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CHAPTER ONE 

 

 

INTRODUCTION TO SOCIOECONOMIC STATUS AND BLOOD PRESSURE   

 

Socioeconomic status and health 

 

Definition of socioeconomic status 

Socioeconomic status is a major determinant of variation in health outcomes 

worldwide 1. It can be defined and measured using a variety of methods, but it is typically 

an aggregate measure which includes an assessment of economic status (normally in the 

form of income), social status (usually in the form of education), and work status 

(generally in the form of occupation) in the United States 2. These measurements are broad 

and can be assessed at the individual, household, or neighborhood level. Additionally, 

socioeconomic status can be evaluated at an objective and subjective level. Objective 

dimensions, such as occupation, education, and income, include those measured without 

consideration of an individual’s perspective. 

The collection of these socioeconomic status data can vary. For example, 

occupation can be measured via occupational prestige, job income brackets, or types of 

employment (e.g. blue collar versus white collar), and these labels can be further be 

grouped into categories, leading to a large variety of types of occupational data.  

Unlike occupation, the measurement of education tends to be more standardized in 

the United States: it is typically measured as the highest level an individual has achieved. 

Education can also be grouped into measurements such as the completion of high school or 

the completion of college. These categories can be country-specific and therefore 

educational groups may vary across countries. Income can be measured at the individual or 

household level and it can also be lumped into classifications, depending on the needs of 

the study or the details of the available information. Income is often related to wealth, 

although wealth encompasses more information than income alone. Wealth is defined as an 
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individual or household’s total assets including income, property, items, and debts 3. While 

income can be used to assess socioeconomic status, it is not a direct proxy for wealth 4.   

Subjective socioeconomic status is a measurement of an individual’s perception of 

their place within society’s socioeconomic structure 3. Subjective socioeconomic status is 

measured by interviewing individuals and asking them to place themselves in a societal 

hierarchy, represented by the rungs of a ladder. One example of participant instructions for 

evaluating subjective socioeconomic status from Singh-Manoux, Marmot, and Adler is:  

 

Think of this ladder as representing where people stand in society. 

At the top of the ladder are the people who are best off—those who 

have the most money, most education and the best jobs. At the 

bottom are the people who are worst off—who have the least 

money, least education and the worst jobs or no job. The higher up 

you are on this ladder, the closer you are to people at the very top 

and the lower you are, the closer you are to the bottom. Where 

would you put yourself on the ladder? Please place a large ‘X’ on 

the rung where you think you stand.3  

 

This measurement of socioeconomic status allows individuals to categorize 

themselves into a group. The ability of subjective socioeconomic status to capture 

psychosocial impacts of socioeconomic status, as well as the more precise measurement of 

social position reflected in subjective socioeconomic status, allows this measure to be a 

better predictor of health status and decline of health over time when compared with 

objective measures5.  

A final dimension of socioeconomic status that is utilized by investigators is 

neighborhood socioeconomic status. Like individual socioeconomic status, neighborhood 

socioeconomic status can be assessed using a diversity of indicators including household 

income, home values, availability of grocery stores, and others. Neighborhood 
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socioeconomic status can influence an individual’s health beyond the effects of the 

individual’s socioeconomic status. For example, neighborhood socioeconomic status has 

been associated with an increased risk of coronary heart disease 6, increased mortality 7, 

makers for higher risk of cardiovascular disease 8, as well as many other health outcomes 9.  

The large assortment of methods for assessing socioeconomic status makes 

choosing a method difficult and worth consideration. It is true that many measures of 

socioeconomic status are correlated, however the correlation is not always strong enough 

for measures to be used as proxies for each other 4. Additionally, the relationship between 

the measures of socioeconomic status can vary by groups. For example, black and 

Mexican-American adults have significantly lower incomes when compared with white 

adults of the same educational level 4. Another example is that income does not always 

equate to wealth. When examining US Census data, white adults are shown to have 400 

times the wealth of black adults of the same income level 4. Neighborhood socioeconomic 

status has similar constraints in that the measures of neighborhood socioeconomic status 

and their effects on health can vary by population and the measures are not always strongly 

correlated. Subjective socioeconomic status can reflect more aspects of the effects of 

socioeconomic status on health in a single measure; however, it requires survey data from 

participants and this is not always possible. 

Socioeconomic status can be measured in various ways in epidemiological studies, 

ideally encompassing economic resources including income and wealth, as well as social 

prestige that can influence health at the individual, household, and neighborhood level 10. 

Even though it is ideal to consider multiple measurements of socioeconomic status and 

incorporate all of them into a study design, this is not always possible. The best option for 

deciding on what socioeconomic measures to incorporate is to consider which measures are 

more likely to affect the outcome of interest and to take limitations of the measures into 

account when reflecting on the results of the study. 

 

Potential pathways for how socioeconomic status can affect health 

Over the years, the relationship between socioeconomic status and health has been 

studied in a few different approaches. Prior to the mid-1980s, socioeconomic status was 

considered a confounder to be controlled for in study designs, but socioeconomic status as 
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a causal variable was not well studied 11. During the 1980s, socioeconomic status was 

considered a dichotomous variable where individuals were categorized as either above or 

below the poverty line, implying a threshold view of the relationship between 

socioeconomic status and health. In this threshold model, health improved with increasing 

wealth until the poverty line where health became stable. This threshold model implied that 

there were no health differences between individuals living just above the poverty line and 

those who are wealthy 11. In the mid-1980s this view began to change, as investigators 

influenced by Michael Marmot and the Whitehall study began to realize that the effects of 

socioeconomic status were on a continuum across all levels of socioeconomic status, rather 

than just above and below the poverty line 12. The Whitehall study investigated morbidity 

and mortality among British civil servants and found a gradient among the occupational 

grades: more prestigious occupation grades had better morbidity and mortality when 

compared with less prestigious occupation grades. The gradient relationship between 

socioeconomic status and health exists across countries and across different health 

outcomes including infant mortality, mortality, and chronic diseases such as hypertension, 

cancer, and arthritis 11. As socioeconomic status increases, these poor health outcomes 

decrease. In addition to health outcomes, health risk factors such as smoking, cholesterol, 

and sedentary lifestyles also show a socioeconomic status gradient, such that lower 

socioeconomic status individuals have higher smoking prevalence, higher cholesterol and 

more sedentary behaviors 11.  

The association between socioeconomic status and health outcomes is clear but its 

interpretation is complex. Does lower socioeconomic status lead to poorer health outcomes 

or are poor health outcomes causing lower socioeconomic status? While some diseases can 

have an influence on socioeconomic status, more evidence exists for the hypothesis that 

socioeconomic status influences health 11. Determining the mechanisms for how 

socioeconomic status affects health is an area of intense research. Socioeconomic status 

could affect health through several different pathways including reduced access to 

healthcare services, decreased knowledge of health behaviors, exposure to environmental 

stressors and hazards, limited financial resources, and less familial and social support 13; 14. 

Figure 1 demonstrates an overview of potential pathways through which socioeconomic 

status may influence health. Within these broad overarching pathways there can be specific 
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pathways. For example, environment encompasses physical environment such as exposures 

to pollutants and toxins, social environment such as support networks, and resources such 

as access to healthy food and healthcare 11. Healthy People 2020, the United States’ public 

health goals, includes a concise summary of the five domains of socioeconomic status that 

can influence health: economic stability, education, health care, neighborhood 

environment, and social context (Figure 2). Economic stability includes factors such as 

poverty, employment (or lack of), food security, and housing stability 15. Education 

includes the access to education and higher education, literacy (including health literacy), 

and early childhood development 15. Health care includes access to health care and primary 

care, as well and knowledge of health behaviors 15. Neighborhood environment includes 

access to healthy foods and grocery stores, access to safe and affordable housing, low 

amounts of crime, violence, and exposure to toxins and pollutants 15. Finally, social context 

includes civic participation, discrimination, equality, and incarceration 15. Though the 

pathways between socioeconomic factors and health outcomes are difficult to distinguish 

and could be affecting different populations in varying degrees, it is important to consider 

socioeconomic status as a representation of these potential pathways.   

 

Review of prior literature on relationship between socioeconomic status and health 

Socioeconomic status has a strong association with health. This relationship has led 

to extensive studies on a variety of health outcomes and an assortment of dimensions of 

socioeconomic status. Although measurements of socioeconomic status can be correlated 

with each other, it is important to understand that there are different relationships between 

socioeconomic variables and that each measure is not necessarily a reflection of the effect 

of all measures of socioeconomic status on health. Due to these differences between 

measures, identifying the previously described relationships between socioeconomic 

variables and health outcomes is an significant step in studying these relationships.  

 

Education 

Education is an objective representation of social status. It can also be viewed as a 

reflection of earning potential, as individuals with higher education tend to have higher 

incomes. Education is also one of the more stable objective measures of socioeconomic 
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status in adults, as it is less likely to change over time. For these reasons, as well as the 

relative ease of collection, educational attainment is often used in epidemiologic studies as 

a measure of socioeconomic status. Educational attainment affects health in a stepwise 

manner. For example, higher educational attainment is associated with longer life 

expectancy: men with a bachelor’s degree or higher have a life expectancy 9.3 years longer 

than men without a high school diploma. Similarly, women with a bachelor’s degree or 

higher have a life expectancy that is 8.6 years longer than women without a high school 

diploma 16. In addition to mortality, the education gradient is negatively correlated with a 

number of biomarkers in the National Health and Nutrition Survey (NHANES). Fewer 

years of education is correlated with higher C-reactive protein (a general marker for 

inflammation), higher glycated hemoglobin (a general marker for type 2 diabetes risk), 

lower HDL cholesterol (a general marker for cardiovascular disease risk), higher waist-to-

hip ratio (a general marker for obesity), higher systolic blood pressure (a general marker 

for hypertension), and higher resting pulse 13. Education gradients also exist for other 

health outcomes and risk behaviors in the United States. Individuals with lower educational 

attainment are more obese compared with individuals with higher educational attainment 

(Figure 3) 16. In addition to having higher obesity rates, when compared with individuals 

with a college degree or higher, individuals who did not complete high school are more 

likely to smoke (10% versus 32%), less likely to receive colorectal tests (68% versus 41%), 

have children who are more obese (9% versus 23%), and are less likely to breastfeed (75% 

versus 42%) 16.  

 

Income and wealth 

Income is often used as an objective measurement of the economic aspect of 

socioeconomic status. When included in study designs, income can be measured as 

continuous or individuals can be grouped into income categories such as above or below 

the federal poverty line. Additionally, in the United States, income can be reflected as a 

percentage of the federal poverty level. The federal poverty level is determined each year 

by the United States Census Bureau. This measurement is calculated by determining the 

minimum cost of a food diet (for individuals or families) and multiplied by three to account 

for other expenses 17. An individual’s or family’s poverty level is determined by 
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incorporating their earnings, which include: unemployment compensation, workers’ 

compensation, Social Security, public assistance, veterans’ payments, survivor benefits, 

pension, interest, rents, royalties, trusts, education assistance, alimony, child support, and 

any other sources of income 17. The federal poverty level changes each year.  

In the United States, many health outcomes follow an income gradient, with 

individuals in the lowest income categories having the worst health. Examples of this 

association between lower income and poorer health can be seen in children with asthma 

(Figure 4), depression prevalence (Figure 5), and middle age adults with two or more 

chronic diseases (Figure 6) 16. This relationship is also observed in dental outcomes; when 

compared to individuals living at or above 400% of the poverty level, individuals living 

below the federal poverty level are less likely to take their children to the dentist (84% 

versus 70%) and more likely to lose their natural teeth by age 65 or older (41% versus 

11%) 16. While these are just some examples, this relationship has been observed for 

dozens of health outcomes and behaviors.  

Homelessness is also an important aspect of socioeconomic status. The relationship 

between homelessness and health is bidirectional; poor health can lead to homelessness and 

homelessness can lead to poor health 18. Individuals who are homeless may have mental 

health and/or other debilitating disorders which, in addition to lack of social and economic 

support, can lead to their homelessness 18. Chronic, financial, and emotional stress suffered 

as a result of high poverty levels, in addition to the lack of proper healthcare, can lead 

individuals to develop mental illness 18. Individuals who have experienced homelessness 

have an exceptionally high burden of poor health outcomes 19; therefore, identifying these 

individuals is important and must be considered when studying health.  

 

Occupation 

Another useful measure of socioeconomic status is occupation, which can be 

utilized as an indicator of income or occupational prestige. Occupational prestige is a scale 

to describe how respected occupations are by society. Occupational prestige tends to 

positively correlate with income 20. An important aspect captured by occupational prestige 

is the level of respect individuals perceive from others. Higher occupational prestige is 

correlated with better health outcomes and often the correlation between occupational 
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prestige and health outcomes is stronger than the correlation between income and health 

outcomes 20. One example of occupational prestige scores is determined from a National 

Opinion Research Center (NORC) survey where respondents were asked to rank 

occupations according to their prestige. In the survey, respondents are presented with a 

ladder, similar to the ladder used when determining subjective socioeconomic status. 

Respondents are then given cards with individual occupations listed on them and asked to 

place the cards on the ladder, with the highest rung representing the most respected 

occupations in society and the lowest rung representing the least respected occupations 20. 

Higher occupational prestige is positively associated with better self-rated health20; 21. 

 

Health insurance 

In the United States, health insurance coverage is a major determinant of access to 

healthcare 22. Individuals who lack of health insurance are less likely to receive 

preventative medical care and needed care for chronic conditions, and are more likely to 

die prematurely from cancer or acute conditions such as heart attack or trauma 22.  Due to 

this association, it is important to consider health insurance coverage when assessing the 

relationship between socioeconomic status and health outcomes. A lack of health insurance 

is associated with poverty level for both children and adults in the United States (Figure 7) 

16. Furthermore, individuals who are less likely to have insurance due to poverty are more 

likely to delay needed medical care due to cost: 25% of individuals living below the 

poverty line delay care, versus only 6% of individuals living above the poverty line 16. 

