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CHAPTER I 

1. INTRODUCTION 

 

1.1 Motivation 

Engineering applications such as aerospace, transportation, communication, energy systems, and 

healthcare demand high reliability, safety, and performance. To meet these criteria, such systems 

rely on many interacting subsystems, e.g. aircraft enlist structural, propulsion, communication, 

navigation, and flight control subsystems, among others. The combination of these subsystems 

leads to a complex system that is expected to satisfy the reliability, safety, and performance 

requirements for which it was designed. However, through manufacturing/construction, usage, 

changing environment and demands, systems experience changes that compromise their reliability, 

safety, and performance. Naturally, it is desired to take steps that prevent any sort of failure of the 

system to meet its demands. These steps may be maintenance, reinforcement, repurposing, or even 

retirement of the system. However, deciding the course of action is no simple task, especially in 

light of system complexity.  

 

The information involved in such a decision consists of prior knowledge of the system, present 

knowledge of the system, and future estimates of the system. Prior knowledge comes in many 

formats from many sources. It may be combined and represented as a probabilistic system model. 

Present knowledge of the system is based on the most recent observations, and is provided by 

diagnosis in the form of an estimate of the system’s state. The state is the set of values of all 

variables that describe the system. Diagnosis infers the (unobservable) system state using 

observations of the system. Future knowledge of the system is provided by prognosis. Prognosis 
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estimates future states of the system and provides a quantitative assessment of the future health of 

the system, typically by estimating the remaining useful life (RUL) of the system. Prognosis 

estimates also require some knowledge of the demands that a system will experience in the future 

and degradation of system capacity with time.  

 

The prior, present, and future knowledge necessary for decision-making may be more easily 

understood and manipulated when in a structured format. Dynamic Bayesian networks (DBNs) 

provide a means for aggregating heterogeneous prior information into a system model, integrating 

the latest measurements into that model, and predicting future states of the system. As such, DBNs 

are the backbone of the methodology investigated in this dissertation. Subsections 1.1.1 and 1.1.2 

provide a brief introduction to Bayesian networks and dynamic Bayesian networks. 

 

1.1.1 Bayesian Networks 

A static BN is a probabilistic graphical representation of a set of random variables and their 

conditional dependencies. Variables are represented by nodes (vertices) and conditional 

dependence is represented by directed edges. BNs are acyclic, meaning that no paths exist in the 

graph where, starting at node Xi, it is possible to return to node Xi.   

 

Theory for BNs has been developed by Pearl [1] and is explained here using notation from 

Heckerman et al. [2] and Friedman et al [3]. Consider the domain U consisting of n variables X1, … , 

Xn ϵ X. The joint probability distribution over U may be written using the chain rule of probability as  

 𝑝(𝑋1, … ,𝑋𝑛) = �𝑝(𝑋𝑖|𝑋1, … ,𝑋𝑖−1)
𝑛

𝑖=1

 

 

Eq. 1 
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Two variables A and B are conditionally independent of each other given a third variable C when 

𝑃𝑟(𝐴|𝐶) = 𝑃𝑟(𝐴|𝐵,𝐶). That is, once the value of 𝐶 is known, any evidence about 𝐵 does not affect 

the belief about 𝐶 and vise-versa. Figure 1 shows the graphical representation of this assumption.  

A

C

B
 

Figure 1. A and B are conditionally independent given C 

 

From Figure 1, it is readily apparent that when A and B are conditionally independent of each other 

given a third variable C, A is not a parent of B and B is not a parent of A.  Thus, conditional 

independence assertions for each variable Xi, are contained in the set of parent variables Xi  denoted 

by Πi. Πi contains only the variables in {X1, … , Xi-1} on which Xi  is conditionally dependent. Thus, 

 𝑝(𝑋𝑖|𝑋1, … ,𝑋𝑖−1) = 𝑝(𝑋𝑖|𝛱𝑖) Eq. 2 

 

The BN structure which has nodes corresponding to each variable Xi  in U and parent nodes Πi  for 

each variable Xi  is denoted Bs. The collection of local distributions p(Xi | Πi) at each node in U is the 

Bayesian network probability set, Bp. A BN for U, denoted by B, is given by the pair (Bs, Bp) with a 

uniquely determined joint probability distribution for U, 

 𝑝(𝑋1, … ,𝑋𝑛) = �𝑝(𝑋𝑖|𝛱𝑖)
𝑛

𝑖=1

 Eq. 3 

 

It should be noted that this definition of a BN depends on the variable ordering, which must be 

chosen carefully to ensure that conditional independence assertions are represented properly. The 

formulation in Eq. 3 is readily extended to handle different types of distributions such as the 
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Gaussian. A further extension (see Lauritzen [4]) is a hybrid network where Gaussian variables may 

have discrete parents. 

 

1.1.2 Dynamic Bayesian Networks 

A DBN can be thought of as a series of BNs, one for each instant of time and whose state depends on 

the BNs at previous time steps when all nodes are observable and the database is complete. The 

variable X[t] is the value of X at time t. The probability distribution describing X on the interval [0, 

∞) is very complex, as it is over ⋃ 𝑋[𝑡]𝑡=∞
𝑡=0 . Using the Markov assumption simplifies this distribution 

by assuming that only the present state of the variable X[t] is necessary to estimate X[t + 1] and 

p(X[t + 1] | X[0], … X[t]) = p(X[t + 1] | X[t]). Additionally, it is necessary to assume that the process is 

stationary, meaning that p(X[t + 1] | X[t]) is independent of t. This approach to modeling DBNs is 

used by Friedman et al. [3]. 

 

The DBN is composed of two parts, a prior network B[0] specified by (Bs[0], Bp[0]) and a transition 

network Btr over X[t] U X[t+1] which specifies p(X[t + 1] | X[t]) over all t. The probability 

distribution for the transition network is 

 𝑝𝐵𝑡𝑟(𝑿[𝑡 + 1]|𝑿[𝑡]) = �𝑝𝐵𝑡𝑟�𝑋𝑖[𝑡 + 1]�𝛱𝑋𝑖[𝑡+1]�
𝑛

𝑖=1

 Eq. 4 

 

where 𝛱𝑋𝑖[1] are the parents of Xi[t+1]. In reality, t is on the finite interval [0, T] instead of [0, ∞). 

The joint distribution over this network is then 

 
𝑝𝐵(𝑿[0], … ,𝑿[𝑇]) = 𝑝𝐵[0](𝑿[0])�𝑝𝐵𝑡𝑟(𝑿[𝑡 + 1]|𝑿[𝑡])

𝑇−1

𝑡=0

 Eq. 5 

 

where 𝑝𝐵𝑡𝑟(𝑿[𝑡 + 1]|𝑿[𝑡]) is determined from the transition model.  
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A DBN may be composed of all discrete variables, all continuous variables, or hybrid set of discrete 

and continuous variables. A conditional probability distribution (CPD) is chosen for each variable, 

e.g. Gaussian, tabular (multinomial), softmax, deterministic, logic, etc. See Koller and Friedman [5] 

for a detailed explanation of CPDs.  For modeling systems with faults, it is advantageous to consider 

a hybrid system, typically with the continuous variables being modeled as continuous and the faults 

being discrete. Theory for networks with Gaussian continuous variables is developed in Heckerman 

and Geiger [6] and Lauritzen [4]. 

 

DBNs provide a flexible modeling framework, allowing integration of expert opinion, reliability data, 

mathematical models  (including system state space, surrogate, and physics of failure models), 

existing databases of operational and laboratory data, and online measurement information. 

Bartram and Mahadevan [7] have proposed a methodology for integration of such heterogeneous 

information into DBN system models. In the next section, that discussion is extended to consider 

physics of failure models, which are of particular importance in prognosis. 

 

 

The remainder of this chapter establishes the objectives of this dissertation. Section 1.2 presents 

the goal and objectives of this research. Sections 1.4 – 1.5 discuss the key steps in the methodology 

that consist of system modeling, diagnosis, prognosis, and decision-making. Section 1.6 explains the 

goals of the research while Section 1.7 presents the highlights and contributions of this dissertation. 

Section 1.8 outlines the rest of the dissertation.  

 

1.2 Research Goal and Objectives 

The primary goal of this research is to develop a methodology that provides information to make 

optimal decisions with respect to the mission and maintenance of a system.  A great amount of 
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information is needed about a system to make such decisions, including its current condition and 

predictions of its future state. The problem is broken into four objectives. 

 

1) Develop a system modeling approach for use when the available information is 

heterogeneous, i.e. available in various formats from various sources. The resulting system 

model should account for uncertainty and be amenable to the system health management 

tasks of diagnosis, prognosis, and decision-making. 

2) Develop a diagnosis approach for systems when the available information is heterogeneous. 

The approach should account for and quantify uncertainty in damage detection, isolation, 

and quantification.  

3) Develop a methodology for system prognosis when the available information is 

heterogeneous. The methodology should account for uncertainty in diagnosis and be subject 

to validation. 

4) Develop a methodology for decision-making when the available information is 

heterogeneous and when assigning multiple systems to multiple missions. The methodology 

should account for uncertainty in diagnosis and prognosis. 

The following subsections describe the approaches used to address each objective. 

 

1.2.1 System Modeling with Heterogeneous Information 

The methodology has several important features. First, by using dynamic Bayesian networks 

(DBNs) for modeling the system, uncertainty in the system may be accounted for, as DBNs are a 

representation of the joint probability distribution over a set of variables. The DBN-based approach 

also allows information in various formats and from various sources (heterogeneous information), 



 7 

including expert opinion, mathematical models, reliability data, laboratory data, and historical and 

online operational data to be included in the model. 

 

1.2.2 Damage Diagnosis 

The DBN is then used in online diagnosis, which estimates the distribution over the current state of 

the system. When new measurements become available, the beliefs about the distributions of other 

variables in the network are updated via statistical inference. In a DBN, this is performed using a 

sequential Monte Carlo approximation called particle filtering. The particle filter represents the 

system state as an approximate distribution consisting of samples and weights. This representation 

is useful for understanding diagnosis uncertainty and detecting faults. It also provides a convenient 

initial condition for prognosis. 

 

1.2.3 Prognosis 

Prognosis predicts future states of a particular system and determines the outlook for the system, 

expressed quantitatively as the remaining useful life (RUL). The initial conditions for prognosis are 

established during diagnosis (state estimation). The particle-based state representation created 

during diagnosis seamlessly transitions to the sequential Monte Carlo prediction used for prognosis 

and allows a particle-based approximation of the RUL distribution. 

 

1.2.4 Decision-making 

Decision-making relies on the RUL distribution obtained during prognosis. The prognosis is 

performed for various situations using expected loads and inputs to the system. An optimization 

problem is solved to determine how to deploy the system in the case of multiple instances of the 
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system and multiple possible mission assignments, which can include maintenance and rest. The 

optimization solves the assignment problem by minimizing the risk of failure across all units. 

 

1.3 Highlights 

1. A methodology for system modeling under heterogeneous information is proposed. The 

methodology integrates expert opinion, reliability data, mathematical models, laboratory data, and 

operational data into a dynamic Bayesian network system model.  

 

2. DBN-based diagnosis of a mechanical system under heterogeneous information is developed. The 

methodology is a general approach that uses the existing DBN model of the system. Additionally, 

the methodology can handle systems with multiple faults. 

 

3. Diagnosis uncertainty is quantified in the context of particle filtering by estimating the 

probability of detecting any fault, estimating the isolation probabilities of all fault combinations, 

and estimating the distribution of damage parameters.  

 

4. A methodology for prognosis of a system under heterogeneous information is developed. The 

methodology seamlessly integrates with the diagnosis procedure and utilizes the same DBN model 

of the system. 

 

5. An optimization problem is formulated for solving the decision-making problem with multiple 

systems and multiple assignments. The formulation considers multiple limit states and accounts for 

probabilistic diagnostic and prognostic information. 
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1.4 Organization of the Dissertation 

Chapter 2 presents a methodology for the integration of heterogeneous information into a Dynamic 

Bayesian network system model. Here, the difficulty is that information is available in disparate 

forms and from various sources that are generally not easily reconciled. Additionally, physics based 

models may be unknown or too complex for practical use. Bayesian networks provide a structured 

approach for combining information as well as the ability to learn data-driven models to explain 

complex interactions. First, the semantics and mathematics of Bayesian networks are presented. 

Next, inclusion of expert opinion, reliability data, mathematical models, laboratory data, and 

operational data is explained. The methodology is demonstrated for a hydraulic actuator system 

with multiple possible faults. 

 

In Chapter 3, the problem of damage diagnosis is considered. Damage diagnosis is the process of 

detecting, isolating, and quantifying damage in a system. After reviewing previous work in 

diagnosis, Bayesian recursive filtering and approximate filtering via the particle filter are discussed 

as approximate inference methods in a dynamic Bayesian network that is constructed as in Chapter 

2. The state estimate provided by filtering contains the necessary information to detect, isolate, and 

quantify damage in the system. Quantification of diagnosis uncertainty in the context of particle 

filtering is developed. Diagnosis is illustrated on a cantilever beam with possible damage at the 

support and a midspan crack. 

 

The subject of Chapter 4 is damage prognosis. Prognosis consists of state estimation, prediction, 

and remaining useful life (RUL) estimation. State estimation is the result of diagnosis (Chapter 3). In 

Chapter 4, DBN-based prediction beginning with the state estimate from diagnosis is first 

considered. Next, physics of failure modeling is also discussed, in particular, the wear phenomenon. 

The RUL density estimate is then explained and steps for validating a prognostic algorithm are 
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given. The prognosis methodology is applied to a hydraulic actuator with a progressive seal leak 

resulting from wear. 

 

In Chapter 5, a decision-making problem is solved via optimization. The problem is to assign 

multiple systems of the same type but with different health states to different tasks and to minimize 

the chance that any system exceeds its RUL. First, the tasks; including operation (with different load 

profiles and inputs), rest, and maintenance; are defined. Next, the load profiles, inputs, and current 

health state of the systems are used to estimate the RUL, as in Section 4, for each system. The 

procedure is demonstrated on a group of hydraulic actuators. 

 

Each chapter contains a review of relevant literature. The notation is defined for each chapter 

separately. Complete citations are provided at the end of the dissertation. 
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CHAPTER II. 

2. INTEGRATION OF HETEROGENEOUS INFORMATION IN DYNAMIC BAYESIAN 

NETWORKS 

 

2.1 Introduction 

System health monitoring (SHM) is a challenge that has been approached with a broad spectrum of 

approaches. On one end of the spectrum are data-driven methods, relating observable symptoms 

directly to failure modes. On the other end of the spectrum are model-based approaches, which 

indicate failure by finding differences between expected healthy system responses and measured 

system responses. In some instances of model-based diagnosis/prognosis, a mathematical model 

may be well-established from physics or exhaustive study. However, in other cases, mathematical 

models for some components may be nonexistent (e.g. cyber-physical systems with hardware and 

software components). Probabilistic models may be desired in order to account for many sources of 

uncertainty while the probability distributions of system variables and the conditional probability 

distributions between them may be unknown. These problems may be due to the complexity of the 

physics required to model the system or a lack of existing quantitative observational data about the 

system. 

 

An important issue in SHM is that the information pertaining to the system may be heterogeneous, 

i.e. available in various formats from multiple sources, such as literature, experts, model predictions, 

experiments, and operational data. The integration of such heterogeneous information is possible 

for individual quantities through Bayesian analysis; however, diagnosis and prognosis of systems 

with multiple levels of components and subsystems, multiple physics, and multiple damage 
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mechanisms is not straightforward in the presence of heterogeneous information.  System-level 

integration of information obtained during subsystem and component level analysis is important 

for SHM of real-world systems whose subsystems and components have complex interrelationships. 

Many different SHM techniques have been developed for diagnosis at subsystem and component 

levels or specific failure modes (e.g. acoustic emission testing [8], wireless sensor networks [9], 

crack growth measurement [10], online damage monitoring using input error functions [11], fast 

mode identification [12], and many others). In a realistic system, multiple techniques may be 

applied for diagnosis of different faults, providing another instance of heterogeneous information  

that needs to be integrated in system-level prognosis. 

 

A machine learning approach is an intuitive solution to this problem. Machine learning approaches 

based on Bayes networks (BNs) and dynamic Bayes networks (DBNs) can interpret heterogeneous 

information and construct a probabilistic model of a system, making sense of information that 

humans would normally find overwhelming and indecipherable. BN and DBN system models can 

support a hybrid data-driven/model-based SHM approach due to their ability to simultaneously 

incorporate many types of data and serve as a system model. Hybrid SHM approaches and 

probabilistic information have both been found to decrease the complexity of diagnosis by 

decreasing the size of the diagnosis search space [13]. Thus BN and DBN system models make an 

ideal platform for SHM. Many applications of DBNs in SHM are available, such as Choudhury et al. 

[14] and Jha et al. [15]. However, these approaches use DBNs generated from known state space 

models or learn them from a homogeneous data source instead of tapping all available 

heterogeneous information.  

