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PREFACE 

Computational approaches have become important tools in drug discovery. Drug discovery is a lengthy process 

that begins with target identification, lead compound discovery, and lead compound optimization, followed by pre-

clinical studies. Computational tools have been developed which complement the experimental drug discovery 

efforts at each of these steps. Target discovery is often achieved by phenotypic screens using micro-array analysis. 

This is achieved computationally through bioinformatics analysis of gene expression data and protein-protein 

interaction networks. Often experimental screening for lead compounds is preceded by computational screening of 

hundreds of thousands of compound. Computational virtual-high throughput compound screening technologies are 

used to prioritize molecules for experimental testing and are estimated to increase the chance of finding a lead 

molecule by about ten times. Computational prescreening saves time, resources, and efforts required for 

experimental screening by reducing the number of compounds to be tested. The goal of lead compound optimization 

is to improve its potency against the target of interest. This is achieved by medicinal chemistry approaches through 

synthesis of a number of derivatives. Computational modelling of target-ligand interactions is often used to direct 

the medicinal chemistry studies. Results from experimental optimization can also be used to create computational 

models to predict the pharmacophore of the lead compound. Lead optimization can be further aided by 

computational models that predict drug-likeness and toxicity, saving substantial efforts in the downstream pre-

clinical studies. 

Development of novel computational technologies for drug discovery has been the primary focus of my PhD 

thesis. A novel knowledge based conformation sampling algorithm was implemented which derives information 

from structural databases. Molecular conformation sampling is ubiquitous and critical in computational drug 

discovery technologies. The new algorithm performs better than other conformation algorithm currently available 

in the field and has already been incorporated into a major macromolecular modelling software. Another focus of 

my work has been the application of computational technologies for discovery of novel and selective binders of the 

kinase domain of Discoidin Domain Receptor (DDR1). At least one novel chemical scaffold was discovered and 

confirmed as a DDR1 inhibitor through these efforts. 

 Computer aided-drug discovery is split into domains that focus on either structure-based or ligand-based 

techniques. Structure-based approaches are feasible when the structure of the biological target protein or its 

homologues is available. These techniques include ligand docking/design and structure-based pharmacophore maps. 

In the absence of a structural model, ligand-based approaches provide an alternative way of identifying new active 

molecules and optimizing their activity. Ligand approaches leverage quantitative structure activity relationship 

(QSAR) models and pharmacophore maps. A comprehensive review of successful applications of computational 

technologies in drug discovery processes is provided in the first chapter of this thesis. It is an abridged version of the 

review article:  
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Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W., Jr., Computational methods in drug discovery. Pharmacol 

Rev 2014, 66 (1), 334-95. Reprinted with permission of the American Society for Pharmacology and Experimental 

Therapeutics. All rights reserved. 

Molecules are comprised of one or more atoms connected by bonds, many of which are rotatable. This rotation 

about the bonds allows molecules to adopt distinct orientations, known as conformations, in 3-dimension space. In 

solution, a given molecule can exist in multiple different low-energy conformations. A small molecule may bind to 

its protein target in one of the conformations favored in solution, or alternatively one that is induced by the 

interactions with the target protein of interest. Computational modeling for binding prediction, whether structure-

based or ligand-based, thus needs to take into account small molecule flexibility. The success of structure-based 

drug discovery technologies depends significantly on the availability of high-quality ligand conformations that are 

necessary to accurately model interactions between the target and the ligand molecules. Ligand conformations are 

also important for ligand-based methods, for example, to align multiple active molecules for shape matching and 

developing pharmacophore models. Several conformation sampling methods exist that use either physics-based 

approaches i.e. molecular mechanics or pre-existing knowledge about small molecular conformations. The primary 

focus of this doctoral thesis is the development of a high-quality conformation generation algorithm that uses 

extended fragment conformation information. This algorithm, called BCL::CONF, is described in Chapter 2 of this 

thesis and is an adaptation of manuscript: 

Kothiwale, S.; Mendenhall, J. L.; Meiler, J., BCL::CONF: small molecule conformational sampling using a 

knowledge based rotamer library. J Cheminform 2015, 7, 47. http://creativecommons.org/licenses/by/4.0/ 

BCL::CONF uses the knowledge about molecular fragment conformations for conformation sampling. This is 

analogous to using protein side-chain conformations used in ROSETTA software suite used for modeling protein-

related interactions. Previously, ligand conformations needed to be sampled using external software and then 

imported into ROSETTA. This precluded the implementation of algorithms such as ligand design into ROSETTA that 

require on-the-fly conformation sampling. The design of the BCL::CONF algorithm has allowed its integration into 

ROSETTA as an external library. 

Foldit is an online scientific game based on ROSETTA where scientific problems are posted as puzzles in the form 

of a game. Through their collaborative play, players have been able to solve some of the most difficult problems that 

have been evading scientists for several years. We implemented the drug design game into Foldit i.e. the graphical 

user interface, interaction maps, toolsets and fragments datasets for drug design. A rapid on-the-fly conformation-

sampling algorithm was needed so players can choose best interactions that ligands have with target molecule of 

interest. BCL::CONF is now an integral part of the Foldit drug design game. 
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Quantitative Structure Activity Relationship models correlate the structure of molecules to their activities 

against a particular target of interest. Our hypothesis is that prediction accuracy of the models can be improved if 

the molecular binding conformation is available. Due to lack of such high quality information, a method was 

developed to create computational models that predict activities based on conformational space available to a ligand 

molecule. Chapter 3 describes the research carried out toward using multiple conformations to develop ligand-based 

quantitative structure activity relationships. Instead of using a single molecular conformation, the neural network 

was trained on multiple conformations so that it learns conformations that are common only to the active molecules 

and uses this information to classify them distinctly from inactive molecules.  

Another primary focus of this doctoral work was drug discovery efforts for DDR1 kinase protein. This work was 

done in collaboration with the Pozzi lab at the Nephrology Department at Vanderbilt Medical School. They have 

substantial evidence that implicates Discoidin Domain Receptor-1 (DDR1) for fibrosis of kidney caused by diabetes. 

Unregulated expression of DDR1 has also been implicated in several cancers making it a desirable target for anti-

cancer therapeutics. Kinase receptors, including DDR1, relay cell-signaling pathways through a kinase domain that 

phosphorylates substrate proteins. Kinase domains are the most popular targets for inhibiting the activity of 

uncontrolled receptor activation. In this work, the kinase domain of DDR1 receptor was the target for inhibition 

using computational drug discovery tools. Homology models and docking studies were performed to study the 

interaction between the known inhibitors of DDR1 kinase and the kinase domain. Homology models were used to 

dock DDR1 binders to predict the co-crystal structure, which was found to be in agreement with a crystal structure 

published later. These studies and models were reported in an article published in Drug Discovery Today. Chapter 4 

of this thesis is an adaptation of the article -  

Kothiwale, S.; Borza, C. M.; Lowe, E. W., Jr.; Pozzi, A.; Meiler, J., Discoidin domain receptor 1 (DDR1) kinase as 

target for structure-based drug discovery. Drug Discov Today 2015, 20 (2), 255-61. Permission to reprint obtained 

from copyright clearance center. 

In addition to the structure-based studies, chapter 4 describes the ligand-based drug discovery experiments 

carried out to find DDR1 inhibitors. The present work develops QSAR models that correlate structure of molecules 

to activity against DDR1, utilizing the several novel DDR1 kinase inhibitors reported in the past three years. Virtual 

compound libraries were screened using the QSAR models and molecules were prioritized for experimental testing. 

Molecules were tested using a high-throughput kinase inhibition assay to identify DDR1 binders. 

With more than 400 different kinase proteins that are closely related, kinase inhibitors are highly non-specific, 

that is, they show significant activity across multiple kinase targets. Kinase inhibitors are categorized based on their 

binding site. Type 1 inhibitors target only the ATP binding pocket and lock the kinase in an active state. Functional 

kinase domains transfer phosphate from the bound ATP to a substrate protein thereby relaying cellular signals. 

Type1 inhibitors competitively target the ATP binding pocket thereby rendering the kinase protein inactive. Type II 
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inhibitors target an allosteric site in addition to the ATP binding site and thus are more selective. Much of the current 

kinase drug discovery efforts is directed toward idenfying highly-selective inhibitors of specific kinases. 

Computational models to predict a kinase selectivity profile were developed to aid in the identification of novel 

DDR1-selective inhibitors, and are reported in Chapter 5. 

For each chapter, computational protocols, commands and scripts are included in the appendices under 

respective headings. The path to scripts, models and code are included in the thesis directory whose structure is 

detailed in the appendices.  
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CHAPTER 1 : COMPUTATIONAL METHODS IN DRUG DISCOVERY 

Introduction 

Computer aided drug discovery/design methods have played a major role in the development of therapeutically 

important small molecules for over three decades. These methods are broadly classified as either structure-based 

or ligand-based methods. Structure-based methods are in principle analogous to high throughput screening in that 

both target and ligand structure information is imperative. These approaches include ligand-docking, 

pharmacophore, and ligand-design methods. These approaches include important tools such as target/ligand 

databases, homology modeling, ligand-fingerprint methods, etc. Ligand-based methods use only ligand information 

for predicting activity depending on its similarity/dissimilarity to previously known active ligands. Widely used ligand-

based methods include ligand-based pharmacophores, molecular descriptors and quantitative structure activity 

relationships.  

On October 5, 1981, Fortune magazine published a cover article entitled the “Next Industrial Revolution: 

Designing Drugs by Computer at Merck” 6. Some have credited this as being the start of intense interest in the 

potential for Computer Aided Drug Design (CADD). While progress was being made in CADD, the potential for high-

throughput screening (HTS) had begun to take precedence as a means for finding novel therapeutics. This brute 

force approach relies on automation to screen high numbers of molecules in search of those that elicit the desired 

biological response. The method has the advantage of requiring minimal compound design or prior knowledge and 

technologies required to screen large libraries have become more efficient. However, while traditional HTS often 

results in multiple hit compounds, some of which are capable of being modified into a lead and later a novel 

therapeutic, the hit rate for HTS is often extremely low. This low hit rate has limited the usage of HTS to research 

programs capable of screening large compound libraries. In the past decade, CADD has reemerged as a way of 

significantly decreasing the number of compounds necessary to screen, while retaining the same level of lead 

compound discovery. Many compounds predicted to be inactive can be skipped and those predicted to be active 

can be prioritized. This reduces the cost and workload of a full HTS screen without compromising lead discovery. 

Additionally, traditional HTS assays often require extensive development and validation before they can be 

employed. Since CADD requires significantly less preparation time, experimenters can perform CADD studies while 

the traditional HTS assay is being prepared. The fact that both of these tools can be used in parallel provides an 

additional benefit for CADD in a drug discovery project. 
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 For example, researchers at Pharmacia (now part of Pfizer) used CADD tools to screen for inhibitors of tyrosine 

phosphatase-1B, an enzyme implicated in diabetes. Their virtual screen yielded 365 compounds, 127 of which 

showed effective inhibition, a hit rate of nearly 35%. Simultaneously, this group performed a traditional HTS against 

the same target. Of the 400,000 compounds tested, 81 showed inhibition, producing a hit rate of only 0.021%. This 

comparative case effectively displays the power of CADD7. CADD has already been used in the discovery of 

compounds that have passed clinical trials and become novel therapeutics in the treatment of a variety of diseases. 

Some of the earliest examples of approved drugs that owe their discovery in large part to the tools of CADD include 

the carbonic anhydrase inhibitor dorzolamide, approved in 19958, the angiotensin-converting enzyme (ACE) inhibitor 

captopril, approved in 1981 as an antihypertensive drug 9, three therapeutics for the treatment of HIV: saquinavir 

(approved in 1995), ritonavir, and indinavir (both approved in 1996) 6 and tirofiban, a fibrinogen antagonist approved 

in 1998 10.  

One of the most striking examples of the possibilities presented from CADD occurred in 2003 with the search 

for novel Transforming Growth Factor-β1 (TGF-β1) receptor kinase inhibitors. One group at Eli Lilly used a traditional 

HTS to identify a lead compound that was subsequently improved by examination of structure activity relationship 

(SAR) using in vitro assays 11, while a group at Biogen Idec used a CADD approach involving virtual HTS based on the 

structural interactions between a weak inhibitor and TGF-β1 receptor kinase 4. Upon the virtual screening of 

compounds, the group at Biogen Idec identified 87 hits, the best hit being identical in structure to the lead compound 

 

Figure 1-1 Identical lead compounds are discovered in a traditional high-throughput screen and structure-based 
virtual high-throughput screen. I) X-ray crystal structures of 1 and 18 bound to the ATP-binding site of the TβR-I 
kinase domain discovered using traditional high-throughput screening. Compound 1, shown as the thinner wire-
frame is the original hit from the HTS and is identical to that which was discovered using virtual screening. 
Compound 18 is a higher affinity compound following lead optimization. Source: (Sawyer, Anderson et al. 2003) 
II) X-ray crystal structure of compound HTS466284 bound to the TβRI active site. This compound is identical to 
compound 1 in I but was discovered using structure-based virtual high-throughput screening. Source :Singh et al 
4 III) Structure-based virtual screening strategy began with known inhibitor (A), leading to shape-based query (B) 
based on x-ray crystal structure of inhibitor bound to the TβRI active site. Compound (C) was discovered using 
this query due to its similarities (D). Source: Singh et al4 
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discovered through the traditional HTS approach at Eli Lilly 12. In this situation CADD, a method involving reduced 

cost and workload, was capable of producing the same lead as a full-scale HTS. 

Position of CADD in the drug discovery pipeline 

CADD is capable of increasing the hit rate of novel drug compounds as it employs a much more targeted search 

than traditional HTS and combinatorial chemistry. It not only aims to explain the molecular basis of therapeutic 

 

Figure 1-2 CADD in drug discovery/design pipeline – A therapeutic target is identified against which a drug has to 
be developed. Depending on the availability of structure information, a structure-based approach or a ligand-
based approach is employed. A successful CADD campaign will allow identification of multiple lead compounds. 
Lead identification is often followed by several cycles of lead optimization and subsequent lead identification 
using CADD. Lead compounds are tested in vivo to identify drug candidates. 
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activity, but also to predict possible derivatives that could improve activity. In a drug discovery campaign, CADD is 

usually used for three major purposes: a) filter large compound libraries into smaller sets of predicted active 

compounds that can be tested experimentally,  b) guide the optimization of lead compounds, whether to increase 

its affinity or optimize Drug Metabolism and Pharmacokinetics (DMPK) properties including Absorption, Distribution, 

Metabolism, Excretion, and the potential for Toxicity (ADMET), c) design novel compounds, either by ‘growing’ 

starting molecules one functional group at a time or by piecing together fragments into novel chemotypes Figure 1-

2 illustrates the position of CADD in drug discovery pipeline. 

CADD can be classified into two general categories: structure-based and ligand-based. Structure-based CADD 

relies on the knowledge of the target protein structure to calculate interaction energies for all compounds tested, 

while ligand-based CADD exploits the knowledge of known active and inactive molecules through chemical similarity 

searches or construction of predictive, Quantitative Structure-Activity Relation (QSAR) models 13. Structure-based 

CADD is generally preferred where high resolution structural data of the target protein is available, i.e. for soluble 

proteins that can readily be crystallized. Ligand-based CADD is generally preferred when no or little structural 

information is available, often for membrane protein targets. The central goal of structure-based CADD is to design 

compounds that bind tightly to the target, i.e. with large reduction in free energy, improved DMPK/ADMET 

properties, and are target specific, i.e. have reduced off-target effects 14. A successful application of these methods 

will result in a compound that has been validated in vitro and in vivo, and its binding location has been confirmed, 

ideally through a co-crystal structure.  

One of the most common uses in CADD is the screening of virtual compound libraries, also known as virtual 

high-throughput screening (vHTS). This allows experimentalists to focus resources on testing compounds likely to 

have any activity of interest. In this way, a researcher can identify an equal number of hits while screening 

significantly less compounds as compounds predicted to be inactive with high confidence may be skipped. Avoiding 

a large population of inactive compounds saves money and time as the size of the experimental HTS is significantly 

reduced without sacrificing a large degree of hits. Ripphausen et al note that the first mention of vHTS was in 1997 

15 and chart an increasing rate of publication for the application of vHTS between 1997 and 2010. They also found 

that the largest fraction of hits has been obtained for G-protein coupled receptors (GPCR’s), followed by kinases 16.  

vHTS comes in many forms including chemical similarity searches by fingerprints or topology, selecting 

compounds by predicted biological activity through QSAR models or pharmacophore mapping, and virtual docking 

of compounds into target of interest, known as structure-based docking17. These methods allow the ranking of “hits” 

from the virtual compound library for acquisition. The ranking can reflect a property of interest such as percent 

similarity to a query compound or predicted biological activity, or in the case of docking, the lowest energy scoring 

poses for each ligand bound to the target of interest 18. Often initial hits are rescored and ranked using higher-level 

computational techniques that are too time-consuming to be applied to full-scale vHTS. It is important to note that 
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vHTS does not aim to identify a drug-compound that is ready for clinical testing, but rather to find leads with 

chemotypes that have not previously been associated with a target. This is not unlike a traditional HTS where a 

compound is generally considered a hit if its activity is close to 10 µM. Through iterative rounds of chemical synthesis 

and in vitro testing a compound is first developed into a “lead” with higher affinity, some understanding of its 

structure-activity-relation, and initial tests for DMPK/ADMET properties. Only after further iterative rounds of lead-

to-drug optimization and in vivo testing does a compound reach a clinically appropriate potency and acceptable 

DMPK/ADMET properties19. For example, the literature survey performed by Ripphausen et al revealed that a 

majority of successful vHTS applications identified a small number of hits that are usually active in the micromolar 

range, and hits with low nanomolar potency are only rarely identified 16. 

The cost benefit of using computational tools in the lead optimization phase of drug development is substantial. 

Development of new drugs can cost anywhere in the range of 400 million to 2 billion dollars with synthesis and 

testing of lead analogues being a large contributor to that sum 20. Therefore, it is beneficial to apply computational 

tools in hit-to-lead optimization in order to cover a wider chemical space while reducing the number of compounds 

that must be synthesized and tested in vitro. The computational optimization of a hit compound can involve a 

structure-based analysis of docking poses and energy profiles for hit analogues, ligand-based screening for 

compounds with similar chemical structure or improved predicted biological activity, or prediction of favorable 

DMPK/ADMET properties. The comparably low-cost of CADD compared to chemical synthesis and biological 

characterization of compounds make these methods attractive to focus, reduce, and diversify the chemical space 

that is explored17.  

De novo drug design is another tool in CADD methods, but rather than screening libraries of previously 

synthesized compounds, it involves the design of novel compounds. A structure generator is needed to sample the 

space of chemicals. Given the size of the search space (more than 1060 molecules) 21 heuristics are employed to focus 

these algorithms on molecules that are predicted to be highly active, readily synthesizable, devoid of undesirable 

properties, often derived from a starting scaffold with demonstrated activity, etc. Additionally, effective sampling 

strategies are utilized while dealing with large search spaces such as evolutionary algorithms, metropolis search, or 

simulated annealing 22. The construction algorithms are generally defined as either linking or growing techniques. 

Linking algorithms involve docking of small fragments or functional groups such as rings, acetyl groups, esters, etc. 

to particular binding sites followed by linking fragments from adjacent sites. Growing algorithms, on the other hand, 

begin from a single fragment placed in the binding site to which fragments are added, removed, and changed to 

improve activity. Like vHTS, the role of de novo drug design is not to design the single compound with nanomolar 

activity and acceptable DMPK/ADMET properties, but rather to design a lead compound that can be subsequently 

improved.  
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Target databases for CADD 

The knowledge of the structure of the target protein is required for structure-based CADD. The Protein Data 

Bank (PDB) 23, established in 1971 at the Brookhaven National Laboratory, and the Cambridge Crystallographic Data 

Center 24, are among the most commonly used databases for protein structure. PDB currently houses more than 

81,000 protein structures, the majority of which have been determined using X-ray crystallography and a smaller set 

determined using NMR spectroscopy. When an experimentally determined structure of a protein is not available, it 

is often possible to create a comparative model based on the experimental structure of a related protein. Most 

frequently, the relation is based in evolution that introduced the term ‘homology model’. The Swiss-Model server is 

one of the most widely used web-based tools for homology modeling25. Initially, static protein structures were used 

for all structure-based design methods. However, proteins are not static structures but rather exist as ensembles of 

different conformational states. The protein fluctuates through this ensemble depending on the relative free 

energies of each of these states, spending more time in conformations of lower free energy. Ligands are thought to 

interact with some conformations but not others, thus stabilizing conformational populations in the ensemble. 

Therefore, docking compounds into a static protein structure can be misleading, as the chosen conformation may 

not be representative of the conformation capable of binding the ligand. Recently, it has become state of the art to 

employ additional computational tools such as molecular dynamics and molecular mechanics to simulate and 

evaluate a protein’s conformational space. Conformational sampling provides a collection of snapshots that can be 

used in place of a single structure that reflect the breadth of fluctuations the ligand may encounter in vivo. This 

approach was proven to be invaluable in CADD by Schames et al in the 2004 identification of novel HIV Integrase 

inhibitors26. Some methods, like ROSETTA-LIGAND 27, are capable of incorporating protein flexibility during the actual 

docking procedure, omitting the need for snapshot ensembles.  

Benchmarking Techniques of CADD 

Effective benchmarks are essential for assessment of performance and accuracy of CADD algorithms. Design of 

the benchmark in terms of number and type of target proteins, size and composition of active and inactive chemicals, 

and selection of quality measures play a key role when comparing new CADD methods with existing ones. Scientific 

benchmarks usually involve screening a library of compounds that include a subset of known actives combined with 

known inactive compounds and then evaluating the number of known actives that were identified by the CADD 

technique employed 28.  

Performance is commonly reported by correlating predicted activities with experimentally observed activities 

with Receiver Operating Characteristic (ROC) curves. These curves plot the number of true positive predictions on 

the y-axis versus the false positive predictions on the x-axis. A random predictor would result in a plot of a line with 

a slope of one, whereas curves with high initial slopes above this line represent increasing performance scores for 

the method tested29. ROC curves are therefore analyzed by determining the area under the curve (AUC), positive 
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predictive value (PPV) – the ratio of true positives in a subset selected in a vHTS screen, or enrichment – a benchmark 

that normalizes PPV by the background ratio of positives in the dataset.  

For structure-based CADD it is now common to also include decoy molecules that further test a technique’s 

ability to discern actives from inactives at high resolution. Irwin et al created the Directory of Useful Decoys (DUD) 

dataset designed for high resolution benchmarking. It includes experimental data for approximately 3000 ligands 

covering up to 40 different targets and a set of carefully chosen decoys 30. These decoys were designed to resemble 

positive ligands physically but not topologically 31. These decoys, however, are not experimentally validated and are 

only postulated to be “inactive” against the targets. Good and Oprea have developed clustered versions of DUD with 

added data sets from sources such as WOMBAT to avoid challenges in enrichment comparisons between methods 

due to different parameters and limited diversity 32.  

The current chapter covers various established structure-based and ligand-based CADD methods. The 

applications of various methods are illustrated with recent studies that concluded in compounds that were at least 

tested in vivo and often entered clinical trials.  

Structure-Based Computer-Aided Drug Design (SB-CADD) 

SB-CADD relies on the ability to determine and analyze 3D structures of biological molecules. The core 

hypothesis of this approach is that a molecule’s ability to interact with a specific protein and exert a desired biological 

effect depends on its ability to favorably interact with a particular binding site on that protein. Molecules that share 

those favorable interactions will exert similar biological effects. Therefore, novel compounds can be elucidated 

through the careful analysis of a protein’s binding site. Structural information about the target is a prerequisite for 

any SB-CADD project. Scientists have been using a target protein’s structure to aid in drug discovery since the early 

1980s 33. Since then, SB-CADD has become a commonly used drug discovery technique thanks to advances in 

genomics and proteomics that have led to the discovery of a large number of candidate drug targets34. Extensive use 

of biophysical techniques such as x-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy has led 

to the elucidation of a number of 3D structures of human and pathogenic proteins. For example, the PDB has over 

81,000 protein structures, while databases like PDBBIND 35 and protein ligand database (PLD) house 5,671 and 129 

(as of 2003) ligand-protein co-crystal structures, respectively. Drug discovery campaigns leveraging target structure 

information have sped up the discovery process and have led to the development of several clinical drugs. A 

prerequisite for the drug discovery process is the ability to rapidly determine potential binders to the target of 

biological interest. Computational methods in drug discovery allow rapid screening of a large compound library and 

determination of potential binders through modeling/simulation and visualization techniques. 
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Preparation of a Target Structure 

A target structure experimentally determined through x-ray crystallography or NMR techniques and deposited 

in the PDB is the ideal starting point for docking. Structural genomics has accelerated the rate at which target 

structures are being determined. In the absence of experimentally determined structures, several successful virtual 

screening campaigns have been reported based on comparative models of target proteins36. Efforts have also been 

made to incorporate information about binding properties of known ligands back into comparative modeling 

process37.  

Success of virtual screening is dependent upon the amount and quality of structural information known about 

both the target and the small molecules being docked. The first step is to evaluate the target for the presence of an 

appropriate binding pocket38. This is usually done through the analysis of known target-ligand co-crystal structures 

or using in silico methods to identify novel binding sites 39. 

Comparative modeling 

Advances in biophysical techniques like X-ray crystallography and NMR techniques have led to increasing 

availability of protein structures. This has allowed use of structural information to guide drug discovery. In the 

absence of experimental structures, computational methods are used to predict the 3D structure of target proteins. 

Comparative modeling is used to predict target structure-based on a template with a similar sequence leveraging 

that protein structure is better conserved than sequence, i.e. proteins with similar sequences have similar structures. 

Homology modeling is a specific type of comparative modeling where the template and target proteins share the 

same evolutionary origin. Comparative modeling involves the following steps: a) Identification of related proteins to 

serve as template structures, b) sequence alignment of the target and template proteins, c) copying coordinates for 

confidently aligned regions, d) constructing missing atom coordinates of target structure, and e) model refinement 

and evaluation. Figure 1-3 illustrates the steps involved in comparative modeling. Several computer programs and 

web servers exist which automate the comparative modeling process e.g. PSIPRED 40 , MODELLER 41. 

Template identification and alignment 

 In the first step, the target sequence is used as a query for the identification of template structures in the PDB. 

Templates with high sequence similarity can be determined by a straight-forward PDB-BLAST search 42. More 
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sophisticated fold recognition methods are available if PDB-BLAST does not yield any hits43. Search for template 

structure is followed by sequence alignment using methods like CLUSTALW 44 which is a multiple sequence alignment 

tool. For closely related protein structures, structurally conserved regions are identified and used to build the 

comparative model. Construction and evaluation of multiple comparative models from multiple good-scoring 

sequence alignments improves the quality of the comparative model45. It has been demonstrated that combination 

of multiple templates can improve comparative models by leveraging well-determined regions that are mutually 

exclusive46.  Template selection is key for successful homology modeling. Careful consideration should be given to 

alignment length, sequence identity, resolution of template structure and consistency of secondary structure 

between target and templates. 

Model building 

Gaps or insertions in the original sequence alignment occur most frequently outside secondary structure 

elements and lead to chain breaks (gaps and insertions) and missing residues (gaps) in the initial target protein 

model. Modeling these missing regions involves connecting the anchor residues, which are the N- or C- terminal 

residues of protein segments on either side of the missing region. Two broad classes of loop-modeling methods exist 

– a) knowledge based methods and b) de novo methods. Knowledge based methods use loops from protein 

structures that have approximately the same anchors as found in target models. Loops from such structures are 

 

Figure 1-3 Steps in homology model building process. Source: (Hillisch, Pineda et al. 2004). 
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applied to the target structure. De novo methods generate a large number of loop conformations and use energy 

functions to judge the quality of predicted loops 47. Both methods, however, solve the “loop closure” problem – i.e. 

identifying low energy loop conformations from a large conformational sample space that justify the structural 

restraint of connecting the two anchor points. Cyclic coordinate descent (CCD) 48 and kinematic closure (KIC) 49 

algorithms optimally search for conformations that satisfy constraints for loop closure in a target structure. CCD 

iteratively changes dihedral angles one at a time such that a distance constraint between anchor residues is satisfied 

48. The KIC algorithm derives from kinematic methods that allow geometric analysis of possible conformations of a 

system of rigid objects connected by flexible joints. The KIC algorithm generates a Fourier polynomial in N variables 

for a system of N rotatable bonds by analyzing bond lengths and bond angles constraints 50. Atom coordinates of the 

loop are then determined using the polynomial equation.  

The loop-modeling step can be affected by two classes of errors: scoring function errors and insufficient 

sampling. The former arises when nonnative conformations are assigned better scores. Confidence in scoring can be 

improved by scoring with different functions, assuming that true native conformation will likely be best ranked 

across multiple scoring methods. Insufficient sampling arises when near native conformations are not sampled. 

Sufficient sampling can be achieved by running multiple independent simulations to establish convergence. 

The next step in comparative modeling is prediction of side chain conformations. A statistical clustering of 

observed side-chain conformations in PDB, called a rotamer library is used in most side chain construction 

methods51. Methods like dead-end elimination (DEE) 52 implemented in SCRWL 53 and Monte Carlo searches 54 are 

used for side-chain conformation sampling. DEE imposes conditions to identify rotamers that cannot be members 

of global minimum energy conformation. For example, the algorithm prunes a rotamer a, if a second rotamer b exists 

such that lowest energy conformation containing a is greater than highest energy conformations containing b. The 

SCRWL algorithm evaluates steric interactions between side chains by a backbone dependent rotamer library that 

expresses frequency of rotamers as a function of dihedral angles φ and ψ. Monte Carlo algorithms search the side 

chain conformational space stochastically using the Metropolis criterion to guide the search into energetic minima.  

Binding pockets in homology models or even crystal structures are often not amenable for ligand docking due 

to insufficient accuracy. Ligand information has been used to improve comparative models. Tanrikulu et al used a 

pseudoreceptor modeling method to improve a homology model of human histamine H4 receptor.  Pseudoreceptor 

methods map binding pockets around one or more reference ligands by capturing their shape and interactions with 

the target. Conformation snapshots of the homology model were obtained by MD simulation and pocket-forming 

coordinates were extracted. Binding pockets of MD frames that matched pseudoreceptor were prioritized for virtual 

screening. Hits from virtual screening were tested experimentally and two compounds with diverse chemotypes 

exhibited pKi > 455. Abagyan et al have employed a combined homology modeling and ligand guided backbone 

ensemble receptor optimization algorithm (LiBERO) for prediction of a protein-ligand complex in CASP experiments. 
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The approach was identified as the best in that it identified 40% of the 70 contacts that ZMA antagonist makes with 

adenosine A2a receptor (PDB:3EML). In LiBERO framework multiple models are generated and normal mode analysis 

(NMA) is used to generate backbone conformation ensembles. Conformers are selected according to docking 

performance through an iterative process of model building and docking 56. Ligand information assisted homology 

modeling is contingent on a) availability of high affinity ligands b) availability of structurally close homologs to ensure 

good quality initial homology model. 

Model refinement and evaluation 

Atomic models are refined by introducing ideal bond geometries and by removing unfavorable contacts 

introduced by the initial modeling process. Refinement involves minimizing models using techniques such as 

molecular dynamics 57, Monte Carlo Metropolis minimization 58 or genetic algorithms 59. For example, the ROSETTA 

refinement protocol fixes bond lengths and angles at ideal values, and removes steric clashes in an initial low-

resolution step. ROSETTA then minimizes energy as a function of backbone torsional angles φ, ψ and ω using a Monte 

Carlo minimization strategy 58. Molecular dynamics-based refinement techniques have been used widely as 

refinement strategy in drug-design oriented homology model60. 

Model evaluation involves comparison of observed structural features with experimentally determined protein 

structures. Sali et al 61 applied a genetic algorithm that used 21 input model features like sequence alignment scores, 

measures of protein packing, and geometric descriptors to assess folds of models. Critical Assessment of Techniques 

for Protein Structure Prediction (CASP) 62 is a worldwide competition in which many groups participate for an 

objective assessment of methods in the area of protein structure prediction. Models are numerically assessed and 

ranked by estimating similarity between a model and corresponding experimental structure. Some evaluation 

methods used in CASP are full model root mean square deviation (RMSD), global distance test-total scores (GDT-TS) 

and alignment accuracy (AL0 score). GDT-TS is the average maximum number of residues in predicted model that 

deviate from corresponding residues in the target by no more than a specified distance while AL0 represents the 

percentage of correctly aligned residues 62. 

 Binding site detection and characterization  

Protein-ligand interaction is a prerequisite for drug activity. Often possible binding sites for small molecules are 

known from co-crystal structures of the target or a closely related protein with a natural or non-natural ligand. In 

the absence of a co-crystal structure, mutational studies can pinpoint ligand-binding sites. However, the ability to 

identify putative high-affinity binding sites on proteins is important if the binding site is unknown or if new binding 

sites are to be identified, e.g. for allosteric molecules. Computational methods like POCKET, SURFNET, Q-SITEFINDER, 

etc.39, 63 are often used for binding site identification. Computational methods for identifying and characterizing 

binding sites can be divided into three general classes: a) geometric algorithms to find shape concave invaginations 
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in the target, b) methods based on energetic consideration, c) methods considering dynamics of protein structures 

and d) by comparison to binding sites in homologous proteins. Detail description about different methods can be 

found in review article by Kothiwale et al. 

Protein-ligand docking 

There are three basic methods to represent target and ligand structures in silico: atomic, surface, and grid 

representations64. Atomic representation of the surface of the target is usually used when scoring and ranking is 

based on potential energy functions. An example is DARWIN which uses CHARMM force field to calculate energy 65. 

Surface methods represent the topography of molecules using geometric features. The surface is represented as a 

network of smooth convex, concave, and saddle shape surfaces. These features are generated by mapping part of 

van der Waals surface of atoms that is accessible to probe a sphere 66. Docking is then guided by a complementary 

alignment of ligand and binding site surfaces. Earliest implementation of DOCK 67 used a set of non-overlapping 

spheres to represent invaginations of target surface and the surface of the ligand (method described earlier in detail 

for SPHGEN). Geometric matching begins by systematically pairing one ligand sphere a1 with one receptor sphere 

b1. This is followed by pairing a second set of spheres, a2 and b2. The move is accepted if the change in atomic 

distances is less than an empirically determined cut off value. The cut off value specifies the maximum allowed 

deviation between ligand and receptor internal distance. The pairing step is repeated for a third pair of atoms with 

the same internal distance checks as above. A minimum of four assignable pairs is essential for determining 

orientation otherwise the match is rejected. For the grid representation, the target is encoded as physicochemical 

features of its surface. A grid method described by Katchalski-katzir et al 68 digitizes molecules using a 3D discrete 

function which distinguishes the surface from the interior of the target molecule. Molecules are scanned in relative 

orientation in three dimensions and the extent of overlap between molecules is determined using a correlation 

function calculated from a Fourier Transform. Best overlap is determined from a list of overlap functions68. 

Physiochemical properties may be represented on the grid by storing energy potentials on surface grid points. 

Sampling Algorithms for Protein-Ligand Docking 

Docking methods can be classified as rigid-body docking and flexible docking applications depending on the 

degree to which they consider ligand and protein flexibility during the docking process64a 69. Rigid body docking 

methods consider only static geometric/physiochemical complementarities between ligand and target, and ignore 

flexibility and induced-fit 64a binding models. More advanced algorithms consider several possible conformations of 

ligand or receptor or both at the same time according to the conformational selection paradigm 70. Rigid docking 

simulations are generally preferred when time is critical, i.e. when a large number of compounds are to be docked 

during an initial vHTS. However, flexible docking methods are still needed for refinement and optimization of poses 

obtained from an initial rigid docking procedure. With the evolution of computational resources and efficiency, 
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flexible docking methods are becoming more commonplace. Some of the most popular approaches include 

systematic enumeration of conformations, molecular dynamic simulations, Monte Carlo search algorithms with 

Metropolis criterion, and genetic algorithms. 

Systematic methods 

Systematic algorithms incorporate ligand flexibility through a comprehensive exploration of a molecule’s 

degrees of freedom. In systematic algorithms, the current state of the system determines the next state. Starting 

from the same exact state and same set of parameters, systematic methods will yield exactly the same final state. 

Systematic methods can be categorized into a) exhaustive search algorithms and b) fragmentation algorithms. 

Exhaustive searches elucidate ligand conformations by systematically rotating all possible rotatable bonds at a 

given interval. Large conformational space often prohibits an exhaustive systematic search. Algorithms such as GLIDE 

71 use heuristics to focus on regions of conformational space that are likely to contain good scoring ligand poses. 

GLIDE pre-computes a grid representation of target’s shape and properties. Next, an initial set of low energy ligand 

conformations in ligand torsion-angle space is created. Initial favorable ligand poses are identified by approximate 

positioning and scoring methods (shape and geometric complementarities). This initial screen reduces the 

conformational space over which the high resolution-docking search is applied. High-resolution search involves the 

minimization of the ligand using standard molecular mechanics energy function, followed by a Monte Carlo 

procedure for examining nearby torsional minima. 