Medicaid, like occupation, can serve as a useful proxy for low-income level. In 

order to qualify for Medicaid assistance, households must have a maximum income at or 

below 133% of the federal poverty level23; the federal poverty level in 2016 for a 

household of four was $24,250. Thus Medicaid information can provide an upper limit of 

income for those receiving Medicaid, which is an important aspect of socioeconomic 

status. 

 



 

 9    

Socioeconomic status, health and race 

Racial health disparities 

Racial disparities in health are differences in the burden of illness and mortality 

among racial groups 24. The dramatic disparities experienced by black and other minorities 

are well documented in the 1985 Report of the Secretary’s Task Force on Black and 

Minority Health and led to the development of expansive goals for improving minority 

health and the Office on Minority Health 24. As race is a social construct with biological 

implications which is influenced by many factors, including an entanglement with 

socioeconomic status, it is vital to recognize the socioeconomic status differences that can 

exist between racial groups and to incorporate these measurements into studies of health 

outcomes with racial health disparities.  

 

Differences in socioeconomic status for racial groups 

Racial differences in wealth within the United States are extreme; for every $1.00 

that whites have in wealth, Asians have $0.83, Hispanics have $0.07, and blacks have 

$0.06 10. For example, 23% of black individuals are living below the 100% poverty level 

versus 9% of white individuals 16. Both black men and women have lower life expectancies 

when compared with whites of the same sex:  79.2 years for white men versus 72.0 years 

for black men, and 84.0 years for white women versus 78.1 years for black women 24. 

Across racial groups, the percentage of adults in poor or fair health decreases for each 

increase in educational attainment. For example, 45% of black adults with less than a high 

school diploma report having fair/poor health, versus 29% of black adults with a high 

school diploma, 21% of black adults with some college, and 11% of black adults with a 

college degree or higher. This trend is similar in white adults, however the percentage of 

individuals in each education group with poor or faith health is lower when compared with 

black adults. Of whites with less than a high school education, 40% report poor or fair 

health. 19% of whites with a high school degree, 15% of whites with some college, and 5% 

of whites with a college degree or higher report poor or fair health 25. This trend is 

observed in other underrepresented groups as well, including Hispanic and Asian 

populations 25. In addition to life expectancy and self-reported health, racial disparities also 

exist for health outcomes such as preterm births (Figure 8) and hypertension (Figure 9) 24. 



 

 10    

Beyond health outcomes, there are also large racial differences in receipt of healthcare. 

Black and Hispanic populations are more likely to be uninsured and less likely to receive 

needed dental care 24.Thus, racial differences exist in health outcomes and healthcare, even 

at similar levels of socioeconomic status.  

 

Use of socioeconomic status in studies of racial health disparities  

Due to racial differences in health outcomes as well as socioeconomic factors, 

measurements of socioeconomic status should be included when studying any health-

related issue with observed racial differences. Typically, in genetic studies, race/ethnicity 

or genetic ancestry (a measurement of the population origin of genetic variants in an 

individual) are included in statistical models in order to avoid population stratification. The 

potential association of race/ethnicity with both socioeconomic status variables and health 

outcomes could lead to confounding by socioeconomic status in these genetic association 

studies. Consequently, it is possible that any associations between genetic ancestry and 

disease could actually reflect an association between socioeconomic status and disease. 

Race can also be a proxy for other environmental factors, such as racism, beyond 

socioeconomic status. By including socioeconomic status in studies of health outcomes, we 

can further elucidate the environmental factors affecting health and disentangle this 

complex relationship between social environment, genetics, and health.   

 

Socioeconomic status in genetic studies 

 

Gene-environment interactions 

A gene-environment interaction is defined as “a different effect of an 

environmental exposure on disease risk in persons with different genotypes or a different 

effect of genotype on disease risk in persons with different environmental exposures” 26. 

There are five potential models for how gene-environment interactions may affect biology 

(Figure 10). Model A describes an interaction where the genotype produces or increases 

expression of a disease risk factor that can also occur environmentally (Figure 10) 26. In 

model B, the risk genotype can exacerbate the effect of an environmental exposure, but 

individuals with the risk genotype and without the environmental exposure are not affected 



 

 11    

(Figure 10) 26. Model C describes situations where the environmental exposure exacerbates 

the effect of the genotype, but individuals with the low risk genotype are not affected by 

the exposure (Figure 10) 26. In model D, the genotype and the exposure are both needed to 

increase the risk of the poor outcome (Figure 10) 26. Finally, in model E, the environmental 

exposure and the genotype can both contribute to risk; however the presence of both in an 

individual can either increase or decrease the risk (Figure 10) 26.  

Socioeconomic status can serve as a proxy for many types of environmental 

exposures including increased stress due to lack of resources, lack of medical care, 

exposure to environmental toxins, lack of access to healthy foods and other pathways 13; 14. 

There are four general mechanisms as to how socioeconomic status can moderate genetic 

effects: an individual’s biological response to stress can be affected by genes, genes can 

affect how an individual adapts to the social environment, inherited characteristics can help 

make an individual more suited for certain environments, and inherited characteristics may 

only display in some environments 27. It is important to note that the interpretation of 

interactions must be carefully considered as socioeconomic status is a broad category and 

can be representative of many factors such as stress due to low resources or financial strain.  

 

Socioeconomic status in genetic studies of racial health disparities  

Despite the overwhelming evidence that socioeconomic status affects health 

outcomes, measurements of socioeconomic status are not often included in genetic studies 

of disease and racial disparities. The lack of inclusion of socioeconomic status data may be 

due to the lack of available data in existing cohorts, as well as the additional time and 

resources it takes to collect socioeconomic status data for new studies. Even with the 

challenges, socioeconomic factors must still be included in studies of health outcomes with 

racial differences. In addition to the potential confounding by socioeconomic status that 

may occur due to the association of race/ethnicity with both socioeconomic status and 

health outcomes in the United States, factors represented by socioeconomic status have the 

potential to modify the effect of genetic variants on health outcomes as well as be the cause 

of health outcomes or health disparities. Therefore, the biology of disease is likely to be 

misunderstood without the inclusion of socioeconomic status data in association studies. 
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Blood pressure and hypertension 

 

Blood pressure is defined as the force of blood pushing on arteries as the heart 

pumps blood. Systolic blood pressure is the force when the heart contracts when pumping 

blood. Diastolic blood pressure if the force of the blood when the heart is at rest 28. Normal 

blood pressure for adults is defined as less than 120 mmHg for systolic blood pressure and 

less than 80 mmHg for diastolic blood pressure. Blood pressure varies throughout the day 

and can be affected by physical activity, sleep, stress and other factors.  

Hypertension is a common disease defined by high blood pressure, affecting over 

one billion people throughout the world today 29. Hypertension is defined as blood pressure 

higher than 120/80 mmHg. In the United States, hypertension is characterized by three 

stages: prehypertension, high blood pressure stage 1, and high blood pressure stage 2 28. 

Prehypertension has a range of 120-139 mmHg for systolic blood pressure or 80-89 mmHg 

for diastolic blood pressure. Stage 1 has a range of 140-159 mmHg for systolic blood 

pressure or 90-99 for diastolic blood pressure. Stage 2 is defined as systolic blood pressure 

of 160 mmHg or higher or diastolic blood pressure of 100 mmHg or higher 28. A diagnosis 

of hypertension typically requires five measurements of clinically measured high blood 

pressure, as patients tend to have higher blood pressure in the clinic due to stress or illness 

30.  

The prevalence of hypertension in the United States increases with age, with 

individuals 60 years of age and older having the highest prevalence 31. Non-Hispanic black 

men and women have a roughly 15% higher prevalence of hypertension than other racial 

groups in the United States 31. While the overall prevalence of hypertension has not 

changed much in recent years, the percent of individuals with controlled hypertension has 

increased from 31.5% of adults in the United States in 2000 to 54% in 2014 31. Controlled 

hypertension indicates individuals with hypertension whose blood pressure measurements 

are below 140 mmHg for systolic blood pressure and 90 mmHg for diastolic blood pressure 

due to medication use. Despite the increase in controlled hypertension, underrepresented 

individuals with hypertension are less likely to have their hypertension under control when 

compared with whites; 55.7% of white individuals have their hypertension under control, 
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compared with 47.5% of black individuals, 43.5% of Asian individuals, and 47.4% of 

Hispanic individuals 31.  

 

Effect of hypertension on health 

While hypertension in itself is a serious health problem, it can also lead to other 

life-threatening conditions including myocardial infarction, cardiac failure, and kidney 

disease 29. As a result of the higher prevalence of hypertension among African Americans, 

they face a larger disease burden of comorbidities and conditions resulting from 

hypertension, such as stroke, heart failure and end-stage renal disease 32, as well as a three 

times higher death rate due to hypertension 29. 

 

Genetics of blood pressure  

Genome wide association (GWA) studies, to date, have led to the discovery of 

numerous genetic variants that may be contributing to blood pressure. The majority of 

these studies are in populations of European ancestry. Within this group, GWA studies 

have identified 83 loci associated with blood pressure, hypertension, or pulse pressure 33-35 

33; 36-38. Additional studies have also been conducted in Asian populations. These GWA 

studies have identified a total of 23 loci associated with blood pressure or hypertension 39-

43.  

The first GWA study of hypertension in a black population (N=1,017) identified 

five loci associated with systolic blood pressure 29; however, these findings were not 

replicated in a later study 44. Another GWA study replicated three single nucleotide 

polymorphisms (SNPs) previously associated with blood pressure in Europeans in a black 

population 32. An additional study in black adults using admixture mapping identified a 

locus that was significantly associated with systolic blood pressure and diastolic blood 

pressure in both an initial dataset and a replication dataset 45.   

A more recent GWA study of BP in a black population performed a large meta-

analysis including 29,378 individuals of African ancestry, as well as multi-ethnic 

replication cohorts, to find five additional loci that were significantly associated with either 

SBP or DBP across the cohorts studied 46. This same dataset was used in a meta-analysis of 

the correlated traits SBP, DBP, and hypertension where four loci were significantly 
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associate with blood pressure 47. One of the more recent publications involved the use of 

three biobanks: Genetic Epidemiology Research on Adult Health and Aging (GERA), 

International Consortium for Blood Pressure (ICBP), and the UK Biobank (UKB). This 

large study identified (and replicated) 75 novel loci associated with blood pressure across 

these cohorts which consisted of multiple ancestral populations 48. The most recent study to 

date conducted a large meta-analysis of 21 GWA studies, consisting of 31,968 individuals 

of African ancestry and a validation with 54,395 individuals from multi-ethnic studies49. 

This study found nine loci with eleven independent variants which associated with either 

systolic or diastolic blood pressure, hypertension, or combined traits. Among these 

associations, four variants were only common in African ancestry populations49.    

These GWAS-identified SNPs range in effect size from -1.0 mmHg to 3.28 mmHg. 

Despite these studies, the percent of variance explained by GWAS-identified SNPs to date 

is only around 25%50. Although these studies have utilized large populations and found 

many variants contributing to blood pressure in black individuals, none have controlled for 

or included socioeconomic status information within their analyses, but instead only 

control for variables such as age, sex, and principal components of genetic ancestry.  

Due to the high health impact of hypertension, as well as the high heritability 

estimates of 30-70% 51, the genetics of blood pressure remain an important area of 

investigation. Although some of these SNPs have been confirmed to contribute to the 

estimated heritability of blood pressure, they still do not explain the total estimated 

heritability, resulting in a mystery of “missing heritability” 51. The “missing” heritability 

estimates may be explained, in part, by other factors, such as socioeconomic status, that 

interact with genetic variation and contribute to the variance observed in blood pressure. 

Recent genetic studies of blood pressure and hypertension in black populations have 

focused only on demographic and medical factors that can affect blood pressure such as 

age, sex, body mass index (BMI), genetic ancestry and medications prescribed for 

hypertension 29; 32; 44; 46. In general, these studies have identified a small number of SNPs 

that appear to contribute minimally to trait variance in blood pressure. 
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Socioeconomic status and blood pressure 

 

Use of socioeconomic status in genetic studies of blood pressure 

Low socioeconomic status is strongly associated with hypertension and related 

cardiovascular comorbidities and mortality 13; 52-57. However, among the blood pressure 

and hypertension GWA studies conducted to date, only one has included any 

measurements of the social environment, which was in the form of education 58. This 

neglect of socioeconomic status continues among genetic studies, despite the fact that 

numerous epidemiologic studies have found that social environment, specifically 

socioeconomic status, is associated with blood pressure and hypertension 13; 52-57; 59. 

Education and income gradients are inversely correlated with markers of cardiovascular 

disease risk, including hypertension, such that people with lower education and lower 

income have a higher risk of hypertension 13.  

Socioeconomic status may potentially affect blood pressure through a number of 

pathways including access to healthcare services, knowledge, awareness of hypertension as 

a disease, exposure to environmental hazards and stressors, limited financial resources, and 

less familial and social support 13; 14. Many of these pathways can lead to an individual 

experiencing chronic stress. Genetic variants can potentially influence an individual’s 

biological response to chronic stress via stress response pathways. Therefore, these variants 

can affect the biological outcomes of exposure to different levels of socioeconomic status. 

Without the inclusion of socioeconomic status in genetic studies, we cannot elucidate the 

relationship between social environment and biological outcomes such as hypertension.  