 

In this chapter, a Bayesian methodology is presented for creating a dynamic system model for 

probabilistic diagnosis and prognosis in the presence of multiple types of data and components. 
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Heterogeneous information, available from multiple sources and in various formats — operational 

(observational) data, laboratory (interventional) data, published failure rates, mathematical models, 

and expert opinion — is used to construct a dynamic Bayes network. The dynamic Bayes network 

structure allows for the integration of various types of information and aids diagnosis/prognosis 

with both forward and backward reasoning.   The methodology is demonstrated for a hydraulic 

actuator used in an aircraft flight control system.   

 

2.2 Previous Work 

2.2.1 Learning DBNs 

Research in learning system models based on BNs and DBNs has been ongoing for years and a vast 

amount of literature related to learning methods and applications is available. Particular focus has 

been given to static BNs but this work is often extensible to DBNs. Buntine [16] provides a good 

survey of BN learning methods. As methods for transforming a database of observational data have 

matured, work has been done to accommodate BN system modeling in the presence of specific 

types of information. Kipersztok [17] proposes combining reliability data with learned static BNs 

for aircraft maintenance decision support. Challagulla et al. [18] explore software architecture 

reliability by analyzing datasets. They use a BN to combine reliability data from analysis and 

operations to dynamically predict system reliability.   

 

Various approaches for handling prior information in BNs have been developed, although they 

focus on determining a structural prior. Leach [19] aggregates expert opinion (domain knowledge) 

of varying quality to create a structural prior for a BN describing interactions between genes. 

Langseth et al. [20] exploit prior information provided by repetitive structures in object-oriented 
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domains with help from domain experts. Richardson and Domingos [21] combine opinions of 

multiple experts to establish a structural prior for a BN. 

 

Recently, interest has been growing in the machine learning community on the task of combining 

data from multiple sources [22]. The problem is often framed as an inductive transfer learning 

problem (or multi-task learning), where a model is learned by using information from related 

models. Early work on the problem of inductive transfer learning was done by Thrun [23], Caruana 

[24], and Baxter [25]. More recently, Luis et al. [26] proposed a transfer learning methodology 

using conditional independence tests to learn Bayesian networks. Dai et al. [27] used labeled data 

from similar domains in a transfer learning procedure for text classification. Silver et al. [28] 

developed a context-sensitive multiple task learning method. Niculescu-mizil and Caruana [29] 

proposed a method for learning similar tasks by using similar structures for each task. Roy and 

Kaelbling [30] proposed an efficient algorithm for multi-task learning using a Dirichlet process 

approximation. Szafranksi et al. [31] used a multiple kernel method to learn a kernel from an 

ensemble of basis kernels. 

 

Other related problems have been considered, such as combining data from multiple experts for 

learning (Richardson and Domingos [21]). Wu and Dietterich [32], Dai et al. [27], and Ben-David et 

al. [33] consider learning when auxiliary data is drawn from distributions other than the underlying 

distribution. Amini and Gouette [34] use a multi-view learning approach for categorizing text from 

multilingual documents. An online learning framework proposed by Dredze et al. [35] combines 

parameters from multiple classifiers to learn across domains.  
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2.2.2 Data Fusion 

Data fusion is a term describing the combination of any two or more sources of data. For example, 

two sensor measurements may be combined into a “best” estimate using data fusion. Updating a 

distribution upon obtaining a measurement is also data fusion. DBNs, BNs, and Bayesian recursive 

filtering are common tools used in data fusion. Here, DBNs in data fusion shall be considered. 

 

The data fusion concept has been useful in a wide range of problems and has integrated several 

types of information. Qu et al. [36] use a DBN-based data approach to integrate data generated by 

mathematical models (which were themselves fitted from historical data), and remote sensor 

information. Das et al. [37] use DBNs built from expert opinion and observational data in a factored 

particle filtering scheme for situational awareness in military operations. Cappelle et al. [38] fuse 

sensor data with DBNs for geo-location. Chen and Ji [39] integrate temporal and spatial data in 

DBNs for improved online labeling. Lerner et al. [40] make use of expert opinion and mathematical 

models in DBNs for diagnosis but do not consider operational/laboratory data or reliability data. 

Roychoudhury et al. [41] use expert opinion and mathematical models (two tank system, incipient 

faults and abrupt faults) but no operational/laboratory data or reliability data. Przytula and Choi 

[42] integrate expert opinion and observational data with DBNs to estimate probability of 

component failure. Arroyo-Figueroa and Sucar [43] include expert opinion and operational data in 

a diagnosis methodology using temporal Bayesian networks of events.  

 

Data fusion applications for mechanical systems are relatively infrequent in the literature, even as a 

large variety of heterogeneous information may be available for such systems. Some examples 

include Straub [44], who includes deterioration model parameters in a DBN, and Dong and Yang 

[45], who use DBNs to integrate expert opinion and operational data in estimating remaining useful 

life of drill bits. Straub and Der Kiureghian [46] use BNs for enhanced structural reliability analysis. 
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BNs have also been used to combine sources of uncertainty in structural damage prognosis, as in 

Sankararaman et al. [47] and Ling and Mahadevan[48]. 

 

Some fusion efforts have considered problems with (or constrain problems to) two or three sources 

of information. For example, Straub [44] uses expert opinion, a mathematical model, and inspection 

data.  In machine learning, a class of fusion approaches is inductive transfer learning (or multi-task 

learning), where a model is learned by using information from related models [22]. Early work on 

the problem of inductive transfer learning was done by Thrun [23], Caruana [24], and Baxter [25]. 

Other related problems have been considered, such as combining data from multiple experts for 

learning (Richardson and Domingos [21]). An online learning framework proposed by Dredze et al. 

[35] combine parameters from multiple classifiers to learn across domains. Because interactions, 

known and unknown, between components and subsystems may exist, it is important to consider 

multiple streams of information which may reveal such interactions while also characterizing the 

behavior of isolated components.  

 

2.3 Contributions of this Chapter 

Previous work in machine learning has focused on learning better system models using limited 

varieties of information, but generally do not consider the application of the model to probabilistic 

diagnosis and prognosis where heterogeneous information is available. Accurate predictive and 

diagnostic capabilities are needed for prognosis of high-risk systems. DBNs provide a causal and 

probabilistic description of a system, thus providing more complete information than deterministic 

or acausal system models, and support multiple tasks including probabilistic diagnosis and 

prognosis.  

 



 17 

The primary contribution of this chapter is a methodology for creating a system-level model 

intended for probabilistic diagnosis and prognosis when the probability distributions describing 

system variables and the conditional probability relationships between them are unknown, and 

when heterogeneous information is available. The methodology is general and can be applied in any 

domain. A diagnosis/prognosis probabilistic model should not only be capable of predicting 

nominal system behavior but also be capable of approximating system behavior under many 

damage scenarios with limited information from various sources. 

 

 The proposed methodology applies existing machine learning approaches to heterogeneous 

information likely available to system modelers. Specifically, the use of operational data, laboratory 

data, published reliability data, expert opinion and mathematical models is investigated and 

implemented on a dynamic system.  The methodology allows the model to capture the behavior of 

the system in healthy and faulty operational states. 

 

Operational and laboratory data are key elements in building a model for diagnosis and prognosis. 

Operational data is obtained from the system operating in service and is necessary to understand 

how subsystems and components interact. Laboratory data, often called interventional data, come 

from experiments designed to test system behavior. For example, a fault may be seeded in a 

prototype of the system to determine the faulty state operational profile of the system. This type of 

experiment is very important in model construction, as it may take excessive amounts of 

operational data to quantify the effect on system behavior of a fault that occurs infrequently. 

 

If the system is constructed from known components (e.g. valves, fittings, etc.), reliability databases 

may be available for individual components or be obtainable relatively cheaply through testing, 
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even if the relationships between components may be unknown. Failure rates can be used in 

determination of the parameters of the distribution of that fault.  

 

A similar approach can be used if a mathematical model is available for a subsystem or component. 

The mathematical model indicates whether the subsystem is in a failed state and the faults 

responsible for the failure. A collection of realizations of the CDF can be used to determine Weibull 

distribution parameters. The parameters of the corresponding fault distribution are then computed.  

The remainder of the chapter is organized as follows. First, DBNs are introduced. Then, learning the 

structure and parameters of DBNs is explained. After these preliminaries, the proposed 

methodology for the inclusion of heterogeneous information from laboratory and experimental 

data, expert opinion, a reliability database, and a subsystem mathematical model to learn a DBN is 

detailed. The methodology is demonstrated on a hydraulic actuator controlled by a spool valve.  

 

2.4 System Modeling Framework 

The proposed methodology seeks to develop a system diagnosis/prognosis model in the presence 

of heterogeneous information. This requires a framework capable of learning the model by 

analyzing heterogeneous information sources. Many frameworks exist but not all are capable of 

handling many different types of information. A simple method for learning is a regression model 

where the coefficients are estimated by minimizing the sum of squares of differences between 

observed and predicted values. Other, more complex learning platforms include Gaussian process 

(GP) models [49], neural networks (NNs) [50], hidden Markov models (HMMs)[51], Bayesian 

networks (BNs)[1] and dynamic Bayesian networks (DBNs) [52], and support vector machines [53]. 

Regression models are popular and user friendly but according to Korb [54], cannot model 

interventions “in ordinary usage,” which are required to determine the correct causal structure of a 

system. GPs and NNs may be efficiently discovered but do not reveal much about the causal 
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structure of a system, which is desirable for diagnosis, prognosis, and design. HMMs and BNs are 

special cases of DBNs. However, since the proposed methodology models dynamic systems, DBNs 

are necessary.  

 

DBNs provide a useful framework for this dissertation due to their (1) ability to illuminate the 

underlying dependence structure within a system and predict consequences of intervention, (2) 

ability to handle prior knowledge, and (3) ability to avoid overfitting the data [2]. DBNs are suitable 

for online monitoring applications in conjunction with particle filtering. Further, the ability of DBNs 

to incorporate heterogeneous information into the system model is of considerable importance. 

Due to these benefits, a methodology which learns a DBN representation of the system is pursued in 

this dissertation. 

 

First, expert opinion is invoked to determine the basic problem setup and initial modeling 

assumptions. This includes determining important system variables, selecting learning algorithms, 

and choosing a validation metric. Data from observation and controlled experiments, reliability 

data, mathematical models, expert opinion must then be carefully integrated into the DBN model. 

The process of integration is governed by the DBN formalisms and modeling assumptions and 

requires an understanding of BNs, DBNs, and the algorithms used to learn them.  

 

2.5 Integrating Heterogeneous Information 

An important need in system diagnosis and prognosis is the ability to incorporate mixed 

information types. The graphical and probabilistic nature of BNs provides many opportunities to 

integrate information into the model.  This allows them to benefit from heterogeneous information, 

i.e. information entrained in a variety of sources and formats. These sources include observational 

and experimental data, published reliability data, mathematical behavior models of components or 
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subsystems, or expert opinion. Table 1 describes typical sources and formats of heterogeneous 

information. Existing research has not fully exploited heterogeneous information, especially with 

respect to building DBN models for diagnosis and prognosis.  

Table 1. Heterogeneous information and sources 

Information Type Sources Formats 

Expert opinion domain experts, scholarly 
publications, technical reports 

distribution types, parameter 
estimates, network structures, 
system assumptions 

Operational data field data databases 
Laboratory data controlled laboratory experiments databases 

Reliability data scholarly publications, technical 
reports domain experts 

distribution types, failure 
rates 

Mathematical models scholarly publications, technical 
reports, domain experts 

physics-based and data-
driven system models 

 

First, expert opinion is invoked to determine the basic problem setup and initial modeling 

assumptions. This includes determining important system variables, selecting learning algorithms, 

and choosing a validation metric. Data from observation and controlled experiments, reliability 

data, mathematical models, expert opinion are then carefully integrated into the DBN model, as 

described in the following subsections. 

 

2.5.1 Expert Opinion 

Various approaches for handling expert opinion in BNs have been developed, and they focus on 

determining a structural prior. Leach [19] aggregates expert opinion (domain knowledge) of 

varying quality to create a structural prior for a BN describing interactions between genes. 

Langseth et al. [20] exploit prior information provided by repetitive structures in object-oriented 

domains with help from domain experts. Richardson and Domingos [21] combine opinions of 

multiple experts to establish a structural prior for a BN. 

 



 21 

Expert opinion could include domain experts, scholarly publications, and technical reports that can 

provide assumptions about system variables and their distributions. Sometimes, the expert can 

provide a network structure and conditional probabilities, which may be used as priors in structure 

learning algorithms. An expert-provided network structure can serve as a prior in DBN learning 

algorithms.  

 

Unfortunately, specific parameter values or even the structure of a network may be especially 

difficult to elicit from an expert. However, other assumptions provided by an expert can be helpful. 

For example, an assumption that some faults should have no parent nodes, or that the current state 

of a variable affects the next state of that or another variable, may be enforced regardless of what 

the structure learning algorithm suggests. A structural search algorithm is explained in Section 3.2. 

 

Inclusion of expert opinion in BNs has been explored in the literature, particularly with the aim of 

determining a structural prior. Leach [19] aggregates expert opinion, Richardson and Domingos 

[21] combine opinions from multiple experts, while  Langseth et al. [20] have experts extract 

information from existing structures. 

 

2.5.2 Reliability Data 

In some instances, reliability data may be available for certain system components. In this chapter, 

reliability data is used to establish prior distributions for specific system faults that are then 

updated using operational data or laboratory data. Reliability data may take on several forms 

including mean time between unscheduled removal (MTBUR) and mean time between unscheduled 

failures (MTBUF) or more simple measures such as failure rate and failure mode distribution. 

Better data types yield better modeling results but may be more difficult to obtain, as in the case of 

obtaining MTBUF instead of MTBUR [17]. MTBUF is used in this chapter. 
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The Reliability Information Analysis Center (RIAC) provides databases of many electronic and non-

electronic parts. Generally, these databases include average failure rate data (NPRD-95) and failure 

mode distribution data (FMD-97) [55]. Estimates of component lifetime are modeled as exponential 

random variables. Confidence intervals for exponential distributions are typically calculated using 

the Chi-squared distribution. However, the data sets from which the exponential distribution 

parameter (failure rate) is calculated are non-homogenous, so the Chi-squared distribution cannot 

be used to determine confidence bounds. RIAC indicates that the published average failure rate may 

be treated as a random variable, the natural logarithm of which, for all components in the catalog, is 

normally distributed with a standard deviation of 1.5. 

 

Consider a discrete variable A(k+1) with parent A(k). If A(k+1) is a fault indicator variable for fault 

A, when A(k+1) = 0 fault A has not occurred. When A(k+1) = 1, fault A has occurred. In the simplest 

case, A(k+1) only has one parent, A(k). Thus, A(k+1) has a conditional probability as in Table 2. 

 
Table 2. Conditional probability table for A(k+1) 

state Pr(A(k+1) = 1 | state) Pr(A(k+1) = 0 | state) 
A(k) = 1 p1,1 p1,2 
A(k) = 0 p2,1 p2,2 

 

The prior pi,j may be determined using functions of time that utilize known failure rates and can be 

updated when laboratory or operational data is available (operational and laboratory data are 

discussed in Sections 2.5.4-2.5.5). These functions of time are typically time to failure CDFs, often 

characterized by the exponential or Weibull distribution.  

 

If possible, reliability data may be updated with operational data for the system in question. If the 

time to failure (TTF) is described by a Gamma family distribution, such as the exponential 

distribution, a conjugate prior is available and Bayesian updating is straightforward. Updating is 
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also possible with Weibull parameters. However, the two parameter Weibull distribution does not 

have a natural conjugate prior, making Bayesian updating complicated. However, a solution has 

been proposed by Kaminskiy and Krivtsov [56]. More generally, if a prior distribution over TTF is 

available, Markov chain Monte Carlo (MCMC) may be used to update the distribution. 

 

The assumption of parameter independence of a Bayesian network [5] makes it possible to update 

the conditional probability distributions of individual variables in the network without affecting the 

distributions of other variables in the network. Parameter independence means that the values of 

the distribution parameters of one variable in the network do not depend on the values of another 

distribution parameter. This is a key assumption in updating distribution parameters based on 

reliability data.  

 

Some complications may arise during the process of determining pi,j(k+1). The network structure 

must be established before any pi,j(k+1)  may be calculated from reliability data. The number of 

rows in a conditional probability table of a binary variable is 2𝑛 (where n is the number of parents). 

The fault in question may have additional causes, such as other faults, resulting in a larger number 

of probabilities to estimate.  The question is, which probabilities can be estimated with the given 

reliability data. If the conditions under which the reliability data are collected are known, the 

appropriate pi,j(k+1)   may be calculated. However, these conditions are generally unknown and it is 

difficult to know which conditional probability to update. Naively, it can be assumed that the data 

applies to all conditions. For example, in the cantilever beam, unless otherwise specified, time until 

crack occurrence could be assumed to have been collected under conditions where either damage 

at the support does or does not exist. 
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2.5.3 Mathematical Models 

Mathematical models derived from first principles (e.g. finite element or bond graph)  or empirical 

relationships (neural network, regression, BN/DBN) are used for generating predictions about 

system operation and for simulating reliability data (e.g. failure rates).  

