.  If a user can train the system and time is not an issue then the supervised 

learning is the best means as this is also the most likely means of getting good results.  

Again if time is not an issue, but there is no user to supervise the training, then the MST 

would be the route to take.  Finally, if time is of great concern and quality can be 

sacrificed then the K-means training method should be implemented. 

       It should be noted that other methods of training the system are being looked into, 

most notably with the use of O-Clusters [64].  This method will aim to balance the time 

requirements with the quality of the segmentation as an unsupervised training method.   

B.  Results from NN, a-NN, MLE, and NM Segmentations 

The very high dimensional feature space has been implemented for image 

segmentation using four different classification methods.  The NN method is the most 

rigorous and is largely regarded as one of the most precise methods of classifying data.  

The a-NN search tree is a well known method of speeding the NN process up while only 
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losing a small amount of performance.  The MLE search tree was another attempt to 

speed the system performance up. While the NM is a very fast method of segmenting the 

data, it is typically viewed as an imprecise method of classification.  The results of using 

these methods are shown in Table 6-2.      

 

     Table 6-2: Image segmentation times 

Technique   Time (msec) 

Nearest Neighbor   >7,200,000 

Approximate Nearest Neighbor   ~12,000 

MLE   ~5,000 

Nearest Mean   ~50-100 

 

The trained databases used to generate these times came from both supervised and 

unsupervised learning.  However based on the observation that the supervised learning 

method will provide the most accurate database from which to segment the images, some 

visual comparisons can be made.  By comparing Figures 6-2, 6-4, and 6-5 it can be seen 

that the NN, a-NN, and NM methods provide the best visual segmentation.  The figures 

also show that the discrepancy in segmentation quality, using NM in Figure 6-5 (c) and 

Figure 6-6(b) (d),  are based on the training method more then the segmentation method.  

Therefore, the true comparison of these methods will be based on the times it takes to 

segment an image.   

     The results of these methods indicate that the NM is the best method for use.   

This method can operate at both real time speeds and provide a comparable segmentation 

to NN, as shown in Figure 6-5.  The real problem with the use of NM is that it is 

dependant on the number of percepts learned.   For the images used in generating the 

time provided, there were 12-18 segmented percepts.   
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     This does not mean that the other methods do not have their uses as well.  If a 

system is not time critical then the NN or a-NN methods will still provide very high 

quality results. 

 

Conclusions and Future Work 

This paper describes multiple implementations of a very high dimensional feature 

space as applied to image segmentation.  Multiple methods of training the system were 

described, including both supervised learning and unsupervised learning methods 

involving a MST approach and K- means approach.  Also multiple means of segmenting 

the trained data were provided.  These methods include NN, a-NN search tree, MLE 

search tree, and NM classifications.  As is well known a supervised learning approach 

provides the most accurate training database, but this data is still able to be classified 

using autonomous means.  If time is of no concern then the MST is a good 

implementation that can provide accurate results, and if time is of more concern then a K-

means approach can still provide enough information for the system to provide useful 

segmentations.   

    In the case of segmenting the images, it was shown that time was the most 

important factor since all of the methods provided good visual results depending on the 

training method used.  It was found that the NM method provided the fastest results 

allowing a system to run at near frame rate speeds.  The bottleneck to this method being 

the number of percepts that need to be considered in the segmentation.  This can be dealt 

with though through clever implementation and proper use of the CUDA architecture. 
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     The next step in the work will to be to continue to improve the unsupervised 

training method.  There are numerous methods for classifying large databases that use 

very high dimensional data and those methods should be investigated.  As far as the 

image segmentation goes, the NM method appears to work quite well leaving the next 

step to be optimizing the implementation for parallel implementation on modern graphic 

processing units.   
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CHAPTER VII 

 

 

CONCLUSIONS 

 

 

As shown in Chapter II, this visual system has been built to deal with unmodified 

environments while maintaining as much robustness as possible.  This began with Tugcu 

[1] creating the very high dimensional feature vectors used for segmentation. His 

iteration of the system used a supervised learning approach to create an approximate 

nearest neighbor search tree for segmenting the images.  This was combined with a 

working memory toolkit to give the robotic system the ability to learn important percepts. 