 

Blood pressure and gene-environment interactions 

Within the past few years, studies have begun to examine interactions of 

environmental and demographic factors with genetic variants to determine if interactions 

account for a larger part of the heritability of blood pressure. Investigations have examined 

interactions between SNPs associated with blood pressure and age, alcohol consumption, 

smoking, and education in European ancestry populations 58; 60-62. Together these studies 

identified a total of 31 novel loci significantly associated with blood pressure by testing for 
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interactions between the environmental and demographic variables and the SNPs. These 

results indicate that investigation of gene-environment interactions holds promise in 

contributing to the knowledge of blood pressure etiology. One study investigated 

interactions between genetic factors and education, by examining 487,988 SNPs in the 

Framingham Heart Study 58. Despite using only one limited measure of socioeconomic 

status, completion of high school or the completion of college, the study identified novel 

SNP x education interactions associated with blood pressure58. The effect sizes of these 

interactions ranged from -5.40 mmHg to 5.50 mmHg. Previous studies of blood pressure in 

the Framingham Heart Study had not detected the associations with the variants that were 

found when examining education-SNP interactions, suggesting that accounting for gene-

environment interactions may reveal novel genetic associations with blood pressure. The 

Framingham study focused on white individuals, and only included a limited measure of 

the social environment. Investigating genetic interactions with more comprehensive 

measures of socioeconomic status, as applied to more diverse populations, has yet to be 

explored.  

 

Potential models for gene-socioeconomic status interactions 

In the case of gene-socioeconomic status interactions, there are several possible 

models to explain how an interaction may function in the case of hypertension 26 (Figure 

11). In model I, a genotype may exacerbate the effect of the exposure, in this case, low 

socioeconomic status. Under this model, there may be a variant which further increases a 

person’s risk of developing hypertension beyond the expected increase due to exposure to 

low socioeconomic status. When a person who has the risk variant is not exposed to low 

socioeconomic status, they would not have an increased risk of hypertension. Also under 

this first model, there could be an interaction in which the genotype suppresses the effect of 

the low socioeconomic status exposure. In model II, the exposure to low socioeconomic 

status and the risk genotype can both have a main effect on disease risk; however the risk 

may be higher if both occur together in one individual. Therefore, having both a risk 

genotype and exposure to low socioeconomic status could lead to an even greater risk of 

hypertension than either factor alone. Under this model, there is also the possibility that a 

genotype may interact with the exposure to reduce the risk of hypertension in individuals; 
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for example if an individual is exposed to low socioeconomic status but has normal blood 

pressure, the genotype may have a protective effect. In this model, both the genotype and 

the exposure have individual effects that can be combined to affect risk.   

 

 

Summary 

 

The scientific contribution of this project will be significant because it attempts to 

address the missing heritability of blood pressure in a population that has a high disease 

burden of hypertension. This research examines how the social environment, in the form of 

socioeconomic status, is contributing as a main effect and how it may interact with genetics 

to influence variation within blood pressure. Analyses of the interaction between genetics 

and social environment will lead to a better understanding of the etiology of hypertension. 

This information will be invaluable for motivation for social change or interventions to 

address socioeconomic disparities. Improved awareness of the biology of hypertension can 

lead to enhanced prevention, treatment, and decreased mortality for the high percentage of 

people within the United States that are affected. It is also likely that other common 

diseases are affected by socioeconomic status and gene-environment interactions. This 

research lays the groundwork to increase access to socioeconomic status information, and 

demonstrates the importance of incorporating this data into genetic studies of other 

common diseases.   
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Figure 1 

Model of pathways by which socioeconomic status affects health. Modified from 11.  

Socioeconomic status can affect many realms in a person’s life, but in general the effect on 

environment and psychology are two main pathways for influencing health outcomes.  
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Figure 2 

Socioeconomic status encompasses five realms which can affect health: economic stability, 

education, health care, neighborhood environment, and social context. Modified from15.   
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Figure 3 

Obesity among adults 25 years and older by sex and education level: United States 2007-

2010. Modified from 16.  
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Figure 4 

Current asthma among children under 18 years, by race/ethnicity and percent of poverty 

level, 2009-2010. Modified from16. 
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Figure 5 

Depression among adults 20 years of age and over by percent of poverty level, 2005-2010. 

Modified from16.  
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Figure 6 

Adults between the ages of 45 and 65 years with two or more chronic health conditions by 

percent of poverty level, 2009-2010. Modified from 16.  
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Figure 7 

Adults between the ages of 18 and 64 years without health insurance coverage by percent 

of poverty level and race/ethnicity, 2000-2010. Modified from 16.  
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Figure 8 

Preterm births by gestational age and race/ethnicity of mother, 2014. Modified from 24.  
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Figure 9 

Hypertension among adults age 20 years and older, by sex and race/ethnicity, 2011-2014. 

Modified from 24. 
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Figure 10 

Potential gene-environment interaction models. Modified from 26.  
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Figure 11 

Potential models for the interaction between genotype and socioeconomic status which 

may affect hypertension.  
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CHAPTER TWO  

 

 

DEVELOPMENT OF ALGORITHMS TO EXTRACT SOCIOECONOMIC STATUS 

VARIABLES FROM ELECTRONIC HEALTH RECORDS 

 

 

Introduction 

 

Socioeconomic status in research 

As evidence demonstrates in the previous chapter, socioeconomic status is an 

important contributor to health outcomes and therefore must be included in studies of 

health. There are many different methods for examining socioeconomic status including at 

the individual, family, and neighborhood level. To date, socioeconomic status is typically 

captured by researchers through survey methods or utilizing government resources such as 

census data. Survey methods are useful in that investigators can be specific and 

comprehensive when collecting socioeconomic status information. However, collecting 

survey data from large populations can take a lot of time and be very expensive. These 

methods are also not very useful on existing large datasets. The use of census information 

to measure socioeconomic status is only useful if address or other location information for 

the participant is included in the study data. The movement to de-identified data in order to 

protect participants makes it impossible to utilize census level data to measure 

socioeconomic status.  

 

Socioeconomic status data within electronic health records  

The use of electronic health records (EHRs) for research purposes is becoming 

increasingly prevalent. The Health Information Technology for Economic and Clinical 

Health (HITECH) Act of 2009 promoted the adoption of EHRs by clinical centers63. The 

increasing adoption of EHRs created a potential resource for large-scale epidemiological 

analyses. With the announcement of the Precision Medicine Initiative, now called All of 

Us, and its goal of recruiting one million participants with biological, environmental, and 
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EHR data, the research use of EHRs is anticipated to increase 64. EHRs provide an 

attractive resource for biomedical researchers for many reasons, including their rich 

phenotypic and longitudinal data, as well as the lower cost of participant recruitment versus 

a traditional observational epidemiology study. Additionally, clinical biobanks that contain 

biological samples linked to EHRs are becoming an invaluable resource for conducting 

genetic epidemiology studies. Currently, the focus of EHR algorithms has been extracting 

clinical phenotype information for disease-focused study designs. When examining 

algorithm depositories such as PheKB, it is clear that the emphasis on EHR algorithm 

development has been disease phenotypes for case-control studies. Generally, these 

phenotype algorithms have been developed utilizing a combination of ICD-9 billing codes, 

CPT procedural codes, medication lists, laboratory and clinical values, and natural 

language processing. Despite the potential for EHRs in research settings, these clinical data 

repositories currently have noted deficits in the availability and completeness of important 

social and environmental data 65, including socioeconomic status, that are known to 

contribute independently to health status and could modify genetic effects 58. 

In recognition of the importance of formally and systematically capturing social 

and behavioral measures in the EHR, the Institute of Medicine (IOM) recently 

recommended socioeconomic status measures, specifically educational attainment, 

financial resource strain, and neighborhood median household income be included in the 

EHR. The committee also recommended that a plan be developed by the NIH to expand the 

research use of EHRs to include social and behavioral data. Adoption of these 

recommendations will take time, and may not be universal across medical centers; 

therefore, there is a need to develop approaches and methods to access existing 

unstructured socioeconomic status data within the EHR for research purposes. 

Socioeconomic status data are almost entirely found within the free text clinical notes 

written by providers. We developed an approach for extracting available socioeconomic 

status information from the free text of a de-identified EHR. These algorithms will 

facilitate the immediate extraction of key socioeconomic status information from de-

identified clinical biobanks for incorporation into future biomedical research.  
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BioVU 

BioVU is the DNA biobank of the Vanderbilt University Medical Center (VUMC) 

linked to de-identified EHRs. DNA samples are extracted from discarded blood samples 

drawn for routine clinical care 66. Sample collection began in 2007. When samples were 

first collected, patients were required to opt-out of BioVU. During their clinical visits, 

patients were presented with a consent form where they would need to indicate that they 

did not want to be in BioVU if they did not want their sample included in the biobank. As 

of 2015, BioVU has switched to an opt-in model where patients must indicate that they 

would like to be included in BioVU in order for their sample to be eligible. DNA samples 

are linked to the Synthetic Derivative (SD), the de-identified version of the VUMC EHR, 

by a unique study ID. Medical records within the SD are scrubbed of all Health Insurance 

Portability and Accountability Act (HIPAA) identifiers such as names, locations, zip codes, 

and social security numbers. Dates within each SD record are shifted to prevent re-

identification of the records. Date shifting is consistent within a single patient’s record. As 

previously described 67, data from BioVU are de-identified in accordance with provisions 

of Title 45, Code of Federal Regulations, part 46 (45 CFT 46); consequently, this study is 

considered non-human subjects research by the Vanderbilt University Institutional Review 

Board.  

 

Methods 

 

Population 

The study population included all racial/ethnic minority patients ≥18 years old 

participating in BioVU as of 201168. These patients were selected in order to explore the 

genetic variation within non-white populations, as the vast majority of large-scale genetic 

studies to date have focused on white populations69. The EHRs used for the development 

of the algorithms were updated in 2015 to include current information. Race/ethnicity is 

reported by the provider in BioVU and strongly correlated with genetic ancestry 70; 71. The 

majority (81%) of patients in the dataset are black individuals. And the mean age is 50 

years as of 2015 (Table 1). The mean number of clinic visits within the population in a 
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patient’s EHR record is 40.45 visits, and the mean number of days between patients’ first 

and last visit within the EHR is 2,340 days (Table 1).  

  

Development of algorithms 

The goal is to develop algorithms to extract socioeconomic status information from 

structured and unstructured text in the de-identified EHRs. Seven algorithms were 

developed to extract education level, occupation, unemployment, retirement, insurance 

status, Medicaid status, and homelessness (Table 2). The initial development of the 

socioeconomic status algorithms began with a manual review of both structured and 

unstructured data within the de-identified EHR of 200 randomly selected minority patients 

to identify the following: 1) the categories of socioeconomic status information most 

frequently mentioned, 2) where in the EHR this information is noted, and 3) the semantic 

language used by clinical providers for socioeconomic information (Figure 12). The 

manual review revealed that the socioeconomic status data were found exclusively within 

the unstructured free text of the clinical notes, social history, and clinical communications. 

It was also noted that the most frequently mentioned semantic categories were 

employment, education, insurance status, and homelessness, and thus these categories were 

chosen for extraction. Semantic tags for each category were selected if they appeared more 

than once within the 200 development records.  

 

Employment 

Employment information was extracted using three different algorithms designed to 

capture data on occupation, unemployment, and retirement. The occupation algorithm 

extracts the occupation mentioned in a patient’s record and translates it to an occupational 

prestige score (scale 0-100). This score represents how well-respected an occupation is 

within a society (i.e., subjective socioeconomic position). Occupational prestige scores 

were developed from a National Opinion Research Center (NORC) survey where 

respondents were asked to rank occupations according to their prestige 72. The occupation 

tags utilized for the occupation algorithm were adopted from the most recent NORC report 

72. The algorithm’s occupation tags were shortened to 678 occupations from the original 

NORC list of 860 occupations given that some of the occupations were highly specific with 
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repetitive occupational prestige scores. As an example, “teacher, elementary school” and 

“teacher, secondary school” were collapsed to “teacher.”  

The occupation algorithm was used to search the unstructured data of the original 

200 patients for the initial occupation tags. This search identified a large number of false 

positives, where the algorithm tagged occupation-related words that were not indicative of 

the patient’s occupation, which we referred to as “false positives”. In this case, false 

positive refers to the inaccurate identification of socioeconomic status information by the 

algorithm. Several methods were used to filter these false positives. The first attempt 

removed any occupations that had more than 10 false positive entries. When this method 

was utilized, over half of the occupation tags were lost and only a minor set of occupation 

information was identified. This small dataset still had a high number of false positives. 

The second method was inclusion of prefix language filters. With this approach, the list of 

678 occupations was used and 10 prefixes were added: is a, is an, works as, works in, 

works at, occupation, is the, as a, as an, former. These prefixes were selected based on 

previous occupation algorithm results where a random selection of 200 results were 

reviewed, accurate patient occupations were identified based on the context of the clinical 

note, the prefix language that was used by providers was noted, and then the prefix was 

added to the occupation list. Once this list was developed, the occupation algorithm was 

implemented by requiring results to be identified as a patient’s occupation only if one of 

the prefixes was found in front of the occupation word. This method reduced the number of 

false positives; however, 75% of the original occupation data was lost.  

The third method included reviewing an additional selection of the occupation 

results from the first method (without the use of prefixes) for additional prefix language. 

After further review of a random set of 200 records, 15 additional prefixes were added: 

social history, retired, she is a, she is an, he is a, he is an, was a, was an, used to be, 

assistant, pt is, patient is, employment, employed, employ. The occupation algorithm was 

implements and one prefix was required to be present before an occupation tag in order for 

the algorithm to identify the occupation as the patient’s occupation. With this method, the 

number of results increased, while maintaining a low number of false positives. However, 

only a fraction of the results from the initial search were identified (Method 1). 