 

The mathematical model’s advantage is the ability to include system variables and faults that are 

not directly observable.  For example, damping may not be measureable but a suitable expression 

may be available to estimate it. Another situation is the case of an unobservable fault. Fault 

identification models may be able to determine the presence of that fault. With estimates available 

for the unobservable system variables or faults at a particular time, the data case at the particular 

time can be completed. In Table 3 in Section 2.5.4, this means that if A(k) is an unobservable fault 

for which no data can be collected, estimates obtained from a fault identification model for A(k) 

may be used in lieu of actual observations. 

 

Some models may provide insight into the structure of the DBN. For example, in the approach of 

Roychoudhury et al. [14], the structure of the network is derived from the bond graph model of the 

system. In addition, the qualitatively derived fault signatures, which indicate increases or decreases 

in model parameters due to faults, provide a means of checking the behavior of the DBN. 

 

In the context of this chapter, one process for integrating a mathematical model into a DBN is as 

follows. First, generate predictions of the states of the variables in the model. Organize the 

predictions as operational data as per Section 2.5.4. The model predictions are then included in the 

DBN following the method for operational data. A key benefit of using a mathematical model in this 

way is the ability to model system variables that are not directly observable. Further, mathematical 

models can provide data on system failures that are too expensive for repeated experiments. 
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An alternative use of a mathematical model is to evaluate the reliability of a subsystem. Limit state 

functions can be used to estimate the time-dependent failure probability of a system [57].  

 

Eqn. 3 defines the ith limit-state function for a system with m failure modes (i = 1… m).  

 𝑔𝑖(𝑿) = 𝑎𝑖  Eq. 6 

 

where 𝑔𝑖(𝑿) are the system responses, X are system inputs, and 𝑎𝑖  are threshold values for the 

system response which defines failure.  When 𝑔𝑖(𝑿) ≤ 𝑎𝑖 for i = 1, 2, …, m, the system is in a safe 

state. When any 𝑔𝑖(𝑿) > 𝑎𝑖, the system is said to have failed. 𝑝𝑓 = ⋂ 𝑃𝑟(𝑔𝑖(𝑿) > 𝑎𝑖)𝑚
𝑖=1  is the failure 

probability of a parallel system and 𝑝𝑓 = ⋃ 𝑃𝑟(𝑔𝑖(𝑿) > 𝑎𝑖)𝑚
𝑖=1  is the failure probability for a series 

system. For a static system, finding 𝑝𝑓 reduces to analysis using Monte Carlo or first/second order 

reliability methods (FORM/SORM) [58].   

 

For a dynamic system, Eq. 6 becomes time-dependent, and it is desired to find the probability of the 

response staying within the safe region over a duration of time. Extensive work has been done in 

time-dependent reliability, e.g. Li and Melchers [57], Mahadevan and Dey [59], Kuschel and 

Rackwitz [60]. 

 

A second process for integrating a mathematical model into a DBN is as follows. First, using the 

system model, obtain 𝑝𝑓(𝑡) from time-dependent reliability analysis.  𝑝𝑓(𝑡) is then directly included 

in the DBN as per Section 3.4. Both processes for integrating a mathematical model into a DBN are 

shown in Figure 2. 
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Figure 2. Processes for integrating a mathematical model into a DBN 

 

2.5.4 Operational Data 

Operational (observational) data is data collected through passive observation of a system during 

its operation. The system is allowed to operate naturally without external intervention. Operational 

data provides significant insight about the causal structure of a system and the conditional 

probability relationships between variables. Most BN and DBN learning methodologies rely heavily 

on operational data, practically making it a prerequisite for learning, although exploiting other 

types of information could potentially reduce the exclusive dependence on operational data. 

 

In order to integrate operational data into the DBN, the data is organized in a time-lagged format as 

shown in Table 3, using data drawn from a network consisting of binary variables A and B and a 

ternary variable C spanning time k and k + 1. Although the example shown here uses discrete 

variables, the variables could also be continuous (e.g. Gaussian) or a combination of discrete and 

continuous [61]. Each row in Table 3 is a data case and the collection of data cases is the database, D, 

a m by n matrix where m is the number of data cases and n is the number of variables in the DBN. 

More specifically, a data case consists of realizations of all the system variables corresponding to a 

discrete value of time. Note that the last data case is incomplete and may be discarded because 
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there is no data at kmax + 1.   If the database is to be constructed using data from multiple time series, 

each time series should be lagged and truncated independently before being included in the 

database. 

Table 3. Time-lagged database 

Case A(k) B(k) C(k) A(k+1) B(k+1) C(k+1) 
k=1 0 0 0 0 1 1 
k=2 0 1 1 0 1 1 
k=3 0 1 1 1 1 1 
k=4 1 1 1 0 1 2 
k=5 0 1 2 1 1 0 
k=…       

k=kmax 0 1 0 - - - 
 

Learning Bayesian network parameters 

For a defined BN structure, a BN has parameters θ consisting of the distribution parameters of each 

conditional probability distribution. These parameters may be estimated using either maximum 

likelihood estimation or Bayesian estimation [5].  

 

Learning Bayesian network structure 

A considerably more difficult problem than learning network parameters is learning the network 

structure. Given the database, the problem is to determine the network structure with the largest 

likelihood (out of many possible candidate network structures) and the distribution parameters of 

that network. This amounts to an optimization problem, and it is usually approached with heuristic 

optimization procedures.  

 

One early algorithm for finding the best network structure is the K2 algorithm by Cooper and 

Herskovitz [62]. In K2, the N nodes (variables) of the joint probability space are arranged in a fixed 

order. The ith node in the ordering can have any of the following nodes in the order as parents (but 
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none of the preceding nodes). For example, the set of nodes in Table 3 is {A(k), B(k), C(k), A(k+1), 

B(k+1), C(k+1)}. Their respective position in the ordering could be {4 5 6 1 2 3} or {5 4 6 3 1 2} but 

not {1 5 6 4 3 2}, because a possible parent of A(k) cannot be A(k+1).    

 

The K2 algorithm finds the best network structure by first determining the local structure of each 

node and then amalgamating the local structures to determine the global network structure.  Given 

the ith node in the node ordering, the K2 algorithm compares various candidate sets of parent nodes 

of i using a scoring function (e.g. the Bayesian Information Criteria (BIC) [5]) and selects the highest 

scoring candidate set given the database as the local structure for node i. To avoid overfitting the 

data and decrease computational effort, the maximum number of parents a variable may have can 

be limited. 

 

Suppose it is desired to find the parents of C(k+1). c1 = {C(k) B(k)} is one candidate parent set and c2 

= {A(k) B(k)} is a second candidate parent set. If score(data|c1) > score(data|c2), c1 is the best of the 

two candidate sets and must be compared against any other possible parent candidate sets for node 

B(k+1). In order to estimate the score, the max likelihood of the parameters of conditional 

probabilities 𝑃(𝐶(𝑘 + 1)|𝑐1) and 𝑃(𝐶(𝑘 + 1)|𝑐2) must be determined. For example, the distribution 

parameters 𝑝𝑖,𝑗  of 𝑃�𝐶(𝑘 + 1)�𝐴(𝑘),𝐶(𝑘)� are shown in Table 4.  Because C(k+1) is ternary, it has 

three possible values, 0, 1, and 2. The distribution parameters pi,j define the probabilities of C(k+1) 

= 0, C(k+1) = 1, and C(k+1) = 2  given some state of the parent variables, 𝐴(𝑘) and 𝐶(𝑘).   
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Table 4. Conditional probability table for C(t+1) with structure B(t)  C(t+1)  C(t) 

Parent state 
π(C(k+1)=0|parent 

state) 
π (C(k+1)=1|parent 

state) 
π (C(k+1)=2|parent 

state) 
B(k) = 0, C(k) = 0 p1,1 p1,2 p1,3 = 1 - p1,1 - p1,2 
B(k) = 1, C(k) = 0 p2,1 p2,2 p2,3 = 1 - p2,1 – p2,2 
B(k) = 0, C(k) = 1 p3,1 p3,2 p3,3 = 1 – p31 – p32 
B(k) = 1, C(k) = 1 p4,1 p4,2 p4,3 = 1 – p4,1 – p4,2 
B(k) = 0, C(k) = 2 p5,1 p5,2 p5,3 = 1 – p5,1 – p5,2 
B(k) = 1, C(k) = 2 p6,1 p6,2 p6,3 = 1 – p6,1 – p6,2 

 

To find p1,1, the database is sorted to find all cases where B(k) = 0 and C(k) = 0. If there are N1 such 

cases and if C(k+1) = 0 is observed n1,1 times out of those N1 cases, then p1,1 = n1,1/ N1. Of course, 

strength of belief in the values pi,j varies with the size of the database. To account for this, the pi,j are 

treated as a r-dimensional Dirichlet random variables for fixed i, e.g. p1,j is a r = 3 dimensional 

Dirichlet random variable. The Dirichlet distribution is 

  𝑓�𝑝𝑖,1 …𝑝𝑖,𝑟;𝑛𝑖,1 …𝑛𝑖,𝑟−1� = 1
𝐵�𝒏𝑖,𝑗�

∏ 𝑝𝑖,𝑗
𝑛𝑖,𝑗−1𝑟

𝑗=1  Eq. 7 

 

where ni,j = {ni,1, ni,2, … ni,r},  B is the Beta function, 𝑝𝑖,1, …𝑝𝑖,𝑟−1 > 0, 𝑝𝑖,1 + ⋯+ 𝑝𝑖,𝑟−1 < 1, 

𝑝𝑖,𝑟 = 1 − 𝑝𝑖,1 − ⋯− 𝑝𝑖,𝑟−1, and i corresponds to a fixed parent state. For r = 2, the Dirichlet 

distribution is the Beta distribution. The Dirichlet distribution is widely considered suitable for 

modeling probabilities, as it bounds each probability between 0 and 1 and allows for a reasonable 

amount of flexibility. For discrete variables, use of the Dirichlet distribution to account for the 

uncertainty of the parameters and updating of the parameters using 𝑝𝑖,𝑗 estimates from data as in 

Table 3 and Table 4  is standard practice [5]. 

 

After each iteration of the structure learning algorithm, the local structure for node i is noted in a 

global structural matrix, S, with rows 𝑖 = 1 …𝑁 and columns 𝑗 = 1 …𝑁. 𝑆(𝑖, 𝑗) = 1 when node i 

(represented by the ith row in 𝑆(𝑖, 𝑗)) is a parent of the node j (represented by the jth column in 

𝑆(𝑖, 𝑗)), as determined by the local structure of i and 𝑆(𝑖, 𝑗) = 1 and is zero otherwise. For example, 
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assume nodes {A(k), B(k), C(k), A(k+1), B(k+1), C(k+1)} with node orderings {4 5 6 1 2 3} 

respectively. Initially, S is the 6x6 identity matrix. If K2 first finds that 𝐴(𝑘) and 𝐵(𝑘) are the only 

parents of 𝐴(𝑡 + 1), then 𝑆(4,1) = 1 and 𝑆(5,1) = 1. After the next iteration, if 𝐶(𝑘) and 𝐵(𝑘) are 

found to be the only parents of 𝐵(𝑘 + 1), then 𝑆(4,2) = 1 and 𝑆(3,2) = 1. 

 

Due to the large number of parent candidate sets encountered throughout learning a network, the 

distribution parameters of each are generally not kept in memory. Thus, it is necessary to re-

estimate the distribution parameters for the network after learning the structure. 

 

More recent hill-climbing algorithms allow arc addition, arc reversal, and arc removal operations 

[5].  They may also incorporate TABU lists, which keep track of previously tested local structures  

[63]. Alternative approaches to hill-climbing/greedy algorithms are constraint based methods, 

which test for conditional independence between variables [64]. Hybrid methodologies such as 

max-min hill-climbing (MMHC) [65] combine both approaches. For hybrid networks (networks 

with continuous and discrete variables), approaches such as  MMHC [65]. MMHC is also suitable for 

large networks with thousands of variables. 

 

Although the structure learning algorithm produces a single best structure as output, it must be 

noted that operational data generally cannot uniquely define the causal structure of a BN. That is, 

another structure may exist which explains the data equally well. This is evident by considering a 

basic network composed of variables A and B. From the same set of data, the networks A  B and B 

 A both can represent the same assertions of conditional independence. Their joint distributions 

are the same and the networks can be said to be equivalent [2], [61], [66].   An equivalence class of 

network structures may be said to exist.  Heckerman et al. [2], [61] call this property likelihood 

equivalence. The property must always hold for acausal networks of variables with a generalized 
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probability distribution function and is often found to hold for causal networks of variables with a 

generalized probability distribution function [61]. Heckerman et al. [2], [61] consider the use of 

pure operational data as an assumption of likelihood equivalence. In developing a model for 

prognosis, this means that the use of pure operational data (the likelihood assumption) may not 

reveal the underlying causal structure of a system which best explains system behavior.  

 

One practical concern associated with operational data is how well it captures system behavior 

under the influence of faults. If a fault does not occur and is therefore not observed, its effects on 

the system cannot be observed. Since faults are (hopefully) rare occurrences, it could require a 

large amount of operational data to encounter the fault and learn how it affects the BN structure. 

Another practical concern is that operational data needs to be used for model validation. Because of 

this, some operational data should not be used to train the model and instead saved for model 

validation. 

 

2.5.5 Laboratory Data 

Laboratory (experimental, interventional) data is obtained while observing the system under 

outside intervention. Outside intervention comes in the form of fixing the value of one or more of 

the system or input variables. An intervention shows how a particular variable assuming a 

particular value affects the behavior of the system but does not provide any insight as to how likely 

that variable is to naturally assume a particular value. For instance, in a laboratory setting, the 

effect of a loose bolt on the resistance provided by a structural system would be discovered by 

loosening a bolt and then observing the system. The frequency of the bolt loosening, however, 

cannot be established. Combined with knowledge of the frequency of the bolt loosening or using a 

variety of experiments, the laboratory data could provide enough information to learn the system 

model without operational data. 
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Integration of laboratory data requires creating a formatted database, as with operational data. A 

database of operational and laboratory data may combined into one database. Laboratory data, 

additionally, requires information as to which variables are fixed and for which data case. Other 

non-fixed variables in the system, including children of the fixed variable, may be characterized by 

experimental data. 

 

To track which data points have been fixed through experiment, an indicator matrix L with 

dimensions equal to the size of the database, D, is constructed. If a value L(i, j) has been fixed 

experimentally, L(i, j) = 1. Otherwise, L(i, j) = 0. When L(i, j) = 1, the corresponding value in the 

database D(i,j) is useful for determining the structure of the network and the distribution of the 

downstream variables. The use of L is to block the data such that the conditional probabilities are 

properly calculated. 

 

Consider the database in Table 3. If the value of B(k) is fixed at 1 in the 2nd and 3rd data cases, L is 

given by Table 4. Say it is desired to find parents of C(k+1) as in Section 3.2. Once a candidate 

parent state is fixed, the distribution parameters of C(k+1) are calculated without regard for how 

often that parent state occurs. Thus, fixed variables in laboratory data can help determine the 

structure of the network and downstream conditional probabilities. 

 

Table 4. Matrix L indicating which values have been experimentally fixed 

Case A(k) B(k) C(k) A(k+1) B(k+1) C(k+1) 
k=1 0 0 0 0 1 0 
k=2 0 1 0 0 1 0 
k=3 0 1 0 0 0 0 
k=4 0 0 0 0 0 0 
k=5 0 0 0 0 0 0 
k=…       

k=kmax    - - - 
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In some experiments, a variable may be fixed for part of the duration. Consider a dynamic system 

operating in time k ϵ [0 ∞) with a perfect intervention where xi = k, beginning at time tI . The 

intervention lasts as long as xi = k is fixed, say from kI to kIf. Under appropriate environmental 

conditions, the data collected on the interval [0 kIf) may be considered operational.  However, the 

data collected after kIf must be treated as laboratory data until any transient effects of the 

intervention on the system disappear.  

 

2.5.6 Summary 

The integration of heterogeneous information into a unified system model is discussed in this 

section. The procedures provided show how information from a variety of sources and in varying 

formats can be leveraged in a model suitable for SHM applications. The framework provides a 

flexible workflow for construction of the system model. Figure 3 describes a possible workflow for 

constructing the system model. Typically, expert opinion is the starting point for determining basic 

assumptions about the network, such as whether to use all discrete variables, all continuous 

variables, or a hybrid network. Once the basic assumptions are in place, published reliability data is 

drawn upon to determine probabilities to model the occurrence of faults in the system. 

Mathematical models are then selected and used to generate prior data in formats similar to 

operational, laboratory, or reliability data. Finally, operational and laboratory data are used to 

update the structure (as necessary) and conditional probabilities of the network. The availability of 

information may affect the workflow. For example, if plenty of operational data is available, 

defining mathematical models to generate prior data may be an unnecessary second step. The 

process is iterative, requiring the system designer to tune and refine the network multiple times, 

with a high percentage of correct diagnosis and accurate damage quantification being the primary 

goal.  
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Figure 3. Possible workflow for integrating heterogeneous information 

 

Several caveats about the methodology are worth emphasizing. A great deal of uncertainty is 

associated with various types of information from multiple sources. The environmental conditions 

under which different information types are collected may vary widely and fail to match the 

conditions under which the system ultimately will operate. Testing methods of varying quality may 

have been used to generate data. Important information about failure modes may be missing. An 

expert may supply erroneous domain knowledge.  On a positive note, using diverse information 

types and sources may be seen as a way to minimize the risk of producing an unacceptable model. 

