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CHAPTER I 

 

INTRODUCTION 

 

1.1. Background on Deep Brain Stimulation 

Parkinson’s disease (PD), essential tremor (ET), dystonia, and obsessive-compulsive disorder 

(OCD) are chronic neurological disorders that affect as many as 1 million, 10 million, 250,000, 

and 2.2 million people respectively in the United States [1-4]. Deep brain stimulation (DBS), a 

stereotactic functional neurosurgery first introduced in 1987, has proven effective in symptom 

relief for those otherwise-treatment-resistant movement and mental disorders. Since the approval 

by the Food and Drug Administration (FDA) for ET in 1997, for PD in 2002, for dystonia in 

2003, and for OCD in 2009, it has been used to treat an increasing number of patients. In this 

procedure, electrodes are implanted in the deep brain to stimulate target brain nucleus with high 

frequency electrical pulses. Although the underlying mechanism is not completely understood, 

the goal of this intervention is to interfere with surrounding fiber pathways and modulate the 

brain network responsible for these diseases [5]. Unlike those of ablation techniques, its effects 

are adjustable and reversible without any damage to healthy brain tissue. 

There are several stages involved in DBS procedure, i.e., preoperative planning, 

intraoperative placement, and postoperative programming [6]. In the preoperative stage, 

neurosurgeons carefully examine the patient’s anatomical images and use their experience and 

knowledge to make a plan for the intervention. This plan mainly includes the identification of 

optimal a) target position for stimulation and b) linear trajectory from the outer surface of the 

skull to the chosen target for implantation. During the surgery, a small burr hole is drilled at the 
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planned entry point on the skull to have access to the target region. A test electrode is inserted at 

first along the planned trajectory and probed around the planned target with varying depths at 

micrometric precision. During this probing process, micro-electrode recordings (MER) of 

neuronal activity and micro/macro- stimulation responses from the awake patient are collected. 

These complementary measurements allow the whole surgical team (neurosurgeons, neurologists, 

and neurophysiologists) to establish the functional borders of the deep brain nuclei and finalize 

the target location that has the best tradeoff between therapeutic benefits and side effects [7-8]. 

Then a permanent four-contact electrode is implanted at the refined target position. As shown in 

Figure 1.1, this electrode is connected via extension wire to a battery-powered pulse generator 

placed in a subclavicular subcutaneous pocket. Finally, in the postoperative programming stage, 

the optimal contact(s) of the electrode is(are) identified and the pulse generator is calibrated with 

optimal voltage or current configurations to maximize symptom suppression and control side 

effects over several weeks after the surgery. 

 

 

 

 

DBS is an efficient but complex therapy with little tolerance for error. Accurate electrode 

placement at a millimetric precision level has been found to contribute to improved clinical 

Figure 1.1. Illustration of the DBS system. The pulse generator is connected through extension wire to the lead 

implanted in the deep brain. An example of the electrode is shown on the right (Medtronic #3387 quadripolar lead). 
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outcomes and reduced occurrence of adverse effects [9-10]. In current practice, this is achieved 

by preoperatively selecting the target and the trajectory based on visual inspection of anatomic 

images and intraoperatively refining the target using MER and stimulation responses. Without 

proper planning in advance, the intervention can be prolonged for hours with the patient awake 

during the trial-and-error search for the optimal target. Moreover, risks of surgical complications 

related to lead insertions may be increased, which could cause potential brain tissue damage or 

internal bleeding. Consequently, preoperative planning of a safe insertion trajectory that reaches 

a precise target is essential for the success of the DBS procedure. 

In the preoperative planning phase, a single or multiple set of magnetic resonance (MR) 

volumes and a computed tomography (CT) scan are typically acquired for each patient. Manual 

planning with such datasets is a complex, laborious, and subjective process. A number of 

neuronagivation platforms have been developed to assist neurosurgical teams in these tasks, 

which include CranialVault [11], CAPS [12], and PyDBS [13]. These systems allow users to 

easily navigate through co-registered image slices and offer additional image computing 

functionalities to ease planning tasks. Automatically finding optimal trajectories is difficult 

because of meticulous operating requirements for safe electrode insertion and limitations in 

clinical imaging qualities. In the past few decades, numerous research efforts have been made to 

provide interactive or automatic solutions, and furthermore, conduct retrospective and/or 

perspective clinical validation of those solutions. 

In the following sections, we will present background information and brief reviews on 

DBS preoperative planning. This is separated into two tasks. Given a pre-identified target point, 

we will first focus on finding the direction of the electrode that forms an optimal linear trajectory, 

which we refer to as trajectory planning. We will then focus on various approaches for finding an 
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accurate target point, which we refer to as target localization. Finally, we will present the goal 

and the contribution of the dissertation. 

 

1.2. Trajectory Planning 

An ideal trajectory should satisfy a number of surgical requirements, such as avoiding certain 

critical structures and staying within certain angle range confined by the stereotactic frame. 

Manual selection of this trajectory involves a neurosurgeon empirically picking a few candidates 

and examining each of them by slicing through the preoperative CT/MRI head scans and 

alternating different sequences from time to time. This requires the surgeon to mentally identify 

and reconstruct complex 3D structures and derive spatial relationships between surrounding 

structures and the trajectory. Computer-assistance is highly appreciated to facilitate this process. 

Over the years, various trajectory planning methods have been proposed for DBS and 

other keyhole neurosurgical procedures to mimic surgeon’s decision-making process [14-20]. 

Early efforts by Vaillant et al. [14] and Navkar et al. [16] focus on developing interactive tools 

to visualize critical structures and their proximity to manual selections. In addition to that, recent 

works aim to provide analytical solutions by automatically ranking a large number of candidate 

trajectories according to some surgical constraints and their relative importance [18-20]. These 

solutions vary in terms of the choice of constraints, the algorithms used to segment relevant 

structures, and/or the mathematical formulation of those constraints. Common constraints consist 

of optimizing the distances to vessels, sulci, and ventricles, while other rules include restrictions 

in path length, lead orientation, and overlap with the caudate [19-20]. A variety of segmentation 

methods are applied to delineate those critical structures, including single or multi-atlas-based 

segmentations or other approaches that exploit multi-modality image information of target 
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subjects. To quantify the risk for each structure, costs for all voxels along the trajectory are 

derived from the segmented structure’s distance map and are summarized by taking either the 

sum [14], the maximum [15][19], or both [18][20]. Risks for different constraints are then 

weighted based on their surgical importance. A linear aggregation of those risks is typically used 

to produce a final score for each trajectory. 

The absence of a ground truth poses challenges to assess whether those automatic 

methods are superior to manual protocol. Retrospective and prospective evaluation studies have 

been conducted both qualitatively and quantitatively [12][14-20]. Qualitative validation involves 

user-experience questionnaires about effectiveness of the interactive software [15-16] and 

comparative experiments in which automatic trajectories are rated against manual ones by 

surgeons [20]. Quantitative analysis of the automatic trajectories is also performed by listing 

their distances to critical structures [18-20] and the costs for each individual constraint [19-20]. 

However, such analysis assumes that the surgical constraints are perfectly formulated to describe 

exactly what surgeons seek for. Moreover, segmentation errors need to be ruled out for the 

quantitative measurements presented above to be reliable.  

Importantly, current trajectory planning frameworks are designed and evaluated by the 

same surgeons. The surgical constraints are defined based on rules expressed by surgeons during 

interviews, and the associated weights are usually set heuristically based on their preferences. 

Further investigations are necessary to check if adjustments in those constraints or weights need 

to be made for the same system to be used by different surgeons at different institutes. The focus 

of our work presented herein is to not only develop an automatic trajectory planning system, but 

also evaluate the clinical effectiveness of this system in a multi-surgeon, multi-site setting. 
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1.3. Target Localization 

 

As mentioned earlier, accurate initialization of the surgical target may reduce the need for 

invasive intraoperative exploration, and thereby decrease the surgical duration and procedure-

related complications. Common target nuclei of interest include the thalamic ventral intermediate 

nucleus (VIM) [21], subthalamic nucleus (STN) [22], and globus pallidus internus (GPi) [22] for 

treating different symptoms. Segmentation of these structures is valuable to guide the surgeons in 

target selection, but is challenging to obtain because of their small size and poor contrast in 

clinical CT or T1-weighted (T1-w) images. T2-weighted (T2-w) sequences have sometimes been 

used to visualize the STN, but its insufficient and inconsistent contrast across patients makes it a 

less reliable choice. Moreover, there is a lack of consensus on the exact location within these 

structures for optimal stimulation. Over the years, a number of approaches have been proposed to 

either segment those structures or predict the position of the target point. Those are aided by 

complementary information from visible landmarks, conventional brain atlases, functional data 

from past patients, and advanced imaging sequences. In the following subsections we will review 

different types of state-of-the-art targeting approaches based on their operating mechanisms and 

introduce our contributions for each subcategory. 

 

1.3.1. AC-PC-based Targeting 

Normal clinical practice relies on visible landmarks in T1-w images to indirectly determine the 

target position. This is typically done by taking their standardized coordinates in a stereotactic 

system defined by the Anterior Commissure (AC), Posterior Commissure (PC), and midsagittal 

plane (MSP). Establishing this spatial reference system not only enables the identification of the 

targets, but also permits effective communication of their locations in neurosurgical community. 
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This also serves as a crucial step for many medical imaging tasks such as registration 

initialization and human brain mapping [24-25]. 

Inter-surgeon variability in manually selecting the AC, PC, and MSP can have a 

substantial effect on DBS targeting [26]. Automatic approaches that accurately and consistently 

localize the landmarks and plane across patients can aid in standardizing this coordinate system. 

This is challenging because of image contaminations, inter-subject anatomical variations, and the 

non-planarity of the MSP. Most existing algorithms for localizing the AC and PC perform 

initialization based on surrounding structures or landmarks such as the corpus callosum and 

midbrain-pons junction, which requires them to be successfully identified [27-31]. Edge 

detection used in Han et al. [27] and Verard et al. [28] lacks robustness when noise or motion 

artifact is present in the image. Several works use image registration to transfer the AC/PC 

position from the atlas to the patient, which may suffer from long runtime [32-33]. To extract the 

MSP, methods are primarily divided into two groups, i.e., symmetry-based and feature-based 

approaches. Symmetry-based approaches assume bilateral symmetry of the brain and search for a 

plane that maximizes a symmetry measure [34-35]. Accuracy of such methods is limited by the 

degree of brain asymmetry, especially for patients with schizophrenia, epilepsy, and Alzheimer’s 

disease. Feature-based approaches attempt to identify the inter-hemispheric fissure based on its 

textural features and fit a plane to the fissure lines [36-37]. Those methods in general are more 

robust to brain asymmetry but more sensitive to outliers in the extracted features.  

To accurately, efficiently, and consistently localize the AC, PC, and MSP, we developed 

an algorithm to learn their positions in T1-w images from a large training set. Specifically, a 

univariate regression model is built to associate the appearance of each voxel with its absolute 

distance to those structures. This algorithm was validated thoroughly via a set of robustness tests 
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and comparison to other state-of-the-art methods. 

 

1.3.2. Atlas-based Targeting  

A major drawback for AC-PC-based targeting is the presumption of a fixed coordinate as target 

position, which lacks consideration of anatomical variation across patients. To overcome this 

problem, atlas-based targeting approaches create brain atlases that contain target information and 

spatially deform those atlases to each individual brain for target prediction. Such atlases can be 

roughly divided into anatomical atlases and statistical atlases.  

Traditional anatomical atlases refer to histological atlases in print or digital formats, with 

or without an underlying MR volume. They contain a series of unevenly spaced brain sections 

histologically stained to reveal the structures and substructures of interest [23]. A 3D volume is 

reconstructed from those 2D sections and spatially aligned to the patient’s images for targeting 

assistance. Methods have been developed to optimize the reconstruction of the 3D atlas volume 

and the registration between the atlas and patient image volumes [38-39]. For example, 

Chakravarty et al. [38] built a 3D anatomical atlas from a set of serial histological data and 

registered it to patient volumes via pseudo-MR images. Shortcomings of such methods include 

brain structure discontinuity, limited anatomical variability, and little to none functional 

information, which restrict their applicability in DBS targeting. 

Statistical atlases are developed to complement existing anatomical atlases with statistical 

representation of the surgical targets from multiple patients. They are created by mapping each 

patient to a reference brain template, so that individual electrophysiological recordings or actual 

implanted positions are transferred to this standardized space. By aggregating functional data 

from numerous previous patients, they can provide probabilistic maps of actual population-based 
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target information and deep brain electrophysiological activity. A number of such atlases have 

been proposed, with variations in the functional data, the registration method, and the 

aggregation strategy being used for the atlas creation [40-42]. As indicated by Guo et al. [42], 

targeting using such atlases is advantageous compared to those using anatomical atlases. A 

recent validation study has shown that a statistical atlas-based method can provide fully 

automatic targeting that matches accuracy of best manual strategies [43]. 

The success of atlas-based targeting hinges on the nonrigid registration algorithm to 

generate an accurate spatial mapping between the patient and the reference brain template [44]. 

Nonrigid registration is an extensively explored topic with a multitude of off-the-shelf solutions 

available today. Evaluating the performance of those solutions is challenging because of the lack 

of gold-standard, the usual unavailability of ground truth, and their task-dependent performance. 

For DBS, earlier evaluation studies of nonrigid registration algorithms for anatomical atlas-based 

targeting approach focused on segmentation of the STN structure [45-46]. It remains unknown 

whether the use of different registration algorithms will affect the quality of statistical atlases. To 

answer this question, we compared the centroid, spread, and shape of statistical atlases created 

according to the description in [43] but with different registration methods in a large-scale study.  

 

1.3.3. Direct Localization Learning-based Targeting 

Atlas-based targeting depends on image registration techniques to establish a one-to-one 

correspondence between structures surrounding the target region in the atlas and those in the 

patient images. Such techniques typically take a long runtime and require a large parameter set to 

be adjusted. Supervised learning, on the other hand, may substitute registration approaches by 

learning this correspondence from a large training dataset. In line with this assumption, we 
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propose to learn target locations from past patients who underwent DBS surgery. This is 

different from the learning-based approach we described in section 1.3.1, which indirectly 

determines target locations by learning the AC, PC, and MSP location. 

Direct learning of the target position is complicated by the high degree of intensity 

homogeneity in the deep brain region. Unlike easily distinguishable landmarks, we cannot rely 

on discernable features to distinguish the target point from its adjacent neighbors, as we have 

done for AC/PC/MSP localization. Surrounding anatomy with high contrast, on the other hand, 

can be informative about the target. For example, AC-PC-based targeting approaches localize the 

target using its relative distance to the AC, PC, and MSP. Castro et al. have shown that 

segmentations of the lateral ventricle, third ventricle, and interpeduncular cistern could improve 

targeting accuracy [46]. While these methods rely on specific pre-defined structures in the 

atlases, it may be beneficial to allow all surrounding structures to vote for the target location and 

aggregate those votes in a weighted fashion for the final estimate. This can be achieved by multi-

variant regression learning, which regresses the appearance of each voxel to a displacement 

vector of this voxel to the target position. This idea has been used to address similar issues in 

other applications, such as localizing candidate point in active shape models on 2D radiographs 

[47] and the center of vertebrae in MR images [48]. To this end, we developed a learning-based 

system to directly localize the target using a multi-variant regression model. Spatial prior as well 

as multi-modal contextual information from T1-w and T2-w sequences was incorporated in this 

system for STN targeting. 

 

1.3.4. Advanced Imaging Sequences-based Targeting 

Advanced imaging techniques have been developed to enhance the contrast in the deep brain 
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region so that direct visualization or segmentation of target nuclei can be achieved. For the STN 

and GPi, susceptibility-weighted images (SWI) (magnitude, phase, magnitude-phase-fusion 

images), T2* mapping, DESPOT1 and DESPOT2 sequences haven been proposed as 

improvement over standard T2-w [49]. For the VIM, visual identification cannot be readily 

achieved. Instead, parcellation of the thalamus is normally performed to display this internal 

nucleus. Traynor et al. relied on multiple T1 and T2 maps to reveal subtle differences between 

thalamic nuclei and employed a modified generic algorithm for thalamic clustering [50]. 

Diffusion weighted imaging (DWI) has been commonly used for this purpose to distinguish 

voxels inside the thalamus based on local tensor inhomogeneity or structural connectivity to 

different cortical regions [51-53]. In addition, other approaches exploit the functional 

connectivity in the thalamo-cortical system, either via task-related function MRI (fMRI) [54] or 

resting state fMRI [55]. These techniques, however, are limited by the low spatial resolution and 

signal-to-noise ratio (SNR) of clinical sequences. Their results also need further validation 

because of the lack of a ground truth. 

Recent advances in high-field MR imaging systems has led to improved image quality 

with finer spatial resolution, higher SNR, and enhanced contrast. This allows small structures 

which cannot be well delineated at lower field to be visible and segmented much more accurately. 

For instance, Wang et al. demonstrated the use of 7T T1-w and T2-w images for improved 

visualization of STN and GPi [57]. Newton et al. proposed to visualize intrathalamic 

substructures by combining contrast from a specially designed magnetization-prepared rapid 

gradient-echo (MPRAGE) sequence and SWI [56] at 7T. Although 7T MR imaging is yet to be 

approved for clinical application, it permits accurate delineation of target structures and the 

construction of high quality anatomical atlases from many subjects. This is in contrast to the 
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histological atlases as mentioned in section 1.3.2 that are limited in quantity.  

With a set of high-field atlases, standard atlas-based approaches using single or multiple 

atlases can be readily applied to segment the target nuclei in clinical images [57]. These 

techniques are voxel-based solutions that do not account for a-priori shape information, which 

may not be optimal for segmenting small structures. Alternatively, such prior information can be 

learned by exploiting the relative position of the target structures and neighboring structures that 

are visible at clinical lower-field MR images. This has been explored in a number of works, 

including a recently proposed regression forests-based approach which predicts the STN from a 

set of pre-segmented structures [58]. To segment thalamic nuclei, we proposed to build statistical 

shape models using 7T thalamus atlases obtained with a multi-sequence approach and rely on 

pre-segmented thalamus to infer its internal subdivision. Results were compared to those 

obtained with single-atlas-based and multi-atlas-based approaches. 

 

1.4. Goals and Contributions of the Dissertation 

The goal of this dissertation is to automatically and accurately plan a trajectory and localize the 

target for the preoperative stage in DBS, which is achieved by a series of methods with thorough 

validation. The proposed methods form an automatic preoperative planning framework which 

could be potentially integrated into a clinical workflow. Various targeting approaches that 

operate on different principles also make the quality control process possible.  

Specifically the contributions of this dissertation are summarized below: 

Chapter II presents an automatic trajectory planning system which translates a set of 

surgical constrains into a mathematical model and exhaustively searches for the optimal 
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trajectory. This system is further validated in a set of experiments with multiple surgeons across 

different institutions. 

Chapter III proposes a learning-based algorithm to automatically and efficiently localize 

the AC, the PC, and the MSP for indirect targeting. Robustness of this algorithm is tested under 

varying degrees of brain asymmetry, noise level, and image rotation. Its performance is also 

compared against traditional atlas-based methods and a publicly available toolkit. 

Chapter IV studies the effect of different nonrigid registrations algorithms on the 

creation of statistical atlases using several reference volumes. Results show no significant 

differences of those algorithms for target prediction using statistical atlas-based techniques. 

Chapter V develops a learning-based technique to directly localize the target positions 

using spatial prior and multi-modal information. This technique is compared to other targeting 

methods used or developed in chapter III and IV and shown to achieve a superior or comparable 

accuracy level. 

Chapter VI designs a protocol to create histological-like atlases from 7T high-resolution 

multi-modal images with manually delineated thalamic nuclei substructures. Single-atlas-based, 

multi-atlas-based, and statistical shape-based approaches are proposed to use these atlases to 

segment the internal structures on clinical 3T volumes and evaluated in a leave-one-out 

validation study.  

Chapter VII provides the summary of the work and discusses possible future work. 
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Abstract 

Deep brain stimulation, which is used to treat various neurological disorders, involves implanting 

a permanent electrode into precise targets deep in the brain. Reaching these targets safely is 

difficult because surgeons have to plan trajectories that avoid critical structures and reach targets 

within specific angles. A number of systems have been proposed to assist surgeons in this task. 

These typically involve formulating constraints as cost terms, weighting them by surgical 

importance, and searching for optimal trajectories, in which constraints and their weights reflect 

local practice. Assessing the performance of such systems is challenging because of the lack of a 

ground truth and clear consensus on an optimal approach among surgeons. Due to difficulties in 

coordinating inter-institution evaluation studies, these have been performed so far at the sites at 

which the systems are developed. Whether or not a scheme developed at one site can also be 

used at another is thus unknown. In this article, we conduct a study that involves four surgeons at 

three institutions to determine whether or not constraints and their associated weights can be 

used across institutions. Through a series of experiments, we show that a single set of weights 

performs well for all surgeons in our group. Out of 60 trajectories, our trajectories were accepted 

by a majority of neurosurgeons in 95% of the cases and the average acceptance rate was 90%. 

This study suggests, albeit on a limited number of surgeons, that the same system can be used to 

provide assistance across multiple sites and surgeons. 

 

2.1. Introduction 

Deep brain stimulation (DBS) procedures, which are widely used to treat patients suffering from 

neurological disorders such as Parkinson’s disease, tremor, or dystonia [1], require placing a 

permanent four contact electrode in specific deep brain nuclei. Multiple studies have indicated 
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that precise planning of the trajectory is necessary to avoid psychological and motor side effects 

or complications such as hemorrhage. Comprehensive reviews of risks associated with the 

procedure can be found in [2-3]; the latter reports a risk of hemorrhage ranging from 0.3% to 

10% per patient, depending on the site at which the procedure is performed. At leading clinical 

sites, a 1% risk of intracranial hemorrhage associated with permanent neurological deficit is 

currently considered to be the norm. Planning the procedure is thus a task that requires expertise, 

and a review of the literature shows that a number of approaches have been proposed over the 

years to assist surgeons in selecting trajectories for neurosurgery in general and for DBS 

procedures in particular. In 1997, Vaillant et al. [4] quantified the risk of a candidate trajectory 

using a weighted sum of the voxel costs manually assigned according to the tissue significance 

along a trajectory. A decade later, Brunenberg et al. [5] approached the problem again. They 

evaluated the risk of an automatic trajectory using the maximum voxel cost, defined as the 

minimum distance to vessels and ventricles. The set of all possible trajectories that satisfied the 

cost criteria defined as distance thresholds to each structure was then displayed to surgeons for 

them to choose from. This was followed by the work of Navkar et al. [6], who attempted to 

facilitate the path selection process by overlaying color-coded risk maps on a rendered surface of 

the patient’s head. Shamir et al. [7] proposed to account for both the weighted sum of voxel costs 

and the maximum voxel cost with respect to vessels and ventricles along the trajectory, and 

combined the individual costs of each structure with risk levels defined by surgeons. In a more 

comprehensive framework, Essert et al. [8] formalized various surgical rules as separate 

geometric constraints and aggregated them into a global cost function for path optimization. 

Following a similar idea, Bériault et al. [9] defined constraints using multi-modality images and 

modeled the trajectory as a cylinder.  
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While these methods suggest the feasibility of developing reliable computer-assisted 

planning systems, assessing their performance remains challenging, as no universal ground truth 

exists. Qualitative evaluations have involved user-experience questionnaire about effectiveness 

of the interactive path selection software by neurosurgeons [5-6]. Recently, Shamir et al. [7] and 

Essert et al. [8] have quantitatively compared the safety of automatic trajectories with manual 

ones using their distances to critical structures. Essert et al. [8] also reported the global and 

individual costs between those two types of trajectories on 30 cases, which, as stated in the 

paper, may favor the automatic approach that is designed to minimize these cost values. Bériault 

et al. [9] performed not only a quantitative evaluation similar to others [7-8], but also a 

qualitative validation where the automatic trajectories were rated against one set of manual 

trajectories by two neurosurgeons for 14 cases retrospectively. More recently, Bériault et al. [10] 

tested their method prospectively on 8 cases in a study where the system proposed five 

trajectories in the first round. If none of these were found acceptable, the system was initialized 

interactively by surgeons up to three times to compute a local optimal trajectory each time. The 

surgeon could then choose either one of the system-generated trajectories or a trajectory selected 

manually in the normal delivery of care. Out of these 8 cases on which this method was 

evaluated, one of the five initial system-generated solutions was selected for five cases, a 

manually initialized but automatically computed solution was selected for one case, one case was 

planned manually by the surgeon and for the last case both solutions were deemed equivalent.  

Importantly, even though all the current automatic trajectory computation algorithms 

involve a cost function with multiple terms modeling surgical constraints and the selection of 

weights for each of these terms, no study has explored whether or not individual surgeon 

preferences would necessitate the adjustment of weights or even the constraints. It is thus not 
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known whether one could develop a system that could be used by a multitude of surgeons at 

multiple sites or if some type of training would be required when a system is fielded at a new 

site. In this article, we report on a number of experiments we have performed as an extension of 

previous work [11] to begin answering these questions both retrospectively and pseudo-

prospectively. In the rest of the article, we first provide details about the data, the cost function, 

and the training method we have used. The various experiments we have performed to study 

whether or not one could capture surgeon preferences and if these were of clinical significance 

are described next. This is followed by a description of pseudo-prospective studies we have 

performed with 3 experienced movement disorder surgeons (one affiliated with our institution, 

one with Wake Forrest University, and one with Stanford University) who collectively perform 

in excess of 200 cases a year. We subsequently present the results we have obtained for each of 

these experiments. These results are discussed and avenues for future investigations are 

presented in the last section of this article. 

 

2.2. Methods 

 

2.2.1. Data 

Thirty DBS patients with bilateral implantations in the subthalamic nucleus (STN) are included 

in this study, for a total of 60 distinct trajectories. All subjects provided informed consent prior to 

enrollment. For each subject, our dataset includes magnetic resonance (MR) T1-weighted (T1-w) 

images without and with contrast agent (MR T1(-C)), and the target position at which the 

implant has been surgically placed. The MRIs (TR: 7.9 ms, TE: 3.65 ms, 256×256×170 voxels, 

with voxel resolution 1×1×1 mm³) were acquired using the SENSE parallel imaging technique 
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from Philips on a 3T scanner. The MR T1-C is rigidly registered to the MR T1-w prior to 

trajectory optimization with a standard intensity-based technique that uses Mutual Information 

[12-13] as its similarity measure.  

 

2.2.2. Trajectory Planning Approach 

Our approach involves formulating surgical constraints as individual cost terms and finding the 

optimal trajectory in a limited search space based on a cost function that aggregates those terms. 

2.2.2.1. Formulation of Surgical Constraints 

We gathered a number of constraints expressed as rules through extensive discussions 

with the two experienced movement disorder neurosurgeons affiliated with our institution. These 

rules are based on factors including safety, esthetic, and lead orientation with respect to the target 

structures and are similar but not identical to constraints used by others. For example, constraints 

such as minimizing the path length [8], minimizing overlap with caudate [9] and maximizing the 

orientation of the electrode depending on target shape [8], were not considered significant by our 

surgeons and thus not included in our system. Some of these rules cannot be violated while 

others lead to trajectories that are less desirable when violated. Using these rules we designed a 

cost function that contains hard constraints, i.e., constraints that cannot be violated, and soft 

constraints, i.e., constraints that penalize the trajectories more as the extent to which they are 

violated increases. 

1) Rule 1 (Burr hole): The entry point should be posterior to the hairline for cosmetic reasons 

and anterior to the motor cortex to avoid side effects. 

This is incorporated in our algorithm by limiting the generation of candidate trajectories 

within an allowable bounding box defined on a skin-air interface mesh. 
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2) Rule 2 (Vessels): The trajectory should stay away from vessels to minimize the risk of 

hemorrhage. 