 

 34    

In the fourth method, modifications were made to the occupation list that required 

the use of the prefixes. In this method, the assumption was that only occupations related to 

the medical field would require a prefix. It was assumed that these occupations were likely 

to have the highest rate of false positives, as medical occupations are frequently mentioned 

in a patient’s health record when related to the patient’s care. Therefore, the occupation 

algorithm was run with two separate groups: a list of occupation tags that did not require a 

prefix and a list of occupation tags that required a prefix. This method greatly increased the 

number of results, but it also slightly increased the number of false positives. 

The final method that was used increased the number of occupations on the list 

which required the use of a prefix. After a review of the false positives from the fourth 

method, it was noted that there were additional occupations that had not been classified as 

medical occupations, which appeared in the patient’s record when related to the patient’s 

care. Medical occupations were added to the list of occupations which required a prefix. 

After running these results, the balance between number of results and number of false 

positives was optimal. There were still a small number of false positives, but much fewer 

than some of the earlier methods, while still maintaining a large number of results.  

Unemployment data were extracted using semantic tags for unemployment (e.g., 

“unemployed,” “does not work,” “hasn’t worked since”). The unemployment algorithm 

was then tested on the unstructured data from the 200 records used for development, and a 

high number of false positives were returned. These false positives were often in reference 

to medications. Therefore the tags “if this does not work” and “if that does not work” were 

excluded to filter false positives. The addition of these tags essentially eliminated the false 

positives from the results. Unemployment was classified as ever/never (Table 2). 

Retirement was also extracted from the EHR using the tag “retired” and classified as 

ever/never (Table 2). The tag “retired” accurately extracted patients who were identified as 

retired within their health record, without the need for additional filtering.  

 

Education 

The education algorithm was designed to assign education level to a patient based 

on the highest education achieved and recorded in the EHR. The first method to classify 

education levels focused on searching for the term “education:” and then classifying a 
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patient’s education based on what came after that tag. However, this method lead to a large 

number of false positives, due to the other types of education found within the EHR such 

as diet and dialysis education. Additionally, this method missed a lot of the education 

information that was in the EHR because the majority of education information is found 

within the narrative of the provider notes, rather than a list format.  

For the second method, a different approach was taken. Education levels were 

assigned to each relevant tag word or phrase found in the unstructured text of the EHR 

(Table 2). Sixty-two semantic tags were utilized and the highest level of education was 

determined for each patient. These tags were exclusive to an assigned education level. For 

example, the high school degree category of education level included tags such as “high 

school graduate” and “completed 12th grade,” while the bachelor’s degree category 

included terms such as “BS degree” and “completed college.” The levels of education were 

based on U.S. census definitions with one modification such that all grade levels below 

high school graduate were collapsed into a “less than high school” category. Searches were 

conducted through the unstructured text of the 200 records used for development to 

determine if further filtering or modification was needed. Fifteen additional tags were used 

to filter false positive results related to types of medical education (e.g. “diet education,” 

“dialysis education”) and Vanderbilt Medical School students (e.g., “medical student,” 

“pharmacy student,” “student nurse”).  

 

Insurance status 

Due to the nature of the de-identification process of the SD, specific insurance 

information is not included within the patients’ records. It was therefore decided to identify 

patients who did not have insurance and those who are on Medicaid, as this information is 

likely to be found within the SD and also associated with health outcomes.  

The extraction process for insurance status required two algorithms. The first 

algorithm was used to determine if there was any time point in the EHR when the patient 

did not have insurance based on the presence of five semantic tags (Table 2). These tags 

included “no insurance” and “does not have insurance.” Some language was eliminated, 

mainly words that were used in a standard discharge letter at VUMC and therefore 

appeared frequently in the EHR. This discharge letter included a generic set of instructions 
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for patients who may not have insurance or were on Medicaid. The exclusion of the 

language in the discharge letter allowed for a large reduction in the number of false 

positives.  

A second insurance algorithm extracted Medicaid information using specific 

phrases or keywords such as “Medicaid” and “TennCare” (Tennessee’s version of 

Medicaid) and was classified as ever/never in order to determine if a patient was ever on 

Medicaid in their EHR (Table 2).  

 

Homelessness 

Homelessness information was extracted using the tags “homeless” and “shelter” 

among the 200 development EHRs. After this search, several false positives were returned 

relating to patients who worked or volunteered at homeless shelters. Therefore, exclusion 

tags were added such as “volunteer at homeless shelter,” “works at homeless shelter,” 

“works with homeless,” and “animal shelter.” Homelessness was classified as ever/never 

(Table 2). 

 

Evaluation of algorithm performance 

To evaluate the performance of these socioeconomic status algorithms, results were 

compared to findings from a manual review of 50 randomly selected patients. These 50 

individuals were selected using random sampling without replacement. Two independent 

reviewers manually reviewed the clinical record of each patient and any discrepancies were 

resolved by discussion between the two reviewers. Comparison of results from the two 

independent reviewers was quantified using percent positive agreement, percent negative 

agreement, and kappa statistics for each of the seven categories and subcategories: 

education level, occupation, unemployment, retirement, uninsured, Medicaid, and 

homelessness. The manual review of 50 records was then compared to the algorithm results 

for each of the seven categories and subcategories. Sensitivity, specificity, and positive 

predictive value were estimated. The chi-square statistic was used to determine if the 

algorithms performed differently across racial/ethnic populations. 
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Results 

 

Population characteristics 

Among the total study population (N=9,977), at least one type of socioeconomic 

status information was extracted from 8,282 (83.0%) individuals. Additionally, education 

information for 3,780 individuals and occupation information for 7,296 individuals (Table 

3) was also extracted. For the remaining categories, it was determined whether an 

individual was unemployed, retired, uninsured, on Medicaid, or homeless at any point in 

his or her record. Of the total population for which socioeconomic status data (n=8,282) 

was extracted, 1,978 individuals were unemployed, 1,742 individuals were retired, 1,839 

individuals were uninsured, 1,865 were on Medicaid, and 318 were homeless at least one 

time in their EHR (Table 3). For each of the seven categories, the algorithms returned 

socioeconomic status information for a higher percentage of black patients than Hispanic 

or Asian patients (p<0.00001).  

The five most frequently extracted occupations among those having occupation 

information (n=7,296) were manager, nurse, Army, manufacturer, and restaurant 

employee. Within the population with education information (n=3,780), the vast majority 

of individuals had a high school degree (n=2,066), followed by individuals without a high 

school degree (n=492), and individuals with a bachelor’s degree (n=446).  

 

Algorithm Performance  

Prior to evaluating algorithm performance, the manual review results from the 

randomly selected records of 50 patients were compared between the two reviewers and 

any conflicts were resolved. The percent positive agreement between reviewers ranged 

from 98.0% to 100.0% and the percent negative agreement ranged from 94.7% to 100.0%. 

The Kappa statistic between reviewers ranged from 0.94 to 1.0.  

Once all reviewer discrepancies were resolved, the manual review results were used 

as the gold standard and compared to the algorithm results. All the algorithms, with the 

exception of occupation, had high specificity levels >78%. The lower specificity for 

occupation (40%) is due to six of the ten individuals who did not have occupation 

information (as identified by manual review) but were identified as having occupation 
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information by the algorithm. All the algorithms had high sensitivity levels (above 70%), 

with the exception of education level (66.7%) (Table 4). The lower sensitivity for 

education is driven by eight individuals who have an education level that was identified by 

manual review but not by the algorithm. The lower sensitivity for unemployment is due to 

the six individuals who were identified as unemployed by manual review but not by the 

algorithm. PPV values across the algorithms ranged from 23.1%-87.5%. The lower PPV 

for the retirement algorithm (63.6%) is due to the four individuals identified as retired by 

the algorithm but not retired by the manual review (Table 4). The low PPV for the 

uninsured algorithm (23.1%) is due to the ten individuals who were identified as uninsured 

by the algorithm, but not by manual review. The low PPV for homelessness (33.3%) was a 

result of the fact that the manual review only identified one patient with homelessness in 

his or her record, whereas the algorithm misidentified two others.  

 

Missing data 

Of the total population (n=9,977), the algorithm was not able to extract any 

socioeconomic status information for 1,695 individuals (17.0%). Of this group, there were 

1,193 blacks, 309 Hispanics, and 193 Asians. Missing socioeconomic status data were 

more common among Hispanic and Asian individuals than among black individuals 

(p<0.001). The Hispanic and Asian populations represent 10.5% and 8.5% of the total 

dataset, respectively; however, these groups represent 18.2% and 11.4%, respectively, of 

the individuals with missing socioeconomic status data. Males represent 35.8% of the study 

population and 28.0% of those without extracted socioeconomic status data. The mean age 

for the total population is 49.9 years, and the mean age for the group without extracted 

socioeconomic status information is 46.7 years.  

 

Discussion 

 

Socioeconomic status is considered a fundamental cause of disease, because it 

affects so many proximate risk factors and disease outcomes 73. It has been consistently 

associated with health outcomes such as mortality, cancer, and cardiovascular disease 74; 75. 

Despite these consistent associations, socioeconomic status data are typically not included 
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in genetic studies of health outcomes. For studies that utilize biobanks, the lack of 

socioeconomic status data is likely related to the difficulty in accessing these data within 

the EHR, where they are not usually recorded in structured fields. The algorithms 

described in this study are the first to extract these important data from EHRs for research 

purposes.  

The socioeconomic status algorithms described here focus on the extraction of data 

related to four semantic categories: occupation, education, insurance status, and 

homelessness. The occupation algorithms extracted and classified data as occupational 

prestige, unemployment (ever/never), and retirement (ever/never). The occupational 

prestige algorithm had a strong sensitivity and PPV; however, it had a low specificity of 

40% reflective of the difficulty in filtering the occupation information. Although steps 

were taken to remove false positives, it was difficult to completely eliminate all false 

positives without removing a large amount of accurate data. The unemployment and 

retirement algorithms had high sensitivity (70% and 100%) and specificity (93.3% and 

90.7%). The unemployment algorithm had the highest PPV and the uninsured algorithm 

had the lowest PPV. Both unemployment and retirement were classified as ever/never 

because the EHR only captures a snapshot of time when the patient visits the clinic. It was 

not possible to accurately capture the length of time for unemployment or retirement as the 

patient’s visits to the clinic may not reflect the length of time he or she was unemployed or 

retired. The sensitivity of the unemployment algorithm was affected by the varying 

language used to describe unemployment, which was identified in manual review but not 

consistently recognized by the algorithm (“does not work outside the home”, “used to work 

in a restaurant”). The quality of the retirement algorithm was affected by false positives 

related to the identification of words related to retirement that were used in a context 

outside of the patient’s retirement from an occupation.  

The education algorithm identified the highest level of education that a patient 

achieved over the course of their EHR. This algorithm had a high specificity and PPV, but 

a low sensitivity. The low sensitivity was due to the inability of the algorithm to detect 

variations in education level compared with the manual review. The variation in language 

used by clinical providers made it difficult to include every mention of education while still 

maintaining some level of precision. For example, some of the Vanderbilt Medical School 



 

 40    

students were excluded (“medical student,” “pharmacy student”) because of the frequent 

mention of these terms in the EHR related to patient care, rather than education level. The 

reviewers were able to infer education level based on occupation and context clues as well 

as identify the medical school students, while the algorithm was not able to do so. The 

algorithm that identified patients who were uninsured at some point in his or her record as 

well as the homelessness algorithm each had high sensitivity and specificity, but low PPV. 

Uninsured patients are the smallest proportion of patients within VUMC, making up only 

4.7% of the patient population in 2015The low PPV of these algorithms may influenced by 

a low prevalence of uninsured patients and homeless individuals within the VUMC patient 

population. Within the randomly selected minority patient population used for evaluation, 

only four individuals were uninsured and one was homeless. These categories had the 

lowest prevalence within our evaluation dataset. The Medicaid algorithm was one of the 

highest performing algorithms, with a high sensitivity, specificity, and PPV.  

The major challenges in utilizing EHR data in a research setting include missing 

data and the inconsistencies in the recording of socioeconomic status data by clinical 

providers. While the majority of individuals within the study population had some 

socioeconomic status information, a notable percentage of individuals did not have any 

socioeconomic status information within their records (17.0%). The missing 

socioeconomic status data could be a result of the lack of recording of information by the 

provider, either due to socioeconomic status factors not being discussed in conversation 

with the patient, a low number of visits in the patient’s EHR, or the willingness of the 

patient to provide socioeconomic status information. Additionally, when variables are 

missing within a patient’s record, it cannot be distinguished whether that patient truly is 

negative for the socioeconomic status information or just missing data. For example, if a 

patient does not have an occupation listed, it cannot be assumed that they are unemployed 

because it may have not been discussed with the provider or recorded by the provider. As a 

result, true negatives and false negatives cannot be identified. The higher level of missing 

data observed for Hispanic and Asian individuals in this dataset could be a reflection of the 

fact that the algorithms are optimized for the largest racial/ethnic population within the 

dataset (i.e., black patients). 
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  The inconsistencies in the recording of the socioeconomic status data are typical 

for social and environmental exposure data contained within free clinical text 65. In the 

development of these algorithms, it was noted that providers, in general, do not follow 

patterns when recording socioeconomic status data within their notes in the EHR. The lack 

of consistent language and the numerous variations used to describe the socioeconomic 

status information made extracting this information challenging. Furthermore, algorithms 

could also be limited by the accuracy of the selected filters and tags, rather than the 

information available within the EHR. While the aim of the algorithms was to include all 

possible semantic tags, there is a possibility that some information was missed by the 

algorithms or that information was captured inaccurately due to the limitations of the 

filtering process.  