With non-diversified information sources, if information from a particular source or of a particular 

kind is corrupt, it follows that a model constructed from this information will also be corrupt. 

 

Learning a DBN is computationally expensive. It can require a large amount of observational and 

experimental data, especially when the system contains many variables and possible faults. 

Although many algorithms for learning DBNs are available, none are cheap. Inference in DBNs can 

also be a large computational burden but can be eased with approximate inference methods such as 

particle filters. The sparsity of the DBN representation of the joint probability space of the variables 

also helps to alleviate the computational burden. Further, by using expert opinion to determine the 

network structure of a subset of the variables, the computational burden of structure learning on 

the remaining variables is drastically less than if structure learning were performed over all 

variables.  

Expert 
Opinion 

Reliability 
Data 

Mathematical 
Models 

Operational & 
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Key advantages of the learned model are in risk and reliability analysis, diagnosis, and prognosis i.e. 

its forward and backward reasoning abilities, and its ability to transform various types of 

information into a usable format. The use of experimental data and reliability information helps 

ensure that the model can successfully simulate faults and aid in their diagnosis.  

 

2.6 Example Problem 

A hydraulic actuator system is considered to demonstrate the proposed methodology. Such a 

system is often used to manipulate the control surfaces of aircraft.  The system consists primarily of 

three subsystems: a hydraulic actuator, critical center spool valve, and an axial piston pump (Figure 

4). Using procedures explained in Section 3, expert opinion, operational data, laboratory data, 

reliability data, and mathematical behavior models were used to construct a DBN model of the 

spool valve and hydraulic subsystems.  

 

First, expert opinion is invoked to establish an initial DBN and priors for the conditional probability 

distributions. Next, the mathematical model of the system is used to generate predictions of the 

system variables. The predictions are treated as operational and laboratory data. Then, a structure 

learning algorithm determines the remaining structure of the network. Finally, the parameters of 

the network are estimated and reliability data updated using data from the system model. 
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Figure 4. Hydraulic Actuator System 

2.6.1 Expert Opinion 

Expert opinion must be considered first to define the basic parameters of the problem. A DBN 

representation of the system was chosen because heterogeneous information sources were 

available, the intended use of the model is diagnosis and prognosis, and the system is dynamic. 

Seven state variables and six discrete faults were selected to model the behavior of the system. 

 

A generic initial structure for the DBN is first selected (Figure 5) based on expert opinion. This 

generic two time slice structure consists of the set of faults, F, model parameters, θ, system state, y, 

and measurements, z. In this structure, faults cause changes in system parameters, which then 

cause changes in system responses, which are observed. F contains the persistent variables in the 

DBN – their future values depend upon their present values. The observations, z, while not 

connected across time slices, are nonetheless not  independent across time slices, but correlated via  

θ.  
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Figure 5. Generic DBN structure 

 

 
Table 5. List of faults and affected parameters 

Fault Parameter Affected 

Electrical Fault Control Signal 

Seal Leak Leakage Area 

Water Leak into 
System 

Hydraulic Fluid Bulk 
Modulus 

Air Leak Into System Hydraulic Fluid Bulk 
Modulus 

Pressure Valve 
Malfunction Supply Pressure 

Pump Fault Supply Pressure 

 

Table 5 lists the faults considered in the actuator system and the parameter affected by that fault 

(the faults are described further in Section 2.6.2). For each fault, a binary variable is added to the 

network at time k and k + 1. The parameters are assumed to have Gaussian distributions, whose 

mean and variance depend on the health state of the system. The leakage area parameter is a 

Ft
 

θt
 

yt
 

zt
 

Ft+

θt+

yt+

zt+1
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special case, as wear and leakage are assumed to be present at all times. The discrete variable for 

leakage area indicates that the leakage area has increased beyond some threshold value. 

 

Parameters from the current time step and initial conditions from the previous time step are input 

into a physics-based model of the actuator (see Section 2.6.2), which estimates the system 

responses, assumed to be Gaussian variables. Measurements are then connected to the 

corresponding system response. Links are also drawn between like faults at time k and k + 1 and 

like parameters at time k and k + 1. Finally, a Gaussian variable is added at time k and k + 1 for each 

measurement available. The resultant DBN is shown in  Figure 6 with parameters described in 

Table 6.  

 

βk ps
k ws

k

xk vk p1
k p2

k xv
k vv

k

Actuator 
Model

uk

xk vk p1
k p2

k xv
k vv

k

βk+1 ps
k+1 ws

k+1

xk+1 vk+1 p1
k+1 p2

k+1 xv
k+1 vv

k+1

Actuator 
Model

uk+1

xk+1 vk+1 p1
k+1 p2

k+1 xv
k+1 vv

k+1

SkAkWk Puk Vk Sk+1Ak+1Wk+
1 Puk+1 Vk+1

Pk Pk+1Ek Ek+1

 

Figure 6. Initial DBN structure as a result of expert opinion 
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Table 6. DBN Variables 

State Variable Symbol Unit Type Note 
Actuator position xact m continuous measured 
Actuator velocity vact m/s continuous measured 
Pressure in chamber 1 P1 Pa continuous measured 
Pressure in chamber 2 P2 Pa continuous measured 
Valve position xvalve m continuous measured 
Valve velocity vvalve m/s continuous measured 
Control signal u V continuous input 
Water leak W - binary inferred 

Air leak A - binary  
inferred 

Pump sensor fault P - binary inferred 
Valve fault V - binary inferred 
Seal leak S - binary inferred 
Electrical fault E - binary inferred 
Fluid bulk modulus β MPa continuous inferred 
Supply pressure ps MPa continuous inferred 
Wear rate ws mm3/Nm continuous inferred 

 

 

As a precursor to the data-based portion of the methodology, assumptions were made to facilitate 

the learning process. The intra-slice arcs on the graph were assumed to be the same in slice k and k 

+ 1. Because the system responses are conditionally independent given the actuator model, the 

structure learning was not performed between the response variables. Finally, the actuator model 

parameters are assumed to be independent. This saves a great amount of computational expense 

compared to considering all system variables, as only relationships between the binary fault 

variables need to be explored.  

 

This step of model construction involves making many choices about tunable model and 

algorithmic parameters. These choices are made based on data which is not used for parameter and 

structure learning. 

 



 40 

2.6.2 Published Reliability Data  

The DBN model of the system should be able to simulate multiple faults and extrapolate system 

behavior multiple steps into the future for the model to be a useful diagnosis and prognosis tool. 

The overall failure rate for an actuator may be determined by estimating the base failure rate and 

making empirical corrections for temperature and fluid contamination [67]. The RIAC Databook 

[55] and the Handbook of Reliability Prediction Procedures for Mechanical Equipment [67] give 

failure rates for many mechanical systems. For illustration of the methodology, a handful of the 

possible faults for the actuator system are considered in this chapter. Table 7 lists the faults that 

have been considered, the subsystem where they are located, the internal failure rate used in the 

simulation model, and the information source for that fault.  

 

An electrical fault that can interfere with electronics is mentioned in [67]. The exponential 

distribution is used to model this fault. It is assumed that this fault can be modeled by adding noise 

to the input signal.  

 

The actuator seal leak is mentioned by Sepeheri et al. [68] and results in hydraulic fluid passing 

between chambers of the actuator, thereby reducing its performance.  

 

Air and water leaks are common problems which change the effective bulk modulus of the 

hydraulic fluid as is a pressure relief valve malfunction [68]. The failure rates for these faults are 

estimated by multiplying the base failure rate for a hydraulic actuator by the percentage of faults 

considered hose failures (6.1%).  
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The pressure relief valve is used to adjust the supply pressure of the hydraulic fluid after it leaves 

the axial piston pump. A fault with this valve is assumed to change the supply pressure provided to 

the servovalve.  

 

The pump has a pressure sensor used to modulate its output [67]. It is assumed that an electrical 

fault could result in malfunctioning of this sensor, resulting in a change in supply pressure provided 

to the servovalve. 

 

The failure rates were then used to calculate probabilities as in Section 2.5.2. These probabilities 

are adjusted with time and override the maximum likelihood parameters calculated from 

laboratory and operational data. 

 

Table 7. Faults Considered 

Fault Subsystem Information Source Failure Rate 

Electrical Fault Electronics RIAC Databook [55] 1.510 failures /106 
hours 

Seal Leak Actuator RIAC Databook [55], 
Literature [68] NA 

Water Leak into 
System Piping/Fittings RIAC Databook [55], 

Literature [68] 
2.736 failures /106 

hours 

Air Leak Into System Piping/Fittings RIAC Databook [55], 
Literature [68] 

0.167 failures /106 
hours 

Pressure Valve 
Malfunction Pressure Valve RIAC Databook [55], 

Literature [68] 
15.575 failures /106 

hours 

Pump Pressure Sensor Piston Pump Mathematical Model 
[69], Literature [70] 

103.567 failures 
/106 hours 

 

2.6.3 Mathematical Behavior Models 

Mathematical models are used for modeling the load, actuator, and seal leakage area. These 

mathematical models are used to generate model predictions for single fault and no fault scenarios. 
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A nominal (healthy) set of predictions is also generated to estimate the residuals of the system 

responses. 

 

The hydraulic actuator is described in Eq. 8 - Eq. 20 following Kulakowski et al. [71] and Thompson 

et al. [72]. Variables and parameters for the system are given in Table 8.  

 𝑥̇𝑎𝑐𝑡 = 𝑣𝑎𝑐𝑡 Eq. 8 

 𝑣̇𝑎𝑐𝑡 =
1
𝑚�(𝑃1 − 𝑃2)𝐴𝑝𝑖𝑠𝑡 − 𝑏𝑎𝑐𝑡𝑣𝑎𝑐𝑡 − 𝑘𝑎𝑐𝑡𝑥𝑎𝑐𝑡 − 𝐹𝑒𝑥𝑡� Eq. 9 

 𝑃̇1 =
1
𝐶𝑓1

�𝑄1 − 𝐴𝑝𝑖𝑠𝑡𝑄2 + 𝑄𝑙𝑒𝑎𝑘� Eq. 10 

 𝑃̇2 =
1
𝐶𝑓2

(𝑉2𝑥𝑎𝑐𝑡 − 𝑄2 − 𝑄𝑙𝑒𝑎𝑘) Eq. 11 

 𝑥̇𝑣𝑎𝑙𝑣𝑒 = 𝑣𝑣𝑎𝑙𝑣𝑒 Eq. 12 

 𝑣̇𝑣𝑎𝑙𝑣𝑒 = 𝑎1𝑣𝑣𝑎𝑙𝑣𝑒 + 𝑎0𝑥𝑣𝑎𝑙𝑣𝑒 + 𝑏0𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑 Eq. 13 

 
𝐶𝑓1 =

𝑉1(𝑥𝑎𝑐𝑡)
𝛽

 Eq. 14 

 
𝐶𝑓2 =

𝑉2(𝑥𝑎𝑐𝑡)
𝛽

 Eq. 15 

 

If  𝑥𝑣𝑎𝑙𝑣𝑒 > 0,

⎩
⎨

⎧𝑄1 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒𝑠𝑔𝑛(𝑃𝑠 − 𝑃1)�2
𝜌

|𝑃𝑠 − 𝑃1|

𝑄2 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒�
2
𝜌

(𝑃2)
  

 
Eq. 16 

  
Eq. 17 

 

If 𝑥𝑣𝑎𝑙𝑣𝑒 < 0,

⎩
⎨

⎧ 𝑄1 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒�
2
𝜌

(𝑃1)

𝑄2 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒𝑠𝑔𝑛(𝑃𝑠 − 𝑃2)�2
𝜌

|𝑃𝑠 − 𝑃2|
  

Eq. 18  
 

Eq. 19 

 

𝑄𝑙𝑒𝑎𝑘 = 𝐶𝑑𝑎𝑙𝑒𝑎𝑘�
2
𝜌

|𝑃2 − 𝑃1|𝑠𝑖𝑔𝑛(𝑃2 − 𝑃1)  Eq. 20 
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Table 8. Model parameters and variables for a spool valve and a hydraulic actuator 

Parameter/variable Symbol Nominal Value/ Unit 
Actuator position 𝑥𝑎𝑐𝑡  m 
Actuator velocity 𝑣𝑎𝑐𝑡 m/s 
Servovalve position 𝑥𝑣𝑎𝑙𝑣𝑒  m 
Servovalve velocity 𝑣𝑣𝑎𝑙𝑣𝑒  m/s 
Pressure in chamber 1 𝑃1 Pa 
Pressure in chamber 2 𝑃2 Pa 
Combined mass of actuator and load mact 40 kg 
Combined damping of actuator and load bact 800 Ns/m 
Combined stiffness of actuator and load kact 106 N/m 
Piston annulus area Apist 0.0075 m2 
Valve port width wvalve 0.0025 m 
Spool valve model coefficients 
 
 

b0 90 m/Vs2 
a0 360,000 1/s2 
a1 1/s 

Hydraulic fluid bulk modulus 𝛽 1000 MPa 
Hydraulic fluid density 𝜌 847 kg/m3 
Discharge coefficient 𝐶𝑑 0.7 
Supply pressure 𝑃𝑠𝑢𝑝𝑝𝑙𝑦  20 MPa 
Chamber 1 volume  V1 m3 
Chamber 2 volume  V2 m3 
Chamber 1 fluid capacitance Cf1 m3/(kg/s) 
Chamber 2 fluid capacitance Cf2 m3s/(kg/s) 
Volumetric flow rate into chamber 1 Q1 m3/s 
Volumetric flow rate out of chamber 2 Q2 m3/s 
Externally applied force Fext 0 N 
Input voltage ecommand Sin(2*pi*t) V 
Leakage volumetric flow rate Qleak 0 m3/s 
Leakage area aleak 0 m2 
 

The seal leakage area may be understood by considering the actuator cross section in Figure 7, the 

surface area of the seal is (𝑟22 − 𝑟12) , where r1 and r2 are the inner and outer radii of the seal, 

respectively. 
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Figure 7. Actuator cross section 

 

 

For demonstration of the prognosis methodology, the load is synthesized using an ARIMA 

(autoregressive integrated moving average) model, which is treated as a deterministic conditional 

probability distribution in the DBN. In reality the load on a flight control actuator is depends on 

many variables related to the dynamics of the aircraft and the desired flight path (for e.g. see 

Mahulkar et al. [73], Karpenko and Sepeheri [74], and McCormick [75]).  

 

Finally, the physics of failure model for the seal leak is considered. The seal leakage area is modeled 

as in Section 2.2.  

 

2.6.4 Operational Data 

In this example, the operational data is synthetic, generated by the mathematical model in Section 

2.6.3 with additive noise. The actuator system was simulated in the Matlab/Simulink environment 
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such that faults could randomly occur according to predefined failure rates (different from those 

provided as prior information for learning the system model). 25 sequences of operational data 

lasting 20 seconds each were simulated. All data, operational and laboratory, was collected at a 

sampling rate of 2 samples/sec.  

 

Operational (observational) data is collected when the system is operating under field conditions 

with no external intervention or idealized loads or environmental conditions. Operational data can 

provide insight into network structure and parameters and is heavily relied upon in any BN or DBN 

learning methodology. 

 

2.6.5 Laboratory Data 

Laboratory data was simulated in the Matlab/Simulink environment. 10 simulation runs of 20 

seconds for each of six single fault scenarios were performed. Fault times were introduced at 

random time instants. This resulted in 60 series of laboratory data. Data from experiments which 

was collected before the intervention occurred was treated as operational data.     

 

Each series of operational and laboratory data was then individually lagged, allowing for analysis 

between time slice k and k + 1. The time series were then combined into one large data set to be fed 

to the learning algorithm. It is important that the time series be lagged separately first and then 

combined into one data set for training instead of being combined into one data set first and then 

lagged. If lagged after being combined, data mismatches will occur where one time series ends and 

another begins. Although structure learning was limited to one time slice, parameter learning still 

requires data over both time slices. 
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After generation of laboratory and operational data, the relationship between faults was explored. 

For each pair of faults i and j ( 𝑖 ≠ 𝑗 ), the conditional probability 

𝜃𝑖𝑗 = 𝑃𝑟�𝑓𝑎𝑢𝑙𝑡𝑖 = 𝑡𝑟𝑢𝑒�𝑓𝑎𝑢𝑙𝑡𝑗 = 𝑡𝑟𝑢𝑒� was calculated, resulting in 30 probabilities (6 faults, 5 

possible parents each). Large values of   𝜃𝑖𝑗 indicate relationships between faults. The values of 𝜃𝑖𝑗 

greater than a heuristically determined threshold are then selected and arcs are added between the 

corresponding faults.  

 

Once the full structure of the network is determined, the distribution parameters were filled in by 

calculating their maximum likelihood estimates from the data.  

 

2.6.6 Results and Discussion  

The result of this work is a DBN which can be used in diagnosis, prognosis, and decision making. 

The posterior DBN of the system is shown in Figure 8. The model clearly links faults to other faults 

and system responses, which is a direct result of using the laboratory data. Expert opinion has 

provided the links between faults and parameters as well as between time slices. 

 

Changes in the bulk modulus do not manifest themselves in the available system measurements.  

Additional measurements or more advanced features may be required to handle these faults. 