This is modeled as a soft constraint that penalizes trajectories that are closer than 3 mm 

from a vessel, with the corresponding cost term 𝑓2 defined as follows: 

𝑓2 = {
(3 − 𝑑2) (3 − 𝑑2min

)⁄ if 𝑑2 < 3

0 if 𝑑2 ≥ 3
 

, 

(2.1) 

where 𝑑2 is the Euclidean distance from the trajectory to the vessels and 𝑑2min
 is the minimum 

value of 𝑑2 over the set of trajectories being evaluated for one case. A hard constraint is also 

defined which sets the total cost of a trajectory to be maximum if it penetrates a vessel. 

3) Rule 3 (Ventricle): Ventricles are structures that should not be perforated by the trajectory, 

while it is desirable to stay close to them to favor approaches that maximize the coverage of the 

region of interest in the STN. 

This is modeled through both a soft constraint that penalizes trajectories that are further 

than 2 mm to the ventricles, and a hard constraint that sets the total cost of a trajectory to be 

maximum if it is closer than 2 mm. The corresponding cost term 𝑓3 for the soft constraint is 

defined as follows:  

𝑓3 = (𝑑3 − 2) (𝑑3max
− 2)⁄ , if 𝑑3 ≥ 2, (2.2) 

where 𝑑3 is the Euclidean distance to the ventricles and  𝑑3max
 is the maximum value of 𝑑3 over 

the set of trajectories being evaluated for one case. 

4) Rule 4 (Sulci): It is unsafe to cross sulci because small vessels that are invisible on 

preoperative imaging are often present at the base of the sulci. 

This is modeled as a soft constraint that penalizes trajectories that intersect the cortical 

surface at the base of the sulci. The cost term for this constraint, 𝑓4, is defined as follows:  
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𝑓4 = (𝑑4max
− 𝑑4) (𝑑4max

− 𝑑4min
)⁄  (2.3) 

where 𝑑4 is a distance quantity to the sulci, and 𝑑4min
, 𝑑4max

 are the minimum and maximum 

value of 𝑑4 over the set of trajectories being evaluated respectively. The search area defined by 

the bounding box in Rule 1 is large enough to cover both sulcal and gyral regions, so that 

trajectories with 𝑓4  approaching 1 intersect with sulci and trajectories with 𝑓4  approaching 0 

intersect with gyri. Further details on the computation of 𝑑4 are provided later in this section. 

5) Rule 5 (Suture): Some neurosurgeons prefer the entry point to be near the coronal suture. 

This is modeled as a soft constraint that penalizes entry points that are located posteriorly 

or anteriorly from the middle of our allowable entry region, which is used as an approximation of 

the coronal suture. The cost term for this constraint, 𝑓5, is defined as follows: 

𝑓5 = 𝑑5 𝑑5max
⁄  (2.4) 

where 𝑑5 is the Euclidean distance from the entry point of a trajectory to the suture, and 𝑑5max
 is 

the maximum value of 𝑑5 among all trajectories being evaluated. 

6) Rule 6 (Thalamus): Intersecting the lateral edge of the thalamus is desired by some surgeons 

when targeting the STN because it can be used as an electrophysiological landmark before 

reaching the target (this was expressed as a desirable trajectory property by one of the two 

surgeons at our institution). 

This is modeled as a soft constraint that penalizes trajectories passing through the 

thalamus for less than one millimeter, with the corresponding cost 𝑓6 defined as follows: 

𝑓6 = {
1 − 𝑑6 if 𝑑6 < 1

0 if 𝑑6 ≥ 1
, (2.5) 

where 𝑑6 is the length of the trajectory passing through the thalamus. 

Cost function: The overall cost function, 𝑓total, is a weighted sum of the individual cost terms 
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associated with each of the soft constraints 2-6 we have defined. It also contains the hard 

constraints that are part of Rule 2 and Rule 3: 

𝑓total = {
∑ 𝑤𝑖𝑓𝑖

6

𝑖=2
 if  𝑑2 ≥ 0 ∩  𝑑3 ≥ 2

1 otherwise 

  , s. t.  {𝑤i} ≥ 0, ∑ 𝑤𝑖

6

𝑖=2
= 1 (2.6) 

where {𝑑i} are the distance quantities discussed above, and {𝑤i} are the values used to weigh the 

relative importance of each cost term. The method we use to obtain those weights is described in 

detail in the next section. All cost terms {𝑓i} are normalized, and the weights {𝑤i} are forced to 

be positive and their sum equal to 1. The overall cost 𝑓total thus ranges from 0 to 1. If a trajectory 

hits a vessel, i.e., when 𝑑2 < 0, or if a trajectory is closer than 2 mm to the ventricles, i.e., when 

𝑑3 < 2, then 𝑓total is set to its maximum value. Otherwise, 𝑓total is equal to the weighted sum of 

the cost terms. 

2.2.2.2. Path Optimization 

The path optimization process is an exhaustive search that consists of generating all 

candidate trajectories in a specific search space, computing the cost for each trajectory based on 

the cost function described above and finding the trajectory with the lowest cost, as illustrated in 

Figure 2.1. 

 

 

 
Figure 2.1. Overview of the path optimization process. 
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Path Generation 

Each trajectory is modeled as a linear segment with a common target point and can be 

uniquely represented by its entry point located on the skin-air interface. This interface is a dense 

triangulated mesh with vertices representing possible entry points, and is obtained automatically 

by extracting the isosurface of the patient’s T1-w image after smoothing using marching cubes 

algorithm [14] and then filtering out extraneous components. 

The allowable entry region specified by Rule 1 is determined by projecting 4 points that 

have been selected manually by one neurosurgeon on one T1-w reference volume onto the 

patient’s head surface. This reference volume is registered to the corresponding patient volume 

using non-linear registration and the transformation that registers these volumes is used to 

project the points. Those four points defines a tetrahedron that bounds the region, and all vertices 

within this region on the skin-air interface are considered to be candidates. This set of candidate 

entry points typically consists of 2000 points separated by an average distance of 1 mm and 

serves as the constrained search space in which the optimal solution is found. 

Cost Computation 

Several rules (2, 3, 4 and 6) involve anatomical structures therefore their segmentations 

are required to compute the cost function. Vessels were identified by thresholding the difference 

image created by subtracting the MR T1-w from co-aligned T1-C within the skull region. 

Ventricles and thalamus were segmented by combining atlas-based segmentations from four 

atlases using STAPLE [15]. From those segmentations distance maps were computed with a fast 

marching method algorithm [16]. These were then used to calculate the distance between a 

trajectory and the various structures using the technique described by Noble et al. [17]. All 

nonrigid registrations were performed with the Adaptive Bases Algorithm [18]. 
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The distance to the sulci, 𝑑4, is computed in several steps, as illustrated in Figure 2.2. 

First, the cortical surface is extracted using the LongCruise tool [19] (represented schematically 

by the colored curve). Then the deepest intersection point of the trajectory with this surface is 

found (shown as a star in the figure). Vertices on the surface mesh that fall within N neighbor 

edge connections from this point are identified (indicated by dots in the same figure) and 

projected onto the trajectory to compute a signed distance from the intersection point to the 

projected points (positive inside the cortex, negative outside). The distance 𝑑4  is a weighted 

average of those distance values, where the weights are defined to be the reciprocal of the 

number of points with the same neighbor edge connections so that points with approximately 

equivalent geodesic distance to the intersection point contribute equally. As can be seen in 

Figure 2.2, 𝑑4  is negative when intersecting a valley (i.e., a sulcus), is around zero when 

intersecting neither a peak nor valley, and is positive when intersecting a peak (i.e., a gyrus). 

Hence 𝑓4 is minimized when a trajectory intersects the cortical surface through the top of a gyrus. 

 

 

 

 

Figure 2.2. A 2D illustration of 𝑑4 . The curve represents the cortical surface and the lines represent candidate 

trajectories, all color coded by this sulci distance, 𝑑4 , where blue and red indicate lower and higher values 
respectively. The intersection points are indicated by stars and neighbor points by dots. From left to right, the 

average projection distance for each trajectory is negative, nearly zero, and positive, respectively. 
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2.3. Experiments 

We conducted a set of experiments, first retrospectively and internally with two surgeons at our 

institution and then pseudo-prospectively with two additional surgeons at external institutions. In 

this article, we define a pseudo-prospective experiment to be the selection of a trajectory as it 

would be done in clinical practice but without actually performing the procedure (more details on 

the way the experiments were performed are provided below). All experiments have been 

performed with the research version of the FDA cleared surgical planning system used clinically 

by all four neurosurgeons called WayPoint Navigator [20] that is distributed by FHC, Inc. 

Bowdoin, ME, USA. 

 

2.3.1. Retrospective Internal Studies 

The retrospective studies were performed by the two co-author neurosurgeons affiliated with our 

institution and subsequently referred to as surgeons A and B. Surgeon-specific weighting 

parameters were learned prior to any evaluation experiments using two sets of training volumes, 

one set per surgeon. To do this, we collected 10 pair of images (T1-w and T1-C) of patients 

operated on by surgeon A and another 10 operated on by surgeon B, all with bilateral 

implantation. For each of these volumes, the planned trajectories of both left and right sides 

selected by the surgeons in the normal delivery of care were available. These images and 

trajectories constitute the training sets, leading to 20 training trajectories from 10 patients per 

surgeon. Surgeon-dependent weights for our algorithm were determined heuristically and 

iteratively as follows. First, initial weight values were set according to the relative importance of 

the constraint, as stated by the surgeon. Then, automatically generated and manually selected 

trajectories were presented simultaneously in the surgical planning system to the surgeons who 
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were blind to the way the trajectories were generated. The surgeons were asked to compare the 

trajectories using a four level comparative scale. If the trajectory being evaluated was chosen, i.e., 

if it better matched the surgeon’s preferences than the one chosen manually, it was classified as 

“Excellent”. If the surgeon was not able to determine which one was superior, e.g., if they were 

too close to each other, it was rated as “Equivalent”. If the trajectory under evaluation was not 

chosen but could still be used clinically, i.e., it was considered to be safe, it was classified as 

“Acceptable”, and otherwise was classified as “Rejected”. A computed trajectory was considered 

to be successful if rated “Acceptable” or better. Based on this surgeon’s feedback, weights were 

manually adjusted and the experiment repeated until each surgeon ranked all his training 

trajectories as at least acceptable, i.e., safe. This required four iterations. Once these parameters 

were estimated, they were fixed and used for all evaluation experiments. 

To test our method with weights obtained in the training phase, we acquired another 10 

image sets of patients operated on by surgeon B, all with bilateral implantation, for which the 

planned trajectories selected by surgeon B in the normal delivery of care were available. To 

obtain manual trajectories on the same set of image volumes, surgeon A was asked to select a 

trajectory manually on both sides of each of these volumes as if performing the procedure. These 

10 volumes as well as both surgeons’ manual trajectories constitute the testing set, leading to 20 

testing trajectories per surgeon. These manual trajectories were used in the various experiments 

described below. Evaluation of a trajectory in these experiments is achieved as described in the 

training session, i.e.,  the surgeons were asked to rate the trajectory against their own manual one 

without knowing the trajectories’ provenance with the four-level comparative rating scale 

described earlier. 

The goals of our retrospective validation experiments were threefold. First, test whether 
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or not we could estimate surgeon-specific parameter values that would lead to acceptable 

trajectories for the surgeon for whom the parameters were tuned. Second, evaluate whether or 

not surgeon-specific weighting parameters were indeed necessary. Third, test whether or not one 

surgeon would prefer trajectories generated automatically or by another surgeon, i.e., would 

automatic trajectories appear any different to a surgeon than trajectories selected manually by 

another experienced surgeon. The following experiments were performed to answer these 

questions. 

1) Experiment 1: evaluation of the trajectories computed based on surgeons’ own preferences 

The goal of the first experiment is to assess the degree to which the weighting factors 

optimized for each neurosurgeon effectively capture their preferences. The surgeon is asked to 

evaluate the trajectories computed by our method using his own preferences against his own 

clinical ones. 

2) Experiment 2: evaluation of the trajectories computed based on other surgeons’ preferences 

The goal of the second experiment is to assess the benefit of using surgeon-specific 

parameters. The surgeon is asked to evaluate the trajectories computed by our method using the 

weight values estimated for the other surgeon against his own clinical ones. 

Results of experiment 1 and 2, detailed in the next section, led us to the conclusion that 

the set of weights optimized for surgeon B, could be used to pursue our validation study. Thus 

the computed trajectories evaluated in the following experiments are all generated by this set of 

weights. 

3) Experiment 3: evaluation of the trajectories manually picked by other surgeons 

The goal of the third experiment is to assess if automatically generated trajectories are 

distinguishable from trajectories manually selected by another surgeon. Each surgeon was 
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presented with a choice between his trajectory and the trajectory manually selected by the other 

surgeon. The results of this experiment are compared to the results of the experiments in which 

each surgeon is presented with a choice between the automatically generated trajectory and his 

manual trajectory. The automatically generated trajectories for surgeon A are the same as those 

generated for him in experiment 2 and trajectories computed for surgeon B are the same as those 

evaluated in experiment 1, because, as discussed above, the weight values optimized for surgeon 

B were used for both surgeons in this experiment. 

 

2.3.2. Pseudo-prospective Studies 

We define the pseudo-prospective scenario as putting the surgeons in the same conditions as a 

prospective scenario but using retrospective cases, i.e., we ask the surgeon to redo plans on 

patients that already underwent the surgery. Because in this study we focus on evaluating the 

trajectories, we fix the target point to be the clinical target point chosen during the real plan. To 

be more specific, for each case, surgeons were provided with a single trajectory. If they thought 

the trajectory was adequate to be used clinically, it was labeled as “Acceptable”; otherwise, it 

was labeled as “Rejected”. In this case, the surgeons would adjust it to make it useable and 

provide cause(s) for rejection. The two surgeons at our site evaluated and interacted with the 

trajectories on a laptop running the planning system as they would clinically. This typically 

involves checking the trajectory along its length in orthogonal views and in a “bird’s eye view”, 

i.e., in slices that are reformatted to be perpendicular to the trajectory. Surgeons were allowed to 

modify the trajectory to check whether or not a better one could be found. The surgeons at 

remote sites followed the same process but the computer was accessed remotely and its desktop 

shared. Although the goal of our pseudo-prospective study is to test in clinical conditions 
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whether or not our algorithm could be used to assist the surgeon in selecting an optimal 

trajectory, we first investigate whether or not surgeons behave differently when choosing 

between two trajectories or when deciding to accept or reject a single trajectory. We do this by 

presenting surgeons A and B with the automatic trajectories they were presented in experiment 2 

for surgeon A and in experiment 1 for surgeon B. We then extend our analysis to the multi-site 

evaluation using a larger dataset.  

4) Experiment 4: evaluation of the computed trajectories in pseudo-clinical setting within 

internal site 

In this experiment, we put surgeons A and B into clinical condition to test the automatic 

trajectories computed with surgeon B’s weights. We present each surgeon with 20 trajectories 

computed for the volumes in the testing set and ask them to either accept or reject the trajectories. 

These trajectories are the same as those presented to surgeon A in experiment 2 and surgeon B in 

experiment 1. 

5) Experiment 5: evaluation of the computed trajectories in pseudo-clinical setting among multi-

institutional surgeons 

In this last experiment, we tested the automatic algorithm on the complete set of patients, 

i.e., on 60 trajectories. These trajectories were evaluated by one surgeon affiliated with 

Vanderbilt University, one with Stanford University, and one with Wake Forest University. 

Because the weights used to generate these trajectories were estimated to capture surgeon B’s 

preferences, he was eliminated from this pseudo-prospective experiment to avoid any bias. 

As several constraints are based on the distance to specific structures, their under- or 

over-segmentation could affect our results. To avoid this potential confounding factor and 

because the focus of this paper is not on the validation of the segmentation algorithms, prior to 
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experiment 5, we verified the segmentations of structures including ventricles and veins around 

the ventricles and refined them if needed. 

 

2.4. Results 

Parameter selection was carried out internally for surgeons A and B. For surgeon A, weighting 

parameters were chosen through the training process to be 0.18 for 𝑓2, 0.18 for 𝑓3, 0.35 for 𝑓4, 

0.24 for 𝑓5, 0.05 for 𝑓6. For surgeon B, weighting parameters were 0.20 for 𝑓2, 0.27 for 𝑓3, 0.40 

for 𝑓4, 0.13 for 𝑓5, 0.00 for 𝑓6. For illustration purposes, Figure 2.3 shows for one case color 

maps that convey the costs associated with entry points within the allowable search region (blue 

= low cost, red = high cost). Panels (a)-(e) show individual costs and (f) shows the overall cost. 

Figure 2.4 shows a manual trajectory (green) and two computed trajectories rated against this 

manual one for one case, with one rated as excellent (blue), and the other rejected (red). The 

rejected trajectory is closer to the sulcus, which is the reason for rejection. The trajectory rated as 

excellent is further away from vessels compared to the manual trajectory. 

 

 

 

Figure 2.3. Color maps showing the cost for (a) 𝑓2 , the vessel cost; (b) 𝑓3,the ventricle cost; (c) 𝑓4, the sulci cost; (d) 

𝑓5, the suture cost; (e) 𝑓6, the thalamus cost; (f) 𝑓total, the total cost. (blue = low cost, red = high cost) 
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Results for experiment 1 in which we assess the degree to which these weighting factors 

effectively capture the neurosurgeon’s preferences are presented in Figure 2.5. For surgeon A, 

25% of the 20 available test cases are rated as excellent, 50% as equivalent, 15% as acceptable, 

and 10% as rejected, while for surgeon B, 25% are rated as excellent, 10% as equivalent, 50% as 

acceptable, and 15% as rejected. Acceptance rates of 90% and 85% for surgeons A and B 

suggest that the surgeon’s preferences were reasonably captured in the weighting parameters. 

 

 

 

 

Results for experiment 2 in which we assess the benefit of using surgeon’s specific 

Figure 2.4. Manual trajectory (green), trajectory rated as excellent (blue), and trajectory rated as rejected (red), both 

being rated against the manual one. The surrounding structures include the ventricles (yellow), vessels (cyan), and 

the cortical surface (magenta). (a) a global view; (b) zoomed in view around the ventricular surface; (c) zoomed-in 

view around the cortical surface. 

Figure 2.5. Rating distribution of the trajectories computed using the surgeon's own set of weights for surgeons A 

(left) and B (right). Red represents the percentage of cases being rejected and light, medium, dark blue represents the 

percentage of cases rated as acceptable, equivalent, and excellent respectively. 
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parameters are shown in Figure 2.6. This figure shows the results of the rating experiments 

conducted with surgeons A (left) and B (right). The light blue columns represent rating scores for 

the trajectories computed using the same surgeon’s set of weights and dark red for  those 

computed using the other surgeon’s set of weights. For each surgeon, 15 out of the overall 20 

cases ended up having the same rating scores between the trajectories computed using the two 

sets of weights. Only cases when these two rating scores were different are shown in this figure. 

The left panel shows that surgeon A consistently prefers trajectories computed using surgeon B’s 

weights and rated all of those trajectories better than the ones computed using his own weights. 

In the right panel, the plot shows that surgeon B rejected several trajectories computed using 

surgeon A’s weights and in general prefers his own set of weights. This suggests that the set of 

weighting parameters chosen for surgeon B is acceptable for both surgeons. Results obtained 

with this experiment led us to continue our analysis with only the set of weights optimized for 

surgeon B. 

 

 

 

 

The results of experiment 3 in which we assess whether or not a surgeon has a preference 

for automatically generated trajectories over trajectories selected manually by another surgeon 

Figure 2.6. Pairwise comparison of rating scores. Left: experiment conducted by surgeon A; right: experiment 

conducted by surgeon B. Light blue represents the rating for the trajectory computed using the same surgeon’s set 

of weights and dark red indicates the rating for the trajectory computed using the other surgeon’s set of weights. 

Only cases that resulted in different rating between the two trajectories are shown. 
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are shown in Figure 2.7. Results obtained with surgeon A are plotted in the left panel and those 

obtained with surgeon B in the right panel. For each surgeon we show the distribution of ratings 

for the other surgeon’s manual trajectories on the left and the distribution of ratings for the 

trajectories computed using surgeon B’s weights on the right. This figure shows that surgeon A 

tends to prefer the automatic trajectories over surgeon B’s manual trajectories and surgeon B 

rejected fewer automatic trajectories than trajectories produced manually by surgeon A. As is the 

case for our pseudo-prospective study (see below), the most frequent reason for rejecting an 

automatic trajetory is its position relative to the sulci. 

 

 

 

 

To quantitatively evaluate automatic trajectories against manual ones, we compare vessel, 

ventricle, sulci, suture, and overall cost values obtained with each approach as well as the 

distances to the vessels and ventricles as was done in [7-9]. Table 2.1 reports means, standard 

deviations, minima and maxima for these quantities. To test whether or not differences are 

statistically significant, we also perform a Wilcoxon paired two-sided signed rank test and report 

𝑝 -values. Results show that automatically generated trajectories are further away from the 

Figure 2.7. Rating distributions of trajectories evaluated by surgeons A (left) and B (right). For each surgeon the 

ratings of the other surgeon’s manual trajectories are shown in the left and those of computed trajectories are shown 

in the right. Red represents the percentage of cases being rejected and light, medium, dark blue represents the 

percentage of cases rated as acceptable, equivalent, and excellent respectively. 
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vessels, as desired. For the ventricles, the automatic method leads to lower cost values even 

though the mean distance is lower for surgeon A than for the automatic approach. This is 

because several of surgeon A’s manal trajectories are closer to the ventricles than the 2 mm 

specified in Rule 3. This violates the hard constraint, thus raising the cost. This hard constraint is 

also violated for one automatic trajectory because in these experiments trajectories were 

computed with the automatic segmentations but the statistics are computed with the manually 

validated and edited segmentations. Automatically generated trajectories lead to lower cost for 

the sulci and lower suture costs for surgeon B. The overall cost is also statistically significantly 

lower for the automatic approach. However, as noted by Bériault et al. [9], these numbers have 

to be interpreted with care. Indeed, they only show that an automatic method is generally better 

at finding a minimum in an analytically defined function than a human operator. They do not 

show whether or not this function truly captures the decision-making process of a trained 

neurosurgeon. Ultimately, the safety and clinical acceptability of automatically generated  

trajectories needs to be assessed by asking experienced surgeons to review and rate each of them, 

which is done in experiments 4 and 5. 

 

Table 2.1. Distances to vessels and ventricles and all the cost terms for trajectories computed by surgeon B’s 

weights and manual trajectories by surgeons A and B 

 Vessel 
distance 

Vessel cost 
Ventricle 
distance 

Ventricle 
cost 

Sulci cost Suture cost Total cost 

Automatic 
Mean±Std. 4.50±3.86 0.08±0.13 3.80±1.80 0.28±0.29 0.10±0.08 0.22±0.27 0.17±0.29 

[Min, Max] [0.24, 15.14] [0.00, 0.68] [0.46, 7.05] [0.01, 1.00] [0.00, 0.26] [0.01, 1.00] [0.00, 1.00] 

A’s Manual 
Mean±Std. 3.38±4.13 0.29±0.33 3.69±2.90 0.46±0.36 0.35±0.21 0.16±0.12 0.48±0.40 

[Min, Max] [-0.19, 15.22] [0.00, 1.00] [-3.98, 8.91] [0.01, 1.00] [0.11, 0.73] [0.03, 0.50] [0.06, 1.00] 

B’s Manual 
Mean±Std. 3.67±4.10 0.23±0.29 4.30±1.62 0.34±0.26 0.24±0.15 0.24±0.15 0.29±0.31 

[Min, Max] [-0.44, 15.31] [0.00, 1.00] [0.46, 7.31] [0.07, 1.00] [0.00, 0.56] [0.00, 0.56] [0.01, 1.00] 

Automatic vs. A’s 𝑝-value 0.0089 0.0081 0.5372 0.1092 0.0001 0.4186 0.0029 

Automatic vs. B’s 𝑝-value 0.0925 0.0533 0.2111 0.3659 0.0029 0.2276 0.0063 

Top three rows: mean, standard deviation (Std.), minima, and maxima of all the testing cases; bottom two rows: 𝑝-

values of the statistical tests performed between the automatic trajectories and manual trajectories. 𝑃-values that are 

smaller than 0.05 are marked in red bold. 
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In experiment 4, where the surgeons were asked to either accept or reject the trajectory 

they were presented with, surgeon A rejected 3 trajectories and surgeon B 7. Figure 2.8 shows 

the rating scores obtained for these rejected trajectories in experiments 1 and 2 when surgeons 

were evaluating the trajectories against their own manual selections. Over the trajectories that 

were rejected in this experiment, only 2 were rejected in the retrospective studies. 

 

 

 

 

Table 2.2. Acceptance rate for individual neurosurgeons (A, C, D) and overall in experiment 5 

Surgeon A Surgeon C Surgeon D Average 

95.00%  (57 / 60) 83.33% (50 / 60) 91.67% (55 / 60) 90.00% (54 / 60) 

 

 

 

 

Table 2.2 presents the results of experiments 5. It shows that, on average, 90% of the 

76.67% 

18.33% 

3.33% 1.67% 

Accepted by all surgeons

Accepted by two surgeons

Accepted by one surgeon

Rejected by all surgeons

Figure 2.8. Rating scores of the cases rejected by surgeons under the pseudo-prospective scenario, evaluated by 

surgeons A (left) and B (right). 

Figure 2.9. Voting distribution according to the trajectory’s acceptation/rejection status, i.e., accepted by all, two, 

one, or rejected by all neurosurgeons, in experiment 5. 
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automatic trajectories were accepted in our pseudo-prospective experiment using 60 trajectories. 

Figure 2.9 reports the percentage of trajectories that were accepted by all three surgeons, by two 

surgeons, and by one surgeon as well as the fraction of trajectories rejected by all surgeons. 

Figure 2.10 shows the reasons for which the trajectories were rejected and the number of 

times each surgeon cited a particular reason. The cause for rejection is typically proximity to 

critical structures, including the sulci, veins/vessels around the ventricles (referred to as 

ventricular vein), veins/vessels around sulci (referred to as sulcal vein), and veins/vessels around 

the skull (it may either be in dural matter or in cortical zones, referred to as surface vein), or 

some other issues (too medial or too lateral). Trajectories rejected for multiple reasons were 

counted multiple times. As can be seen, the main reason for rejection is related to sulci. 