In addition to these general limitations, the algorithms developed here have specific 

limitations regarding portability. Even within the same dataset, a difference in tag retrieval 

for the socioeconomic status categories queried across the three major racial/ethnic groups 

has been noted. Additional studies are required to improve the algorithms’ performances 

and retrieval of semantic tags in multiple populations as well as within different study sites. 

Indeed, some of the tags developed here (such as “TennCare” in reference to Medicaid) are 

specific to Tennessee and will require modification to ensure portability regardless of the 

state in which the algorithms are deployed. Furthermore, these algorithms were created in a 

de-identified EHR, which required the development of a free text algorithm for insurance 

status, as the structured insurance information is considered identifying information. An 

identified EHR may have this insurance information within the structured text. However, 

the other categories of socioeconomic status information are likely to only be found within 

the free text of an identified EHR.  

Despite the many challenges faced with the extraction of socioeconomic status data 

from the EHR, these algorithms were able to successfully extract a large amount of data 

not previously accessible for research purposes. The sensitivities, specificities, and PPVs 

for the algorithms were high considering the limitations of the socioeconomic status data 

within the current EHR. Overall, these algorithms represent a first important step in 

incorporating socioeconomic status data from EHRs into precision medicine research, as 

envisioned by the Institute of Medicine and others.  
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Resources 

 

Semantic tag and filter lists for each algorithm can be found on the Vanderbilt 

University Medical Center TREAT Lung Cancer  Research Program website 

(https://medschool.vanderbilt.edu/treat-lung-cancer-program/) and the Institute for 

Computational Biology website (http://www.icompbio.net/?page_id=1654 ).  
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Characteristic N=9,977 

Sex 

    Male 

    Female 

 

3,568 (36%) 

6,409 (64%) 

Race/ethnicity  

      Black 

      Hispanic 

      Asian 

 

8,078 (81%) 

1,049 (10.5%) 

850 (8.5%) 

Age (mean, years ± SD) 49.8 ± 18.1 

Number of clinic visits (mean ± SD) 40.5 ± 55.0 

Number of days between visits (mean ± SD) 2,340 ± 1,793.1 

Table 1 

Table 1. Vanderbilt BioVU racial/ethnic minority population characteristics as of 2015.  
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Semantic category Format of algorithm output 

Occupational prestige 0-100  

Unemployment  Ever/never 

Retirement  Ever/never  

Education -Never attended 

-Less than high school 

-High school graduate/GED 

-Associate’s degree 

-Bachelor’s degree 

-Master’s degree 

-Professional degree 

-Doctoral degree 

Uninsured Ever/never  

Medicaid  Ever/ never 

Homelessness Ever/never  

Table 2 

Table 2. Variables extracted by socioeconomic status algorithms applied to de-identified 

electronic health records. 
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Figure 12 

Figure 12. Overview of the development process for the socioeconomic status algorithms. 

The creation of the socioeconomic status algorithms took place over three steps: 

development, evaluation, and application. Development involved the identification of 

categories and tags, followed by refinement. Evaluation involved the comparison of 

manual review results to algorithm results in order to determine a sensitivity and 

specificity for each algorithm. Application involved applying all of the algorithms to the 

full dataset of individuals.  

 

 

 



 

 46    

Characteristics Race 

 
Black  

(n=8,078) 

Hispanic  

(n=1,049) 

Asian  

(n=850) 

Total 

(n=9,977) 

% with occupation  76.0 57.1 65.4 73.1 

% unemployed 21.4 13.0 13.4 19.8 

% retired  19.8 4.9 11.2 17.5 

% with education  39.1 28.7 37.9 37.9 

% uninsured  19.5 15.6 11.5 18.4 

% on Medicaid 20.5 13.9 7.9 18.7 

% homeless 3.7 1.3 1.0 3.2 

Table 3 

Table 3. Percent of records within the study population with algorithm-identified 

socioeconomic status characteristics. 

These values represent the percent of individuals within each group that had algorithm 

identified socioeconomic status variables. For example, the individuals who had a term for 

Medicaid within their record are listed as part of the percentage in this table.   
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Semantic Category 
Records with SES 

information (%) 
Sensitivity (%) Specificity (%) PPV (%) 

Education level 48.0 66.7 84.5 80.0 

Occupation 80.0 87.5 40.0 85.4 

Unemployment 40.0 70.0 93.3 87.5 

Retirement 14.0 100.0 90.7 63.6 

Uninsured 8.00 75.0 78.3 23.1 

Medicaid  18.0 100.0 95.1 81.8 

Homelessness 2.00 100.0 95.9 33.3 

Table 4 

Table 4. Comparison of manual review with algorithm results for each socioeconomic 

status algorithm in a subset of randomly selected individuals (n=50). 

This table shows the percent of the 50 records that contained each type of socioeconomic 

status information, as well as the sensitivity, specificity, and positive predictive values 

calculated by analyzing the comparison of manual review results (gold standard) to 

algorithm results for the 50 randomly selected records.  
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CHAPTER THREE 

 

 

GENE X EDUCATION INTERACTION: BLOOD PRESSURE IN BLACK ADULTS 

 

 

Introduction 

 

Blood pressure in black individuals  

As reviewed in Chapter One, black Americans have a higher burden of 

hypertension than other racial/ethnic groups. Despite the higher burden of hypertension in 

black populations, there is limited knowledge about the genetic variants contributing to the 

estimated heritability. Several large-scale genetic studies have been done, but there is still 

much to be known about the genetic component of hypertension and blood pressure in 

black populations 29; 44-49. These studies have focused on utilizing genome-wide common 

variants and examining hypertension, systolic blood pressure, diastolic blood pressure, or 

pulse pressure. They have also included meta-analyses, with the goal of a large population 

in order to examine smaller effect sizes. To date, the large-scale genetic studies of blood 

pressure and related outcomes only account for a maximum of 25% of the estimated 

heritability of blood pressure, which is up to 70%. While some of the SNPs in these large 

scale studies have been confirmed to contribute to the estimated heritability of blood 

pressure, they still do not explain the total estimated heritability, resulting in a mystery of 

“missing heritability” 51. The “missing” heritability estimates may be explained, in part, by 

other factors, such as socioeconomic status, that interact with genetic variation and 

contribute to the variance observed in blood pressure. 

 

Blood pressure and education 

Socioeconomic status is usually defined as some combination of education, income, 

and occupation 13. Low socioeconomic status is strongly associated with hypertension and 

related cardiovascular comorbidities and mortality 13; 52. However, among the GWA studies 

conducted to date, only one study has included any measurements of the social 
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environment, which was in the form of education 58. This neglect of socioeconomic status 

continues among genetic studies, despite the fact that numerous epidemiological studies 

have found that social environment, specifically socioeconomic status, has a strong 

influence on blood pressure and hypertension 13; 52; 59. Education and income gradients have 

both shown to be significantly inversely correlated with markers of cardiovascular disease 

risk, including hypertension, such that people with lower education and lower income have 

a higher risk of hypertension 13. Education is one method of measuring socioeconomic 

status that is stable in adults, due to most individuals achieving their highest level of 

education early in life, and it is a reflection of long term earning potential as well as social 

status 76.  

   

Electronic health record data  

BioVU 

BioVU is a DNA biobank of the Vanderbilt University Medical Center (VUMC) 

linked to de-identified EHRs. DNA samples are extracted from discarded blood samples 

drawn for routine clinical care 66. DNA samples are linked to the Synthetic Derivative 

(SD), the de-identified version of the VUMC EHR, by a unique study ID. Medical records 

within the SD are scrubbed of all HIPAA identifiers such as names, locations, zip codes, 

and social security numbers. Dates within each SD record are shifted to prevent re-

identification of the records. Date shifting is consistent within a single patient’s record. As 

previously described 67, data from BioVU are de-identified in accordance with provisions 

of Title 45, Code of Federal Regulations, part 46 (45 CFT 46); consequently, this study is 

considered non-human subjects research by the Vanderbilt University Institutional Review 

Board.  

 

Electronic health record blood pressure data 

For this study, the choice was made to focus on measurements of blood pressure 

rather than classifying patients into cases or controls based on hypertension status for three 

reasons. The first is that utilizing continuous measurements as an outcome is more 

statistically powerful than a dichotomous outcome. The second is that measuring blood 

pressure is potentially closer to outcome that is more directly impacted by genetic 
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variation77. The third is that defining hypertension status based on data within the 

electronic health record is challenging due to the potential for inaccurate or missing 

information. For example, when defining hypertension cases and controls in the electronic 

health record, ICD-9 codes, medication use, blood pressure measurements, and clinical 

notes would be used. However, ICD-9 codes are not always an accurate indication of a 

person’s status. Individuals who have the ICD-9 code may not always be hypertensive. 

Additionally, defining cases and controls based on medication use may not always be 

accurate either due to the use of medications for multiple conditions, as well as 

hypertensive patients in the Synthetic Derivative who may not have their medications in 

their record. Finally, it is very challenging to extract usable and accurate data from the free 

text clinical notes, even if a patient’s hypertension status is within the notes. Due to these 

challenges, classifying hypertension cases and controls would be prone to inaccuracies. For 

these reasons, blood pressure measurements are employed, rather than classifying patients 

into cases or controls for hypertension.  

 

Electronic health record and socioeconomic status data  

Socioeconomic status is considered a fundamental cause of disease, because it 

affects so many proximate risk factors and disease outcomes 73. Despite these consistent 

associations, socioeconomic status data are typically not included in genetic studies of 

health outcomes. For studies that utilize biobanks, the lack of socioeconomic status data is 

likely related to the difficulty in accessing these data within the EHR, where they are not 

usually recorded in structured fields. The algorithms described in our study are the first to 

extract these important data from EHRs for research purposes 78.  

The socioeconomic status algorithms described previously focus on the extraction 

of data related to four semantic categories: occupation, education, insurance status, and 

homelessness. The occupation algorithms extracted and classified data as occupational 

prestige, unemployment (ever/never), and retirement (ever/never). The education algorithm 

identified the highest level of education that a patient achieved over the course of their 

EHR. Uninsured patients, patients on Medicaid, and patients who experienced 

homelessness were described as ever or never in the algorithm.  
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The major challenges in utilizing EHR data in a research setting include missing 

data and the inconsistencies in the recording of socioeconomic status data by clinical 

providers. The missing socioeconomic status data could be a result of the lack of recording 

of information by the provider, either due to socioeconomic status factors not being 

discussed in conversation with the patient, a low number of visits in the patient’s EHR, or 

the willingness of the patient to provide socioeconomic status information. The 

inconsistencies in the recording of the socioeconomic status data are typical for social and 

environmental exposure data contained within free clinical text 65. Additional information 

regarding the limitations of our socioeconomic status algorithms were previously discussed 

in Chapter Two78.  

 While there are many measurements of socioeconomic status, and several were 

extracted from Vanderbilt’s Synthetic Derivative, the choice was made to focus on the 

measurement of education for the analyses. Based on the algorithm, it had a comparatively 

reasonable sensitivity (67%) and specificity (85%), while also representing one of the more 

stable measurements of socioeconomic status and a good reflection of earning potential 76. 

The other measurements of socioeconomic status that we extracted from the EHR included 

occupation, retirement, unemployment, homelessness, and Medicaid use. While these 

measurements are helpful, they are more likely to be transient and change over time. For 

these reasons, the decision was made to focus on the relationship between education as a 

measurement of socioeconomic status and genetic variants contributing to blood pressure 

in black individuals. 

 

Summary 

Due to previously reported interactions between education levels and genetic 

variants associated with blood pressure in a white population58, it is expected that 

interactions between education and genetic variants associated with blood pressure may 

also occur in a black population. As education is a component of socioeconomic status, 

which is known to be associated with health outcomes, we expect to be that the social 

environment may be interacting with genetic variants to affect blood pressure in black 

individuals.  The inclusion of EHR-derived education in a large-scale genetic analysis of 

blood pressure in a black population is novel and could lead to a better understanding of 
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the biology of blood pressure. Additionally, this study will lay the groundwork for 

additional investigations into gene-socioeconomic status interactions using EHR 

populations.  

 

Methods 

 

Population  

The study population is a subset (n=2,577) of black adults >18 years old 

participating in BioVU as of 2011 68. The original population included all non-white 

patients in BioVU with DNA samples as of 2011 (N=15,863). Black adults who had passed 

the quality control procedures for the outcome and covariates were selected for 

investigation. Race/ethnicity is administratively reported in BioVU and strongly correlated 

with genetic ancestry 70; 71. Individuals included within the analysis subset had available 

sex, age, smoking status, percent African ancestry, BMI, education, and pre-medication 

blood pressure values. Sex and age were extracted from provider-recorded values in the 

record. Smoking status was extracted using ICD-9 tobacco use codes 79. Percent African 

ancestry was calculated using Metabochip genotype data which passed quality control and 

ADMIXTURE in an unsupervised analysis 80. BMI was calculated by taking the median 

weight across all of the values in an individual’s record and their height.  

Blood pressure measurements used for each individual were the median of the 

values from all blood pressure measurement found within an individual’s record prior to a 

recording of blood pressure-altering medications in the medication list. The medications 

included in the list of anti-hypertensives are ACEI/ARB, beta blockers, non-

dihydropyridine CCBs, hydralazine, Minoxidil, central alpha antagonists, direct renin 

antagonists, aldosterone antagonists, alpha antagonists, and diuretics including thiazides, 

K-sparing, and loop diuretics. Any blood pressure measurement found after any of these 

medications were mentioned in the medication list were excluded from the blood pressure 

calculation.   

Education was extracted using the algorithm described in Chapter 2. Education was 

examined in numerous ways including the eight-tier algorithm extracted variable, the 

dichotomous completion of high school or completion of college variable, and a three-tier 
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variable which grouped individuals into those that had not completed high school, those 

who completed high school, and those with some college or above. The three-tier variable 

was chosen because it maintained some level of precision, while enabling a larger number 

of individuals within each group.  