The next work on this system was done by Wang [2].   Wang built upon what 

Tugcu had done and developed a means for the system to create its own percepts using a 

MST.  On top of that, Wang added a technique to discover novel objects in the 

environment. These additions gave the system a semi-autonomous means of segmenting 

the environment. The lack of autonomy comes from the parameters that Wang had to 

manipulate for the MST to work well. 

From the work performed by Wang, Hunter [3] was able to improve the autonomy 

of the MST, show the importance of using normalized vectors, and demonstrate that the 

system can perform well in multiple environments.  Hunter used a threshold that was 

found based on the distances of the training vectors used as shown in Figure 28.  He was 

also able to show that by using normalized feature vectors the full power of the very high 

dimensional feature space as a means of segmentation could be realized.  His final 

contribution was showing that this system could be used to segment natural outdoor 

areas. 
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The last modification of this system, prior to this work, was performed by 

Costello [4].  This work focused on expanding the power of the system in terms of 

properly incorporating new percepts, adding change detection to the system, and using a 

MLE approach to speed up the segmentation process.  When this work was completed the 

approximate nearest neighbor search tree was able to expand its leaf nodes on the fly 

when new percepts were added.  It was also able to detect when a new object had entered 

the viewing space and determine if any object in the viewing space had been moved.  

Finally the system was able to segment images faster using a MLE based tree.   

After all of these works had been completed the largest problem with the system 

was still the time it required to process a single image.  The MLE based tree was able to 

segment an image every five seconds. This was far too long for a real time system to 

process each image.  Therefore the first step necessary was to speed the processing time 

up significantly.  This was done by porting the segmentation process to a GPGPU.  

Porting the system onto the GPGPU also resulting in overhauling the technique used for 

image segmentation.  As shown in Chapter III, the image segmentation now only requires 

a single mean vector to represent each potential percept leading to a processing time of 

~10-20 images/sec or ~50-100 msec.   

The next step taken in the current work was to add location recognition.  As 

explained in Chapter III new techniques were implemented to speed up the training phase 

compared to the work done in [3].  Therefore instead of using an MST to segment the 

objects, an over-segmentation of the training vectors was done using K-means clustering.  

These clusters were then recombined using a threshold based on the distances between 
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them.  This process resulted in repeatedly providing ~16-19 percepts which is roughly the 

same number of percepts the human user found when doing a supervised training.   

While the percepts were found, the system then created its own sub areas within 

the training region. This division of the training area is shown in Figure 38.  This was 

done by comparing each image to prior images and determining how much the overall 

view of the area had changed. If significant change had taken place then a new area was 

created, resulting in six distinct areas being found.   

Finally after the system had generated its own percepts and understanding of the 

training regions, each region was modeled based on the presence of the percepts.  The 

mean feature vector was calculated for each percept in each region and combined to form 

the local percept mean vectors.  Once this had been found the system was able to take 

new images and determine what region it was in based solely on what was seen.  As 

explained, the system was also capable of updating its knowledge base to improve 

performance. 

Although the idea of using a model of an area is not novel, the method and 

approach used here is.  This method uses a different philosophy from many others. Where 

the other types of systems mentioned (SLAM, landmark detection, and template 

matching) use specific techniques for locating what region the robots believe they are in, 

answering the question “where am I”, this system attempts to understand where it is 

through segmentation and then location recognition in a manner we feel is closer to how 

humans do it.  Meaning the system sees all the percepts in the room and then decides 

where it is, instead of seeking out specific landmarks or using an overall representation of 

the space. This type of rudimentary scene understanding is at the root of this work.  As 
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stated in Chapter I, this work is intended to be the base of a system that is capable of 

continuing to develop and learn autonomously.  To that end, the ability to generate 

percepts and divide areas into smaller more meaningful areas autonomously and then use 

that information for segmentation and location recognition is very important.  As stated, 

instead of seeking out a specific object in an area or manipulating the area to create a 

model that carries no other inherent information; this work aims to take advantage of all 

the information present. Thus opening the door for the system to learn further about the 

region that it is in.  