 

 

 

 

For the trajectories that are rejected, we calculate the angle between the computed 

trajectories and the ones modified by the surgeons. The average value for this angle is 7.38˚ and 

its standard deviation is 6.23˚. 
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ventricular vein sulcal vein surface vein sulcus others
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Surgeon C

Surgeon D

Overall

Figure 2.10. Distributions of automatic trajectories rejected by surgeons according to different rejection reasons in 

experiment 5. 
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2.5. Discussions and Conclusions 

The selection of safe trajectories is an important component of DBS procedures and one that 

requires considerable expertise. In this article, we build on our own and the work of others to 

investigate whether or not computer-assistance would be valuable and whether or not systems 

need to be adapted for each surgeon to capture his/her preferences. Our institution is only one of 

a few in the US where two neurosurgeons perform DBS surgeries. Based on informal 

conversations with these surgeons, we started our study with the belief that different sets of 

weights would be necessary. Experiment 1 shows that our training mechanism, albeit heuristic, 

can capture surgeon preferences. The results we obtained with experiment 2 were unexpected 

and suggest that, in fact, the same set of weights could be used to compute trajectories for both 

surgeons at our institution. Experiment 3 shows that the clinical acceptance of automatic 

trajectories is comparable to the acceptance of trajectories manually selected by the other 

surgeon at our institution. Results obtained in experiment 4 show that when presented with only 

one trajectory and asked to rate it as acceptable or not as is the case in our pseudo-prospective 

study, surgeons are more selective than when comparing two trajectories without knowing their 

provenance as is the case in experiments 1 and 2. Indeed, most of the cases rejected pseudo-

prospectively in experiment 4 were previously rated acceptable or better. The main difference 

between the pseudo-prospective and retrospective experiments is that in the former the surgeon 

knows unequivocally that the trajectory is computed. In the latter the trajectories’ provenance is 

unknown. Even though the reason for this difference could not be elucidated with our 

experiments, the fact that the surgeons were stricter in the pseudo-prospective situation only 

reinforces the value of the results we have obtained in experiment 5. This experiment is the 

largest we know of and the only one that has been conducted with neurosurgeons expert in DBS 
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procedures at three different institutions. One surgeon has 17 years of experience with DBS 

procedures and has implanted more than 600 leads, one has 16 years of experience and has 

implanted more than 550 leads, one has 8 years of experience and has implanted more than 380 

leads, and one has 4 years of experience and has implanted more than 122 leads. The results we 

have obtained with three of these surgeons and with 60 trajectories suggest that using a single set 

of weights may be adequate for multiple surgeons. The results also show that automatically 

computed trajectories were accepted 95% of the time by a majority of the neurosurgeons in our 

group and 76.67% unanimously. Acceptance rates by individual surgeons for these trajectories 

ranged from 83.33% to 95%, which indicate that computer-assisted assistance may be a valuable 

addition to DBS planning software. In our experience, eliciting priorities or even preferences 

from surgeons is not a straightforward task. For instance, one of the two surgeons at our 

institution mentioned that he likes to select trajectories that intersect the lateral edge of the 

thalamus (Rule 6). After training, the weight estimated for this rule for surgeon A was small. It 

ended up not being used in our pseudo-prospective study because surgeon B’s weights were used 

and he did not utilize this rule. As shown in our experiments, surgeon A ended up preferring the 

weights selected for surgeon B, suggesting, as discussed earlier, that surgeon A was not as 

critical as surgeon B during the training phase, thus further illustrating the difficulty of capturing 

surgeon preferences. This was also reported by Essert et al. [8] and Bériault et al. [9]. If larger 

studies performed at more sites confirm the fact that the same weights can be used across 

institutions, it may help standardize the procedure and assist surgeons who do not have years of 

experience with DBS procedures. Given enough training trajectories, an alternative would be to 

learn surgeon preferences algorithmically. 

Constraints reported in the literature but not included in our model, such as minimizing 



46 
 

the path length as done by Essert et al. [8] or the overlap with caudate as done by Bériault et al. 

[9], were not listed as reasons to reject a single trajectory. However, a recent study by Witt et al. 

[21] reports that trajectories that intersect with caudate nuclei may increase the risk of a decline 

in global cognition and memory performance; Benabid et al. [3] also suggest selecting 

trajectories that do not intersect the caudate. Other sites may thus have different preferences and 

several cost functions may have to be designed to reflect this variability, further suggesting the 

need for larger studies. We also note that our study focuses on STN targeting. We are now 

beginning to capture rules that are used for other targets such as ventrointermediate nucleus and 

globus pallidus interna. We will follow a procedure similar to the one described herein to 

determine whether automatic trajectory planning would also be useful for these targets. 

As shown in Figure 2.10, the main reason for trajectory rejection is the spatial proximity 

to the sulci. A close inspection of the rejected trajectories shows that these penetrated the brain at 

the top of a gyrus, as desired, but were too close to the bottom of a sulcus. Our current approach 

only detects an intersection with the cortical surface and tries to determine if this intersection 

happens in a sulcal or gyral area, but does not penalize trajectories that are close to a sulcus once 

they have penetrated a gyrus. We are currently addressing this issue by localizing sulci and 

computing distance maps from these. We will then modify our sulcus-related cost term 

accordingly. In the current study, we decouple the segmentation and the path computation 

components by validating the segmentation visually. About 20% of the volumes required some 

minor editing, e.g., displacement of the ventricular boundary or enlargement of ventricular veins.  

Our vessel segmentation method is simple but we have compared it to the technique proposed by 

Frangi et al. [22] and have obtained similar results. When available, additional MR volumes 

acquired with sequences such as susceptibility weighted imaging or time-of-flight sequences as 
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proposed by Bériault et al. [9] would facilitate the segmentation of the vasculature. 

Finally, integrating our solution in our clinical solution (CRAVE) for a full prospective 

study still requires a few improvements. Here, the target point was known and fixed. In the 

system in place at Vanderbilt, targets are predicted automatically and optimal trajectories can be 

computed for these. But, when the plan is finalized by the surgeons, the target position may be 

modified, which may also invalidate the pre-computed trajectory and necessitate re-computation. 

We are currently investigating the sensitivity of the solution to the position of target point, which 

is rarely moved by more than 1.5 mm. If it is very sensitive to the target point, clinical 

implementation may require pre-computing a series of solutions or constraining the search space 

to produce new solutions in clinically acceptable time. 

Ultimately, computer assistance should help the surgical team in selecting a safe 

trajectory. Pre-computing an optimal solution and presenting it to the end user focuses him/her 

on what the system determines to be the safest entry point but the system also needs to permit 

easy interactive validation. Providing visual feedback in the form of segmented structures, risk 

values, distance to critical structures, or color-coded maps as others have done [4-10] and as 

shown in Figure 2.3 and 2.4 would also assist the surgeons in selecting an alternative entry point 

that may not be in the immediate vicinity of the suggested one should it be rejected. 

As implemented, extracting the cortical surface takes about 2 hours to compute, 

segmenting the other structures 10 minutes, pre-computing the sulci cost for every entry point in 

the search region 10 minutes, and computing an optimal trajectory once all the pre-computations 

have been done a few seconds. 
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Abstract  

Localizing the anterior and posterior commissures (AC/PC) and the midsagittal plane (MSP) is 

crucial in stereotactic and functional neurosurgery, human brain mapping, and medical image 

processing. We present a learning-based method for automatic and efficient localization of these 

landmarks and the plane using regression forests. Given a point in an image, we first extract a set 

of multi-scale long-range contextual features. We then build random forests models to learn a 

nonlinear relationship between these features and the probability of the point being a landmark or 

in the plane. Three-stage coarse-to-fine models are trained for the AC, PC, and MSP separately 

using down-sampled by 4, down-sampled by 2, and the original images. Localization is 

performed hierarchically, starting with a rough estimation that is progressively refined. We 

evaluate our method using a leave-one-out approach with 100 clinical T1-weighted images and 

compare it to state-of-the-art methods including an atlas-based approach with six nonrigid 

registration algorithms and a model-based approach for the AC and PC, and a global symmetry-

based approach for the MSP. Our method results in an overall error of 0.55±0.30 mm for AC, 

0.56±0.28 mm for PC, 1.08˚±0.66˚ in the plane’s normal direction and 1.22±0.73 voxels in 

average distance for MSP; it performs significantly better than four registration algorithms and 

the model-based method for AC and PC, and the global symmetry-based method for MSP. We 

also evaluate the sensitivity of our method to image quality and parameter values. We show that 

it is robust to asymmetry, noise, and rotation. Computation time is 25 seconds. 

 

3.1. Introduction 

The anterior commissure (AC) and the posterior commissure (PC) are the two points with the 

shortest intraventricular distance between the commissures, according to the standard convention 
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of the Schaltenbrand-Wahren atlas [1]. They are important landmarks located in the midsagittal 

plane (MSP), a geometric plane that separates the two hemispheres of the cerebrum by the inter-

hemispheric fissure (IF). The AC and PC, together with the MSP, define a standardized 

coordinate system widely used by major stereotactic brain atlases such as the Schaltenbrand-

Wahren atlas [1] and the Talairach and Tournoux atlas [2]. Establishing this reference system is 

pivotal for stereotactic and functional neurosurgery, human brain mapping, and medical image 

processing [3-5]. For example, in deep brain stimulation (DBS) procedures, target locations are 

estimated by their relative positions in this standardized system [3]. Identification of the AC, PC, 

and MSP could also facilitate the estimation of an initial intra- or inter-subject affine 

transformation to reduce the degrees of freedom in nonrigid transformations used to register two 

image volumes [6]. Yet another example is the quantification of the structural and radiometric 

asymmetry of the brain made possible by the localization of the MSP. This can be used to detect 

brain pathologies such as tumors that cause severe asymmetry between the two hemispheres [7]. 

In most current neuroimaging applications, the AC, PC, and MSP are selected manually 

in the magnetic resonance image (MRI) scans by experts. This requires expertise and suffers 

from inter-expert variability, which can have a substantial effect on targeting in image guided 

neurosurgery [8]. Manual intervention also takes time and prevents the automated use of such 

information by other image processing techniques such as registration. Over the years, several 

approaches have thus been proposed to automatically localize the AC and PC [6], [9-14] as well 

as the MSP [15-24] on 3D MRI scans. 

For the AC and PC, these algorithms rely on the successful segmentation of surrounding 

structures, the localization of other anatomical landmarks, or image registration. For example, in 

[6][9-11], the corpus callosum was used to initialize the AC and PC positions. Ardekani et al. 
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[12] achieved the initialization by identifying the MSP and a landmark on the midbrain-pons 

junctions. Han et al. [6] and Verard et al. [9] also relied on edge detection. In [13-14], atlas-

based nonrigid registration was performed to transfer the AC and PC positions from atlases onto 

subjects. However, brain segmentation, landmark identification, edge detection, and nonrigid 

registration algorithms may fail due to large anatomical variations or image contamination by 

noise or partial volume effect, leading to the failure of the AC/PC detection. In addition, some of 

these methods require long runtime, especially for registration based methods. 

For the MSP, most existing methods can be categorized into two types: 1) methods 

maximizing a global symmetry score, 2) methods detecting the IF. The first type of approaches 

assumes global bilateral symmetry and maximizes a similarity measure between the original 

brain scan and its reflected version [15-18]. However, there is no perfect bilateral symmetry in 

the human brain, not only for pathological cases but even for normal cases. As shown in Figure 

3.1 for a control subject, an effect known as brain torque occurs when the left occipital lobe or 

the right frontal lobe is larger than its counterpart in the other hemisphere [25]. Hence these 

methods may suffer from sensitivity to brain asymmetry and also often from high computational 

cost, while they may generalize well to other image modalities. On the other hand, approaches of 

the second type identify the IF from its intensity and textural features or by locally optimizing a 

symmetry measure, as local symmetry could be assumed in the vicinity of the IF region. The 

MSP is then determined by fitting a plane to those detected points or line segments [19-23]. 

These methods are generally more robust to abnormalities but more sensitive to outliers in the set 

of feature points. A robust outlier removal method is usually required to achieve the desired 

accuracy. 
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Recently, learning-based methods using random forests have gained popularity for 

landmark and plane detection. Random forests are an ensemble supervised learning technique for 

classification or regression. In this approach a multitude of decision trees are constructed by 

evaluating a random subset of features at each node to split the data. The output of these trees is 

then aggregated to produce a final prediction [26]. In [27], Dabbah et al. used random forests as 

a classifier to localize anatomical landmarks in CT. Hough forests, which combine random 

forests with generalized Hough transform, are used to detect points to drive an active shape 

model on 2D radiographs [28], to find a rough position for the center of vertebrae in MR images 

[29], and most recently to localize the parasagittal plane in ultrasound images [30]. Schwing et al. 

[24] proposed to use adaptive random forests to jointly identify five distinct landmarks in the 

MSP in T1-weighted (T1-w) images and estimate the plane via a least squares fit of these 

landmarks. 

We have previously proposed a learning-based framework using regression forests to 

detect the AC and PC [31]. Here, we extend our previous work and augment it by also localizing 

the MSP. Since the AC, PC, and MSP have different local appearances from other points in the 

Figure 3.1. An example of the brain torque effect. The MSP represented as the vertical yellow axis deviates in the 

posterior region from the blue dotted curve which separates the hemispheres symmetrically in this slice. 
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image, we hypothesize that a nonlinear regression can be used to estimate the relationship 

between the local appearance of a point and its probability to be the AC, the PC, or in the MSP. 

Compared to exiting techniques, our method is conceptually the most similar to the approach of 

Schwing et al. [24] in that a learning framework is used in both to detect the plane. We do, 

however, regress the distance from a point to the plane directly as opposed to its distance to 

selected landmarks as done in [24] because those landmarks may not be a perfect indicator of the 

plane due to the brain asymmetry. 

The algorithm we propose is fast, accurate, and robust. It does not rely on any 

preprocessing of the images such as edge enhancement, nor does it require any segmentation or 

registration. Instead, we extract multi-scale contextual features for points in a set of training 

images and build random forests regression models to learn the probability for each sample to be 

the AC, the PC, or in the MSP. We employ three-stage coarse-to-fine models, with the first one 

operating on a down-sampled image to roughly localize the landmark or the plane and the second 

and third models to fine-tune the position. We evaluate our algorithm in a leave-one-out fashion 

using a large clinical dataset of 100 subjects. We also compare our method to state-of-the-art 

methods including an atlas-based approach with six well-established nonrigid registration 

algorithms and a publicly available implementation of a model-based approach for the AC and 

PC, as well as a publicly available implementation of a global symmetry-based approach for the 

MSP. We further test the sensitivity of our algorithm to anatomic abnormality, image quality, 

and parameter values. 

 

3.2. Methods 
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3.2.1. Data 

We select 100 subjects from a data repository we have created over a decade for DBS surgeries 

[32]. All images in our data set are T1-w sagittal MR volumes with approximately 256×256×170 

voxels and 1 mm in each direction, acquired with the SENSE parallel imaging technique 

(T1W/3D/TFE) on a 3 Tesla Phillips scanner (TR = 7.92 ms, TE = 3.65 ms). These images have 

similar pose with small differences in head orientation and position, and also similar field of 

view (FOV), i.e., they cover the entire head. All images have been acquired as part of the normal 

delivery of care and every subject was consented to participate in this study. 

For the AC and PC, two raters manually identified these points for each subject. These 

two raters followed the same protocol to select the AC and PC and were given sufficient time for 

accurate localization. The inter-rater variability is 0.57±0.47 mm for the AC and 0.57±0.37 mm 

for the PC. Gold standard AC and PC are computed as an average of the selections by the two 

raters. 

For the MSP, one rater manually selected the plane for each subject. Given the gold 

standard AC and PC, the MSP could be defined using any other point on the IF. However, 

cerebral atrophy that affects some DBS patients results in a widening of the IF. This makes the 

point selection on the IF ambiguous. In order to uniquely define the MSP, we follow the 

approach used clinically by an experienced neurosurgeon which relies on the falx cerebri, as 

illustrated in Figure 3.2. The falx cerebri is a sickle-shaped fold of dura mater that descends 

vertically in the IF [33]. It is usually visible in CT but not in T1-w images. Hence we used the 

CT volumes of the same patients and rigidly registered them to their corresponding T1-w 

volumes. After the registration, the CT image and the gold standard AC and PC were loaded into 

a visualization software. A random point on the falx cerebri was selected first to establish an 
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initial AC-PC coordinate system. The origin of this coordinate system is defined as the midpoint 

between the AC and the PC, with the x-axis perpendicular to the MSP pointing to the right, the 

y-axis pointing from the PC to the AC, and the z-axis pointing superiorly in the MSP. The CT 

image was then resampled in this coordinate system in which the xz planes correspond to the 

coronal slices. The MSP was then refined using coronal slices by varying the orientation of the 

plane to align it with the falx cerebri as accurately as possible. As the brain torque effect mostly 

causes the MSP to curve in the anterior and posterior regions of the brain, we used the midbrain 

region to define it, i.e., we used coronal slices that are anterior to the PC and posterior to the AC. 

After manual adjustment, the AC-PC coordinate system was updated and the CT image 

resampled in the new system for visual check in axial, coronal, and sagittal views. This process 

was repeated until the plane was visually deemed to be satisfactory. 

 

 

 

 

Figure 3.2. Illustration of the MSP selection. The vertical yellow axis is the selection based on the falx cerebri, 

shown as the bright line on the right pointed by the red arrow, and the blue dotted line is one possible plane when 

selecting the MSP in the T1-w image. 
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The gold standard AC and PC points together with the manual selection of the MSP are 

used as ground truth for the training and the evaluation of our learning-based method. 

 

3.2.2. Problem Formulation 

We use a voxel-level training solution based on regression forests [6]. For each voxel, we extract 

a set of features that describes textural context variation at different scales, as proposed by Pauly 

et al. [34]. This is realized by applying a random displacement to a voxel 𝑥, calculating the mean 

intensities of a 3D cuboidal region 𝑅𝑥
𝑠  centered on 𝑥 and of a similar region 𝑄𝑥

𝑠,𝑚
 of the same 

size but centered on the displaced voxel, and subtracting these two: 

𝑓𝑚 =
1

|𝑅𝑥
𝑠|

( ∑ 𝐼(𝑥′)

𝑥′∈𝑄𝑥
𝑠,𝑚

− ∑ 𝐼(𝑥′)

𝑥′∈𝑅𝑥
𝑠

) (3.1) 

where 𝐼 is the intensity, and 𝑠 is the current scale, i.e., a particular size of the cuboidal region. 

Four scales are used and they correspond to window sizes of 4, 8, 16, and 32. This process is 

repeated 𝑀 = 2000 times to obtain the feature set {𝑓𝑚}𝑚=1
𝑀 .  

Each voxel is associated with a probability 𝑝 to be the AC, the PC, or in the MSP that a 

model is trained to detect. This probability follows a truncated Gaussian distribution based on its 

Euclidean distance 𝑑 to the ground truth AC, PC, or MSP: 

𝑝 = {𝑒
−

𝑑2

2𝜎2    𝑑 > 𝑑𝑡ℎ

  0 𝑑 ≤ 𝑑𝑡ℎ

 (3.2) 

where 𝜎 is the standard deviation of the Gaussian function. We truncate this function at 𝑝 = 0.1 

to speed up the training process. 

Given a number of training pairs {𝑓𝑛 , 𝑝𝑛}𝑛=1
𝑁 , the random forests aim to learn a nonlinear 

mapping from the feature space {𝑓} to the probability space {𝑝}. Hence the AC, PC, and MSP 
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localization problem can now be formulated as first finding a set of voxels in the images that 

have a high probability to be the AC, PC, or in the MSP and then use these points to localize the 

landmarks or the plane. 

 

3.2.3. Regression Forests 

We use 20 regression trees to construct the forest. For each tree, a bootstrap of two thirds of the 

training samples is randomly selected and fed to the root node of the tree. Given the training 

samples {𝑓𝑛
⃗⃗⃗⃗ , 𝑝𝑛}𝑛=1

𝑁′
 at a particular node, we seek to select a feature 𝑓𝑚 and a threshold 𝑡 to best 

split the data in order to minimize the mean squared error 𝑀𝑆𝐸: 

𝑡, 𝑚 = arg min
𝑡,𝑚

 (𝑀𝑆𝐸({𝑝𝑛: 𝑓𝑛
𝑚 < 𝑡}) + 𝑀𝑆𝐸({𝑝𝑛: 𝑓𝑛

𝑚 ≥ 𝑡})) (3.3) 

A subset of 500 features is randomly selected to estimate the splitting threshold. A tree 

stops growing if the number of samples arriving at leaf nodes is smaller than 5 or if the best split 

threshold cannot be found. 

Each leaf of the regression trees stores the mean probability of all samples arriving at that 

node to be a point of interest and this is used as a predictor. When a test sample comes, each tree 

contributes to a prediction. The mean and the variance of these predictions across trees are 

calculated and outputted for this test sample. 

 

3.2.4. Training Phase 

We train separate models for the AC, PC, and MSP. For each, we build three stage coarse-to-fine 

models, one on down-sampled by 4 images, one on down-sampled by 2 images, and one on full 

resolution images. This results in nine models to train for one training dataset. 

Sampling Strategy 
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Since all images in our dataset have similar pose and FOV, it is sufficient to search for 

the landmarks or the plane in a region of interest instead of searching the entire image. Hence, 

when training the model, for each image, we evaluate a set of points within a region of interest.  

For the AC and PC, this region of interest is a cube centered on the ground truth points at 

each resolution level. It is a 15×15×15 voxel
3
 cube that covers a 60×60×60 mm

3
 volume at the 

coarsest level, a size that we have found large enough to account for the variations in the AC and 

PC positions across all images in the dataset. For each training subject, we use all the voxels in 

these cubes to generate the training samples. 

For the MSP, at the coarse level, we follow the same strategy we use for the AC and PC 

to define a pseudo landmark in the MSP and define a cube centered on this point to be the region 

of interest. This point is selected to be on the z-axis, i.e., in the MSP  plane, +50 mm away from 

the origin in the AC-PC coordinate system established by the ground truth AC, PC, and MSP. 

We refer to this point as the mid-plane point (MP) and calculate the MP for each training subject. 

We use all the voxels in the 15×15×15 voxel
3
 cube centered on the MP as training samples as we 

have done for the AC and PC. For the next two resolution levels, as the MSP can already be 

roughly localized at the coarsest level, we only need to sample points that are spatially close to 

the MSP to further distinguish them from the true MSP. Hence we define the region of interest to 

be a rectangular cuboid encompassing the plane and aligned with the axes of the AC-PC 

coordinate system. At the down-sampled by 2 level, coordinates of the lower left corner and 

upper right corner are (-15 mm, -15 mm, -30 mm) and (+15 mm, +15 mm, +90 mm) respectively. 

At the full resolution level, we narrow the region of interest to [-7 mm, +7 mm] in the x, i.e., 

lateral direction, for further refinement. Voxels in the original image space are transformed into 

the AC-PC space first to check whether they fall into the region of interest, and those that satisfy 



62 
 

this condition are considered as candidates. This leads to a large number of candidate points for 

training that cannot fit into the main memory. We address this issue by randomly sampling a 

fixed number of candidate points for each training subject. 

An example of the training regions from which samples are drawn at the different 

resolution levels is shown in Figure 3.3, with the top row illustrating the AC regions and the 

bottom row illustrating the MSP regions. 

 

 

 

 

3.2.5. Testing Phase 

Given a test image, following the hierarchical approach described earlier, we first down-sample 

the image by 4 and start testing using the models built at this resolution level. At each level, we 

sequentially test for the AC, PC, and MSP. We initialize the search center from this model by 

Figure 3.3. Sampling regions for the AC (top row) and the MSP (bottom row) of a training subject at down-sampled 

by 4 (left), down-sampled by 2 (middle), and full resolution level (right), each overlaid on the corresponding image. 
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averaging the ground truth AC, PC, and MP of all training subjects, and search within a 

21×21×21 voxel
3
 window on a regular grid. A response map is generated for each landmark, 

displaying the mean probabilities 𝑝̅ of the voxels to be the trained landmark. For the AC and PC, 

the voxel associated with the highest probability is then used as the search center for the next 

level. For the MSP, a plane is estimated from the response map for the MP together with the AC 

and PC detected at this level, and this estimation is used to define the search region for the next 

level. We will explain in detail how to estimate the plane later. We continue this testing process 

for the next two resolution levels. For those two levels, the testing samples for the AC and PC 

are the points within a 21×21×21 voxel
3
 volume with its search center estimated from the 

previous level. For the MSP, the AC-PC coordinates of all voxels are first calculated based on 

the AC, PC, and MSP estimated from the previous level. The testing samples are those whose 

AC-PC coordinates are within [-15 mm, +15 mm] in the x direction, [-15 mm, +15 mm] in the y 

direction, and [-30 mm, +90 mm] in the z direction at the down-sampled by 2 level, and [-7 mm, 

+7 mm] in the x direction, [-15 mm, +15 mm] in the y direction, and [-30 mm, 90 mm] in the z 

direction at the full resolution level. An example of the response maps at different levels for one 

testing subject is illustrated in Figure 3.4, with the top row illustrating the AC response maps and 

the bottom row illustrating the MSP response maps. 
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Mean-shift Refinement for the AC/PC 

When reaching the full resolution level, the final prediction for the AC and PC is made 

via weighted mean shift, a technique that is used to localize the maximum of a density function 

given discrete data sampled from that function [35]. Starting with an initial estimate 𝑥(0), mean 

shift iteratively re-estimates the mean by weighting each point in its neighborhood, with the 

value of the weight determined by its distance to the current estimate and the probability of this 

point to be the trained landmark: 

𝑥(𝑡+1) =  
∑ 𝐾(𝑥𝑖

(𝑡) − 𝑥(𝑡)) ∙ 𝑝𝑖
(𝑡)̅̅ ̅̅ ̅̅ ∙ 𝑥𝑖

(𝑡)
𝑥𝑖

(𝑡)∈𝑁(𝑥(𝑡))

∑ 𝐾(𝑥𝑖
(𝑡) − 𝑥(𝑡)) ∙ 𝑝𝑖

(𝑡)̅̅ ̅̅ ̅̅
𝑥𝑖

(𝑡)∈𝑁(𝑥(𝑡))

 (3.4) 

where 𝑥(𝑡) is the current estimate, 𝑥𝑖
(𝑡) is a point in the neighborhood 𝑁(𝑥(𝑡)) whose distance to 

𝑥𝑖
(𝑡)  is smaller than 6, 𝐾(𝑥𝑖

(𝑡) − 𝑥(𝑡)) = 𝑒−𝑘‖𝑥𝑖
(𝑡)−𝑥(𝑡)‖

2

 is the Gaussian kernel function, and 

Figure 3.4. Response maps for the AC (top row) and the MSP (bottom row) of a testing subject at down-sampled by 

4 (left), down-sampled by 2 (middle), and full resolution level (right), each overlaid on the corresponding image. 
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𝑝𝑖
(𝑡)̅̅ ̅̅ ̅̅  is the value of 𝑥𝑖

(𝑡)  in the response map which corresponds to the probability averaged 

across all trees. 

We choose the initial estimate 𝑥(0)  to be the position of the testing sample with the 

maximum probability in the response map and iteratively update 𝑥(𝑡)  until it converges. The 

output of this estimate is the final prediction for the AC/PC. 

Weighted Least Squares Fitting for the MSP 

We represent the MSP as: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0, 𝑠. 𝑡. ‖[𝑎, 𝑏, 𝑐]‖ = 1 (3.5) 

where 𝑎, 𝑏, 𝑐, 𝑑 are the parameters that uniquely define the plane.  

At each testing stage, we need to estimate the MSP using its response map along with the 

current AC and PC estimates. This is done by selecting a set of points that have a high 

probability 𝑝̅ to be in the MSP and fitting a plane to those points. To perform a robust linear 

regression, we compute a weighted least squares solution to account for the degree of uncertainty 

per point: 

min
𝑎,𝑏,𝑐,𝑑

∑(𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑐𝑧𝑖 + 𝑑)2

𝑁′

𝑖=1

∙ 𝑤𝑖 , 𝑠. 𝑡. ‖[𝑎, 𝑏, 𝑐]‖ = 1 (3.6) 

where 𝑁′ is the number of candidates, and 𝑤𝑖 is the associated weight for sample (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖). 

For each candidate, we define its weight to be the square of the mean of the predictions 

divided by the variance of the predictions across all trees: 

𝑤𝑖 = 𝑝𝑖̅
2/Var(𝑝𝑖⃗⃗⃗ ⃗) (3.7) 

where 𝑝𝑖̅ indicates how close this point is to the MSP as predicted by the model, and Var(𝑝𝑖⃗⃗⃗ ⃗) 

indicates the model’s confidence about 𝑝𝑖̅. 