 

Not shown in Figure 8 are the conditional probability distributions for the DBN. Due to space 

limitations, only a sampling of the Gaussian and discrete conditional probability distributions are 

provided. Table 9 shows a Gaussian conditional probability distribution of the voltage amplitude at 

time t. Based on the results of the variance, it may be beneficial to train with more data on the fault 

scenario.  Table 10 is a conditional probability table showing the effect of time on the expected 

conditional probabilities for the electrical fault.  
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Figure 8. DBN with two time slices. Note: Red arrows indicate a learned connection. 
 
 

 

Table 9. Gaussian distribution parameters for voltage amplitude at time k. Variance prior is 0.001 

Parent State Mean (Volts) Variance 
Electrical Fault = False 4.9993 0.007039  
Electrical Fault = True 4.7500 0.001983 
 

Table 10. Electrical fault (k+1) conditional probability tables at k = 0.25 and k = 15 sec 

state 
Pr(Elec Fault 

(k+1) = 
False|state) 

Pr(Elec Fault 
(k+1) = 

True|state) 
state 

Pr(Elect Fault 
(k+1) = False | 

state) 

Pr(Elec Fault 
(k+1) = True | 

state) 
Elec Fault 
(k) = 
False 

0.999723  0.000277 
Elec Fault 
(k) = False 0.999136 0.000864 

Elec Fault 
(k) = True 0 1 Elec Fault 

(k) = True 0 1 
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The effect of published reliability data is not apparent by observing the graphical structure of the 

DBN. However, Table 10 illustrates how a fault gradually becomes more likely, which would have 

implications in diagnosis and prognosis. 

 

The model is evaluated in two steps. First, the model should be inspected for consistency with prior 

information about the system. Next, using a new set of test data, the performance of the model at its 

prescribed tasks may be evaluated. This may be repeated to establish, e.g. the model’s diagnostic 

accuracy.  

 

Because the structure of the actuator DBN is relatively simple, it is possible to manually inspect this 

network to determine if it is consistent with existing knowledge of the actuator system. Finding the 

structure in Figure 8 to be satisfactory, the model can be evaluated on its true objectives, diagnosis 

and prognosis.  

 

Here, the diagnosis capabilities of the model are considered. In conjunction with a sequential 

importance resampling (SIR) particle filter [76], diagnosis using the DBN and measurements of an 

actuator with seeded faults and additive Gaussian noise has been tested. As expected, all faults 

except those related to fluid bulk modulus are diagnosed rapidly after occurrence (using 250 

particles). Changes in bulk modulus do not tend to manifest themselves once the system is in a 

steady state and may require additional measurements to diagnose.   Figure 9, Figure 10 and Figure 

11 show the values of the discrete fault variables, the parameters, and observations for a valve 

malfunction at k = 6 sec. The diagnosis system is able to distinguish between faults affecting the 

same parameter and provide estimates of the magnitude of the fault. Maximum a posteriori (MAP) 

[76] estimates from the particle filter are shown where applicable. 
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Figure 9. True fault value and particle filter MAP estimates 

 

Figure 10. True parameter values and particle filter MAP estimates  
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Figure 11. Observations used in fault detection 

The effort to include heterogeneous information in the model appears to have resulted in an 

accurate diagnosis (and prognosis, and decision making) tool. Such accuracy, of course, may not 

always be possible. Faults may not have unique signatures (or any signature at all) and require 

additional measurements to be diagnosable. The use of synthetic, model-generated data may give 

much more predictable and cleaner data than could be expected from any true sensor measurement. 

Further, modeling assumptions about fault magnitudes parameter variance, or noise can strongly 

affect the performance of the system.  Real-world data is still needed to test these assumptions. 

However, as the results are promising, ongoing work is focusing on utilizing the SHM model in 

quantifying diagnosis uncertainty, prognosis, and decision making.   

 

Although the distribution types used affect the results of the methodology, these were used only for the 

sake of illustration and do not limit the methodology.  
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2.7 Conclusion 

A methodology for building a dynamic system model for diagnosis and prognosis in the presence of 

heterogeneous information has been presented in this chapter. In particular, the methodology helps 

to learn the conditional probability relationships between system variables when the information 

available is heterogeneous. Several types of information (prior domain knowledge/expert opinion, 

operational and laboratory data, published reliability data, mathematical behavior models) have 

been considered in this chapter, and methods are developed for integrating them into a DBN model 

of a system. The methodology is general and may be applied to any domain. Here, a hydraulic 

actuator system was used to demonstrate the methodology. 

 

In future work, it will be useful to address concerns related to computational effort and modeling 

assumptions. Computational effort reduction techniques, such as approximate inference or 

qualitative methods utilizing the DBN structure (e.g. temporal causal graphs), should hasten the 

application of the model to diagnosis and prognosis while making the method more 

computationally affordable. The use of hybrid networks where some variables have continuous 

distributions while other variables may have discrete distributions should be considered as many 

dynamic systems are composed of both continuous and discrete variables.  

 

 

 

 

 

  



 52 

CHAPTER III. 

3. System Damage Diagnosis with Heterogeneous Information 

 

3.1 Introduction 

3.1.1 Diagnosis Background 

Diagnosis is the process of determining the root causes of abnormal system behavior based on 

knowledge and observation of the system. Diagnostic procedures have been variously described as 

a dichotomy between abduction or consistency-based methods [77], [78], models of correct 

behavior or fault models [13], classification methods or diagnostic reasoning strategies [79], 

traditional or model-based approaches [80], and experiential or first principles approaches [81]. 

The logic-based models of diagnosis, abduction and consistency-based reasoning, as discussed by 

Poole [82] and Console and Torasso [13], are used in this chapter.  

 

Abduction methods use existing knowledge of faults and symptoms to determine which faults the 

observations imply. In abductive diagnosis methods where only faults and symptoms are known, 

possible faults, which are parameterized by values they depend on, are first hypothesized. Rules are 

then developed which show how symptoms (observations) are a consequence of the faults. These 

rules may be facts or merely indicate possible hypotheses. Under normality assumptions when 

faults and symptoms are unknown, the abduction method is the same except that the possible 

hypotheses consist of the system being faulty or normal. These hypotheses must be parameterized 

sufficiently to imply the observations. 
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Abduction methods include diagnostic testing (verification), fault dictionaries, rule-based methods, 

and decision trees. They are best when a system model is complete with all its faults known or 

when the system is very complex and difficult to model and basic observation of behavior to create 

associative diagnosis rules is easiest, a pure abduction method is beneficial. However, pure 

abduction has its difficulties. If the model happens to be incomplete, some reasonable explanations 

may be excluded. Diagnostic testing and fault dictionaries require faults be pre-selected. Rule-based 

methods and decision trees are system specific and difficult to update for new systems. Further, 

rule-based systems may be obsolete by the time the rules are learned. Decision trees offer an easy 

way to perform diagnosis but do little to explain how the answer was reached. 

 

Consistency-based methods indicate faults by showing deviance from healthy behavior and need 

not enumerate every possible fault. In consistency-based methods with knowledge only of normal 

system behavior, for each component C which may be faulty, a hypothesis of C is not abnormal is 

given. Based on these normality assumptions, the correct behavior is predicted. When incorrect 

behavior is observed, it is concluded that an abnormality must have occurred. In consistency-based 

methods with knowledge of possible faults but no knowledge of normal system behavior, the 

negation of faults is the normal case. Rules are then developed which show how faults are implied 

by symptoms.   

 

Consistency-based methods are best used when system models are incomplete and not all faults are 

known [13]. Additional benefits for these methods are described by Davis and Hamscher [83]. 

Models built from first principles can often be easily adjusted for new systems, decreasing the time 

for creating a diagnostic method and saving costs. Consistency-based methods using first principles 

models are also well-suited for containing structural information about the system in a useful 

format.  
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Console and Torasso [13] expand the dichotomous notion of logic-based diagnosis to a spectrum of 

diagnostic methods. More specifically, they define the general diagnostic problem as an abduction 

problem with consistency constraints. In this formulation, a diagnosis (explanation) must explain a 

group of observations while the behavioral model must indicate abnormal behavior consistent with 

all observations. The spectrum results from choosing the group of observations that the diagnosis 

must explain. By blending consistency-based with abduction approaches, the space of plausible 

solutions can be enlarged or shrunk for added flexibility [13]. Other approaches (de Kleer and 

Williams, 1989 [84]) use probabilistic information or exoneration knowledge (Friedrich et al., 1990 

[85] to perform this function.  

 

Hybrid consistency-based and abductive diagnosis methodologies often use consistency-based 

approaches for fault detection or symptom generation (although this can also be performed by 

diagnostic testing, inspection, etc.) then invoke an abductive methodology to isolate the fault. 

System models may further be used in quantification of the fault. Such a process is seen in Isermann 

[79], [86], Mosterman and Biswas [87], Moustafa et al. [88], Tandon and Choudhury [89], and Ding 

et al. [90]. Typical approaches in automated diagnosis rely on limit value checking of measurements, 

signal analysis, and process analysis to detect faults. Using symptoms, isolation of the fault is 

performed via classification and reasoning methods such as neural networks, fault-tree analysis, 

Bayesian networks, possibilistic reasoning, adaptive fuzzy systems, and backward chaining. 

 

Another powerful tool is system modeling with dynamic Bayesian networks (DBNs). Bayesian 

networks (BNs) and dynamic Bayesian networks (DBNs) are statistical tools that can be used to 

integrate various sources of information. Due in part to this ability to integrate information, DBNs 

have been studied for many applications ranging from geo-location [38], maintenance decision 

making [91], and fault identification [92] to describing forest density [36]. A feature of previous 
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DBN-based studies in the literature is that the information used in constructing the DBN is typically 

from two or three sources. While this in many cases may provide acceptable descriptions of a 

particular system component or phenomenon, real systems contain many complex interactions, 

known and unknown, between subsystems, components, and phenomena that must be included in 

the DBN. By fusing heterogeneous from multiple information sources, these interactions may be 

discovered and quantified.  

 

3.1.2 DBNs in Diagnosis 

DBN-based diagnosis methodologies have gained traction in the literature, especially as computing 

power has increased. Arroyo-Figueroa and Sucar [93] provide an early example of performing 

inference in a DBN to diagnose faults. Jha et al. [92] use DBNs in identifying transient faults in a 

circuit. Data about correct system behavior was used to learn a DBN model of a healthy circuit. For 

each possible fault, a fault model based on expert knowledge is used to modify the DBN.  

 

Lerner et al. [40] extract a DBN from bond graph models. The DBN is then used for diagnosis as part 

of a tracking and smoothing algorithm capable of handling burst and incipient faults. Their 

algorithm maintains the tractability of the problem by collapsing multiple hypotheses into one 

belief state. The primary drawback is that a model, fault modes, and how the fault modes affect the 

system are assumed to be known a priori. 

 

Roychoudhury et al. [41] use a DBN, extracted from a bond graph and capable of modeling incipient 

faults, with a particle filter to detect faults in a two tank system. A qualitative procedure using the 

temporal causal graph given in Lerner et al. [40] narrows the number of fault candidates. The DBN 

model is then augmented and used to isolate the fault.   
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Other examples of DBNs in diagnosis (and prognosis) include Przytula and Choi [42] who use DBNs 

to obtain discrete qualitative measures of prognosis, McNaught and Zagorecki [91] who use a DBN 

of discrete variables to aid maintenance decisions, and Camci and Chinnam [94] who use 

hierarchical hidden Markov models for diagnosis and prognosis of machine parts.  

 

As with data fusion, DBN-based diagnosis methodologies tend to focus on 2 or 3 sources of 

information. Lerner et al. [40] and Roychoudhury et al. [41] use bond graph models to define the 

interactions between components and subsystems. However, the approaches do not consider the 

availability of existing databases of information or reliability data. The interactions are defined by 

the bond graph and expert opinion. An approach utilizing data mining may yield additional insight 

into the behavior of the system. 

 

3.1.3 System Health Monitoring  with Heterogeneous Information 

System health monitoring (SHM) involves many forms of heterogeneity. The systems under 

consideration and the SHM approaches for monitoring them are heterogeneous on many levels, 

including the mechanics, materials, sensors, measurements, system models employed, and time 

scales. However, this usually does not imply heterogeneous information as discussed in this 

dissertation. 

 

Heterogeneous sensors extend simple sensors by adding capabilities such as energy storage or 

communications ability.  Yarvis et al. [95] exploit heterogeneity in sensor networks to improve 

network reliability and lifetime.  Kijewski-Correa et al. [96] propose a multi-scale wireless sensing 

methodology.  
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The measurements themselves may be heterogeneous. Kulcu et al. [97] describe integration of data 

streams from many sensors, including slow and high speed strain gages and a camera, on the 

Commodore Barry Bridge. Sidek et al. [98] fuse acoustic, electro-mechanical, and optical sensors to 

monitor deterioration in concrete structures. 

 

Some methodologies combine system models with measurements. Kacprzynski and Muench [99] 

combine a corrosion model with measurements for adaptive prognosis. Viana et al. [100] combine 

experimental data from a sensor data with a structural model for aircraft SHM.  Others incorporate 

expert opinion. Taha and Lucero [101] use fuzzy sets in combining sparse data and expert opinion 

for SHM. 

 

3.1.4 Contributions  

The above review indicates a large number of SHM methodologies and technologies that integrate 

various sources of information on a local scale, often relying on a particular mathematical model, 

focusing on a particular component, or isolating a particular failure mechanism. However, more 

generalized SHM frameworks are needed which are capable of integrating many types of 

information encountered in a complex system and able to combine localized approaches for total 

system SHM.  

 

The primary contributions of this chapter are a DBN-based methodology for diagnosis of a 

mechanical system in the presence of multiple types of data and components and diagnosis 

uncertainty quantification for a particle filter. Heterogeneous information, available from multiple 

sources and in various formats — observational data, laboratory (interventional) data, published 

failure rates, mathematical models, expert opinion — is used to construct a dynamic Bayesian 

network. The DBN captures the relationships between components and subsystems in addition to 
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describing individual components and their behaviors.  The dynamic Bayesian network structure is 

used with a particle filter to obtain filtered estimates of the system state, thus integrating system 

measurements and providing a diagnosis of the system. From the sample-based state estimated, 

diagnosis uncertainty is quantified.  

 

The methodology is illustrated with a cantilever beam with a mid-span crack and potential damage 

at the support. The problem of estimating crack length after a number of cycles, starting with a 

random initial crack length is addressed through the integration of a mathematical model into the 

DBN. Additionally, the sensitivities of system responses to inputs of the system are explored. 

 

Details of the methodology for integrating heterogeneous information are presented in Section 3.2 

and Chapter 2. Section 3.3 explains how the DBN is used in diagnosis and how diagnosis uncertainty 

is quantified. The cantilever beam example is then explored in Section 3.4. 

 

3.2 System Modeling 

In Chapter 2, a methodology for integration of heterogeneous information into a DBN system model 

was proposed. Expert opinion, reliability data, mathematical models, operational data, and 

laboratory data are pulled together into the probabilistic DBN. The DBN allows updating of the 

system state as new measurements are obtained, making it ideal for diagnosis.  

 

To expand upon the methodology presented in Chapter 2, sensitivity analysis is briefly considered 

in this section.  
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3.2.7 Sensitivity Analysis 

Sensitivity analysis is a useful tool for understanding and modifying the system model, and can be 

done before and after diagnosis, as needed. The sensitivity results before diagnosis are based on 

prior information and after diagnosis are based on the updated system model. By varying input 

quantities, the effects on system responses are observed. This information indicates which inputs 

strongly affect the outputs and require further attention. Sensitivity results that are contrary to 

expectations may reveal errors in modeling or assumptions, or reveal that other phenomena may 

deserve additional attention. On the other hand, inputs which do not contribute significantly to the 

uncertainty of the response may be good candidates for dimensional reduction, thus reducing 

computational effort.  

 

In this chapter, the sensitivity information is provided by standardized linear regression 

coefficients. To calculate standardized regression coefficients, before fitting, for each variable (input 

and response), subtract the mean and divide by the standard deviation of that variable. A 

standardized regression coefficient indicates how many standard deviations an output variable 

changes for a unit standard deviation change in the input variable Additional details are available in 

[102], [103], [104]. (Variance-based decomposition is also used for sensitivity analysis in 

uncertainty quantification studies [105]). Insignificant values of regression coefficients may 

indicate that variables are immaterial to the response. If all coefficients are insignificant, important 

variables may be missing from the model. This approach is suitable when the data being fit is in fact 

linear. A coefficient of determination, R2, that is nearly 1, indicates that linearity is an acceptable 

assumption.  
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3.3 Diagnosis 

Diagnosis is the process of determining the state of a system for the purpose of identifying and 

quantifying damage. As measurements are obtained, the belief about the system state changes and 

the existence and extent of any damage can be reviewed. This section describes diagnosis of a 

dynamic system and the quantification of uncertainty in diagnosis. 

 

3.3.1 Diagnosis of a Dynamic System 

DBNs update the belief about the values of system variables during diagnosis by integrating new 

measurements into the system state estimate. However, to successfully use a DBN to perform this 

update, the system must be viewed in the context of Bayesian recursive filtering. This is because, as 

more measurements are observed, the hidden variables that are desired to be estimated become 

highly correlated and traditional inference becomes increasingly expensive, except in degenerate 

cases [106]. Bayesian recursive filtering addresses this problem by maintaining a distribution over 

the states of the hidden variables that is easily updated as new measurements become available. 