Fragmentation methods sample ligand conformation by incremental construction of ligand conformations from 

fragments obtained by dividing the ligand of interest. Ligand conformations are obtained by docking fragments in 

the binding site one at a time and incrementally growing them, or by docking all fragments into the binding site and 

linking them covalently. Des Jarlais et al modified the DOCK algorithm to allow for ligand flexibility by separately 

docking fragments into the binding site and subsequently joining them 72. FLEXX 73 uses the “anchor and grow 

method” for ligand conformational sampling. A base fragment has to be interactively selected by the user that is 

followed by automatic determination of placements for the fragment that maximize favorable interactions with the 

target protein. The base fragment is grown incrementally by adding new fragments in all possible conformations and 

the extended fragment is selected if no significant steric clashes (overlap volume ≤ 4.5 Å3) are observed between 

ligand and target atoms. Extended ligands are optimized a) if new interactions are found b) if minor steric 

interactions exist 73. Fully automated “anchor and grow” methods have been implemented in several methods like 

FLOG 74, SURFLEX 75 and SEED 76.  In a benchmark study where performance of eight docking algorithm was compared 

on 100 protein-ligand complex, GLIDE and SURFLEX were among the methods that showed best accuracy 77. GLIDE 

and SURFLEX generated poses close to X-ray conformation for 68 protein-ligand complexes in the Directory of Useful 

Decoys78. 
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Example application in CADD. Human Pim-1 kinase, responsible for cell survival/apoptosis, differentiation and 

proliferation, is a valuable anticancer target as it is over expressed in a variety of leukemia. Pierce et al 79 used GLIDE 

to dock around 700,000 commercially available compounds and identified four compounds with Ki values less than 

5 µM. Chiu et al 80 used SURFLEX to identify novel inhibitors of anthrax toxin lethal factor, responsible for anthrax-

related cytotoxicity. Docking study of a compound library derived from seven databases including DrugBank 81, ZINC 

82, National Cancer Institute (NCI) database 83 etc. identified lead compounds which eventually led to the 

development of nanomolar inhibitors upon optimization.  

Molecular dynamics simulations 

Molecular dynamics (MD) simulation calculates the trajectory of a system by the application of Newtonian 

mechanics. However, standard MD methods depend heavily on the starting conformation and are not readily 

appropriate for simulation of ligand-target interactions. Due to its nature, MD is not able to cross high-energy 

barriers within the simulation’s lifetime and is not efficient for traversing the rugged hyper surface of protein-ligand 

interactions. Strategies like simulated annealing have been applied for more efficient use of MD in docking. Di Nola 

et al have described a MD protocol for docking small flexible ligands to flexible targets in water84. They separated 

the center of mass movement of ligand from its internal and rotational motions. The center of mass motion and 

internal motions were coupled to different temperature baths, allowing independent control to the different 

motions. Appropriate values of temperature and coupling constants allowed flexible or rigid ligand and/or receptor. 

The McCammon group developed a “relaxed-complex” approach which explores binding conformations that 

may occur only rarely in the unbound target protein. A two ns MD simulation of ligand free target is carried out to 

extensively sample its conformations. Docking of ligands is then performed in target conformation snapshots taken 

at different time points of the MD run. This relaxed complex method was used to discover novel modes of inhibition 

for HIV integrase and led to the discovery of the first clinically approved HIV integrase inhibitor, Raltegravir. This MD 

method has also been used in several other campaigns to identify inhibitors of target of interest85. 

Metadynamics is a MD-based technique for predicting and scoring ligand binding. The method maps the entire 

free energy landscape in an accelerated way as it keeps track of history of already sampled regions. During the MD 

simulation of a protein-ligand complex, a Gaussian repulsive potential are added on explored regions, steering the 

simulation towards new-free energy regions.26, 86 

Millisecond timescale MD simulations are now possible with special purpose machines like Anton87. Such long 

simulations have allowed study of drug binding events to their protein target 88. Anton has been used successfully 

for full atomic resolution protein folding 89. Advances in computer hardware capabilities means protein flexibility 

can be accessed more routinely on longer timescales. This would allow better descriptions of conformational 

flexibility in future. 
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Monte Carlo search with metropolis (MCM) criterion 

Stochastic algorithms make random changes to either ligand being docked or to its target binding site. These 

random changes could be translational or rotational in the case of ligand or random conformational sampling of 

residue side-chains in the target binding site. Whether a step is accepted or rejected in such a stochastic search is 

decided based on the Metropolis criterion that generally accepts steps that lower the overall energy and occasionally 

accepts steps that increase energy to enable departure from a local energy minimum. The probability of acceptance 

of an uphill step decreases with increasing energy gap and depends on the ‘temperature’ of the MCM simulation90. 

MCM simulations have been adopted for flexible docking applications such as in MCDOCK 91, ICM 92, and 

ROSETTALIGAND 27, 93. MCM samples conformational space faster than molecular dynamics in that it requires only 

energy function evaluation and not the derivative of the energy functions. While traditional MD drives a system 

towards a local energy minimum, the randomness introduced with Monte Carlo allows hopping over the energy 

barriers, preventing the system from getting stuck in local energy minima. A disadvantage is that any information 

about the timescale of the motions is lost.  

ROSETTALIGAND 94 uses a knowledge-based scoring procedure with a Monte Carlo-based energy minimization 

scheme that reduces the number of conformations that must be sampled while providing a more rapid scoring 

system than offered through molecular mechanics force fields. ROSETTALIGAND incorporates side-chain and ligand 

flexibility during a high-resolution refinement step through a Monte-Carlo based sampling of torsional angles. All 

torsion angles of protein and ligand are optimized through gradient-based minimization mimicking an induced fit 

scenario 93. MCDOCK uses two stages of docking and a final energy minimization step for generating target-ligand 

structure. In the first docking stage, the ligand and docking site are held rigid while the ligand is placed randomly 

into the binding site. Scoring is done completely based on short-contacts. This allows identification of non-clashing 

binding poses. In the next stage, energy based Metropolis sampling is done to sample the binding pocket91. QXP 95 

optimizes grid map energy and internal ligand energy for searching ligand-target structure. The algorithm performs 

a rigid body alignment of ligand-target complex followed by MCM translation and rotation of ligand. This step is 

followed by another rigid body alignment and scoring using energy grid map. ICM 96 (Internal Coordinate Mechanics) 

relies on a stochastic algorithm for global optimization of entire flexible ligand in receptor potential grid. The relative 

positions of ligand and target molecule make up the internal variables of the method. Internal variables are subject 

to random change followed by local energy minimization and selection by Metropolis criterion. ICM performed 

satisfactorily in generating protein-ligand complexes for 68 diverse, high-resolution X-ray complexes found in DUD78. 

Example application in CADD. ROSETTALIGAND was used by Kaufmann et al 97 to predict the binding mode of 

serotonin with serotonin transporters. The binding site predicted to be deep within the binding pocket was 

consistent with mutagenesis studies. QXP has been used to optimize inhibitors of Human β-Secretase (BACE1) 98 

which is an important therapeutic target for treating Alzheimer’s disease by diminishing β-amyloid deposit 
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formation. ICM was used successfully to identify inhibitors for a number of targets including Tumor necrosis factor 

α99, dysregulation of which is implicated in tumorigenesis and autoinflammatory diseases like rheumatoid arthritis 

and psoriatic arthritis. Computational screening of 230,000 compounds from the NCI database against 

neuraminidase using ICM identified 4-(4-((3-(2-amino-4-hydroxy-6-methyl-5-pyrimidinyl) propyl) amino) phenyl)-1-

chloro-3-buten-2-one which inhibited influenza virus replication at a level comparable to known neuraminidase 

inhibitor oseltamivir100. 

Genetic Algorithms 

 Genetic algorithms (GAs) introduce molecular flexibility through recombination of parent conformations to 

child conformations. In this simulated evolutionary process, the “fittest” or best scoring conformations are kept for 

another round of recombination. In this way, the best possible set of solutions evolves by retaining favorable 

features from one generation to the next. In docking, a set of values that describe the ligand pose in the protein are 

state variable, i.e. the genotype. State variables may include set of values describing translation, orientation, 

conformation, number of hydrogen bonds, etc. The state corresponds to the genotype; the resulting structural 

model of the ligand in the protein corresponds to the phenotype, and binding energy corresponds to the fitness of 

the individual. Genetic operators may swap large regions of parent’s genes, or randomly change (mutate) the value 

of certain ligand states, to give rise to new individuals.  

Genetic Optimization for Ligand Docking (GOLD) 101 explores full ligand flexibility with partial target flexibility 

using a genetic algorithm. The GOLD algorithm optimizes rotatable dihedrals and ligand-target hydrogen bonds. The 

fitness of a generation is evaluated based on a maximization of inter-molecular hydrogen bonds. The fitness function 

is the sum of a hydrogen bonding term, a term for steric energy interaction between the protein and the ligand and 

a Lennard-Jones potential for internal energy of ligand. AutoDock 102 uses the Lamarckian genetic algorithm (LGA) 

which allows favorable phenotypic characteristics to become inheritable. GOLD has demonstrated better accuracy 

than most docking algorithms, except GLIDE, in various benchmark studies.77, 103 

Example application in CADD. Inhibition of α-glucosidase has shown to retard glucose absorption and decrease 

postprandial blood glucose level which makes it an attractive target for curing diabetes and obesity. Park  et al 104 

used AUTODOCK to identify four novel inhibitors of α-glucosidase by screening a library of 85000 compounds 

obtained from INTERBIOSCREEN chemical database (http://www.ibscreen.com) . AUTODOCK was also used to identify 

inhibitors of RNA Editing Ligase-1 enzyme of Trypanosoma brucei, causative agent of Human African 

trypanosomiasis105.  

Incorporating target flexibility in docking 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=0960894X&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ibscreen.com
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Conformational variability is seen in unbound form and different apo structures106. It is widely believed that the 

ligand-bound state is selected from an ensemble of protein conformations by the ligand 107. Accounting for receptor 

flexibility in the form of protein side-chain and backbone movement is essential for predicting correct binding pose. 

An ensemble of non-redundant low energy target structures will cover a large conformational space as against a 

single conformation resulting in more realistic target-ligand bound states.  Methods for inducing receptor flexibility 

include induced-fit docking and ensemble generated from MD simulation snapshots. Induced-fit algorithms allow 

small overlap between the ligand and the target along with side-chain movements resulting in elasticity. GLIDE uses 

an induced fit model where all side chain residues are changed to alanine before initial docking. Side-chain sampling 

is followed by energy minimization of the binding site and ligand. ROSETTALIGAND allows for full protein backbone and 

side-chain flexibility in the active site. Multiple fix receptor conformations are used in docking protocols, known as 

ensemble-based screening, to incorporate receptor flexibility 108. Receptor conformations may be experimentally 

determined by either crystallography or NMR, or computationally generated from MD simulations, normal mode 

analysis (NMA) and MC sampling109. McCammon et al. used the relaxed complex scheme (RCS) to describe a novel 

trench in HIV integrase which led to the discovery of the integrase inhibitor raltegravir 110. In RCS, multiple 

conformations are determined from MD simulations to perform docking studies. Other sampling methods include 

umbrella-sampling, metadynamics, accelerated MD etc. 106b. 

Scoring Functions for Evaluation Protein-Ligand Complexes 

Docking applications need to rapidly and accurately assess protein-ligand complexes, i.e. approximate the 

energy of the interaction. A ligand docking experiment may generate hundreds of thousands of target-ligand 

complex conformations, and an efficient scoring function is necessary to rank these complexes and differentiate 

valid binding mode predictions from invalid predictions. More complex scoring functions attempt to predict target-

ligand binding affinities for hit-to-lead and lead-to-drug optimization. Scoring functions can be grouped into four 

types: a) force-field or molecular mechanics based scoring functions b) empirical scoring functions c) knowledge-

based scoring functions d) consensus scoring functions. 

Force-field or molecular mechanics based scoring functions 

Force-field scoring functions use classical molecular mechanics for energy calculations. These functions use 

parameters derived from experimental data and ab initio quantum mechanical calculations. The parameters for 

various force terms including pre-factor variables are obtained by fitting to high quality ab initio data on 

intermolecular interactions 111. The binding free energy of protein-ligand complexes are estimated by the sum of van 

der Waals and electrostatic interactions. DOCK uses the AMBER force fields in which van der Waals energy terms are 

represented by the Lennard-Jones potential function while electrostatic terms are accounted for by coulomb 

interaction with a distance-dependent dielectric function. Standard force fields are however biased to select highly 
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charged ligands. This can be corrected by handling ligand solvation during calculations112 113. Terms from empirical 

scoring functions (discussed below) are often added to force field functions to treat solvation and electronic 

polarizability. A semi-empirical force field has been implemented in AUTODOCK to evaluate the contribution of water 

surrounding the receptor-ligand complex in the form of empirical enthalpic and entropic terms, for example114.  

Empirical Scoring Functions 

Empirical scoring functions fit parameters to experimental data. An example is binding energy which is 

expressed as a weighted sum of explicit hydrogen bond interactions, hydrophobic contact terms, desolvation effects, 

and entropy. Empirical function terms are simple to evaluate and are based on approximations. The weights for 

different parameters are obtained from regression analysis using experimental data obtained from molecular data. 

Empirical functions have been used in several commercially available docking suits like LUDI 115 , FLEXX 73 and 

SURFLEX 75. 

Knowledge-Based Scoring Function 

Knowledge-Based scoring functions employ the information contained in experimentally determined complex 

structures. They are formulated under the assumption that inter-atomic distances occurring more often than 

average distances represent favorable contacts. On the other hand, interactions that are found to occur with lower 

frequencies are likely to decrease affinity. Several knowledge based potentials have been developed to predict 

binding affinity like potential of mean force (PMF) 116, DRUGSCORE 117, SMOG 118 and BLEEP 119. 

Consensus-Scoring Functions 

More recently, consensus-scoring functions have been demonstrated to achieve improved accuracies through 

a combination of advantages of basic scoring functions. Consensus approaches rescore predicted poses several times 

using different scoring functions. These results can then be combined in different ways to rank solutions 120. Some 

strategies for combining scores include a) weighted combinations of scoring functions b) a voting strategy in which 

cutoffs established for each scoring method is followed by decision based on number of passes a molecule has c) a 

rank by number strategy ranks each compound by its average normalized score values d) a rank by rank method 

sorts compounds based on average rank determined by individual scoring functions. Boyle et al 121 evaluated 

consensus scoring strategies to investigate the parameters for the success of properly combined rescoring strategies. 

It turns out that combining scoring functions that have complementary strengths leads to better results over those 

that have consensus in their predictions. For example, scoring functions whose strengths are distinguishing actives 

from inactive compounds are complemented by scoring functions that can distinguish correct from incorrect binding 

poses. A disadvantage of consensus scoring methods could be a possible loss of active compound if poorly scored 

by one of the scoring functions. 
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Example application in CADD. Okamoto et al 122 have used consensus scoring technique for identifying inhibitors 

of death-associated protein kinases which are targets for ischemic diseases in the brain, kidney, and other organs. 

The consensus scoring function used in the study was implemented in DOCK4.0 program and included three scoring 

functions a) empirical scoring function (implemented in FLEXX) b) a knowledge-based PMF scoring function 123 c) a 

force-field function from DOCK4.0. Around 400,000 compounds from a corporate compound library were docked 

followed by simultaneous scoring with the three functions. The consensus score was defined as the score that was 

highest among the three. In another successful application of consensus scoring scheme, Friedman et al 124 

discovered plasmepsin inhibitors for use as antimalarial agents using a scoring based on median ranking of four field-

based scoring functions.  

Pharmacophore Model 

A pharmacophore model of the target-binding site summarizes steric and electronic features needed for optimal 

interaction of a ligand with a target. Most common properties that are used to define pharmacophores are hydrogen 

bond acceptors, hydrogen bond donors, basic groups, acidic groups, partial charge, aliphatic hydrophobic moieties, 

and aromatic hydrophobic moieties. Pharmacophore features have been used extensively in drug discovery for 

virtual screening, de novo design, and lead optimization 125. A pharmacophore model of the target-binding site can 

be used to virtually screen a compound library for putative hits. Apart from querying database for active compounds, 

pharmacophore models can also be used by de novo design algorithms to guide the design of new compounds.  

Structure-based pharmacophore methods are developed based on an analysis of the target-binding site or 

based on a target-ligand complex structure. LigandScout 126 uses protein-ligand complex data to map interactions 

between ligand and target. A knowledge based rule-set obtained from the PDB is used to automatically detect and 

classify interactions into hydrogen bond interactions, charge transfers, and lipophilic regions 126. The Pocket v.2 127 

algorithm is capable of automatically developing a pharmacophore model from a target-ligand complex. The 

algorithm creates regularly spaced grids around the ligand and the surrounding residues. Probe atoms which 

represent a hydrogen bond donor, a hydrogen bond acceptor and a hydrophobic group, are used to scan the grids. 

An empirical scoring function, SCORE, is used to describe the binding constant between probe atoms and the target. 

SCORE includes terms to account for van der Waals interactions, metal-ligand bonding, hydrogen bonding and 

desolvation effects upon binding 128. A pharmacophore model is developed by rescoring the grids followed by 
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clustering and sorting to extract features essential for protein-ligand interaction. During rescoring, hydrogen bond 

donor/acceptor scores lower than 0.2 and hydrophobic scores lower than 0.47 are reset to zero. Grids with three 

zero scores are filtered out and the “neighbor number” for each grid is determined by counting the number of grids 

within 2 Å having non-zero score for a particular type. Grids with less than 50 donor neighbors, 30 acceptor neighbors 

and 40 hydrophobic neighbors are reset to zero for their donor score, acceptor score and hydrophobic scores 

respectively. Grids are filtered by eliminating those with three zero scores leaving only those grids that represent 

key interaction sites. The algorithm then superimposes the ligand on the grid and a given grid is selected as a 

candidate if it is close to an atom type that can mediate the same interaction. Candidates with non-zero donor, 

acceptor, or hydrophobic scores are gathered into separate clusters and the grid with highest score is defined as the 

center of donor, acceptor or hydrophobic property.  

Virtual screening using a pharmacophore model  

17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays an important role in the synthesis of the most 

potent estrogen estradiol. Its inhibition could be important for breast cancer prevention and treatment. Schuster et 

al 129 used LigandScout2.0 to generate pharmacophore models of 17β-HSD1 from co-crystallization complexes with 

inhibitors (PDB code 1EQU and 1I5R). These pharmacophore models represent the binding mode of a steroidal 

compound and a small hybrid compounds (consisting of a steroidal part and an adenosine) respectively. The 1I5R-

 

Figure 1-4 Extracting common pharmacophores of LTA4H-h and 
human-PLA2. Cyan spheres depict hydrophobic centers, red spheres 
represent H-bond acceptor while yellow spheres stand for feature that 
coordinates with a metal. Source: Wei et al 1 
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based pharmacophore model was used to screen the NCI and SPECS databases for new inhibitors using CATALYST. 

Best scoring hit compounds were docked into the binding pocket of 1EQU using GOLD, and final selection for in vitro 

testing was performed according to the best-fit value, visual inspection of predicted docking pose and the 

ChemScore (GOLD scoring function) value. Four out of 14 compounds tested in vitro showed an IC50 value of less 

than 50 µM with the most potent being 5.7 µM. Brvar et al 130 applied pharmacophore models to discover novel 

inhibitors of bacterial DNA gyrase B, a bacterial type II topoisomerase originating from gyrase and a target for 

antibacterial drugs. A pharmacophore model obtained using LigandScout was used to screen the ZINC database that 

yielded a novel class of thiazole-based inhibitors with IC50 value of 25 µM. 

Multi-target inhibitors using common pharmacophore models 

Wei et al 1 used Pocket v.2 to identify a common pharmacophore for two targets involved in inflammatory 

signaling, human leukotriene A4 hydrolase (LTA4H-h) and human nonpancreatic secretory phospholipase A2 (PLA2). 

The co crystal structure (PDB code 1HS6) of LTA4H-h with 2-(3-amino-2-hydroxy- 4-phenylbutyrylamino)-4-methyl-

pentanoic acid (bestatin) and the structure (PDB code 1DB4) of PLA2 with [3-(1-benzyl-3-carbamoylmethyl-2-methyl-

1H-indol-5-yloxy) propyl] phosphonic acid (indole 8) were used to derive pharmacophores of the two targets. For 

LTA4H-h, six pharmacophore centers were identified which included four hydrophobic, one hydrogen bond acceptor 

and one zinc metal coordination pharmacophore. In the binding pocket of PLA2 three hydrophobic centers, one 

hydrogen bond acceptor and two calcium ion coordination centers were identified. The comparison of two sets of 

pharmacophore models revealed that two hydrophobic pharmacophores and a pharmacophore that coordinated 

with metal, shown in Figure 1-5, was common to both proteins. The authors hypothesized that compounds that 

satisfy the common pharmacophores would inhibit both the proteins. The MDL chemical database was screened 

virtually with LTA4H-h and PLA2 using Dock4.0 and binding conformation of top 150,000 compounds (60% of 

database) ranked by Dock score were extracted and checked for conformity to common pharmacophores. This 

identified 163 compounds whose binding conformations were re-analyzed using Autodock3.5 followed by 

comparison with common pharmacophores. Finally, nine compounds whose conformations matched the common 

pharmacophores were tested in vitro for binding with PLA2 and LTA4H-h. The best inhibitor, compound 10, shown 

in Figure 1-4, inhibited LTA4H-h at submicromolar range while PLA2 with an IC50 value of 7.3 µM.   

Dynamic pharmacophore models that account for protein flexibility 

The over expression of murine double minute 2 oncoprotein (MDM2) which inhibits p53 tumor suppressor is 

responsible for approximately half of all human cancers. Reactivation of p53-MDM2 integration has been shown to 

be a novel approach for enhancing cancer cell death 131. Bowman et al 131 extracted snapshots at every 100 ps from 

a 2ns MD simulation of MDM3 bound to p53. The resulting 21 structures for MDM2 were used to generate a 6-site 

pharmacophore model of the active site that included three aromatic/hydrophobic sites and three hydrogen-bond 



22 
 

donor sites. A virtual screening of a library of 35,000 compounds identified 27 hits, 23 of which were tested in a 

competitive binding assay. Four of the tested compounds were identified as true hits with the best inhibitor having 

a Ki value of 110 +/- 30 nM. The dynamic pharmacophore model was also used successfully to identify low µM 

inhibitors of HIV-1 integrase132. 

Automated de novo Design of Ligands 

De novo structure-based ligand design can be accomplished by either a ligand growing or ligand linking 

approach. With the ligand growing approach, a fragment is docked into the binding site and the ligand is extended 

by adding functional groups added to the fragment. The linking method is similar docks multiple small fragments 

into adjacent binding pockets of the target. Subsequently, the fragments are linked to each other to form a single 

compound. This approach is a computational version of the popular SAR by NMR technique introduced by Hadijuk 

et al 133.  

Several methods have been developed which implement both ligand growing and ligand linking strategies for 

designing ligands that can bind to a given target. LigBuilder 134 builds ligands in a step by step fashion using a library 

of fragments. The design process can be carried out by various operations like ligand growing and linking; and the 

construction process is controlled by a genetic algorithm. The target-ligand complex binding affinity is evaluated by 

using an empirical scoring function. The program first reads the target protein and analyzes the binding pocket. 

Depending on the choice of the user, it can then use either a growing or a linking strategy. In the growing strategy, 

a seed structure is placed in binding pocket and then the program replaces user defined growing sites with candidate 

fragments. This gives rise to a new seed structure that can then be used in further rounds of growing. For the linking 

strategy, several fragments placed at different locations on the target protein serve as seed structure. The growing 

scheme happens simultaneously on each fragment. In the process, the program seeks to link these fragments. The 

LUDI 115 algorithm, which precedes LigBuilder, uses primarily a linking strategy for ligand design. It positions seed 

fragments into binding pockets of the target structure optimizing their interactions individually. This step is followed 

by linking the fragments into a single molecule. The synthetic accessibility of ligands can be taken into account. For 

example, LigBuilder 2.0 analyzes designed using a chemical reaction database and a retro-synthesis analyzer 135. 

 

Figure 1-5 A) A reported inhibitor of LTA4H-h B) Compound 11 
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 The biggest challenge of de novo drug design is inseparable from its greatest advantage. By defining compounds 

that have never been seen before, one is invariably necessitating synthetic effort for acquisition prior to testing. This 

forces any de novo protocol to incorporate synthesizability metrics into its scoring. This increases the effort required 

in terms of cost, yield, time, and expertise necessary. Synthesizability thus becomes increasingly important when 

designing a large number of different compounds and scaffolds. Tools have been designed and employed to 

approach synthesizability constraints. SYNOPSIS (SYNthesize and OPtimize System in Silico) 136 is a commonly used 

tool that enforces synthesizability throughout the design process by starting with available compounds and creating 

novel compounds by virtually employing known chemical reactions. This tool contains a set of 70 reaction types that 

are selected based on the presence of different functional groups in the evolving molecule. SYNOPSIS also provides 

additional restraints for desired properties such as solubility. Krier et al proposed an approach called the Scaffold-

Linker-Functional Group (SLF) approach that has been implemented in de novo strategies137. This method is designed 

to create a de novo scaffold-focused library that maximizes diversity and minimizes size. A limited number of non-

overlapping functional groups were selected that are added or removed from the static scaffold core. The linker 

plays the role of varying the distances between the scaffold and functional groups. RECAP (Retrosynthetic 

Combinatorial Analysis Procedure) was the first fragment generation method to incorporate rules that limit the 

 

Figure 1-6 Design strategy for inhibitors of p38 MAP kinase. A) Key interactions of 
BIRB-796 inhibitor with MAP kinase. B) A fragment linking strategy to link two seed 
structures was applied using LigBuilder. A tert-butyl phenyl fragment was used in 
the first pocket while a carbonyul fragment was used to access the hydrogen bond 
with Met109 in the second site. An N-formyl group was attached to the first seed 
fragment to access hydrogen bonds with Glu 71 and Asp168.  C) General structure 
of optimized structures which showed potent activity. D) R group for compound 
28 which showed IC50 value of 83 nM. Source: Cogan et al3  
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chemical reactions to ones used in typical combinatorial chemistry techniques, thereby limiting the possible 

fragments as well as possible recombination patterns138. 

Example application in CADD. De novo design by linking fragments has been successfully applied in the design of 

inhibitors of p38 mitogen-activated protein kinase (MAPK) 3, which is a key regulator in signaling pathways that 

control the production of cytokines such as TNF-α and IL-1β. Inhibitors of MAPK can potentially be used for the 

treatment of various autoimmune diseases. The Figure 1-6A shows four classes of interactions of a clinical compound 

BIRB 796 with MAPK a) interaction with residues in ATP binding site (Met109) b) interaction with the “Phe pocket” 

(dotted arc) c) hydrophobic interaction with the kinase specificity pocket (solid arc) d) interaction of the urea with 

backbone NH of Asp168 and carboxylate of Glu71. A design strategy for exploring structurally distinct scaffolds by 

leveraging the interactions of BIRB 796 was devised as follows: a) A tert-butyl group was used as “Phe pocket” seed 

structure in place of pyrazole ring of BIRB 796 b) An N-formyl group was appended to tert-butyl fragment to access 

the hydrogen bonds with Glu71 and Asp168 c) A carbonyl group was used as the second seed fragment to access 

the hydrogen bond with Met109 as shown in Figure 1-6B. LigandBuilder software was used to link the two seed 

fragments, the tert-butyl linked to N-formyl group, and the carbonyl group. The program consistently introduced a 

 

Figure 1-7 A) chemical structure of SKLB1002. B, SKLB1002 is docked into the active site of VEGFR2, showing 
interactions between SKLB1002 and VEGFR2 by using the in silico model. C, a 2-dimensional interaction map of 
SKLB1002 and VEGFR2. Source: Zhang et al2 
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4-tolyl group in the kinase specificity pocket. However, LigandBuilder failed to predict favorable rigid linkers for 

connecting tolyl group to carbonyl group that would be essential for carbonyl display at the proper distance to 

interact with Met109. Modeling indicated N-linked azoles connected to tolyl group via an N-linkage as a suitable 

linker. Derivatives of this designed molecule were synthesized leading to the discovery of compound 28 shown in 

Figure 1-6D, which exhibited IC50 value of 83 nM.  

Zhang et al have employed the fragment extension approach 2 in the discovery of inhibitors of VEGF Receptor 2 

(VEGFR2), a therapeutic target for tumor-induced angiogenesis. The authors used quinazoline as the seed fragment 

as three of the nine clinically approved kinase inhibitor drugs are 4-anilinoquinazoline derivatives139. These inhibitors 

bind the active site of their respective targets such that the quinazoline ring is located at the front of ATP binding 

pocket. The ligand building process involved placing the quinazoline fragment in the binding pocket in the same 

orientation as found for known inhibitors. The design strategy sought to create ligand that would extend to fit a 

specific hydrophobic pocket at the back of the ATP binding cleft. An NH2, OH, or SH group was added in the C4 

position of the quinazoline ring to allow for a turn owing to orientation of quinazoline and the spatial arrangement 

of the hydrophobic pocket. A fragment-growth-based de novo method was applied in which various fragments 

(about 1200 fragments) were allowed to grow on the turn fragment to extend into the hydrophobic pocket. Designed 

molecules were then re-scored and ranked using GOLD. The design process led to the development of a potent and 

specific VEGFR2 inhibitor, SKLB1002 shown in Figure 1-7. The inhibitor was successful in inhibiting angiogenic 

processes in zebra fish embryo and athymic mice with human tumor xenografts.  

Ligand-Based Computer-Aided Drug Design (LB-CADD) 

The ligand-based computer-aided drug discovery (LB-CADD) approach involves the analysis of ligands known to 

interact with a target of interest. These methods utilize a set of reference structures collected from compounds 

known to interact with the target of interest and analyze their 2D or 3D structures. The overall goal is to represent 

these compounds in such a way that the physicochemical properties most important for their desired interactions 

are retained while extraneous information not relevant to the interactions is discarded. It is considered an indirect 

approach to drug discovery in that it does not necessitate knowledge of the structure of the target of interest. The 

two fundamental approaches of LB-CADD are a) selection of compounds based on chemical similarity to known 

actives using some similarity measure or b) the construction of a QSAR model that predicts biological activity from 

chemical structure. The difference between the two approaches is that the latter weighs features of the chemical 

structure according to their influence on the biological activity of interest, while the former does not. The methods 

are applied for in silico screening for novel compounds possessing the biological activity of interest, hit-to-lead and 

lead-to drug optimization, and for the optimization of DMPK/ADMET properties. LB-CADD is based on the Similar 

Property Principle, published by Johnson and Maggiora, which states that molecules that are structurally similar are 

likely to have similar properties 140. LB-CADD approaches in contrast to SB-CADD approaches can also be applied 
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when the structure of the biological target is unknown. Additionally, active compounds identified by Ligand-Based 

virtual High-Throughput Screening (LB-vHTS) methods are often more potent than those identified in (SB-vHTS) 28.  

Molecular Descriptors / Features 

LB-CADD techniques utilize different methods for describing features of small molecules using computational 

algorithms that balance efficiency and information content. The optimal descriptor set depends on the biological 

function predicted as well as on the LB-CADD technique employed, and therefore many different algorithms for 

deriving chemical information have been developed and employed. Molecular descriptors can be structural as well 

as physicochemical, and can be described on multiple levels of increasing complexity. Information described can 

include properties such as molecular weight, geometry, volume, surface areas, ring content, rotatable bonds, inter-

atomic distances, bond distances, atom types, planar and non-planar systems, molecular walk counts, 

electronegativities, polarizabilities, symmetry, atom distribution, topological charge indices, functional group 

composition, aromaticity indices, solvation properties, and many others 141. These descriptors are generated through 

knowledge-based, graph-theoretical methods, molecular-mechanical, or quantum-mechanical tools 142 and are 

classified according to the “dimensionality” of the chemical representation from which they are computed 143 – 

1D=scalar physicochemical properties such as molecular weight; 2D=molecular constitution-derived descriptors, 

2.5D=molecular configuration-derived descriptors; 3D=molecular conformation-derived descriptors. These different 

levels of complexity, however, are overlapping with the more complex descriptors often incorporating information 

from the simpler ones. For example, many 2D and 3D descriptors use physicochemical properties to weight their 

functions and to describe the overall distribution of these properties. 

Functional groups 

Functional groups are defined by the IUPAC as atoms or groups of atoms that have similar chemical properties 

across different compounds. These groups are attached to a central backbone of the molecule, also called scaffold 

or chemotype. The spatial positioning of the functional groups achieved by the backbone defines the physical and 

chemical properties of compounds. Therefore, the location and nature of functional groups for a given compound 

contain key information for most ligand-based CADD methods. There are many different kinds of functional groups 

including those that contain hydrocarbons, halogens, oxygens, nitrogens, sulfur, phosphorous, etc. Functional 

groups include alcohols, esters, amides, carboxylates, ethers, nitro group, thiols, etc. 144 

Functional groups can either be explicitly described by their atomic composition and bonding or may be 

implicitly encoded by their general properties. For example, under physiological conditions carboxyl groups are often 

negatively charged while amine groups are positively charged. This property is accurately reflected in the structure 

of the functional group, but also in the charge computed from that structure. Since it is the properties conferred by 

the functional groups that are most important to the biochemical activity of a given compound, many CADD 



27 
 

applications treat functional groups containing different atoms but conferring the same properties as similar or even 

identical. For example, the capacity for hydrogen bonding can heavily influence a molecule’s properties. These 

interactions frequently occur between a hydrogen atom and an electron donor such as oxygen or nitrogen. Hydrogen 

bonding interactions influence the electron distribution of neighboring atoms and the site’s reactivity, making it an 

important functional property for therapeutic design. Commonly, hydrogen bonding groups are separated as 

hydrogen bond donors with strong electron-withdrawing substituents (OH, NH, SH, and CH) and hydrogen bond 

acceptor groups (PO, SO, CO, N, O, and S) 145. The applications Phase, Catalyst, DISCO, and GASP as well as 

Pharmacophore mapping algorithms discussed in greater detail below focus primarily on hydrogen-bond donors, 

hydrogen-bond acceptors, hydrophobic regions, ionizable groups, and aromatic rings. 

Prediction of physio-chemical properties 

Descriptors within the same dimensionality can show a range of complexity. The simplest ones such as molecular 

weight and number of hydrogen bond donors are relatively simple to compute. These can be rapidly and accurately 

computed. More complex descriptors such as solubility and partial charge are more difficult to compute. However, 

the higher information content provided by these descriptors makes them extremely useful for model development. 

146. Therefore, prediction of physio-chemical properties is a critical step in developing effective molecular 

descriptors. The trade-off in computing such descriptors is between the high speed needed to encode thousands of 

molecules and sufficient accuracy.  

Converting properties into descriptors 

Molecule properties are converted into numerical vectors of descriptors for analysis. This conversion is needed 

to ensure that descriptions of molecules have a constant length independent of size. Each position in the vector of 

descriptors encodes a well-defined property or feature that facilitates comparison by mathematical algorithms. 

Binary molecular fingerprints 

Fingerprints are bit string representations of molecular structure and/or properties147. They encode various 

molecular descriptors as pre-defined bit settings 148 i.e. representation as 1 or 0, where 1 means descriptor is present 

or 0 if not. This allows chemical identity to be unambiguously assigned by the presence or absence of features 149. 

The features described in a molecular fingerprint can vary in number and complexity (from hundreds of bits for 

structural fragments to thousands for connectivity fingerprints, and millions for the complex pharmacophore-like 

fingerprints) 148, depending on the computational resources available and the intended application. Fingerprints 

which rely solely on interatomic connectivity – i.e. molecular constitution – are known as 2D fingerprints 149. In the 

prototypic 2D keyed fingerprint design, each bit position is associated with the presence or absence of a specific 
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substructure pattern – for example carbonyl group attached to sp3 carbon, hydroxyl group attached to sp3 carbon, 

etc. 150. 

2D Description of molecular constitution 

2D descriptors can be computed solely from the constitution or topology of a molecule while 3D descriptors are 

obtained from the 3D structure of the molecule143. Many 2D molecular descriptors are based on molecular topology 

derived from graph-theoretical methods. Topological indices treat all atoms in a molecule as vertices and index 

specific information for all pairs of vertices. A simple topological index, for example, will contain only constitutional 

information such as which atoms are directly bound to each other. This is known as an adjacency matrix and an entry 

of 1 for vertices vi and vj if their corresponding atoms are bonded and an entry of 0 for vi and vi indicates that the 

corresponding atoms are not directly bonded 151. For an adjacency matrix, the sum of all entries is equal to twice the 

total number of bonds in the molecule. 

Complex topological indices are created by performing specific operations to an adjacency matrix that allow for 

the encoding of more complex constitutional information. These indices are based on local graph invariants which 

can represent atoms independent of their initial vertex numbering 152. For example, topological indices may contain 

entries for the number of bonds linking the vertices. Information gathered from such an index can include the 

number of bonds linking all pairs of atom and the number of distinct ways a path can be superimposed on the 

molecular graph. A topological index that includes information such as heteroatoms and multiple bonds through the 

weighting of vertices and edges was introduced by Bertz 153.  

Topological autocorrelation (2D autocorrelation) is designed to represent the structural information of a 

molecular diagram as a fixed-length vector that can be applied to molecules of any shape or size. It encodes the 

constitutional information as well as atom property distribution by analyzing the distances between all pairs of 

atoms. Topological autocorrelations are independent of conformational flexibility because all distances are 

measured as the shortest path of bonds between the two atoms. The autocorrelation vector is created by summing 

all products for atom pairs within increasing distance intervals in terms of number of bonds. In other words, it creates 

a frequency plot for a specific range of atom pair distances. By including atom property coefficients for all atom 

pairs, autocorrelations are capable of plotting the arrangement of specific atom properties. For example, 

information such as the frequency at which two negatively charged atoms are three bonds apart versus four bonds 

apart is stored in an autocorrelation plot that has been weighted by partial atomic charge 154. 
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3D Description of molecular configuration and conformation 

The physicochemical meaning of topological indices and autocorrelations is unclear and incapable of 

representing some qualities that are inherently three-dimensional (stereochemistry). 3D molecular descriptors were 

developed to address some of these issues 155.  