The final MSP prediction is the weighted least squares estimate at the full resolution level. 
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3.2.6. Comparison to Other Methods 

For the AC and PC, we compare our results with those obtained by atlas-based registration, 

including affine only, and affine + nonrigid registration, a technique routinely used for automatic 

identification in DBS procedures [36]. We choose one atlas used by Pallavaram et al. [36] to be 

the reference and project its AC and PC points onto the 100 subjects through registration. An 

affine transformation is estimated first by an intensity-based technique that uses Mutual 

Information [37-38] as its similarity measure. The results are visually checked and manually 

corrected if a failure is observed. Then nonrigid registration is performed with a series of well-

established algorithms, including the Adaptive Basis Algorithm (ABA), a variation of ABA that 

is tuned for deep brain  structures referred to as the Adaptive Basis Algorithm with bounding box 

(LABA) [39], Diffeomorphic Demons (DD) [40], Symmetric Normalization (SyN) [41], Fast 

Free Form Deformation (F3D) [42], and Automatic Registration Toolbox (ART) [43]. A detailed 

description of those algorithms can be later found in Chapter IV [44]. We also compare our 

method to a publicly available toolkit called YUKI which implements a recently proposed 

model-based approach to detect the AC and PC [12]. 

For the MSP, we compare our method to the same toolkit YUKI, which also implements 

a global symmetry-based approach to localize the plane [15].  
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3.3. Results 

 

3.3.1. Leave-one-out Validation 

We have conducted a leave-one-out validation, which uses 99 volumes for training and the last 

one for testing, and repeats this process 100 times. 

Results for the AC and PC 

A representative example of response maps at the full resolution level is shown in Figure 

3.5, with the top row showing the response map for AC and the bottom row showing the one for 

PC. Each map is overlaid on top of the original images, with the cross indicating the ground truth 

and the white dot our prediction. As shown in this figure, the ground truth AC and PC have high 

probabilities and are close to our estimations (0.55 mm differences for both AC and PC). 

To quantitatively evaluate the accuracy of the algorithm, we use the 3D Euclidean 

distance between the automatically detected landmarks and the ground truth. We refer to our 

algorithm as RF (Random Forests) in the following text. Figure 3.6 shows the boxplot of errors 

using different methods for the AC and PC. There are some outliers with errors beyond the 

maximum range of the y-axis (12 mm), which are not shown in the figure. This includes 2 cases 

using Affine, 4 cases using YUKI for the AC, and 4 cases using YUKI for the PC. We also 

report error statistics for the AC in Table 3.1 and PC in Table 3.2. We have excluded those 

above-mentioned outliers when computing mean, maximum, and standard deviations so as not to 

bias the comparisons. Table 3.1 and 3.2 demonstrate that our method leads to smaller mean, 

maximum, and standard deviation of errors for the AC and PC than the registration-based 

methods using Affine, ABA, DD, F3D, and ART, as well as the toolkit YUKI. 
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Figure 3.5. A representative example of response maps for AC (top row) and PC (bottom row) in sagittal (left), axial 

(middle), and coronal (right) views. 

Figure 3.6. Boxplot of errors for the AC (red) and PC (green) in millimeters. 
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Table 3.1. Statistics of errors between the automatically detected AC using different methods and the ground truth 

AC positions 

Error (𝜀): (mm) 
(AC) 

Cases with 𝜺 

<1 

Cases with 
1≤ 𝜺 <2 

Cases with 
2≤  𝜺 <3 

Cases with 
𝜺 ≥3 

Mean Max. Std. 

RF 95 5 0 0 0.55 1.78 0.30 

Affine 0 1 2 97 5.96 11.06 1.87 

ABA 43 53 4 0 1.12 2.35 0.48 

LABA 73 25 2 0 0.83 2.73 0.40 

DD 29 32 22 17 1.96 10.18 1.58 

SyN 94 6 0 0 0.60 1.10 0.24 

F3D 67 33 0 0 0.86 1.98 0.39 

ART 40 52 8 0 1.19 2.99 0.60 

YUKI 17 65 13 5 1.58 8.26 0.82 

 

Table 3.2. Statistics of errors between the automatically detected PC using different methods and the ground truth 

PC positions 

Error (𝜀): (mm) 
(PC) 

Cases with 𝜺 

<1 

Cases with 
1≤ 𝜺 <2 

Cases with 
2≤  𝜺 <3 

Cases with 
𝜺 ≥3 

Mean Max. Std. 

RF 93 7 0 0 0.56 1.50 0.28 

Affine 1 13 28 58 3.68 10.90 1.88 

ABA 38 51 5 6 1.33 4.23 0.75 

LABA 93 7 0 0 0.57 1.18 0.23 

DD 23 43 22 12 1.83 6.25 1.15 

SyN 99 1 0 0 0.47 1.07 0.19 

F3D 90 10 0 0 0.66 1.61 0.28 

ART 54 43 2 1 1.02 3.04 0.49 

YUKI 51 41 3 5 1.13 10.91 1.09 

 

We also performed one-sided paired Wilcoxon signed-rank statistical tests to determine 

whether or not the medians of errors using our method are smaller than those using the other 

methods. The 𝑝-values are shown in Table 3.3. 𝑃-values smaller than the significance level 0.05 

are marked in red bold. These results show that our method is significantly better than most of 
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the other methods. Indeed, it significantly reduces the AC and PC localization errors compared to 

the registration-based approaches using Affine, ABA, DD, F3D, and ART, as well as the 

publicly available toolkit YUKI. 

 

Table 3.3. 𝑃-values of Wilcoxon tests between the errors of AC/PC detected by our method and errors of those 

detected by other automatic methods 

𝑃-values Affine ABA LABA DD SyN F3D ART YUI 

AC 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 

PC 0.00 0.00 0.23 0.00 1.00 0.00 0.00 0.00 

 

Results for the MSP 

A representative example of response maps at the full resolution level is shown in Figure 

3.7, with the maps overlaid on top of the full resolution images resampled in the AC-PC 

coordinate system established by the ground truth AC, PC, and MSP. The vertical yellow axis 

represents the ground truth MSP and the red line represents the MSP detected by our algorithm. 

As shown in Figure 3.7, points in the plane have high probabilities and our estimation is close to 

the manual selection (1.10˚ difference in the normal direction). 
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The best, an average, and the worse results are shown in Figure 3.8 in the original image 

space. As before the red lines represent our estimations and the yellow lines the ground truth. 

To quantitatively evaluate the accuracy of our algorithm, we use the angular differences 

in the normal direction between the automatically detected MSP and the ground truth MSP as a 

measure of error. We also use a metric called average z-distance proposed by Ruppert et al. [18]. 

Referring to (3.6), this metric is computed as the absolute difference in the z coordinate in voxels 

between the ground truth plane and the estimated plane, averaged for all possible pairs of x and y 

values. This measure provides a sense of the average distance between the planes. Figure 3.9 

shows the boxplot of errors in the normal direction and in the average z-distance for our method 

and for YUKI. There are some outliers with errors beyond the maximum range of the y-axis (6˚ 

or 6 voxels), which are not shown in the figure. This includes 3 cases using YUKI. We also 

report error statistics for the normal direction in Table 3.4 and for average z-distance in Table 3.5. 

We have excluded those above-mentioned outliers for YUKI when computing mean, maximum, 

and standard deviations in order not to bias the comparisons. Table 3.4 and 3.5 demonstrate that 

our method leads to smaller mean, maximum, and standard deviation of errors in the normal 

Figure 3.7. A representative example of response maps for the MSP in the axial (left), coronal (middle) and zoomed-

in coronal (right) views. 
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direction and in the average z-distance compared to the toolkit YUKI.  

We also performed one-sided paired Wilcoxon signed-rank statistical tests to determine 

whether or not the medians of errors using our method are smaller than those using YUKI. 𝑃-

values for both the angular errors and the average z-distance are smaller than the significance 

level 0.05, indicating that our method significantly outperforms YUKI. 

 

 

 

 

Figure 3.8. The best (top row), an average (middle row), and the worst (bottom row) MSP results using our proposed 

method. Ground truth MSPs are shown as yellow lines, our results as red lines, and the YUKI results as green lines. 
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Table 3.4. Statistics of errors in the normal direction between the automatically detected MSP using different 

methods and the ground truth MSP 

Error (𝜀): (˚) 
(MSP) 

Cases with 𝜺 

<1 

Cases with 
1≤ 𝜺 <2 

Cases with 
2≤  𝜺 <3 

Cases with 
𝜺 ≥3 

Mean Max. Std. 

RF 49 39 11 1 1.08 3.43 0.66 

YUKI 22 35 30 13 1.92 5.38 1.11 

 

Table 3.5. Statistics of errors in average z-distance between the automatically detected MSP using different methods 

and the ground truth MSP 

Error (𝜀): (voxel) 
(MSP) 

Cases with 𝜺 

<1 

Cases with 
1≤ 𝜺 <2 

Cases with 
2≤  𝜺 <3 

Cases with 
𝜺 ≥3 

Mean Max. Std. 

RF 42 44 13 1 1.22 3.76 0.73 

YUKI 13 30 33 24 2.25 6.12 1.20 

 

3.3.2. Robustness Evaluation 

We have conducted a series of experiments to assess the robustness of our method with regard to 

asymmetry of the brain, quality of the images, and rotational variations across subjects. Our 

experimental design is similar to those described by Liu et al. [16] and Hu et al. [23], except that 

we use clinical volumes instead of mirrored images. For each experiment, we randomly select 10 

Figure 3.9. Boxplot of errors for the MSP in the normal direction in degrees (blue) and in average z-distance in 

voxels (magenta). 
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subjects from the dataset, generate simulated images under certain conditions, and localize target 

anatomies using the models previously trained for the unperturbed volume as described in 

section 3.3.1. We measure the localization accuracy with the metrics used in section 3.3.1, i.e., 

the distance error for AC and PC, the angular error and the distance error (average z-distance) for 

MSP. Results are averaged over the 10 subjects and shown in the following subsections. 

Robustness with respect to Brain Asymmetry 

We simulate two scenarios to introduce various pathologies that cause brain asymmetry. 

The first is to superimpose a spherical lesion with a specified position, radius, and intensity value 

in each test volume. The intensity value of the sphere replaces the value of the original voxels, as 

done in [23]. The second is to apply a local growth model with a specified seed point, radius, and 

growth rates to deform brain tissues. The growth model is a radially symmetric displacement 

field that produces deformations originating from the seed point and spreading gradually over the 

brain. The seed position is chosen to be away from the MSP to induce asymmetric deformation 

by the model. More details on this model can be found in [45]. For each test subject, we generate 

a set of simulated images with a range of radii for the sphere or the growth model as illustrated in 

Figure 3.10 and localize the AC, PC, and MSP in those images. 
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Figure 3.11 shows the localization accuracy for the AC, PC, and MSP for different sizes 

of spherical lesions averaged over the 10 subjects. As shown in the figure, the AC and PC are 

localized well for spheres of small size; errors increase drastically when the radius is larger than 

40 mm. This is because the sphere has occluded the AC/PC region. In this situation, no valid 

AC/PC point exists in the image and detecting those points logically fails. Localization of the 

MSP is less sensitive to the size of the sphere, as illustrated by a successful case in Figure 3.12 

(a). An exception occurs for one subject when the radius is larger than 40 mm, as shown in 

Figure 3.12 (b). This is because we use the detected AC and PC to help define the search region 

for MSP, and the failure of AC/PC detection in this case leads to a highly skewed region with 

little coverage of the MSP. In practice, this scenario is unlikely to happen. If it does happen, our 

algorithm needs to be modified to handle failure cases for AC/PC so that these will not affect the 

Figure 3.10. Examples of simulated brain asymmetry for a test subject. Panel (a) shows one slice of the original 

image, and (e) is the same slice overlaid with the ground truth MSP and segmented structures represented as yellow 

contours. Panels (b)-(d) show the images superimposed with spherical lesions of radius 30 mm, 50 mm, and 70 mm 
respectively, with all center points located at (XSize/2-20, YSize/2+20, ZSize/2-10) and intensity value = 20. Panels 

(f)-(h) are the images deformed by growth models of radius 30 mm, 50 mm, 70 mm respectively, with all seed 

points located at (XSize/2-20, YSize/2+20, ZSize/2-10). 



76 
 

MSP detection.  

 

 

 

 

 

 

 

Figure 3.13 shows the localization accuracy for the AC, PC, and MSP for different levels 

of tissue deformation averaged over the 10 subjects. As shown in this figure, the deformation we 

introduced only has a moderate impact on the results, with localization errors for the AC, PC, 

and MSP within 1.5 mm, degree, or voxel. The errors for MSP increase slightly with the amount 

of deformation. This is because the MSP deviates from planarity in those images; approximating 

it by a plane as we do in (3.5) is thus no more accurate. Figure 3.14 illustrates such example for a 

Figure 3.11. Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with simulated spherical 

lesions of varying radius in millimeters. 

Figure 3.12. A successful (a) and a failed (b) case for MSP detection with a spherical lesion of radius = 50 mm. Both 

images are resampled in the AC-PC reference system with their response maps for the MSP overlaid on top. The 

white cross indicates the ground truth AC and PC projected onto this slice, the yellow line the ground truth MSP, 

and the red line the detected MSP. 
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test case, in which the effect of the tissue deformation is shown with a deformed grid (b) and an 

MSP detection result (c). 

 

 

 

 

 

 

 

Robustness with respect to the Noise Level 

We artificially degrade each test volume by adding Gaussian white noise with zero mean 

and different variances. The localization accuracy of the AC, PC, and MSP for those degraded 

volumes averaged over 10 subjects at the same signal-to-noise ratio (SNR) level measured in 

decibel scale is shown in Figure 3.15. As shown in the figure, our algorithm is able to detect AC 

Figure 3.13. Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with simulated tissue 

deformation using growth models of varying radius in millimeters. 

Figure 3.14. A test case with a growth model of radius = 50 mm. Panel (a) is the original image, (b) is the grid 

deformed by the growth model, and (c) is the deformed volume overlaid with the response map for MSP, with the 

yellow line representing the ground truth MSP and the red line the detected MSP. 
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and PC with mean error around 1 mm and extract MSP with mean angular error within 1.5˚ and 

mean distance error within 1.5 voxel, even when the SNR is as low as -5 dB. Results for a test 

case with SNR = -5 dB are shown in Figure 3.16, with 1.53 mm error for AC, 1.82 mm for PC, 

1.06 angular error and 1.22 voxel distance error for MSP. 

 

 

 

 

 

 

 

Robustness with respect to Rotation 

To study the sensitivity of our models to rotation, we rotate each test volume with respect 

to the center of the image around each of the x-, y-, and z-axis separately with angles varying 

Figure 3.15. Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with additive Gaussian 

noise of zero mean and varying variances. 

Figure 3.16. Results for a degraded test volume with SNR = -5 dB. Left panel (a) shows the image resampled in the 

AC-PC space with the response map for the MSP overlaid on top. The yellow line represents the ground truth MSP 

and red line the detected plane. Right panel (b) shows a zoomed sagittal view of the image, with the white cross 

being the projection of the ground truth AC/PC, and the red and green point the detected AC and PC respectively. 
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from 0˚ to 20˚ in 1˚ intervals. For our images, the x-axis corresponds to the anterior-posterior 

direction, the y-axis the inferior-superior direction, and the z-axis the left-right direction.  

Before running the tests, we slightly adjust our algorithm to handle rotations in test 

images. At each resolution level, we localize target anatomies as previously described, estimate 

the rotation angles around the x and y axes based on the current estimate of the MSP, and use 

these angles to reorient the image for the next level. Localization errors for the AC, PC, and MSP 

are computed in the original space. Rotation correction is needed because of the limited 

rotational variations around the x and y axes in our dataset. During image acquisition, the 

scanner restricts the movement of the patient’s head from left to right or anterior to posterior. 

Patients can only freely move by looking up or down, which corresponds to rotation around the 

z-axis in our case. Rotation around the z-axis, however, does not affect the normal direction of 

the MSP. This leads to limited angular variations of MSP in our dataset. Models trained with 

those subjects do not generalize well with images with large rotations around x and y axes and 

the above modifications in the methodology are necessary. 

With the modified method, the localization accuracy with regard to image rotations in the 

x-, y-, and z- axis is shown in Figure 3.17, 3.18, and 3.19 respectively. Our algorithm for 

detecting the AC, PC and MSP is robust to rotations in all three directions, with mean errors up 

to 0.74 mm for AC, 1.07 mm for PC, 1.25˚ and 1.30 voxel for MSP.  
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Figure 3.17. Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with simulated rotation 

around the x-axis from 0 to 20 degrees. 

Figure 3.18. Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with simulated rotation 

around the y-axis from 0 to 20 degrees. 

Figure 3.19. Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with simulated rotation 

around the z-axis from 0 to 20 degrees. 
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3.3.3. Parameter Sensitivity Analysis 

We have also investigated the sensitivity of the parameters on the localization accuracy of the 

AC, PC and MSP. In this study, we select a subset of parameters that may critically affect the 

results. These parameters include (a) the number of trees in the forest, (b) the size of the node 

used to terminate the training process, i.e., the number of samples leaf nodes can contain, (c) the 

number of features to examine per node, and (d) the size of the Gaussian kernel in the mean shift 

algorithm. Among these parameters, (a)-(c) are used for model creation, i.e., training, and (d) for 

landmark detection. For each experiment, we test a set of parameter values with the 10 subjects 

used in section 3.3.2. 

To test parameter (a), we plot the out-of-bag (OOB) error rate versus the number of trees 

for the nine models averaged over the 10 subjects in Figure 3.20. The OOB error is estimated by 

feeding each tree with the training data left out in the construction of this tree as testing data and 

calculating the mean square difference between the true probabilities and the predictions. This 

has been shown to be an unbiased estimate of the test set error [26]. We downscaled the OOB 

errors for MSP by a factor of 10 for visualization purpose. As more trees are added, the OOB 

error first rapidly decreases and gradually reaches a plateau with 20, which is the number of trees 

we have used in section 3.3.1. 

For parameter (a), we also assess its direct impact on the localization accuracy by 

detecting the AC, PC, and MSP with only a subset of trees to make predictions. Localization 

errors are shown in Figure 3.21. Compared to Figure 3.20, we observe the same trend that 

introducing more trees help reduce the errors, with a difference that few trees are actually needed. 

This is because while the OOB plot treats each sample equally, the localization task does not. 

Samples with low probabilities to be the landmark or in the plane have less effect on the 
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localization accuracy if their errors are within the tolerance level, as those samples would be 

disregarded from voting for the final prediction. 

 

 

 

 

 

 

 

To test parameters (b) and (c), for each of the 10 subjects, we re-trained models as 

described in section 3.3.1 with the same training data but different parameter values. We vary 

parameter (b) in the interval [1, 20] with a step size of 5. A node size of 1 corresponds to fully 

grown trees. As the node size increases, the degree of pruning increases. For parameter (c), we 

test standard values as suggested in [26], i.e., √𝑀  and log2 𝑀  with 𝑀  being the number of 

Figure 3.20. OOB errors versus the number of trees for models built for the AC, PC, and MSP at three different 

resolution levels. Errors for MSP are downscaled by a factor of 10 for display purpose. 

Figure 3.21. Localization errors for the AC, PC, and MSP using models with different number of trees. 
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features for a sample. In our case, these correspond to ~10 and ~50 respectively. We also test a 

range of values between these and the one we have used in our experiments. We then localize the 

AC, PC, and MSP using those re-trained models. Sensitivity of the localization errors to 

parameters (b) and (c) is shown in Figure 3.22 and 3.23 respectively. The values we have used in 

section 3.3.1 are shown with bold lines. These figures suggest that the size of the node and the 

number of features examined per node have little impact on the accuracy of our algorithm. While 

different parameter values may yield slightly better results than those we have used, for example, 

examining 250 features per node leads to smaller errors for MSP, the differences are marginal, 

i.e., within 0.1 degree or voxel. 

 

 

 

 

 

 

 

Figure 3.22. Localization errors for the AC, PC, and MSP using models built with different size of the node to 

terminate training process. 

Figure 3.23. Localization errors for the AC, PC, and MSP using models built with different number of features to 

examine per node. 
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Figure 3.24 shows the localization errors for the AC and PC when we vary parameter (d). 

Using a kernel with zero variance corresponds to identifying landmarks as the voxel with the 

highest probability, as done in [31]. When the variance of the Gaussian kernel increases, errors 

decline at first and then stabilize when the variance reaches 2. This indicates that the spatial 

smoothing of the response maps using the mean shift technique improves the AC/PC detection 

accuracy but the value of the variance has little effect when it is above 2. 

 

 

 

 

3.4. Discussions and Conclusions 

In this paper, we propose a learning-based method to automatically detect the AC, PC, and MSP 

in MR T1-w brain scans using random regression forests. We use 20 trees to construct the forest, 

a number we chose based on the plot of the OOB error versus the number of trees. We have 

performed a parameter sensitivity analysis, and results indicate that the size of the node used to 

terminate the training process and the number of features that are examined per node have little 

impact on the localization accuracy. The features we have used for learning are contextual 

features generated by randomly displacing vectors. In principle, the number of features could be 

indefinitely large. To keep the computation practical, only a random set of 2000 features are used. 

Figure 3.24. Localization errors for the AC and PC in millimeters using Gaussian kernels with zero mean and 

varying variances. 
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Recent work by Yaqub et al. [46] has suggested that with feature selection the performance of 

random forests could be enhanced for brain segmentation task in T1-w images, one direction we 

would like to pursue in our work in the future. 

We localize the landmarks and the plane using a semi-local search in the sense that the 

search is limited to a large region of interest. This is reasonable because all the images in our 

dataset have similar pose and FOV. If heterogeneous datasets with various orientations, 

dimensions, and field-of-views are involved, one will need to reorient the image first as we have 

done when evaluating the sensitivity of our method to rotation to be consistent with the training 

images or increase the size of the region of interest for training and testing at the coarse level. 

Our technique is developed on T1-w images. However, extension to other image modalities is 

straightforward by building models for that particular image set. 

We have conducted leave-one-out experiments to validate our method. Results have 

shown that our approach is accurate and robust, with 0.55±0.30 mm and a maximum of 1.78 mm 

error for the AC, 0.56±0.28 mm and a maximum of 1.50 mm error for the PC, a 1.08˚±0.66˚ and 

a maximum of 3.43˚ angular error in the normal direction, as well as 1.22±0.73 and a maximum 

of 3.73 voxel of distance error in average z-distance for the MSP.  

For the AC and the PC, we have compared our approach to single-atlas-based methods 

using six well-established nonrigid registration algorithms and also with a model-based approach 

that has been proposed recently and implemented in the publicly available toolkit YUKI. We 

have found that our algorithm outperforms four nonrigid registration methods (ABA, DD, F3D, 

and ART) as well as the toolkit YUKI in terms of accuracy and robustness; the improvements are 

statistically significant. Other registration methods (LABA and SyN) achieve similar or slightly 

better accuracy than ours. However, they rely on good affine initialization. In this study we have 
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manually corrected 9 out of the 100 affine registrations so as not to bias the nonrigid registration 

results. In an automatic system, such uncorrected affine registration may deteriorate the 

performance of nonrigid registrations and cause a failure in the AC and PC localization. 

For the MSP, we have evaluated our method against a global symmetry-based approach 

implemented in the toolkit YUKI as well. Our results for both plane normal errors and average z-

distances are statistically significantly better than those using YUKI. A thorough comparison to 

other state-of-the-art methods is nontrivial without any publicly available implementations and is 

out of the scope of this paper. However, a review of the literature shows that our method 

compares favorably to existing techniques. Indeed, in [18], Ruppert et al. compared their method 

to Volkau et al. [20], Teverovskiy et al. [17], and Bergo et al. [21] using average z-distance with 

20 normal MR T1-w images, and the results were 1.27±0.59, 1.84±1.14, 1.46±0.81, 1.46±0.93 

voxel respectively. With a much larger clinical dataset of DBS patients, we achieved results 

(1.22±0.73) that are highly comparable to the best in [18] (1.27±0.59). In a most recent study 

which also employed a learning-based schema as discussed earlier [24], Schwing et al. reported 

angular errors in the normal direction of 1.08˚±0.76˚. This is the same mean as ours but their 

standard deviation is larger. 

We have designed a set of experiments to test the robustness of our algorithm against 

asymmetry of the brain, poor image quality, and variation in rotations across subjects. Results 

show that our algorithm is tolerant to brain asymmetries such as spherical lesions and tissue 

deformations without occlusions of the AC/PC. It is also tolerant to high level of imaging noise 

and, with the modifications described in section 3.3.2, to rotations for the AC, PC, and MSP in 

any direction.  

Another advantage of our approach is the speed. Although registration methods such as 
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SyN may be marginally more accurate, they generally take at least minutes, if not hours, to run. 

Our method is fast, taking only about 25 seconds on a standard desktop PC with 4 CPU cores 

and 8 GB RAM to compute the AC, PC, and MSP all at once. The algorithm is implemented in 

C++ with parallelization. The computations for model training are done on the Advanced Center 

for Computing and Research Education (ACCRE) Linux cluster at Vanderbilt University.  

We should note that as a supervised learning technique, our method generalizes the 

information learned from training data to the test data. To achieve the desired accuracy for a test 

case, patches extracted from this image should look somewhat similar to those in the training set. 

Fundamentally the performance of our algorithm is limited by the training data we use to build 

the models. For example, without modifications of our method, the lack of variations in rotation 

around the anterior-posterior and superior-inferior axes would lead to poor detection of the MSP 

on test cases with large rotations in those directions. Our algorithm could not manage occlusions 

of the AC/PC region either, as no such sample appeared in the training data. In order for the 

model to capture this information, the training set needs to be enriched to handle images with 

such variations. 

There may be some bias towards our method when compared to YUKI, which can be 

freely downloaded [47]. First, YUKI was not trained on the same images we have used. In 

addition, it may have used a slightly different definition of the AC, PC, or MSP. For example, 

the AC could be marked by its center or its posterior edge; the MSP could be defined in other 

ways than using the falx cerebri. Those factors may account for some of the performance 

differences between YUKI and our method. To address this issue and permit a thorough 

comparison between algorithms, it would be beneficial to develop publicly available annotated 

datasets on which algorithms could be applied. 



88 
 

References 

 

[1] G. Schaltenbrand and W. Wahren, Guide to the Atlas for Stereotaxy of the Human Brain. 

Stuttgart, Germany: Thieme, 1977. 

[2] J. Talairach and P. Tournoux, Co-planar Stereotaxic Atlas of the Human Brain. Stuttgart, 

Germany: Thieme, 1988. 

[3] P. A. Starr, “Placement of deep brain stimulators into the subthalamic nucleus or globus 

pallidus internus: technical approach,” Stereotact Funct Neurosurg, vol. 79, no. 3-4, pp. 

118-145, 2003. 

[4] W. L. Nowinski and A. Thirunavuukarasuu, “Atlas-assisted localization analysis of 

functional images,” Med Image Anal, vol. 5, no. 3, pp. 207-220, 2001. 

[5] D. L. Collins, P. Neelin, T. M. Peters, and A. C. Evans, “Automatic 3D intersubject 

registration of MR volumetric data in standardized Talairach space,” J Comput Assist 

Tomo, vol. 18, no. 2, pp. 192-205, 1994. 

[6] Y. Han and H. Park, “Automatic brain MR image registration based on Talairach 

reference system,” in Proc. ICIP, 2003, pp. 1097-1100. 

[7] S. Joshi, P. Lorenzen, G. Gerig, and E. Bullitt, “Structural and radiometric asymmetry in 

brain images,” Med Image Anal, vol. 7, no. 2, pp. 155-170, 2003. 

[8] S. Pallavaram, H. Yu, J. Spooner, P.-F. D’Haese, B. Bodenheimer, P. E. Konrad, and B. 