 

Genotyping 

Genotyping was performed on the Metabochip, a custom Illumina genotyping chip 

which targets SNPs associated with metabolic traits and cardiovascular disease 81; 82. The 

array includes 2,207 SNPs from the NHGRI GWAS catalog as of August 1, 2009. For each 

of the GWAS identified SNPs, SNPs with an r2 >0.90 in the CEU HapMap II population 

and up to four additional SNPs with an r2>0.50 in the YRI HapMap II population were 

included on the array. The array also includes fine-mapping for SNPs of interest to the 

consortia which contributed to the development of the chip, X and Y chromosome SNPs, 

mitochondrial SNPs, and “wildcard” SNPs for a total of approximately 200,000 SNPs. 

After the removal of SNPs with a minor allele frequency of less than 5.0%, SNPs with a 

Hardy-Weinberg Equilibrium exact test p-value of less than 1 x 10-7, and SNPs with a 

genotyping call rate of less than 95%, a total of 115,834 variants remained (Figure 13). All 

genotyping analyses were carried out in plink1.9 83 or R 84.  African ancestry estimates 

were calculated using Metabochip data which passed quality control procedures in an 

unsupervised ADMIXTURE analysis, with only the individuals included in analysis, who 

were all identified as black in BioVU 80.  

 

Regression models 

Linear regression models were used to investigate the relationship between the 

genetic variants and both pre-medication systolic blood pressure and pre-medication 

diastolic blood pressure. The first model did not include any education information: 

 

Premedication systolic or diastolic blood pressure = β0 + βcov*Xcov + β1*SNP + e 

  

The covariates in the model included age, age squared, sex, BMI, smoking status, 

and percent African ancestry. The second model included education as a categorical 
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variable, with no education coded as 0, less than high school as 1, high school as 2, GED as 

3, some college or associates degree as 4, bachelor degree as 5, master degree as 6, medical 

or law degree as 7, and PhD as 8. These classifications were recoded into three categories: 

0 as less than high school, 1 as high school degree, and 2 as some college and higher, in 

order to better represent the earning potential as higher levels of education are associated 

with higher socioeconomic status.  

In order to examine the interaction between genetic variants and education and how 

it may affect blood pressure, several models were conducted. The first model included 

education as a covariate and the SNP x education interaction term: 

 

Premedication SBP or DBP = β0 + βcov*Xcov + β1*SNP + β2*Education + 

β3*SNP*Education + e  

 

The decision was made to focus on a set of SNPs which had a p-value of less than 

1.4 x 10-5 from the main effects model in order to reduce issues with multiple testing. This 

cutoff was chosen based on a Bonferroni correction for the number of SNPs that would 

remain if SNPs with an r2 value of greater than 0.1 were removed from our dataset. For this 

set of SNPs, the model which included the main effect of education as well as the 

interaction term was utilized. The p-value level for significance was based on the number 

of SNPs tested for premedication systolic blood pressure and premedication diastolic blood 

pressure.  

 

Results  

 

Population characteristics  

The population was selected from a previously genotyped BioVU population 68. 

This original population included all non-white individuals in BioVU as of 2011. For the 

study population, black individuals were the point of focus (n=11,301). During the quality 

control process, 967 individuals were removed for either ambiguous sex, missing 

genotypes (>5.0%), or relatedness (twins, full siblings, parent/offspring) (Figure 13). After 

individuals were removed during genotype-based filtering, individuals were removed based 

on covariate data. Once individuals with missing data on education, premedication systolic 
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blood pressure, premedication diastolic blood pressure, body mass index, and individuals 

under 18 were removed, a population of 2,577 individuals remained (Figure 14). This 

population was mostly female (71% and mostly never-smokers (87%), with a median age 

of 38 years, a median African ancestry percentage of 81.7%, a median BMI of 26.8 kg/m2, 

a median premedication systolic blood pressure of 122 mmHg, and a median 

premedication diastolic blood pressure of 74 mmHg (Table 5).   

Individuals were represented in every level of education, with the majority of the 

individuals included in analyses having a high school degree (Figure 15). Within analyses, 

individuals were grouped into one of three categories of education: less than a high school 

degree (n=328), a high school degree or GED (n=1,518), or some college and above 

(n=731). Minor differences between educational groups in terms of premedication systolic 

blood pressure, premedication diastolic blood pressure, and body mass index were 

observed (Figure 16, Figure 17, Figure 18). These differences were not statistically 

significant, with the exception of an association between education and premedication 

diastolic blood pressure, where premedication diastolic blood pressure increases slightly 

with increasing education level. A trend within the education groups by age was observed: 

age steadily increased with higher levels of education (Figure 19). 

When blood pressure measurements were examined across age groups, an 

increasing trend of systolic blood pressure with age was observed (Figure 20). When 

diastolic blood pressure across age groups was examined, an increase in diastolic blood 

pressure until around age 60 was noted, then diastolic blood pressure decreased (Figure 

21). Prior to examining genetic data, the correlation of covariates with blood pressure 

measurements was analyzed (Table 6). Age, sex, and body mass index were significantly 

correlated with both premedication systolic and diastolic blood pressure in the dataset. Age 

and premedication diastolic blood pressure significantly covaried with education (Table 7).  

 

Individuals excluded from analyses  

The characteristics of the individuals excluded from the analyses because of 

missing education values were assessed. When comparing the populations included in the 

analyses with the population of individuals without education values, it was observed that 

the differences in sex, age, smoking status, and premedication blood pressure 
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measurements were statistically different (Table 8). However, the range of differences was 

minimal, with the exception of age. Those included in analyses had a median age of 38 

years, while those without education data had a median age of 57 years. This is likely due 

to a bias in provider recording; individuals who are younger and in school may be more 

likely to be asked by a provider about their education because they do not have an 

occupation. When the blood pressure measurements across age groups for individuals 

without education were examined, a similar pattern to what was observed in our 

individuals included in analyses was noticed. Systolic blood pressure increased with 

increasing age, while diastolic blood pressure increased until about 60 years of age, and 

then it began to decrease (Figure 22 and Figure 23). The variation in blood pressure of 

those excluded from analyses to those include in the analyses was similar.   

 

Predictors of systolic and diastolic blood pressure  

The initial models examined both premedication SBP and DBP without the 

inclusion of any education measurements. The following linear model was used: 

 

Premedication BP = β0 + βcov*Xcov + β1*SNP + e  

 

Where Xcov refers to age, sex, BMI, smoking status, and percent African ancestry. 

The initial model did not include an age squared term. The second model included age 

squared in the list of covariates, which was included based on prior studies that found age 

squared to be significantly associated with BP46; 58. The Manhattan plots of these results are 

shown in Figure 24 and Figure 25. For systolic blood pressure, one SNP passed a 

Bonferroni correction: rs4593967. For diastolic blood pressure, one SNP passed a 

Bonferroni correction: rs950928.  

 

Impact of education on predictors of systolic and diastolic blood pressure 

The second set of models included a measure of education as a predictor in the 

model. Individuals were placed into three categories based on highest education level 

achieved in their health record: less than high school, high school, and some college or 

higher.  This model was similar to the early model, with the exception of the addition of 

the education term.  
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Premedication BP = β0 + βcov*Xcov + β1*SNP + β2*Education + e  

 

As with the earlier model, age, sex, BMI, smoking status and percent African 

ancestry were included as covariates, with age squared added as an additional covariate for 

a second set of models (Figure 26 and Figure 27).  

In the results for systolic blood pressure, one SNP at chromosome 10 passed a 

Bonferroni correction (4.32 x 10-7), with two other SNPs passing a suggestive correction 

line, based on a Bonferroni correction if SNPs with an r2 value of higher than 0.6 were 

removed (7.24 x 10-6). For diastolic blood pressure, a peak at chromosome 16 was seen, 

with two SNP barely passing a Bonferroni correction and another passing the suggestive 

correction. However, these SNPs have the same effect size and are in perfect linkage 

disequilibrium, so they are representing the same locus. The SNPs are shown in Table 9.  

The addition of education to the model did not change the most significantly associated 

SNPs. 

 

Gene-environment interaction models 

The initial examination of the interactions between SNPs and education included all 

SNPs across the dataset, utilizing the model: 

 

Premedication BP = β0 + βcov*Xcov + β1*SNP + β2*Education + β3*SNP*Education 

+ e  

 

In this model, age squared was not included as covariate. The Manhattan plot of the 

interaction term p-values can be seen in Figure 28 and Figure 29. There were no 

interactions which passed a Bonferroni correction. In a second model, I examined 

interactions with SNPs that passed a threshold of suggestive significance in the main 

effects model. This lowered the multiple testing burden, which is incredibly high when 

examining gene-environment interactions across a massive dataset. When selecting the 

suggestive SNPs, a p-value threshold was chosen based on the Bonferroni correction for 

the number of SNPs from the dataset with an r2 value of less than 0.1 (n=36,762). This is a 

lenient cutoff point to allow a larger number of SNPs to test for interactions. SNPs with a 
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p-value of less than 1.36 x 10-6 were included in the interaction analyses. The model was 

similar to the interaction model stated earlier, with the addition of age squared as a 

covariate. Table 10 and Table 11 show the SNPs selected for interaction testing and the p-

value results for the interaction term. No statistically significant interactions between our 

education variable and the selected SNPs were observed.  

 

Discussion  

 

The aim of this section is to determine if education interacted with genetic variants 

to affect blood pressure in a black population, as was expected due to previous gene x 

education interactions associated with blood pressure that were observed in a white 

population. Associations between premedication systolic blood pressure or premedication 

diastolic blood pressure and genetic variants from the Metabochip were examined, while 

including known predictors of blood pressure (age, BMI, sex, percent African ancestry, and 

smoking status) in the model. These models were compared with models which included a 

main effect of education, and a main effect of education plus an interaction between 

genetic variants and education in order to determine if education affected the associations 

between genetic variants and blood pressure in a black population. While some significant 

novel associations were observed between genetic variants and blood pressure, these 

associations were not greatly affected by the addition of education information. 

Additionally, no significant gene x education interactions were observed.  

 

Models without interaction  

Premedication systolic blood pressure  

The SNP rs4593967, which was found to be significantly associated with systolic 

blood pressure, has not previously been associated with blood pressure or hypertension. It 

is found within intron 3 of ARHGAP22. ARHGAP22 has been associated with diabetic 

retinopathy, conduct disorder, daytime sleep, and self-employment 85-88, but these 

associations have not been replicated. The minor allele frequency in the 1000 genomes 

African populations is 18%. rs4593967 is in linkage disequilibrium with other intronic 

variants of ARHGAP22 and therefore may be tagging one of those variants. ARHGAP22 is 
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a regulator of a RhoGTPase. The effect estimate of one minor allele of this variant is a 

decrease of 2.53 mmHg with a standard error of 0.48.  

The SNP rs10921895, which passed a suggestive significance threshold in our 

systolic blood pressure association test, is found in an intergenic region on chromosome 1. 

The minor allele frequency in 1000 Genomes African populations is 35%. This SNP has 

not been associated with any other phenotypes, but it is found in a region with an 

H3K27Ac mark in K562 cells, which are derived from bone marrow. This indicates that 

this region may be involved in some type of gene regulation in bone marrow cells. The 

variant is found to be in linkage disequilibrium (within the 1000 Genomes African 

Americans of the Southwest) with other intergenic variants. The effect estimate of one 

copy of the minor allele is a decrease of 1.55 mmHg with a standard error of 0.36.  

The final SNP from our systolic blood pressure analysis, which was suggestively 

significant, was rs3804485, which is found on chromosome 6. It has a 34% minor allele 

frequency in 1000 Genomes African populations and is found within an intron of LY86. 

While rs3804485 has not been previously associated with any phenotype, LY86 is a 

lymphocyte antigen that has been associated with coagulation, waist-to-hip ratio, 

depression, gastritis, response to radiotherapy in cancer, urate levels, diabetic kidney 

disease, and anxiety 89-98. This SNP does not appear to be in high linkage disequilibrium 

with anything in the African Americans in the Southwest 1000 Genomes population. The 

effect estimate of one copy of the minor allele is an increase of 1.51 mmHg with a standard 

error of 0.33. 

 

Premedication diastolic blood pressure 

Our examination of diastolic blood pressure revealed a peak on chromosome 16, 

with rs950928 passing a Bonferroni correction, and rs8056711 passing suggestive 

significance. Both of these SNPs fall within introns of IQCK, a gene that is involved as an 

EF hand protein binding site. While, neither of these SNPs have been previously associated 

with any phenotypes, IQCK has previously been associated with blood pressure, body mass 

index, bone density, heart rate, chronic obstructive pulmonary disease, bipolar disorder, 

and a body mass index-education interaction 99-103. Both SNPs have a minor allele 
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frequency of 40% within the 1000 Genomes African populations and a decrease of 1.10 

mmHg with the presence of one copy of the minor allele, with a standard error of 0.22. 

 

Power 

While the population size of our dataset is somewhat small (n=2,577), there was 

enough power to detect some significant variants. As shown in Figure 30, the study was 

powered to detect more common variants with moderate effect sizes. For an effect size (β) 

of 1.0, the study was at 80% for minor alleles with a frequency above 20%. For less 

common alleles, with a minor allele frequency between 10% and 15%, the study was  

powered to detect affect sizes of 1.5 or greater. In order to detect alleles with a minor allele 

frequency of 5%, an effect size of 2.0 or greater was needed. For systolic blood pressure, 

rs4593967 was discovered, which had a minor allele frequency of 13.91% in the dataset 

and an effect size of -2.53; we had 99% power to detect this association. The study was 

also at 99% power to detect rs10921895 (minor allele frequency of 37.14%, effect size of 

1.55) and rs3804485 (minor allele frequency of 41.28% and effect size of 1.51). For 

diastolic blood pressure, the study was at 96.7% power for both rs950928 and rs8056711; 

both had a minor allele frequency of 36.35% and an effect size of -1.10.  