The 3D Autocorrelation is similar to the 2D autocorrelation but measures distances between atoms as Euclidian 

distances between their 3D coordinates in space. This allows a continuous measure of distances and encodes the 

spatial distribution of physicochemical properties. Instead of summing all pairs within discrete shortest path 

differences, the pairs are summed into interval steps 156.  

Radial distribution functions (RDFs) is another very popular 3D descriptor. It maps the probability distribution 

to find an atom in a spherical volume of radius r. In its simplest form, the RDF maps the interatomic distances within 

the entire molecule. Often it is combined with characteristic atom properties in order to fit the requirements of the 

information to be represented 141a. RDFs Not only provide information regarding interatomic distances between 

atoms and properties, they reflect other information such as bond distances, ring types, and planar versus non-

planar molecules. These functions allow estimation of molecular flexibility by a “fuzziness” coefficient that extends 

the width of all peaks to allow for small changes in interatomic distances.  

Molecular fingerprint and similarity searches 

Molecular fingerprint based techniques attempt to represent molecules in such a way as to allow rapid 

structural comparison in an effort to identify structurally similar molecules or to cluster collections based on 

structural similarity. These methods are less hypothesis-driven and less computationally expensive than 

pharmacophore mapping or QSAR models (read below). They rely entirely on chemical structure and omit compound 

known biological activity, making the approach more qualitative in nature than other LB-CADD approaches 148. 

Additionally, fingerprint-based methods consider all parts of the molecule equally and avoid focusing only on parts 

of a molecule that are thought to be most important for activity. This is less error-prone to over-fitting and requires 

smaller datasets to begin with. However, model performance suffers from the influence of unnecessary features and 

the often narrow chemical space evaluated 148. Despite this drawback, 2D fingerprints continue to be the 

representation of choice for similarity-based virtual screening 157. Not only are these methods the computationally 

least expensive way to compare molecular structures 149, but their effectiveness has been demonstrated in many 

comparative studies 157. 
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Similarity searches in LB-CADD 

Fingerprint methods may be employed to search databases for compounds similar in structure to a lead query, 

providing an extended collection of compounds that can be tested for improved activity over the lead. In many 

situations, 2D similarity searches of databases are performed using chemotype information from first generation 

hits, leading to modifications that can be evaluated computationally or ordered for in vitro testing 9. Bologa et al 

used 2D fingerprint and 3D shape-similarity searches to identify novel agonists of the estradiol receptor family 

receptor GPR30. Estrogen is an important hormone responsible for many aspects of development of physiology of 

tissues158. The GPCR GPR30 has recently been shown to bind estrogen with high affinity and its specific role in 

estrogen-regulated signaling is being studied159. This group used virtual screening to identify compounds selective 

for GPR30 that could be used to study this target. 10,000 molecules provided by Chemical Diversity Labs were 

enriched with GPCR binding ligands and screened for fingerprint-based similarity to the reference molecule 17β-

estradiol. Fingerprints used were Daylight and MDL and similarities were scored using Tanimoto and Tversky scores. 

The top 100 ranked hits were selected for biological testing and a first-in-class selective agonist with a Ki of 11 nM 

for GPR30 was discovered.  160. 

In addition to the enrichment of lead compound population, fingerprints are also used to increase molecular 

diversity of test compounds. Fingerprints can be used to cluster large libraries of hits in order to allow the sampling 

of a wide range of compounds without the need to sample the entire library. In this case, fingerprints are being used 

to optimize the sampling of diversity space. The Jarvis-Patrick method that calculates a list of nearest neighbors for 

each molecule has been shown to perform well for chemical clustering. Two structures cluster together if they are 

in each-others list of nearest neighbors and they have at least K of their J nearest neighbors in common. The MDL 

keys also provide a way to eliminate compounds which are least likely to satisfy the drug-likeness criterion 161. 

Quantitative Structure Activity Relationship (QSAR) models 

Quantitative structure-activity relationship (QSAR) models describe the mathematical relation between 

structural attributes and target response of a set of chemicals 162. Classical QSAR is known as the Hansch-Fujita 

approach and involves the correlation of various electronic, hydrophobic, and steric features with biological activity. 

In the 1960s, Hansch and others began to establish QSAR models using various molecular descriptors to physical, 

chemical, and biological properties focused on providing computational estimates for the bioactivity of molecules 

163. In 1964, Free-Wilson developed a mathematical model relating the presence of various chemical substituents to 

biological activity (each type of chemical group was assigned an activity contribution) and the two methods were 

later combined to create the Hansch/Free-Wilson method164.  

The general workflow of a QSAR-based drug discovery project is to first collect a group of active and inactive 

ligands and then create a set of mathematical descriptors that describe the physicochemical and structural 
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properties of those compounds. A model is then generated to identify the relationship between those descriptors 

and their experimental activity maximizing the predictive power. Finally, the model is applied to predict activity for 

a library of test compounds that were encoded with the same descriptors. Success of QSAR, therefore, depends not 

only on the quality of the initial set of active/inactive compounds, but also on the choice of descriptors and the ability 

to generate the appropriate mathematical relationship. One of the most important considerations regarding this 

method is the fact that all models generated will be dependent on the sampling space of the initial set of compounds 

with known activity, the chemical diversity. In other words, divergent scaffolds or functional groups not represented 

within this “training” set of compounds will not be represented in the final model and any potential hits within the 

library to be screened that contain these groups will likely be missed. Therefore, it is advantageous to cover a wide 

chemical space within the training set. For a comprehensive guide on performing a QSAR-based virtual screen, please 

see the review by Zhang 162. 

Multidimensional QSAR: 3D, 4D and 5D QSAR 

Multidimensional QSAR (mQSAR) seeks to quantify all energy contributions of ligand binding including removal 

of solvent molecules, loss of conformational entropy, and binding pocket adaptation. 

Comparative Field Molecular Analysis (CoMFA) 141h is a 3D-QSAR technique that aligns molecules and extracts 

aligned features that can be related to biological activity. This method focuses on the alignment of molecular 

interaction fields rather than the features of each individual atom. CoMFA was established over 20 years ago as a 

standard technique for constructing 3D models in the absence of direct structural data of the target. In this method, 

molecules are aligned based on their 3D structures on a grid and the values of steric (VDW interactions) and 

electrostatic potential energies (Coulombic interactions) are calculated at each grid point. Comparative Molecular 

Similarity Indices (CoMSIA) is an important extension to CoMFA. In CoMSIA, the molecular field includes hydrophobic 

and hydrogen-bonding terms in addition to the steric and coulombic contributions. Similarity indices are calculated 

instead of interaction energies by comparing each ligand with a common probe and Gaussian-type functions are 

used to avoid extreme values 165. One important limitation to these methods, however, is that their applicability is 

limited to static structures of similar scaffolds while neglecting the dynamical nature of the ligands 142a. 

4D-QSAR is an extension of 3D-QSAR that treats each molecule as an ensemble of different conformations, 

orientations, tautomers, stereoisomers, and protonation states. The fourth dimension in 4D-QSAR refers to the 

ensemble sampling of spatial features of each molecule. A receptor-independent (RI) 4D-QSAR method was 

proposed by Hopfinger, et al 166. This method begins by placing all molecules into a grid and assigning interaction 

pharmacophore elements (IPE) to each atom in the molecule (polar, nonpolar, hydrogen bond donor, etc.). 

Molecular dynamic simulations are used to generate a Boltzmann weighted conformational ensemble of each 

molecule within the grid. Trial alignments are performed within the grid across the different molecules and 
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descriptors are defined based on occupancy frequencies within each of these alignments. These descriptors are 

called Grid Cell Occupancy Descriptors (GCODs). A conformational ensemble of each compound is used to generate 

the GCODs rather than a single conformation.  

5D-QSAR has been developed to account for local changes in the binding site that contribute to an induced fit 

model of ligand binding. In a method developed by Vedani and Dobler 167, induced fit is simulated by mapping a 

“mean envelope” for all ligands in a training set on to an “inner envelope” for each individual molecule. Their method 

involves several protocols for evaluating induced-fit models including a linear scale based on the adaptation of 

topology, adaptations based on property fields, energy minimization, and lipophilicity potential. Using this 

information, the energetic cost for adaptation of the ligand to the binding site geometry is calculated. 

Receptor-Dependent 3D/4D-QSAR 

While QSAR methods are especially useful when structural information regarding target-binding site is not 

available, QSAR methods that specifically include such information have been developed. One method, known as 

Free Energy Force Field (FEFF) 3D-QSAR trains a ligand-receptor force field QSAR model that describes all 

thermodynamic contributions for binding168. A 4D-QSAR version of FEFF has also been developed to apply this 

method to the RI-4D-QSAR methods described above168. Structurally, the analysis is focused solely on the site of 

interaction between the ligand and target and all atoms of interest are assigned partial charges. Molecular dynamic 

simulations are applied to these structures to generate a conformational ensemble following energy minimization. 

This approach avoids any alignment issues present in the RI-4D-QSAR method since the binding site constrains the 

three-dimensional orientations of the ligands. The conformation ensembles of receptor-ligand complexes generated 

are placed in a similar grid-cell lattice as used in RI-4D-QSAR and occupancy profiles are calculated to generate 

receptor-dependent (RD) 4D-QSAR models. When tested alongside RI-4D-QSAR against a set of glucose analogue 

inhibitors of glycogen phosphorylase, predictability of RD-4D-QSAR models outperformed those of RI-4D-QSAR168. 

Linear regression and related methods 

Linear models used include multivariable linear regression analysis (MLR), principal component analysis (PCA), 

or partial least square analysis (PLS) 142a. MLR computes biological activity as a weighted sum of descriptors or 

features. The method requires typically 4-5 data points for every descriptor used. PCA increases the efficiency of 

MLR by extracting information from multiple variables into a smaller number of uncorrelated variables. Analysis of 

results is however not always straightforward169. It can be applied with smaller sets of compounds than MLR. PLS 

combines MLR and PCA and extracts the dependent variable (biological activity) into new components to optimize 

correlations 170. PCA or PLS are commonly used for developing models for the molecular interaction field algorithm 

CoMFA and CoMSIA 142a. Advantage of these models is that they can be trained rapidly using the tools of linear 

algebra. The major drawback is that chemical structure often relates with biological activity in a non-linear fashion. 
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Non-linear models employing machine learning algorithms 

Artificial Neural Networks (ANNs) are one of the most popular non-linear regression models applied to QSAR-

based drug discovery 171. These models belong to the class of self-organizing algorithms where the neural network 

learns the relationship between descriptors and biological activity through iterative prediction and improvement 

cycles 142a. A major drawback of neural networks is the fact that they are sensitive to overtraining, resulting in 

excellent performance within the training set but reduced ability to assess novel compounds. Therefore, care is taken 

to measure ANN performance always on “independent” datasets not employed for model generation. 

SVM is a kernel-based supervised learning method that was introduced by Vapnik and Lerner 172. It is based on 

statistical learning theory and the Vapnik-Chervonenkis dimension 173 and seeks to divide sets of patterns (molecules 

described with descriptors) based on their classification (biological function). Once this separation is performed on 

a training dataset, novel patterns can be classified based on which side of the boundary they fall. The simplest form 

of separation can be imagined as a straight line down the center of a graph with the two classes clustered in opposite 

corners of the graph. Since there are many different lines that can be defined to separate these classes, SVM is 

described as a maximal margin classifier as it seeks to define the hyperplane with the widest margin between these 

two classes. The patterns (compounds) which line the closest border of each class define the two hyperplanes 

separated by that margin. These patterns (molecules) are known as support vectors and represent the maximal 

margin solution and are used to predict classes for novel unclassified patterns. All patterns that lie further from these 

boundaries are not support vectors and have no influence on the classification of novel patterns. Hyperplanes 

defined by the lowest number of support vectors are preferred. The solution is a parallel decision boundary that lies 

equidistant from the two hyperplanes defined by their respective support vectors174. 

SVM was initially designed for datasets that could be separated linearly. However, especially in CADD 

application, this is not always possible. Therefore, SVM incorporated a high-dimensional space in which linear 

classification was once again possible. This involves the preprocessing of input data using feature functions where 

the input variables are mapped into a Hilbert space of finite or infinite dimension 174a. While it cannot be predicted 

which feature functions will allow for linear classification, as the input vector is mapped into higher space, this 

becomes more possible. This strategy, however, must be offset by the fact that higher dimensional space creates 

more computational burden and contributes to over-fitting 175. 

SVM utilizes kernel functions to ease the computational demand imposed by the existence of higher 

dimensional data. These special nonlinear functions combine the feature functions in a way that avoids explicit 

transformation and preprocessing using feature functions 174a. In other words, the higher dimensional space that 

allows for linear separation does not need to be dealt with directly. 
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A kernel is essentially a function in which the solution for two inputs is equal to the dot product of their mapping 

from input space to Hilbert space. Based on this fact, any novel kernels a researcher seeks to develop must be a dot 

product in a mapped feature space. This can be tested mathematically applying Mercer’s condition 175. The definition 

of new kernels, however, is not usually necessary as multiple useful kernels have already been well established for 

different problem types. Which kernel is necessary for any given problem cannot be predicted, but is generally best 

selected a priori by researching which kernels have been successfully used in similar applications. It is not 

recommended to select the best kernel based on performance with the dataset being researched as this can often 

lead to over-fitting and poor generalizability. Some of the most commonly used kernels include the linear (dot) kernel 

used mainly as a test of nonlinearity and reference for classification improvement following the application of 

nonlinear kernels, the polynomial kernel which can be adjusted based on its degree to allow for larger feature space, 

radial basis function kernel, anova kernel, Fourier series kernel, spline kernel, additive kernel, and tensor product 

kernel. Addition, multiplication, and composition of these kernels all result in valid kernels 174a. When implementing 

a novel kernel function, however, the researcher must ensure that it is the dot product in a feature space for some 

mapping. This condition can be tested by applying Mercer’s condition 175. It should be considered, however, that 

over-fitting could be induced with more complex kernel functions.  

Decision Tree (DT) learning is a supervised learning algorithm that works by iteratively grouping the training 

data set into small and more specific groups. The resulting classification resembles a tree where each feature is 

broken into different values and each of these values is subsequently divided based on values of a different feature. 

The order in which features are divided is usually based on an information gain (difference between information 

before and after the branching) parameter with the highest valued features appearing first176. Various methods are 

used to sort the features with the overall goal of the smallest possible decision tree providing the best performance. 

C4.5 is a widely used DT algorithm that calculates information gain based on information entropy177. The information 

entropy of a given classification that can divide the dataset into two classes is calculated based on the number of 

compounds in either class. The information entropy of the system when dividing the dataset into two subsets using 

a specific feature is calculated based on the number of compounds from each class in either of the feature subsets. 

Finally, the information gain for that specific feature is calculated as the difference between the information entropy 

of the classification and the information entropy of the system. 

Once the decision tree has been optimized for the training set, new compounds can be classified by applying 

their descriptors to the decision tree and activities can be predicted based on which subset they fall into and the 

activities of the training compounds that are contained in that subset. 
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QSAR Application in LB-CADD 

Mueller et al used ANN QSAR models to identify novel positive and negative allosteric modulators of mGlu5. 

This receptor has been implicated in neurological disorders including anxiety, Parkinson’s disease, and 

schizophrenia178. For the identification of positive allosteric modulators (PAMs), they first performed a traditional 

high throughput screen of approximately 144,000 compounds. This screen yielded a total of 1,356 hits, a hit rate of 

0.94%. The dataset from this HTS was then used to develop a QSAR model that could be used in a virtual screen. To 

generate the QSAR model, a set of 1,252 different descriptors across 35 categories were calculated using the 

ADRIANA software package. The descriptors included scalar, 2D, and 3D descriptor categories. The authors 

iteratively removed the least sensitive descriptors in order to create the optimal set. This final set included 276 

different descriptors, including scalar descriptors such as molecular weight up to 3D descriptors including the radial 

distribution function weighted by lone-pair electronegativity and π electronegativity. A virtual screen was performed 

against approximately 450,000 commercially available compounds in the ChemBridge database. 824 compounds 

were tested experimentally for the potentiation of mGlu5 signaling. Of these compounds, 232 were confirmed as 

potentiators or partial agonists. This hit rate of 28.2% was approximately 30 times greater than that of the original 

HTS and the virtual screen took approximately one hour to complete once the model had been optimized5. In a 

 

Figure 1-8 QSAR-based virtual screening of mGlu5 negative allosteric modulators 
yields lead compounds that contain substructure combinations taken across 
several known actives used for model generation. Mueller et al5 
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separate study, Mueller et al 179 used a similar approach to identify negative allosteric modulators for mGlu5. 

Rodriguez et al had previously performed a traditional HTS screen of 160,000 compounds for allosteric modulators 

of mGlu5 and found 624 antagonists180. The QSAR model was used to virtually screen over 700,000 commercially 

available compounds in the ChemDiv Discovery database. Hits were filtered for drug-like properties, and fingerprint 

techniques were used to remove hits that were highly similar to known actives in order to identify new chemotypes. 

749 compounds were tested in vitro and 27 compounds were found to modulate mGlu5 signaling. This hit rate of 

3.6% was a significant increase over the 0.2% hit rate of the traditional HTS screen. The most potent of the 

compounds showed in vitro IC50’s of 75 and 124 nM, respectively, and contained a previously unidentified scaffold 

(Figure 1-8). Following analogue synthesis and stability optimization, the experimenters tested the effect of their 

best lead in vivo against two behaviors known to involve mGlu5: operant sensation seeking behavior 181 and the 

burying of foreign objects in deep bedding 182. Both behaviors were found to be inhibited given intra-peritoneal 

administration of their lead analogue. 

CoMFA and CoMSIA 3D-QSAR methods have also been used to predict novel therapeutic compounds for a 

variety of disease targets. Ke et al 183 generated CoMFA and CoMSIA models using 66 previously discovered pyrazole- 

and furanopyrimidine-based Aurora Kinase inhibitors184. Aurora kinase A is a serine/threonine kinase involved in 

mitosis 185 that has been shown to be involved in various different forms of cancer 186. Using the model that showed 

the best predictive performance, the group synthesized a novel compound (compound 67). This compound was 

tested in vitro and displayed an IC50 of 25 nM against Aurora kinase A. Additionally, compound 67 displayed 

antiproliferative activity with an IC50 of 23 nM against the HCT-116 colon cancer cell line.  

Over the past several decades, over 18,000 QSAR models have been reported for a variety of targets with a 

variety of descriptors. Hansch et al have carefully collected these into a comprehensive database of QSAR models 

called C-QSAR 187. This collection has provided not only access to models for novel applications, but allows the 

analysis of QSAR models to identify challenges for the field. Kim et al examined the C-QSAR database for outlier 

patterns – i.e. compounds that showed poor prediction when the average prediction for the model was good. They 

found that over 47 QSAR models examined, the number of compounds scoring as outliers ranged from 3% to 36%. 

26 of the 47 datasets showed 20% or more compound outliers188. They presented several theories as to why QSAR 

models are so sensitive to the generation of outliers. One possibility came from analysis of the RCSB protein 

databank where they discovered examples where related analogs were shown to bind in very different poses. 

Another explanation offered was protein flexibility, leading to multiple binding modes and or binding sites on the 

same protein. These different binding modes/sites may reflect different structure-activity relationships for 

molecules within a given dataset. In other words, analogous compounds that do not share the same binding mode 

can present difficulties in the classifications of ligands188. 
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Selection of optimal descriptors/features 

Hristozov et al analyzed the performance of different descriptors across a range of benchmarking datasets and 

found that the performance of a particular descriptor was often dependent on the activity class. It was found that 

topological autocorrelation usually offers the best dimensionality/performance ratio. The fusion of the ranked lists 

obtained with RDF codes and 2D descriptor improved results because RDF codes, while giving similar results, covered 

different parts of the activity spaces under investigation 29a. In result, it is not possible to choose a small optimal set 

of descriptors independent of the problem – a custom-optimized descriptor set is needed for optimal performance 

of LB-CADD.  

Excessive numbers of descriptors or features can add noise to a model reducing its predictive power. Feature 

selection techniques remove unnecessary features in order to minimize the number of degrees of freedom of the 

model. Thus, the ratio of data points versus degrees of freedom increases leading to models of increased predictive 

power. Techniques which have proven successful in QSAR modeling include selecting features by measures such as 

information gain 189 and F – Score 190, sequential feature forward selection or feature backward elimination 191, 

genetic algorithm 192, swarm optimization 192a, and input sensitivity analysis 179.  

Information gain measures the change of information entropy from the data distribution of two classes (active 

and inactive compounds) of one feature compared to the entropy of the feature overall. Thus, discriminatory power 

of the individual feature increases with information gain. An f-score is calculated that considers the mean and 

standard deviation of each feature across data classes. The higher the f-score value, the greater discriminatory power 

of that feature. Selecting features by individual benchmarks has the disadvantage, that correlation between features 

is ignored. For example, let us assume a feature has a high information gain. However, if a second feature highly 

correlated is already part of the model, no improved model will result from adding the feature. More complex 

feature selection schemes address this limitation: 

Sequential feature forward selection is a deterministic, greedy search algorithm. In each round, the best feature 

set from the previous round N appends a single feature from the pool of M remaining features and trains the M 

models using the N+1 features. The best performing feature set from this round then advances to the next round. 

This continues until all features are used in a final feature set. The best performing model over all iterations is then 

chosen as the best feature set. This process is time consuming and not guaranteed to yield the optimal feature set 

– the single best performing feature will always be part of the model. However, there is no guarantee that it is 

needed. Feature backward elimination inverts the process starting from a model trained from all features eliminating 

one after the other. While the process is more robust in terms of identifying the optimal model, it also requires 

substantial computer time. Therefore, alternative approaches have been explored to optimize feature sets: 



38 
 

 Genetic algorithms mimic the process of evolution to create an efficient search heuristic. This method uses 

a population of individuals (distinct feature sets) to encode candidate solutions. The initial individuals can be 

generated randomly. In each iteration, or generation, the fitness of each individual is evaluated – i.e. the predictive 

power of the derived LB-CADD model. This fitness function is the performance metric of a model trained using that 

individual as the feature set. Individuals are then selected based on the fitness and undergo recombination and/or 

mutation to form the next generation. The algorithm continues until a desired fitness score is achieved or a set 

number of generations have been completed.  

 Swarm optimization algorithms, such as ant colony optimization 193, particle swarm optimization, and 

artificial bee colony optimization 194, are optimization techniques based on the organized behavior of social animals 

such as birds. The algorithm iteratively searches for a best solution by moving individuals around the search space 

guided by both the local best solution, as well as the best solutions found so far in the entire population. The best 

overall solution is constantly updated letting the swarm converge towards the optimal solutions. 

 Input sensitivity analysis seeks to combine speed of individual benchmark values with accuracy of methods 

that take correlation into account. First, a model is constructed using all features. Next, the influence of each feature 

on the model output is determined: Each feature xi is perturbed and the change in output y is computed. This 

procedure numerically estimates the partial derivative of the output with respect to each input – a measure that is 

effective in selecting optimal descriptor sets 179. 

Pharmacophore mapping 

In 1998, the IUPAC formally defined a pharmacophore as “the ensemble of steric and electronic features that is 

necessary to ensure the optimal supramolecular interactions with a specific biological target structure and to trigger 

(or to block) its biological response” 195. In terms of drug activity, it is the spatial arrangement of functional groups 

that a compound or drug must contain in order to evoke a desired biological response. Therefore, an effective 

pharmacophore will contain information about functional groups that interact with the target, as well as information 

regarding the type of non-covalent interactions and interatomic distances between these functional 

groups/interactions. This arrangement can be derived either in a structure-based manner by mapping the sites of 

contact between a ligand and binding site, or using a ligand-based approach. The former can be achieved by 

analyzing one or several co-crystal structures with lead or drug compounds bound and will not be discussed in more 

detail here. We focus on the latter, more challenging problem. 

To generate a ligand-based pharmacophore, multiple active compounds are overlaid in such a way that a 

maximum number of chemical features overlap geometrically 196. This can involve rigid 2D or 3D structural 

representations or, in more precise applications, incorporate molecular flexibility to determine overlapping sites. 

This conformational flexibility can be incorporated by pre-computing the conformational space of each ligand and 
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creating a general-purpose conformational model or conformations can be explored by changing molecule 

coordinates as needed by the alignment algorithm 196. For example, one popular pharmacophore-generating 

software package, Catalyst, uses the “polling” algorithm 197 to generate approximately 250 conformers that it uses 

in its pharmacophore generation algorithm 142a. In a study targeting HSP90α, Al-Sha’er et al used 83 known reference 

molecules to generate pharmacophore queries and identified 25 diverse inhibitors including three with IC50 values 

below 10 nM 198. 

Superimposing active compounds to create a pharmacophore 

Molecules are commonly aligned through either a point-based or a property-based technique. The point-based 

technique involves superposing pairs of points (atoms or chemical features) by minimizing Euclidean distances. 

These alignment methods typically use a root-mean-square distance (RMSD) to maximize overlap 199. Property-based 

alignment techniques, on the other hand, use molecular field descriptors to generate alignments 196. These fields 

define 3D grids around compounds and calculate the interaction energy for a specific probe at each point. The 

distribution of interaction energies is represented by Gaussian functions and the degree of overlap between 

Gaussian functions of two aligned compounds is used as the objective scoring function to maximize alignment 199. 

One popular field generation method for property-based alignments is GRID 200. 

Molecular flexibility is always an important consideration when aligning compounds of interest and several 

approaches are employed to most efficiently sample conformational space. These approaches include rigid, flexible, 

and semi-flexible methods. Rigid methods require knowledge of the active conformation of known ligands and align 

only the active conformations. This is only applicable, however, when the active conformation is known with 

confidence. Semi-flexible methods begin with pre-generated ensembles of static conformations to overlay and 

flexible methods, being the most computationally expensive, perform conformational search during the alignment 

process, often using molecular dynamics or randomly sampling of rotatable bonds. Since the conformational space 

can increase substantially with an increase in the number of rotatable bonds, strategies are often employed to limit 

the exploration of conformational space with reference geometry (often an active ligand with low flexibility). This 

method is known as the Active Analog Approach 201. 

Pharmacophore feature extraction 

A pharmacophore feature map is carefully constructed to balance generalizability with specificity. A general 

definition might categorize all functional groups having similar physiochemical properties (i.e. similar hydrogen-

bonding behavior, ionizability) into one group, whereas specific feature definitions may include specific atom types 

at specific locations. More general feature definitions increase the population of compounds that match the 

pharmacophore. They allow the identification of novel scaffolds but also increase the ratio of false positives. The 
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level of feature definition generalizability is usually determined by the algorithm used to extract feature maps and 

through user-specified parameters. The most common features used to define pharmacophore maps are hydrogen 

bond acceptors and donors, acidic and basic groups, aliphatic hydrophobic moieties, and aromatic hydrophobic 

moieties 142a. Features are commonly implemented as spheres with a certain tolerance radius for pharmacophore 

matching 196.  

Pharmacophore Algorithms and Software Packages 

The most common software packages employed for ligand-based pharmacophore generation include Phase 202, 

MOE 203, Catalyst 204, LigandScout 205, DISCO 206, and GASP 207. These packages utilize different approaches to 

molecular alignment, flexibility, and feature extraction. Catalyst approaches alignment and feature extraction by 

identifying common chemical features arranged in certain positions in three-dimensional space. These chemical 

features focus on those expected to be important for interaction between ligand and protein and include 

hydrophobic regions, hydrogen-bond donors, hydrogen-bond acceptors, positive ionizable, and negative ionizable 

regions. Chemical groups that participate in the same type of interaction are treated as identical. Catalyst contains 

two algorithms that can be used for pharmacophore construction. HipHop is the simpler of the two algorithms and 

looks for common 3D arrangements of features only for compounds with a threshold activity against the target. It 

begins with best alignment of only two features (scored by RMS deviations) and continues expanding the model to 

include more features until no further improvements are possible. This method is only capable of producing a 

qualitative distinction between active and inactive predictions. HypoGen, on the other hand, employs biological 

assay data such as IC50 values for active compounds as well as a set of inactive compounds. Initial pharmacophore 

construction in HypoGen is identical to HipHop but includes additional algorithms that incorporate inactive 

compounds and experimental values. These algorithms compare the best pharmacophore from the ‘HipHop’ stage 

with the inactive compounds and features common to the inactive set are removed. Finally, HypoGen performs an 

optimization routine that attempts to improve the predictive power of the pharmacophore by making adjustments 

and scoring the accuracy in predicting the specific experimental activities.204a, 208 This results in models that are 

capable of quantitative predictions that can predict specific levels of activity. Ten different models are created 

following a simulated annealing optimization 209. Both Catalyst methods incorporate molecular flexibility by storing 

compounds as multiple conformations per molecule. The Poling algorithm published by Smellie et al 197 is employed 

to increase the conformational variation within the set of conformations per molecule. This allows Catalyst to cover 

the greatest extent of conformational space while keeping the number of conformations at a minimum. 

Phase approaches alignment and feature extraction using a tree-based partitioning algorithm and an RMS 

deviation-based scoring function that considers the volume of heavy atom overlap. It incorporates molecular 

flexibility through a preparation step where conformational space is sampled using a Monte Carlo or torsional search 

199. 
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DISCO regards compounds as sets of interpoint distances between heavy atoms containing features of interest. 

Alignments are based on the spatial orientation of common point among all active compounds. DISCO considers 

multiple conformations that have been pre-specified by the user during the alignments and uses a clique-detection 

algorithm for scoring alignments 208. 

GASP (Genetic Algorithm Superposition Program) uses a genetic algorithm with iterative generations of the best 

models for pharmacophore construction207. Flexibility is handled during the alignment process through random 

rotations and translations. Conformations are optimized by fitting them to similarity constraints and weighing the 

conformations that fit these constraints more than conformations that do not 209. 

Different software packages can produce different results for the same datasets and their strengths and 

weaknesses should be considered prior to any application. For example, Catalyst only permits a single bonding 

feature per heavy atom while LigandScout allows a hydrogen-bond donor or acceptor to be involved in more than 

one hydrogen-bonding interaction 196. MOE, on the other hand, allows a more customizable approach to hydrogen-

bonding features. Lipophilic areas are generally represented as spheres located on hydrophobic atom chains, 

branches, or groups in a similar manner across software packages but with slight nuances. While subtle, these 

differences have important consequences on prediction models. Additionally, software packages that do not attach 

a hydrophobic feature to an aromatic ring are unable to predict that an aromatic group may be positioned in a 

lipophilic binding pocket 196. The level of customizability also differs across pharmacophore software packages and 

can influence predictions. Catalyst allows the specification of one or more chemical groups that satisfy a particular 

feature while Phase allows not only matching chemical groups but also a list of exclusions for a given feature. MOE 

offers a level of customization that allows the user to implement entirely novel pharmacophore schemes as well as 

modification of existing schemes. However, this requires additional levels of expertise to program196. For a 

comprehensive analysis of the differences between commercial pharmacophore software packages, please see the 

2007 review by Wolber et al 196 and a 2002 comparison of Catalyst, DISCO, and GASP by Patel et al 210.  

Ligand-based pharmacophore methods have been used for the discovery of novel compounds across a variety 

of targets. New compounds can have activity in the micromolar and nanomolar range and reflect proof of concept 

with in vivo disease models. Al-Sha’er et al used a diverse set of 83 known Hsp90-α inhibitors and the HypoGen 

module of Catalyst to generate a pharmacophore model. Hsp90-α is a molecular chaperone that is involved in 

protein folding, stability, and function 211. By interacting with many oncogenic proteins, it has been shown to be a 

valid anticancer drug target212. The pharmacophore model was used to screen the NCI list of compounds (238,000) 

using the “Best Flexible” search option. The top 100 hits were evaluated in vitro and their most potent compound 

had an IC50 of 25 nM 198.  

Noha et al developed 5-point pharmacophore models using the HipHop algorithm of Catalyst based on a training 

set of compounds with IC50 < 100 nM against IKK-β as potential anti-inflammatory and chemosensitizing agents. The 
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authors used 128 active and 44 inactive compounds to develop a pharmacophore model213. Their model was further 

refined with exclusion volume spheres and shape constraints to improve the scoring of compounds in their virtual 

high-throughput screen against the National Cancer Institute molecular database. Ten compounds were selected 

and the most potent compound (NSC719177) showed inhibitory activity against IKK-β in a cell free in vitro assay with 

IC50 of 6.95 µM. Additionally, this compound inhibited NF-κB activation induced by TNF-α in HEK293 cells with an 

IC50 of 5.85 µM213.  

Chiang et al used the HypoGen module of Catalyst to generate four-feature pharmacophore models based on 

an indole series of 21 compounds that showed anti-proliferative activity through the inhibition of tubulin 

polymerization/microtubule depolymerization. Disruption of microtubules during the mitotic phase of the cell cycle 

can induce cell cycle arrest and apoptosis 214. Therefore, inhibitors of tubulin polymerization are useful cancer 

treatments. 130,000 compounds of the ChemDiv database and in-house compound collection were screened and 

the top 142 hits were tested in vitro. Four novel compounds were discovered with anti-proliferative activity. The 

most potent compound displayed anti-proliferative activity in human cancer KB cells with an IC50 of 187 nM. This 

compound also inhibited the proliferation of other cancer cell types including MCF-7, NCI-H460, and SF-268 and 

demonstrated anti-cancer effects in a histoculture system. In vitro assays revealed that this compound inhibited 

tubulin polymerization with an IC50 of 4.4 µM215.  

Lanier generated pharmacophores containing five feature points using Catalyst and CombiCode software and 

an exclusion sphere generated in MOE based on a training set of 100 active and 1000 inactive compounds. This 

model was used to guide and evaluate variations of a core molecule, leading them to a gonadotropin releasing 

hormone GnRH receptor antagonist with receptor affinity below 10 nM 216. GnRH is involved in the regulatory 

pathways of follicle stimulating hormone (FSH) and luteinizing hormone (LH). It is a target for disease therapeutics 

including endometriosis, uterine fibroids, and prostate cancer217. 

Roche et al used known H3 antagonists to generate a pharmacophore model with four features including a distal 

positive charge, an electron rich position, a central aromatic ring, and either a second basic amine or another 

aromatic 218. Histamine is a central modulator in the central and peripheral nervous systems through four receptors 

(H1-H4) 219. H3 is a presynaptic autoreceptor that modulates production and release of histamine and other 

neurotransmitters 220. H3 antagonists have been studied in Alzheimer’s disease, attention deficit disorder, and 

schizophrenia 221. Additionally, it has been suggested to be involved in appetite and obesity 222 .This model was used 

in a de novo approach with the Skelgen software 223 to generate novel compounds from fragment libraries that 

match the pharmacophoric restraints. They found a series of four compounds with high potency and selectivity for 

H3. Their most potent compound showed inverse agonist activity with an EC50 of 200 pM in a GTPγS functional assay 

and a binding affinity Ki towards H3 of 9.8 nM 218. 
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Chao et al used pharmacophore-based design to take advantage of the therapeutic benefits of Indole-3-carbinol 

(I3C) in the treatment of cancer. I3C is known to suppress proliferation and induce apoptosis of various cancer cells 

through the inhibition of Akt activation224. I3C, however, has a poor metabolic profile and low potency, likely because 

its therapeutic behavior comes from only four of its metabolites. By overlaying these low energy conformers of these 

four metabolites, Chao et al was able to identify similar N-N’ distances and overlapping indole rings225. This led them 

to design SR13650 that showed an IC50 of 80 nM. Tumor xenograft studies using MCF-7 cells revealed antitumor 

effects at 10 mg/kg for 30 days. Computational analysis was also applied to increase the bioavailability and three 

compounds showed 45-60% tumor growth inhibition in vivo compared to the 26% growth inhibition of SR13650. 

SR13668 was the most potent compound and also displayed antitumor effects in other xenograft models. In vitro, 

SR13668 was shown to inhibit Akt activation by blocking growth factor stimulated phosphorylation and showed 

favorable toxicological profiles225. This drug is currently in phase 0 trials for the treatment of cancer226.  

Conclusions 

The extensive variety of computational tools employed in drug discovery campaigns suggests that there are no 

fundamentally superior techniques. The performance of methods varies greatly with target protein, available data, 

and available resources. For example, Kruger and Evers completed a performance benchmark between structure- 

and ligand-based vHTS tools across four different targets including angiotensin-converting enzyme, cyclooxygenase-

2, thrombin and HIV-1 protease 227. Docking methods including Glide, GOLD, Surflex, and FlexX were used to dock 

ligands into rigid target crystal structures obtained from PDB. A single ligand was used as a reference for ligand-

based similarity search strategies such as 2D (fingerprints and feature-trees) and 3D (Rapid Overlay of Chemical 

Structures - ROCS), a similarity algorithm that calculates maximum volume overlap of two 3D structures228. In 

general, the authors found that docking methods performed poorly for HIV-1 protease and thrombin due to the 

flexible nature of the targets and the fact that the known ligands for these proteins have large molecular weight and 

peptidomimetic character.   

Enrichments based on 3D similarity searches were poor for HIV-1 protease and thrombin datasets compared to 

ACE, which is likely due to the higher level of diversity in the HIV-1 protease and thrombin ligand datasets. Similarity 

scoring algorithms like ShapeTanimoto, ColorScore, and ComboScore were compared with the performance of ROCS 

227. It was found that even within the scoring algorithm performance varied across targets. For example, ColorScore 

performed best for ACE and HIV-1 protease while ShapeTanimoto for COX-2 and ComboScore was the method of 

choice for thrombin. All vHTS tools performed comparatively well for ACE but ligand-based 2D fingerprint approach 

generally outperformed docking methods. The authors also note an important observation in that, especially for 

HIV-1 protease, the structure-based and ligand-based approaches yielded complimentary hit lists. Therefore, 

performance metrics are not the only benchmark to consider when comparing CADD techniques. In some cases, 

discovery of novel chemotypes is more important than high hit rates or high activity. In the current study, Kruger 
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and Evers found that ROCS and feature trees were more successful in retrieving compounds with novel scaffolds 

compared to other fingerprints 227.  