 

Bayesian Recursive Filtering 

Consider a system whose state at time k + 1,  𝐱𝑘+1, is described by 

 𝐱𝑘+1 = 𝑓𝑘�𝐱𝑘,𝐯𝑘� Eq. 21 

where 𝐱𝑘 is the state vector at time k, 𝐯𝑘 is an independently and identically distributed (i.i.d) 

process noise vector, and 𝑓𝑘 is a possibly nonlinear and time-varying function of 𝐱𝑘 and 𝐯𝑘. The 

problem is to estimate 𝐱𝑘+1 given 𝐱𝑘 and measurements 𝐳𝑘+1, where 

 𝐳𝑘+1 = ℎ𝑘�𝐱𝑘,𝐧𝑘� Eq. 22 
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𝐧𝑘 is i.i.d measurement noise and  ℎ𝑘is a possibly nonlinear and time-varying function of 𝐱𝑘 and 𝐧𝑘. 

Of particular interest is estimating 𝐱𝑘+1 using all measurements 𝐳1:𝑘+1. 

 

To view the problem in terms of Bayesian updating, a probability distribution for 𝑝� 𝐱𝑘+1�𝐳1:𝑘+1� is 

constructed. Because Bayesian statistics is used, this distribution is often called the belief state, 

denoted as 𝜎𝑘+1�𝐱𝑘+1�.  It is assumed that a prior belief state 𝜎𝑘�𝐱𝑘� is available. Additionally, 

𝑝( 𝐱0|𝐳0) ≡ 𝑝(𝐱0). Thus, 𝜎𝑘+1�𝐱𝑘+1�  may be obtained first by obtaining a prior estimate of 

𝜎𝑘+1�𝐱𝑘+1� (prediction) and then updating that prior to obtain the posterior 𝜎𝑘+1�𝐱𝑘+1�.  

 

Before obtaining 𝐳𝑘+1, the belief state 𝜎𝑘+1(𝐱𝑡+1) at k + 1 is  

 𝜎𝑘+1�𝐱𝑘+1� = 𝑝�𝐱𝑘+1�𝐳1:𝑘� Eq. 23 

which may be expanded by summing over the states of 𝐱𝑘 as 

 𝜎𝑘+1�𝐱𝑘+1� = �𝑝�𝐱𝑘+1�𝐱𝑘 , 𝐳1:𝑘�𝑝�𝐱𝑘�𝐳1:𝑘�
𝐱𝑘

 Eq. 24 

 

Using the Markov assumption, which says that the future 𝐱𝑘+1 is independent of all else given the 

previous state 𝐱𝑘, the term  𝐳1:𝑘 may be eliminated from 𝑝�𝐱𝑘+1�𝐱𝑘 , 𝐳1:𝑘�, resulting in 

 𝜎𝑘+1�𝐱𝑘+1� = �𝑝�𝐱𝑘+1�𝐱𝑘�𝑝�𝐱𝑘�𝐳1:𝑘�
𝐱𝑘

 Eq. 25 

where 𝑝�𝐱𝑘�𝐳1:𝑘� = 𝜎𝑘�𝐱𝑘�. Upon receiving the measurement at time k+1, Bayes’ rule may be used 

to update the belief state, and Eq. 25 becomes 

 𝜎𝑘+1�𝐱𝑘+1� = 𝑝�𝐱𝑘+1�𝐳1:𝑘, 𝐳𝑘+1� Eq. 26 

  

By Bayes’ rule expansion of the right hand side of Eq. 26, 

 
𝜎𝑘+1�𝐱𝑘+1� =

𝑝�𝐳𝑘+1�𝐱𝑘+1, 𝐳1:𝑘�𝑝�𝐱𝑘+1�𝐳1:𝑘�
𝑝(𝐳𝑘+1|𝐳1:𝑘)  Eq. 27 
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Because the measurements 𝐳𝑘+1  and 𝐳1:𝑘  are conditionally independent given 𝐱𝑘+1 , 

𝑝�𝐳𝑘+1�𝐱𝑘+1, 𝐳1:𝑘� = 𝑝�𝐳𝑘+1�𝐱𝑘+1�, resulting in 

 
𝜎𝑘+1�𝐱𝑘+1� = 𝑝�𝐱𝑘+1�𝐳1:𝑘+1�  =

𝑝�𝐳𝑘+1�𝐱𝑘+1�𝑝�𝐱𝑘+1�𝐳1:𝑘�
𝑝(𝐳𝑘+1|𝐳1:𝑘)  Eq. 28 

where 𝑝�𝐱𝑘+1�𝐳1:𝑘� is equivalent to Eq. 25. 

 

Unfortunately, only specific implementations of the Bayesian recursive filter such as the Kalman 

filter or grid-based methods for domains consisting of discrete variables provide analytical 

methods of evaluating Eq. 28. Thus it is necessary to pursue approximate inference algorithms. 

Particle filtering is one technique that makes the filtering problem tractable. Details of Bayesian 

recursive filtering and particle filters are available in [107]. 

 

Particle Filtering 

Particle filtering, i.e. sequential Monte Carlo (MC), is a method for approximating the distribution of 

the belief state. Common particle filtering method are based on sequential importance sampling 

(SIS), which improves upon the basic sequential MC by weighting point masses (particles) 

according to their importance sampling density, thus focusing on the samples that affect the 

posterior belief state the most. A comprehensive tutorial on particle filters is given by Ristic et al. 

[107] and is the basis of the following explanation on the SIS algorithm. 

 

A SIS filter builds upon the basic ideas of MC integration and importance sampling. In MC 

integration, to evaluate 𝐼 = ∫𝒈(𝒙)𝑑𝒙, 𝐱 ∈ 𝑅𝑛𝑥. 𝒈(𝒙) may be factored into 𝒈(𝒙) = 𝒇(𝒙) ∙ 𝜋(𝒙) such 

that 𝜋(𝒙) is a probability density function where 𝜋(𝒙) ≥ 0 and ∫𝜋(𝐱)𝑑𝒙 = 1. By drawing enough 

samples {𝐱𝑖; 𝑖 = 1, … ,𝑁𝑠} from 𝜋(𝒙), the MC estimate of the integral is 𝐼𝑁𝑠 = 1
𝑁𝑠
∑ 𝒇(𝐱𝑖)
𝑁𝑠
𝑖=1 . 
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𝜋(𝒙) may not be invertible and may be impossible to sample. However, there may be a similar 

density 𝑞(𝒙), called the importance or proposal density, which is easily sampled. The original 

integral may be rewritten as 

 

 𝐼 = �𝒇(𝒙)𝜋(𝒙)𝑑𝒙 = �𝒇(𝒙)
𝜋(𝒙)
𝑞(𝒙) 𝑞

(𝒙)𝑑𝒙. Eq. 29 

 

Some 𝐱𝑖  may be sampled from 𝑞(𝒙). The value 𝑞(𝐱𝑖) is related to 𝜋(𝐱𝑖) by a weight, 𝑤�(𝐱𝑖), so that 

𝑞(𝐱𝑖)𝑤�(𝐱𝑖) = 𝜋(𝐱𝑖). The weights are calculated by  

 𝑤�(𝐱𝑖) = 𝜋(𝐱𝑖)
𝑞(𝐱𝑖)
�  Eq. 30 

and the value of the MC integral becomes  

 𝐼𝑁 = 1
𝑁
∑ 𝒇(𝐱𝑖)
𝑁𝑠
𝑖=1 𝑤�(𝐱𝑖). Eq. 31 

 

If the normalizing factor of 𝜋(𝒙) is not known, the importance weights must be normalized by 

 𝑤(𝐱𝑖) = 𝑤�(𝐱𝑖)
∑ 𝑤�(𝐱𝑖)𝑛
𝑖=1

� . Eq. 32 

 

The value of the estimated integral is then 𝐼𝑁 = ∑ 𝐟(𝐱𝑖)𝑤(𝐱𝑖)
𝑁𝑠
𝑖=1  

 𝐼𝑁 = ∑ 𝐟(𝐱𝑖)𝑤(𝐱𝑖)
𝑁𝑠
𝑖=1 . Eq. 33 

 

Now, to apply the MC approach to the Bayesian filtering problem of estimating 𝜎𝑘+1�𝐱𝑘+1�, 

consider the joint posterior density at time k + 1, 𝑝�𝐱0:𝑘+1�𝐳1:𝑘+1�. Assuming �𝐱0:𝑘+1�𝐳1:𝑘+1� =

∫𝒈(𝒙)𝑑𝒙 , a sample-based approximation of the posterior at k + 1, 𝑝�𝐱0:𝑘+1�𝐳1:𝑘+1�, may be taken 

as 

 
𝑝�𝐱0:𝑘+1�𝐳1:𝑘+1� ≈�𝛿�𝐱0:𝑘+1 − 𝐱𝑖1:𝑘+1�𝑤𝑖𝑘+1

𝑁𝑠

𝑖=1

. Eq. 34 
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with support points 𝐱0:𝑘+1 having been sampled from some importance density 𝑞�𝐱𝑘+1�𝐳𝑘+1� and 

normalized weights 𝑤𝑖𝑘+1. The normalized weights are  

 𝑤𝑖𝑘+1 ∝
𝑝�𝐱𝑖0:𝑘+1�𝐳1:𝑘+1�
𝑞�𝐱𝑖0:𝑘+1�𝐳1:𝑘+1�

. Eq. 35 

 

If at time 𝑘 there are samples and weights approximating  𝑝�𝐱0:𝑘�𝐳1:𝑘�, after observing 𝐳𝑘 the 

density 𝑝�𝐱0:𝑘+1�𝐳1:𝑘+1� may be approximated by a new set of samples. The importance density 

may be factorized as 

 

 𝑞�𝐱0:𝑘+1�𝐳1:𝑘+1� = 𝑞�𝐱𝑘+1�𝐱0:𝑘 , 𝐳1:𝑘+1�𝑞�𝐱0:𝑘�𝐳1:𝑘� Eq. 36 

 

which allows for the new samples 𝐱𝑖𝑘+1~𝑞�𝐱0:𝑘+1�𝐳1:𝑘+1� to be generated simply by augmenting the 

previous state 𝐱𝑖𝑘~𝑞�𝐱0:𝑘�𝐳1:𝑘�with the new state 𝐱𝑖𝑘~𝑞�𝐱𝑘+1�𝐱0:𝑘, 𝐳1:𝑘+1�.  

 

Now, if 𝑝�𝐱0:𝑘+1�𝐳1:𝑘+1� is expressed in terms of 𝑝�𝐱0:𝑘�𝐳1:𝑘�, 𝑝�𝐳𝑘+1�𝐱𝑘+1�, and 𝑝�𝐱𝑘+1�𝐱𝑘�, an 

expression to update the weights can be derived. 𝑝�𝐱1:𝑘+1�𝐳1:𝑘+1� may be expressed as 

 

  

=
𝑝�𝐳𝑘+1�𝐱0:𝑘+1, 𝐳1:𝑘�𝑝�𝐱0:𝑘+1�𝐳1:𝑘�

𝑝(𝐳𝑡+1|𝐳1:𝑡)  

=
𝑝�𝐳𝑘+1�𝐱0:𝑘+1, 𝐳1:𝑘�𝑝�𝐱𝑘+1�𝐱0:𝑘, 𝐳1:𝑘�

𝑝(𝐳𝑘+1|𝐳1:𝑘)  𝑝�𝐱0:𝑘�𝐳1:𝑘� 

=
𝑝�𝐳𝑘+1�𝐱𝑘+1�𝑝�𝐱𝑘+1�𝐱𝑘�

𝑝(𝐳𝑘+1|𝐳1:𝑘) 𝑝�𝐱0:𝑘�𝐳1:𝑘� 

∝ 𝑝�𝐳𝑘+1�𝐱𝑘+1�𝑝�𝐱𝑘+1�𝐱𝑘�𝑝�𝐱0:𝑘�𝐳1:𝑘�. 

 

Eq. 37 

𝑝�𝐱0:𝑘+1�𝐳1:𝑘+1� 
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Knowing the expression for 𝑝�𝐱𝑖0:𝑘+1�𝐳1:𝑘+1� and 𝑞�𝐱𝑖0:𝑘+1�𝐳1:𝑘+1�, 𝑤𝑖𝑘+1 becomes 

 

  

∝
𝑝�𝐳𝑘+1�𝐱𝑖𝑘+1�𝑝�𝐱𝑖𝑘+1�𝐱𝑖𝑘�𝑝�𝐱𝑖0:𝑘�𝐳1:𝑘�
𝑞�𝐱𝑖𝑘+1�𝐱𝑖0:𝑘, 𝐳1:𝑘+1�𝑞�𝐱𝑖0:𝑘�𝐳1:𝑘�

 

 

=
𝑝�𝐳𝑘+1�𝐱𝑖𝑘+1�𝑝�𝐱𝑖𝑘+1�𝐱𝑖𝑘�
𝑞�𝐱𝑖𝑘+1�𝐱𝑖0:𝑘, 𝐳1:𝑘+1�

𝑤𝑖𝑘 

 

Eq. 38 

𝑤𝑖𝑘+1 

 

Additionally, if 𝑞�𝐱𝑘+1�𝐱0:𝑘, 𝐳1:𝑘+1� = 𝑞�𝐱𝑘+1�𝐱𝑘 , 𝐳𝑘+1�, the weight becomes 

 𝑤𝑖𝑘+1 =
𝑝�𝐳𝑘+1�𝐱𝑖𝑘+1�𝑝�𝐱𝑖𝑘+1�𝐱𝑖𝑘�

𝑞�𝐱𝑖𝑘+1�𝐱𝑖𝑘, 𝐳𝑘+1� 
𝑤𝑖𝑘 Eq. 39 

 

And the posterior filtered density is 

 
𝑝�𝐱𝑘+1�𝐳𝑘+1� ≈�𝛿�𝐱𝑘+1 − 𝐱𝑖𝑘+1�𝑤𝑖𝑘+1

𝑁𝑠

𝑖=1

. Eq. 40 

 

Thus, a recursive Bayesian filter may be implemented by maintaining a set of points and weights 

that approximate 𝑝�𝐱𝑘+1�𝐳𝑘+1�.  

 

A summary of the SIS algorithm for one time step is as follows. A previous (or initial if k=1) set of Ns 

weights 𝑤𝑖𝑡 and N corresponding particles 𝐱𝑖𝑘 are known. N samples are drawn from the importance 

distribution,  𝑞�𝐱𝑖𝑘+1�𝐱𝑖𝑘, 𝐳𝑘+1�. The unnormalized weights 𝑤�𝑖𝑘+1 are then computed up to a 

normalizing constant using Eq. 39. The weights 𝑤�𝑖𝑘+1 are then normalized so that their sum is equal 

to 1. The normalized weights 𝑤𝑖𝑡+1 and points 𝐱𝑖𝑘+1 form an approximation to 𝑝�𝐱𝑘+1�𝐳𝑘+1�. Two 

common choices of the importance density 𝑞�𝐱𝑖𝑘+1�𝐱𝑖𝑘 , 𝐳𝑘+1� are the prior 𝑝�𝐱𝑖𝑘+1�𝐱𝑖𝑘� and the 

likelihood 𝑝�𝐳𝑘+1�𝐱𝑖𝑘+1�. Either of these choices simplifies the weight update in Eq. 39. 
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Many variations of the SIS particle filter exist using different importance sampling densities, 

resampling techniques, and combinations of discrete and continuous variables. Resampling is a 

technique used to prevent a phenomenon called degeneracy, where a single particle accounts for a 

large proportion of the total weight of all particles. The choice of importance sampling density also 

can influence degeneracy. Ristic et al. [107]  provide algorithms for many variations of the basic SIS 

particle filter. The auxiliary particle filter (APF) [108] is used in this chapter, as it is more efficient 

than a basic SIS filter with resampling. An improvement of the APF for systems with distinct 

operating modes has been developed by Andrieu et al. [109]. 

 

The DBN contains information necessary for particle filtering including the likelihood distribution 

and a transition model between load steps k and k + 1. These distributions are used as the 

importance sampling density and to estimate the weights of particles. Thus, any information 

integrated in the DBN plays a role in online damage diagnosis. Initial assumptions from expert 

opinion, operational and laboratory data, reliability data, and mathematical models all impact the 

resulting DBN and the outcome of diagnosis.  

 

3.3.2 Fault Detection and Isolation 

The particle filter allows the state estimate of the system to evolve whether faults are present or 

not. However, hundreds or thousands of particles each with constantly changing, multidimensional 

state estimates, are not in and of themselves conducive to maintenance or mission-level decision 

making. To make sense of the information provided in the particles, a procedure that alerts the 

presence of a fault, isolates the fault, and quantifies the damage is desirable. 

 

Fault detection and isolation may occur in a couple of ways. Roychoudhury et al. [41] use a DBN 

derived from a bond graph with SIS of the healthy system for tracking. The belief state estimates 
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are compared against measurements using a statistical hypothesis test to detect faults. A 

qualitative, bond-graph based procedure is used to isolate fault candidates. Separate DBNs for each 

fault candidate are then used to quantify the faults and determine the most likely fault candidate.  