M. Dawant, “Intersurgeon variability in the selection of anterior and posterior 

commissures and its potential effects on target localization,” Stereotact Funct Neurosurg, 

vol. 86, no. 2, pp. 113-119, 2008. 



89 
 

[9] L. Verard, P. Allain, J. M. Travere, J. C. Baron, and D. Bloyet, “Fully automatic 

identification of AC and PC landmarks on brain MRI using scene analysis,” IEEE Trans 

Med Imaging, vol. 16, no. 5, pp. 610-616, 1997. 

[10] K. N. Bhanu Prakash, Q. Hu, A. Aziz, and W. L. Nowinski, “Rapid and automatic 

localization of the anterior and posterior commissure point landmarks in MR volumetric 

neuroimages,” Acad Radiol, vol. 13, no. 1, pp. 36-54, 2006. 

[11] G. Zhang, Y. Fu, S. Wang, W. Gao, “Automatic localization of AC and PC landmarks in 

T2-weighted MR volumetric neuroimages,” in Proc. ICIA, 2010, pp. 1830-1834. 

[12] B. A. Ardekani and A. H. Bachman, “Model-based automatic detection of the anterior and 

posterior commissures on MRI scans,” Neuroimage, vol. 46, no. 3, pp. 677-682, 2009. 

[13] S. Pallavaram, H. Yu, P.-F. D’Haese, J. Spooner, T. Koyama, B. Bodenheimer, C. Kao, P. 

E. Konrad, and B. M. Dawant, “Automated selection of anterior and posterior 

commissures based on a deformable atlas and its evaluation based on manual selections by 

neurosurgeons,” in Proc. SPIE Med Imaging, 2007, pp. 65091C-65091C. 

[14] P. Anbazhagan, A. Carass, P. L. Bazin, J. L. Prince, “Automatic estimation of midsagittal 

plane and AC-PC alignment on nonrigid registration,” in Proc. ISBI, 2006, pp. 828-831. 

[15] B. A. Ardekani, J. Kershaw, M. Braun, and I. Kanno, “Automatic detection of the 

midsagittal plane in 3d brain images,” IEEE Trans Med Imaging, vol. 16, no. 6, pp. 947–

952, 1997. 

[16] Y. Liu, R. T. Collins, and W. E. Rothfus, “Robust midsagittal plane extraction from 

normal and pathological 3D neuroradiology image,” IEEE Trans Med Imaging, vol. 20, no. 

3, pp. 173-192, 2001. 



90 
 

[17] L. Teverovskiy and Y. Liu, “Truly 3D midsagittal plane extraction for robust neuroimage 

registration,” in Proc. ISBI, 2006, pp. 860-863. 

[18] G. C. S. Ruppert, L. Teverovskiy, C. P. Yu, A. X. Falcao, and Y. Liu, “A new symmetry-

based method for midsagittal plane extraction in neuroimages,” in Proc. ISBI, 2011, pp. 

285-288. 

[19] M. E. Brummer, “Hough transform detection of the longitudinal fissure in tomographic 

head images,” IEEE Trans Med Imaging, vol. 10. No. 1, pp. 74-81, 1991. 

[20] I. Volkau, K. B. Prakash, A. Ananthasubramaniam, A. Aziz, and W. L. Nowinski, 

“Extraction of the midsagittal plane from morphological neuroimages using the kullback-

leibler’s measure,” Med Image Anal, vol. 10, no. 6, pp. 863 – 874, 2006. 

[21] F. P. G. Bergo, G. C. S. Ruppert, and A. X. Falcao, “Fast and robust mid-sagittal plane 

location in 3D MR images of the brain,” in Proc. BIOSIGNALS, 2008, pp. 92-99. 

[22] H. Wu, D. Wang, L. Shi, Z. Wen, and Z. Ming, “Midsagittal plane extraction from brain 

images based on 3D SIFT,” Phys Med Biol, vol. 59, no. 6, pp. 1367-1387, 2014. 

[23] Q. Hu and W. L. Nowinski, “A rapid algorithm for robust and automatic extraction of the 

midsagittal plane of the human cerebrum from neuroimages based on local symmetry and 

outlier removal,” Neuroimage, vol. 20, no. 4, pp. 2153-2165, 2003. 

[24] A. Schwing and Y. Zheng, “Reliable extraction of the midsagittal plane in 3d brain mri via 

hierarchical landmark detection,” in Proc. ISBI, 2014, pp. 1-4. 

[25] A. W. Toga and P. M. Thompson, “Mapping brain asymmetry,” Nat Rev Neurosci, vol. 4, 

no. 1, pp. 37–48, 2003. 

[26] L. Breiman, “Random forests,” Mach Learn, vol. 45, no. 1, pp. 5-32, 2001. 



91 
 

[27] M. A. Dabbah, et al., “Detection and location of 127 anatomical landmarks in diverse CT 

datasets,” in Proc. SPIE Med Imaging, 2014, pp. 903415-903415. 

[28] C. Lindner, S. Thiagarajah, J. M. Wilkinson, T. A. Consortium, G. A. Wallis, and T. F. 

Cootes, “Fully automatic segmentation of the proximal femur using random forest 

regression voting,” IEEE Trans Med Imaging, vol. 32, no. 8, pp. 181-189, 2013. 

[29] B. Glocker, J. Feulner, A. Criminisi, D. R. Haynor, and E. Konukoglu, “Automatic 

localization and identification of vertebrae in arbitrary field-of-view CT scans,” in Proc. 

MICCAI, 2012, pp. 590-598. 

[30] M. Yaqub, A. Kopuri, S. Rueda, P. B. Sullivan, K. McCormick, and J. A. Noble, “A 

constrained regression forests solution to 3D fetal ultrasound plane localization for 

longitudinal analysis of brain growth and maturation,” in Proc. MLMI, 2014, pp. 109-116. 

[31] Y. Liu and B. M. Dawant, “Automatic detection of the anterior and posterior commissures 

on MRI scans using regression forests,” in Proc. EMBC, 2014, pp. 1505-1508. 

[32] P.-F. D’Haese, S. Pallavaram, R. Li, M. S. Remple, C. Kao, J. S. Neimat, P. E. Konrad, 

and B. M. Dawant, “CranialVault and its CRAVE tools: a clinical computer assistance 

system for deep brain stimulation therapy,” Med Image Anal, vol. 16, no. 3, pp. 744-753, 

2012. 

[33] M. Baehr and M. Frotscher, Duus' topical diagnosis in neurology: anatomy, physiology, 

signs, symptoms, 5th ed., Stuttgart, Germany: Thieme, 2012.  

[34] O. Pauly, B. Glocker, A. Criminisi, D. Mateus, A. M. Moller, S. Nekolla, and N. Navab, 

“Fast multiple organ detection and localization in whole-body MR Dixon sequences,” in 

Proc. MICCAI, 2011, pp. 239-247. 



92 
 

[35] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Trans Pattern Anal Mach 

Intell, vol. 17, no. 8, pp. 790-799, 1995. 

[36] S. Pallavaram, B. M. Dawant, T. Koyama, H. Yu, J. Neimat, P. E. Konrad, and P.-F. 

D’Haese, “Validation of a fully automatic method for the routine selection of the anterior 

and posterior commissures in magnetic resonance images,” Stereotact Funct Neurosurg, 

vol. 87, no. 3, pp. 148-154, 2009. 

[37] F. Maes, F. A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality 

image registration by maximization of mutual information,” IEEE Trans Med Imaging, 

vol. 16, no. 2, pp. 187-198, 1997. 

[38] P. Viola and W. M. Wells III, “Alignment by maximization of mutual information,” Int J 

Comput Vis, vol. 24, no. 2, pp. 137-154, 1997. 

[39] G. K. Rohde, A. Aldroubi, and B. M. Dawant, “The adaptive bases algorithm for 

intensity-based nonrigid image registration,” IEEE Trans Med Imaging, vol. 22, no. 11, pp. 

1470-1479, 2003. 

[40] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: 

efficient non-parametric image registration,” Neuroimage, vol. 45, no. 1, pp. 61-72, 2009. 

[41] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic 

image registration with cross-correlation: evaluating automated labeling of elderly and 

neurodegenerative brain,” Med Image Anal, vol. 12, no. 1, pp. 26-41, 2008. 

[42] M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J. Hawkes, N. C. Fox, 

and S. Ourselin, “Fast free-form deformation using graphics processing units,” Comput 

Meth Prog Bio, vol. 98, no. 3, pp. 278-284, 2010. 



93 
 

[43] B. A. Ardekani, S. Guckemus, A. Bachman, M. J. Hoptman, M. Wojtaszek, and J. 

Nierenberg, “Quantitative comparison of algorithms for inter-subject registration of 3D 

volumetric brain MRI scans,” J Neurosci Methods, vol. 142, no. 1, pp. 67-76, 2005. 

[44] Y. Liu, P.-F. DH’aese, and B. M. Dawant, “Effects of deformable registration algorithms 

on the creation of statistical maps for preoperative targeting in deep brain stimulation 

procedures,” in Proc. SPIE Med Imaging, 2014, pp. 90362B-90362B. 

[45] Z. Han, “Effect of nonrigid registration algorithms on the analysis of brain MR images 

with deformation based morphometry,” Ph.D. dissertation, EECS Dept., Vanderbilt Univ., 

TN, 2011. 

[46] M. Yaqub, M. Javaid, C. Cooper, and A. Noble, “Investigation of the role of feature 

selection and weighted voting in random forests for 3D volumetric segmentation,” IEEE 

Trans Med Imaging, vol. 33, no. 2, pp. 258-271, 2014. 

[47] http://www.nitrc.org/frs/?group_id=90 

  



94 
 

CHAPTER IV 

 

EFFECTS OF DEFORMABLE REGISTRATION ALGORITHMS ON THE CREATION OF 

STATISTICAL MAPS FOR PREOPERATIVE TARGETING IN DEEP BRAIN 

STIMULATION PROCEDURES
3
 

 

Yuan Liu, Pierre-François D’Haese, and Benoit M. Dawant
 

 

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, 

TN 37232 USA 

 

 

 

 

 

  

                                                        
3
 [This chapter has been published in Proceedings of SPIE: Medical Imaging, San Diego, CA, 

USA, pp. 90362B-1-90362B-8, 2014.] 



95 
 

Abstract  

Deep brain stimulation, which is used to treat various neurological disorders, involves implanting 

a permanent electrode into precise targets deep in the brain. Accurate preoperative localization of 

the targets on preoperative MR sequence is challenging as these are typically located in 

homogenous regions with poor contrast. Population-based statistical atlases can assist with this 

process. Such atlases are created by acquiring the location of efficacious regions from numerous 

subjects and projecting them onto a common reference image volume using some normalization 

method. In previous work, we presented results concluding that nonrigid registration provided 

the best result for such normalization. However, this process could be biased by the choice of the 

reference image and/or registration approach. In this paper, we have qualitatively and 

quantitatively compared the performance of six recognized deformable registration methods at 

normalizing such data in poor contrasted regions onto three different reference volumes using a 

unique set of data from 100 patients. We study various metrics designed to measure the centroid, 

spread, and shape of the normalized data. This study leads to a total of 1800 deformable 

registrations and results show that statistical atlases constructed using different deformable 

registration methods share comparable centroids and spreads with marginal differences in their 

shape. Among the six methods being studied, Diffeomorphic Demons produces the largest 

spreads and centroids that are the furthest apart from the others in general. Among the three 

atlases, one atlas consistently outperforms the other two with smaller spreads for each algorithm. 

However, none of the differences in the spreads were found to be statistically significant, across 

different algorithms or across different atlases. 
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4.1. Introduction 

In Deep brain stimulation (DBS) procedures, a permanent implant is placed in small deep brain 

regions of interest such as the subthalamic nucleus (STN), usually referred to as targets. 

Clinically, this is achieved in a two stage process: an approximate location of the targets is 

identified preoperatively using current imaging techniques, and then refined during the surgical 

procedure using responses to stimulation and/or micro-electrode recordings. Preoperative 

localization of the targets can be done either by localizing the target directly on the patient scan 

or, as current magnetic resonance (MR) imaging techniques fail to provide sufficient contrast 

around the targets, using the assistance of atlas-based approaches [1-9]. Printed and digitized 

anatomical atlases [10-11] as well as population-based statistical atlases [1-4] have been adopted 

to provide such assistance [1-9]. Creation of statistical atlases of optimum target location 

typically consists of three steps: 1) identifying the target positions in many subjects, 2) projecting 

these points onto the reference volumes, and 3) combining them to produce a statistical 

representation.  

When relying on atlas-based approaches to support preoperative targeting, accurate and 

robust nonrigid registration of 3D image volumes is crucial [12]. Over the last 20 years, a 

number of nonlinear registration algorithms have been developed but assessing the relative 

advantages and disadvantages of these algorithms remains challenging. This is because, as 

opposed to the rigid body registration problem [13], no universal gold-standard exists and 

algorithms may perform differently for different tasks. Numerous studies have been conducted to 

evaluate and compare their performances using intensity-based, segmentation-based, 

deformation field-based, or landmark-based measurements [14-19]. The most comprehensive 

comparison work we know of is the evaluation of 14 publicly available nonrigid registration 
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algorithms on four public datasets [16]. Studies studying specifically preoperative targeting in 

DBS include Chakravarty et al. [18] who tested the accuracy of various warping techniques by 

comparing surface distances and volume overlap for manually labeled subcortical nuclei as well 

as Castro et al. [19] and Duay et al. [6] who relied on the manual segmentation of the STN and 

measured the difference between the centroids of those segmentations obtained by different 

registration methods. However, these studies require advanced imaging techniques to provide 

sufficient contrast around targets and substantial amount of manual work to correctly delineate 

structures of interest, thus making it difficult to extend to a large scale evaluation. 

In this paper, we rely on the final intraoperative position of the implant in DBS. 

Assuming the optimal placement for the lead, its position is a landmark that can be projected 

through registration to a new patient to predict the target position. However, because of inter-

subject variability in this optimal position and sub-optimal intraoperative placement, a single 

point is not a reliable predictor. Instead, probability maps of target points needs to be computed 

from a large population of subjects after normalizing the data to the reference volumes. 

Centroids, spreads and shapes of the maps are important features of the normalized data that may 

be affected by the choice of the reference volumes or the registration method used for 

normalization. 

The main goal of this paper is to investigate the effect of registration algorithms on 

statistical atlases in low contrast regions. To achieve this, we use six well-known deformable 

registration methods to construct statistical maps as described in [1] and both qualitatively and 

quantitatively evaluate their differences with respect to their centroids, spreads, and shapes. In 

addition, to avoid any bias in the evaluation of registrations by relying on one single reference 

space, we use three different atlases, and by analyzing the results obtained for different atlases, 
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we study the effect of reference volumes on the quality of the statistical maps. We use a large 

data repository of DBS cases we have gathered over 10 years [20] and computational resources 

from the Advanced Center for Computing and Research Education (ACCRE) cluster at 

Vanderbilt University to automate the processing for a large-scale study. The target position is 

chosen to be the position at which the surgical team choses to place the implant during the 

procedure, which we will refer to as Final Implant Position (FEP). In the following sections, we 

first describe the data set we have created over the years. We then explain the method we use to 

create statistical atlases using six nonrigid registration algorithms. Finally, we present both 

qualitative and quantitative evaluations for those statistical atlases, and draw several conclusions 

that are important in DBS. 

 

4.2. Methods 

In this section of the paper, we present our methods for evaluating statistical atlases created by 

different registration methods. First, we discuss the data we use, and then detail our methods for 

applying different registration methods, for creating the statistical maps, and for designing 

metrics for comparison. 

 

4.2.1. Data 

Over the last decade, we have created a large data repository for DBS surgeries. This repository 

now contains image volumes for over 1200 subjects (typically preoperative CT and MR volumes 

and postoperative CT volumes) acquired both at our institution and at collaborating sites. In 

addition to the images, this repository also contain information such as the Anterior Commissure 

(AC) and Posterior Commissure (PC) points selected by the surgeons when planning the 
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procedure, the preoperative target point, the position at which the implant was placed, 

intraoperative recordings, etc. To conduct the study discussed in this article, we have randomly 

selected 100 volumes all targeting the STN from this repository. For each of these volumes, we 

obtain the FEPs identified as the mid-point of the Medtronic 3389 implant. In order to filter 

patients with extremely unusual anatomy or who were misimplanted, we rely on the FEPs’ 

positions in a coordinate system defined by the AC, the PC, and the midsagittal plane as 

described in Chapter III, which is frequently used as an indirect targeting approach. The origin of 

this coordinate system is the mid-point between the AC and the PC, also known as the mid-

commissural point. Because of individual variations in the location of the STN relative to this 

origin, this target coordinate position is not constant across patients. We have only included in 

our data set patients whose FEPs are within a reasonable distance from the average standardized 

AC-PC-based target coordinates for STN, which is 12 mm lateral, 3 mm posterior, and 4 mm 

inferior to the mid-commissural point as reported in [21]. 

 

 

 

 

Among the selected 100 patients, 13 underwent unilateral implantations and the 

remaining 87 underwent bilateral implantations. This results in 95 FEPs for the left side and 92 

for the right side. Three additional reference volumes are chosen as atlases. Among these three 

Figure 4.1. The same corresponding coronal slices of the atlases used in this study. From left to right: atlas 1, 2 and 
3 respectively. 
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atlases, atlas 2 has a smaller ventricular size than atlas 1 and 3. Corresponding coronal slices in 

these atlases are show in Figure 4.1. All images in our data set, acquired with IRB approval, are 

T1-weighted (T1-w) sagittal MR image volumes with approximately 256×256×170 voxels and 1 

mm in each direction, acquired with the SENSE parallel imaging technique (T1W/3D/TFE) on a 

3 Tesla Phillips scanner (TR = 7.92 ms, TE = 3.65 ms). 

 

4.2.2. Statistical Atlas Creation 

For each patient volume, the FEPs are projected from these volumes onto each atlas using the 

transformation that registers the volume to the atlas. Registrations from patients to atlases are 

performed in two steps. Each volume is first pre-aligned to each atlas using an affine registration 

algorithm that uses Mutual Information [22-23] as its similarity measure. As the goal of this 

study is to compare the nonrigid component of the registration, this step is common to all 

methods and the results are visually checked and manually corrected to avoid any bias in the 

study. When a failure is observed, the algorithm is initialized manually and the process repeated 

until the results are deemed satisfactory. This is followed by the estimation of six dense 

deformation fields, computed using the six selected registration algorithms that are briefly 

described below. 

Nonrigid Registration Algorithms 

The six registration algorithms we have compared in this paper are: 1) the Adaptive 

Bases Algorithm (ABA) [24], 2) the Adaptive Bases Algorithm with bounding box (LABA) [24], 

3) the Diffeomorphic Demons Algorithm (DD) [25], 4) the Fast Free Form Deformation (F3D) 

[26], 5) Symmetric Normalization (SyN) [27], and 6) the Automatic Registration Tools (ART) 

[17]. Table 4.1 presents a detailed summary of the differences between these algorithms. More 
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specifically, LABA is a variation of ABA which limits the computation of the similarity measure 

within a local area. This local area is defined by a square-shaped bounding box that covers 

ventricles, basal ganglia structures and the top of the pons. Unlike other algorithms which treat 

all regions of the brain equally, ABA automatically detects regions of misregistration and places 

radial basis functions only at those nodes. Without constraining the region of optimization ABA 

is more likely to focus more on the sulcal area where the gradient of the similarity measure with 

respect to the coefficients of the basis functions, which is used to localize misregistered regions, 

is larger. The bounding box is used to limit the region over which the density of basis function is 

adapted. 

 

Table 4.1. Comparison of deformable registration methods 

Method Deformation Model Similarity Measure Regularization Inverse Deformation Calculation 

ABA Radial basis functions NMI of whole brain 
Transformation symmetry; 

Jacobian threshold 
Yes 

LABA Radial basis functions NMI in bounding box 
Transformation symmetry; 

Jacobian threshold 
Yes 

DD Diffeomorphic optical flow SSD of whole brain Gaussian smoothing No 

SyN Symmetric diffeomorphism CC of whole brain 
Gaussian smoothing; 

Transformation symmetry 
Yes 

F3D Cubic B-splines NMI of whole brain Bending energy No 

ART Homeomorphism NCC of whole brain Gaussian smoothing No 

NMI – normalized mutual information, SSD – sum of square differences, CC – cross correlation, NCC – normalized 

cross correlation 

 

Each algorithm is equipped with a set of parameters that needs to be adjusted for a 

particular dataset. To do so, we randomly select 10 pairs of volumes to register. Starting from the 

parameters suggested in a method’s user manual or past papers, we test a series of parameter sets 

on these 10 registrations by adjusting one parameter at a time, i.e., increasing the number of 

iterations per level, changing the weights for the regularization term, etc. Each time registration 

quality is assessed visually for global and local alignment (skull, major sulci, and ventricle 
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aligned correctly) and topological correctness of the deformation field (no self-folding or tearing, 

indicated by nonnegative jacobian). The parameter set that best fulfills the two objectives is 

selected for the following experiment. 

Inverse Deformation Field Calculation 

Warping one image volume onto one atlas requires establishing a transformation that 

maps one atlas voxel onto a location in the other volume; we refer to this transformation as the 

forward transformation or forward deformation field. Projecting a point from a volume onto the 

atlas requires the inverse of this transformation, which we refer to as the inverse transformation 

or inverse deformation field. While some algorithms compute both others do not. When they do 

not, the inverse deformation field needs to be estimated from the forward deformation field. 

Among the algorithms we have evaluated, ABA, LABA, and SyN generate both the forward and 

the inverse deformation fields. More specifically, ABA and LABA compute both 

transformations simultaneously and iteratively adjust them to keep bijective transforms of each 

other at the end of each optimization level. SyN defines a variational energy that explicitly 

divides the image registration diffeomorphisms into two halves such that the source and target 

images contribute equally to the path and optimizes from both directions to this virtual midpoint 

in the space of diffeomorphic transformations. For the other algorithms we use a method 

available in ITK called itkInvertDisplacementFieldFilter that iteratively computes the inverse 

field from the forward field by minimizing the inverse consistency error until a certain number of 

iterations are reached [28]. 

Point Projection and Aggregation 

Once the transformations are obtained, the FEPs are projected from each individual brain 

volume onto each of the three atlases. This results in 1710 projections (95 points × 6 methods × 3 
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atlases) for FEP on the left side and 1656 projections (92 points × 6 methods × 3 atlases) on the 

right side that form two clouds of points, one for each side. Those clouds of points, localized in 

specific reference spaces, are the statistical atlases, often used for guidance for target prediction. 

For each anatomic atlas, i.e., reference volume, six statistical atlases are created, one for each of 

the six different registration algorithms. Besides the point clouds, we also build probabilistic 

maps associated with each statistical atlas. To do this we associate a sphere of 1 mm radius with 

each point, sum the contribution of all points and normalize this sum to be 1 to represent 

probability density functions. We then compare the clouds of points as well as the probability 

maps generated by different registration methods in each of the three reference spaces. 

 

4.2.3. Evaluation 

For the evaluation of the statistical atlases, we make two assumptions with regards to the FEPs: 

1) during the procedure, the surgical team is able to place the lead at the optimal position; 2) 

although it is unknown whether or not the placement of the lead should be at the exact same 

anatomical location for every patient, their positions should be close for patients with the same 

type of disease. With these assumptions, FEPs should be mapped approximately onto the same 

location in the atlas. Hence the ideal statistical atlas should be a tight cluster of points that covers 

some region of the STN.  

For qualitative comparison, we visualize the probabilistic maps built for each algorithm 

as color maps. For each map, we also generate an isosurface using the marching cubes algorithm 

[29] at a probability of 0.3 in order to compare their shapes. The threshold to extract isosurfaces 

is chosen empirically to remove outliers with low probabilities while preserving the shape of the 
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maps. As this small region of interest only contains several voxels, the isosurface is then 

smoothed for visualization purposes. 

To quantitatively measure differences between these statistical atlases, we use two 

features. The first one is the centroid of the point clouds. Distances between centroids computed 

by different registration methods indicate differences in their behavior. Second, we compute the 

absolute deviations for all points in the point cloud and compare the mean and standard deviation 

of absolute deviations across all point clouds. The absolute deviation is defined as the Euclidean 

distance between each point and the centroid of the point cloud it belongs to. As we assume that 

FEPs represent the optimal placement of a lead with respect to a patient’s anatomy and that this 

position should not vary substantially from patient to patient, in a large study as ours we expect 

that the more robust and accurate the registration algorithm is, the tighter its FEP cluster, and 

thus the smaller the corresponding mean and standard deviation of absolute deviations.   

Besides comparing these features, we perform a one-way analysis of variance (ANOVA) 

test at a 5% significance level for each atlas at the left and right side to determine whether the 

means of absolute deviations are the same across all registration algorithms. We also perform the 

same statistical test for each algorithm on the left and right side to determine whether the means 

of absolute deviations are the same across all atlases. 

 

4.3. Results 

In this section we first show some qualitative results to visually show differences between the 

statistical atlases. This is followed by a detailed quantitative comparison. 
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4.3.1. Qualitative Visualization 

Figure 4.2 displays the FEP probabilistic maps with their positions relative to the STN in the 

same slice overlaid on top of the T1-w image for atlas 1. This slice is chosen to contain the 

midpoint between the AC and the PC and has also been reformatted to be perpendicular to the 

AC-PC line. At least visually, the maps generated by different registration methods are similar in 

shapes. One notices, however, that there are more outliers and that the spread is larger for 

Diffeomorphic Demons. Figure 4.3 shows the 3D isosurfaces created from those maps as well as 

the contours in the coronal view for all three atlases. As can be observed, most of the contours 

produced by different registration algorithms share similar shapes, are localized in relatively the 

same location and cover a similar region of the STN. The blue contours that represent the 

isosurfaces of the probabilistic maps obtained with Diffeomorphic Demons are shifted compared 

to the others, most obviously for atlas 2 both on the left side and the right side.  

 

 

 

 

Figure 4.2. FEP probabilistic maps using different registration methods on atlas 1, with STN (purple) drawn on top.  
From left to right, top row: ABA, LABA, DD; bottom row: SyN, F3D, ART. 
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4.3.2. Quantitative Comparison 

Table 4.2 reports the Euclidean distances between the centroids of the FEP point clouds obtained 

with different registration methods for atlas 1, 2, and 3. Centroid differences between methods 

are all within 1 mm. The centroids obtained by Diffeomorphic Demons are furthest apart from 

the rest, in average 0.69 mm away. This is consistent with our observations from the qualitative 

visualizations in Figure 4.2 and 4.3. 

 

Table 4.2. Euclidean distances of centroids between methods in millimeters for the three atlases 

 ABA LABA DD SyN F3D ART 

ABA 0, 0, 0 0.29, 0.36, 0.37 0.33, 0.96, 0.85 0.20, 0.06, 0.30 0.33, 0.37, 0.26 0.23, 0.29, 0.43 

LABA 0.22, 0.42, 0.35 0, 0, 0 0.60, 0.75, 0.54 0.09, 0.30, 0.15 0.23, 0.45, 0.16 0.33, 0.31, 0.28 

DD 0.79, 0.61, 0.93 0.59, 0.88, 0.83 0, 0, 0 0.52, 0.94, 0.61 0.56, 0.80, 0.64 0.38, 0.72, 0.58 

SyN 0.23, 0.38, 0.30 0.05, 0.29, 0.32 0.60, 0.94, 0.65 0, 0, 0 0.24, 0.37, 0.03 0.29, 0.37, 0.18 

F3D 0.16, 0.30, 0.17 0.25, 0.22, 0.29 0.70, 0.72, 0.83 0.26, 0.27, 0.27 0, 0, 0 0.31, 0.16, 0.21 

ART 0.50, 0.44, 0.47 0.39, 0.46, 0.24 0.49, 0.74, 0.62 0.42, 0.38, 0.26 0.46, 0.26, 0.41 0, 0, 0 

The lower left triangle, shaded with grey, represents calculations for the left side FEPs; the upper right triangle 

without shading shows the same for the right side. In each cell from left to right the centroid distances are for atlas 1, 
2, and 3 respectively. Values larger than 0.5 mm are marked in red bold. 