Warren et al published an in-depth assessment of the capabilities and shortcomings for docking programs and 

their scoring techniques against eight proteins of seven evolutionarily diverse target types. They found that docking 

programs were well adept at generating poses that included ones similar to those found in complex crystal 

structures. In general, while the molecular conformation was less precise across docking programs, they were fairly 

accurate in terms of the ligand’s overall positioning. With regards to scoring, their findings agree with others that 

docking programs lack reliable scoring algorithms. So while the tools were able to predict a set of poses that included 

those that were seen in the crystal structure, the preference for the crystal structure pose was not necessarily 

reflected in the scoring. For five of the seven targets that were evaluated, the success rate, however, was greater 

than 40%. It was found that the enrichment of hits could be increased by applying previous knowledge regarding the 

target. However, there was little statistically significant correlation between docking scores and ligand affinity across 

the targets. The study concluded that a docking program’s ability to reproduce accurate binding poses did not 

necessarily mean that the program could accurately predict binding affinities. This analysis underscores the necessity 

not only to re-rank the top hits from a docking-based vHTS using computationally expensive tools but also to 

continue evaluating novel scoring functions that can efficiently and accurately predict binding affinities229. 

Improvements in scoring functions involve the use of consensus scoring methods and free energy scoring with 

docking techniques. Consensus scoring methods have been shown to improve enrichments and prediction of bound 

conformations and poses, by balancing out errors of individual scoring functions.  In 2008, Enyedy and Egan 

compared docking scores of ligands with known IC50 and found that docking scores were incapable of correctly 

ranking compounds and were sometimes unable to differentiate active from inactive compounds. They concluded 

that individual scoring methods can be used successfully to enrich a dataset with increased population of actives but 

are insufficient to identify actives against inactives17. Page et al concluded that even though binding energy 

calculations such as MM-PBSA are one of the more successful methods of estimating free energy of complexes, these 

techniques are more applicable to providing insights into the nature of interactions rather than prediction or 

screening 230. Consensus scoring functions where free energy scores of different algorithms have been combined or 

averaged have been shown to substantially improve performance231. 

In their literature survey, Ripphausen et al reported that structure-based virtual screening was employed much 

more frequently than ligand-based virtual screening (322 to 107 studies). Despite a preference for structure-based 

methods, ligand-based methods on average yield hits with higher potency than structure-based methods. Most 

ligand-based hits had activities better than 1 µM while structure-based hits fall frequently in the range of 1-100 µM 

16. Scoring algorithms in docking functions have been found to be biased towards known protein ligand complexes – 



45 
 

for example more potent hits against protein kinase targets are discovered when compared to other target classes 

28. 

One CADD approach that has been gaining considerable momentum is the combination of structure-based and 

ligand-based computation techniques 232. For example, the GRID-GOLPE method docks a set of ligands at a common 

binding site using GRID and then calculates descriptors for the binding interactions by probing these docking poses 

with GOLPE 233. Multivariate regression is then used to create a statistical model that can explain the biological 

activity of these ligands. Structure-based interactions between a ligand and target can also be used in similarity 

based searches to find compounds that are similar only in the regions that participate in binding rather than cross 

the entire ligand. LigandScout employs such a technique to define a pharmacophore based on hydrogen bonding 

and charge-transfer interactions between a ligand and its target. Another technique known as the pseudo receptor 

technique 55a uses pharmacophore mapping-like overlaying techniques for a collection of ligands that bind to the 

same binding site in order to establish a virtual representation of the binding site’s structure which is then used as a 

template for docking and other structure-based vHTS. This approach has been utilized by VirtualToxLab 234 for the 

creation of nuclear receptors and cytochrome P450 binding site models in ADMET prediction tools and by Schneider 

et al in the modeling of the H4 receptor binding site subsequently used to identify novel active scaffolds 55b. In a 

recent review by Wilson and Lill 235, these methods are grouped into a major class of combined techniques called 

interaction based methods. A second major class involves the use of QSAR and similarity methods to enrich a library 

of virtual compounds prior to a molecular docking project. This can increase the efficiency of the project by reducing 

the number of compounds to be docked. This is similar to the application of CADD to enrich libraries prior to 

traditional HTS projects. This chapter also presents comprehensive descriptions of software packages employing a 

combination of ligand- and structure-based techniques as well as several case studies testing the performance of 

these tools. 

 As discussed earlier, these methods are often used in serial where ligand-based methods are first used to enrich 

libraries that will subsequently be used in structure-based vHTS. The most common application is at the ligand library 

creation stage through the use of QSAR techniques to filter out compounds with low similarity to a query compound 

or no predicted activity based on a statistical model. QSAR has also been employed as a means to refine the docking 

scores of a structure-based virtual screen. 2D and 3D QSAR can also be used to track docking errors. This method 

has been employed by Novartis where a QSAR model is built from docking scores rather than observed activities and 

this model is applied to that set to provide additional score weights for each compound 236. 

Even though CADD has been applied quite extensively in drug discovery campaigns, certain lucrative therapeutic 

targets like protein-protein interaction and protein-DNA interactions are still formidable problems mainly due to the 

relatively massive size of interaction sites (in excess of 1500 Å2) 6. Lastly, accessibility has also been a problem with 

CADD, as many tools are not designed with a friendly user interface in mind. In many cases, there can be an 
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overwhelming number of variables that must be configured on a case-by-case basis and the interfaces are not always 

straightforward. A great deal of expertise is often required to use these tools to get desired measure of success. 

Increasingly, efforts are being made to develop user-friendly interfaces especially in commercially available tools. 

For example, MolSoft is a software package that is designed to be a user-friendly docking tool and replaces the front-

end of current docking algorithms with an interface that is manageable to a wider audience 108. More recently 

gamification of the ROSETTA folding program, known as FOLDIT 237, has allowed individuals from non-scientific 

community to help solve the structure of M-PMV retroviral protease 238 and for predicting backbone remodeling of 

computationally designed biomolecular Diels-Alderase that increased its activity 239. The successful application of 

crowd-sourced biomolecule design and prediction suggests further potential of CADD methods in drug discovery. 
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CHAPTER 2 : BCL::CONF SMALL MOLECULE CONFORMATIONAL SAMPLING USING A 

KNOWLEDGE BASED ROTAMER LIBRARY 

Introduction 

The interactions between small molecules and proteins are important for receptors, transporters, or enzymes 

to recognize their substrates as well as for small molecule therapeutics to bind to their target protein. The molecular 

interaction and, hence, the biological function of a small molecule is related to its three-dimensional structure when 

interacting with the protein. In solution, small molecules are often flexible and exist as an ensemble of conformations 

in equilibrium with one another. The biologically active conformation may be a single conformation or a small subset 

from the conformations sampled in solution or a new conformation, induced by protein binding. A uniform sampling 

of all energetically accessible small molecule conformations is essential for the success of protein small molecule 

docking simulations1 for example in structure-based computer-aided drug discovery/design (CADD)1-2. However, also 

ligand-based CADD applications such as three-dimensional quantitative structure activity relationships (3D-QSAR) 

predictions3 or pharmacophore modeling4 rely on the use of conformational ensembles of molecules that capture 

the bioactive conformation as one of a diverse set of energetically accessible conformations5.  

Conformational sampling methods 

Table 2-1 summarizes some of the existing conformational sampling methods. Conformation sampling methods 

can be characterized in several ways. First, the allowed search space can be analyzed: Some methods search the 

entire conformational space, i.e. bond length, angles and torsions can be altered – for example a molecular dynamics 

simulation in Cartesian space. Other methods restrict the search space to torsion angles only holding bond length 

and angles fixed. Another approach involves using pre-existing knowledge of small-molecule conformations to 

restrict the conformational search space even further to likely torsion angles or combinations thereof. Such 

knowledge-based methods derive torsion angle preferences from molecular mechanics or quantum chemical 

simulations of small molecules or structural databases like Cambridge Structure Database6 (CSD) or Protein Data 

Bank7 (PDB). 

In addition, it is helpful to single out fragment-based approaches: This search strategy splits a molecule of 

interest and samples conformations of smaller fragments independently. Candidate conformations of the entire 

molecule are computed by re-combining constituent fragment conformations. In fragment-based methods,  
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Table 2-1 Commercially available conformation sampling methods. 

 

 

fragments are reused during conformer generation that improves the time-efficiency of sampling. On the other 

hand, these methods operate on the assumption that all low energy conformations can be created by combinations 

of low-energy fragments – an assumption that is not always fulfilled.  

Method Search space 
Search 

strategy 

Search 

method 
Scoring function 

CAESAR8 
Incremental search of torsion 
angles combined with distance 
geometry for ring systems 

Fragment 
based 

Systematic CHARMm force field 

CATALYST9 
Incremental search of torsion 
angles with subsequent energy 
minimization 

Non-
fragment 

based 

Simulation 
(MD) 

CHARMm force field 

CONAN10 
Incremental search of torsion 
angles 

Fragment 
based 

Systematic - 

CONFAB11 
Incremental search of torsion 
angles 

Non-
fragment 

based 
Systematic MMFF94 

CONFGEN12 

Random walk on energy 
surface calculated using a 
truncated version of 
OPLS_2001 

Non-
fragment 

based 

Simulation 
(MC) 

MMFFs/OPLs_2001 

ENUMERATED 

TORSIONS (ET)13 
Incremental search of rule-
based torsion angles 

Non-
fragment 

based 
Systematic - 

MIMUMBA14 
Incremental search of 
knowledge-based torsion 
angles from CSD 

Non-
fragment 

based 
Systematic 

Relative frequency of 
experimentally observed 

conformations 

MOE (LOW MODE 

MD)15 
Constant temperature MD 

Non-
fragment 

based 

Simulation 
(MD) 

MMFF94 

MOE (STOCHASTIC 

SEARCH)16 

Random perturbations of 
rotatable bonds in increments 
biased around 30° 

Non-
fragment 

based 

Simulation 
(MC) 

MMFF94 

MOE 

(CONFIMPORT)16 

Pregenerated fragment 
conformations obtained from 
stochastic-search 

Fragment-
based 

Simulation MMFF94 

MOE 

(SYSTEMATIC)17 
Incremental search of torsion 
angles 

Non-
fragment 

based 
Systematic MMFF94 

OMEGA18 

Knowledge based torsions 
from analysis of molecules in 
PDB and conformations 
generated by MMFF94 

Fragment 
based 

Systematic MMFF94 

RDKIT19 Distance geometry 
Non-

fragment 
based 

Simulation 
(Distance 

Geometry) 
UFF 
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An alternative classification approach focuses on whether the search space is sampled systematically in its 

entirety or a search algorithm follows a trajectory that seeks to restrict the search space to low energy 

conformations. If the conformational space is sufficiently small, systematic approaches can create all possible 

conformations iteratively and keep all low-energy conformations. An advantage is complete sampling of the entire 

search space, one disadvantage is slowness. Trajectory-based methods use random or directed perturbations to 

alter a starting conformation and the resulting conformation is evaluated energetically. In a feedback loop, this 

energy and possibly derived forces determine the trajectory of the simulation. Molecular dynamics8, distance 

geometry9, genetic algorithms4, and Monte Carlo8b (MC) are commonly used simulation methods for the 

conformational sampling of small molecules.  

 Scoring functions 

Most methods score conformations using some form of molecular mechanics energy function. Force field based 

energy calculations use most frequently the Merck molecular force field (MMFF)10 or the Chemistry at HARvard 

Molecular Mechanics (CHARMm) force field11. Some methods modify the default versions of these force fields by 

modifying individual scoring terms or using only a subset of the scoring terms. One alternative approach, as used in 

MIMUMBA12, to scoring small molecule conformations can be derived from knowledge-based scoring functions used 

in protein structure prediction that analyze the frequency of geometric features observed in structural databases 

such as the PDB or CSD.  

Knowledge based conformation sampling 

Conformations of small molecules can be restricted in terms of commonly seen conformations of constituent 

fragments in structure databases like CSD. Brameld13 et al. have shown that conformations of fragments sampled in 

the CSD are an accurate representation of conformational space seen in drug-like molecules in complex with protein 

as observed in the PDB. Fragments occur in these structure databases in different chemical environments, leading 

to them being observed in different conformations. The central hypothesis of this study is that while not all small 

molecules have been crystallized in all possible conformations, the conformational space accessible to sufficiently 

small fragments is adequately sampled. 

Existing methods like CONFECT14 derive torsion profiles for different dihedral bonds types from structure 

databases. CONFECT treats dihedral bonds as uncorrelated and does not take into account substituent effects.    A 

rule-based proprietary method, developed by Merck research laboratories for internal use, known as et for 

enumerated torsions uses correlated torsion angles to some extent for conformational sampling15. The method 

overlaps multiple fragments containing topologically adjacent rotatable bonds to extend these fragments until they 

span the entire small molecule. In et a proprietary ‘atom typer’ is used to express molecular fragments as 

unambiguous patterns16. The pattern along with associated data for observed torsion angles and frequency 
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constitutes a rule. As of 2001, authors reported that 797 rules had been derived over a period of several years. 

However, these patterns consider only the four atoms involved in a dihedral bond and do not take into account 

effect of substituents on torsional profile of bonds. 

The algorithm BCL::CONF described in the present study goes beyond previous work by using torsional profile of 

multiple consecutive dihedral bonds and capturing effect of substituents on their torsion profiles. All fragment 

conformations sampled frequently in the CSD and PDB are considered a knowledge-based ‘rule’ independent of size 

or number of rotatable bonds. This fragment conformation approach allows BCL::CONF to capture correlations in 

torsion states for multiple consecutive dihedral bonds in contrast to other methods that treat likely torsion angle 

states for consecutive bonds in an uncorrelated way. Conformations observed frequently for one fragment are 

assumed to represent a local energy minimum and are collected in a database.  The use of conformations of 

fragments has also the advantage that these fragment conformations already reside in locally optimal geometries 

so that only non-local interactions, i.e. clashes, need to be evaluated when fragments are recombined. Lastly, as 

explicit fragments are used effects of substituents on torsional profiles of rotatable bonds are taken into account. 

Brameld et al. have shown the effect of substitution on the torsion distribution of common acyclic organic 

fragments13. 

We expect that the algorithm is therefore particularly tailored for ‘drug-like’ small molecules that are 

overrepresented in the CSD and PDB databases. BCL::CONF mimics the ‘rotamer’ libraries created to capture amino 

acid side chain conformations seen in protein structures within the PDB17 which, ultimately, will ease its integration 

with protein modeling packages such as ROSETTA18. BCL::CONF scoring includes a clash score that avoids atom overlap 

as well as a knowledge-based scoring function that scores conformations based on probabilities of fragment 

conformations that it contains. 

To benchmark BCL::CONF we use a curated dataset containing drug-like ligands found in complex with proteins 

in the PDB. The “VERNALIS generic compound set”19 has been used in several studies to evaluate the performance of 

conformational sampling methods enabling a direct comparison of BCL::CONF to other methods20. The benchmark 

study tests for recovery of protein-bound conformation of the ligand and the ability of BCL::CONF to produce a diverse 

set of conformations. To remove any bias during benchmarking, the ligands found in the VERNALIS dataset were 

removed from the PDB ligand library. Additionally, ligands were removed from the PDB ligand library if bound to 

proteins or homologues of proteins present in the VERNALIS dataset. 
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Implementation 

BCL::CONF uses fragments generated from decomposing molecules found in CSD and PDB. For this purpose, non-ring 

bonds of each molecule are broken iteratively to generate all possible fragments. In a second step, all occurrences 

 

Figure 2-1 General scheme for BCL::CONF conformation generator. A) Scheme for generating the rotamer library. 
B) Flowchart depicting conformation sampling process. See text for a detailed description. Source: Kothiwale et 
al38 
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of one fragment within the structure databases are collected and clustered according to discrete dihedral angle bins. 

A conformer is then defined as a unique conformation represented as a set of integer numbers, one for each dihedral 

bond, identifying the bin. This procedure is similar to the definition of ‘rotamers’ that are used to set likely amino 

acid side chain conformations17. A conformer needs to be seen at least four times in the database to be considered 

as a likely conformation of a fragment. It is then added to the rotamer library for sampling. The flowchart for 

algorithm implemented in BCL::CONF is shown in Figure 2-1.  

Fragment library 

 

Figure 2-2 Scheme for torsion angle binning. A) The line graph shows the distribution of dihedral angle 
measurements of all dihedral bonds over all the molecules in the CSD. B) Torsional angles are binned into 12 
uniform parts with each bin represented as an integer. For example -135 to -165 belongs to bin number 7.  
Rotamers can thus be represented by a unique key of integers representing each dihedral angle bin. Source: 
Kothiwale et al38 
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Small organic molecules from the CSD and PDB were used for generating fragments. The PDB ligands were 

obtained from the refined dataset in the PDBBIND database21. We removed any molecules for which BCL could not 

assign correct atom types, molecules with missing 3D coordinates and bad geometries in terms of unrealistic bond-

lengths or bond-angles and non-planar aromatic rings or sp2-sp2 bonds. This resulted in a database containing 

 

Figure 2-4 Determination of priority dihedral bonds in molecules. Bond priorities are determined using rules 
analogous to Cahn-Ingold-Prelog (CIP) rules. In the figure priority dihedral bonds are colored in grey. A) The 
priority dihedral angle of 2-butanol is c4-c3-c2-O. B) Priority dihedral bonds in cyclohexanol are defined such 
that all atoms that define priority dihedral angles are in the ring. Thus bond C1-C2, C3-C2-C1-C6 is the priority 
dihedral angle instead of C3-C2-C1-O. C) For multiple ring systems like 1, 2, 3, 4-tetrahydro-1, 8-naphthyridine, 
priority angles are determined by atom priority using the assumption that all atoms in the multiple ring system 
are part of one ring. Thus C2-N1-C8a-N8 is the priority dihedral angle instead of C2-N1-C8a-C4a as N8 is counted 
to be in the same ring system as the N1-C2 bond of interest. Source: Kothiwale et al38 

 

Figure 2-3 Propensity of certain dihedral bonds containing a sequence of aromatic-single-aromatic and aromatic-
single-any bonds to measure 90° or 270°. A) The figure shows distribution for seven aromatic-single-aromatic 
and 129 aromatic-single-any bonds for which there are at-least four 90° or 270° rotamers and are more abundant 
compared to 30° or 60° rotamers. Average observation of rotamers is plotted for dihedral bonds is plotted. B) 
Molecules from the VERNALIS dataset containing aromatic-single-single bonds measuring 90° or 270°. The closest 
to native conformation generated using 30° (BCL) and 60° (BCL_60) binning differ by at least 0.4 Å. Source: 
Kothiwale et al38 
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113,339 unique molecules. Molecules were broken iteratively at non-ring bonds generating 56,818,272 unique 

fragments. 

 

Table 2-2 Rotamers of a molecule. 

 

Rotamer library 

The rotamer library was generated for fragments that are seen frequently in the same conformations. A unique 

fragment rotamer/conformation is identified by a set of integers, one for each dihedral bond. The dihedral bonds of 

a rotamer are represented as a set of integers depending on the angle measure as explained in Figure 2-2B. The 

frequency of observation of dihedral angle measures seen in CSD, shown in Figure 2-2A, suggests that local minima 

 

Rotamers Bond1 Bond2 Bond3 Bond3 Bond4 Bond5 

1 6 5 6 12 2 6 

2 6 3 6 12 5 6 

3 6 1 6 12 2 6 

4 6 5 6 12 4 6 

5 6 1 6 12 5 6 

6 6 5 6 12 5 6 

7 6 4 6 12 2 6 

8 6 1 6 12 1 6 

9 6 5 6 12 1 6 
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for dihedral angles occur at canonical values of 0°, 60°, 120°, and 180° and so on. In addition, bond types such as 

aromatic-chain-aromatic or aromatic-chain-any angles of 90° and 270° are likely (Figure 2-3). Hence, while torsion 

angles of 90° and 270° are not local maxima when summing over all torsions, they are likely conformations for certain 

types of torsion angles. Therefore, in order to assign as many likely torsion angles as possible unambiguously and 

close to a bin center, 12 bins each of which is 30° wide are created centered at 0°, 30°, 60°, 90° and so on. Binning 

strategies using 30° produces closer to native conformations when 60° binning is used (Figure 2-6C).   All the bonds 

including the ones that are inside ring systems are described by an integer so that a rotamer can be described as a 

string of integers. This string is called the bin-signature of a rotamer.  

 Determining dihedral angles 

 Since multiple dihedral angles can be measured at each torsion bond, a scheme is required to prioritize which 

dihedral angle to use and arrive at unambiguous bin-signatures. Therefore, a priority dihedral angle is defined. This 

is accomplished using rules analogous to the Cahn-Ingold-Prelog (CIP) system22. For example, as shown in Figure 2-

4A, 2-butanol has one torsion bond but two dihedral bonds about the single rotatable bond. According to CIP rules, 

the O-C-C-C dihedral angle will have a higher priority over the C-C-C-C dihedral angle. If out of three possible dihedral 

angles, two dihedral angles of equally high priority exist, then the third dihedral angle with lowest priority is used. If 

ambiguity still exists in assigning unique dihedral bonds, for example in the case where all dihedral angles have the 

same priority, the one with the smallest angle measure is chosen. Priority dihedral bonds in rings are defined in a 

special way in that all atoms constituting a priority bond are contained in the ring, as shown in Figure 2-4B for 

cyclohexanol. This ensures that for the same ring conformation, a substituted ring system have the same dihedral-

signature as an un-substituted ring system. If a fused ring system is present, then priority dihedrals are determined 

using atom priorities and the assumption that all atoms of the ring system are part of one ring (Figure 2-4C). 

BCL::Conf can identify different ring conformations and use these in conformational sampling. Since dihedral angles 

are assigned in a unique way for a molecule of interest, a unique rotamer of the molecule has a unique dihedral bin 

signature. Table 2-2 shows different rotamers for a fragment from the rotamer library and their bin signatures. 

Searching rotamers 

 In building the rotamer library, all instances of every fragment are collected in the molecular database using a graph 

isomorphism search23. For each fragment, all unique rotamers are identified using dihedral bin signatures. Then 

statistics is gathered for each rotamer including rotamer counts, i.e. the number of times a rotamer is seen in the 

database, and dihedral angle statistics, i.e. the average angle measure and standard deviation of dihedral bonds 

within each bin, for each rotamer are extracted. A representative structure for a fragment is obtained by clustering 

all instances of the most frequently observed rotamer in the structure database based on root mean square  
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Table 2-3 A) Rotatable bond distribution in the rotamer library. B) Conformation statistics in the rotamer library 

 

deviation (RMSD) after superposition. In addition, if a fragment contains a ring in different conformations, explicit 

coordinates are stored for each rotamer. A conformer is added to the rotamer library of a fragment if it is seen at 

least four times in the structure databases (combined CSD and PDB), i.e. it can be considered a likely conformation 

for that fragment. A total of 231,049 fragments are observed that have at least one conformer that is seen at least 

four times in the molecular database and hence these fragments are retained in the rotamer library. Table 2-3 shows 

the rotatable bond distribution and rotamer distribution of fragments in the rotamer library. 

Search fragments from the rotamer library that are contained in the molecule of interest 

Conformational sampling begins with searching fragments contained in a molecule of interest. This involves 

substructure searches to identify all suitable fragments in the rotamer library. A hierarchical search has been 

implemented to minimize the number of substructure searches. The rotamer library is represented as multiple 

rooted graphs where each node is a unique constitution. The root nodes are not contained in any other fragments. 

Child nodes are such that the parent node is an immediate substructure. Figure 2-5 illustrates a rooted graph with 

benzene as root. Benzene is an immediate substructure of its child nodes i.e. toluene-like fragment that is an 

immediate substructure of cyclohexylbenzene-like fragment.   

The fragment searching begins at the root node of graphs. If the root node is contained in the query molecule, 

all its immediate child nodes will be searched to determine if they are contained within the molecule of interest. For 

all child nodes contained, their immediate child notes are considered and so on. In Figure 2-5, fragments that are 

part of molecule are colored in blue – i.e. a successful substructure search. Fragments colored red indicate that a 

substructure search was performed but unsuccessful. This terminates further searches in this branch of the tree.  

Fragments colored in black are not considered for a substructure search, because their parent fragments were not 

contained within the molecule of interest (colored red). The edges in the graph are directed from parent to child 

nodes and represent search paths that can be taken to find all constituent fragments in a query molecule. Paths in 

blue color are actual paths that are taken to identify all the fragments contained in the molecule interest while the 

paths in red or black are never explored. Search paths in black originate from fragments that are not contained with 

Number of rotatable bonds Number of fragments  Number of rotamers Number of fragments 
0 47,205  1-5 219684 
1 38,616  6-10 10840 
2 31,225  11-15 1768 
3 20,500  16-20 488 
4 15,221  21-25 209 
5 13,665  26-30 82 
6 14,014  31-35 47 
7 14,693  36-40 18 
8 14,435  41-45 8 
9 13,492  46-50 1 

>=10 10,064  >50 3 
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the molecule. Red paths represent redundant searches in the tree. This hierarchical tree structure of the data 

enables fast and efficient searching of all the fragments contained within a molecule of interest. 

Generation of initial 3D structure from minimum set of fragments with most likely conformation 

An initial 3D conformation is necessary for using the conformer sampler implemented in BCL::CONF. The BCL 

software suite accepts molecules in the MDL24 format. A 3D structure generator has been implemented to generate 

an initial 3D structure if coordinates are not provided. BCL::CONF can generate starting coordinates from connectivity 

information provided in the MDL format. When coordinates or 3D structure is not available, BCL::CONF first searches 

for all fragments from the rotamer library that are contained in a molecule of interest. The algorithm identifies the 

 

Figure 2-5 Graph database for storing rotamer library for fast searching. The figure illustrates a rooted graph 
layout of fragments where each node is a unique constitution. The child nodes originating from the root are such 
that the root (in this case, benzene fragment) is their immediate substructure among all the fragments shown in 
the graph. Fragments contained in the molecule of interest are colored in blue while those that are not are in 
red or black. For fragments in black no substructure search is performed because their parent fragments were 
not found in the molecule of interest. The edges represent all possible search paths for finding fragments 
contained in the molecule of interest. Paths in blue are the actual searches that were performed for finding 
fragments for the query molecule. Paths in red and black are never taken during the search. Red colored paths 
are redundant search paths that have already been covered in a previous search. Source: Kothiwale et al38 
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minimum number of fragments that can be connected to generate molecule of interest. The most likely conformers 

of fragments are then connected to assemble the molecules of interest and generate an initial 3D structure that may 

or may not have clashes between atoms. As this conformation only serves as a starting point with the objective to 

place all torsion angles into a locally reasonable conformation and is not necessarily part of the output ensemble of 

conformations, atom clashes are not a problem.  

Monte-Carlo Metropolis sampling for efficient search of conformational space 

Conformational sampling begins by identifying fragments from the rotamer library that are contained in the 

molecule of interest whose conformations need to be sampled. From the fragments contained in the molecule of 

interest, a random one is selected and one of its rotamers is applied to change the conformation of the molecule. 

The rotamer is selected based on probability of its occurrence in the structure database (Figure 2-2B). If the chosen 

fragment rotamer contains a different ring conformation, then the whole molecule is reassembled by using the 

chosen conformer as the starting fragment. By default only a subset of rotamers that are observed most frequently 

are used in sampling. The cutoff value is specified at half of the probability of the most likely rotamer. If more 

sampling is desired, an option to use the full rotamer set can be specified at the command line. 

Starting with the input structure of the molecule of interest, new conformations are created in a continuous MC 

trajectory. A MC step is accepted or rejected based on the Metropolis criterion. The energy or score used is a 

combination of atom clashes and propensity of observing constituent fragment rotamers in structure database. The 

atom clash score is calculated by evaluating non-bonded atom pairs for clashes using equation 1.  

Equation 1: 

𝐴𝑡𝑜𝑚 𝐶𝑙𝑎𝑠ℎ 𝑆𝑐𝑜𝑟𝑒 =
∑  2 ∗ 𝑠𝑐𝑜𝑟𝑒𝑎𝑡𝑜𝑚𝑗 

{
0, 𝑑𝑖𝑠𝑡 ≥ 𝑐𝑜𝑣
1, 𝑑𝑖𝑠𝑡 ≤ 𝑐𝑜𝑣𝑖>𝑗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
 

where  𝑑𝑖𝑠𝑡 ≝ distance between non-bonded atoms i and j 

  𝑐𝑜𝑣 ≝ sum of covalent radii of atoms i and j  

 

Rotamer propensity score (Equation 2) leverages the statistics on the rotamer of a particular fragment to 

estimate the likelihood of a particular conformation. The hypothesis is that there is a correlation between frequency 

of occurrence and free energy of a fragment conformation. For a given molecular conformation, the observed 

rotamer of each of the constituent fragments is determined. The observed rotamer propensity for a fragment is 

calculated by dividing observed rotamer count by average rotamer counts. The overall conformation score is 

obtained by summing up observed rotamer propensities of all the constituent fragments. If, for a fragment none of 

the rotamers is seen in a given conformation, then a pseudo rotamer count equal to half of the least common 
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rotamer count is used instead. The propensity score is normalized by dividing it by absolute value of maximum 

possible propensity score for the molecule of interest. 

Equation 2: 

𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = ∑ (− 𝑙𝑛
𝑅𝑖  ×  𝐹𝑖𝑅𝑗

∑ 𝐹𝑖𝑅𝑗𝑗
) 

𝑁

𝑖=0

∑ (𝑙𝑛
𝑅𝑖  ×  𝐹𝑖𝑅𝑚𝑎𝑥

∑ 𝐹𝑖𝑅𝑗𝑗
) 

𝑁

𝑖=0

⁄  

where 𝑁 ≝ number of fragments that are part of the molecule of interest 

  𝐹𝑖 ≝ ith fragment of molecule 

  𝑅𝑖 ≝ number of rotamers of the ith fragment 

  𝑅𝑚𝑎𝑥 ≝ counts of the most common rotamer 

  𝐹𝑖𝑅𝑗 ≝ counts of jth rotamer of the ith fragment 

Results and Discussion 

We assess the performance of BCL::CONF (BCL) with curated generic ligand dataset known as the VERNALIS 

dataset19, in comparison with CONFGEN25, MOE (CONFIMPORT)26, OMEGA27 and RDKIT20B, 28. The first metric defined as the 

completeness criteria is the fraction of molecules for which any conformation was generated. The second 

comparison is the ability of the method to produce ligand conformations within a specified RMSD value to the native 

conformation of ligands in protein-ligand complexes. This analysis is reported as the percentage of molecules whose 

conformations are recovered within a given threshold RMSD value. The third criteria for comparison is diversity, that 

is how similar or different are the generated conformations. Finally, a comparison of the methods on computational 

speed is provided. We also report results for different flavors of BCL that use different schemes for rotamer library 

generation – a) using a 60° torsion binning (BCL_60) b) rotamer library derived from only the CSD (BCL_CSD) c) 

rotamer library containing only single dihedral bond torsion profiles (BCL_D).   

Conformational sampling with different methods was performed to yield a symmetry corrected RMSD diversity 

of 0.25 Å – i.e. no two conformations have a RMSD smaller 0.25 Å – and a maximum of 100 conformers per molecule.  

Ligand dataset 

VERNALIS dataset is used here to compare BCL::CONF to other existing methods in the field. The VERNALIS Dataset, 

compound set introduced by Chen and Foloppe19-20, contains 253 ligands derived from high-resolution protein-ligand 

complexes found in the PDB and includes the Bostrom29 ligand set and Perola30 ligand set. The VERNALIS Dataset has 
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been used in previous benchmark studies to compare MOE, CATALYST and CONFGEN methods for conformation 

sampling19-20.  

Conformer generation methods  

BCL::CONF (BCL) – Conformation sampling was carried out by providing ligands in the MDL format with all atom 

coordinates set to zero to remove any initial conformation bias. The rotamer library uses the 30° torsion binning 

scheme to determine dihedral keys. It is derived from the CSD and the refined set of PDBBIND database minus the 

VERNALIS dataset ligands to remove any bias. Conformers were generated in 200 iterations of MC fragment sampling 

at a temperature of 3.0 such that they were at least 0.25 Å away from each other. Table S2 (see supplement) shows 

parameter optimization for native conformer recovery in terms of RMSD with different temperature and iteration 

values. The row shaded in gray corresponds to parameters used for comparing to other methods. 

BCL_60 – Conformations were sampled using the same settings as described for BCL::CONF except that 60° 

torsion binning was used instead of 30°. This experiment tests the effect of 60° binning on conformation sampling. 

BCL_CSD – Same parameters as used for BCL::CONF with the only difference being that the rotamer library was 

sourced from only the CSD. This experiment shows the effect of adding PDB fragment conformations. 

BCL_D – Conformation sampling was performed by using torsion angle statistics for single dihedral bonds 

derived from molecules in the CSD and PDBBIND databases. Fragments containing only four atoms and a single 

dihedral bond from the rotamer library were used for this experiment – i.e. the smallest possible fragments. This 

experiment tests the impact of the addition of larger fragments that sample the correlation between multiple torsion 

angles. Initial conformation bias in benchmark dataset molecules was removed by perturbing all dihedral angles to 

random values. The conformers were generated using the same set of parameters as that for BCL. 

CONFGEN – CONFGEN systematically samples rotatable bonds, ring conformations, nitrogen atom inversions and 

amide bond conformations. Force field OPLS_2001 is used for calculating potential for rotating about each rotatable 

bond25. In the present study, conformer generation was done starting from SMILES string of ligands in the VERNALIS 

dataset. SMILES string were generated using Maestro from the dataset ligands in MDL format.  CONFGEN has been 

reported to reproduce 93% of molecules within 1.5 Å in the comprehensive mode25. 250 Conformers were generated 

with CONGEN in the comprehensive mode by keeping RMSD cutoff at 0.25 Å, energy cutoff at 104.6 kJ/mol (default 

value). 100 conformations were saved per ligand for comparison.  

MOE-conformation_import (MOE) – Conformational import is a high-throughput conformer generation method 

in MOE (Molecular Operating Environment). Molecule of interest is divided into overlapping fragments and these are 

searched in a pregenerated library of fragment conformations. If a fragment is not found, conformations are 

generated using a stochastic conformation search algorithm available in MOE.  For this study, the VERNALIS dataset 

was provided such that all atom coordinates were set to zero.  The default parameters specified with MOE have been 

determined to perform best in previously reported benchmark studies19-20. The MMFF94x force field and Generalized 

Born solvation model was during ligand conformation generation. Fragment conformation energy cutoff was kept 
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at a default of 4 kcal/mol. The program was constrained to maintain stereochemistry of the input structures but 

allowed to sample ring conformations. The stochastic search protocol that conformation import uses for creating 

conformations of fragments missing in database was modified to generate fragment conformers that were 0.25 Å 

apart in RMSD. Fragment conformations that were within 15 kcal/mol window of the lowest energy conformer were 

retained for the stochastic search.  

OMEGA – OMEGA is a systematic knowledge based conformer generator developed by OPENEYE Scientific Software. 

It exhaustively enumerates all rotatable torsions using a knowledge-based list of angles that are then sampled by 

geometric and energy criteria27. The torsion library is derived from analysis of a set of experimental crystal structures 

from the PDB and from energy scans of torsions against MMFF94. Default parameter values were used except RMSD 

and MaxConfs which was set to 0.25 and 100 respectively to specify custom conformation diversity level and limit 

the number of output conformations.  

RDKIT – RDKIT uses distance geometry algorithm described by Blaney et al for sampling ligand conformations31. 

A distance bound matrix is calculated for a molecule of interest based on connection table and a set of rules. The 

matrix is smoothed using a triangle-bounds smoothing algorithm. Random distance matrices that satisfy the bounds 

matrix are generated followed by embedding in 3D dimension to generate conformations. In a final step, embedded 

coordinates are cleaned up using a crude force field and the bound matrix28.  In this study, ligand conformations 

generated using RDKIT were minimized using the Universal Force Field ‘uff’ as suggested by Ebejer et al20b. 100 

conformations were generated followed by minimization and pruning to remove conformations that measure less 

than 0.25 Å away from each other in RMSD.   

BCL::CONF generates conformations for all drug-like small molecules 

While BCL, CONFGEN, MOE and RDKIT are able to generate conformations for all the molecules of the VERNALIS 

dataset, OMEGA could not for 16 molecules due to missing fragments in its library.  