 

Interactions 

Due to previous gene x education interactions associated with blood pressure in a 

white population, it was anticipated that gene x education interactions may exist within a 

black population. As known blood pressure associated SNPs do not explain the full picture 

of heritability, it was expected that gene x environment interactions may be contributing to 

the estimated heritability of blood pressure. In light of the strong associations between 

socioeconomic status variables and blood pressure, we hypothesized that gene x education 

interactions may be associated with blood pressure, as education level is a measurement of 

socioeconomic status.   

However, no significant interactions between the SNPs tested and the education 

variable were discerned. This result may be explained by a number of reasons. The first is 

that the null hypothesis is supported and interactions between education variables and the 

SNPs investigated do not exist. If instead type II error was present, it is possible that the 
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SNPs that do interact with education to affect blood pressure were not tested or that the 

education variable was not accurate enough, or a strong enough proxy of SES, to be able to 

capture interactions. The use of the algorithm-extracted education variable may have 

limited the ability to detect associations due to its limited accuracy78. As stated in Chapter 

One, the measurements of socioeconomic status are imperfect and may not be proxies for 

each other. In this study, increasing education is meant to represent increasing status in 

society, which can represent less stress and better health outcomes. However, the 

association between increasing education and increasing social status and wealth may not 

be consistent across racial groups. Higher education in a black population (which is our 

population of interest) may not equate to the same social mobility as higher education in a 

white population104. Therefore, education may not be the most appropriate measurement 

for capturing the relationship between social environment and health in our population.  

In addition to the measurement challenges, there were also challenges of statistical 

power. The detection of gene-environment interactions often requires a large sample size 

and it is possible that we did not have power to detect these interactions. Gene x education 

interactions were examined without the main effect of education. The method used may not 

be robust enough to detect an interaction without a main effect.  

 

Limitations 

The analyses had several limitations. One main limitation of the study was the 

small sample size. While the BioVU population seems very large as whole, the population 

does have a problem with missing data and limitations of what is available within the EHR. 

Once the population is limited to individuals of a certain race, black individuals in this 

study, plus individuals with complete phenotype information, the population becomes very 

small. There may also be unknown biases which exist due to the selection of individuals 

who have complete phenotype data.  

 In addition to the limited sample size, the population in this study was also slightly 

different than previous populations used to examine blood pressure in a black population. 

While the proportion of the two sexes, median body mass index, median systolic blood 

pressure, and median diastolic blood pressure were similar to previous studies105, the 

population in this study did have a much lower median age, over 15 years younger. This 
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made the study population unique and may have reduced variability in blood pressure 

measurements, as blood pressure increases with age.  

 Another limitation was the lack of a replication dataset. Without the ability to 

replicate the findings, there is not enough support to be able to say if the findings are real 

or not. This is especially true since other studies with much larger populations did not 

observe an association between these SNPs and blood pressure 48. Additional limitations to 

the study include a relatively small sample size, especially considering the typical effects 

sizes that are observed for SNPs associated with blood pressure and the fact that interaction 

studies require large samples, and limitations on genotype data. The genotype data is from 

a curated genotyping chip, rather than a true genome wide chip, so it has limited SNPs. 

This chip was also designed to include rare variation collected from the African ancestry 

1000 genomes populations and therefore, many of the variants on the Metabochip were 

rare in African ancestry populations 81. Due to the limited population size, we had to 

remove many of the SNPs on the chip during quality control, as the study was not powered 

to detect rare variation.  

In addition to the limitations regarding the genotype data, there were also some 

limitations regarding the phenotype data. All of the variables were extracted from 

electronic health records. While these records have extensive amounts of data, the data 

recorded by healthcare provider is not always accurate and the ability to extract the data 

can be limited. For example, the use of ICD-9 billing codes for phenotyping within the 

electronic health record is vital. However, these codes do not always accurately describe 

the patient’s medical condition. The use of medication information within the patient’s 

medication list is also important for phenotyping. The medication lists are based on 

patients telling providers which medications they are taking, therefore errors in patient 

statements or a lack of updating of the medication information could lead to misleading 

information within the record. In the case of education, where the positive predictive value 

of our algorithm was 80% 78, there may have been inaccurate education information for the 

individuals within the dataset. Therefore, it is possible that there was inaccurate education 

data, as well as inaccurate blood pressure and covariate data in the analyses, limiting the 

ability to detect true associations.  

 Determining the blood pressure measurements from the EHR to use within a study 
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is challenging. Measurements are subject to inaccuracies in recording by providers, as well 

as missing education information. Determining which measurements to use in the study is 

also a challenge, as measurements can vary widely across the EHR. The median blood 

pressure measurements were chosen for our study in an attempt to reduce the influence of 

this variation. Beyond the inaccuracies and decisions to be made regarding the information 

within the EHR, blood pressure is difficult to measure within the clinic. Measurements of 

blood pressure can vary due to the calibration of instruments, the time of day it is 

measured, and due to illness106. Patients also tend to have higher blood pressure within a 

clinical setting due to stress106.   

 

Strengths 

Despite the limitations within the study, there were also a number of strengths. 

Primarily, this is the first study to incorporate electronic healthcare record-derived 

education information into a large scale genetic investigation. This is also the first analysis 

to incorporate education information into a large scale genetic study of blood pressure in a 

black population.  This study paves the road for the incorporation of education, as well as 

other socioeconomic status information into genetic studies which utilize biobank 

populations. Additionally, despite the lack of interaction effects, we hope that this research 

encourages other investigators to continue to study health outcomes with racial health 

disparities and incorporate socioeconomic status information.  
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Figure 13 

Genotype quality control procedures for full dataset 

Individuals with ambiguous sex and greater than 5% missing genotypes were removed. 

One individual from each of twin pairs, parent-offspring pairs, and sibling pairs was also 

removed. Variants that had less than a 95% genotyping call rate, were significantly outside 

of Hardy-Weinberg equilibrium, or had less than a 5% minor allele frequency within our 

population were also removed.  
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Figure 14 

Phenotype data quality control 

Individuals with missing phenotype data were removed from the dataset. Children were  

removed. Individuals with blood pressure or body mass index values greater than three 

times the standard deviation of the mean were also removed.  
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Characteristic  Number of individuals 

n=2,577 

Sex 

    Male 

    Female 

 

753 (29%) 

1,824 (71%) 

Smoking Status 

    Non-smokers 

    Smokers 

 

2,242 (87%) 

335 (13%) 

Age (median, years) 38 

Percent African ancestry (median) 81.7% 

Body mass index (median, kg/m2) 26.8 

Premedication systolic blood pressure (median, mmHg) 122 

Premedication diastolic blood pressure (median, mmHg) 74 

Table 5 

Table 5. Characteristics of the population used in the study.  
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Figure 15 

Graph of education level of individuals included in analyses.  

The majority of individuals had a high school degree as their highest level of education. 

Levels of education are shown on the x-axis, number of individuals are shown on the y-

axis. For analyses, individuals were grouped into less than a high school degree (n=328), 

high school degree and GED (n=1,518), and some college and above (n=731).  
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Figure 16 

Premedication systolic blood pressure by education level.  

The x-axis shows education level: Level 0 indicates less than high school, level 1 indicates 

high school degree and GED, level 2 indicates some college and above. The y-axis shows 

the median premedication systolic blood pressure.  
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Figure 17 

Premedication diastolic blood pressure by education level.  

The x-axis shows education level: Level 0 indicates less than high school, level 1 indicates 

high school degree and GED, level 2 indicates some college and above. The y-axis shows 

median premedication diastolic blood pressure.  
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Figure 18 

Body mass index by education level.  

The x-axis shows education level: Level 0 indicates less than high school, level 1 indicates 

high school degree and GED, level 2 indicates some college and above. The y-axis shows 

body mass index, calculated using the median weight values extracted from the EHR. 
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Figure 19 

Age by education level.  

The x-axis shows education level: Level 0 indicates less than high school, level 1 indicates 

high school degree and GED, level 2 indicates some college and above. Age increases with 

increasing education level. The y-axis shows the age of the participant as of 2015.  
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Figure 20 

Premedication systolic blood pressure increases across age groups within our dataset. The 

x-axis shows age groups lumped by decade.  

The y-axis shows the median premedication systolic blood pressure.  
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Figure 21 

Premedication diastolic blood pressure increases until around age 60, then decreases in 

older individuals within our dataset.  

The x-axis shows age groups lumped by decade. The y-axis shows the median 

premedication diastolic blood pressure. 
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Variable Effect 

estimate (β) 

Standard error p-value  

Premed SBP     

Education  0.02 0.11 0.84 

Age  0.31 0.01 <0.0001 

Sex  

(male is reference) 

-4.52 0.52 <0.0001 

BMI 0.38 0.04 <0.0001 

Smoking status (nonsmoker is 

reference) 

0.56 0.72 0.43 

African ancestry  -0.46 1.89 0.809 

Premed DBP    

Education  0.05 0.07 0.53 

Age  0.19 0.01 <0.0001 

Sex  

(male is reference) 

-1.48 0.35 0.0001 

BMI 0.25 0.02 <0.0001 

Smoking status (nonsmoker is 

reference) 

0.45 0.48 0.35 

African ancestry  -1.24 1.24 0.32 

Table 6 

Table 6. Correlation of education and covariate variables with premedication systolic and 

premedication diastolic blood pressure.  

Both systolic and diastolic blood pressure are correlated with age, sex, and body mass 

index.  
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Variable Degrees of 

freedom 

Sum of 

squares 

Mean squares F value p-value  

Age 1 8874 8874 28.45 1.05x10-7 

Sex 1 0.6 0.57 2.74 0.098 

Smoking status 1 0.0 0.003 0.02 0.879 

BMI 1 154 154 3.31 0.069 

Premed SBP 1 545 545 2.94 0.087 

Premed DBP 1 1221 1221.1 15.3 9.4x10-5 

Table 7 

Table 7. Analysis of covariance (ANCOVA) between three level education variable and 

blood pressure, age, sex, smoking status, and body mass index.  

Education is the independent variable and the other variables are examined individually, 

to see if they covary with age, without the other variables in the model. Education 

significantly co-varies with age and premedication diastolic blood pressure.  
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Included in analyses (n=2,577) Individuals missing education (n=5,925) 

Sex***  

    Male: 753 (29%)  

    Female: 1,824 (71%)  

Sex***  

    Male: 2,173 (37%)  

    Female: 3,752 (63%)  

Age***  

    Median, years: 38 

Age***  

    Median, years: 57  

African Ancestry 

    Median: 81.7% 

African Ancestry 

    Median: 81.7%  

Smoking Status***  

    Ever smokers: 335 (13%)  

    Never smokers: 2,242 (87%)  

Smoking Status (n=5,090; excluded missing data)***  

    Ever smokers: 795 (16%)  

    Never smokers: 4,295 (84%)  

BMI***  

    Median, kg/m^2: 26.8  

BMI (n=4,522; dropped missings) ***  

    Median, kg/m^2: 27.8  

Premedication SBP***  

    Median, mmHg: 122  

Premedication SBP (n=3,445; excluded missing data) ***  

    Median, mmHg: 125  

Premedication DBP ***  

    Median, mmHg: 74  

Premedication DBP (n=3,445; excluded missing data) ***  

    Median, mmHg: 77  

Table 8 

Table 8. Comparison of population characteristics between individuals included in 

analyses and individuals excluded from analyses due to missing education information. 

 While there are statistically significant differences between sex, age, smoking status, body 

mass index, systolic blood pressure and diastolic blood pressure, the most striking 

difference is the median age between groups.  
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Figure 22 

Premedication systolic blood pressure increases across age groups within individuals who 

are missing education information.  

The x-axis shows age groups lumped by decade. The y-axis shows the median 

premedication systolic blood pressure. 
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Figure 23 

Premedication diastolic blood pressure increases across age groups within individuals 

who are missing education information.  

The x-axis shows age groups lumped by decade. The y-axis shows the median 

premedication diastolic blood pressure. 
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Figure 24 

Manhattan plot of premedication systolic blood pressure.  

Covariates include age, age squared, sex, body mass index, smoking status, and African 

ancestry. The x-axis shows SNP position grouped by chromosome number. The y-axis 

shows the -log10 of the p-value for the SNP, which indicates that smaller p-values are 

higher on the axis. The dashed line is a Bonferroni correction, a p-value of 4.32 x 10-7. The 

solid line is a suggestive line, which was calculated by removing SNPs with an r2 of higher 

than 0.6, was 7.24 x 10-6.   
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Figure 25 

Manhattan plot of premedication diastolic blood pressure.  

Covariates include age, age squared, sex, body mass index, smoking status, and African 

ancestry. The x-axis shows SNP position grouped by chromosome number. The y-axis 

shows the -log10 of the p-value for the SNP, which indicates that smaller p-values are 

higher on the axis. The dashed line is a Bonferroni correction, a p-value of 4.32 x 10-7. The 

solid line is a suggestive line, which was calculated by removing SNPs with an r2 of higher 

than 0.6, was 7.24 x 10-6.   
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Figure 26 

Manhattan plot of premedication systolic blood pressure. 

Covariates include age, age squared, sex, body mass index, smoking status, African 

ancestry. Education is included in this model.  The x-axis shows SNP position grouped by 

chromosome number. The y-axis shows the -log10 of the p-value for the SNP, which 

indicates that smaller p-values are higher on the axis. The dashed line is a Bonferroni 

correction, a p-value of 4.32 x 10-7. The solid line is a suggestive line, which was 

calculated by removing SNPs with an r2 of higher than 0.6, was 7.24 x 10-6.   
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Figure 27 

Manhattan plot of premedication diastolic blood pressure.  