Another example is provided by Jha et al. [92] who use a DBN of discrete variables to determine the 

most probable explanation of transient faults. However, the approach is offline and does not 

require any filtering.  

 

Conveniently, the DBN and state estimates of the system provided by particle filtering contain the 

information necessary for the three stages of diagnosis. The state estimate given by the SIR particle 

filter, S, consists of 𝑁𝑠 samples with associated weights. The weights are the normalized likelihood 

of each particle. Here it is assumed that the samples are of equal weight, which occurs after 

resampling in a particle filter. The marginal distribution over each of the k combinations of faults, 

including the healthy case, is a k-dimensional multinomial distribution. 𝑘 = 2𝑛, where n is the 

number of faults. The 𝑖𝑡ℎ fault combination occurs with expected probability 𝑝𝑖 = 𝑁𝑖 𝑁𝑠⁄ , where  𝑁𝑖  

is the number of occurrences of the 𝑖𝑡ℎ fault combination in S and 𝑁𝑠 is the number of samples. 

 

The probability of detection is the probably of observing any fault. If the healthy scenario has an 

expected value of  𝑝1 = 𝑁1 𝑁𝑠⁄ , the detection probability is taken as 𝑃𝐷 = 1 − 𝑝1. If 𝑃𝐷 exceeds the 

detection threshold, an alarm is triggered and isolation is performed by finding the largest 𝑝𝑖 . To 

quantify the damage, the mean value of the damage parameter(s), 𝑞𝑖, is calculated over all particles 

corresponding to ith fault combination. Note that 𝑞𝑖 may be a vector if the 𝑖𝑡ℎ fault combination has 

multiple damage parameters. 
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3.3.3 Diagnosis Uncertainty 

While the particle filter inherently accounts for the uncertainty of the state estimate by providing a 

distribution of the state, the uncertainty in this estimate is in general difficult for a human decision-

maker to discern. Lack of understanding of the diagnosis uncertainty could result in the wrong 

maintenance actions being performed or prematurely taking a system offline for repairs. Thus, 

providing a measure of the overall diagnosis uncertainty for the decision-maker is important.  

 

Overall diagnosis uncertainty is determined by the uncertainty in the existence of damage, location 

of damage, and extent of damage. These uncertainties may be combined to determine the overall 

uncertainty in diagnosis. Following Sankararaman and Mahadevan [110], the overall probability of 

correctly diagnosing a fault in parameter 𝜃𝑖 and correctly obtaining the value of  𝜃𝑖, denoted by 𝑞𝑖, is 

 
𝐹𝑞(𝑞𝑖) = (1 − 𝑃𝐷) ∗ 𝐹𝑞�𝑞ℎ𝑒𝑎𝑙𝑡ℎ𝑦� + 𝑃𝐷 ∗ �1 − 𝑃𝑖𝑠𝑜,𝑖� ∗ 𝐹𝑞�𝑞ℎ𝑒𝑎𝑙𝑡ℎ𝑦� 

+𝑃𝐷𝑃𝑖𝑠𝑜,𝑖 ∗ 𝐹𝑞(𝑞𝑖|𝐷𝑎𝑚𝑎𝑔𝑒 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑖𝑛 𝜃𝑖) 

Eq. 41 

 

 

where 𝐹𝑞  is the unconditional CDF of 𝑞𝑖,  𝑃𝐷  is the fault detection probability, 1 − 𝑃𝐷  is the 

probability of a false alarm, 𝑞ℎ𝑒𝑎𝑙𝑡ℎ𝑦 is the nominal value of 𝜃𝑖, and 𝑃𝑖𝑠𝑜,𝑖 is the probability of correct 

fault isolation given damage.  

 

Sankararaman and Mahadevan [110] use a Bayesian methodology to estimate the various terms in 

Eq. 41. In the context of the particle filter, an estimate of the belief state already contains this 

information. The unconditional pdf of damage parameter q, 𝑓𝑞(𝑞𝑖) — the derivative of the 

unconditional cdf, 𝐹𝑞(𝑞𝑖), given in Eq. 41 — is conveniently provided by the particles. Each particle 

contains an estimate of q, and given hundreds or thousands of particles, an estimate of the 

distribution 𝑓𝑞(𝑞𝑖) may be constructed. This estimate accounts for the probability of incorrect 

isolation by allotting more particles to the most likely fault combinations. The probability of a false 
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alarm is included because the healthy state is one of the combinations considered. This distribution, 

along with a plot or distribution parameters of the healthy distribution of q,  alerts the decision 

maker to the severity of damage. 

 

The probability of correct isolation for combination i is the probability that the  𝑖𝑡ℎ fault 

combination is true, which is 𝑝𝑖 = 𝑁𝑖 𝑁𝑠⁄ . Thus, 𝑃𝑖𝑠𝑜,𝑖 = 𝑝𝑖 = 𝑁𝑖 𝑁𝑠⁄ . The detection probability 

𝑃𝐷 = 1 − ∑ 𝑝𝑖𝑛
𝑖=2 , where 𝑖 = 2. . 𝑛 represent the system configurations with at least one fault. The 

detection probability and faults ranked according to isolation probability may be presented to the 

decision maker.  

 

Confidence in the diagnosis uncertainty depends on the number of samples, 𝑁𝑠, and may be 

increased by increasing 𝑁𝑠. The variance of 𝑝𝑖  follows from the Dirichlet distribution as 

 𝑉𝑎𝑟[𝑝𝑖] =
𝑁𝑖(𝑁𝑠 − 𝑁𝑖)
𝑁𝑠2(𝑁𝑠 + 1)

 Eq. 42 

 

Confidence intervals for 𝑝𝑖  may be calculated as in [111] (or approximated with the normal 

distribution). This information allows the decision maker to assess how meaningful the detection 

and isolation probabilities are.  

 

Three factors that affect the diagnosis (and prognosis) of a system are the sensitivity of the system 

measurements to damage, noise in the training and measurement data, and the sampling frequency 

at which measurements are obtained. If the sensitivity to damage is low and the noise large, 

diagnosis may be difficult or impossible. A low sampling frequency can deteriorate the quality of 

state estimates in systems that depend on previous states, such as nonlinear dynamic systems like 

the actuator system presented in Chapter 2. The states estimates amount to a linearized 

approximation of the state across the sampling interval (reciprocal of sampling frequency). As 
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sampling rate decreases, the interval becomes wider and the approximation worsens. A greater 

sampling frequency decreases the sampling interval and reduces the error due to linearization, thus 

improving states estimates. 

 

3.3.4 Summary 

Chapter 2 proposed a methodology for integrating multiple types of information from multiple 

sources into a DBN. The current section presented a framework for the diagnosis of faults and 

quantification of diagnosis uncertainty, when using a particle filter and in the presence of multiple 

faults. The results of uncertainty quantification, namely the probability of damage, isolation 

probabilities, distributions of damage estimates, and sensitivity analysis provide information 

regarding confidence in the system model and the diagnosis to a decision maker. 

 

3.4 Illustrative Example 

To illustrate the methodology, diagnosis is performed on the cantilever beam structure of Figure 12 

in the presence of heterogeneous information. The available information consists of expert opinion, 

synthetic operational and laboratory data generated by an ANSYS finite element model, published 

failure rates for damage occurring at the support and a crack occurring, and Paris’ law for modeling 

crack growth. To account for uncertainty, some assumptions have been made about the 

distributions of some model parameters. However, the methodology is agnostic to such 

assumptions. 



 71 

 

Figure 12. Cantilever beam system 

 

The example system consists of a 1 meter long cantilever beam of depth 100 mm and uniform cross 

section made of 7075-T6 aluminum alloy subjected to a point load at the free end. The beam is 

subject to K cycles of load P, and the interest is in calculating/measuring deflection δ at the free end. 

Suppose that a mid-span crack in the beam initiates at the kth load step, and that this crack grows as 

additional cycles of the load P are applied. Also, suppose the support has the possibility of suddenly 

weakening. Both of these faults have the effect of decreasing the stiffness of the system, resulting in 

a larger deflection magnitude. The stiffness is a function of the support condition, geometry (length, 

cross section), material properties (Young’s modulus), and crack size/shape. The support damage 

alters the support from the most stiff condition (fully fixed) to a less stiff condition (partially fixed). 

The crack effectively changes the cross section of the beam and reduces the moment of inertia, 

thereby decreasing the ability of the beam to resist bending. Discrete variables D and Cr represent, 

respectively, whether damage at the support has occurred and whether a crack has occurred. It is 

desired to create a DBN for this system that can diagnose the existence of damage at the support or 

a crack and quantify the amount of damage.  

 

δ 

crack

support

P
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3.4.1 DBN Construction from Heterogeneous Information 

Expert Opinion 

Suppose an expert has decided to treat the condition of the support and the crack independently, 

while the crack length depends on the load. This network structure can be updated using 

operational data if desired. (However, the network structure is not updated in the numerical 

example below, because the data does not indicate the need for updating). The expert further 

designates P as a time varying load that can be modeled with an ARIMA model, and treats the 

continuous variables, stress intensity factor and deflection, as Gaussian. The crack length, a, is to be 

calculated using Paris’ law. Note that two variables, Cr and a, are being used to describe the 

presence of the crack (true/false) and the crack length, respectively.  The expert does not define 

any of the conditional probabilities within the network.  

 

The expert then determines the structure of the DBN (Figure 13) along with the system variables 

and their distributions (Table 11), based on knowledge of the system. With the network structure 

and assumptions about variable types in place, new types of information, such as operational data, 

become the focus of attention. 
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Figure 13. Cantilever Beam DBN, initial and transition network. Gray nodes are measurements. 

 

 
Table 11. Cantilever beam DBN (Figure 13) model variables. 

Variable Symbol Type Distribution Role 
Damage at 
support indicator D Discrete Binomial (false, true) Model parameter 

Crack indicator Cr Discrete Binomial (false, true) Model parameter 
Load P Continuous Gaussian  Input (measured) 
Stress Intensity 
Factor ΔK Continuous Gaussian Model parameter 

Crack length a Continuous Gaussian Model parameter 
Deflection  δ Continuous Gaussian Output (measured) 
 

Mathematical Models 

The beam has possible damage at the support and possibly a crack that grows with the load cycle. A 

(two-dimensional) ANSYS finite element model of the beam is created to generate synthetic data. 

The ANSYS model is used to calculate the structural response (deflection) given I load histories, 

each containing J load cycles. For each load history, model parameters are sampled from 
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distributions given in Table 12. The load P is described by an ARIMA model, following Ling and 

Mahadevan [48]. 

 

Each load history is initially applied to a “healthy” version of the model, and the deflection of the 

free end of the beam recorded at each load cycle. If damage at the support occurs or a crack forms 

at a particular load cycle, a “faulty” version of the model is used for the rest of the load history. The 

“faulty” model may either have damage at the support or a crack, or both. Because both faults may 

occur, and one fault will likely occur before the other, this may result in switching from a “healthy” 

model to a “single fault” model to a “both faults” model within one load history. In total, four models 

are available, one for each configuration of the system.  

 

 
Table 12. Finite element model parameters 

Parameter, unit Symbol Distribution Type Distribution Parameters 
Initial crack length, 
mm 

a0 lognormal Mean 0.23  
Std. 0.05 

Paris’ law parameter C lognormal Mean 6.54E-13  
Std. 4.01E-13 

Young’s modulus, 
N/mm2 

E Constant 71705.48 
  

Damage at support, 
mm 

d Gaussian Mean 20 
Std. 0.00075 

Paris’ law exponent m constant 3.8863 
Load, N P Gaussian (2,1,0) ARIMA 

specification 
Exponential parameter 
for occurrence of 
damage at support 

λd Gaussian If uncracked 
Mean 2E-4 
Std. 1E-5 

If cracked 
Mean 4E-4 
Std. 1E-5 

Exponential parameter 
for occurrence of crack 

λc Gaussian If no 
damage at 
support 
Mean 3E-4 
Std. 1E-5 

If damage 
at support 
Mean 6E-4 
Std. 1E-5 
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Damage at the support is modeled by relaxing the constraints in the ANSYS model. This is done for 

nodes lying on the fixed end of the beam and on the interval [0 d] from the bottom edge of the beam, 

where d is sampled from a normal distribution with parameters given in Table 12. d is held 

constant until the end of the end of the load history. The distribution of d has been heuristically 

selected for demonstration of the diagnosis methodology. 

 

The crack is modeled as a straight crack as shown in Figure 14 and Figure 15. A finer mesh is used 

in the vicinity of the crack tip. The length of the crack is increased in the model according to Paris’ 

law [112], 𝑑𝑎 𝑑𝑁� =  𝐶(∆𝐾)𝑚, where C and m are material dependent constants and ∆𝐾 is the stress 

intensity factor (SIF) calculated within ANSYS at a particular load step. The crack is initialized with 

a length 𝑎0 that is determined by sampling from the equivalent initial flaw size (EIFS) [113] 

distribution (Table 12).  Distributions of the model parameters C, and m  are found in [113] and 

given in Table 12. 

 

Figure 14. Mesh in vicinity of crack 
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Figure 15. Mesh at crack tip 

 

 

The load, P, is generated by an ARIMA model (1,1,0), which is trained from online operational data 

as it becomes available. The one step ahead prediction is considered to have a Gaussian distribution.  

The stress intensity factor, ΔK(k+1), is determined based on the previous crack length, a(k), 

existence of the crack, Cr(k+1), and the load P(k+1) using a Gaussian process (GP) model built using 

the Netlab toolbox in Matlab [114] with a rational quadratic covariance function (see Appendix for 

details of GP modeling). GP models have been used because of their ability to effectively 

approximate arbitrary nonlinear functions probabilistically, without assuming a particular 

functional form. (What is assumed is the covariance structure). Further, GP models can be deployed 

efficiently in particle filtering, requiring at most one matrix inversion operation per possible state 

of the discrete parents of the variable being modeled by the GP.  The discrete parent of ΔK(k+1), 

Cr(k+1), is binary, indicating two operating modes and a maximum of two matrix inversions per 
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cycle in particle filtering. In reality, the computational effort may be even less. For example, if 

Cr(k+1) = true does not occur in any of the particles, there is no need to invert a matrix for the GP of  

ΔK(k+1) corresponding to this condition. Further, in the case when Cr(k+1) = false, ΔK = 0 and no 

GP is required at all, further reducing computational effort. When Cr(k+1) = true,  ΔK > 0 and GP is 

trained. Similarly, the crack length, a(k+1), is estimated using a GP model, with previous crack 

length, a(k),  and stress intensity factor, ΔK(k + 1), as parents.  a(k+1) has no discrete parents, so 

only one GP is required to be trained. The GPs for ΔK(k + 1)  and a(k+1)  are trained using a time-

lagged database as in Table 3 in Chapter 2. 

 

The deflection, δ(k+1), is modeled using linear regression of the form 𝑃(𝑘 + 1) = 𝑏0 + 𝑏1𝑃(𝑘 + 1) +

𝑏2𝑎(𝑘 + 1), b0 is the intercept, b1 is the load coefficient, and b2 is the crack length coefficient. Note 

that b2 is only required when the crack is present. Because the deflection is additionally conditioned 

on the presence of damage at the support, D, and the existence of a crack, Cr, four different sets of 

regression coefficients are estimated corresponding to each unique system configuration. Test 

statistics for the regression models at the 99% confidence level are listed in Table 13. (Modulus of 

elasticity is not included in the regression model, as it is assumed constant). 

 

The linear relationship is appropriate and adequate in this case as the system is assumed to stay 

within the elastic regime. The linear regression also enables accurate extrapolation outside of 

training values (within the elastic regime). In contrast, a GP model increases the uncertainty in 

between training points, making deflection estimates noisier and diagnosis more difficult, and a GP 

requires more computational effort to train and evaluate. (Thus when there is good reason to 

assume a functional form and constant variance, a simple regression model may be adequate; when 

the functional form is not obvious and the fluctuation between training points needs to be modeled, 
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a GP model might be more appropriate. Note that the GP model also consists of a mean term and a 

variance term; the mean term is very similar to a regression model).  

 
Table 13. Linear regression coefficients and test statistics 

Configuration Regression Coefficients 99% conf. interval (t-dist) Standardized Regression 
Coefficients R2 

D = false 
Cr = false 

b0=-1.2488E-5 
b1=5.3141E-4 
b2=0 

[-1.2589E-5, -1.2387E-5] 
[5.3141E-4, 5.3141E-4] 
[0, 0] 

b*0=-0.7071 
b*1=0.7071 

0.999 

D = true 
Cr = false 

b0=-1.8231E-4 
b1=5.5932E-4 
b2=0 

[-1.8252E-4,  -1.8210E-4] 
[5.5932E-4, 5.5932E-4] 
[0, 0] 

b*0=-0.7071 
b*1=0.7071 

0.999 

D = false 
Cr = true 

b0=-2.3332E-4 
b1=5.3143E-4 
b2=0.0013 

[-2.3448E-4, -2.3216E-4] 
[5.3143E-4, 5.3143E-4] 
[0.0013, 0.0013] 

b*0=-1.0000 
b*1=0.0001 
b*2=1.0000 

0.999 

D = true 
Cr = true 

b0=-0.0015 
b1=5.5933E-4 
b2=0.0056 

[-0.0015, -0.0015] 
[5.5933E-4, 5.5933E-4] 
[0.0056, 0.0056] 

b*0=-0.8407 
b*1=-0.2651 
b*2=1.1058 

0.999 

Note: D – support damage state; Cr – crack state. 