Recovery of experimentally observed conformations 

The native conformation recovery by BCL, CONFGEN, MOE, OMEGA and RDKIT is plotted in Figure 2-6A. Figure 2-6A 

shows the percent recovery of native conformation of ligands at different RMSD cutoff values. BCL recovers native 

conformer for 11 % of ligands within 0.25 Å, 79 % within 1.0 Å and 99% within 2.0 Å. Figure 2-6C shows the effect of 

rotamer library source (CSD; single dihedral torsion profiles; and CSD+PDB) and binning strategy (30° or 60°) on 

conformation recovery. Conformation recovery is slightly lower when fragment rotamers observed in only the CSD 

are used suggesting unique rotamers or significant deviation from canonical values that are observed in ligands 

bound to proteins. Recovery is not effected significantly when 60° bins are used.  
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Figure 2-6 Benchmarking results for the VERNALIS dataset. A) The plot represents percentage of ligands (y-axis) 
for which different methods produce at least one conformer within an RMSD value less or equal to the RMSD 
value on the x-axis. B) Quality of conformations sampled as the number of rotatable bonds increases. The 
average RMSD of conformers closest to native structure is plotted on the y-axis as the number of rotatable bonds 
increases (x-axis). C) Same as A) for different rotamer libraries used. “BCL” refers to recovery using 30° dihedral 
bins with rotamers derived from both the CSD and PDB. “BCL_CSD” leverages conformations from the CSD only. 
“BCL_D” refers to experiments in which instead of fragments containing multiple torsion angles, statistics on 
single dihedral angles were used for sampling conformations. “BCL_60” refers to a rotamer library that uses 60° 
dihedral bins are. D) Quality of conformations sampled as the number of rotatable bonds increases for BCL, 
BCL_CSD, BCL_D, and BCL_60. Source: Kothiwale et al38 
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Figure 2-7 Pair-wise comparison of BCL::CONF to other methods. Panels A-G plot the RMSD to native for the BCL 
on the x-axis, for other methods or flavors of the BCL on the y-axis. BCL::CONF samples closer to native 
conformations for points that lie above the diagonal. Conformations plotted within the shaded region differ by 
less than 0.25 Å. Source: Kothiwale et al38 
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Figure 2-7 shows pairwise comparison of CONFGEN, MOE, OMEGA, RDKIT, BCL_60, BCL_CSD and BCL_D to BCL in 

generating conformer closest to native. Each point corresponds to a molecule in a test set. The coordinates of a point  

corresponds to the RMSD of closest to native conformer generated by BCL (x-axis) and the method being compared 

(y-axis). Molecules for which closest to native conformation generated by the pair of methods is within 0.25 Å RMSD 

of each other are plotted in shaded gray area. For points above the shaded region, BCL recovers lower RMSD 

conformer compared to the other method referenced. The molecules for which OMEGA could not generate 

conformations are omitted from the graph and statistical analysis when comparing to BCL. Figure 2-6 and Figure 2-

7 suggest that BCL is better than other methods and other flavors of BCL being compared. BCL to those produced by 

other methods for each molecule in the VERNALIS dataset. Wilcoxon Matched-Pairs Signed-Ranks statistical test was 

performed to compare conformations generated by different methods. The statistics test was performed using R 

software package.  BCL generated closer to native conformations compared to CONFGEN, MOE, OMEGA and BCL_D at 

p-value < 0.01 over all the molecules. When compared to BCL_CSD, BCL generates more native like conformations 

at p-value < 0.05. Statistically there is no significant difference in native recovery between BCL, BCL_60 and RDKIT. 

However, 30° binning allows recapitulation of frequently observed 90° or 270° rotamers of dihedral bonds containing 

aromatic-single-aromatic or aromatic-single-any (Figure 2-3). 

  

 

Figure 2-8 Average number of conformations generated by different methods as number of rotatable bonds 
increase. A) Comparison of commercially available methods to BCL. B) Comparison of different flavors of BCL. 
Source: Kothiwale et al38  
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Effect of the number of rotatable bonds on native conformation recovery  

Figure 2-6B and 6D show the average RMSD of closest to native conformation of molecules plotted against number 

of rotatable bonds. Figure 2-8 plots the average number of conformations generated by different methods for 

molecules of different rotatable bonds. BCL is better than other methods at producing closer to native conformers 

for molecules with greater than six rotatable bonds as suggested by Wilcoxon Paired test at p-value < 0.05. For 

molecules containing four to six rotatable bonds, BCL performs better than CONFGEN and OMEGA respectively at p-

value < 0.01. There is no significant difference between quality of conformations generated between BCL, MOE and 

RDKIT for molecules with up to six rotatable bonds. For different flavors of BCL, there is no significant difference 

between BCL and BCL_60 in native conformation recovery based on rotatable bonds. However, statistical analysis 

clearly shows that using extended fragments improves native conformation recovery compared to using single 

dihedral bond statistics (BCL_D) for molecules greater than three rotatable bonds at p-value < 0.01. BCL produces 

closer to native conformations compared to BCL_CSD for molecules with greater than 10 rotatable bonds. 

Diversity of conformational space sampled 

Diversity of ligand conformations is an important consideration for ligand docking studies. A representative 

sample that covers ligand’s sample space is therefore desired. Figure 2-9A and B show the distribution of RMSDs of 

 

Figure 2-9 The box plots show the diversity of generated molecular conformations depending on the number of 
rotatable bonds. The upper and lower edges of box correspond to the first and third quartiles. The horizontal 
dash in the box represents the median value. The whiskers extend from edge to highest/lowest value that is 
within 1.5 * Inter-Quartile (IQR) of the box, where IQR is the distance between the first and third quartile. A) 
Conformation diversity produced by different methods B) Conformation diversity obtained by using different 
flavors of BCL. Source: Kothiwale et al38 
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conformers against the number of rotatable bonds. Box plots show the distribution of conformer RMSD with respect 

to native structure. The upper and lower edges of box correspond to the first and third quartiles. The whiskers extend 

from edge to highest/lowest value that is within 1.5 * Inter-Quartile Range (IQR) of the box, where IQR is the distance 

between the first and third quartile. The data beyond whiskers are plotted as outliers. The horizontal dash in the box 

represents the median value. Diversity of conformations generated by all the methods is comparable. CONFGEN, MOE 

and RDKIT sample conformations more efficiently compared to BCL for molecules with up to three rotatable bonds 

(Figure 2-8). The reason is that smaller fragments have large number of rotamers with similar energy profiles. Larger 

fragments on the other hand have fewer local minima allowing sampling of relevant conformations in fewer steps. 

Comparison of CPU time requirements 

The computational run time for the different methods except OMEGA was compared on Intel Xenon model 26 

running at 3.2 GHz with 24 GB of RAM. All the methods take less than 2 GB of RAM. BCL generated conformations 

for a single molecule in 1.6 seconds compared to 1.9 seconds taken by CONFGEN, 5.1 seconds for MOE, 0.5 seconds 

for OMEGA and 10.2 seconds for RDKIT. Computation time of when using only dihedral torsion profiles i.e. BCL_D is 

0.7 s/molecule. 

Conclusions 

We have developed a conformational search method called the BCL::CONF and validated it against other 

methods in the field like CONFGEN, MOE, OMEGA and RDKIT. The method utilizes the conformational space seen in the 

structure databases, CSD and PDB, to sample conformations of small-molecules. BCL::CONF is compared to other 

methods in three measures that are critical in computational drug discovery process, a) the ability to generate 

conformation close to experimentally observed structure b) diversity of conformations indication coverage of 

sample space of molecules c) performance in terms of speed. The benchmark study was performed using a curated 

dataset of high resolution X-ray crystal structures from the PDB, VERNALIS datasets, containing 253 molecules. 

BCL::CONF is capable of reproducing bioactive conformations generating conformers that are structurally close 

to experimentally determined structures. Analysis of coverage space shows that BCL::CONF generates a diverse set 

of conformers performing as well as MOE and RDKIT, however in much shorter time. BCL::CONF is better and more 

efficient in sampling molecules with greater than three rotatable bonds as indicated in Figure 2-6B. Using extended 

fragments gives BCL::CONF a distinct advantage over other methods in sampling more flexible molecules efficiently. 

The study shows utility of using explicit fragment conformations to recapitulate protein-bound ligand conformations. 

A slightly reduced performance is seen when using rotamers derived from only the CSD (Figure 2-6C). The somewhat 

reduced accuracy could result from biases in the fragment sets between CSB and PDB or biases in dihedral angles 

between ligands bound to proteins and ligands residing in a crystal. Nonetheless results reported in this paper 
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suggest that fragment conformations obtained from the CSD seen in structure databases can be used to adequately 

model small molecule conformations bound to proteins. 

BCL::CONF extends the idea of protein side-chain conformer sampling to fragments of small molecules. The 

method is novel as it takes into account torsion correlations and substituents effects on fragment torsion profiles. It 

has been designed and developed to be integrated with ROSETTALIGAND that is part of the macromolecular modeling 

suite ROSETTA. 
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CHAPTER 3 : MULTICONFORMATIONAL 3D – QSAR MODELS 

Introduction 

 Quantitative structure-activity relationship (QSAR) models describe the mathematical relationship between 

structural attributes of molecules and their target response. A major challenge in the field is incorporating molecular 

conformation information into the QSAR models. Currently QSAR models are trained on a single low energy 

conformation that may or may not be the conformation that binds a protein target. This limitation is currently 

addressed by choosing conformation of active molecules that align structurally and pharmacologically.  This study 

seeks to extend the single conformation models by directly training machine learning algorithms with multiple 

conformations of molecules to better correlate bioactivities to pharmacologically relevant molecules. Here, we have 

developed QSAR models using artificial neural networks using numerical descriptors derived from the chemical 

structure of molecules and those derived from 3-dimensional conformations. Best performance was achieved when 

model was trained on multiple distinct conformations of active molecules and descriptor averages of inactive 

conformations.  

Classical QSAR is known as the Hansch-Fujita approach and involves the correlation of various electronic, 

hydrophobic, and steric features with biological activity1. In the 1960s, Hansch and others began to establish QSAR 

models using various molecular descriptors including physical, chemical, and biological properties to 

computationally estimate bioactivity of molecules 2. In 1964, Free-Wilson developed a mathematical model relating 

the presence of various chemical substituents to biological activity (each type of chemical group was assigned an 

activity contribution) and the two methods were later combined to create the Hansch/Free-Wilson method3.  

Many flavors of QSAR approaches have been developed like the 2D (two-dimensional) and 3D (three-

dimensional) QSAR with differences in chemical descriptors and different mathematical approaches that are used to 

find correlations between the target and the descriptors4-5. The general workflow of a QSAR-based drug discovery 

project is to first collect a group of active and inactive ligands and then create a set of mathematical descriptors that 

describe the physicochemical and structural properties of those compounds5. A model is then generated to identify 

the relationship between those descriptors and their experimental activity maximizing the predictive power. Finally, 

the model is applied to predict activity of a library of test compounds which are encoded with the same descriptor 

sets5-6. Success of QSAR, therefore, depends not only on the quality of the initial set of active/inactive compounds, 

but also on the choice of descriptors and the ability to generate the appropriate mathematical relationship. One of 

the most important considerations regarding this method is the fact that all models generated will be dependent on 

the chemical space of the initial set of compounds with known activity, the chemical diversity. In other words, 

divergent scaffolds or functional groups not represented within this “training” set of compounds will not be 
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represented in the final model and any potential hits within the library to be screened that contain these groups will 

likely be missed. Therefore, it is advantageous to cover a wide chemical space within the training set6-7.  

A suite of QSAR algorithms have been implemented in BCL cheminformatics software8 that is developed in-

house. The most successful models have been developed using neural networks trained on dimensional (3D) 

descriptors derived from a single low-energy 3-D conformations of dataset molecules8. However, a molecule may 

have multiple low energy conformations, one of which could be bioactive. Thus, a single low-energy conformation 

may not be the one that binds the target of interest and models trained using such inputs may lead to suboptimal 

performance. In addition, some ligands have been found to bind in multiple conformations within the same pocket 

of the target. For example, HIV protease inhibitors bind the symmetric binding site of protease dimer in nearly two 

different but identical binding modes9.  The work described here extends the use of 3D information by using different 

approaches to handle conformations of molecules. The hypothesis is to train QSAR models using an ensemble of 

molecules to identify the correct binding conformation that will improve model performance. Here neural networks 

were trained using a representation of multiple conformations so that the network will learn the general 3D shape 

that fits the binding pocket of the target protein. The assumption here is that molecules that bind a particular pocket 

of a given target protein adopt similar shapes and share common interactions with residues. We hypothesize that 

QSAR models trained on multiple conformations has the potential to identify 3D pharmacophore that is common 

between active molecules and not available to inactives, leading to better classification. Different approaches were 

used in this study to choose most likely conformation by descriptor averaging of multiple conformations, or selection 

of most positively predicted conformation. Since the number of inactive molecules is large, a descriptor average of 

all conformations may cover the entire space of inactive pharmacophores. 

Quantitative structure activity relationship models correlate biological activity to molecular activity 

QSAR models describe mathematical relationships between biological activity and molecular properties. 

Molecular properties are called descriptors and describe structural and physiochemical properties of ligand 

molecules such as logP, pKa, molecular weight, geometry, surface area and volume, polarizability, symmetry, 

solvation properties etc10. These descriptors are generated through knowledge-based, graph-theoretical11, 

molecular-mechanics or quantum-mechanics12 methods and are classified according to the “dimensionality” of 

chemical representation from which they are computed. QSAR models are accordingly classified according to the 

dimension of descriptors that are used4. 

1D descriptors derived from molecular formula 

One-dimensional descriptors encode numerically generic properties like molecular weight, molar refractivity 

and octanol/water partition coefficient describing size, shape and lipophilicity of molecules in a low dimension4. 
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Even though simple, 1-D descriptors have been used to develop rules for drug-like character of molecules known as 

the Lipinski’s rule 13. Thus, they are most often found in biological descriptors in any QSAR studies. 

2D descriptors derived from topological information 

2D-QSAR uses descriptors that are calculated from constitutional representation of molecules4, 10f. Many 2D 

descriptors are based on molecular topology derived from graph-theoretical methods11. Topological indices treat all 

atoms of a molecule as vertices and bonds as edges in a graph, and store atom specific information or pair-wise 

atomic information. An example of simple topological index is the adjacency matrix that contains only constitutional 

information such as atoms directly bound to each other. The adjacency matrix is symmetric with each dimension 

equal to the number of atoms in the molecule. It contains an entry of “one” for atoms that are bonded and zero 

otherwise making the diagonal zero14. A more informative adjacency matrix will code for bond type by an integer as 

defined by an enumerated list of bond types instead of only ones and zeros15. Other topological indices may include 

entries for number of bonds linking the vertices. A topological index that includes information such as heteroatoms 

and multiple bonds through the weighting of vertices and edges was introduced by Bertz 16. Topological correlation 

(2D) is designed to represent constitutional information as well as atom property distribution by analyzing bond 

distances between all pairs of atoms. The autocorrelation vector is created by summing all products for atom pairs 

within increasing distance intervals in terms of number of bonds. In other words, it creates a frequency plot for a 

specific range of atom pair distances17. By including atom property coefficients for all atom pairs, autocorrelations 

are capable of plotting the arrangement of specific atom properties. For example, information such as the frequency 

at which two negatively charged atoms are three bonds apart versus four bonds apart is stored in an autocorrelation 

plot that has been weighted by partial atomic charge 17. 

2.5D descriptors incorporate isometry information 

2.5D descriptors describe configuration of molecules and therefore encode stereochemistry information. 2D 

descriptors take into account only the constitution of a molecule that makes it impossible to distinguish between 

stereoisomers and in particular enantiomers. 

3D descriptors represent geometrical properties 

3D-QSAR take into account qualities that are three-dimensional18. 3D autocorrelation is similar to 2D 

autocorrelation but the distances are measured as Euclidean distances in 3D space. This allows continuous measure 

of distances and encodes spatial distribution of physiochemical properties. The atomic pairs are summed into 

interval steps instead of summing them within discrete shortest path. Radial distribution functions (RDFs) are 

popular 3D descriptors that map the probability distribution of an atom in a spherical volume of radius r17, 19. It is 
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often combined with atomic properties to provide information regarding interatomic distances between atoms and 

properties20. RDFs allow estimation of molecular flexibility by “fuzziness” coefficient that allows for small changes in 

interatomic distances. Radial distribution functions have been successfully employed in the development of QSAR 

models for example in the study of A2A adenosine receptor agonist effect of 29 adenosine analogues21. 3D 

descriptors have proven ability to forecast potency of new scaffolds18. A major limitation of 3D QSAR is that it uses 

lowest energy conformation of the ligand as bioactive conformation, and it is this single conformation of the ligand 

which exerts the binding effects22.  

4D descriptors are derived in terms of different conformations 

4D-QSAR is an extension of 3D-QSAR where each molecule is treated as an ensemble of different conformations, 

stereoisomers, tautomers and protonation states. The fourth dimension refers to 3D ensemble sampling of features 

of each molecule accounting for molecular shape analysis23. The modelling is likely to involve a number of steps 

including generation of conformations and molecular alignment or alignment of specific substructure groups. 

Receptor independent 4D-QSAR is carried out by placing all molecules in a grid and aligning the molecules based on 

pharmacophore elements (polar, nonpolar, hydrogen bond donor etc.) using conformation sampling using molecular 

mechanics or Monte Carlo approach23.  

BCL Quantitative structure activity relationship algorithm 

BCL::CHEMINFO is an in house developed cheminformatics library that has modules for developing numerical 

descriptors for small molecules. The software suite also contains implementations of non-linear modelling 

algorithms like neural networks, k-nearest neighbors (KNNs), support vector machines (SVMs) etc. Neural networks 

are popular self-organizing algorithms that can learn non-linear relationships between descriptors and biological 

activity through iterative prediction and improvement cycles24. They are composed of compute nodes known as the 

neurons (Figure 3-1). A neural network is composed of an input layer, single or multiple hidden layers and an output 

layer. Each neuron in a given layer is connected to a neuron in the next layer. The neural networks used in this study 

are called feedforward neural networks because output from one layer is used as an input to the next layer. The 

input for a neuron is the weighted sum of all the incoming output or activations from neurons in the previous layer. 

If 𝑤𝑗𝑘
𝑙  denotes weight for connection from kth neuron in (l – 1)th  layer to the jth neuron in the lth layer, 𝑏𝑗

𝑙 is bias for jth 

neuron in the lth layer and 𝑎𝑗
𝑙 for the activation of jth neuron in the lth layer, then 𝑎𝑗

𝑙 is related to activations in (l – 1)th
 

layer by the equation 

𝑎𝑗
𝑙 = 𝜎 (∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

𝑘

) 
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where sum is over all the k neurons in the (l – 1)th
 layer. The quantity on the right side of the equation is called 

weighted input to the neurons in layer l. The goal of training neural network is to find weights and biases such that 

output from the network approximates y(x) for all training inputs x. A cost function is defined to quantify this goal  

𝐶(𝑤, 𝑏) =
1

2𝑛
∑ ||𝑦(𝑥) − 𝑎||

2

𝑥
 

where 𝑤 denotes the collection of all weights in the network, 𝑏 all the biases, 𝑛 is the total number of training 

inputs, 𝑎 is the vector of outputs from the network when 𝑥 is input, and the sum is over all training inputs, 𝑥. The 

training algorithm performs well when 𝐶(𝑤, 𝑏) ≈ 0 and by contrast when it is large, it means 𝑦(𝑥) is not close to 

the real output for a large number of units. Thus, the aim of the training algorithm is to minimize the cost 𝐶(𝑤, 𝑏) 

as a function of weights and biases. The errors or deltas i.e. the difference between the input and the output values, 

of all output and hidden neurons are backpropagated to update weights. The output delta and input activation are 

multiplied to get gradient of the weight and a percent of gradient is subtracted from the weight. The greater the 

ratio, faster the neuron trains; while lower the ratio, the more accurate the training is. The sign of the gradient 

indicates where the error is increasing, and so weight is updated in the opposite direction. This process is repeated 

over and over again until the performance reaches a satisfactory level. 

 

Figure 3-1 Neural network architecture showing input, hidden and output layer with 401, 32 and 1 neuron 
respectively. Each neuron in the hidden and output layer has an associated bias, weights and activations which 
are labelled. 
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k-nearest neighbor (KNN) is the simplest pattern recognition method. KNNs utilize Euclidian distance metric to 

cluster sample data points within close proximity to each other. Output is a class membership and object is classified 

by a majority vote of its neighbors, so that the object is assigned to the class with most common among its k nearest 

neighbors where k is a positive integer. Support vector machines (SVMs) is a kernel-based supervised learning 

method which seeks to divide sets of patterns based on their class25. SVM is a maximal range classifier that seeks to 

define a hyperplane with the widest margin between two classes. The patterns that line the closest border of each 

class define the two hyperplanes separated by that margin. These patterns are known as support vectors and 

represent maximal margin solution and used to predict classes for novel unclassified patterns26. Decision trees is a 

supervised learning algorithm that works by iteratively grouping training data into small and more specific groups27. 

The resulting classification resembles a tree where classification is performed based on feature rules. Once a decision 

tree is optimized for training set, new compounds can be classified by applying decision tree rules on their 

descriptors7d.  

In the BCL::CHEMINFO, QSAR models with most predictive ability have been developed using artificial neural 

networks and a set of molecular descriptors described previously8.  A major drawback of neural networks is that 

they are sensitive to over-training resulting in excellent predictive ability in the training set but reduced a reduced 

performance to assess novel compounds. Regularization of BCL::CHEMINFO neural networks through the use of 

dropouts prevents overfitting and better generalization of the QSAR models28. The descriptors are translationally 

and rotationally invariant geometric functions that describe the distribution of molecular properties.  Table 3-1 lists 

the set of descriptor that are used for developing QSAR models using neural networks. In the current study, QSAR 

models were developed using multiple molecular conformations generated using BCL::CONF29.  The neural networks 

Table 3-1 List of descriptors used for describing molecules for QSAR models 

1D descriptors 2D autocorrelation descriptors 3D autocorrelation descriptors 

Molecular weight Atom sigma charge Atom sigma charge 

HbondDonor Atom vcharge Atom vcharge 

HbondAcceptor Atom in aromatic ring Atoms in aromatic ring 

LogP Atom in fused aromatic ring Atoms in fused aromatic ring 

Total Charge Atom signed polarizability Atom signed polarizability 

Number of rotatable bonds Atom heavy sigma charge Atom heavy sigma charge 

Number of rings Atom heavy vcharge Atom heavy vcharge 

Topological polar surface area   

Molecular girth   

Maximum ring size   

Bond girth   

Number of atoms in aromatic rings   

Number of atoms in fused aromatic ring   

Number of atoms in fused rings   

Atom Vcharge statistics   

Atom sigma charge statistics   



87 
 

were trained with multiple conformations with the goal of identifying conformation patterns that are important for 

interactions between the small molecules and the target molecule. The hypothesis is that all the active molecules 

bind in a similar pose so that their 3D chemical fingerprint will be aligned in terms of the distribution of charge, 

volume, surface area, polarizability etc. In simplest terms, all the active molecules should be capable of adopting 

conformation conforming to the active site of target molecule but inactive molecules may not have any 

conformation that would fit the binding site. 

Results and Discussion 

 Multiple new approaches were implemented to use multiple conformations for training QSAR models. For the 

sake of completeness all the approaches for developing QSAR models using BCL::CHEMINFO are described below. For 

each of these approaches same descriptor sets were used for training. The datasets used in this study were compiled 

by Butkiewicz et al from publically available libraries deposited in PubChem8. Datasets were compiled such that the 

target is one specific protein and contain a minimum of 150 confirmed active compounds. The targets include 

pharmaceutically relevant small molecule protein targets such as GPCRs, ion channels, transporters and kinase 

inhibitors. All PubChem confirmatory screens for active molecules are given by PubChem assay ids (AID). An overview 

of datasets used in this study is provided in Table 3-2(adapted from Butkiewicz et al.)8. The table provides the number 

of active/inactive and percentage of active molecules in the dataset. It also lists the average number of 

conformations generated by BCL::CONF for each dataset. 

Models 

Table 3-2 Datasets used for benchmarking BCL::CHEMINFO QSAR models. 

Protein 
Target Class 

Protein Target 
PubChem 

AID 

Number 
Actives 

(%) 

Number 
Inactives 

Conformations 
per active 
molecule 

Conformations 
per inactive 

molecule 

GPC61R 

M1 Muscarinic 
Receptor 

1798 188 (0.3) 61,661 43 47 

Orexin1 Receptor 435008 230 (0.1) 218,071 37 47 

M1 Muscarinic 
Receptor 

435034 
448 

(0.72) 
61,407 53 47 

Ion Channel 

Potassium Ion 
Channel 

1834 
172 

(0.05) 
301,473 55 47 

KCNQ2 potassium 
channel 

2258 
213 

(0.07) 
302,351 38 47 

Cav3 T-type 
Calcium Channels 

463087 703 (0.7) 100,210 56 45 

Kinase 
Inhibitor 

Serine/Threonine 
Kinase 

2689 
172 

(0.05) 
319,821 25 47 

Transporter 
Choline 

Transporter 
488997 

252 
(0.08) 

302,246 48 47 
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CORINA – Single low energy conformation is generated for each of the molecules in the dataset. ANNs were trained 

using dropout parameter of 0.25 for hidden layer and 0.05 for visible layer. 

BCL_ONE – Single best scoring conformation was selected from among ~50 conformations (Table 1) generated using 

BCL::CONF. ANN was trained using features of single conformations using dropout parameters (H: 0.25, V: 0.05). 

BCL_CONFORMATION_AVG – In this experiment, molecular descriptors calculated for multiple ligand conformations 

were averaged for training the neural network. At most top 100 best scoring and diverse BCL::CONF conformations 

were used which differ from each other by an rmsd of at least 0.25 Å conformations.  

BCL_CONFORMATION_AVGStdDev – In addition to the average descriptor value, standard deviations were used for 

training neural network.  Essentially the descriptor size is double compared to one used in BCL_CONFORMATION_AVG.  

BCL_FIVE_PREVROUND – Five diverse and lowest scoring conformations were used for training. A new back-

propagation scheme was implemented for this experiment. In each iteration, predictions are computed for 

conformations of a molecule using the current state of the network. Errors from only one conformation is back-

propagated when activity prediction for a conformation satisfy condition that it is better than it is better than the 

one seen for molecule in the last round and is better than any other conformation prediction in the current round. 

This experiment was performed with dropout parameters. 

BCL_FIVE_NODP – The backpropagation scheme is an improved implementation compared to the BCL_FIVE_PREVROUND 

experiment. For a molecule, errors from only the best predicted conformation is backpropagated after predictions 

on all the five conformations have been made. Dropout scheme was not implemented in this experiment. 

BCL_ONE_NODP – This experiment was performed with single conformation generated using BCL::CONF but with no 

neuron dropout during training. Results from this experiment is control for BCL_FIVE_NODP. 

BCL_FIVE – The backpropagation scheme to update weights based on errors associated with the best predicted 

conformation in the current round was implemented with dropout functionality. 

BCL_TWOSTAGE – In this experiment, BCL_CONFORMATION_AVG and BCL_ONE are used sequentially for developing the 

QSAR model. As shown in figure 3-2, QSAR models developed using BCL conformations perform best when 

conformation descriptors are averaged. This model was used to predict activity of every conformation for all the 

molecules in a dataset. Conformation predicted to be most active is then used to train BCL_ONE model. 

BCL_AvgInactive_MultiActive – Inactive molecules were represented by averaged descriptor values calculated from 

multiple conformations. Active molecule conformations were used explicitly for training. The hypothesis here is that 

a single representation of all inactive molecules will suffice for covering the inactive space. For cross-validation 
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predictions, multiple conformations of all molecules were scored and the best predicted conformation was used for 

classifying actives from inactive molecules. 

Model evaluation 

ANN models are typically analyzed by receiver operator characteristics (ROC) curves to assess their predictive 

power. In this study, QSAR models were evaluated by means of a false positive rate – true positive rate (FPR-TPR) 

curve. Figure 3-2 shows ROC curves in green for experiments BCL_AvgInactive_MultiActive and BCL_five for dataset 

AID1834. If a ROC curve is a diagonal, it represents performance of a random predictor and has an area under the 

curve (AUC) value of 0.5. Higher integral value means a better model. However, since in a typical virtual screening 

experiment predictions are made for a large compound library and a small fraction of compounds are used for 

experimental testing (1% or 103), it is important that the initial 1000 compounds predicted as most active are actually 

active. Thus a global AUC value is of much less value compared to initial integral of TNR-TPR curve. For this reason, 

the initial section of the ROC curve is the most important and AUC value for this region is reported for comparison. 

To achieve this the area under the curve of a logarithmic x-axis ROC curve is used to quantify high confidence 

 

Figure 3-2 Area under curve for predictive performance of model A)  BCL_AvgInactive_MultiActive B) BCL_five 
for dataset 1834. The area under curve is the plot of true positive rate (TPR) vs false positive rate (FPR). A value 
of one corresponds to perfect prediction and a value of 0.5 corresponds to a model that produces random 
results. 
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predictions. Figure 3-3 compares model performance using log AUC values across eight datasets when using the 

different neural network training approaches of training with multiple conformations described in this paper. 

The current QSAR models in BCL::CHEMINFO are trained using single low-energy conformation obtained from 

Corina. The routine BCL_ONE can be directly compared to BCL_CORINA as a single BCL::CONF generaed conformation 

is used for training the neural network. BCL_ONE performs slightly worse (~10%) compared to BCL_CORINA for 

datasets AID1834, AID435034, AID463087 and AID488997. Two multi-conformation QSAR models that perform at 

par with BCL_CORINA were BCL_CONFORMATION_AVG and BCL_AvgInactive_MultiActive.  BCL_CONFORMATION_AVG used 

average descriptor calculated from an average of ~50 conformations (Table 3-2) of molecules in the dataset while 

training of BCL_AvgInactive_MultiActive used average descriptor of inactive conformations and explicit active 

conformations. According to Wilcoxon paired test, there is no significant difference between logAUC values obtained 

for different datasets by models BCL_CORINA, BCL_AvgInactive_MultiActive and BCL_CONFORMATION_AVG. However, 

we do see some improvement using multiple conformations over the use of single conformations generated using 

BCL::CONF. According to Student’s t-test, there is statistically significant improvement in predictions of 

BCL_Five_Prev_Round over BCL_ONE for only two datasets AID1834 and AID488997. BCL_CONFORMATION_AVG and 

BCL_AvgInactive_MultiActive have significantly better predictive ability compare to BCL_ONE for datasets AID1834, 

AID1798, AID488997 and AID 463087. However, a surprising result was that BCL_Twostage performed much worse 

 

Figure 3-3 Predictive ability of neural networks trained using different routines for generating multi-conformation 
QSAR models. Each model was tested for prediction on each of the datasets which are color coded as indicated 
in the legend. The metric for describing predictive power is the log (AUC) value which is reported in the stacked 
column for each dataset. For example, for experiment BCL_Five, model generated for dataset 1834 had a log 
(AUC) value of 0.439.  
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compared to BCL_CONFORMATION_AVG and BCL_ONE even though it is composed of these two experiments performed 

sequentially. 

One of the reasons why we could not get a great lift in predictive performance could be that the descriptor set 

used or the general parameters of neural network training were not optimal. The modified neural networks 

described in this work were trained using parameters found to be optimal when training with CORINA generated 

conformations. The descriptor set was also a reduced set optimized for training standard BCL::CHEMINFO QSAR 

models. Future experiments could be performed to benchmark neural network training parameters to optimize 

training with conformations generated using BCL::CONF. These experiments can be done by training the neural 

networks with the actual binding conformations of active molecules. No significant improvement will indicate that 

parameter tuning is required. Another approach to improve model performance is to train using common 3D shapes 

that the active molecules can assume. This can be achieved by aligning conformations of different molecules with 

each other and identifying the ones that are common to most active molecules. Reduced noise in the input data may 

lead to better models. 

Conclusions 

The goal of this study was to develop QSAR models using multiple molecular conformations. Current 

BCL::CHEMINFO QSAR models use a single low energy conformer generated by CORINA to develop QSAR model. The 

hypothesis for this work is that QSAR model performance could be improved if binding conformation of active 

molecules is known. The single low energy Corina generated conformation is most likely not the binding 

conformation. Here we have trained neural networks using multiple conformations such that the network can 

identify conformation closest to binding conformation. The goal of this research is to improve the performance of 

neural networks by allowing the network to learn about the pharmacophore from conformational space of active 

molecules. Several different approaches were implemented including modification of the backpropagation 

algorithm, use of average descriptors calculated over ensemble of conformations and iterative model building 

process.  

Using average descriptors calculated over ensemble of BCL::CONF generated conformations performed better 

than modified backpropagation approaches. We then used a hybrid approach which produced the best result. Here 

an average descriptor was calculated from on average of ~50 conformations of each inactive molecule. We 

hypothesize that this approach covers most of the inactive pharmacophore space given the large number of inactive 

molecules. For the active molecules, explicit ~50 conformations were used. The neural network was trained using a 

modified backpropagation algorithm where only the errors of the best predicted conformation are backpropagated. 

Further studies in parameter tuning and descriptor set benchmarking may be required to improve QSAR models 

using conformations generated using BCL::CONF. 



92 
 

References 

1. Hansch, C.; Maloney, P. P.; Fujita, T.; Muir, R. M., Correlation of Biological Activity of 
Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 1962, 194 
(4824), 178-180. 
2. Hansch, C., Citation Classic - Rho-Sigma-Pi-Analysis - a Method for the Correlation of Biological-
Activity and Chemical-Structure. Current Contents/Life Sciences 1982,  (47), 18-18. 
3. (a) Free, S. M., Jr.; Wilson, J. W., A Mathematical Contribution to Structure-Activity Studies. 
Journal of Medicinal Chemistry 1964, 7, 395-9; (b) Tmej, C.; Chiba, P.; Huber, M.; Richter, E.; Hitzler, M.; 
Schaper, K. J.; Ecker, G., A combined Hansch/Free-Wilson approach as predictive tool in QSAR studies on 
propafenone-type modulators of multidrug resistance. Arch Pharm (Weinheim) 1998, 331 (7-8), 233-40. 
4. Ekins, S.; Mestres, J.; Testa, B., In silico pharmacology for drug discovery: methods for virtual 
ligand screening and profiling. British journal of pharmacology 2007, 152 (1), 9-20. 
5. Zhang, S., Computer-aided drug discovery and development. Methods in molecular biology 
2011, 716, 23-38. 
6. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W., Jr., Computational methods in drug discovery. 
Pharmacol Rev 2014, 66 (1), 334-95. 
7. (a) Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.; Baskin, II; Cronin, M.; Dearden, J.; 
Gramatica, P.; Martin, Y. C.; Todeschini, R.; Consonni, V.; Kuz'min, V. E.; Cramer, R.; Benigni, R.; Yang, C.; 
Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A., QSAR modeling: where have you been? 
Where are you going to? J Med Chem 2014, 57 (12), 4977-5010; (b) Bajorath, J., Selected concepts and 
investigations in compound classification, molecular descriptor analysis, and virtual screening. J Chem Inf 
Comput Sci 2001, 41 (2), 233-45; (c) Bajorath, J., Integration of virtual and high-throughput screening. 
Nat Rev Drug Discov 2002, 1 (11), 882-94; (d) Bajorath, J.; Barreca, M. L.; Bender, A.; Bryce, R.; Hutter, 
M.; Laggner, C.; Laughton, C.; Martin, Y.; Mitchell, J.; Padova, A.; Renner, S.; Selzer, P. M.; Sherman, W.; 
Sippl, W.; Taft, C.; Tuccinardi, T.; Vistoli, G.; Willett, P., Ask the experts: focus on computational 
chemistry. Future medicinal chemistry 2011, 3 (8), 909-21. 
8. Butkiewicz, M.; Lowe, E. W., Jr.; Mueller, R.; Mendenhall, J. L.; Teixeira, P. L.; Weaver, C. D.; 
Meiler, J., Benchmarking ligand-based virtual High-Throughput Screening with the PubChem database. 
Molecules 2013, 18 (1), 735-56. 
9. (a) Mobley, D. L.; Dill, K. A., Binding of small-molecule ligands to proteins: "what you see" is not 
always "what you get". Structure 2009, 17 (4), 489-98; (b) Lewi, P. J.; de Jonge, M.; Daeyaert, F.; 
Koymans, L.; Vinkers, M.; Heeres, J.; Janssen, P. A.; Arnold, E.; Das, K.; Clark, A. D., Jr.; Hughes, S. H.; 
Boyer, P. L.; de Bethune, M. P.; Pauwels, R.; Andries, K.; Kukla, M.; Ludovici, D.; De Corte, B.; Kavash, R.; 
Ho, C., On the detection of multiple-binding modes of ligands to proteins, from biological, structural, and 
modeling data. J Comput Aided Mol Des 2003, 17 (2-4), 129-34. 
10. (a) Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. 
Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society 1988, 
110 (18), 5959-67; (b) Randic, M., Molecular Profiles - Novel Geometry-Dependent Molecular 
Descriptors. New Journal of Chemistry 1995, 19 (7), 781-791; (c) Schuur, J. H.; Selzer, P.; Gasteiger, J., 
The coding of the three-dimensional structure of molecules by molecular transforms and its application 
to structure-spectra correlations and studies of biological activity. Journal of Chemical Information and 
Computer Sciences 1996, 36 (2), 334-344; (d) Bravi, G.; Gancia, E.; Mascagni, P.; Pegna, M.; Todeschini, 
R.; Zaliani, A., MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A 
comparative 3D QSAR study in a series of steroids. J Comput Aided Mol Des 1997, 11 (1), 79-92; (e) 
Hong, H.; Xie, Q.; Ge, W.; Qian, F.; Fang, H.; Shi, L.; Su, Z.; Perkins, R.; Tong, W., Mold(2), molecular 
descriptors from 2D structures for chemoinformatics and toxicoinformatics. Journal of Chemical 



93 
 

Information and Modeling 2008, 48 (7), 1337-44; (f) Roberto Todeschini, V. C., Molecular Descriptors for 
Chemoinformatics 
Wiley-VCH Verlag GmbH & Co. KGaA: 2010; p 1-38. 
11. Marrero-Ponce, Y.; Santiago, O. M.; Lopez, Y. M.; Barigye, S. J.; Torrens, F., Derivatives in 
discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular 
descriptors. I. Theory and QSPR application. J Comput Aided Mol Des 2012, 26 (11), 1229-46. 
12. Zhou, T.; Huang, D.; Caflisch, A., Quantum mechanical methods for drug design. Current topics in 
medicinal chemistry 2010, 10 (1), 33-45. 
13. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational 
approaches to estimate solubility and permeability in drug discovery and development settings. 
Advanced Drug Delivery Reviews 1997, 23 (1-3), 3-25. 
14. Trinajstic,́ N., Chemical graph theory. 2nd ed.; CRC Press: Boca Raton, 1992; p 322 p. 
15. Devillers, J.; Balaban, A. T., Topological indices and related descriptors in QSAR and QSPR. 
Gordon and Breach: Amsterdam, 1999; p x, 811 p. 
16. Bertz, S. H., On the Complexity of Graphs and Molecules. Bulletin of Mathematical Biology 1983, 
45 (5), 849-855. 
17. Moreau, G.; Broto, P., The Auto-Correlation of a Topological-Structure - a New Molecular 
Descriptor. Nouveau Journal De Chimie-New Journal of Chemistry 1980, 4 (6), 359-360. 
18. Kubinyi, H.; Folkers, G.; Martin, Y. C., 3D QSAR in drug design. Kluwer Academic: Dordrecht ; 
Boston, Mass, 1998; p v. < 2- >. 
19. Broto, P.; Moreau, G.; Vandycke, C., Molecular-Structures - Perception, Auto-Correlation 
Descriptor and Sar Studies - Perception of Molecules - Topological-Structure and 3-Dimensional 
Structure. European Journal of Medicinal Chemistry 1984, 19 (1), 61-65. 
20. Hemmer, M. C.; Steinhauer, V.; Gasteiger, J., Deriving the 3D structure of organic molecules 
from their infrared spectra. Vibrational Spectroscopy 1999, 19 (1), 151-164. 
21. Gonzalez, M. P.; Teran, C.; Teijeira, M.; Helguera, A. M., Radial distribution function descriptors: 
an alternative for predicting A2 A adenosine receptors agonists. Eur J Med Chem 2006, 41 (1), 56-62. 
22. Verma, J.; Khedkar, V. M.; Coutinho, E. C., 3D-QSAR in Drug Design - A Review. Curr Top Med 
Chem 2010, 10 (1), 95-115. 
23. Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B. Q.; Albuquerque, M.; Madhav, P. J.; Duraiswami, 
C., Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. Journal of the American 
Chemical Society 1997, 119 (43), 10509-10524. 
24. Livingstone, D., Artificial neural networks : methods and applications. Humana Press: Totowa, 
NJ, 2008; p ix, 254 p. 
25. Vapnik, V.; Lerner, A., Pattern Recognition using Generalized Portrait Method. Automation and 
Remote Control 1963, 24. 
26. Boser, B. E.; Guyon, I. M.; Vapnik, V. N., A training algorithm for optimal margin classifiers. In 
Proceedings of the fifth annual workshop on Computational learning theory, ACM: Pittsburgh, 
Pennsylvania, United States, 1992; pp 144-152. 
27. Han, J.; Kamber, M., Data mining : concepts and techniques. 2nd ed.; Elsevier ; 

Morgan Kaufmann: Amsterdam ; Boston 

San Francisco, CA, 2006; p xxviii, 770 p. 
28. Mendenhall, J.; Meiler, J., Improving quantitative structure-activity relationship models using 
Artificial Neural Networks trained with dropout. J Comput Aided Mol Des 2016, 30 (2), 177-89. 
29. Kothiwale, S.; Mendenhall, J. L.; Meiler, J., BCL::CONF: small molecule conformational sampling 
using a knowledge based rotamer library. J Cheminform 2015, 7, 47.  