Covariates include age, age squared, sex, body mass index, smoking status, African 

ancestry. Education is included in this model. The x-axis shows SNP position grouped by 

chromosome number. The y-axis shows the -log10 of the p-value for the SNP, which 

indicates that smaller p-values are higher on the axis. The dashed line is a Bonferroni 

correction, a p-value of 4.32 x 10-7. The solid line is a suggestive line, which was 

calculated by removing SNPs with an r2 of higher than 0.6, was 7.24 x 10-6.   
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SNP Assoc. 

with 

Location Associated 

gene 

Minor allele 

frequency 

Effect 

estimate 

Std 

error  

p-value  

rs4593967 SBP Intron ARHGAP22 13.91% -2.53 0.48 1.16x10-7 

rs10921895 SBP Intergenic  37.14% -1.55 0.36 3.92x10-6 

rs3804485 SBP Intron LY86 41.28% 1.51 0.33 5.20x10-6 

rs950928 DBP Intron IQCK 36.35% -1.10 0.22 4.53x10-7 

rs8056711 DBP Intron IQCK 36.35% -1.10 0.22 4.53x10-7 

Table 9 

Table 9. Summary of characteristics of SNPs associated with premedication systolic and 

diastolic blood pressure when education is included in the model.  
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Figure 28 

Manhattan plot of interaction term p-values for premedication systolic blood pressure 

analysis.  

Covariates include age, sex, body mass index, smoking status, African ancestry. Education 

and SNP x education interactions were also included in this model. The x-axis shows SNP 

position grouped by chromosome number. The y-axis shows the -log10 of the p-value for the 

SNP, which indicates that smaller p-values are higher on the axis. The dashed line is a 

Bonferroni correction, a p-value of 4.32 x 10-7. The solid line is a suggestive line, which 

was calculated by removing SNPs with an r2 of higher than 0.6, was 7.24 x 10-6.   
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Figure 29 

Manhattan plot of interaction term p-values for premedication diastolic blood pressure 

analysis.  

Covariates include age, sex, body mass index, smoking status, African ancestry. Education 

and SNP x education interactions were also included in this model. The x-axis shows SNP 

position grouped by chromosome number. The y-axis shows the -log10 of the p-value for the 

SNP, which indicates that smaller p-values are higher on the axis. The dashed line is a 

Bonferroni correction, a p-value of 4.32 x 10-7. The solid line is a suggestive line, which 

was calculated by removing SNPs with an r2 of higher than 0.6, was 7.24 x 10-6.   
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SNP in education interaction p-value of the high school 

interaction term 

p-value of the college 

interaction term 

rs4593967_A 0.886 0.858 

rs10921895_G 0.896 0.746 

rs3804485_C 0.260 0.863 

rs11066700_A 0.178 0.200 

Table 10 

Table 10. SNPs examined for education interactions impacting systolic blood pressure.  

Covariates included in the model were age, age squared, sex, body mass index, smoking 

status, and African ancestry. The main effect of education and the SNP x education 

interaction term were also included in the model.  
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Table 11 

Table 11. SNPs examined for education interactions impacting diastolic blood pressure.  

Covariates included in the model were age, age squared, sex, body mass index, smoking 

status, and African ancestry. The main effect of education and the SNP x education 

interaction term were also included in the model.  

 

 

 

SNP in education interaction p-value with education 

chr16.19732139_G High school: 0.175 

College and higher: 0.298 

chr16.19734035_C High school: 0.175 

College and higher: 0.297 

chr16.19700099_A High school: 0.927 

College and higher: 0.503 

chr16.19702910_T High school: 0.940 

College and higher: 0.478 

chr16.19690303_A High school: 0.941 

College and higher: 0.461 

rs6687976_A High school: 0.052 

College and higher: 0.996 

chr16.19642355_G High school: 0.094 

College and higher: 0.110 

rs3095994_A High school: 0.738 

College and higher: 0.726 

rs1273518_G High school: 0.218 

College and higher: 0.648 

chr16.19660835_A High school: 0.076 

College and higher: 0.091 

rs4593967_A High school: 0.512 

College and higher: 0.768 

chr16.19689461_C High school: 0.181 

College and higher: 0.316 

chr16.19676895_A High school: 0.062 

College and higher: 0.085 

chr16.19641087_A High school: 0.064 

College and higher: 0.076 
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Figure 30 

Figure 30. Power estimation for the detection of genetic associations based on a 

population of 2,577 individuals.  

 

These power calculations were determined by assuming an additive genetic model and a 

continuous trait. The study is not well-powered to detect rarer variation or small effect 

sizes. The study is powered to detect effect sizes above 1 and minor allele frequencies 

(MAF) above 0.15.  
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CHAPTER FOUR 

 

 

CONCLUSION 

 

 

Summary of Chapter Two 

 

Results  

In Chapter Two, the aim was to develop a set of algorithms that could be used to 

extract existing socioeconomic data from electronic health record databases such as 

BioVU’s Synthetic Derivative. A set of seven algorithms was created to extract occupation, 

unemployment, retirement, education level, Medicaid, a lack of health insurance, and 

homelessness. The algorithms for education, occupation, unemployment, and Medicaid all 

had a positive predictive value of over 80%. The algorithm for retirement had a positive 

predictive value of 64%. The algorithm for homelessness had a positive predictive value of 

33% and the algorithm for uninsured status had a positive predictive value of 23%. While 

these values are somewhat low, it is important to consider that these three categories were 

also the least prevalent within our evaluation dataset.  

 

Limitations  

There were many challenges with the development of this algorithm. The most 

difficult to address was that of missing data. Unfortunately, it is not constant that medical 

providers include socioeconomic data within a patient’s record. This lack of recording 

made it difficult to consistently extract every type of socioeconomic data from every 

patient’s record. While it was common to be able to extract one or two variables from a 

record, it was rare to be able to extract information from one patient that contained all 

seven variables.  

In addition to the data that was not recorded by providers, there were also 

challenges with the data that was recorded. As the Institute of Medicine recommendations 

are not currently applied at Vanderbilt University Medical Center, the information that was 
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recorded by providers was not standardized, in the clinical narrative, and generally very 

inconsistent across records. These inconsistencies made extracting the socioeconomic data 

in a systematic way extremely difficult. The algorithms developed were limited in their 

methods and therefore not perfect in their ability to extract all the available socioeconomic 

data.  

 

Strengths 

Despite the challenges with the development of these algorithms, these algorithms 

were able to successfully extract a large amount of fairly accurate socioeconomic data. 

Prior to this investigation, algorithms to extract socioeconomic data from electronic health 

records had never been developed. The development of these algorithms is an important 

first step to incorporating socioeconomic data into electronic health record based studies 

and achieving the goals of precision medicine research. 

  

Summary of Chapter Three 

 

Results 

In order to examine the effect of the inclusion of socioeconomic data (in the form 

of education) on a large scale genetic analysis of blood pressure in a black population, 

three different regression models were analyzed. In the first set of models, both 

premedication systolic blood pressure and diastolic blood pressure were examined as 

outcomes, with age, age squared, sex, body mass index, smoking status, and percent 

African ancestry as covariates. When education was added to the models, small changes in 

the significance of our most significant associations were discovered. This could indicate 

that whatever environmental impact the education variable is representing could be 

affecting to a small degree the associations between genetic variants and blood pressure 

measurements.  

The investigation included SNP-education interactions by including an interaction 

term in the models with education. No statistically significant associations were observed 

and therefore the null hypothesis was supported. However, the limitations of the study may 
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have contributed to type II error and therefore it is important to keep investigating potential 

gene-social environment interactions.  

 

Limitations 

Despite some interesting findings, this study had a number of limitations. Primarily, 

the main limitation was a lack of a replication dataset. Without this dataset, the null 

hypothesis cannot truly be rejected. Additionally, the investigation was limited by a 

relatively small sample size compared to some of the more recent large scale meta-analyses 

and the only access was to SNPs from a selective genotyping chip. While these genotype 

data were a great tool for the investigation, they are still limited in their focus. A large 

number of variants from our dataset had to be removed because many of the variants were 

rare in African ancestry populations; there were also limitations regarding the accuracy of 

phenotyping. Unfortunately, extracting phenotype data from an electronic health record can 

be limiting, as the study relies on the accuracy of the available data and the ability to 

extract the data accurately. While the algorithms utilized performed well in testing, it is 

always possible that remaining imperfections affected the results.  

 The age of our population may have also had an impact on the results of the 

analyses. The study population had a median age of 38 years, which is young when 

compared with other published study populations105. The young age of the participants led 

to a limited number of individuals who had developed high blood pressure and decreased 

variation in blood pressure measurements. This decreased variation and the young age of 

participants may have led to a lack of associations because individuals who may be at risk 

of developing high blood pressure have not developed it yet.  

 Beyond these limitations, there are also limitations in terms of the variables 

examined in analysis. Gene x education interactions were examined without a main effect 

of education on the outcome, blood pressure. The analysis method used is not robust 

enough to detect an interaction without a main effect. Additional analysis methods are 

likely to be more appropriate and provide more information regarding the effect of 

education on genetic associations with blood pressure.  

 The use of education as a measurement for socioeconomic status may also be a 

limitation. As alluded to earlier, higher education is assumed to be associated with 
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increased social mobility and increased income. These associations may not be consistent 

across racial groups. For example, black individuals with higher levels of education may 

not have access the same levels of mobility as white individuals with the same level of 

education104. In terms of their effects on biology, socioeconomic status and education can 

be used as indicators of chronic stress. Utilizing these measurements as proxies, without 

measuring the actual level of stress individuals are experiencing, can lead to a lack of 

observed associations.  

 

Strengths 

Despite these limitations, the study did have multiple strengths. It was the first to 

examine the impact of socioeconomic data on a large scale genetic study of blood pressure 

in a black population. It was also the first to utilize socioeconomic data extracted from a 

de-identified electronic health record in a genetic study. While the study did not find any 

significant interactions, it did contribute to the field of health disparities by showing that it 

is possible to include social environment data in a large scale genetic study of an existing 

dataset. This ability is novel and an important step in utilizing genetic information to 

address health disparities. Without the ability to include any social environment data, it is 

difficult for geneticists to contribute meaningful findings to the field of health disparities. 

These novelties in this work lay the groundwork for the inclusion of additional 

socioeconomic data in future studies of health outcomes, especially those with disparities.  

 

Future Directions 

 

In order to continue to improve these investigations, it would be ideal to have an 

independent replication dataset to validate the findings. The validation of most 

significantly associated SNPs would support the confidence in these findings and the 

addition of even minimal socioeconomic data to large scale genetic studies has the power 

to elucidate new genetic variants. It may also be informative to explore other approaches to 

the genetic influences on blood pressure, such as utilizing genetic risk scores. The subtle 

effect sizes of typical blood pressure-related SNPs could limit the ability to investigate 

interactions. Investigating the use of methods which group genetic variants may create 
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more power in examining blood pressure. These methods, such as genetic risk scores or 

pathway analysis, as well as examining variation which affects expression could be more 

productive since environmental factors may be acting on pathways and expression, rather 

than individual variants. Therefore, observing an interaction may be more likely. These 

methods can also help reduce multiple testing burden, which is an issue when examining 

genome-wide variants and interactions.  

Investigating the effect of different types of socioeconomic variables (such as the 

other variables we extracted) would also be worthwhile. Exploring interactions with 

chronic stress variables such as biomarkers and survey data, or other environmental 

variables that are associated with socioeconomic status such as exposure to toxins, would 

be an ideal situation. Socioeconomic status in general is a proxy for these exposures, so 

measuring the direct variables would be more informative. However, socioeconomic status 

markers can be more easily collected for large scale studies than these variables, or 

extracted from EHRs as was demonstrated here. Therefore, continuing to explore the use of 

socioeconomic status in genetic studies is worthwhile.  

With the continuation of exploring the use of socioeconomic status in genetic 

studies, it is vital to think carefully about which measurements to use. As discussed earlier, 

socioeconomic variables do not represent the same aspects of social environment across 

racial groups in the United States. It would be ideal to collect as much social environment 

information as possible, determine the limitations and covariance across variables, then 

determine which variables would best measure the variable of interest in the study. For 

example, measuring education may be intended to be a proxy for income or health 

behaviors. Measuring these variables directly would be more informative.  

In terms of additional improvements to the study, including more sophisticated 

language processing techniques would greatly improve extraction outcomes of 

socioeconomic information from electronic health records. Encouraging the adoption of a 

standard set of social environment-related questions into the electronic health record would 

be even better as recommended by the Institute of Medicine107. The addition of this 

information would help clinicians better treat patients and help researchers conduct better 

research.  
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Within the context of the future, it is important to consider the Precision Medicine 

Initiative. This program has the potential to be very helpful with addressing genetic 

questions. The goal of the Precision Medicine Initiative cohort is one million participants, 

with genetic data, as well as EHR, and other environmental data. The collection of a large 

cohort with such extensive data will provide more power to address these questions of 

genetic variants associated with blood pressure in black individuals, as one of the goals of 

the cohort is to collect diverse individuals. Beyond investigating black populations and 

blood pressure, the Precision Medicine Initiative will also allow investigators to examine 

other diverse populations and other phenotypes with this incredibly rich dataset.  

It is imperative to continue to investigate health disparities and move toward health 

equity. There are many different types of health disparities within the United States and 

conducting strong research and gathering evidence on the causes of these disparities is a 

central step in making societal and policy changes to reduce them. Without fully 

understanding the biology, the medical community cannot strive for the necessary societal 

changes that must occur.  
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