 

Figure 4.3. Smoothed isosurfaces of the probabilistic maps. Top row is the 2D contours in a coronal slice and 

bottom row is its 3D visualization. From left to right: left side for atlas 1, 2, and 3, and right side for atlas 1, 2, and 3, 

respectively. Semi-transparent light purple structure represents the STN. Structures of other colors represent 

isosurfaces of different methods. Red: ABA; green: LABA; blue: DD; yellow: SyN; magenta: F3D; cyan: ART. 
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The mean and standard deviation of the absolute deviations of FEPs are shown in Figure 

4.4. The means of the absolute deviations range from 2.2 to 2.8 mm for all algorithms in each of 

the atlases, and their standard deviations is within 1.3-1.65 mm. Differences between those 

measurements are marginal among the tested registration methods, with Diffeomorphic Demons 

having the largest mean spreads for atlas 1 and 3. An interesting observation is that mean and 

standard deviation of the spread for atlas 2 are consistently smaller than those for atlas 1 and 3 

across algorithms, with an average decrease of 0.26 mm in mean and 0.14 mm in standard 

deviation. The results of statistical tests using AVONA further show that differences between 

mean spread values are not statistically significant from each other for the left and the right side 

at a 5% significance level, either across different algorithms or across different atlases. 

 

 

 

 

4.4. Conclusions 

In this paper, six well-known deformable registration algorithms are evaluated for the creation of 

statistical atlases using FEP. This is achieved by registering 100 patients to each of the three 

atlases using each of the six methods, which results in 1800 deformable registrations. Through 
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Figure 4.4. Mean and standard deviation of absolute deviations of FEP for the three atlases over all patients. From 
left to right: FEP left and right side respectively, with blue representing atlas 1, red representing atlas 2, green 

representing atlas 3. 
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this study, we have found that differences between algorithms’ performance in the region of 

interest are sub-voxel (sub-millimeter). Qualitatively, probabilistic maps generated from the 

projected clouds of points all cover a similar region of the STN and differences seem negligible. 

The quantitative analysis confirms this finding. Among these algorithms, the clouds of points 

generated using the transformations computed by Diffeomorphic Demons are centered about 

0.69 mm away from the others in average and present generally larger spreads than those 

generated by other algorithms. These differences are small when compared to the voxel 

dimensions. This study leads us to conclude that the choice of registration algorithm does not 

impact significantly the creation of statistical atlases in the region of the STN when using clinical 

MR T1-w sequences.  

Regarding the choice of the atlases and as discussed above, Figure 4.4 shows that one 

atlas performs better than the other two with tighter FEP point clouds. Yet, the mean spreads are 

not significantly different. We have not yet elucidated why this would be the case. The only 

obvious difference between atlas 2 and the others is the size of the ventricles. It is possible that 

many volumes in our data set have small ventricles, thus making atlas 2 more similar to these 

volumes and facilitating registration but we have not verified this hypothesis. 

Finally, for each registration algorithm, we select the required parameters using a series 

of training volumes so that both registration accuracy and topological correctness are optimized. 

It is possible that results may be affected by parameter values. Exploring this issue would require 

running our experiments a large number of times with a range of parameter value. While possible 

with modern computing resources, it remains computationally expensive. 
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Abstract  

Deep brain stimulation, as a primary surgical treatment for various neurological disorders, 

involves implanting electrodes to stimulate target nuclei within millimeter accuracy. Accurate 

preoperative target selection is challenging due to the poor contrast in its surrounding region in 

MR images. In this paper, we present a learning-based method to automatically and rapidly 

localize the target using multi-modal images. A learning-based technique is applied first to 

spatially normalize the images in a common coordinate space. Given a point in this space, we 

extract a heterogeneous set of features that capture spatial and intensity contextual patterns at 

different scales in each image modality. Regression forests are used to learn a displacement 

vector of this point to the target. The target is predicted as a weighted aggregation of votes from 

various test samples, leading to a robust and accurate solution. We conduct five-fold cross 

validation using 100 subjects and compare our method to three indirect targeting methods, a 

state-of-the-art statistical atlas-based approach, and four variations of our method with or without 

spatial features provided with single or multi-modality images. With an overall error of 

2.63±1.37 mm, our method significantly outperforms the indirect targeting ones and improves 

upon any variations by fusing spatial and image information from both modalities. Our technique 

matches state-of-the-art registration methods but operates on completely different principles. 

Both techniques can be used in tandem in processing pipelines operating on large databases or in 

the clinical flow for automated error detection. 

 

5.1. Introduction 

Deep brain stimulation (DBS), which sends electrical impulses to specific deep brain nuclei 

through implanted electrodes, has become a primary surgical treatment for movement disorders 
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such as Parkinson’s disease (PD) [1]. The key to the success of such procedure is the optimal 

placement of the final implant at millimetric precision level to produce symptomatic relief with 

minimum or no adverse effects. Traditionally, this is achieved in two stages: a surgical team 1) 

selects an approximate target location prior to the surgery via visual inspection of anatomic 

images and 2) adjusts this position based on electrophysiological activities recorded during the 

surgery. While inaccuracies in preoperative targeting can be corrected in the intraoperative stage, 

it may prolong the surgery for hours with the patients awake and increase risk such as intra-

cranial hemorrhage [2]. Consequently, accurate preoperative planning is highly desirable. 

Over the past few decades, numerous efforts have been made to optimize the preoperative 

target selection. These can be categorized into indirect and direct targeting. Indirect targeting 

considers the target position as a fixed point in the stereotactic space defined by visible 

anatomical landmarks, i.e., the anterior commissure (AC), the posterior commissure (PC) and the 

midsagittal plane (MSP). Various approaches have been proposed to facilitate this task [3-4]. 

Despite being commonly used, this targeting strategy is limited by the lack of consensus on an 

ideal anatomic point as the target [5], as well as a failure to account for anatomical variations 

across patients, i.e., variable width of the third ventricle. On the other hand, direct targeting aims 

at localizing the target without relying on fixed coordinates. Due to limited contrast in regular 

T1-weighted (T1-w) magnetic resonance (MR) images, T2-weighted (T2-w) sequences are often 

acquired for better visualization of the targets. However, T2-w imaging alone does not provide 

sufficient or consistent contrast, which may lead to a discrepancy between the target positions 

identified in T2-w images and the ones localized by means of electrophysiological recordings [6]. 

Alternatively, direct targeting can be assisted with printed and digitized anatomical brain atlases, 

histological brain atlases, and probabilistic functional atlases alongside nonrigid registration [7-
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10]. Once nonlinearly mapped to individual preoperative brain images, such atlases may provide 

anatomical or/and functional borders of the target nuclei on standard T1-w images. 

A recent validation study shows that, using statistical atlases created from a large 

population, automatic target prediction matches the accuracy of six manual approaches [11]. 

Routine target prediction is thus achievable but registration failures, especially when nonrigid 

registration algorithms are used, happens and are difficult to detect automatically. It is thus 

desirable to develop robust error detection algorithms. One possible approach is to rely on the 

analysis of the deformation field, but defining quantitative error detection criteria is challenging. 

Another approach, which is the one proposed herein, is to develop target localization methods 

that operate on different principles and thus provide another source of information. In this 

approach, agreement between sources would increase confidence in the predictions while 

disagreement would indicate a possible error. 

Recently, discriminative machine learning techniques have gained popularity for anatomy 

localization and segmentation. Considering targets as functional landmarks localized 

anatomically consistently across subjects, we can formulate this problem into a supervised 

learning framework. One challenge is that as targets are localized in homogeneous regions, 

image features extracted from the target may not be discernable enough to distinguish its location 

from adjacent neighbors. Surrounding structures, however, could be used to infer the target 

location. In fact, this is the underlying principle employed in indirect targeting, which relates the 

location of the AC, PC, and MSP to a target point. Castro et al. have also shown that 

segmentations of the lateral ventricle, third ventricle, and interpeduncular cistern are useful to 

improve targeting accuracy [12]. Here, we propose to use regression forests to tackle this 

problem. Multi-variant regression forests, which combine random forests with Hough transform, 



117 
 

aim to learn multi-dimensional displacement vectors towards an object through a multitude of 

decision trees [13]. By aggregating predictions made by various test samples, it allows each 

sample to contribute to an optimal target position with varying degrees of confidence. This is in 

direct contrast to indirect targeting or direct targeting as done in [12], which require informative 

structures to be pre-specified. Recently, this regression forests technique has been applied to 

detect points to drive an active shape model on 2D radiographs [14], to identify the parasagittal 

plane in ultrasound images [15], and to initialize a nonrigid deformation field in MR images 

[16]. These successful applications in medical image analysis show promise for target 

localization. 

In this article, we develop a generic multi-modal learning system using T1-w and T2-w 

images for preoperative targeting. We first apply a learning-based technique to spatially 

normalize the images in the stereotactic space as used by indirect targeting, and then employ 

regression forests to learn the displacement vectors towards the target as the latent variable. 

Targets predicted by this model are spatially constrained via the use of spatial features as is done 

in indirect targeting, while also accounting for variability of surrounding structures with varying 

confidence levels by incorporating multi-contrast contextual information. This is independent of 

the atlas-based registrations, thus permitting quality assurance when used together with atlas-

based methods. 

 

5.2. Methods 

 

5.2.1. Data 

In this study, we retrospectively examined 100 PD patients with unilateral or bilateral 

implantations that target the subthalamic nucleus (STN) from a data repository that gathers 
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patients’ data acquired over a decade of DBS surgeries. Every subject was consented to 

participate in this study. For each subject, this repository contains the clinical active contact 

locations that are automatically extracted from the Medtronic four-contact 3389 lead in the 

patient postoperative CT image and projected onto the corresponding preoperative MR T1-w 

image using a standard intensity-based rigid registration. We use these points as the ground truth 

target positions for training and evaluation. 

The input image data for this study include a T1-w image and a T2-w image of each 

subject, all acquired as part of the normal delivery of care. T1-w MR image volumes with 

approximately 256×256×170 voxel
3
 and 1 mm in each direction, were acquired with the SENSE 

parallel imaging technique (T1W/3D/TFE) on a 3 Tesla Phillips scanner (TR = 7.92 ms, TE = 

3.65 ms). T2-w MR image volumes with approximately 512×512×45 voxel
3
 and typical spatial 

resolution of 0.47×0.47×2 mm
3
, were acquired with the SENSE parallel imaging technique 

(T2W/3D/TSE) on the same scanner (TR = 3000 ms, TE = 80 ms). 

 

5.2.2. Learning-based Landmark / Plane Identification for Image Pre-alignment 

Before training or testing, we first spatially normalize the images using a learning-based 

technique as described in Chapter III. To do this, a different set of 56 subjects were selected from 

the data repository, each with a T1-w image and manual annotations of the AC, PC, and MSP. 

Random forests were used as a regressor to learn a nonlinear mapping between the contextual 

features of a point and the probability of this point being the AC/PC or in the MSP. After 

identifying the AC, PC, and MSP, we compute a rigid transformation from the original image 

space to the AC-PC space as defined in Chapter III. This AC-PC coordinate system is the 

stereotactic space used to perform indirect targeting [7]. We rigidly align the T2-w images with 
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their corresponding T1-w images of the same subject using intensity-based techniques. The 

normalization transformation is applied to both co-registered sequences and these images are 

resampled at 1 mm isotropic resolution for subsequent training and testing. 

 

5.2.3. Problem Formulation 

We use a voxelwise solution based on regression forests to learn the displacement of a voxel to 

the target and train one forest for each side of the brain. As there is substantial shape variability 

in the cerebral cortex across subjects, it may be difficult for the model to relate a point in this 

area with diverse appearances to a target. To simplify model training, we define a bounding box 

that roughly covers the deep brain and constrain the samples to be uniformly drawn from this 

region. This region of interest is illustrated by the yellow box in Figure 5.1. 

Each training sample is associated with a heterogeneous high dimensional feature vector 

and a 3D displacement vector 𝑑 = [dx, dy, dz] from its position to the target. Thousands of 

features are used, which consist of: 

 Spatial features, which are the spatial coordinates (x, y, z) of the voxel in the AC-PC space. 

 Multi-modal intensity contextual features, which are the mean intensity differences 

between two cuboids as used in Chapter III [17]. Those cuboids, as described earlier, are 

randomly displaced by varying amounts to capture multi-scale textural context variations. 

We compute a number of such features from each image sequence independently. 

Spatial features cluster training samples according to their distances to the target. Models 

built using these features alone have a similar effect on target prediction compared to the indirect 

targeting approaches, which can be obtained as a byproduct of the pre-alignment step. Intensity 

features allow models to capture anatomical variations and adjust target positions accordingly. 
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Moreover, by extracting such features from each sequence, we account for various appearances 

of different modalities that may complement each other, as shown in Figure 5.1.  

 

 

 

 

5.2.4. Regression Forests Training 

We use a total of 100 regression trees to construct the forest. To build each tree, a bootstrap of 

two thirds of training samples is randomly chosen and fed to the root node of the tree. Given the 

training samples {𝑓𝑛
⃗⃗⃗⃗ , 𝑑𝑛

⃗⃗ ⃗⃗⃗}𝑛=1
𝑁′

 at a particular node, a feature 𝑓𝑚 and a threshold 𝑡 are selected to 

split the data, which minimize the mean square error 𝑀𝑆𝐸: 

𝑡, 𝑚 = arg min
𝑡,𝑚

 (𝑀𝑆𝐸({𝑑𝑛
⃗⃗ ⃗⃗⃗: 𝑓𝑛

𝑚 < 𝑡}) + 𝑀𝑆𝐸({𝑑𝑛
⃗⃗ ⃗⃗⃗: 𝑓𝑛

𝑚 ≥ 𝑡})) (5.1) 

Node splitting is done recursively, and stops when a certain tree depth is reached or the 

best split threshold cannot be found. At each leaf node, we obtain a multivariate histogram of 𝑑 

for the voxels reaching this node. Assuming uncorrelated Gaussian distribution, we store the 

mean and variance for each dimension as a compressed representation of the histogram. 

Figure 5.1. Co-registered T1-w and T2-w images of one subject in panel (a) and (b) respectively. The yellow box 
represents the sampling region, and the cross represents the ground truth target point. The zoomed-in view on the 

right side of each panel illustrates the different contrast each image sequence reveals around the target. 
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5.2.5. Regression Forests Testing 

During testing, test samples traverse all trees in the forests. Starting from the root node, test 

samples recursively visit the left or right child based on the binary feature test stored at this split 

node until a leaf node is reached. To aggregate votes of each test sample from each tree, a range 

of styles of voting can be used, e.g., casting a single vote per tree as the mean displacement 

vector, or using multiple votes from the training samples. Cootes et al. compared different voting 

strategies and showed that a single vote per tree performed the best in terms of accuracy and 

speed [18]. In this paper, we gather a single vote from each tree as the mean displacement vector 

and measure its confidence based on the variance [Var(dx), Var(dy), Var(dz)]. Many possible 

weighting functions can be used to reflect the boosted confidence in the prediction if the 

variances are small. Here we define the weight of each vote as: 

w = 𝑒−𝛼∙(Var(dx)+Var(dy)+Var(dz)) (5.2) 

To increase robustness, the final prediction is made using the weighted mean shift 

method with a Gaussian kernel [19]. This point is then projected back to the original image space 

using the transformation matrix computed before. 

 

5.2.6. Comparison to Other Methods 

Provided with the pre-aligned images in the AC-PC space as done in section 5.2.2, indirect 

targeting approaches can be readily applied. We hereby localize the targets using two widely 

used indirect targeting methods from the literature. To account for positional variations between 

our study and the ones published in the literature, we also conduct an experiment that uses 

training volumes to obtain an indirect estimation. In addition, we compare ours to a state-of-the-
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art statistical atlas-based method as validated in [11], which was shown to outperform six manual 

targeting approaches. The following summarizes the experiments we have performed: 

 Indirect targeting using the stereotactic coordinates (±12 mm lateral, -3 mm anterior, -4 

mm superior) as the center of the motor territory of the STN [20] (referred to as IND1). 

 Indirect targeting using the stereotactic coordinates (±11.8 mm lateral, -2.4 mm anterior, -

3.9 mm superior) as a representation of the centroid of active contacts [20] (referred to as 

IND2). 

 Indirect targeting using the stereotactic coordinates of the average active contact position 

in the training volumes of our dataset (referred to as IND3). 

 Statistical atlas-based approach as described in Chapter IV (referred to as SA). 

Specifically, a statistical atlas is created by performing a series of affine, local affine, and 

local nonrigid registrations between each training volume and a pre-specified anatomical 

atlas, and projecting the target locations from the training subject to this reference space. 

The centroid of those projections is projected onto a test subject through a series of affine 

and nonrigid transformations and its projection is taken as the predicted target. 

To evaluate the importance of each feature type, we compare results obtained with the 

full feature set and with a subset of features. Calling the method described so far RF-S+T1+T2 

for regression forests with spatial and intensity information from T1-w and T2-w images, the 

other variations we have tested are: 

 Regression forests-based targeting using only spatial features (referred to as RF-S). This is 

similar to IND3 as we only use spatial information derived from training volumes for 

target prediction. A comparison between this method and RF-S+T1+T2 indicates the 

importance of image-based features. 
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 Regression forests-based targeting using spatial features and intensity contextual features 

extracted from only T1-w or T2-w images (referred to as RF-S+T1 and RF-S+T2 

respectively). We keep the dimensionality of the feature vector the same as the one used in 

RF-S+T1+T2 but only compute mean intensity differences for all contextual features from 

a single modality. Comparisons between these two methods and RF-S+T1+T2 illustrate 

the effect of fusing multi-modalities. 

 Regression forests-based targeting using only intensity contextual features extracted from 

T1-w and T2-w sequences as used before (referred to as RF-T1+T2). A comparison 

between this method and RF-S+T1+T2 shows the effect of spatial features. 

 

5.3. Results 

In this study, we conduct a five-fold cross validation, i.e., we use 80 subjects for training and the 

remaining 20 for testing and we repeat the process five times. 

For visualization purpose, we compute response maps as the weighted aggregation of all 

votes, with predictions at each voxel scaled to the interval [0, 1]. These maps, computed with the 

various feature sets used in our study, are shown in Figure 5.2 for one test subject. The response 

maps for RF-S+T1, RF-S+T2, and RF-S+T1+T2 are similar to each other; the peak regions, 

which indicate the high probability of predictions gathered from all test samples, are tight in 

those maps. The peak region is even tighter for RF-S, which are almost point estimates. RF-

T1+T2, on the contrary, results in widespread predictions with many outliers, due to the lack of 

spatial regularization as used in the other methods. 
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To quantify the targeting accuracy, we define the targeting error as the 3D Euclidean 

distance between the prediction and the ground truth. A box plot of those errors for all cases is 

Figure 5.2. Response maps for a test case, using RF-S, RF-S+T1, RF-S+T2, RF-T1+T2, and RF-S+T1+T2 in panels 

(a)-(e) respectively. Panel (f) is a whole head view of panel (e). 



125 
 

shown in Figure 5.3, with their mean and standard deviation reported in Table 5.1. Our method 

performs better than all indirect targeting methods and is comparable to the statistical atlas-based 

method. Moreover, it results in a reduced overall error compared to: 1) RF-S using only spatial 

features, which illustrates the importance of image based information; 2) RF-S+T1 and RF-S+T2 

using a single modality image, which demonstrates the benefits of fusing multi-contrast 

information; 3) RF-T1+T2 using only image-based features, which shows the significance of 

spatial regularization in targeting. In addition, RF-S performs similarly to IND3. This is expected 

as IND3 can be considered as learning a predictor from training volumes with only spatial 

information, similar to what RF-S does. 

 

 

 

 

Table 5.1. Mean and standard deviations (Std.) of targeting errors using different techniques 

Error (mm) IND1 IND2 IND3 SA RF-S RF-S+T1 RF-S+T2 RF-T1+T2 RF-S+T1+T2 

 Mean 3.26 3.02 2.81 2.68 2.82 2.72 2.68 3.15 2.63 

Std. 1.58 1.53 1.36 1.35 1.36 1.37 1.41 1.58 1.37 

Figure 5.3. Boxplot of targeting errors using different techniques. 
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In addition, we performed one-sided paired Wilcoxon signed-rank tests to test whether 

the medians of errors using our method are smaller than those using the other methods. The 𝑝-

values are shown in Table 5.2, with values lower than the significance level of 0.05 marked in 

red bold. As shown in the table, our method significantly reduces the targeting errors compared 

to all indirect targeting methods, while the difference between our method and the statistical 

atlas-based method is not found to be significant. 

 

Table 5.2. 𝑃-values of Wilcoxon tests between the targeting errors using our method and those using other methods 

𝑃-values IND1 IND2 IND3 SA RF-S RF-S+T1 RF-S+T2 RF-T1+T2 

RF-S+T1+T2  0.00 0.00 0.00 0.25 0.00 0.00 0.13 0.00 

 

5.4. Conclusions 

In this paper, we propose a multi-modal learning-based method using regression forests to 

automatically localize the target in preoperative MR brain scans. By taking advantage of a large 

dataset of past patients, our approach improves upon indirect targeting by tuning this estimate to 

patient’s individual anatomy and combines the strength of different direct targeting methods by 

exploiting the multi-contrast information. This is further substantiated by our results with the 

smallest targeting errors compared to those using spatial features or image features alone, or 

provided with either modality alone. Our technique also does not require the segmentation of 

anatomic structures or nonrigid registration. It can be used in tandem with nonrigid registration 

methods in clinical processing pipelines to develop robust error prediction schemes. 

Results from a five-fold cross validation study have shown that our approach is accurate 

and robust with a 2.63±1.37 mm targeting error. It matches the accuracy of the state-of-the-art 

statistical atlas-based methods, which outperforms six manual methods as shown in [11]. We 
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have also found a high correlation (ρ = 0.83) between targeting errors made by our approach and 

the ones made by statistical atlas-based method. This is likely because of the discrepancy 

between imaging and neurophysiology, which causes both imaging-based methods to induce 

relatively larger errors for some cases. In the future, it will be useful to explore 

electrophysiological data to account for this discrepancy. For example, a machine learning model 

could be built with both imaging data and the electrophysiological recordings of past patients. 

For the current patient, this model predicts the most plausible target, initially using only image 

information and later filled in with recordings collected sequentially in the operating room. 

Our method is also fast. Once the models are trained on the Advanced Center for 

Computing and Research Education (ACCRE) Linux cluster at Vanderbilt University, the testing 

pipeline takes approximately 40 seconds on a standard PC with 4 CPU cores and 8GB RAM. 

This compares favorably to atlas-based registration methods, which may take from several 

minutes to hours to run. 
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Abstract  

Accurate and reliable identification of thalamic nuclei is important for surgical interventions and 

neuroanatomical studies. This is a challenging task due to their small size and low intrathalamic 

contrast in standard T1-weighted or T2-weighted images. Previously proposed techniques rely on 

diffusion imaging or functional imaging. These require additional scanning and suffer from the 

low resolution and signal-to-noise ratio in these images. In this chapter, we present a protocol to 

build histological-like atlases from high-field MR images and use such atlases to guide the 

segmentation of thalamic nuclei in standard 3T T1-weighted images. To generate the atlas, we 

design a set of 7T MR sequences that all together increase intrathalamic contrast to allow manual 

delineation of the internal substructures. Following this imaging protocol, we manually segment 

23 thalamic nuclei on a set of 9 high-resolution brain atlases based on the Morel atlas naming 

convention. With the aid of these thalamus atlases, we have proposed single-atlas-based, multi-

atlas-based, and statistical shape-based approaches to localize the internal nuclei from a given 

thalamus segmentation. While single-atlas and multi-atlas approaches rely on registration to 

establish an accurate mapping between the atlas and the subject within the thalamus region, the 

shape-based approach builds joint shape models of the thalamus and the internal structures, and 

predicts the target structures by fitting the thalamus to those models. Results of a leave-one-out 

validation study on nine subjects show that the use of multiple atlases statistically improves upon 

the single-atlas approach for most nuclei. Segmentations obtained with statistical shape models 

yield the highest accuracy, with dice coefficients ranging from 0.53 to 0.90 and mean surface 

errors from 0.34 mm to 0.88 mm for all nuclei averaged across test cases. This suggests the 

feasibility of using such approach for localizing thalamic substructures. It may have a direct 
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impact on surgeries such as Deep Brain Stimulation procedures that require the implantation of 

stimulating electrodes in specific thalamic nuclei. 

 

6.1. Introduction 

The thalamus serves as the central relay station for the brain that processes and relays sensory 

and motor signals between different subcortical regions and the cerebral cortex. It can be divided 

into several neuronal clusters referred to as nuclei, each possibly subdivided into sub-nuclei. A 

number of diseases, including Parkinson’s disease, multiple sclerosis, and chronic pain 

syndrome, are associated with some of these nuclei [1-3]. Stimulating by means of Deep Brain 

Stimulation (DBS) electrodes or ablating by means of radiosurgery specific nuclei, e.g., the 

ventral intermediate nucleus for movement disorders, can reduce symptoms for these diseases 

[4]. Identification of intrathalamic structures in individual patients opens new doors for direct 

anatomical targeting for DBS and investigation of regional thalamic changes related to disease 

progression. Unfortunately, this cannot be readily achieved by standard T1-weighted (T1-w) or 

T2-weighted (T2-w) magnetic resonance (MR) sequences due to the low intrathalamic contrast 

in those images and the small size of the substructures. 

To accurately study neuroanatomy, ex vivo imaging followed by histological staining 

remains the gold standard to date. Thalamic nuclei possess distinct cyto- and myelo-architecture 

that can be differentiated in histological data. Morel et al. presented one of the most used 

histological atlases of the thalamus based on multi-architectonic parcellation in sections parallel 

or perpendicular to the standard inter-commissural reference plane [5]. In this work, three 

chemical markers were used to increase contrast across thalamic substructures with different 

chemical properties. Such atlas consists of a stack of 2D slices overlaid with manual contours for 
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each specimen. Three-dimensional digitization of those atlases is challenging because of the 

highly anisotropic resolution and biases towards the individual anatomy [6-7]. To overcome 

these limitations, Krauth et al. proposed to construct a mean model of thalamic structures by 

averaging over multiple postmortem brains acquired in different orientations [8]. Quality of the 

model to represent the variety of human anatomy is directly correlated with the number of 

specimens involved. However, obtaining additional histological specimen is a highly demanding 

task in terms of resources and expertise. Furthermore, to use such atlases for segmentation, 

spatial normalization is performed to warp them into individual patients. Most normalization 

techniques rely on the existence of a good MR reference image, which is often missing in those 

histological atlases. 

Alternatively, diffusion tensor imaging (DTI) and functional MR imaging (fMRI) have 

been introduced to distinguish the thalamic substructures in vivo. The orientation of neuronal 

pathways, detected by DTI, is relatively consistent within a nucleus. Based on this property, a 

number of techniques cluster each voxel inside the thalamus with distance metrics designed to 

measure local tensor inhomogeneity using k-means, spectral clustering, and mean shift 

algorithms [9-11]. Parcellation of the thalamus can also be achieved by probabilistic 

tractography according to structural connectivity to different cortical regions [12]. Meanwhile, 

functional brain organization has been examined using task-related fMRI [13] or resting state 

fMRI [14], and functional boundaries in the thalamus are identified via known thalamo-cortical 

topographic segregation. While these studies report reasonable results for major nuclei, the low 

spatial resolution and signal-to-noise ratio (SNR) of clinical DTI and fMRI are limiting factors in 

differentiating subdivisions of those nuclei. High fiber orientation variability in DTI, induced by 

crossing fibers, further raises issues for segmentation of internal substructures. Results obtained 
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with different approaches may lack consistency and need further validation, which requires a 

ground truth [15]. 