94 
 

CHAPTER 4 : DISCOIDIN DOMAIN RECEPTOR1 (DDR1) STRUCTURE-BASED AND LIGAND-

BASED DRUG DISCOVERY 

Introduction 

DDR1 and DDR2 are tyrosine kinase receptors composed of an extracellular Discoidin (DS) homology domain 

which encompasses the collagen binding site, a DS-like domain which contributes to collagen-induced receptor 

activation, an extracellular juxtamembrane region which contains N- and O-glycosylation sites and matrix 

metalloproteinase cleavage sites. In addition, DDRs have a single transmembrane helix, a cytoplasmic tyrosine kinase 

domain and additional carboxy-terminal and juxtamembrane regulatory regions (Figure 4-1A)1. The DDR family 

consists of two distinct members, DDR1 and DDR2. DDR1 has five isoforms while DDR2 has a single one1. DDR1 

receptor is important for cell survival, migration, and differentiation in development and pathological conditions8. 

Current research in Pozzi lab at Vanderbilt University focusses on DDR1 as therapeutic strategy for renal fibrosis. 

This chapter describes the structure-based studies of DDR1 that improved our understanding of the structure of the 

DDR1 kinase domain and its interaction with potential inhibitors. These studies involved homology modeling and 

docking studies with the goal of performing high-throughput docking studies to discover new binders for probing or 

inhibition of DDR1 kinase. Recently, a large number of new novel inhibitors of DDR1 were reported in scientific 

literature. We developed QSAR models using DDR1 inhibition data submitted in PUBCHEM and CHEMBL, and used 

the models to screen virtual compound libraries to identify new scaffolds that inhibit DDR1. Predicted molecules 

were tested experimentally to verify and identify real DDR1 kinase binders.   

Upon activation by binding of fibrillar collagens I-III & V, DDR1 undergoes phosphorylation and initiates various 

downstream signaling pathways. Multiple tyrosine residues within the intracellular juxtamembrane region and 

tyrosine kinase domain of DDR1 can be phosphorylated and recruit proteins such as ShcA, SHP-2 and the p85 subunit 

of PI3K2. DDR1 stimulates several signaling pathways in a context and cell type-dependent manner. For example, 

DDR1 activates ERK signaling in vascular smooth muscle cells3, but inhibits ERK in mesangial cells4, and has no effect 

on ERK activation in T47D breast cancer cells2d. In addition, DDR1 modulates signaling pathways initiated by other 

matrix receptors (e.g., integrins) 5, cytokines (e.g., TGF-β) 6, and transmembrane receptors (e.g., insulin receptors 

and Notch1) 7. Interaction of DDR1 with various receptors is important for the regulation of cell survival, migration, 

and differentiation in development and pathological conditions 8.  

Our understanding of the role of DDR1 in development, tissue homeostasis and disease has been significantly 

enhanced by availability of DDR1-deficient mice. These mice have defects in mammary gland morphogenesis and 

inability of blastocysts to implant properly in the uterine wall9. In contrast to these findings, DDR1 ablation has been 
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shown to have a beneficial role in various mouse models of fibrotic diseases including atherosclerosis 10, pulmonary 

fibrosis 11, and renal fibrosis 8. Thus, inhibiting DDR1 may be a promising therapeutic strategy for fibrotic diseases. 

The DDR1 kinase domain 

DDR1 intracellular kinase domain shares the typical structure of other kinase domains (Figure 4-1). However 

how DDR1 kinase is activated upon collagen binding is poorly understood. It is discussed that the process is 

fundamentally different from the accepted paradigm of ligand-induced RTK dimerization. Unlike the typical RTKs, 

DDR1 exists as a preformed dimer and following collagen binding undergoes receptor oligomerization, 

internalization and is phosphorylated unusually slowly. A recent study showed that collagen binding to DDR1 fails to 

induce a major conformational change that could explain kinase activation, and instead proposed that collagen-

induced receptor oligomerization may be responsible for the kinase activation 12. In support of this hypothesis, 

events that presumably reduce receptor oligomerization such as antibodies that bind to DS-like domain or enforced 

covalent receptor dimerization at residues within the DS-like domain reduce DDR1 phosphorylation and activation. 

However, mutation of Asn211, a conserved glycosylation site within the DS-like domain, results in ligand-

 

Figure 4-1 A) The DDR1 kinase domain (3ZOS) has the characteristic bilobal architecture. The image shows the 
DFG-out (F785 belongs to the DFG motif in the catalytic loop) or the “inactive” state. The N-terminal lobe 
contains five beta strands (1 through 5, in red) and a universally conserved helix called αC (in red). The C-terminal 
lobe is primarily helical (in green). The catalytic loop is colored in cyan while the activation loop is in orange. The 
disrupted hydrophobic spine characteristic of inactive kinases is shown in spheres. B) Active DDR1 conformation 
homology model (DFG-in) showing intact hydrophobic spines in spheres. ATP occupies the cleft between N-lobe 
and C-lobe. The ATP binding pocket is bound by a glycine rich loop and C-terminal hinge region. Source : 
Kothiwale et al33 
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independent activation of DDR1, enhanced receptor dimerization, and internalization, suggesting that, in addition 

to receptor clustering, ligand-induced internalization may also contribute to receptor activation 13.   

Collagen binding to DDR1 induces a slow receptor tyrosine auto-phosphorylation of multiple tyrosine residues 

including Tyr792, Tyr796, and Tyr797 in the activation loop which likely causes the kinase domain to switch from the 

inactive to the active state14. The active state satisfies chemical restraints that allow for the transfer of γ-phosphate 

of ATP to hydroxyl group of tyrosine on the loop that allows recruitment of substrate proteins. In this chapter the 

residues of DDR1 kinase domain (PDB: 3ZOS) will be referenced to corresponding residues in protein kinase A (PKA, 

PDB: 1ATP) and the kinase domain of Abl tyrosine kinase. Positions indicated in italics and normal in square brackets 

are PKA and Abl kinase residue numbers, respectively, equivalent to those in DDR1. 

 The tyrosine kinase domain consists of an N-terminal (N-lobe) and a C-terminal (C-lobe) lobe 15. Figure 4-1A 

shows the kinase domain of DDR1 (PDB: 3ZOS). The N-lobe consists of a five-stranded beta-sheet and a prominent 

α-helix, called αC helix while C-lobe is mostly helical 15. The ATP binding pocket lies in the cleft between the two 

lobes and sits beneath a highly conserved glycine-rich loop which is between β1 and β2 strands 15 (Figure 4-1A). In 

 

Figure 4-2 Structure/sequence alignment of PDB: 1ATP-E (PKA), PDB: 2HYY-A (Abl kinase), PDB: 3ZOS-A (DDR1). 
The PDB structures were aligned using PDBEFOLD [37]. The sequence limits are as defined in respective PDB. 
Missing regions in DDR1 PDB entry are denoted by x’s and the intensity of blue color indicates sequence 
conservation. Source: Kothiwale et al33. 
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the active conformation (Figure 4-1B), this loop positions the γ-phosphate of ATP for catalysis and a conserved valine, 

Val624 [Val57, Val254] makes a hydrophobic contact to the base of ATP. As with other domains, the DDR1 kinase 

domain contains the highly conserved DFG and HRD (YRD in case of PKA) motifs on activation and catalytic loops 

respectively. Asp784 [Asp184, Asp381] of the Asp-Phe-Gly (DFG) motif forms polar contacts with all three ATP 

phosphates. The phenylalanine of Asp784-Phe785-Gly786 [Asp184-Phe185-Gly186, Asp381-Phe382-Gly383] makes 

hydrophobic contacts with the Met676 [Leu95, Met290] of αC helix and the histidine of conserved His764-Arg765-

Asp766 [Tyr164-Arg165-Asp166, His361-Arg362-Asp363] motif. The His-Arg-Asp (HRD) motif of DDR1 and Abl (Tyr-

Arg-Asp (YRD) in PKA) is part of the “activation loop” which provides a platform for the peptide substrate binding. 

Phosphorylation of tyrosine residues within the activation loop is required to support a configuration that allows 

binding and phosphorylation of substrate protein. A conserved glutamate residue Glu672 [Glu91, Glu286] located 

on αC helix forms an ion pair with Lys655 [Lys72, Lys271] side chain that coordinates the α- and β-phosphates of 

ATP. In a number of active kinases, αC makes direct contact with N-terminal region of activation loop, with its 

conformation often linked to the DFG motif. While there is no experimental structure of DDR1 in its active 

conformation, it is expected that this feature is preserved. The C-lobe consists of mostly α-helices that surround a 

central β-sheet and serves as a docking site for substrate proteins. The residues in the interface of C-lobe with N-

lobe are involved in catalytic machinery associated with transfer of phosphate from ATP. Typically disruption of 

interactions within N-lobe and between the two lobes immobilizes kinase activity. Figure 4-2 shows the 

structure/sequence alignment of PKA, Abl, DDR1 and DDR2 kinase domain where conserved residues are capitalized. 

In addition to conformational changes to the activation loop, αC-helix position and orientation of catalytic 

residues, conserved spatial arrangement patterns of residues have been identified in the active kinase conformation. 

Four residues in the ATP-binding site link together N and C lobes of the kinase domain16. Residues His764, Phe785, 

Met676, and Leu687 [Tyr164, Phe185, Leu95, and Leu106; His361, Phe382, Met290, and Leu301] form the so-called 

hydrophobic spine. An intact conformation of the hydrophobic spine is essential for maintaining the active state 

conformation of kinase domain, while a disruption of the arrangement leads to inactive conformation. The 

hydrophobic spine supports the relative orientation of the two lobes as a hinge for inter-conversion of the open and 

closed conformations required for binding ATP and releasing ADP 16b, 17. Figure 4-1A and B illustrate the hydrophobic 

spines in inactive conformation of DDR1 (PDB: 3ZOS) and active DDR1 conformation (homology model). 

Targeting DDR1 for inhibition 

As DDR1 plays a key role in pathological conditions, including atherosclerosis, cancer, inflammation and fibrosis, 

blocking DDR1-mediated downstream signaling by inhibiting the transfer of γ-phosphate of ATP to the hydroxyl 

group of the tyrosine kinase on protein substrates is an appealing strategy to prevent DDR1 activation.  
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Figure 4-3 A) ATP binding site region and ATP interactions with the hinge residues of a kinase domain. Hydrogen 
bonds are represented by dashed lines. B) Type-1 kinase inhibitors mimic the binding of adenine moiety of ATP 
and lock the kinase domain in its active-state conformation. The type-1 inhibitor pharmacophore is shown 
representing the potential hydrogen bonds with the hinge region. C) Type-2 kinase inhibitors lock the kinase 
domain in the inactive-conformation by leveraging the ATP binding site as well as the allosteric site that is 
accessible in the inactive state. The pharmacophore is shown representing the interactions with the hinge region 
and the allosteric site present in the “DFG-out” conformation. Hydrogen bond donors are represented by circles 
labeled D, hydrogen bond acceptors by circles labeled A. The larger circles labeled HYD indicate hydrophobic 
moieties. The moiety that occupies the adenine ring region is colored in orange. The allosteric site is represented 
in gray. Adapted from: Fabio Zuccotto; Elena Ardini; Elena Casale; Mauro Angiolini; J. Med. Chem. 2010, 53, 2681-
2694. Source: Kothiwale et al33 
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DDR1 inhibitors reported so far are ATP competitive inhibitors that bind to either the active (type-1 inhibitors) 

or inactive (type-2 inhibitors) conformations, preventing transfer of terminal phosphate group of ATP to protein 

substrate. Screening for inhibitory activity against a panel of kinases identified imatinib 18, nilotinib 19, dasatinib 19 

and bafetanib 20 as DDR1 inhibitors (Figure 4-3). Day et al have reported inhibition of DDR1 by imatinib, nilotinib and 

dasatinib with IC50 values of 43 ± 2.4 nM, 3.7 ± 1.2 nM and 1.35 ± 0.2 nM respectively21. However, these inhibitors 

are not selective, as they were originally designed to target Abl kinase. Sun et al identified (3-(2-(3-

(morpholinomethyl) phenyl) thieno [3, 2-b] pyridin-7-ylamino) phenol (LCB 03-0110 in Figure 4-3) as a potent 

inhibitor of both DDR1 and DDR2 along with several other tyrosine kinases22. Recently Ding et al have identified a 

series of 3-(2-(pyrazolo [1, 5-a] pyrimidin-6-yl) ethynyl) benzamides as potent DDR1 inhibitors, most potent of which 

(7rh and 7rj in Figure 4-3) have IC50 values of 6.8 and 7.0 nM respectively23. Kim et al have reported two inhibitors 

DDR1-IN-1 and DDR1-IN-2 (Figure 4-3) which exhibit an IC50 of 105 nM and 47 nM respectively 24. 

DDR1-inhibitor complexes 

Dasatinib is a type-1 inhibitor which targets kinase domains in the active form which is characterized by an open 

conformation of the activation loop (see below for details). Type-1 inhibitors bind the ATP site by mimicking the 

adenine ring’s interaction with the “hinge” residues of protein. Even though there is no co-crystal structure of the 

DDR1-dasatinib complex, it is expected that dasatinib will bind in the so-called open conformation of DDR1 kinase 

domain which is characterized by “DFG-in” configuration of the conserved triad DFG at the beginning of activation 

loop (see also Figure 4-1B for details). Imatinib and nilotinib, on the other hand, are type-2 inhibitors which bind to 

 

Figure 4-4 Co-crystal complex of DDR1-imatinib (PDB: 4BKJ). All type 2 inhibitors form conserved hydrogen-bond 
pairs with – a) side chain of a conserved glutamic acid in the αC-helix b) backbone amide of asparatic acid in the 
DFG motif. Figure shows hydrogen bonds between imatinib and DDR1. The glutamic acid and DFG motif are 
labeled. Source : Kothiwale et al33 
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and stabilize an inactive kinase form that is characterized by “DFG-out” conformation (see below for details). The 

“DFG-out” motif opens an additional cavity, a hydrophobic allosteric site which, in addition to the ATP binding 

pocket, is targeted by type-2 inhibitors (see also Figure 4-1B for details). 

Type-1 inhibitors 

Generally, type-1 inhibitors bind to the ATP site (Figure 4-3A) by mimicking the interactions of the adenine 

moiety. Figure 4-3B shows the type-1 kinase pharmacophore which is made up of hydrogen bond acceptor, two 

hydrogen bond donors, and a hydrophobic moiety. Type-1 inhibitors typically form one to three hydrogen bonds 

with kinase hinge residues and some hydrophobic interactions with residues which occupy region around the 

adenine ring of ATP 25. Below we discuss a homology model of DDR1 in complex with a type-1 inhibitor that illustrates 

these important interactions. 

Type-2 inhibitors 

Recently the inactive conformation of DDR1 bound to imatinib has been reported in the PDB (PDB: 4BKJ)26. Co-

crystal structure of DDR1-IN-1 with DDR1 kinase (PDB: 4CKR) suggests a comparable binding mode as imatinib, 

suggesting it is a type-2 inhibitor which locks the kinase in the inactive “DFG-out” conformation 24. Type-2 inhibitors 

leverage the ATP binding pocket as well as an allosteric site created by a conformational change of the activation 

loop. The conformational change moves the phenylalanine residue (Phe785 [Phe185, Phe382]) more than 10 Å from 

its position in kinase active conformation creating hydrophobic site adjacent to ATP binding pocket. The co-crystal 

structure of DDR1 (PDB: 4BKJ) and imatinib displays the frequently observed hydrogen-bond interactions with the 

residues in the allosteric site (Figure 4-4). 

Type-2 inhibitors target additional allosteric sites 

Type-1 inhibitors have high cross-reactivity within the kinase family due to high degree of sequence and 

structural similarity in ATP binding site. In general, type-1 inhibitors tend to be promiscuous, because they tend to 

target well-conserved active kinase binding sites. However, type-1 inhibitors have the advantage of inhibiting kinases 

that have acquired mutations resistant to type-2 inhibitors. Type-2 inhibitors tend to be more selective because the 

inactive “DFG-out” kinase conformation allows additional interactions between the inhibitor and specific, not-well-

conserved exposed hydrophobic sites within the kinase domain (Figure 4-3A). A third class of inhibitors have been 

identified that target either the catalytically active (“DFG-in” and αC-helix-in) or inactive (“DFG-out” and αC-helix-

out) kinases by leveraging a hydrophobic back cavity 27. The back cavity is accessible in kinases which have a small 

gatekeeper residue which is the first residue of the hinge connecting the C-lobe and N-lobe. The small gatekeeper 
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residue, Thr701 [Met120, Thr315] in DDR1 (PDB:3ZOS) will allow the design of selective and potent binders that 

engage with the back pocket which becomes available due to small side chain. 

An intact conformation of the regulatory spine is essential for kinase activity. Efforts have been made to develop 

non-ATP competitive, i.e. truly allosteric inhibitors that target the regulatory spine. In this context ARQ197 28, a non-

ATP competitive inhibitor of met proto-oncogene (c-Met) is currently in Phase III clinical trials for non-small-cell lung 

cancer 17. The co-crystal structure of c-Met and ARQ197 reveals disrupted interactions between Met1131, Leu1142, 

His1202 and Phe1223 in the regulatory spine 17. The inhibitor has shown exceptional exclusivity against a panel of 

230 human kinases of which only four are inhibited to any significant degree28. Eathiraj et al. created a generalized 

computational model of this inactive kinase conformation which was successfully applied to identify a series of 

fibroblast growth factor receptor (FGFR) TRK inhibitors29. Being tyrosine kinases, the novel mode of kinase inhibition 

is pertinent to DDR kinases and can be explored for identifying selective inhibitors. 

DDR1 models for structure-based drug discovery 

The sequence similarity in kinase domains has allowed homology modeling of DDR1. Day et al 21 used homology 

models based on multiple templates to describe inhibition of DDR1 by imatinib, nilotinib and dasatinib. Fu et al 1 

built two homology models of DDR1 based on the “DFG-in” (active) and “DFG-out” (inactive) conformations of the 

DFG motif. For the current work we have developed homology models for DDR1 using the ROSETTA macromolecular 

modeling suite 30. 

 

Figure 4-5 Hierarchical docking protocol used for homology modeling. Source : 
Kothiwale et al33 

 

 

  
 



102 
 

The homology model for the “DFG-out” conformation was built using three templates (PDB: 3BEA, PDB: 4AT5 

and PDB: 4HVS). The top 50 models from each template were used for docking the type-2 inhibitor imatinib. A 

hierarchical docking protocol (Figure 4-5) was used to identify favorable homology models based on the ability to 

recover native poses for the ligand of interest. Models were clustered on the basis of RMSD of docked imatinib to 

native imatinib pose. Top 1% models were taken from each cluster which recovered the native imatinib binding pose 

within 0.2 Å and recovered side chain conformations (details in Appendix). The resulting four homology were used 

for further docking studies. Meanwhile, the structure was also determined experimentally (PDB: 4BKJ) which allowed 

us to compare our model in a blind experiment (Figure 4-7). The best-scoring homology models achieved a RMSD of 

2.5 Å to PDB: 4BKJ. Ligand docking into DDR1-inactive homology models yielded docking poses which had a RMSD 

of 0.2 Å to the experimental imatinib pose in PDB: 4BKJ (Figure 4-7A) and was successful in recovery of side chain 

conformations in the binding pocket (Figure 4-7B). 

These results give us confidence in creating a model for DDR1 in the “DFG-in” conformation.  Four “DFG-in” 

conformation template structures (PDB: 2PVF, PDB: 2X2L, PDB: 3C4F and PDB: 3RHX) were used to create homology 

models using the hierarchical docking protocol represented in Figure 4-5. Five models obtained after clustering and 

model selection as explained above for “DDR-out” conformation. Docking dasatinib into five different homology 

models recovered the binding pose of dasatinib reported in PDB: 2GQG within RMSD of 0.18 Å (Figure 4-6 shows the 

dasatanib docked pose in multi-colored ball and stick model and  in red is its native pose co-crystallized with Abl 

kinase domain (PDB: 2GQG). The docked model recovers the position of the benzene group of dasatinib deep in the 

 

Figure 4-6 DDR1 homology model complexed with dasatanib is shown along with the co-crystal structure of Abl 
kinase and dasatinib (PDB: 2GQG). Dasatinib docked into DDR1-active state homology model is shown in the 
multicolored ball and stick model while the native binding pose of dasatinib in 2GQG is shown in red stick model. 
Residues in the binding pocket for DDR1 and Abl kinase are shown in grey and blue sticks respectively. Residues 
that interact with ligands are labeled along with those that form the hydrophobic spine. Source: Kothiwale et al33 
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ATP-binding cleft. The hydrogen bond between the nitrogen of carboxamide group and Thr315 (PDB: 2GQG) is 

observed in the docked model with Thr701 of DDR1. In the binding pocket, side chain orientations of residues Glu672 

[Glu286], Lys655 [Lys271], Val624 [Val256] and Tyr703 [Phe317] were captured as in the experimental structure.  

Availability of experimental structures as well as high-quality homology models makes DDR1 amenable for 

application of structure-based drug discovery methods. Flexible docking with ROSETTALIGAND into crystal structures 

would improve docking accuracy. Also as the number of known DDR1 inhibitors grows18-20, 22-24, 31 ligand-based drug-

discovery methods such as quantitative structure-activity relation (SAR) models can be developed. 

Ligand based probe development 

The number of known DDR1 inhibitors has grown18-20, 22-24, 31-32 allowing development of ligand-based drug-

discovery methods such as quantitative structure-activity relation (SAR) models. In this study, we developed QSAR 

models using BCL::CHEMINFO to identify DDR1 inhibitors by computational screening of virtual small molecule 

libraries. QSAR models correlate structure of molecules to their experimental activity. BCL::CHEMINFO developed in 

the Meiler lab is a software suite containing cheminiformatics methods including algorithms to develop QSAR 

models. QSAR models are developed using artificial neural networks (ANNs) implemented in BCL. BCL::CHEMINFO 

QSAR algorithms are described in detail in Chapter 3.  

 

Figure 4-7 A) DDR1 homology model created using ROSETTA is shown in green and is aligned with PDB: 4BJK. 
4BJK is the DDR1 kinase domain in the in-active state bound with imatinib. B) Docking of imatinib in DDR1–
inactive homology model shows good pose recovery along with recovery of rotamers of residues in the binding 
site. The multi-colored ball and stick model is the docked imatinib pose while the pose in red is the native pose 
of imatinib in PDB: 4BKJ. Source : Kothiwale et al33 
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Figure 4-8 The figure shows the RMSD vs score plot for docking studies done with homology models of DDR1. 
The x-axis is root mean square deviation from the native binding pose in Anstrom for the ligand of interest. On 
the y-axis is the ROSETTALIGAND score for docking poses.  A) Imatinib docked into DDR1–inactive “DFG-out” 
conformation homology models. Four homology models were used for docking studies and the docking poses 
derived from each are shown separately as HM1_out, HM2_out, HM3_out and HM4_out. B) Dasatanib docked 
into DDR1-active (“DFG-in”) conformation homology model. Five homology models were used and the docking 
poses are plotted for each separately. Source : Kothiwale et al33 
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A pre-requisite for developing QSAR models is access to structures of small molecules that are active or inactive 

against a target of interest. The structure of these small-molecules is converted to numerical description known as 

features. Mathematical/statistical models are developed that are able to distinguish features of active molecules 

from features of inactive molecules. These mathematical/statistical models can then be used to predict whether a 

molecule with an unknown activity against the target of interest is active or inactive. The advantage of these models 

is that these can be used to screen large compound libraries containing millions of compounds in couple of hours. 

Molecules predicted to be active can be prioritized and experimentally tested. Virtual screening of huge libraries to 

prioritize molecules before experimental testing saves resources, labor and time. Traditional high throughput 

experimental screens have a hit rate of 0.2%. Using computational prediction to prioritize molecules for 

experimental screening has been shown to significantly increase the hit rate to about 3%.  

Using QSAR methods implemented in BCL::CHEMINFO, we have been able to achieve a hit rates of 28.2% and 3.6% 

for predicting mGlu5 partial agonists and allosteric modulators for mGlu5 respectively. The QSAR model for positive 

allosteric modulators (PAMs) was developed using experimental screen performed at Vanderbilt University in which 

approximately 144,000 compounds screened yielded 1,356 hits, a hit rate of 0.94%. A virtual screen against 

approximately 450K compounds was performed and 824 compounds were prioritized for experimental testing. Of 

these compounds, 232 were confirmed as mGlu5 partial agonists accounting for 28.2% hit-rate, approximately 30 

times greater than original HTS performed at Vanderbilt University. In another study, Rodriguez et al screened 

160,000 compounds for allosteric modulators of mGlu5 found 624 at a hit rate of 0.2%. QSAR model developed using 

this experimental data was used to virtually screen 700,000 commercially available compounds and prioritize 749 

compounds out of which 27 compounds were found to modulate mGlu5 signaling indicating a hit rate of 3.6%. 

In the current study, an iterative computational virtual screening followed by feedback from experimental 

results was used to identify DDR1 active molecules. Figure 4-9 shows the scheme of the study. Since no high 

throughput screening assay has yet been performed for DDR1, there is limited activity data available for DDR1. The 

first QSAR model was developed using molecules which have been reported as DDR1 active in the literature. Inactive 

molecules were used from AID – 2689, a serine-threonine kinase-33 screening data stored in the PUBCHEM 

database. Since most kinase-inhibitors bind the conserved ATP binding site of the kinase domain, there is high 

likelihood that inactive molecules do not have activity against any other kinase. The QSAR model was used to screen 

the Vanderbilt high throughput-screening library, called the VICB library, to prioritize 25 molecules for experimental 

testing. All of the 25 molecules were found to be inactive against DDR1 kinase. 

For the second round of QSAR model development the datasets were updated with the 25 inactive molecules 

found in the first round of experimental screening. The model was used to screen the VICB library again to select 25 

molecules to be tested experimentally. Experimental testing identified four molecules to be active with an inhibitory 

activity of 60%. These molecules were also active against DDR2. With the goal of identifying more potent and  
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selective inhibitors of DDR1, an external library of five million compounds, called eMoleclues library, was 

screened. Another QSAR model was developed with the feedback incorporated from the second round of screening. 

 

Figure 4-9 Iterative computational and experimental screening used in this study to identify DDR1 binders. QSAR 
model 1 was developed using molecular activities reported in the literature or reported in PUBCHEM. VICB library 
was virtually screened to prioritize 25 molecules which were tested experimentally among which none were 
found to be active. QSAR model was updated using feedback from experiment 1 result and used to screen the 
VICB library again to prioritize 25 molecules for experimental testing. Active molecules identified in the 
experimental screening was used to update QSAR models. Computational screening of eMolecules was carried 
out and 50 molecules prioritized for screening. Four molecules were identified which had some inhibitory activity 
against DDR1. 
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A new set of potent molecules reported by Elkamhawy et al32 was also included in the third round of models. The 

external library called the eMolecules was screened and 50 molecules were prioritized for experimental testing. Two 

molecules showed an inhibitory activity of greater than 80% in experimental testing while two others had an activity 

of less than 60% inhibition. The two potent inhibitors have no reported activity against DDR1 but have been reported 

as kinase inhibitors. The two other molecules with activity of less than 60% have no reported activity against any 

protein targets in the literature. Further confirmatory testing is being carried out at the Pozzi laboratory at Vanderbilt 

University. 
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CHAPTER 5 : KINASE SELECTIVITY MODEL 

Introduction 

Kinases are a large and diverse multigene family involved in the regulation of multicellular aspects of organisms 

1. For example, tyrosine phosphorylation is a ubiquitous mechanism utilized by intra- and inter- cellular 

communication pathways in metazoans, and a family of kinases known as the tyrosine kinases catalyze the transfer 

of phosphate group from ATP to select tyrosine residues in target proteins which leads to signal transduction 1b, 2. 

Similarly, kinases belonging to the serine/threonine family phosphorylate the hydroxyl group on the side chain of a 

serine or threonine amino acid residue in a protein substrate 1a. Kinase enzymes have two distinct lobes – an amino-

terminal lobe comprising a five-stranded β sheet and one α helix, and a carboxy-terminal lobe that is mainly α-helical 

Figure 5-1). The ATP-binding cleft is located at the interface of the two lobes which is lined with several highly 

conserved residues 1b, 3. The heterocyclic ring of ATP interacts with the hinge region through hydrogen bonds (Figure 

5-1). Kinases undergo conformational changes due to ATP binding leading to the phosphorylation of substrate 

proteins 3a, 4. Most notably catalytic and activation loop attain conformations that align important residues involved 

in transfer of phosphate from the ATP molecule to a target substrate protein 1b, 4-5. Figure 5-1 shows ATP bound to a 

kinase in the active state that allows transfer of phosphate group from ATP to phosphorylation site of activation loop 

(orange) 3. The aspartate of conserved motif HRD in the catalytic loop (cyan) accepts proton from substrate hydroxyl 

group during phosphotransfer mechanism 3b, 4. 

 There are more than 500 kinases in the human genome out of which 92 belong to the tyrosine kinase family 

while the rest belong to the serine/threonine family. There are 12 genes in the human genome encoding receptors 

that have intrinsic serine/threonine kinase domains. These receptors respond to the transforming growth factor β 

(TGF β) family 1a, 1c. Serine/threonine kinase receptors (RSTK) are activated by ligand-induced assembly into 

heterotetrameric receptor complexes.  RSTKs often activate growth inhibitory and apoptotic signals for example by 

activating members of Smad transcription factor family 1c. Non-RSTKs are involved in cellular regulation through 

posttranslational modification of proteins by phosphorylation including metabolism, growth, differentiation, 

motility, membrane transport, learning, and memory 1a, 5. Serine/threonine kinases interact with diverse substrates 

including other kinases, enzymes, transcription factors, receptors and other regulatory proteins. For example, cAMP-

dependent kinase or protein kinase A is activated by downstream signaling transmitted by G protein-coupled 

receptor (GPCR). Protein kinase A in turn regulates glycogen, sugar and lipid metabolism 1a, 5. 

 Of about 92 tyrosine kinases that have been identified, 58 are transmembrane receptor type and 34 are 

cytoplasmic non-receptor type (Non-RTK)2a.  Receptor tyrosine kinases (RTKs) are membrane-spanning cell surface 

proteins that play critical roles in transducing extracellular signals to the cytoplasm 1b, 2a. The RTKs have an 

extracellular ligand-binding domain, a single pass transmembrane hydrophobic helix and the cytoplasmic portion 
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containing the kinase domain 2a. The Non-RTK have a kinase domain and often possess several protein-protein 

interaction domains such as SH2, SH3 and the PH domain 1c. RTKs activated by growth factors modulate signaling by 

catalyzing the transfer of gamma-phosphate group from the ATP to target proteins. RTKs regulate key processes in 

cell proliferation, differentiation, migration, metabolism and programmed cell death 6. Activation of Non-RTKs 

involves heterologous protein-protein interactions for enabling transphosphorylation 1c. Most Non-RTKs couple to 

receptors including RTKs and those that lack intrinsic enzymatic subunits and relay intracellular signals originating 

from receptor activation 4, 6. An example is the recruitment and activation of Src family members by activated platelet 

derived growth factor receptor (PDGFR) which induces entry into S phase and mitosis 1c.  

Many disease states result from disrupted signal transduction pathways 3a. In particular, dysregulation of TKs is 

associated with a number of human diseases including diabetes and large range of cancers 2, 6-7. It is believed that 

the dysregulation occurs via a gain of mutations, gene rearrangements, gene amplification, and/or over expression 

or abnormal stimulation of receptors 2a, 6, 8. For example mutations in epithelial growth factor receptor (EGFR) in  

 

Figure 5-1 General structure of a kinase domain consists of two lobes, helix-rich 
C-terminal lobe (green) and sheet-rich N-terminal lobe (red). The ATP binding 
pocked is present at the interface of the two lobes. The heterocyclic ring of ATP 
forms hydrogen bonds with the Hinge-loop (magenta) Activation loop (orange) 
undergoes a conformation change upon phosphorylation of a conserved residue 
allowing substrate to bind. Arginine of the HRD motif in the Catalytic loop 
interacts with phosphate in the activation segment. Aspartate of HRD motif 
accepts proton from the substrate hydroxyl group during phosphotransfer 
mechanism.  
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glioblastomas, ovarian tumors and non-small cell lung carcinoma, renders the tyrosine kinase active in the absence 

of the activating ligand 2b. Over expression of RTK ERBB2 causes increased kinase activity in human breast cancer9. 

Kinases are pharmacologically targeted by – a) directly targeting the kinase catalytic activity by interfering with 

phosphorylation mechanism b) inhibiting activation of receptor kinases by blocking their oligomerization c) 

Antibodies against receptor kinases or their ligands to interrupt signaling through ligand neutralization, blocking 

ligand interaction or receptor internalization 2b, 9. Small molecular ATP competitive inhibitors were the first promising 

therapeutic strategies targeting the catalytic activity of kinases and have been the target of choice in the small 

molecule space. Most small molecular kinase inhibitors are ATP mimics 7, 10 by presenting one to three hydrogen 

bonds to residues that normally interact with adenine ring of ATP. The adenine ring forms two key hydrogen bonds 

at N-1 and N-6 positions with the kinase hinge region – the segment connecting the N-terminal and the C-terminal 

lobe 11. The ribose binds in the ribose-binding pocket and the triphosphate groups lie in a channel extending to the 

substrate binding site. Kinases have a conserved activation loop that assumes a large number of conformations that 

regulate access to the ATP binding site which allows the enzyme to switch between active and inactive state 3. In the 

active state the loop is often phosphorylated while in the inactive state it blocks the substrate binding site.  

 

Figure 5-2 Shows the binding of type-1 and type-2 inhibitor in the ATP pocket along-side ATP for comparison. 
The inhibitors mimic the interactions that the heterocyclic ring of ATP has with the hinge loop (magenta).  A) 
Dasatanib, a type-1 inhibitor is shown in the binding pocket of a kinase domain locked in active state. The 
activation loop (orange) is positioned such that it gets phosphorylated and is able to recruit substrate proteins. 
Catalytic loop (cyan) enables transfer of phosphate group to substrate protein. B) Shows Pontatinib bound kinase 
domain locked in an inactive state. ATP bound state is active state but is shown here for comparison to figure 
2A. The conformation of activation loop and the catalytic loop is different from that found in active state.      
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Several ATP competitive inhibitors have been approved for clinical use or are in clinical trials 10b. The binding 

mode of the inhibitors is categorized based on the conformation of a conserved Asp-Phe-Gly (DFG) motif within the 

activation loop.  