  Furthermore, the system has the ability to detect reflections created by distant 

light sources, further classify the tracked percept blobs, detect novel objects, and detect 

novel areas.  The reflection detection is performed by tracking the behavior of a percept 

blob over an extended period of time.  It has been observed that reflections that are 

created by distant light sources will appear to remain in the same location in the 

segmented images regardless of the motion of the robot. Therefore, by tracking the 

nonmoving percept blobs reflections were found to be very identifiable. 

 Secondly, due to the large number of reflections in the areas segmented, a method 

of further classifying the percepts needed to be developed.  The classifications created for 

each blob tracked are as follows: actual percept, probably a percept, probably an 

aberration of light, aberration of light.  Each classification is determined based on the 

behavior of the percept blobs.  Then, left for future work, based on the classifications the 

blobs should be able to be combined.  An example would be if a percept blob suddenly 

disappeared and was classified as probably an aberration of light.  Then where that 

percept blob disappeared a new blob formed with a different percept label and was found 
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to behave like a percept from there out.  When this situation occurs it would be possible 

to infer that a lighting change was covering the percept that exists and when the robot got 

close enough the percept became visible.  Then a connection between the two labels 

could be created. 

 The third post location recognition addition made to the system was novel object 

detection.  This is performed similar to the threshold method developed in [2],[4].  The 

threshold was found by finding the average distance and standard deviation between the 

trained percepts and feature vectors extracted from images containing those percepts.  

Two times the standard deviation was then added to the mean to initially set the 

threshold. This threshold was then experimentally increased to be sure that only truly 

novel objects would be detected.  In addition to the distance threshold needing to be 

crossed the size of the novel object must exceed 50 connected pixels.  This ensured that 

only dominant percepts from the environment were found.  This method has 

demonstrated the ability to accurately and reliably detect novel objects in the region.  The 

next step for this aspect of the work, which has been left to future works, is to include the 

novel objects into the database as both global percepts and within the models of each 

local region to help define the local regions that the novel objects have been determined 

to exist in. 

 The final addition to the system is the ability to detect novel regions.  The method 

for accomplishing this includes three criteria needing to be met.  First a preset distance 

threshold for the regions must be exceeded.  Secondly, 25 images must exceed that 

threshold with the 25 images representing at lease a 25 foot area.  Finally, the dominant 

region that classifies all the images that cross the threshold can not represent more the 
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70% of the images.  This ensures that there is sufficient “confusion” within the system as 

to where it believes it is.  If all three of these criteria are met, then a novel region exists 

within the set of images exceeding the threshold.  This method was shown to detect novel 

regions in three different scenarios.  The first scenario involved the system detected that 

two areas that had already been trained and classified needed to be further segmented.  

The second scenario involved finding a novel region that consisted of known percepts.  

Although, it should be noted that this method failed when the untrained area tested 

appeared to be exactly the same as the area the system was trained on.  It did, however, 

work when the area was made up of known objects, but the region was a distinct region.  

Finally the system was able to detect novel regions that consisted of completely novel 

objects.    

So to sum up this work I have created a system capable of the following: 

1. Unsupervised learning of percepts (done) 

a. Decide number of clusters 

b. Find clusters 

c. Train system 

d. Segment images on GPGPU 

2. Location detection (done) 

a. Detect distinct regions 

b. Model regions 

c. Identify regions 

3. Motion tracking (done) 

a. Reflection detection 
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b. Model change in appearance of objects with change in distance 

c. Detect novel objects 

d. Detect new areas 

With these additions the system is able to reliably segment and locate itself within 

an area in a manner closer to how humans locate themselves.  It is also able to further 

classify the percepts that it sees and can determine if what it sees is an actual percept or 

an aberration of light.  Finally the system is able to detect novel object and novel areas. 
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