Over the years, there has been an increasing interest in developing novel MR imaging 

protocols for direct visualization and anatomical delineation of the thalamic structures. Early 

work from Deoni et al. reported that T1 values ranging from 700 to 1400 ms at 1.5 T reveal 

different contrast in differentiating intrathalamic nuclei [16]. Through the use of different 

inversion times (TI), modifications of the magnetization-prepared rapidly-acquired gradient echo 

(MPRAGE) sequence have been proposed to visualize boundaries between some thalamic 

structures through intensity variation caused by difference in myelin concentration [17-18]. 

Susceptibility weighted imaging (SWI), on the other hand, is able to characterize iron deposition. 

Thanks to recent development in high-field imaging, the quality of such sequences acquired at 

lower field can be further improved with higher spatial resolution and SNR. Recently, to enhance 

the intrathalamic contrast, Tourdias et al. [19] presented a protocol to obtain an optimal 

MPRAGE sequence at 7T, while Abosch et al. [20] investigated the use of 7T SWI images. 

While finding the perfect sequence to visualize a specific structure is preferred in clinical settings 

because of limitation in scanning time, such constraint does not apply to atlas generation. In fact, 

as histological atlases require the use of multiple chemical markers to reveal different 

intrathalamic contrast, information across regions of different tissue properties can be enriched 

through different MR sequence parameters. Limiting acquisition to only one or one type of 

sequences to match the contrast of what has been done through multiple histological markers is 

challenging. In this chapter, building on previous work by Newton et al. [21], we follow a 

similar multi-contrast approach as used in histological delineation to design a method in which 
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we exploit the benefit of combining multiple high resolution MR sequences and a “frankenstein” 

approach to segment the internal structures of the thalamus. 

Once the thalamus atlases are created from 7T images, the ultimate goal is to use them 

for automatic segmentation of thalamic structures in clinical T1-w images. Atlas-based 

techniques could be applied to project these structures onto the clinical 3T T1-w image. Single-

atlas-based methods rely on registration to establish an accurate mapping within the thalamus 

region between the reference volume and the target. The accuracy of such method can be 

affected by the shape differences between the atlas and the target. To address this, multi-atlas-

based methods fuse the labels transferred from several atlases in a statistically meaningful way. 

However, for homogeneous regions such as the interior of the thalamus, registration is mainly 

controlled by the smoothness of the deformation field. As a consequence, the shape of the 

intrathalamic structures may not be preserved after the non-rigid deformation and/or label fusion. 

These may lead to inaccurate localization of those nuclei and unrealistic shapes. 

In contrast to atlas-based approaches, shape modeling has been applied to estimate 

structures with limited contrast by exploiting their relationship with regards to visible structures 

that are close. Originally proposed by Cootes et al. [22], statistical shape models can learn 

patterns of variability from a set of training shapes described by homologous landmark points. 

This approach has been used by many to solve a variety of segmentation problems. For instance, 

Blanc et al. predicted bone shape from surgically relevant predictors using statistical shape 

modeling and multivariate regression techniques [23]. Baka et al. incorporate landmark 

uncertainty into the shape regression to estimate the femur [24]. More recently, regression forests 

have been proposed to model the shape dependency between the subthalamic nucleus and its 

predictors extracted from clinical images [25]. In line with this principle, we hypothesize that 
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thalamic substructures could be inferred by their relative shape relationships with regard to the 

thalamus, which can be readily segmented in 3T volumes. 

In this chapter, we first develop a protocol to generate human thalamus atlases using a 

series of 7T images. The second part of this chapter is dedicated to the use of such atlases for 

thalamic nuclei segmentation in clinical images. We describe atlas-based approaches using a 

single atlas and multiple atlases. We also propose shape-based approaches that build statistical 

shape models of all structures and predict the internal nuclei by fitting the thalamus to the 

models. Performance of these methods is compared in a leave-one-out validation of nine subjects. 

 

6.2. Methods 

In this section, we describe our protocol for generating the thalamus atlases and present our 

methods for segmenting the internal thalamic structures. We first discuss the generation of the 

atlases, the thalamic structures we have delineated, and the volumetric and shape analysis we 

have performed for those manual segmentations. Then in the following sections, we detail our 

approaches for segmenting intrathalamic structures with the 7T thalamus atlases using single 

atlas (SA), multiples atlases (MA), and statistical shape models (SSM). 

 

6.2.1. Atlas Generation 

To delineate thalamic nuclei, Tourdias et al. recently studied a range of TIs to design an 

MPRAGE sequence that provides the best intrathalamic contrast [19]. In our study, instead of 

limiting the acquisitions to one sequence, we acquired a set of MPRAGE sequences with TIs 

ranging from 400 ms to 1200 ms. Meanwhile, similar to Abosch et al. [20], we also acquired 

several high resolution SWI sequences in different orientations. While defining our protocol of 
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acquisition, one healthy subject (37 years old) was scanned during 4 sessions of 2 hours in a 7T 

Philips Achieva human whole body MRI scanner with a 32 channel receive-only head coil. This 

resulted in 25 sequences including MR T1-w, MPRAGE, T2-w, T2* and SWI images with full 

and partial head coverage. All sequences were first rigidly registered to a 7T full head T1-w 

image. These sequences were then loaded in a visualization and segmentation software to further 

characterize thalamic nuclei and delimit sub-territories of functional significance for stereotactic 

explorations. Switching between sequences revealed a sub-compartmentalization of thalamic 

nuclei into several groups.  

From all sequences, a total of 7 sequences were found to be useful. Figure 6.1 shows a 

portion of one slice of those co-registered sequences in axial and coronal orientations overlaid 

with a manual thalamus surface. As illustrated by the yellow arrows, a wide range of contrast can 

be achieved from various sequences to assist in differentiating intrathalamic structures. While 

some of the sequences reveal similar intensity variation patterns that reinforce our confidence in 

depicting the internal boundaries, others provide complementary information that allows the 

delineation of different nuclei structures. Specifically, MPRAGE TI 400 to 1200 reveal the 

mammillothalamic tract, the mediodorsal nucleus, the parafascicular nucleus, the Habenulathe 

nucleus, the ventral anterior nucleus, the ventral lateral complex, and to a lesser degree also, 

lateral part of the centre median nucleus, inferior part of lateral posterior nucleus and lateral 

dorsal nucleus, lateral subdivisions of the pulvinar complex, and subdivisions of the ventral 

posterior complex. In SWI sequences, contrast is prevalent in the antero, ventral, and dorsal 

nucleus, medial nuclei group (mediodorsal nucleus, midline as a whole, and Habenula), and the 

pulvinar complex. The complementary distribution of contrasts among the MPRAGE and SWI 
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sequences appears to correlate with what has been illustrated by Morel et al. [5], which will be 

further illustrated in the result section. 

 

 

 

 

To perform manual delineation, the co-aligned 7T sequences were normalized into a 

stereotactic coordinate system as described in Chapter III by applying a rigid transformation 

matrix estimated from manually selected Anterior Commissure, Posterior Commissure, and 

midsagittal plane. The thalamus and a total of 23 intrathalamic substructures were manually 

delineated and validated by an expert for both hemispheres. Their names and their spatial 

hierarchy as suggested by Morel et al. [5] are shown in Figure 6.2. While we are able to visualize 

most of these structures, contrast does not allow us to segment some less visible or more 

complex structures. For example, the anteromedial nucleus, division of the midline nuclei, and 

Figure 6.1. Representative slices of the 7T images acquired for one subject in axial (top row) and coronal (bottom 

row) views. For each row, the leftmost panel is the 7T T1-w image of the whole brain. The right panels show a 

series of 7T images for the thalamus region, which are MPRAGE-400 (TI = 400), MPRAGE-640 (TI = 640), 

MPRAGE-960 (TI = 960), MPRAGE-1120 (TI = 1120), SWI-ax (acquired in axial direction), and SWI-cor 

(acquired in coronal direction) respectively. For each sequence, the yellow arrows point to the plausible intensity 

variations inside the white thalamus contours.  
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the boundary between the lateral dorsal nucleus and lateral posterior nucleus cannot be easily 

differentiated. As needed for our study, we used a-priori knowledge to assist in manual 

delineation. Such a-priori information consists of knowledge of the relative position and shape of 

the nuclei to be segmented based on Morel histologic thalamic parcellation [5]. 

 

 

 

 

For this study, the above process was reproduced on eight healthy subjects (seven male, 

two female). This includes acquiring seven imaging sequences at 7T (a standard T1-w image, 

four MPRAGE sequences, and two high in-plane resolution SWIs) and manually delineating the 

described thalamic structures for both hemispheres. The T1-w and MPRAGE sequences were 

acquired with varying inversion time values with an inversion prepulse (shot interval = 4500ms). 

The SWIs were acquired in two different directions using flow-compensated slice selective 

gradient echo. More details about the acquisition parameters are presented in Table 6.1. 

Figure 6.2. Hierarchical relationship of the thalamus and the thalamic nuclei involved in this study using the Morel 

nomenclature. 
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Table 6.1. Imaging parameters for each sequence at 7T used in this study 

 Direction 
FOV 
(mm) 

Dimension 
(voxel3) 

Resolution 
(mm3) 

TR/TE 
(ms) 

TI 
(ms) 

Flip 

Angle (˚) 
Acquisition 
Time (min) 

T1-w Axial 246×246×245 352×352×350 0.699×0.699×0.7 4.74/2.1 0 7˚ 8.7 

MPRAGEs Axial 246×246×174.3 352×352×249 0.699×0.699×0.7 4.74/2.1 400 
640 
960 

1120 

7˚ 8.7 

SWIs Axial 
Coronal 

240×240 1024×1024×50 0.234×0.234×1.1 1676/19.49 - 45˚ 10.6 

FOV: field of view; TR/TE: repetition time/echo time (in milliseconds); TI: inversion time (in milliseconds). 

 

Together with the 7T acquisition, a 3D T1-w MR volume was also acquired for each 

subject with a 3T Philips Achieva scanner using the following parameters: FOV = 256×256×170 

mm; resolution = 1 mm isotropic; TR = 13.0ms; TE = 3.65ms; nominal flip angle = 8 ˚ ; 

acquisition time = ~13 minutes. This 3T T1-w volume serves as the target image for semi-

automatic segmentation of thalamic nuclei. 

 

6.2.2. Analysis of Manual Segmentations 

Manual delineations of the structures using the above protocol result in surfaces represented by 

triangulated meshes. To measure their volumes, each surface is converted into a binary mask. 

Volumes of these structures are compared across subjects for each side of the brain as well as for 

the two sides pooled together. 

To study the shape of each substructure, we use a point distribution model to represent 

each structure with a set of landmark points. Structures on the left side of the brain are flipped to 

the right side along the mid-sagittal plane and treated as different instances. For each structure, 

correspondence of those landmarks between difference instances is established using a series of 

registration. Surfaces of the same structure are then aligned to calculate the mean shape. Details 

of this process will be presented in section 6.2.3.3. 
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6.2.3. Semi-automatic Segmentation of Thalamic Nuclei 

With a number of thalamus atlases created from high resolution 7T images, our task is to 

segment the thalamic nuclei in clinically available 3T T1-w images, in which these nuclei are not 

visible. In this work, we assume that the thalamus as a whole has been segmented, and this could 

be achieved with various existing tools such as FreeSurfer [26]. Given the thalamus as input, the 

subsections below demonstrate the steps that are used to estimate the internal nuclei in 3T T1-w 

images using various approaches. 

6.2.3.1. Single-atlas-based Segmentation 

We randomly choose a subject out of the nine volunteers as the reference. Segmentation 

using this approach relies on accurate mapping between this reference volume and a target 

volume. To achieve this, a series of registrations are performed to best align the thalamic region 

of the two volumes. This includes a three-step image registrations from the target 3T T1-w image 

to the atlas 7T T1-w image, i.e., 1) a global affine registration using an intensity-based technique 

with mutual information as a similarity measure [27-28], 2) a local affine registration which 

restricts the computation of the mutual information to the deep brain region, and 3) a nonrigid 

registration using the Adaptive Bases Algorithm [29]. Thalamic structures in the atlas, 

represented as triangulated meshes, can be projected onto the target space using the inverses 

transformations. 

With a segmentation of the target thalamus, we further refine the alignment of the 

thalamic region by non-rigidly registering the thalamus surface projected from the atlas to the 

target thalamus surface. This is done with an automated algorithm developed in house. This 

algorithm acts as 3D snake [30] and displaces each vertex 𝑝𝑖  in source surface 𝑆 to match the 

target surface 𝑇. The energy functional it tries to minimize is the sum of vertex energies: 
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𝐸(𝑆′) =  ∑ 𝐸(𝑝𝑖
′)

𝑛

𝑖=1
= ∑ (𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖

′, 𝑇) +  𝛼 ∙ 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑝𝑖
′) +  𝛽 ∙ 𝐸𝑐𝑢𝑟𝑣(𝑝𝑖

′, 𝑆))
𝑛

𝑖=1
 (6.1) 

where the weights 𝛼 and 𝛽  balance between the external energy and the two internal energy 

terms. The external energy 𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  minimizes the distance between each deformed point 𝑝𝑖
′ and 

the target surface 𝑇 , resulting in a closest point matching alike algorithm. The first internal 

energy 𝐸𝑠𝑚𝑜𝑜𝑡ℎ  performs local surface smoothing by making the vertex stay closer to the 

centroid of its adjacent vertices, while the second one 𝐸𝑐𝑢𝑟𝑣 maintains the topology of the surface 

by keeping the difference between each vertex and its adjacent vertices as similar as possible to 

the one in the original surface 𝑆: 

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑝𝑖
′) = ‖𝑝𝑖

′ −
1

|𝐴𝑖|
∑ 𝑝𝑗

′

𝑗∈𝐴𝑖

‖

2

 (6.2) 

𝐸𝑐𝑢𝑟𝑣(𝑝𝑖
′, 𝑆) =

1

|𝐴𝑖|
∑ ‖(𝑝𝑖

′ − 𝑝𝑗
′) − (𝑝𝑖 − 𝑝𝑗)‖

2

𝑗∈𝐴𝑖

 
(6.3) 

where 𝐴𝑖  represents the set of vertices adjacent to vertex 𝑝𝑖 . By iteratively updating 𝑆′  to 

minimize (6.1), we obtain an optimal surface 𝑆∗ deformed from 𝑆 that preserves the smoothness 

and curvature but also well aligned with the target surface 𝑇. 

As 𝑆  and 𝑆∗  form two sets of corresponding points, we can further approximate a 

deformation field from the above surface-based registration using thin-plate-splines (TPS). As 

performed in [31-32], the TPS transformation minimizes: 

𝐸(𝑇𝑇𝑃𝑆) =  ∑ ‖𝑝𝑖
∗ − 𝑝𝑖‖2

𝑛

𝑖=1
+ 𝜆 ∙ ∑

2

𝛼1! 𝛼2! 𝛼3!
𝛼1+𝛼2+𝛼3=2

∬[(
𝜕2𝑇𝑇𝑃𝑆

𝜕𝑥1
𝛼1𝜕𝑥2

𝛼2𝜕𝑥3
𝛼3

)

2

]𝑑𝑥⃗ (6.4) 

where the first term of the functional measures the difference between each original point 𝑝𝑖 in 𝑆 

and its deformed position 𝑝𝑖
∗, and the second term, weighted by 𝜆, controls the smoothness of 

deformation field. 
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To segment internal thalamic substructures, we apply the transformations estimated from 

the image-based registrations as well as the TPS transformation estimated from the surface-based 

registration in reverse orders. This process is illustrated in Figure 6.3. 

 

 

 

 

6.2.3.2. Multi-atlas-based Segmentation 

Segmentation using a single atlas may be biased by the anatomy of the selected reference 

volume. This can be avoided by using several subjects as references, as performed in multi-atlas-

based approaches. In this chapter, we treat all the subjects except for the target as atlases and 

register them to the target following the single-atlas-based segmentation process. This produces 

multiple segmentations per structure from each of the atlases. To fuse those segmentations, we 

represent results obtained with each atlas as a discrete mask and use majority voting to assign 

labels to each voxel, i.e., the label at a voxel is determined by the maximum occurrence of labels 

from all segmentations. 

Figure 6.3. Flowchart of thalamic nuclei segmentation using a single atlas with a given thalamus. 
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6.2.3.3. Statistical Shape-based Segmentation 

The position of thalamic nuclei may also be inferred from their relative location and 

shape relationship with the thalamus. We use statistical shape models to do this, which requires 

localizing homologous points across shapes, computing the eigenvectors of the covariance 

matrix, and fitting the thalamus to the shape models. 

Establishing Point Correspondence  

To establish point correspondence between training shapes, we select a reference shape in 

the same reference volume as used in section 6.2.3.1 but on the right side of the brain. Structures 

on the left side and/or of another subject are mapped onto the reference shapes. 

Correspondence for the thalamus is established using image-based registration and 

surface-based registration, similarly to the steps performed in Figure 6.3 but using 7T T1-w 

images of the target. Note that for shapes on the left hemispheres, the target image is flipped in 

the lateral direction in the global affine registration step to map to the right side. For the internal 

thalamic structures, surfaces are first transformed from the atlas to the subject as done in Figure 

6.3. We then nonrigidly register the transformed surface to the target surface using the algorithm 

described in section 6.2.3.1. Note that this algorithm performs well if the two surfaces are 

initially close. If substantial differences between two shapes exist, as is sometimes the case for 

nuclei substructures, this algorithm may fail. When this happens, we manually adjust the 

transformed surface to bring it closer to the target surface, and rerun the algorithm. By repeating 

this process, correspondence for all training structures is established. 

Determining Joint Relationship 
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To model the relationship between the thalamus and the nuclei, we build a large shape 

model that contains the thalamus and all the 23 nuclei. This is the straightforward approach to 

infer the shapes of internal structures; we call this approach non-hierarchical SSM (NHSSM). 

However, it is much more complex for a single model to capture the shape variations and 

relationships of so many structures, especially with limited training data. Therefore, instead of 

jointly modeling all the structures we further propose to hierarchically model the shapes of those 

structures following the decomposition shown in Figure 6.2. Starting at the top level of the 

hierarchy, we first jointly model the thalamus and the general nuclei groups. At the next level, 

each group is jointly modeled with its subdivisions, and the process is repeated until the leaf 

nodes are reached. The individual shapes at each hierarchy level are shown in Figure 6.4. In this 

way, the top level models capture a more global view of those internal structures, whereas the 

complexity of the shapes of individual nuclei or sub-nuclei is delegated into lower level models. 

We call this approach hierarchical SSM (HSSM). 

To group the nuclei as illustrated in Figure 6.4, we combine the surfaces of the nuclei in 

this group into one mesh by removing the inner boundaries where two nuclei are adjacent to each 

other. Identification of vertices that belong to inner boundaries is done on the reference subject 

by computing the distance from each vertex to each other surface based on its distance map 

obtained by a fast marching method [33]. Once such vertices are identified, this is subsequently 

propagated to the rest of the subjects via the established vertex correspondence. 
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Constructing Statistical Shape Models 

Once correspondence is established and joint relationships are determined, training 

surfaces can be registered to the reference surfaces with 7-DOF transformation (three rotations, 

three translations, one isotropic scaling) using a standard Procrustes approach [34]. When HSSM 

is used, this is performed separately for individual joint models, i.e., only the surfaces involved 

in this model are co-registered to build this particular model. This allows measuring the 

anatomical variations of thalamic structures at different scales using different models across the 

training set. To build the shape model, we perform the following procedure as described by 

Cootes et al. [22]. First a mean shape of the co-registered corresponding point set is extracted 

and the covariance matrix is computed as the deviation of the point set from the mean shape. The 

eigenvectors of the covariance matrix represent the modes of variation and their eigenvalues the 

explained variance in the training set. A new shape can be approximated by adding a linearly 

Figure 6.4. Individual shapes used for modeling at each level. For each the left panel is a coronal slice overlaid with 
2D contours of the shapes, and the right panels are 3D views in two different orientations. 
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weighted sum of the eigenvectors within three standard deviations of the mean to the mean 

shape: 

𝑥 =  𝑥̅ + 𝑃𝑏 (6.5) 

where 𝑥̅  is the mean shape, 𝑃  is a set of modes of variation, and 𝑏  is the parameters that 

determines the new shape 𝑥. 

Segmenting Internal Structures via Hierarchical Weighted Fitting 

Given a thalamus surface in a new 3T volume, to use our models to segment the thalamic 

nuclei, we first establish a correspondence between the thalamus surfaces as we have done for 

the single-atlas-based segmentation. For the NHSSM approach, we simply fit the joint model 

directly to the thalamus. For the HSSM approach, a hierarchical shape fitting algorithm is 

applied to localize each nucleus. We start by fitting the joint model at the top level to the 

thalamus. This joint shape includes the thalamus and all general nuclei groups. The fitting to this 

joint model is done by weighting the thalamus surface points as 1 and the rest as 0. Neglecting 

the alignment, the shape 𝑥𝑛𝑒𝑤 estimated in a weighted fashion given the current joint shape 𝑥𝑐𝑢𝑟 

is obtained by: 

𝑥𝑛𝑒𝑤 =  𝑥̅ + 𝑃𝑏, 𝑏 = (𝑃𝑇𝑊𝑇𝑊𝑃)−1𝑃𝑇𝑊𝑇𝑊 ∙ (𝑥𝑐𝑢𝑟 − 𝑥̅)  (6.6) 

where 𝑊  is a diagonal matrix formed by weights for each surface point, with value 1 for 

thalamus and 0 for the rest. This permits us to infer the position of the general nuclei groups. 

Subsequently, given the external boundary of the nuclei group estimated at the previous level, 

the internal boundary between the subdivisions of the group is inferred by fitting the external 

boundary to the corresponding joint shape model. 

After the shape fitting we have observed that the external boundary of the fitted thalamus 

did not exactly fall on the boundary of the segmented thalamus. We attribute this small fitting 
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error to the small size of our training set. To correct for this fitting error, a TPS transformation as 

described in section 6.2.3.1 is estimated between the original thalamus boundary and the fitted 

boundary and then applied to all the boundary points localized by the model. This correction is 

performed after each shape fitting step, i.e., at the last step of NHSSM and at each hierarchical 

level for HSSM. 

 

6.2.4. Validation of Semi-automatic Segmentations 

To evaluate the performance of the above methods, we perform segmentations in 3T T1-w 

images of each subject in a leave-one-out fashion, i.e., the volume being segmented is left out of 

the model construction. The subject that serves as the reference for point correspondence is 

excluded from testing, which leaves us sixteen test cases (two hemispheres of eight subjects). As 

mentioned earlier, we assume the thalamus has been well segmented, and use its manual 

segmentation as an input to feed our algorithm. This requires each 7T T1-w image to be rigidly 

registered to the corresponding 3T T1-w image and the manual structures delineated in 7T space 

to be projected to the 3T volume. Accuracy of the results is measured by dice coefficients and 

mean surface errors in the 3T space compared to the manual segmentations after projection. 

 

6.3. Results 

 

6.3.1. Manual Segmentations 

Thalamic structures obtained following the atlas generation protocol are shown in representative 

slices in axial, coronal, and sagittal views in Figure 6.5, 6.6, and 6.7 respectively. For each 

orientation, two image sequences of the same slice are selected to illustrate the complementary 

contrast for manually delineating different intrathalamic structures. The top rows of these three 
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figures present slices of the same subject, whereas the bottom rows are of different subjects. 

When comparing the two rows, we observe a similar range of contrast and ability to separate 

substructures. This indicates the consistency of the acquired sequences across individuals. In 

each figure, the bottom right panel displays the 2D histological drawing that corresponds to the 

selected slices of the two subjects. Compared to this panel, manual contours derived from 

intensity variation and spatial priors in 7T sequences correspond well with known anatomical 

structures of the thalamus from histology. This suggests the feasibility of using such sequences 

to generate thalamus atlases.  

 

 

 

Figure 6.5. Representative axial slices of two subjects in the top and bottom rows respectively. From left to right, 

each row presents a portion of the MPRAGE-400 and SWI-ax sequences in the thalamus region, together with 

manual segmentation of thalamic structures overlaid on top. The bottom right panel shows the corresponding axial 

histological drawing in Morel atlas [5]. 
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Figure 6.6. Representative coronal slices of two subjects in the top and bottom rows respectively. From left to right, 

each row presents a portion of the MPRAGE-960 and SWI-cor sequences in the thalamus region, together with 

manual segmentation of thalamic structures overlaid on top. The bottom right panel shows the corresponding 
coronal histological drawing in Morel atlas [5]. 

 

Figure 6.7. Representative sagittal slices of two subjects in the top and bottom rows respectively. From left to right, 

each row presents a portion of the MPRAGE-640 and MPRAGE-1120 sequences in the thalamus region, together 

with manual segmentation of thalamic structures overlaid on top. The bottom right panel shows the corresponding 

sagittal histological drawing in Morel atlas [5]. 
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The nine subjects involved in this study have an average inter-commissural distance of 

24.8 mm ranging from 21.6 mm to 28.3 mm. Table 6.2 reports the volumes of each structure for 

the nine subjects on the left and right side of the brain. Mean, standard deviation, and coefficient 

of variation of volumes are calculated per structure for each side as well as for the two 

hemispheres pooled together and are also shown in this table. The volume of the thalamus varies 

from 4659 mm
3
 to 8187 mm

3
, which mainly affects large substructures such as MD, CL, VA, 

VLp, VPL, and PuMI. Coefficients of variation for AM, Hb, PuA, and Li are above 40%, a 

relatively large number compared to those of other structures. This may be explained by the 

substantial variation in sizes for those structures across subjects and/or the confounding errors in 

manual delineation that are difficult to measure. 