The type 1 inhibitors constitute the majority of ATP-competitive inhibitors and block the kinase in the active 

conformation of the kinase as the DFG motif of activation loop faces into the ATP binding site (Figure 5-2A). The 

heterocyclic ring of such inhibitors occupies the adenine binding site while the other parts of the molecule occupy 

the adjacent hydrophobic regions I and II. Examples include FDA approved Dasatinib for CML. Type-1 inhibitors have 

high cross-reactivity within the kinase family due to a high degree of sequence and structural similarity in ATP binding 

site. In general, type-1 inhibitors tend to be promiscuous as they target the well-conserved ATP binding sites in the 

active conformation of kinase enzyme. Figure 5-2A shows superimposed binding poses of Dasatanib (magenta sticks) 

and ATP (green sticks) into the Abl2 kinase domain. Heterocyclic ring of Dasatanib occupy ATP purine binding site 

which serve as scaffold for side-chain that occupy hydrophobic site-I near the pocket shown in magenta spherical 

dots.   

Type II inhibitors bind the inactive conformation of the kinase in which the DFG motif is facing outward such 

that aspartate side chain is facing out to the solvent. The 180-degree rotation opens up an additional hydrophobic 

pocket, the so-called specificity pocket which is exploited by type II inhibitors. Type-2 inhibitors tend to be more 

selective because the inactive “DFG-out” kinase conformation allows additional interactions between the inhibitor 

and specific, not-well-conserved exposed hydrophobic sites within the kinase domain. Examples include FDA 

approved imanitib and ponatinib against abelson murine leukemia viral oncogene-1 (ABL1) and PDFGR. Figure 5-2B 

shows ponatinib (magenta) bound to inactive state of DDR1 kinase (PDB: 3ZOS). Allosteric site that the type-II 

inhibitors target is shown in magenta spherical dots. 

As the kinase inhibitors target the orthosteric and well conserved ATP binding pocket, they  are multi-targeted 

and often inhibit a large number of kinases in a non-specific manner 10a. Improved tyrosine kinase selectivity is a 

major challenge for developing promising lead compounds into therapeutics due to the side-effects caused by off-

target activity. Dasatinib is a potent type-1 kinase inhibitor and is effective in patients with imatinib-resistant chronic 

myelogenous leukemia. It inhibits several other kinases including C-Kit, PDGFR, Ephrin receptors. Another example 

is Sunitib approved by the FDA for the treatment of renal cell carcinoma, which inhibits vascular endothelial growth 

factor receptor (VEGFR), PDGFR and c-kit, also tends to inhibit AMP-activated protein kinase that accounts for some 

of the cardiovascular toxicity. The degree of cross-reactivity has been determined by a number of studies which 

report inhibitor activities against a large panel of kinases. Davis et al. screened a total of 70 known inhibitors against 

a panel of 379 kinases in a competition binding assay 10a.  

It is desirable to profile highly potent inhibitors for kinase specificity early in the lead optimization process. We 

hypothesize that computational models could be used to predict a hit compound’s kinase activity profile early in the 
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lead optimization process. Further, in a second step, the selectivity profile for to be synthesized derivatives of hit 

compounds can also be predicted thereby contributing to the prioritization of hit compounds for hit-to-lead 

optimization. Several computational approaches have been developed for predicting kinase activity profiles. 

Sheinerman et al. developed a computational approach to design a binding site signature that uses three-

dimensional (3D) X-ray structure information of a kinase-inhibitor complex to predict the small-molecule’s selectivity 

profile 12. Subramanian et al. applied this approach to predict off-target kinase selectivity profile for 15 molecules 

against 280 members of the human kinome 13. A co-crystal structure of the ligand of interest is a pre-requisite for 

this method. The input data includes interacting residues in the binding pocket of the target kinase enzyme. Sciabola 

et al. used the Free-Wilson approach to build quantitative structure-activity relationship (QSAR) models for a series 

of chemical analogs 14. The Free-Wilson concept states that the biological activity of a molecule can be described as 

sum of activity contributions from specific substructures 15. A limitation therefore is that it cannot make predictions 

about functional groups that are not present in the original set of compounds. Subramanium et al reported an 

average accuracy/sensitivity/specificity of 0.81/0.37/0.93 for 15 kinase inhibitors at an activity cutoff of KD ~ 3 µM 

against a subset of 280 kinases. Sciabola used an in-house scaffold library for their study reporting a correlation of 

greater than 0.85 between experimental and predicted IC50 values for two series of compounds. 

For the present study we developed QSAR models for predicting activity profiles of kinase inhibitors against a 

panel of kinases using a neural network based methodology. The objective of QSAR modelling is to correlate chemical 

structure with biological activity in a quantitative way. There are three prerequisites for QSAR modelling: a) a 

quantitative description of molecular structure (descriptor) b) biological activities of a diverse set of molecules and 

c) a mathematical technique for correlating descriptors to predict activity. Machine learning techniques are 

commonly applied to develop non-linear mathematical QSAR models. Here we use Artificial Neural Networks (ANN) 

as implemented in BCL::CHEMINFO to generate the kinase selectivity models 16.  

Artificial neural networks 

Artificial neural network (ANN) models are a type of mathematical model that are inspired by the biological brain 

and with an adaptive structure that allows for pattern recognition.  The basic computational units of ANNs, known 

as neurons, receive inputs from external sources and combine them in a non-linear manner into an output signal by 

way of a transfer function, usually given as a sigmoid function: 

 

𝑓𝑗(𝐼) = 𝐾 (∑ 𝐼𝑖𝑤𝑖𝑗
𝑖

) 

 

where   𝐾 =  
1

1+𝑒−𝐼 
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Neural networks are composed layers of neurons and include an input layer, one or more hidden layers, and an 

output layer (Figure 5-3). Each layer of a neural network is connected to a subsequent layer by weighted connections. 

Neural networks are able to form a high-level mathematical model of a set of data by adjusting these weights, a 

process known as “training” or “learning”. Training works by providing data to the neural network and allowing it to 

predict an output.  The difference between the calculated output and the data point’s known target value is used to 

determine how to change each weight in a process known as backpropagation (reference here). In the case of 

biological activity predictions, training an ANN consists of iterative weight changes that minimize the error between 

expected and predicted biological activity in terms of root mean square deviation. 

Results and Discussion 

Artificial Neural Network (ANN) QSAR models for predicting kinase selectivity profiles were built using the 

cheminformatics framework implemented in BCL::CHEMINFO. Inhibition data of 70 kinase inhibitors against 379 

kinases reported by Davis et al 10a was used to train the ANNs. The chemical structure of each inhibitor was encoded 

using molecular descriptors and this numeric description was used as the input to the ANNs, and binary experimental 

kinase activity was used as output for training. We will first describe the dataset used for building the models 

followed by molecular descriptors used for numerical encoding. 

Training Dataset 

ANN QSAR models were trained using kinase inhibitor data published by Davis et al 10a. Davis et al reported 

interaction profile of a diverse set of 70 known kinase inhibitors against 379 kinases. The molecules that are tested 

 

Figure 5-3 Architecture of neural network. Neural networks consist of multiple 
layers containing basic units of computation known as neurons. As the name 
suggests, input layer get input data while output layer neurons provide output. A 
neural network may be composed of one or multiple hidden layers.  
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represent mature inhibitors optimized against specific kinases of interest. The study was performed using ATP site-

dependent competition binding assays. Five models were developed using different KD cutoffs for specifying active 

molecules – 0.1 µM, 0.5 µM, 1 µM, 3 µM and 10 µM.  

Molecular descriptors 

Chemical structures were encoded using a set of molecular descriptors using BCL::CHEMINFO 16-17. The descriptors 

are translationally and rotationally invariant geometric functions that describe the distribution of molecular 

properties in the structure (e.g. mass, volume, surface area, partial charge, electronegativity, polarizability, etc.). 

Descriptors can be grouped into five categories based on the level of information they provide – 1D descriptors are 

computed as scalar values derived from a molecular formula, for example molecular weight and total charge. 2D 

descriptors are calculated using molecular connectivity information and include properties such as hydrogen bond 

acceptors/donors, number of ring systems, and approximations of surface area and volume. 2.5D descriptors are 

calculated using information about the molecular configuration (i.e. connectivity and stereochemistry). 

Conformation-dependent or 3D descriptors encode atomic properties (e.g. partial charge, polarizability) in a three-

dimensional fingerprint using radial distribution functions (RDF) and 3D autocorrelations (3DA). Table 5-1 lists all the 

descriptors used in developing kinase selectivity model. 

Table 5-1 List of descriptors used for describing molecules for QSAR models. 

1D descriptors 2D autocorrelation 
descriptors 

3D autocorrelation descriptors 

Molecular weight Atom sigma charge Atom sigma charge 

HbondDonor Atom vcharge Atom vcharge 

HbondAcceptor Atom in aromatic ring Atoms in aromatic ring 

LogP Atom in fused aromatic ring Atoms in fused aromatic ring 

Total Charge Atom signed polarizability Atom signed polarizability 

Number of rotatable bonds Atom heavy sigma charge Atom heavy sigma charge 

Number of rings Atom heavy vcharge Atom heavy vcharge 

Topological polar surface area   

Molecular girth   

Maximum ring size   

Bond girth   

Number of atoms in aromatic rings   

Number of atoms in fused aromatic ring   

Number of atoms in fused rings   

Atom Vcharge statistics   

Atom sigma charge statistics   
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Artificial neural network model development and validation 

Neural networks trained in this study contain 400 inputs (a result of encoding chemical structure with molecular 

descriptors), 32 hidden neurons, and one output neuron for each of kinase included in the model. The ANNs were 

trained using simple back propagation and a sigmoid transfer function with a weight update parameters eta=0.1 and 

alpha=0.5 16-17. 

Metrics to evaluate ANN prediction accuracy 

Five models were generated by using different KD cutoff values for specifying the active molecules. Each model 

predicts activity of a small molecule in terms of 379 binary outcomes for each of the kinase molecules. The binary 

predictions fall into the following four categories:  

 True Positives (TP) – Experimentally active predicted to be active. 

 True Negatives (TN) – Experimentally inactive predicted to be inactive. 

 False Positives (FP) – Experimentally inactive predicted to be active. 

 False Negatives (FN) – Experimentally active predicted to be inactive. 

Table 5-2 Comparison of models developed using different cut-off values for indicating active molecules. The table 
gives an overall number of true/false-positives and negatives calculated over all 379 kinase molecules. Computed 
overall accuracy, the Matthew’s correlation coefficient, sensitivity and selectivity is reported for each model. 

Activity cutoff (µM) ACC MCC SEN SEL TP FP TN FN 

0.1 68.10 0.14 58.99 68.71 971 7787 17097 675 

0.5 78.18 0.26 54.02 81.26 1620 4410 19121 1379 

1 78.99 0.31 53.13 83.41 2055 3760 18902 1813 

3 78.59 0.37 54.20 84.79 2915 3218 17934 2463 

10 78.45 0.42 57.59 85.27 3765 2944 17048 2773 

 

Table 5-2 shows the overall accuracy (ACC), the Matthew’s correlation coefficient (MCC), sensitivity (SEN) and 

specificity/selectivity (SEL) of each model calculated by pooling all true-positives, false-positives, true-negatives and 

false-negatives, across all kinases and small-molecules. The measures to assess quality of predictive models are 

defined as follows:  

 Sensitivity (SEN) – TP / ( TP + FN ) 

 Selectivity (SEL) – TN / ( TN + FP ) 

 Accuracy (ACC) – ( TP + TN ) / ( TP + TN + FP + FN ) 

 Matthews correlation coefficient (MCC) –  

((𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)) ⁄ √((𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁) )  
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The three metrics accuracy, sensitivity and specificty are very stable for models using activity cutoff values of 

greater than 0.5 µM. However the Matthew’s correlation coefficient is highest for cutoff value of 10 µM even with 

higher number of indicated active kinase-inhibitor pair increases. The prediction accuracy of models can also be 

evaluated using values derived from receiver operator characteristic (ROC) curves. A ROC curve plots the true 

positive rate (TPR, i.e. active molecules predicted as active) versus the false positives rate (FPR, i.e. inactive molecules 

predicted as active) as a fraction of the total number of known inactive molecules. A TPR vs. FPR slope of one, which 

results in area under the curve (AUC) of 0.5, indicates a model which is no better than random at correctly predicting 

a compound as active vs inactive. An increase in slope and therefore area under the curve indicates an increase in 

predictive power over a random guess. Figure 5-3 depicts a box plot showing the performance of the five models in 

terms of AUC values for each of the 379 kinases. The upper and lower edges of box correspond to the first and third 

quartiles. The horizontal dash in the box represents the median value. The whiskers extend from edge to 

highest/lowest value that is within 1.5 × Inter-Quartile (IQR) of the box, where IQR is the distance between the first 

and third quartile. The AUC value for more than 50% of kinases is above 0.75 for models that consider 3 µM and 10 

µM as activity cutoff. Models were compared statistically using Man-Whitney paired test to see which model 

 

Figure 5-3 Box plot showing the performance of the five models using distribution of 
AUC values for individual kinases.  The five models have been generated using activity 
values specified at different cutoffs as indicated on the x-axis. The upper and lower 
edges of box correspond to the first and third quartiles. The horizontal dash in 
the box represents the median value. The whiskers extend from edge to 
highest/lowest value that is within 1.5 × Inter-Quartile (IQR) of the box, where IQR is 
the distance between the first and third quartile. 
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performs better in terms of higher AUC values. Model built using activity cutoff value of 10 µM performs better than 

all other models at confidence interval of 95%. Fishers test showed that the 10 µM model is statistically significantly 

better than a random model which predicts 50% of cases as positive.  

Figure 5-4A shows the overall ROC curve for model developed using activity specified at KD < 10 µM with 

computed area under the curve of 0.76. Figure 5-2B is an example ROC curve for a kinase with 18 active molecules 

and high prediction accuracy (88%), and specificity (98%). The calculated AUC for this kinase, Calmodulin-dependent 

protein kinase-1, is 0.91. Figure 5-5A and B respectively show the heat maps of experimental and predicted activity 

for model developed using activity specified at KD < 10 µM. 

In the current approach neural network based QSAR models were trained to predict activity of small molecules 

against a panel of 379 kinases. The MCC for model developed using activity specified at KD < 3 µM is 0.48 compared 

to 0.37 for structure based models developed by Subramanium et al13. Subramanium et al developed a 

computational model to predict activity of 15 kinase inhibitors against 280 kinase molecules by designing binding 

site signatures that use three-dimensional (3D) X-ray structure information of kinase-inhibitor complexes. Davis et 

al screened all these inhibitors against a panel of kinases except one, Roscovitine. Table 5-3 compares the 

performance of models developed by Subramanium et al for 14 investigated kinase-inhibitors to models developed 

in this study. The table shows overall true positive, false positive, true negative and false negative kinase-inhibitor 

pairs Two models were reported by Subramanium et al for 15 kinase inhibitors at activity cutoffs specified at KD 

values of 0.1 µM and 3 µM. The method involves computing the binding site signature computed for each inhibitor 

 

Figure 5-4 A) Overall Receiver Operating Curve computed for model developed at activity cutoff of KD = 10 µM. 
B) Example ROC curve for calmodulin-dependent protein kinase -1 which has 18 active molecules at KD <  10 
µM   with an AUC of 0.91. 
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using a co- crystal structure of kinase-inhibitor complex. Based on the similarity of binding site signature, the method 

predicts which other kinases the small-molecule inhibitor can bind. The models developed in this study predict the 

activity of small molecules against kinases. Here, the neural network predicts activity of each inhibitor against 379 

kinases based on the chemical structure of the inhibitor. For each kinase, a different threshold of predicted activity 

is chosen for specifying activity of small-molecules. The models generated in this study using 0.1 µM cutoff performs 

worse compared to those reported by Subramanium et al. This is possibly because of sparsity of data as there are 

 

Figure 5-27 Activity matrix of all inhibitors versus all kinases. The pixels in black correspond to active molecules 
at 10 µM. A) Corresponds to experimental activity matrix as reported by Davis et al. B) Corresponds to predictions 
made by QSAR model. C) Difference of experimental activity matrix and prediction activity matrix. 
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very few kinase-inhibitor pairs with KD less than 0.1 µM. However, our model generated at cutoff values of 3 µM is 

better than those reported by Subramanium et al in terms of high values for MCC, accuracy, and sensitivity.  Models 

reported by Subramanium et al have higher specificity but very low sensitivity compared to models reported in this 

study. Appendix Table 3 shows the activity prediction for 15 molecules using models developed here and those by 

Subramanium et al at 3 µM. Our model performs better for highly cross reactive inhibitors like Staurosporine and 

VX-680. In general, since the QSAR models have only been trained on type-1 and type-2 inhibitors of kinase, its utility 

is limited for molecules that show inhibitory activity against at least one kinase molecule and target the ATP binding 

site. 

Table 5-3 Performance comparison of kinase activity models developed by Subramanium et al and those developed 
here. Models developed with activities specified at different cutoffs are reported in the table. Reported is the 
accuracy, sensitivity and specificity of models developed for 15 kinase inhibitors studied by Subramanium et al. 
Models developed in this study were used for predicting activity of these 15 kinase inhibitors and results are 
tabulated. 

  Cutoff (µM) ACC MCC SEN SEL TP FP TN FN 

Subramanium  
et al 

0.1 87.30 0.35 52.26 90.49 185 370 3521 169 

3 81.04 0.37 36.62 93.57 342   213 3098 592 

this study 

0.1 67.67 0.24 75.39 67.00 340 1727 3507 111 

3 78.63 0.48 74.45 79.83 944 891 3526 324 

10 79.26 0.52 73.79 81.39 1174 762 3332 417 

Conclusions 

In this study, QSAR models were developed for predicting activity of kinase inhibitors against a panel of 379 

kinase enzymes. Kinase activity data was reported by Davis et al for 70 inhibitors in terms of KD values obtained using 

ATP site-dependent competition binding assays. Five models were developed using activities specified at different 

cutoffs of KD values. Statistical tests suggest that model using 10 µM as cutoff for activity has better predictive ability 

compared to other models. This model allows prediction of kinase specificity profile for weak binders. A pre-requisite 

to using this model is that a given small molecule to be tested should be active against at least one of the 379 tyrosine 

kinases present in the dataset as the neural network has been trained only on a small chemical space of known 

inhibitors. The predictive ability of the model varies significantly with AUC values for 75% of kinases ranging from 

0.5 to 0.1. This model is a good starting point for predicting the selectivity profile of a new molecular entities against 

different kinases. This is especially useful after a computational high throughput screening of a virtual compound 

library when compounds need to be prioritized for experimental testing. Ideally a diverse set of drug-like molecules 

would be ordered and tested. The selectivity QSAR model developed here could be used for short listing compounds 

by scanning for molecules that are predicted to be selective.  
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SUMMARY 

Drug discovery is a lengthy process that begins with target identification, lead compound discovery, and lead 

compound identification followed by pre-clinical studies. Traditionally the drug discovery process has been 

performed experimentally, which is expensive, time consuming, labor intensive and often meets with a low rate of 

success. Complementary computational technologies have been developed that reduce experimental work. These 

technologies enable identification of a small set of compounds that need experimental verification. 

Once a target protein has been identified, lead compound discovery is carried out by high-throughput screening 

of a library of compounds. This requires the development of a high-throughput assay for screening against a target 

of interest. Once a lead compound is identified, optimization studies are carried out to improve its binding affinity 

to the target of interest. Optimization can be performed through medicinal chemistry studies either with or without 

the knowledge about of co-crystal structure or the binding pose. In the presence of a crystal structure, the lead 

compound is designed by analyzing its interaction with the protein target of interest. Derivatives are synthesized 

and their activities correlated with the structure of the molecule and the putative interactions they can have with 

the target of interest. In the absence of co-crystal structure of the target and lead compound, structure activity 

relationship studies are carried out with known binders and non-binders. Optimized compounds are then tested in-

vivo for their absorption, distribution, metabolism, excretion and toxicological studies (ADMET). Following these 

studies, the optimized compounds may have to go through another round of optimization for desired ADMET 

properties.  

 Computational tools have been developed which complement each of the described experimental drug 

discovery tools. Virtual screening (in-silico) technologies have been developed to prioritize molecules for 

experimental testing. These include structure-based methods like docking and ligand-based methods like shape 

matching. For accurate modelling of molecular structures and their interactions, these drug discovery tools need to 

sample 3D conformations that include the conformation that binds to the target protein. Small molecules exist in 

multiple different conformations in solution and may bind to the target protein in one of those solution 

conformations or in an entirely novel conformation dictated by the target. Computational modelling requires 

representative low-energy molecular conformations for making reasonable predictions.  

The most comprehensive method for conformation sampling is systematic or deterministic sampling where 

dihedral bonds are rotated by N degrees one by one to sample all possible combinations. However, this method 

quickly becomes intractable with increase in number of dihedral bonds. For example, if bonds are rotated by 30°, 

for a molecule containing four bonds the total number of conformations to be sampled is 412. Physics based or 

knowledge based methods have been developed that efficiently search the conformational space. Several 

commercially available software packages are available that use physics-based methods or knowledge-based 

methods for sampling conformations. Physics-based methods requires free energy computation which is resource 
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intensive and are often not suitable for high-throughput experiments. Knowledge based methods have been 

developed which are used widely in both the academia and industry. These methods use existing information about 

small molecule conformations to sample low energy ligand conformations. This information is derived from the 

crystallographic structure databases like the CSD or the PDB. These methods analyze the torsional profile of different 

dihedral bonds from these databases and apply this information during conformation sampling. 

We have developed a novel knowledge-based conformation sampling algorithm, BCL::CONF, which derives 

fragment conformations from the CSD/PDB and applies this information to sample conformations. While not all 

small-molecules have been crystallized, the hypothesis is that conformational space available to fragments of small 

molecules has adequately been represented in the crystallographic databases. Brameld, et al have shown that 

fragment conformations seen in the CSD are accurate representations of those seen in ligands found in complex with 

proteins in the PDB. BCL::CONF uses frequently observed fragment conformations in the CSD/PDB to sample small 

molecular conformations. Use of fragment conformations takes into account torsional profile of multiple dihedral 

bonds, which compose distinct chemical environments, at the same time. This is clearly an advantage over other 

knowledge-based conformation sampling algorithms, which generally treat dihedral bonds in a disconnected 

manner. BCL::CONF is thereby able to leverage correlations between dihedral bonds of fragments and apply those 

during conformational sampling. In addition, use of extended fragment-conformations captures the effect of 

substituents on the torsional propensities of dihedral bonds given the surrounding chemical environment.   

The algorithm performs better than the most popular methods in the field in terms of accuracy and speed of 

computation. Knowledge-based dihedral bond torsion profiles from the CSD have been used for more than two 

decades for small molecule conformation sampling. Most of the successful algorithms derive torsion angle 

preferences from structural databases like the CSD or PDB, or from molecular mechanics simulations of small 

molecules. A few methods use small fragment conformations generated through molecular mechanics, or perform 

a stochastic search using molecular mechanics force field for energy calculations. 

 BCL::CONF uses torsional profiles of frequently occurring fragments in the CSD and the PDB, and applies them 

to molecules of interest. BCL::CONF performs better because it captures torsional correlation across multiple bonds 

instead of sampling rotatable bonds one at a time. Exhaustive sampling ultimately finds same conformations as 

correlated torsion sampling but will need to produce much larger conformation ensemble, and is not generally 

capable of identifying the lowest energy conformations. BCL::CONF is novel in that it uses conformations of large 

fragments from structure databases. The algorithm uses a scoring function that favors those molecular 

conformations whose sub-fragment conformations exist in the CSD or PDB. The scoring function favors 

conformations of larger fragment over smaller fragments. This algorithm ranks among the fastest available while 

performing high-accuracy conformation sampling, thanks to a fast look up scoring function that precludes the need 



124 
 

to do expensive physics-based calculations to rank conformations. Use of extended fragment conformations also 

allows BCL::CONF to take into account substituent effects that affect the local torsion profile of dihedral bonds.  

 Fragment conformations from the CSD or PDB need to be used carefully as they are often distorted due to 

crystal packing effect. A fragment conformation must be seen enough times to be included in the fragment library 

used during conformation sampling, to mitigate the impact of crystallographic errors and the incomplete sampling 

seen in particularly rare fragments. Rigorous benchmarking yielded four as the minimum number of times a fragment 

conformation should be seen in the structure database to be used during sampling. The scoring function also helps 

to control for packing effects. Smaller counts would exist for an anomalous conformation of large fragments caused 

by packing effects when compared to smaller fragments. If fragments exist in the same conformation multiple times 

in a structural database, it is more likely that the conformation is not an artifact of packing effect. Larger fragments 

have greater intra-molecular forces per atom accounted for in the torsional profile, while intermolecular forces (due 

to crystal packing) per atom remain a constant. As the scoring function gives a higher weightage to conformations 

of larger fragments, it helps in controlling for crystal packing effects to some extent. 

The PDB contains crystal structure entries of a number of proteins complexed with 7K different small molecules. 

Molecular conformations are often perturbed due to interactions with a protein. Again, the strict conformation 

count criteria and the scoring function help in controlling the impact of these perturbations. Perturbation free small 

molecular conformations can be obtained from Nuclear Magnetic Resonance (NMR) studies. NMR studies are usually 

performed in solution and can be done at room temperature. Conformational ensembles from NMR studies are 

likely more accurate compared to those obtained using X-ray crystallographic studies. 

Fragment conformation concept for sampling small molecules is analogous to amino-acid rotamer sampling 

technique used by ROSETTA macromolecular software. BCL::CONF, using a library of fragment rotamers, can be used 

by any external software to sample conformations. This enables the use of BCL::CONF from within ROSETTA for drug 

discovery applications. Incorporation of BCL::CONF into ROSETTA allows on-the-fly conformation sampling during 

ligand docking and implementation of structure based de novo drug-design algorithms. BCL::CONF is also used to 

sample ligand conformations in the drug-design module of the online scientific game FOLDIT. In FOLDIT, the structure-

based drug design problem is crowdsourced to a large community of game players who, via interactive gameplay, 

come up with solutions to scientific problems presented as puzzles. The players are provided with basic fragments 

with which they build ligand molecules in the binding site of a target molecule of interest. BCL::CONF provides an 

efficient algorithm for online conformation sampling required for fast-paced gameplay.  

On the ligand-based drug discovery side, BCL::CONF is being used with QSAR based drug design and evolutionary 

algorithms. A number of approaches for training QSAR models using multiple conformations generated by BCL::CONF 

were implemented and tested. Currently in the BCL, 3D QSAR models are developed using a single conformation 

generated using an external program (CORINA). 2D and 3D molecular descriptors are calculated and used for training 



125 
 

neural network to correlate molecular structure to activity. The hypothesis for using multiple conformations is that 

ligands that bind the target of interest bind in poses with similar 3D distribution of electrochemical properties. The 

neural network will learn 3D property distributions that are common and unique to active molecules, thus improving 

the predictive power.  

QSAR models are trained using datasets containing active and inactive molecules against a target molecule of 

interest. In the Meiler lab, eight datasets derived from the PUBCHEM database have been cleaned and prepared for 

QSAR modelling. These datasets were the outcome of high throughput screening efforts performed at various 

academic institutions against targets like serine/threonine kinase, glutamate receptors, etc. Single low energy 

conformation for both actives and inactive molecules are generated using a conformer generator method. Molecules 

are numerically represented and used to train neural networks to correlate structure to activity. Current state of the 

art method in the Meiler lab uses CORINA generated conformations for training QSAR models (MC). 

In the work described in this thesis, multiple conformations were used to train the neural network so as to 

identify 3D conformations that correspond to active conformations for a target of interest. Several schemes for 

training neural networks with multiple conformations were tried but with limited success. This is possibly due to the 

parameters used for training ANNs, which were optimized for single CORINA conformation of each molecule. A full 

benchmark study to optimize parameters for multiple conformations may produce better results.  

The neural network learning algorithm was modified to train using multiple conformations. In every cycle of 

training, the neural network keeps track of all the conformations of a molecule and predicts activity of each. Only 

the conformation with the highest-predicted activity is used to tune the network. In one experiment, five 

conformations of both the active and inactive molecules were used to train the network. In another approach, 

instead of using explicit conformations, average descriptor values calculated over a diverse set of conformations 

were used. Descriptor values were averaged over ~50 conformations of both active and inactive molecules. The 

descriptor average values were then used to train a traditional neural network. 

A straightforward experiment to test whether neural network parameters need to be tuned is described next. 

This experiment can be performed by using a dataset of small molecules containing the actual binding conformation 

against a particular target. For example, a number of kinase inhibitors have been co-crystallized with different kinase 

enzymes and reported in the PDB. Most kinase inhibitors target the ATP binding site and possibly an allosteric site 

within the kinase domain. Due to high degree of homology between kinase enzymes, kinase inhibitors often show 

activity against multiple kinase enzymes and possibly interact in a similar binding conformations across the different 

kinases. Not all inhibitors have been crystallized against their entire set of possible kinase targets. For example, a 

kinase enzyme like ABL has close to 30 kinase inhibitors molecules but only about 15 have been co-crystallized with 

c-ABL. The  QSAR model will be trained using only the binding conformation of the active molecules and a single 

conformation of the inactive ligands generated using BCL::CONF (MC1) or CORINA (MC2). We expect MC1 and MC2 to 
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perform equally well if there is no bias in neural network tuning. If performance is substantially different, neural 

network parameters will be needed to be tuned for using BCL conformations. The tuned neural networks can then 

be used for the next set of experiments to validate the hypothesis that they can learn the correct binding 

conformation during training. For this experiment, QSAR models (M1) will be trained with multiple conformations 

of the inhibitors including the binding conformation. Multiple models will be trained using the binding conformation 

of active ligands and up to five conformations generated using BCL::CONF. If the hypothesis is correct and M1 model 

is trained correctly, the model should be able to identify the correct binding conformation of molecules and the 

model performance should be comparable to that of MC1/MC2. If M1 model perform worse than MC1 and MC2, 

parameter tuning of neural networks is required for M1 model. The final model can then be developed by training 

without the active ligand binding conformations and varying the number of ligand conformation to benchmark the 

best parameters. If such a dataset is unavailable where binding conformations of active molecules are known, 

alternatively a dataset containing conformationally rigid active molecules can be used. Due to limited conformation 

flexibility of active molecules, correct active conformation is expected to be fed during training.  

Here our hypothesis is that active molecules bind a target by adopting similar 3D shapes. This requires that all 

the active molecules are able conform to the binding pocket. According to the hypothesis, neural network model 

may perform better if trained using conformations that are common to most active molecules in a dataset.  In the 

preprocessing step of such an experiment, all the conformations of active molecules will be generated and aligned. 

Each conformation of one active molecule will be aligned with another in a pair-wise manner. Conformations that 

allow good alignment of most of the active molecules will be used for model training.  

In a second project, computational drug discovery techniques were applied to find novel small molecules that 

can selectively bind DDR1 for therapeutic purpose or for use as probes to explore its biological role. Discoidin domain 

receptors have been implicated in osteoporosis, cystic fibrosis, fibrosis of kidneys etc. Homology models were 

developed using crystal structures of similar receptor tyrosine kinase domains. At the time the homology models 

were developed, DDR1 kinase domain had not been crystallized. DDR1 kinase domain is highly homologous to kinase 

domains of other receptor tyrosine kinase receptors, many of which have been co-crystallized with ligands. 

Homology models were developed using homologous receptor kinase domains crystallized with different ligands to 

model the perturbations in the ATP binding pocket and important loops like activation and catalytic loops. Homology 

models were selected based on the ability to dock kinase inhibitors and recovering the binding pose observed in 

homologous RTKs. The docking poses of Dasatinib and Imanitib were later found to be in agreement with poses in 

DDR1 co-crystal structures. 

 Recently several novel inhibitors of DDR1 have been reported increasing the number to greater than 100. This 

has allowed development of QSAR models for prediction of inhibitors against DDR1. Since the number of known 

inactive molecules is sparse, a generic kinase enzyme inactive dataset was used for developing the QSAR models. 
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The generic set of inactive molecules reported in PUBCHEM had been identified in a high-throughput screening assay 

against serine-threonine kinase. Three QSAR models were developed through an iterative process of model 

development and experimental testing. The QSAR model was used to prioritize small molecules for DDR1 

experimental screening from the in-house Vanderbilt high-throughput library. Ten molecules were prioritized for 

DDR1 kinase activity screening, all of which were found to be inactive against DDR1. The QSAR inactive dataset was 

updated with the addition of these ten inactive molecules, and the QSAR model was retrained. A second round of 

experimental screening was performed and 25 molecules were prioritized for testing. Two molecules were found to 

be active and 23 inactive. The QSAR models were trained again with the dataset after updating the datasets. For the 

next round of experimental testing molecules were prioritized from the eMolecules database, a commercially 

available library of molecules. Fifty diverse set of molecules were prioritized based on the predicted activity for 

experimental testing. Out of these, four molecules were found to have inhibitory DDR1 kinase activity. Two inhibitors 

showed more than 80% inhibition of DDR1 kinase. These molecules are reported kinase inhibitors but have not been 

identified as DDR1 inhibitors in literature. Two other inhibitors, which inhibit 60% of DDR1 kinase activity, are novel 

inhibitors with no known activity against any kinases.  

Further experimental validation and categorization are being carried out in the Pozzi lab at Vanderbilt University. 

Lead optimization studies can be performed at Vanderbilt University through computational design followed by 

synthesis and testing. The newly identified molecules can be docked into DDR1 homology models using ROSETTA 

followed by structure-based design. DDR1 kinase is gaining lot of interest in the scientific community as a potential 

therapeutic target. In the last two years, several new selective inhibitors have been reported. In our studies, we have 

found at least two novel scaffolds that have inhibitory activity against DDR1 kinase. Further characterization, 

modifications and optimizations are needed to develop highly active and selective molecules.  
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APPENDIX 

List of abbreviations 

 

3D 3-Dimensional 

3D-QSAR Three-Dimensional Quantitative Structure Activity Relationship 

Abl Abelson Murine Leukemia 

ADMET Absorption, Distribution, Metabolism and Excretion - Toxicity 

ANN Artificial Neural Networks 

ATP Adenosine Tri-Phosphate 

CADD Computer Aided Drug Discovery/Design 

CASP Critical Assesment of Techniques for protein prediction 

CHARMm Chemistry at HARvard Molecular Mechanics 

CSD Cambridge Structure Database 

DDR Discoidin Domain Receptors 

DFG ASP-PHE-GLY motif 

DMPK drug metabolism and pharmacokinetics 

DS Discodin 

GPCR G protein-coupled receptor 

HRD HIS-ARG-ASP motif 

HTS High Througput Screening 

LB-CADD Ligand-Based CADD 

MC Monte Carlo 

MD Molecular Dynamics 

MM Molecular Mechanics 

MMFF Merck Molecular Mechanics Force Field 

MOE Molecular Operating Environment Conformation Import Routine 

MOE-SS Molecular Operating Environment Stochastic Search Routine 

NMR Nuclear Magnetic Resonance 

PDB Protein Data Bank 

QM Quantum Mechanics 

QSAR Quantitative Structure Activity Relationship 

RMS Root Mean Square 
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RMSD Root Mean Squared Deviation 

ROC Reciever Operating Characteristic 

RTK Receptor Tyrosine Kinase 

SAR Structure Activity Relationship 

SB-CADD Structure-Based CADD 

SVM Support Vector Machine 

TK Tyrosine Kinases 

TYR Tyrosine 

vHTS virtual-HTS 

YRD TYR-ARG-D 
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Chapter 2 

Appendix Table 1 Optimization of BCL::CONF parameters using different number of iterations and temperature 
values. Optimization was done for better recovery of native conformations, fewer average number of 
conformations per molecule and computation time. 

 

 

 

Protocol capture 

The protocol capture contains steps necessary to generate molecular conformations using BCL::CONF. The input 

parameter files and computational steps are necessary to make fragment library, rotamer library and using the 

rotamer library for conformational sampling. The final rotamer library and BCL::CONF executable can be downloaded 

at http://www.meilerlab.org. The commands required for generating rotamer library are provided in scripts which 

are kept in the Thesis folder in the sub-directory Chapter2. This path Thesis/Chapter2 is referred to $PATH from here 

on.  

Itera 
tions 

T 

Recovery% Avera
ge 

numb
er 
of 

confo
- 

rmati
ons 

 

Time 
0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 

200 

1 11.46 36.36 62.45 76.68 86.17 91.30 96.44 99.21 100.0 100.0 52.40 

1.6 
s/mol 

2 11.46 36.76 59.68 78.26 87.35 92.49 98.02 99.60 99.60 100.0 57.28 

3 10.67 37.15 61.66 79.45 88.93 93.28 97.63 99.60 99.60 100.0 60.27 

4 11.07 37.94 61.66 77.08 86.17 93.28 96.84 100.0 100.0 100.0 61.75 

250 

1 9.88 37.55 63.24 76.68 86.17 92.49 95.26 98.02 98.81 99.21 58.00 

1.9 
s/mol 

2 10.28 35.57 61.66 76.68 85.38 91.70 96.05 98.81 98.81 99.21 64.81 

3 11.86 36.36 62.45 79.05 88.54 91.70 96.05 98.42 98.81 99.21 66.83 

4 11.86 39.92 61.66 78.26 88.14 92.49 96.44 98.81 99.21 99.21 66.43 

300 

1 10.67 37.15 63.64 79.05 88.93 94.07 97.23 99.21 99.60 99.60 63.23 

2.2 
s/mol 

2 11.46 37.55 64.82 79.05 87.35 91.70 96.84 98.42 98.81 99.21 68.36 

3 11.07 37.94 67.59 79.05 88.54 91.70 97.23 98.42 98.42 98.81 70.75 

4 12.65 39.92 65.22 80.24 87.75 92.89 96.84 100.0 100.0 100.0 71.75 

http://www.meilerlab.org/
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Step Text Commands Comment 
1.Setup for 
running 
protocol 
capture  

Folder $PATH has three 
folders bin, input and config 
in it. 
 

Download the BCL::CONF executable 
at http://www.meilerlab.org and 
put it in the bin folder. 
Get bcl_license.txt file and put it in 
the bin folder. 

 

1. Prepare 
the 
rotamer 
library from 
a given 
structure 
database. 

If the structure database is 
large, jobs provided in the 
script will have to be split up. 
 
 

Run the create_rotamer_library.sh 
script and provide the database as 
first parameter by using the 
following command – 
/bin/bash 
$PATH/config/generate_rotamers.s
h [your database] 
 
You can download the  rotamer 
library obtained from CSD from 
http://www.meilerlab.org and keep 
it in $PATH/bin to use it. 

Input: 
The structure database using 
which rotamer library will be 
created. 
Output: 
Rotamer library in the 
$PATH/input directory is 
composed of three files and a 
directory :  
rotlib.constitutions.txt.gz 
rotlib.substructure.txt.gz 
rotlib.configuration_mapping
.txt.gz 
directory - 
rotlib_conformations 
 
 

2. Generate 
conformati
on data for 
publication  

Steps: 
1. Generate conformations 
using methods of interest. 
2. For each method, create a 
file containing rmsd of 
generated conformations to 
native conformation. Each 
line contains rmsd-to-native 
for conformations of a single 
molecule of the benchmark 
dataset.  
3. Name the above file as 
vernalis_{method}_R.txt. An 
example file is 
vernalis_bcl_R.txt which 
contains rmsd-to-native 
values for the vernalis 
dataset. 

BCL conformations were generated 
using –  
 
$PATH/bin/bcl-apps-static.exe 
molecule:ConformerGenerator -
rotamer_library 
'File(prefix=$PATH/input/rotlib) –
ensemble_filenames INPUT -
top_models 100 -
conformers_single_file OUTPUT –
native_ensemble NATIVE –
remove_h 

Input: 
- INPUT : $PATH/input/{ 
zeroed_vernalis.sdf} 
- NATIVE : $PATH/input/{ 
native_vernalis.sdf} 
 
Output: 
- OUTPUT : $PATH/input/{ 
vernalis_bcl_R.txt} 
 

3. Generate 
publication 
figures. 

Steps: 
1. Generate files containing 
rmsd-to-native data for each 
method and dataset as 
mentioned in step 2. 

Execute script in $PATH/config to 
generate plots : 
 
$PATH/config/generate_publication
_figures.sh  

Input: 
- $PATH/input/{all files listed 
below} 
vernalis_bcl_R.txt,vernalis_c
onfimport_R.txt,vernalis_con
fgen_R.txt,vernalis_dihedral_
R.txt,vernalis_omega_R.tx,ve
rnalis_rdkit_R.txt, 
Output: 
Image files in $PATH/input 

http://www.meilerlab.org/
http://www.meilerlab.org/
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Comparison of closest to 
native conformer generated 
for each molecule in the 
dataset –  
Files (example) : 
vernalis_bcl_moe_compariso
n.txt (for all molecules), 
vernalis_bcl_moe_compariso
n1.txt (molecules with 
rotatable bonds >0 and <4), 
vernalis_bcl_moe_compariso
n1.txt (molecules with 
rotatable bonds >3 and <6), 
and so on 

3. Generate 
conformati
ons by user 
defined 
parameters 

An example command line to 
demonstrate user defined 
parameters that can be 
modified for conformational 
sampling 

$PATH/bin/bcl-apps-static.exe 
molecule:ConformerGenerator -
rotamer_library 'File(prefix=rotlib)' 
–ensemble_filenames INPUT -
temperature 3 -max_iterations 200 -
conformation_comparer 
SymmetryRMSD 0.25 - top_models     
100 -conformers_single_file 
OUTPUT 
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Chapter 3 

The goal of this project was implementation of BCL::CHEMINFO neural networks that could be trained with 

multiple molecular conformations. Multiple implementations were tested in increasing order of complexity. The 

protocol capture will provide step by step directions to perform these experiments. Conformations were generated 

using BCL::CONF. Appropriate control experiments were performed to evaluate performance of new 

implementations. The various implementations are tabulated below 

Appendix Table 2 List of all the experiments performed toward developing QSAR models using multiple 
conformations. 

Experiments Description 

CORINA  Standard neural network trained using CORINA generated 

conformations; Control experiment 

BCL_ONE Standard neural network trained using single conformation 

generated using BCL::CHEMINFO; Control experiment 

BCL_CONFORMATION_AVG Standard neural network trained using average descriptors 

calculated over multiple conformations. 

BCL_CONFORMATION_AVGStdDev Standard neural network trained using average and standard 

deviations of descriptors calculated over multiple conformations. 

BCL_FIVE_PREVROUND Trained using five conformations. Modified neural networks 

that backpropagate errors from the first conformation that has 

higher predicted activity compared to previous round prediction.  

BCL_FIVE_NODP Trained using five conformations. Neural network modified 

such that it forward propagates all five conformations during 

training cycle and backpropagates errors from only the best. No 

dropout was implemented. 

BCL_ONE_NODP Standard neural network trained using single BCL::CONF 

generated conformation. No dropout; Control experiment 

BCL_FIVE Same as BCL_Five_Nodp but with drop out 

BCL_TWOSTAGE BCL_CONFORMATION_AVG followed by BCL_FIVE TRAINING 

 

Protocol capture 

This protocol provides a step by step process of reproducing all the experiments tabulated in Appendix Table  

and using them to predict activity for molecules in screening libraries. QSAR models were built using BCL::CHEMINFO 

which is available at http://www.meilerlab.org and is free for academic use. All the input files are provided in 

http://www.meilerlab.org/
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directory Thesis_directory/Chapter3/ henceforth abbreviated as $PATH. Experiment is present in a separate 

directory with its own set of scripts and input files. Each directory contains a bin file containing BCL executable, 

config file containing scripts and parameter files used for training QSAR models, and input file containing all the input 

and final output files generated during the experiment. The dataset files are kept in $PATH/Datasets 

1. Common steps for performing all the experiments –  

Step Text Commands Comment 
1. File 
locations 
used for the 
experiment 

The directory is located at 
$PATH/Experiment_name 

  

2. Generate 
all the input 
files to 
carry out 
the 
experiment 

Run script jobs_setup_script.sh 
on piranha cluster 
 
Conformations are sampled and 
desired number of conformations 
are stored. 

Run the command from the 
input directory 
 
Rscript 
$PATH/config/jobs_setup_scrip
t.sh 

Output: 
A directory is generated for 
each dataset. Conformations 
are stored in a subdirectory 
for each of the datasets in 
active_conformation* and 
inactive_conformation* 
directories. 

3. Prepare 
descriptor 
files and 
setup for 
submitting 
jobs to train 
qsar 
models 

Run script prepare_datasets.sh 
from the config directory. It will 
generate descriptors and 
randomize each dataset.  

Run the command from the 
input directory 
/bin/bash 
$PATH/config/prepare_descrip
tors.sh 

Output: 
Descriptor files are generated 
in directories named 
*_conformation 
 

4. Train 
QSAR 
models  

Run script train_qsar.sh from the 
config directory on the piranha 
cluster  

Run the command from the 

input directory 

 

/bin/bash 

$PATH/config/train_qsar.sh 

 

Generates QSAR models for 
each dataset. Models are 
stored in models directory 
under *_conformation 
directories. 

5. Calculate 
area under 
curve 

Results are stored in 
$PATH/input/dataset_id/results 
directory. 
When multiple conformations are 
used, blind dataset prediction is 
done. Then use script 
$PATH/config/calculate_results.s
h 

If blind dataset prediction 

is done as in the case of multiple 

conformations, execute the 

script from $PATH/input 

directory using command 

/bin/bash  

 

$PATH/config/calculate_re

sluts.sh 
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2. Output files specific for each experiment. 

Experiments Outputs 

BCL_ONE  Conformations 
o Active – 

$PATH/BCL_One/input/dataset_id/active_conformation_1/*_actives_clean_
conformations.1.sdf.gz 

o Inactive - 
$PATH/BCL_One/input/dataset_id/inactive_conformation_1/*_inactives_cle
an_conformations.1.sdf.gz 

 Models - 
$PATH/BCL_One/input/dataset_id/one_conformation/models/dataset_id  

 Results –  
$PATH/BCL_One/input/dataset_id/one_conformation/results/dataset_id/fi

nal_objective.ind.merged.txt 

BCL_CONFORMATION_AVG  Conformations – Conformations are generated on the fly and descriptors 
averaged over them are output in the bin file. 

Bin file $PATH – $PATH/input/dataset_id/twelve.bin 

 Models - $PATH/BCL_One/input/dataset_id/models/6_0_hd0.05_vd0.25 

 Results – 
$PATH/BCL_One/input/dataset_id/results/6_0_hd0.05_vd0.25/final_objective.i
nd_merged.txt 

BCL_CONFORMATION_AVGStd

Dev 

 Conformations – Conformations are generated on the fly and descriptors 
averaged over them are output in the bin file. 

Bin file $PATH – $PATH/input/dataset_id/twelve.bin 

 Models - $PATH/BCL_One/input/dataset_id/models/6_1_hd0.05_vd0.25 
Results – 

$PATH/BCL_One/input/dataset_id/results/6_1_hd0.05_vd0.25/final_objective.ind_

merged.txt 

BCL_FIVE_PREVROUND  Conformations –  
o Active – 

$PATH/BCL_One/input/dataset_id/active_conformations_5/*_actives_clean
_conformations.5.sdf.gz 

o Inactive - 
$PATH/BCL_One/input/dataset_id/inactive_conformations_5/*_inactives_cl
ean_conformations.5.sdf.gz 

 Models – $PATH/BCL_One/input/dataset_id/five_conformations/models/blind* 

 Results – Run 
$PATH/config/calculate_results.sh$PATH/BCL_One/input/dataset_id/five_confo
rmations/final_results.txt 

BCL_FIVE_NODP  Conformations –  
o Active – 

$PATH/BCL_One/input/dataset_id/active_conformations_5/*_actives_clean
_conformations.5.sdf.gz 
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o Inactive - 
$PATH/BCL_One/input/dataset_id/inactive_conformations_5/*_inactives_cl
ean_conformations.5.sdf.gz 

 Models –   
$PATH/BCL_One/input/dataset_id/five_conformations/models/nodropout_resil
ient* 

 Results – Run 
$PATH/config/calculate_results.sh$PATH/BCL_One/input/dataset_id/five_confo
rmations/nodropout_resilient_final_result.txt 

BCL_ONE_NODP  Conformations –  
o Active – 

$PATH/BCL_One/input/dataset_id/active_conformation_1/*_actives_clean_
conformations.1.sdf.gz 

o Inactive –  
$PATH/BCL_One/input/dataset_id/inactive_conformation_1/*_inactive

s_clean_conformations.1.sdf.gz 

 Models –  
$PATH/BCL_One/input/dataset_id/one_conformation/models/nodropout_resili
ent 

 Results –  
$PATH/BCL_One/input/dataset_id/one_conformation/results/nodropout_r

esilient/final_objective.ind.merged.txt 

BCL_FIVE  Conformations –  
o Active – 

$PATH/BCL_One/input/dataset_id/active_conformations_5/*_actives_clean
_conformations.5.sdf.gz 

o Inactive - 
$PATH/BCL_One/input/dataset_id/inactive_conformations_5/*_inactives_cl
ean_conformations.5.sdf.gz 

 Models –   
$PATH/BCL_One/input/dataset_id/five_conformations/models/nodropout_resil
ient* 
Results – Run 

$PATH/config/calculate_results.sh$PATH/BCL_One/input/dataset_id/five_conforma

tions/nodropout_resilient_final_result.txt 

BCL_TWOSTAGE BCL_CONFORMATION_AVG followed by BCL_FIVE TRAINING 
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Chapter 4 

Protocol Capture – Homology modelling and Docking 

Homology models were created for DDR1 and DDR2 using ROSETTA [34] for both the active (DFG-in) and in-active 

(DFG-out) conformations. DDR1 active conformation was built from templates – PDB: 2PVF, PDB: 2X2L, and PDB: 

3C4F. The templates are all tyrosine kinase domains in the active conformation in complex with inhibitors and have 

at least 40% similarity to DDR1 sequence. Structural alignment was done using MUSTANG [35] followed by sequence 

alignment of DDR1 sequence to the structure alignment.  ROSETTA was then used for threading and generating 

homology models. Hierarchical docking protocol (Figure 4-5) was used to select homology models that would be 

used for docking studies. Native conformation of dasatinib, ligand that binds active state, was docked into top 50 

homology models using a flexible backbone protocol generating 2000 docking per homology model. The ligand was 

docked in the same relative spot as seen in its co-crystal structure with Abl kinase (PDB: 2GQG).  Initial docking 

protocol involved 2 Å translation and 180° rotation. Top 10% of all models were clustered on the basis of ligand rmsd 

from the native ligand position in PDB: 2GQG. Top 1% of each cluster was used in the next round of docking. A second 

subsequent docking round involved smaller ligand perturbations. Finally top scoring models from different clusters 

were used for docking studies. 

Dasatinib and imatinib were docked into DDR1 active and inactive state homology models respectively. Multiple 

conformations of ligands were docked into homology models. The ligands were docked into the ATP binding pocket 

using a 5 Å translations and 360° degree rotation. Figure 4-8A and B respectively show score versus rmsd of plot of 

imatinib and dasatinib docked into DDR inactive and active-state homology models. The rmsd in the plot is the atom-

pair root mean square deviation of docked pose of ligand versus the native pose of dasatinib in PDB: 2GQG. The 

docking funnels give hope for the success of ROSETTA in homology modeling and docking in DDRs. 

This protocol capture contains the steps necessary to obtain homology models and perform the docking 

calculations reported in the manuscript. The input parameter files and representative models of steps necessary to 

carry out the steps outlined in this protocol relating to the results found in the manuscript are provided in the 

attached supplementary information. Multiple templates were used to generate both the active and inactive DDR1 

kinase models. For the sake of simplicity the protocol capture describes modeling of DDR1 onto the template PDB: 

2PVF. The ROSETTA 3.4 software suite is publically available and the license is free for non-commercial users at 

http://www.rosettacommons.org/.  The directory $PATH are as found in downloaded ROSETTA source. Final 

homology models used for docking studies are provided. 

 

 

http://www.rosettacommons.org/
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1. Structural alignment of kinase domain templates 

Step Text Commands Comment 
1A. Prepare 
kinase 
crystal 
structures 
from the 
Protein Data 
Bank.  

Homology models for DDR1-in 
(active) conformation were 
created using four templates - 
PDB: 2PVF, PDB: 2X2L, PDB: and 
3C4F. DDR-out (inactive) 
conformation was modeled 
based of PDB: 3BEA, PDB: 4AT5 
and PDB: 4HVS. 

Obtain PDB files: 
Download PDB: 2PVF 
from the Protein Data 
Bank at 
http://www.rcsb.org. 
Clean the PDB file using 
the following script 
rosetta_tools/protein_to
ols/scripts/clean_pdb.py 
2pvf.pdb A > 
2PVF.PDB_A.pdb 
 

Input:  
Kinase domain crystal structures 
from the Protein Data Bank at 
http://www.rcsb.org. 
 
Output: 
Active conformation  Inactive 
conformation 
2PVF.PDB_A.pdb      
 

1B. Perform 
a structural 
alignment of 
kinase 
domains 
using crystal 
structures 
from the 
Protein Data 
Bank. 

Structural alignment was 
performed separately for active 
and inactive state using 
MUSTANG (Konagurthu et al., 
2006), as seen in Fig S1. 

mustang -p . -i 
1OPK.PDB_A.pdb 
2PVF.PDB_A.pdb  -o 
results -F fasta -D 2.5 

Input:  
2PVF.PDB_A.pdb      
Output:   
allkinases.afasta 
allkinases.pdb 

 
2. Sequence alignment of the DDR1 to template sequences 

Step  Text  Commands  Comment  
2B. 
Sequence 
alignment of 
DDR1 
sequence  

The sequence of the DDR1 was  
aligned with the profile of 
structurally aligned templates 
using CLUSTALW (Thompson et 
al., 1994). 

Input target sequence 
ddr1_VAseq.fasta and profile 
alignment allkinases.afasta 
to http://mobyle.pasteur.fr/cgi-
bin/portal.py#forms::clustalO-
profile. 
Default settings were used. 
 
The alignment was modified 
manually to get good alignment 
in conserved regions like the 
DFG and HRD sequences. 
 

Input:  
ddr1_VAseq.fasta, 
allkinases.fasta 
 
Output:   
ddr_fasta.aln 
modified_ddr_fasta.aln 

 

3. Thread target sequence onto template backbone coordinates 

Step  Text  Commands  Comment  

http://www.rcsb.org/
http://www.rcsb.org/
http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::clustalO-profile
http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::clustalO-profile
http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::clustalO-profile
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3. Thread 
target 
sequence 
DDR1 onto 
template 
backbone 
coordinates. 

The sequence of the target 
DDR1 was then placed onto the 
backbone coordinates of each 
template structure. 

rosetta_tools/protein_tools/scr
ipts/thread_pdb_from_alignme
nt.py --template=2pvf.pdb --
target=ddr1_VAseq --chain=A --
align_format=clustal 
modified_ddr_fasta.aln 
2PVF.PDB_A.pdb 
ddr1_on_2pvf.pdb 

Input:  
modified_ddr_fasta.aln 
2PVF.PDB_A.pdb 
 
Output:   
ddr1_on_2pvf.pdb 

 

4. Rebuild missing density 

Step Text Commands Comment 
4. Rebuild 
missing 
density 
caused by 
gaps in the 
sequence 
alignment.  

Any missing density and variable 
loop regions were constructed 
using the ab initio cyclic 
coordinate descent protocol in 
Rosetta. 
 
Top 50 models by score were 
selected and used for iterative 
docking step which was used for 
selecting the final homology 
models used for docking. 

Generate loops file: 
In this case, the loop definitions 
will span regions where gaps 
were located in the sequence 
alignment. List the residue 
numbers in the loop file as 
shown in 2pvf.loops. 
Generate options file: 
List the desired options for 
rebuilding loop regions in an 
options file as shown in 
ccd.options. 
Run loop building: 
rosetta_source/bin/loopmodel.l
inuxgccrelease @ccd.options –
loops:input_pdb 
ddr1_on_2pvf.pdb –
loop:loop_file 2pvf.loops –
out:pdb_gz -database 
rosetta_database 
Get top 50 models by score  

Input:  
ccd.options, 
ddr1_on_2pvf.pdb 
2pvf.loops, 
aaddr1A03_05.200_v1_3, 
aaddr1A09_05.200_v1_3  
(fragment files not supplied 
due to their size) 
Output:  
500 models of ddr1 from 
2pvf template with missing 
density rebuilt: 
Top 50 models by score 
were selected for the next 
step.  

5. Hierarchical docking protocol to select homology models 

Step Text Commands Comment 
5A. Generat
e input files 
necessary 
for docking 
with Rosetta 
Scripts  

Dock native dasatinib into the 
ddr1 DFG-in conformation to 
select models. Multiple docking 
iterations were performed with 
smaller ligand perturbations in 
subsequent rounds. 

Prepare input pdb file: 
Align the top models obtained in 
step 4 to PDB:2GQG using 
pymol. 
Prepare options file: 
List the desired options for 
docking in an options file as 
shown in dock.options 
Prepare XML file for docking: 
List the desired specifications 
for docking in an options file as 
shown in round1_dock.xml 

Input:  
Top 50 models from the 
previous step 
 
Output:  
models aligned to 
PDB:2GQG 
eg: 18_2pvf_0003.pdb 
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5B. Dock 
native 
ligand 
conformatio
n (1N1 from 
PDB: 2GQG 
for active 
conformatio
n) into 
models 
(Round 1) 

Ligand was allowed to sample 
pocket in a 2 Å radius from the 
crystallized binding pose. After a 
rigid body orientation of the 
ligand centroid is performed 
through translation and 1000 
cycles of 180 degree rotation, 
varying conformations of the 
ligand were tested within the 
site. During high resolution 
refinement, six cycles of side-
chain rotamer sampling around 
the ligand were coupled with 0.1 
angstrom, 0.05 radian ligand 
movements simultaneously in a 
Monte Carlo simulated 
annealing algorithm. A final 
minimization combines side-
chain rotamer sampling with 
backbone torsion angle 
minimization with harmonic 
constraints on the C-alpha 
atoms. 

Dock ligand generating 2000 
models for each of the input 
homology model: 
rosetta_source/bin/rosettascrip
ts.linuxgccrelease 
@dock.options –database 
rosetta_database –in:file:s 
“$MODEL 1N1_0001.pdb” –
in:file:extra_res_fa 1N1.params 
–out:pdb_gz –out:nstruct 2000 
–relax:thorough –
parser:protocol 
round1_dock.xml 
 
Filter for the top ten percent of 
models by interface energy: 
Ligand interface energy score 
was used getting top 10% of 
models. 
 
 

Input: 
Each of the 50 models from 
the previous step(each 
separately supplied to 
command at $MODEL ), 
dock.options, 
round1_dock.xml 
 
 
 
 
 
Output:  
2000 models each for each 
model in  
for example :  
5_74_2pvf_0001_1N1_000
1_0348.pdb 

5C. Cluster 
models by 
ligand RMSD 

To select for comparative 
models that can recuperate the 
native binding pose. 
RMSD of docked poses was 
calculated w.r.t native ligand 
pose and 10% of top-scoring 
poses that were within 1Å of the 
native were chosen. 

Get top docked models and 
cluster models based on their 
similarity to the native pose. 
Download the bcl software suite 
at (the license is free for non-
commercial users). 
http://www.meilerlab.org/inde
x.php/bclcommons/show/b_ap
ps_id/12 
Bcl is required for running the 
script that does all the analysis. 
The script is not part of rosetta 
and is provided with the 
supplementary information 
 
cluster_poses.sh –p <$PATH to 
directory containing models> -t 
<number of models desired for 
clustering> -n –c 1.0 –b <$PATH 
to bcl executible> 
 
 

Input: 
Models from previous step 
(5B) 
script - cluster_poses.sh 
 
Output: 
Top 10% of docked poses 
eg:1_18_2pvf_0003_1N1_
0001_0367.pdb 

5D. Round2 
docking 
followed by 
cluster 
analysis 

Ligand was allowed to sample 
pocket in a 0.6 Å radius from the 
crystallized binding pose. After a 
rigid body orientation of the 
ligand centroid is performed 
through translation and 1000 
cycles of 60 degree rotation. 

Docking  
rosetta_source/bin/rosettascrip
ts.linuxgccrelease 
@dock.options –database 
rosetta_database –in:file:s 
“$MODEL 1N1_0001.pdb” –
in:file:extra_res_fa 1N1.params 

Input: 
Output models obtained 
from the previous round 
 
Output: 
Top 10% of docked poses 

http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/12
http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/12
http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/12
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RMSD of docked poses was 
calculated w.r.t native ligand 
pose and 10% of top-scoring 
poses that were within 0.3Å of 
the native were chosen. 
 
 

–out:pdb_gz –out:nstruct 2000 
–relax:thorough –
parser:protocol 
round2_dock.xml 
 
Analysis  
cluster_poses.sh –p <$PATH to 
directory containing models> -t 
<number of models desired for 
clustering> -n –c 0.3 –b <$PATH 
to bcl executible> 
 

eg:1_1_25_2pvf_0006_1N
1_0001_0022_0015.pdb.gz 

6. Dock imatinib and dasatanib into homology models 

Step Text Commands Comment 
6A Generate 
ligand 
conformatio
ns in MOE 

Ligand conformations were 
generated by MOE (Molecular 
Operating Environment, 
Chemical Computing Group, 
Ontario, Canada) with the 
MMFF94x force field and 
Generalized Born solvation 
model. Energy cutoffs for ligand 
conformations were dependent 
on the number of rotatable 
bonds: 3 kcal/mol for 1-6 
rotatable bonds, 5 kcal/mol for 
7-9 rotatable bonds and 7 
kcal/mol for 10-12 rotatable 
bonds (Perola and Charifson, 
2004) 
Ligand names  
dasatanib (1N1) 
imatinib (STI) 

Generate ligand conformations 
in MOE: 
See MOE operating guide. 
Stochastic search with the 
MMFFx94 force field and 
Generalized Born solvation 
model was used to generate 
conformations within the 
specified energy cutoff. The 
ligand conformations were then 
saved as 1N1.sdf file for 
conversion to .pdb and .params 
files for Rosetta. 
Convert .sdf file of ligand 
conformations to .pdb and 
.params file for Rosetta input:  
rosetta_source/src/python/app
s/public/molfile_to_params.py -
n 1N1 -p 1N1 1N1.sdf  
Combine all individual ligand 
conformations in pdb format to 
a file called 1N1_confs.pdb. 
Add the line “PDB_ROTAMERS 
1N1_confs.pdb” to the bottom 
of the 1N1.params file. 

Input:   
ligand coordinates in mol 
format: 1N1.sdf and STI.sdf 
 
Output:  
1N1.params, 
1N1_confs.pdb 
STI.params, STI_confs.pdb 

6B. 
Generate 
input files 
necessary 
for docking 
with Rosetta 
Scripts. 

Ligand was allowed to sample 
docking poses in a 5 Å radius 
from the crystallized binding 
pose. After a rigid body 
orientation of the ligand 
centroid is performed through 
translation and 1000 cycles of 
360 degree rotation, varying 
conformations of the ligand 
were tested within the site. 
During high resolution 
refinement, six cycles of side-

Prepare input pdb files:  
Top 1% of models output from 
step 5D were used for docking. 
Prepare options file for docking: 
List the desired options for 
docking in an options file as 
shown in dock.options. 
Prepare XML file for docking: 
List the desired specifications 
for docking in an options file as 
shown in dock.xml. 

Input:  
comparative modes from 
step 5D 
 
Output:  
Top models from among all 
the starting templates – 
 
ddr1_HM1_in.pdb, 
ddr1_HM2_in .pdb, 
ddr1_HM3_in.pdb, 
ddr1_HM4_in.pdb, 
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chain rotamer sampling around 
the ligand were coupled with 0.1 
angstrom, 0.05 radian ligand 
movements simultaneously in a 
Monte Carlo simulated 
annealing algorithm. A final 
minimization combines side-
chain rotamer sampling with 
backbone torsion angle 
minimization with harmonic 
constraints on the C-alpha 
atoms. 

ddr1_HM5_in.pdb 
 
ddr1_HM1_out.pdb, 
ddr1_HM2_ out.pdb, 
ddr1_HM3_out.pdb, 
ddr1_HM4_out.pdb 
 
dock.options, dock.xml  

6C. Dock 
dasatanib 
(1N1) and 
imatinib 
(STI) into 
DDR1-active 
and DDR1-
inactive 
comparative 
models. 

For each ligands 5,000 docked 
complexes were generated. 

rosetta_source/bin/rosettascrip
ts.linuxgccrelease 
@dock.options -database 
rosetta_database 

Input:   
1N1.pdb, 1N1.params, 
dock.xml, dock.options  
 
Output:  
10% of models were 
plotted and are shown in 
figure S3 
 

 

Protocol Capture – Ligand based vHTS 

QSAR models were developed using BCL::CHEMINFO using DDR1 active molecules reported in PUBCHEM and 

inactives from dataset AID 2689 which contains molecules screened against Serine-Threonine kinases. An iterative 

approach was used where feedback from experimental studies was used to update computational models. Four such 

rounds of computational screening were performed followed by experimental testing. In the first round QSAR model 

was developed using only the molecules reported in PUBCHEM. The Vanderbilt virtual screening compound library 

(VICB library) was screened to prioritize 10 molecules. No hits were found during experimental screening and these 

molecules were fed back into the QSAR models. Round two QSAR model was developed using feedback from round1. 

Computational screening of VICB library was performed to prioritize 50 molecules. Experimental testing found that 

two compounds had mild inhibitory activity. Round three QSAR model was updated with two actives and 48 inactive 

molecules identified from round two experimental screening.  New molecules reported in the literature were added 

to the dataset and a third QSAR model were developed. This model was used to predict and prioritize 50 molecules 

for testing from the eMolecules database.  

This protocol provides a step by step process of QSAR modelling approaches used to train QSAR models and 

using them to predict activity for molecules in screening libraries. QSAR models were built using BCL::CHEMINFO which 

is available at http://www.meilerlab.org and is free for academic use. All the input files are provided in directory 

Thesis_directory/Chapter4/Ligand_vHTS/, henceforth abbreviated as $PATH.  

http://www.meilerlab.org/
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Step Text Commands Comment 
1. File 
locations 
used for 
running 
protocol 
capture  

Four round of QSAR training and 
predictions were carried out. 
Directories associated with each 
round are located under the 
parent directory $PATH. These 
directories contain files necessary 
to perform experiments. 
The $PATH/bin folder contains 
the BCL executable.  

Download the BCL::CONF 
executable at 
http://www.meilerlab.org and 
put it in the bin folder. 
Get bcl_license.txt file and put 
it in the bin folder. 

 

2. Datasets Each directory contains two raw 
files containing raw dataset –  
inactives.sdf 
actives.sdf 
 
VICB library – 
$PATH/vicb_library_indexed.sdf.g
z 
 
eMolecules – 
$PATH/emolecules_indexed.sdf.g
z 
 

  

3. 
Preparing 
datasets  

Cleaning molecules and 
generating 3D conformations 
using CORINA. Use script  
$PATH/molecule_pipeline_light.s
h 
 
 

$PATH/molecule_pipeline_ligh
t.sh <DATASET.sdf> 

Output: 
inactive_clean.sdf.gz 
active_clean.sdf.gz 
 

4. Adding 
property to 
molecules  

Adding 1 or 0 under property 
name “IsActive” to indicate active 
or inactive respectively. 

bcl.exe 

molecule:Properties –

input_filenames inactive.sdf.gz 

-add ‘Constant(0)’ –rename 

‘Constant(0)’ “IsActive” –output 

<OUTPUT> 

 

bcl.exe 

molecule:Properties –

input_filenames active.sdf.gz -

add ‘Constant(1)’ –rename 

‘Constant(1)’ “IsActive” –output 

<OUTPUT> 

 

 

Rename files so that at the 
end we have files  
 
inactive_clean.sdf.gz 
active_clean.sdf.gz 
 
with property strings. 

http://www.meilerlab.org/
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5. Generate 
feature files  

Generate feature files from clean 
actives and inactive file. 
 
Script – 
$PATH/generate_sdf_dataset.sh 

$PATH/generate_sdf_dataset.s
h <INPUT.sdf> 

Input: 
inactive_clean.sdf.gz 
active_clean.sdf.gz 
Output: 
Inactive_clean.bin, 
active_clean.bin 

6. 
Randomize 
datasets 

Combine and randomize datasets. 
 
Script – 
$PATH/combine_randomize_data
set.sh 

$PATH/combine_randomize_d
ataset.sh active_clean.bin 
inactive_clean.bin 

Input: 
Inactive_clean.bin, 
active_clean.bin 
 
Output:  
actives_inactives.randomized
.bin  

7. Train 
QSAR 
models 

Train QSAR models /home/kothiwsk/workspace_m
olecule/bcl/scripts/machine_le
arning/launch.py  -t 
cross_validation --config-file 
$PATH/config.best.ini --id ddr1 
--datasets 
actives_inactives.randomized.b
in --max-minutes 600 --cutoff 
0.5 --pbs --objective-function 
'AucRocCurve(cutoff=%(cutoff)
s,parity=%(parity)s,x_axis_log=
1,min fpr=0.001,max fpr=0.1) 

Input: 
$PATH/config.best.ini 
actives_inactives.randomized
.bin 
 
Output: 
Models are located at 
$PATH/round*/models 
 
Results are located at 
$PATH/round*/results 
 
Log files are located at 
$PATH/round*/log_files 

8. 
Predictions 

Predictions activities of molecules 
in a library of molecule 

bcl.exe GenerateDataset -
source 
'SdfFile(filename=<Input>)' -
feature_labels 
$PATH/code_input_prediction.
obj -result_labels "Combine(0)"  
-scheduler PThread 24 -output 
predictions.csv 

Input: 
$PATH/vicb_library_indexed.
sdf.gz 
 
or 
$PATH/emolecules_indexed.
sdf.gz 
 
$PATH/code_input_predictio
n.obj (modify file according to 
change ROUND_NUMBER. 
Modified files are present in 
round* directories) 
 
Output: 
predictions.csv 

9. 
Retrieving 
molecules 
with high 
prediction 
from 
dataset. 

Sort molecules based on activity 
value and chooseN= n*2 
molecules, where n is the desired 
number of molecules to be 
screened experimentally. 
 
Retrieve molecules  
 

Sorting and choosing top N 
predicted molecules 
 
sort --fie 
ld-separator=',' --key=3 
predictions.csv |tail –N | awk –
F,  ‘{print $2}’ > indices.txt 
 

Input 
predictions.csv, 
screening library, 
retrieval indices extracted 
from indices.txt 
 
Output: 
predicted_active_topN.sdf 
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$PATH/RetrieveMoleculesByIn
dex.py <INPUT> <OUTPUT> 
indices 

10. Cluster 
molecules 
to choose 
diverse a 
diverse set. 

Cluster molecules to choose 
diverse molecules that should be 
tested. 
 
copy $PATH/clustering directory 
in “round” directory 
 
Output will be dendogram.py and 
different scaffolds in the 
cluster_sdf directory. 

cp predicted_active_topN.sdf 
clustering/ 
 
cd clustering 
 
clean_up_molecules.sh 
predicted_active_topN.sdf 
 
cluster_molecules.py –m 
predicted_active_topN_clean.s
df.gz –l 0.3 –s 0.1 –c 5 
 
cluster_scaffold.sh 
 
cd cluster_sdf 
 

Input: 
predicted_active_topN.sdf 
 
Output: 
scaffold*.sdf files in 
cluster_sdf directory that 
contain unique scaffolds 
identified at sampling factor 
(-s) of 0.1 
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Appendix Table 3 Molecule wise comparison of predictive ability of models developed by Subramanium et al. and 
developed in this study. The active molecules are indicated at cutoff value of KD = 3µM. 

Inhibitor type Molecule 
Subramanium et al (3µ models) 3 µM QSAR model 

ACC SEN SPE TP FP TN FN ACC SEN SPE TP FP TN FN 

Type-1 

Dasatinib 81 44 96 36 9 193 45 78 47 89 48 30 247 54 

Erlotinib 85 19 97 8 8 233 34 93 NaN 93 0 25 354 0 

Gefitinib 80 52 82 11 47 215 10 79 66 81 29 65 270 15 

LY-333531 77 43 83 18 42 199 24 77 63 80 46 60 246 27 

Roscovitne 96 0 99 0 2 271 10 - - - - - - - 

SB-203580 89 10 99 3 3 249 28 88 18 94 6 19 326 28 

Staurosporine 46 39 97 96 1 33 153 83 87 54 289 21 25 44 

VX-680 64 3 100 3 0 178 102 68 76 64 100 88 159 32 

VX-745 97 20 100 2 0 273 8 73 89 73 8 100 270 1 

Type-2 

BIRB-796 83 10 98 5 5 230 43 67 84 64 42 118 211 8 

Flavopiridol 78 2 97 1 7 221 54 71 78 69 75 89 194 21 

Imatinib 94 68 96 13 11 253 6 86 68 87 15 46 311 7 

Lapatinib 100 100 100 3 0 280 0 84 67 84 4 60 313 2 

Sorafenib 84 35 96 19 9 219 36 78 81 77 55 72 239 13 

Sunitinib 63 76 45 124 66 54 39 78 80 75 181 38 115 45 

 

Protocol capture  

Protocol capture is a step by step guide to the process of building kinase selectivity models. All the files are kept 

in the zipped directory , Thesis/Chapter5 here on called $PATH. This $PATH contains three directories – a) bin b) 

config c) input. The config directory contains all the scripts that are required for building models and for data analysis. 

The input directory contains all the input files that are created during the study. The models are not provided due 

to the size they occupy on hard disk (each model occupies ~2.3 G). However, the models can be easily created by 

following the directions given below. Kinase selectivity QSAR models were built using BCL::CHEMINFO which is 

available at http://www.meilerlab.org and is free for academic use. 

Step Text Commands Comment 

1. File 

locations 

used for 

running 

protocol 

capture 

The file containing kinase list is 

present in input directory – 

all_list.txt 

The file contains six digit 

Uniprot alphanumeric codes of 

Download the BCL::Conf 

executable at 

http://www.meilerlab.org and 

put it in the bin folder. 

 

http://www.meilerlab.org/
http://www.meilerlab.org/
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kinases reported in the  Zarrinkar 

dataset. 

Get bcl_license.txt file and put 

it in the bin folder. 

2. Generate 

QSAR 

selectivity 

models. 

Run script  

build_selectivity_model.sh from 

the $PATH/config directory. It 

will generate selectivity model at 

the specified cutoff in 

$PATH/input directory  

Run the command from the 

input directory 

/bin/bash 

$PATH/build_selectivity_model

.sh <cutoff value> 

Output: 

Generates a directory 

containing QSAR model for 

kinase selectivity for kinases 

listed in *_list.txt at the 

desired cutoff value 

$PATH/input/all_$cutoff 

 

3. 

Calculating 

area under 

the curve 

for each 

kinase, 

overall area 

under the 

curve for a 

model 

(Figure 4A) 

and heat 

maps 

(Figure 5)  

Run script calculate_auc.sh from 

the $PATH/input directory 

Run the command from the 

input directory 

 

/bin/bash 

$PATH/calculate_auc.sh 

<cutoff> 

Output: 

 

Files containing AUC value 

for each kinase of a particular 

kinase family is output - 

area_under_curve.txt 

Figure 5-4A - overall_auc.png 

Figure 5-5 –   

A)heatmap_experimental.pn
g 
B)heatmap_predictions.png 
C)heatmaps_absdifference.p
ng 

 