 

Table 6.2. Volumes (in mm3) and their statistics of each structure for the nine subjects 

Structures Side Subject 1-9 Mean Std. CV 

THAL 
Left 6916 7963 7106 6468 8113 5666 7171 5058 6563 6763.2 

6771.8 
1085.1 

1006.6 
16.0% 

14.9% 
Right 6577 7814 7383 6794 8187 5634 6664 4659 7157 6780.4 987.8 14.6% 

AVD 
Left 203 129 103 169 139 136 173 146 154 142.4 

146.2 
25 

26.5 
17.5% 

18.1% 
Right 127 135 108 165 162 178 120 124 163 150 29 19.3% 

AM 
Left 24 36 34 27 16 8 33 6 31 30.2 

27.1 
25.9 

19.6 
85.8% 

72.5% 
Right 25 24 24 15 94 11 26 10 41 23.9 11.2 46.8% 

LD 
Left 198 139 106 104 235 122 116 118 137 139.7 

140.7 
52.6 

47.6 
37.6% 

33.8% 
Right 141 99 118 109 253 200 105 126 107 141.7 45.2 31.9% 

MD 
Left 674 867 814 702 847 549 818 522 660 683.5 

700.3 
137.2 

129.7 
20.1% 

18.5% 
Right 686 854 757 796 841 520 581 489 626 717.1 127.7 17.8% 

CeM 
Left 31 33 40 17 32 22 27 41 34 27.2 

29.1 
7.3 

7.6 
26.7% 

26.3% 
Right 25 35 32 13 24 22 31 29 36 30.9 8 25.9% 

Pv 
Left 28 22 24 22 24 9 39 18 24 22.4 

22.8 
8.5 

8.0 
37.9% 

35.1% 
Right 16 35 23 23 18 7 19 32 28 23.3 8 34.3% 

CM 
Left 228 221 215 128 236 102 190 86 188 153.1 

165.2 
52.2 

54.6 
34.1% 

33.0% 
Right 208 226 173 120 192 71 121 103 164 177.2 57.3 32.3% 

Pf 
Left 76 71 103 53 60 51 69 59 68 65 

66.4 
23.2 

19.3 
35.7% 

29.0% 
Right 69 58 119 49 50 42 69 53 76 67.8 15.7 23.1% 

CL 
Left 408 569 461 470 413 301 580 332 403 438.9 

438.2 
73.3 

82.0 
16.7% 

18.7% 
Right 353 494 415 475 493 391 510 313 506 437.6 94.5 21.6% 
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Hb 
Left 31 8 10 11 18 14 13 18 5 11.6 

12.9 
5.1 

6.5 
44.2% 

50.0% 
Right 22 9 5 15 15 13 9 9 8 14.3 7.6 53.5% 

VA 
Left 315 388 296 205 335 92 410 192 259 231.9 

254.3 
77 

90.2 
33.2% 

35.5% 
Right 217 280 222 171 287 74 317 213 306 276.8 101.2 36.6% 

VLa 
Left 111 126 148 80 95 34 73 65 104 88.6 

90.8 
33.3 

32.9 
37.6% 

36.2% 
Right 100 101 144 110 75 44 61 50 112 93 34.3 36.9% 

VLp 
Left 740 996 725 858 953 667 888 804 717 784.2 

800.3 
157.6 

134.6 
20.1% 

16.8% 
Right 635 879 947 743 971 600 914 555 814 816.5 114.5 14.0% 

VPL 
Left 642 820 754 481 580 318 400 431 452 569 

555.5 
195.3 

177.6 
34.3% 

32.0% 
Right 774 674 822 539 585 300 341 368 718 542 168.8 31.1% 

VPM 
Left 86 95 83 73 76 40 59 52 74 75.7 

73.2 
29.6 

23.7 
39.1% 

32.4% 
Right 127 110 75 72 60 29 71 52 86 70.8 17.4 24.6% 

VPI 
Left 58 68 64 34 42 29 31 51 82 50.7 

50.9 
19.3 

18.4 
38.0% 

36.1% 
Right 80 81 52 39 47 33 26 42 56 51 18.6 36.4% 

VM 
Left 107 114 82 70 52 47 79 63 93 77.7 

78.1 
24.1 

22.9 
31.0% 

29.3% 
Right 98 96 90 96 54 44 61 54 107 78.5 23.1 29.4% 

LP 
Left 364 225 274 308 348 359 239 220 257 298.3 

293.3 
73.8 

64.6 
24.7% 

22.0% 
Right 419 247 283 259 393 366 242 220 257 288.3 58 20.1% 

PuMI 
Left 906 1105 971 982 1501 1038 1068 720 1081 1223.7 

1132.5 
336 

287.0 
27.5% 

25.3% 
Right 890 1498 1111 1317 1847 1126 1331 690 1204 1041.3 208.5 20.0% 

PuA 
Left 127 266 108 191 119 105 120 78 181 132.6 

138.3 
66.2 

60.8 
49.9% 

43.9% 
Right 189 280 103 138 111 87 88 64 132 144.1 58.3 40.4% 

PuL 
Left 362 302 311 412 316 580 250 259 195 278.2 

305.0 
120.9 

116.6 
43.5% 

38.2% 
Right 345 137 239 348 164 514 193 210 352 331.8 112.4 33.9% 

Li 
Left 37 18 17 20 21 4 31 15 61 17.8 

21.3 
7.1 

12.7 
40.1% 

59.9% 
Right 19 17 16 14 13 11 13 21 35 24.7 16.3 66.0% 

mtt 
Left 54 89 56 50 75 28 53 21 61 45.1 

49.6 
10.1 

16.7 
22.4% 

33.6% 
Right 45 58 54 55 38 39 29 37 52 54.1 21 38.9% 

For each structure, the mean, standard deviation (Std.), and coefficient of variation (CV) of volumes are reported, 

first for each hemisphere and then for the two hemispheres pooled together. 

 

Figure 6.8 presents the manual substructures for the nine subjects. For each subject, 3D 

views in two different orientations are shown for structures on both left and right brains. For 

each structure of those subjects, its mean shape is shown in Figure 6.9. The shape of each 

nucleus is plotted together with a semi-transparent thalamus surface to illustrate its size and 

location with respect to the thalamus. 
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 Figure 6.8. 3D views of all manual substructures for the nine subjects of both hemispheres. 
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6.3.2. Semi-automatic Segmentations 

In the leave-one-out validation study, segmentation results for one subject using the proposed 

methods are illustrated in Figure 6.10. As shown in this figure, segmentations obtained with 

different methods appear similar to each other, and they all agree relatively well with the manual 

delineations. Observation of the dark yellow VPI structure in the 3D views indicates that 

segmentations obtained by both the NHSSM and HSSM approaches tend to preserve the original 

shapes better than the ones using SA and MA approaches. 

Figure 6.9. Mean shape of each structure for the nine subjects pooled from both hemispheres. 
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Figure 6.11 and 6.12 show the segmentation accuracy for each nucleus using the four 

methods measured in dice coefficients and mean surface errors (MSE) (in millimeter) 

Figure 6.10. Qualitative visualization of the thalamic nuclei segmentation for one subject in the leave-one-out study. 

Top row illustrates the ground truth overlaid on top of the 3T T1-w image, and bottom rows are the results obtained 

by SA, MA, NHSSM, and HSSM approaches respectively. In each row, a sagittal, coronal, and axial slice are shown 
on the left, together with 3D views in two orientations on the right. Surfaces are smoothed for visualization 

purposes. 
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respectively. Their mean and the standard deviation are reported in Table 6.3. Results of the 

substructures are arranged in ascending order according to the mean volumes of manual 

delineations, with the smallest structure shown first. For those structures, mean dice values range 

from 0.25 to 0.80 using SA, 0.43 to 0.85 using MA, 0.46 to 0.87 using NHSSM, and 0.53 to 0.90 

using HSSM; mean MSE values range from 0.34 mm to 1.34 mm using SA, 0.34 mm to 0.88 

mm using MA, 0.27mm to 0.79 using NHSSM, and 0.27 mm to 0.64 mm using HSSM. 

Compared to SA, the use of multiple atlases leads to more robust segmentations. Results of 

paired Wilcoxon signed rank tests suggest that the differences in dice values between two atlas-

based methods are statistically significant at significance level of 0.05 for each of the nuclei 

except for Hb, CeM, VPI, VM, VLa, LD, LP, and PuL, whereas the MSEs of these two methods 

statistically differ excluding CeM, mtt, VM, VLa, LD, AVD, VLp, and PuMI. Compared to SA 

and MA, the shape models consistently produce more accurate segmentations. The hierarchical 

shapes models perform better than the one without hierarchy in most cases, especially for 

structures of larger sizes such as VLp and PuMI. Results of the one-way ANOVA tests 

demonstrate that the group means of the four methods are significantly different for each nucleus 

at 0.05 significance level, except for VM, VLa, and PuL measured in dice and LD, AV, and PuL 

measured in MSE. We also observe from the figures that the size of the structures is correlated 

with the dice coefficient, whereas it is relatively independent for the MSE. For example, dice 

values of tiny structures such as Hb, Li, and Pv (10 to 30 voxel
3
) are small and highly variable, 

but their MSEs remain relatively similar to those of other structures. This is expected, as the dice 

coefficient is sensitive to the size and the shape of the structures; a small deviation from the 

ground truth for a small-sized or elongated structure could lead to a large decrease in dice values. 

Nevertheless, these are encouraging results for structures with sizes ranging from 12.9 mm
3
 (Hb) 
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to 1132.5 mm
3
 (PuMI), especially for AVD, VA, LP, PuL, VPL, MD, VLp, and PuMI, with 

mean dice values above 0.8 and mean MSEs below 0.5mm using HSSM. 

 

 

 

 

Figure 6.11. Boxplot of dice coefficients for the sixteen test cases in the leave-one-out experiment. Thalamic nuclei 

are ordered ascendingly according to their mean volumes of manual delineations. For each nucleus, results obtained 

with SA, MA, NHSSM, and HSSM approaches are shown from left to right respectively. 
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Table 6.3. Mean and standard deviation of dice coefficient and mean surface errors for the sixteen test using SA, 

MA, NHSSM, and HSSM approaches 

 

Dice Coefficient Mean Surface Error 

SA MA NHSSM HSSM SA MA NHSSM HSSM 

Hb 0.39 ± 0.20 0.51 ± 0.16 0.58 ± 0.22 0.57 ± 0.18 0.94 ± 0.56 0.34 ± 0.10 0.43 ± 0.31 0.39 ± 0.21 

Li 0.35 ± 0.12 0.45 ± 0.18 0.62 ± 0.16 0.66 ± 0.10 0.87 ± 0.39 0.52 ± 0.23 0.32 ± 0.12 0.31 ± 0.09 

Pv 0.25 ± 0.19 0.43 ± 0.20 0.46 ± 0.19 0.53 ± 0.21 0.92 ± 0.50 0.63 ± 0.40 0.53 ± 0.16 0.45 ± 0.15 

AM 0.35 ± 0.19 0.64 ± 0.11 0.61 ± 0.19 0.66 ± 0.15 1.14 ± 0.61 0.50 ± 0.23 0.42 ± 0.22 0.43 ± 0.27 

CeM 0.48 ± 0.16 0.55 ± 0.19 0.66 ± 0.15 0.69 ± 0.13 0.70 ± 0.33 0.64 ± 0.38 0.43 ± 0.17 0.38 ± 0.15 

mtt 0.39 ± 0.13 0.46 ± 0.12 0.57 ± 0.14 0.59 ± 0.14 0.72 ± 0.19 0.67 ± 0.18 0.42 ± 0.15 0.41 ± 0.14 

VPI 0.58 ± 0.10 0.58 ± 0.09 0.65 ± 0.14 0.69 ± 0.14 0.75 ± 0.35 0.47 ± 0.15 0.52 ± 0.36 0.42 ± 0.33 

Pf 0.61 ± 0.10 0.72 ± 0.09 0.78 ± 0.09 0.78 ± 0.09 0.53 ± 0.18 0.38 ± 0.10 0.27 ± 0.13 0.31 ± 0.14 

VPM 0.55 ± 0.13 0.63 ± 0.08 0.71 ± 0.10 0.72 ± 0.10 0.95 ± 0.34 0.59 ± 0.18 0.47 ± 0.19 0.45 ± 0.18 

VM 0.67 ± 0.12 0.66 ± 0.10 0.72 ± 0.17 0.75 ± 0.15 0.66 ± 0.40 0.56 ± 0.27 0.36 ± 0.16 0.34 ± 0.18 

VLa 0.59 ± 0.09 0.58 ± 0.12 0.60 ± 0.23 0.68 ± 0.19 0.66 ± 0.25 0.60 ± 0.22 0.49 ± 0.31 0.41 ± 0.26 

PuA 0.45 ± 0.20 0.56 ± 0.14 0.62 ± 0.15 0.67 ± 0.17 1.34 ± 0.57 0.88 ± 0.28 0.79 ± 0.40 0.64 ± 0.28 

LD 0.67 ± 0.11 0.65 ± 0.13 0.72 ± 0.08 0.75 ± 0.07 0.49 ± 0.24 0.45 ± 0.21 0.44 ± 0.28 0.37 ± 0.18 

Figure 6.12. Boxplot of mean surface errors (in millimeter) for the sixteen test cases in the leave-one-out 

experiment. Thalamic nuclei are ordered ascendingly according to their mean volumes of manual delineations. For 

each nucleus, results obtained with SA, MA, NHSSM, and HSSM approaches are shown from left to right 

respectively. 
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AVD 0.72 ± 0.08 0.75 ± 0.08 0.78 ± 0.10 0.81 ± 0.09 0.34 ± 0.09 0.38 ± 0.13 0.33 ± 0.19 0.27 ± 0.13 

CM 0.55 ± 0.12 0.68 ± 0.08 0.75 ± 0.08 0.75 ± 0.09 1.13 ± 0.30 0.74 ± 0.21 0.50 ± 0.18 0.53 ± 0.20 

VA 0.71 ± 0.06 0.75 ± 0.06 0.77 ± 0.11 0.82 ± 0.06 0.59 ± 0.12 0.50 ± 0.15 0.41 ± 0.12 0.35 ± 0.09 

LP 0.69 ± 0.13 0.68 ± 0.19 0.75 ± 0.08 0.80 ± 0.06 0.92 ± 0.54 0.62 ± 0.43 0.70 ± 0.38 0.49 ± 0.24 

PuL 0.74 ± 0.14 0.74 ± 0.13 0.78 ± 0.14 0.85 ± 0.09 0.76 ± 0.54 0.55 ± 0.31 0.69 ± 0.53 0.40 ± 0.27 

CL 0.51 ± 0.08 0.57 ± 0.10 0.63 ± 0.15 0.69 ± 0.09 0.75 ± 0.11 0.68 ± 0.15 0.50 ± 0.17 0.44 ± 0.12 

VPL 0.73 ± 0.10 0.78 ± 0.09 0.82 ± 0.07 0.84 ± 0.06 1.11 ± 0.46 0.72 ± 0.36 0.57 ± 0.25 0.50 ± 0.18 

MD 0.78 ± 0.06 0.83 ± 0.05 0.85 ± 0.05 0.87 ± 0.05 0.64 ± 0.16 0.57 ± 0.18 0.41 ± 0.17 0.35 ± 0.14 

VLp 0.75 ± 0.07 0.81 ± 0.05 0.80 ± 0.09 0.85 ± 0.06 0.66 ± 0.22 0.60 ± 0.16 0.56 ± 0.28 0.41±  0.15 

PuMI 0.80 ± 0.08 0.85 ± 0.05 0.87 ± 0.04 0.90 ± 0.03 0.55 ± 0.16 0.51 ± 0.18 0.43 ± 0.15 0.31 ± 0.12 

Results for thalamic nuclei substructures are shown in ascending order according to their mean volumes of manual 

delineations. 

 

6.4. Conclusions 

In this chapter, we have described a protocol for generating a human atlas of the thalamus using 

ultra-high field imaging. Superior image resolution and the wide range of contrast elicited from 

various 7T sequences in vivo dramatically improve anatomic delineation of thalamic nuclei and 

allow the identification of 23 internal substructures in nine healthy subjects on each side of the 

brain. We have also proposed single-atlas-based, multi-atlas-based, and statistical shape-based 

methods to use such atlases for thalamic nuclei segmentation in standard 3T T1-w images. From 

the results of a leave-one-out experiment, we observe that the multi-atlas approach statistically 

improves upon the single-atlas approach with higher dice values and lower MSE for most nuclei 

structures, while statistical shape-based method consistently yields the highest segmentation 

accuracy. Segmentations obtained with SSM agree strongly with the manual delineations and 

preserve realistic shapes, indicating the potential value of such method to segment the internal 

nuclei. This opens the door to new solutions for DBS planning and neuroanatomical studies. 

Despite promising results, there are several unresolved problems that need to be 

discussed. In this study, we rely on the set of 7T sequences as a combination to manually 
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delineate the internal nuclei. None of the images alone is sufficient to localize the entire external 

boundary of each nucleus. It is desirable to investigate the contribution of each sequence to the 

visualization of the thalamic structures. Meanwhile, to analyze all the sequences, one needs to 

examine each of them by constantly flipping from one to another. In the future, a synthetic image 

that combines the contrast of all the 7T sequences might ease the manual segmentation task. 

Due to the lack of an absolute subject-specific gold standard, it is difficult to assess the 

accuracy of the manual outlines and the subsequent semi-automatic segmentation results. Several 

directions could be pursued to partially address this issue. Firstly, the reliability of the manual 

delineations should be quantified by repeating the same segmentation process so as to measure 

intra- and inter-rater variability of each structure. Secondly, postmortem brains could be scanned 

using the proposed 7T sequences. Image-derived manual segmentations could then be compared 

with histological verification of nuclear anatomy in these specimens to further validate our atlas 

generation protocol. Thirdly, a study of the anatomical-physiological correlations from 

microelectrode recordings collected during the DBS surgery would be an important step towards 

clinical validation of the semi-automatic approaches for thalamic structures. Lastly, it would be 

of interest to compare our thalamic segmentations with those obtained from different data 

sources such as DTI or fMRI. This may require combining certain substructures in our 

segmentations, as those techniques often result in 14 structures or less. 

In this study, the semi-automatic segmentations of intrathalamic structures are obtained 

either by means of registrations using atlas-based approaches or by the relationship between the 

thalamus and the internal substructures inferred from statistical shape models. We believe this is 

the best we can achieve given only 3T T1-w images. The 3T T1-w sequence, with little contrast 

within the thalamus region, remains the most common pulse sequence and the standard clinical 
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imaging for brain surgeries. If additional or alternative sequences are allowed, image forces 

derived from such sequences may be used to improve the segmentation accuracy. For example, 

Stough et al. extract multi-modal features from both MPRAGE and DTI to learn the location of 

six nuclei structures [35]. 

In the statistical shape-based segmentations, we find that constructing multi-level shape 

models yields better results that using a single model. Although both methods rely on the 

external thalamus surface to infer the internal structures, the multi-level models may provide 

better shape representation by delegating variations within the nuclei complex to the lower levels 

and capturing limited shape variations at each level. This becomes useful when there are not 

sufficient training shapes, as is the case in our study. To further compensate for the limited 

training shapes, we build each shape model by pooling from both sides of the brain. However, 

anatomical variations of the thalamic structure that are specific to each hemisphere may exist. It 

may be favorable to acquire more training subjects and build customized models for each 

hemisphere. 

A critical component in shape-based approach is the homologous point identification 

between training shapes. This is a challenging task, especially for 3D structures. Currently, this is 

done for each structure separately using various registrations and occasional manual adjustment 

to align the reference shapes with the target shapes. Optimizing point correspondence structure 

by structure may not be optimal, as adjacent points that belong to two structures in the reference 

shapes may end up being further apart in the target shapes. Alternative approaches that optimize 

point correspondence jointly for all structures should be explored. 

Furthermore, this is a study of healthy volunteers. Atlases generated from those subjects 

may have limited capability in expressing potential pathology in thalamic regions. It would be 
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beneficial to study shape variations in thalamic nuclei structures between normal control and the 

actual patients. Moreover, successful clinical application of our approach to DBS patients, which 

is one of our ultimate goals, may require reconstruction of thalamus atlases from the patient 

population and adjustment in the segmentation approaches to account for pathological changes. 

We plan to recruit a number of DBS patients to regenerate thalamus atlases for this purpose in 

the future. 
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CHAPTER VII 

 

SUMMARY AND FUTURE WORK 

 

This dissertation introduces several innovative algorithms to improve surgical guidance for 

preoperative planning in DBS procedures. Specifically, these methods are developed and 

evaluated to address two tasks, namely, selecting an ideal trajectory for electrode implantation as 

described in Chapter II and localizing an accurate position for target stimulation as described in 

Chapter III, IV, V, and VI. 

 In Chapter II, we propose a trajectory planning system and a validation approach for a 

thorough clinical evaluation. This system finds an optimal path for inserting the electrode by 

simultaneously analyzing a large number of candidate trajectories against many surgical 

constraints, ranking them according to a weighted linear combination of those constraints, and 

choosing the trajectory with lowest cost as the optimal solution. Weights for those constraints are 

manually initialized and heuristically refined to capture the individual neurosurgeon preference 

in selecting trajectories. Through a series of retrospective experiments conducted internally, we 

observe that one universal set of weights is preferable to those that are customized for different 

neurosurgeons. Preceded with this set of weights, results of those experiments show that 

automatic trajectories generated by our system outperform the manual selections both 

qualitatively and quantitatively. We further evaluate the automatic trajectories in a large-scale 

pseudo-prospective study involving four neurosurgeons at three institutions. Out of 60 cases, 

automatic trajectories are accepted 95% of the time by a majority of neurosurgeons and 76.67% 
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unanimously. This suggests the clinical applicability of the proposed trajectory planning system 

across multiple sites and surgeons. 

In Chapter III, we develop a learning-based approach to localize the AC, PC, and MSP so 

that a spatial coordinate system can be established to indirectly determine the target position. We 

describe a voxel-based regression learning framework that relates the appearance of a point to 

the probability of this point being a landmark or in the plane. Regression forests models are built 

at three resolution levels and applied hierarchically to localize the AC, PC, and MSP. The final 

position of the landmarks and the plane are determined by the mean shift algorithm and least 

square fitting respectively in a weighted fashion. We design three experimental paradigms to 

evaluate the performance of our framework, which include a large-scale leave-one-out 

experiment, a series of robustness tests, and parameter sensitivity studies. Results of the first 

study shows that our method leads to an overall error of 0.55±0.30 mm for AC, 0.56±0.28 mm 

for PC, 1.08˚±0.66˚ in the plane’s normal direction and 1.22±0.73 voxels in average 

displacement for MSP. This compares favorably to most state-of-the-art methods including six 

registration-based methods and a publicly available toolkit. Our method also performs well under 

varying degrees of spherical lesions, tissue deformations, imaging noise and rotations. It takes 

about 25 seconds on a standard PC to detect all objects at once. These experiments demonstrate 

the accuracy, robustness, and efficiency of our method for AC, PC, and MSP localization, and 

thus for indirect targeting. 

For statistical atlases-based targeting, nonrigid registration is the key to form an accurate 

mapping between patient volumes and a reference template. In Chapter IV, we investigate the 

effect of nonrigid registration algorithm on the creation of statistical atlases. A total of eighteen 

statistical atlases are created by registering 100 patients all targeting the STN to each of the three 
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reference templates using six well-known nonrigid registration algorithms. Through qualitative 

comparisons, probabilistic maps generated from those atlases all cover a similar region of the 

STN. Among these algorithms, the atlases share similar centroids and spreads with sub-voxel 

differences. This indicates that the choice of registration algorithm does not significantly impact 

the quality of statistical atlases in the region of the STN. 

In Chapter V, we present an alternative targeting approach by directly learning the target 

position from past patients. This is achieved by learning a multi-variant regression forests model 

that associates the description of each point with a displacement vector of this point to the actual 

target. Each point is described by its spatial coordinate in the AC-PC space calculated using the 

technique proposed in Chapter III as well as intensity contextual features extracted from T1-w 

and T2-w sequences. Target position is finalized by aggregating predictions made by the model 

of all voxels in a weighted fashion. Through a five-fold cross validation with 100 subjects, we 

demonstrate the role of spatial features in regularizing the predictions and the advantage of using 

both modalities over either one alone in the targeting accuracy. With 2.63±1.37 mm targeting 

errors, we show that our approach serves as an accurate and robust option for targeting compared 

to statistical atlas-based methods and AC-PC-based methods.  

In Chapter VI, we design a protocol for building high-field thalamic atlases and proposed 

methods for using such atlases to segment thalamic substructures on clinical data. These atlases 

involve a set of 7T MR images with complementary contrast acquired for each subject and 

manually delineated thalamic nuclei based on the Morel atlas convention. To segment these 

structures in clinical 3T images, we apply single-atlas-based and multi-atlas-based approaches 

that rely on registration between the atlas and the subject. We also propose a statistical shape-

based approach that builds joint shape models of the thalamus and the internal nuclei and 
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hierarchically segments the nuclei by fitting the thalamus to those models. Leave-one-out 

validation performed on the sixteen test cases shows that the three methods yield reasonable 

results. Segmentations obtained with shape-based approach agree the strongest with manual 

delineations while preserving realistic shapes; the dice coefficients range from 0.53 to 0.90 and 

mean surface errors from 0.34 mm to 0.88 mm for each structure averaged across test cases. This 

suggests the feasibility of the shape-based approach using those atlases for thalamic nuclei 

segmentation, and thereby for DBS targeting with regard to thalamic structures. 

Even though we have made substantial progress towards developing computer-aided 

automatic approaches for DBS surgical planning, work remains. With regards to trajectory 

planning, it is of note that the weighting parameters used to score trajectories are set heuristically 

in the current platform. Due to the lack of ground truth, it is challenging to determine the optimal 

choice of weights for different surgical constrains. Essert et al. recently proposed two approaches 

to retrieve the weights that best matches the neurosurgeon’s manual planning, one based on a 

stochastic sampling of the parameters and the other on an exhaustive search [1]. For clinical use, 

a system that allows interactive adjustment of the weights may be more helpful. The trajectory is 

commonly represented as a straight line to model the single track electrode. Under other clinical 

settings, it might be beneficial to adopt a cylinder-shape representation as done by Bériault et al. 

[2] and even consider the multi-track electrode device. 

One underlying assumption of the trajectory planning system is a perfectly chosen target 

point. However, modification of the target position happens, which may invalidate the pre-

computed trajectory. To avoid another insertion, uncertainty in the target prediction, especially 

the shape of the uncertainty region, should be taken into account. Clinical implementation that 
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pre-computes a series of solutions or constraining the search space may also be required to 

produce new solutions in clinically acceptable time. 

Several research directions can be considered to further improve the targeting accuracy. 

As suggested by Guo et al., targeting with comprehensive anatomical and functional information 

results in estimates that are much closer to the optimal surgical target [3]. We have proposed 

several targeting approaches with different working mechanisms that exploit various data 

sources such as the segmentation or localization of anatomical structures or actual surgical target 

collection. Except for the one in Chapter VI, the proposed techniques are generic regardless of 

target structures and have been extensively validated for STN targeting. It would be helpful to 

evaluate their performance on thalamic nuclei targeting and, furthermore, to combine these 

algorithms for a more accurate and robust estimate. 

Advances in imaging inexorably have led, and will further lead, to better preoperative 

delineation of the targets [4]. From 1.5T to 3T as the current clinical standard to the recently 

introduced 7T imaging, tremendous progress has been and is actively being made in defining 

targets on these scanners. A major concern with 7T MR imaging is the greater tissue distortion 

and susceptibility to artifacts at high field strength. Once accepted for clinical use, we believe 7T 

datasets will play a critical role in DBS targeting. 

While imaging technologies continue to evolve, the gold standard for clinically verifying 

the target position remains intraoperative MER. Furthermore, there exists a potential discrepancy 

between decisions made by imaging and those by neurophysiology, which may not be resolved 

in the preoperative stage [5]. Intraoperative guidance towards adjusting and finalizing the 

electrode placement can be extremely valuable. Relevant past efforts concentrate on developing 

advanced signal processing techniques to better characterize the functional borders of target 
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structures [6-7]. These are mostly static methods that use only MER data. Instead, a 

reinforcement learning paradigm that exploits preoperative information and the streaming 

intraoperative MER data may be possible to adapt the electrode insertion automatically. 

Specifically, as the surgery progresses, instructions can be made to inform the surgeons about the 

next stimulation point in real time based on the image data as well as current recordings while 

accounting for the allowable region the electrode can explore. This may serve as a great addition 

to the current surgical guidance system. 

Another possible source of inaccuracy in the preoperative targeting is the intraoperative 

brain shift. Brain shift, mainly caused by CSF loss, can have a considerable impact on the final 

electrode position [8]. Quantification of the brain shift is difficult due to the absence of 

intraoperative imaging. Pallavaram et al. proposed to detect brain shift by correlating low-shift 

electrophysiological maps with intraoperative observations [9]. Future work that corrects for 

brain shift is necessary to enhance the clinical utility of preoperative planning. 

We are currently underway to integrate the methods proposed in this work into a clinical 

processing pipeline at Vanderbilt. Once completed, prospective evaluation studies will be 

conducted. Although the solutions that have been presented herein may not be the final ones, we 

hope that these works have made valuable contributions towards solving the problem of DBS 

preoperative planning, and possibly serving as inspirations for other image-guided therapy issues. 
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