 

Reliability Data 

Existence of damage at the support, D, is governed by an exponential distribution with rate 

parameter 𝜆𝑑 that is sampled before each load history from a normal distribution with parameters 

given in Table 12. Because it is assumed that damage at the support is more likely if a crack is 

present, 𝜆𝑑 is increased if a crack occurs.  

 

Before each load application, an appropriate ANSYS model of the beam is selected. A random 

number on the interval [0 1] is generated. If the random number exceeds 𝑒𝑥𝑝(−𝜆𝑑𝑛), where n 

indicates the nth loading in the load history, then a  ANSYS model with damage at the support is 

used.  

 

The presence of the crack in the beam, Cr, is assumed to be governed by an exponential distribution, 

whose rate parameter, 𝜆𝑐 , is sampled from a normal distribution (mean, variance) before 
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simulation. 𝜆𝑐 is increased if there is damage at the support already. As with damage at the support, 

a random number is drawn on the interval [0 1], and, if the number exceeds 𝑒𝑥𝑝(−𝜆𝑐𝑛), an ANSYS 

model for a cracked beam is used.  The crack is initialized with a length 𝑎0 that is determined by 

sampling from the equivalent initial flaw size (EIFS) [113] distribution (Table 12).  

 

To illustrate the inclusion of reliability data in a DBN, consider the variable 𝐶𝑟(𝑘 + 1) whose 

conditional probability table is shown in Table 14. 𝐶𝑟(𝑘 + 1)  indicates whether a crack has 

occurred at load step k + 1. When 𝐶𝑟(𝑘 + 1) = 𝑓𝑎𝑙𝑠𝑒,  there is no crack, and when 𝐶𝑟(𝑘 + 1) = 𝑡𝑟𝑢𝑒, 

there is a crack. 𝐶𝑟(𝑘 + 1) has one parent, 𝐶𝑟(𝑘).  

 
Table 14. Conditional probability table for Cr(k+1). 

Crack state at cycle k Pr(Cr(k+1) = false | state) Pr(Cr(k+1) = true | state) 

Cr(k) = false p1,1(k+1) p1,2(k+1) 

Cr(k) = true p2,1(k+1) p2,2(k+1) 

 

The probabilities pi,j(k+1) may be determined using reliability data (failure rates) found in the 

literature. In particular, Pr(Cr(k+1) = true | Cr(k) = false) is of interest, as this is the probability of 

the fault occurring given that the fault has not occurred at the previous load cycle.  

Operational and Laboratory Data 

Synthetic operational data was generated using the ANSYS finite element model. To obtain enough 

data to estimate network parameters, 50 load histories each containing 200 load cycles were used 

to generate responses from the beam model.  

 

After generating synthetic data, the data was organized in a table. Sample data for one load history 

is given in Table 15.  
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Table 15. Example data for a single load and response history 

Load Cycle, k Load, N Support 
Damage  

Crack Existence Crack Length, mm Deflection, mm 

1 6 False False 0 11 

2 6 False False 0 11 

3 6 True False 0 13 

4 6 True True 0.23 13.05 

5 6 True True 0.231 13.1 

 

Because it is desired to know transition probabilities between time slices k and k + 1 in the DBN, the 

data is then lagged so that each data case includes data from load cycles k and k + 1. Lagged data 

from Table 15 is shown in Table 16. 

 

 

 
Table 16. Lagged data for a single history 

Load 
Cycle 

k 

Load  
N 

Suppo
rt 

Dama
ge 

Crack 
Existence 

Crack 
Length 

mm 

Defl.  
 mm 

Load 
Cycle 
k + 1 

Load
N 

Supp.
Dama

-ge 

Crack 
Existence 

Crack 
Length 

mm 

Defl. 
 mm 

1 6 False False 0 11 2 6 False False 0 11 

2 6 False False 0 11 3 6 True False 0 13 

3 6 True False 0 13 4 6 True True 0.23 13.05 

4 6 True True 0.23 13.05 5 6 True True 0.231 13.1 
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Sensitivity Analysis 

The sensitivity of the deflection to the load, crack length, and damage at support condition (forward 

sensitivity) may be ascertained by examining the regression coefficients in Table 7. The coefficient 

of determination, R2, is nearly 1 for all models, indicating that the linear regression model is a good 

fit. Further, the 99% confidence intervals for the coefficients are narrow, indicating little 

uncertainty in their values. Due to the confidence in the regression model, when searching for the 

source of uncertainty in deflection estimates, the ARIMA and GP models should be scrutinized. 

 

By examining the normalized regression coefficients, it is seen that when damage at the support is 

present, the effect of crack length on the deflection is magnified (i.e., the normalized magnitude of 

b2 increased from 1.0000 to 1.1058) as is the effect of the load on the deflection (normalized 

magnitude of b1 increases from 0.0001 to 0.2651), as expected.  

 

3.4.2 Diagnosis 

To perform diagnosis, a 200 cycle load history was simulated with damage at the support occurring 

first followed by a crack. The load and deflection were assumed to be measurable while the crack 

and damage at the support were assumed to be unobservable.  Inference via particle filtering (Ns = 

15,000) using an auxiliary particle filter was performed on the DBN to obtain filtered estimates of 

the system state. The scenario was considered for the separate cases of 50:1, 75:1, and 100:1 signal 

to noise ratio (SNR) using Gaussian white noise added to the synthetic operational and laboratory 

data. Noise was added to data used to construct the DBN (including GP, regression, and ARIMA 

models), and to the synthetic measurement data. 

 

After obtaining each state estimate at each load step, the probability of damage was calculated as in 

Section 3. If the probability of damage exceeded 95%, an alarm was triggered. The fault was then 
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isolated and quantified. Figure 16 shows maximum a posteriori (MAP) estimates of the variables Cr 

and D against their ground truth values under the various noise scenarios. Note that the MAP value 

only reflects the most likely particle. Larger amounts of noise affect the ability to accurately 

diagnose damage as well as the delay in determining the presence of damage. At the 50:1 SNR level, 

the ability to detect the crack is completely lost, as the noise drowns out the subtle changes in 

deflection caused by the crack. 

 
a) 50:1 SNR 

 
b) 75:1 SNR 

 
c) 100:1 SNR 

 
Figure 16. MAP estimate of indicator variables for damage at the support and crack length with ground truth 

values 



 83 

 

Figure 17. MAP estimate of state variables with measurement or ground truth values (SNR 100:1) 

 

Figure 17 shows the MAP estimates of the load, deflection, stress intensity factor, and crack length 

with SNR 100:1. Further, the unobservable quantities stress intensity factor and crack length have 

some uncertainty in their estimates, as evidenced by the MAP values in Figure 17.  

 

3.5 Diagnosis Uncertainty 

Diagnosis uncertainty was quantified after obtaining the state estimate at each load step and 

performing the diagnostic tasks of detection, isolation, and quantification. Figure 18 shows a kernel 

density estimate of the crack length distribution from the particles at the 97th cycle.  
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Figure 18. Kernel density estimate of crack length estimate from particle filter with SNR 100:1 

 

 
a) 50:1 SNR 

 
b) 75:1 SNR 

 
c) 100:1 SNR 

 

Figure 19. Fault isolation probabilities 
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Figure 19 shows the isolation probability for each of the four system states (healthy, one fault or 

the other, both faults) as they evolve with load cycle under each noise scenario. The probabilities of 

all combinations must sum to 1 at each time instant. When a particular fault combination is isolated, 

its probability approaches 1. In all cases, damage at the support was correctly isolated at the 8th 

load cycle. However, with 50:1 SNR, the crack was incorrectly isolated well before its occurrence at 

the 79th cycle (Figure 19 a). As the noise is decreased (Figure 19 b, c), the crack is isolated with less 

delay.  

 

The ability to diagnose the system is dependent on the amount of noise and the sensitivity of 

measurements to parameters. Noise and sensitivity to damage vary by system and do not depend 

on the diagnosis methodology. The diagnosis methodology proposed in this chapter is general and 

is applicable to many systems. Further investigation is needed to determine the sources of 

uncertainty in diagnosis. 

 

3.7 Conclusion 

This chapter developed a methodology for diagnosis of a mechanical system in the presence of 

heterogeneous information and uncertainty. First, expert opinion is used to establish the system 

definition and basic assumptions. Reliability data is used to calculate conditional probabilities for 

fault indicator variables for damage at the support and a crack. Operational and laboratory data 

generated from an ARIMA model and ANSYS model are organized in a table and used for estimating 

a Gaussian process and regression model. Next, the DBN is employed in obtaining filtered estimates 

of the system state via an auxiliary particle filter. Then, by using information provided during 

particle filtering, faults are detected and isolated. Diagnosis uncertainty is quantified using the DBN 

and information acquired during particle filtering. The effectiveness of the methodology needs to be 

investigated with real-world data and for high-dimensional systems. 
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The next chapter extends this approach to prognosis of future system health and remaining useful 

life under heterogeneous and uncertain information.  
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CHAPTER IV. 

4. PROBABILISTIC PROGNOSIS USING DYNAMIC BAYESIAN NETWORKS 

 

4.1 Introduction 

4.1.1 Background 

The rise of complex and costly systems for use in extreme environments has resulted in new 

challenges in maintenance, planning, decision-making and monitoring for these systems. To reliably 

execute the missions they were designed for, these systems must be meticulously maintained. 

Traditional schedule-based maintenance results in unnecessary system downtime and the potential 

for serious problems to develop between routine maintenance. The alternative, condition-based 

maintenance (CBM) [115], monitors systems as they operate, alerting personnel when faults occur. 

Maintenance is performed on-demand, resulting in less downtime and lower costs. Further, online 

system measurements may occur on different time scales from one another or only be available in 

particular system configurations. This necessitates seamless integration of current state estimation 

and predictive techniques, which are part of a prognosis methodology. 

 

Prognosis is the process of predicting the future state of a system coupled with information about 

the implications of that estimate of the system health state. The quantitative prognosis of a system 

is commonly expressed through the remaining useful life (RUL). RUL quantifies the amount of time 

until a system reaches some failure criterion, e.g. fault magnitude or performance metric crosses a 

threshold or system is no longer operable.  Ideally, the uncertainty in RUL is quantified by 

estimating the distribution of RUL, resulting in a probabilistic prognosis. Importantly, probabilistic 
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prognosis assesses the outlook for a specific instantiation of a system, or a particular unit under test 

(UUT). Measurement data updates the belief about the present state and RUL of the particular UUT.  

In this way, probabilistic prognosis differs from probabilistic reliability analysis, which aggregates 

data to obtain probabilistic reliability data for a population as opposed to an individual. Such 

population statistics may be suitable for tasks such as system design, but less helpful for 

operational and maintenance decisions that focus on individual units, as is the case in CBM. 

Prognosis, on the other hand, tracks the health of an individual unit. 

 

A prognosis methodology should thus have several important characteristics. It should provide a 

distribution of RUL as opposed to a point estimate, thus accounting for the uncertainty coming from 

many sources (variability, information uncertainty, and model uncertainty). In most situations, 

prognosis about the future is based on diagnosis of the current state; therefore it should account for 

uncertainty in diagnosis (i.e. uncertainty in damage probability, detection, isolation, and 

quantification). It should allow easy transition between situations when measurements are 

available and when they are unavailable. Finally, the methodology should survive rigorous 

validation.  

 

Prognosis methodologies may be divided into statistical, data-based, model-based, and hybrid 

approaches (see e.g. Jardine et al. [115], [116]). Statistical approaches include statistical process 

control [117], logistic regression [118], survival models [116], [119], and stochastic process models 

[120], [121], [122].  

 

Data-based approaches consist of machine learning methods (support vector machines [123], 

relevant vector machines [124], neural networks [10,12,13,14,15,16]) and graphical models such as 

dynamic Bayesian networks (DBNs) hidden Markov models (HMMs) [129], [130]. Liu et al. [131] 
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use adaptive recurrent neural networks for the estimation of battery RUL. Goebel et al. [132] 

compare relevance vector machines (RVMs), Gaussian process regression (GPR) and neural 

network (NN) methods for prognosis. Gebraeel [133] uses NNs for degradation modeling and test 

the methodology on ball bearings. Saha et al. [134] compare relevance vector machines (RVMs, a 

Bayesian implementation of support vector machines) and particle filtering to estimate RUL 

distributions for batteries. 

 

In model-based approaches, system models are used to estimate RUL or other relevant metrics. 

Such methods rely on accurate physics-based models for prediction. These include physical failure 

models [135], filtering models [136],[137],[138][139], and statistical models. Orchard and 

Vachtsevanos [136] use state estimation models combined with particle filtering for diagnosis and 

estimation of the RUL distribution of a planetary gear. Lorton et al. [137] combine the differential 

equations of a system with system measurements via particle filtering for probabilistic model-

based prognosis.  

 

Hybrid methodologies combine multiple approaches, i.e., a combination of data-driven and model-

based approaches. E.g. Kozlowski [140] uses ARMA models, neural networks, and fuzzy logic for 

estimation of the state of health, state of charge, and state of life of batteries.  

 

DBNs are probabilistic graphical models with diagnostic and prognostic capabilities. They have 

shown promise in several recent applications. Dong and Yang [45] use DBNs combined with 

particle filtering to estimate the RUL distribution of drill bits in a vertical drilling machine. While 

very useful, particle filtering is not the only inference method available for prognosis.  Jinlin and 

Zhengdao [141] use DBNs modeling discrete variables and the Boyen-Koller algorithm for 

prognosis. Tobon-Mejia et al. [142] use mixtures of Gaussian HMMs (a form of DBN) to estimate the 



 90 

RUL distributions for bearings. The junction tree algorithm is used for exact inference. The 

prognosis methodology is validated using the hierarchical metrics proposed by Saxena et al. [143]. 

4.1.2 Motivation 

While the preceding literature review represents a number of prognosis approaches, prognosis is 

still an emerging research area with room for much additional work. The combination of DBNs and 

particle filtering has many qualities that are attractive for prognosis:  

1) The graphical representation of a problem provided by DBNs aids understanding of 

interactions in a system.  

2) DBNs provide a probabilistic model of the system that accounts for uncertainty due to 

natural variability, measurement error, and modeling error.   

3) DBNs can integrate many types of information that may be encountered during prognosis 

(including expert opinion, reliability data, mathematical models, operational data, and laboratory 

data) into a unified system model.   

4) DBNs can update the distributions of all variables in the network when observations are 

obtained for any one or more variables. This allows the most recent system measurements to be 

accounted for in prognosis. 

5) The probabilistic state estimate generated during particle filtering contains information 

about diagnosis uncertainty that can be used in prognosis and decision making. 

6) Particle filtering algorithms can take advantage of parallel computing, thus reducing 

computation time. 

  

Additionally, prognosis methodologies reported in the literature are mostly application-specific. 

There is a need for a prognosis methodology that can make use of heterogeneous information and 

be applied to a wide range of problems. 
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4.1.3 Contributions 

In this chapter, a framework for probabilistic prognosis is proposed. The methodology advances the 

use of DBNs in prognosis by integrating heterogeneous information. Further, the DBN-based 

methodology addresses the need for a general prognosis framework for developing validated 

prognosis methodologies for any system. The methodology provides a means for quantifying 

diagnosis uncertainty that can be used in prognosis and decision making. 

 

The DBN is constructed from prior information, including physics of failure models. The DBN is a 

store of prior information, but also provides the means for integrating current measurements into a 

probabilistic estimate of the current state of a system. In this chapter, particle filter-based inference 

is used for diagnosis, and forward sampling in the DBN is used for recursive prediction. Diagnosis 

uncertainty is quantified probabilistic state estimate of the system that results from particle 

filtering. Sample-based estimates of detection and isolation probabilities as well as density 

estimates of system damage parameters are developed based on marginal distributions in the state. 

This information can be used in decision making for improvement of the health monitoring system. 

The probabilistic state estimate also provides a seamless transition from diagnosis to future state 

prediction using recursive sampling. The ability of the methodology to estimate RUL is validated 

using metrics from Saxena et al. [143]. The methodology is illustrated for a hydraulic actuator with 

a seal leak.  

 

The remainder of this paper is organized as follows. Section 2 details the proposed prognosis 

methodology, including system modeling, diagnosis, prediction, and validation. In Section 3, the 

proposed methodology is demonstrated on a hydraulic actuator system with a progressive internal 

leak. Section 4 discusses conclusions and future work. 
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4.2 Proposed Prognosis Framework 

The challenge of prognosis is to minimize the uncertainty in the estimated distribution of RUL given 

constraints on available information about the system, operating environment and loading 

conditions, computational resources, and time horizon. In this chapter, a DBN-based prognosis 

framework is proposed. The prognosis framework first constructs a DBN-based system model using 

heterogeneous information sources. Expert opinion, reliability data, mathematical models, and 

operational and laboratory data are used in the construction of the DBN model. In particular, 

inclusion of physics of failure models is important in prognosis. The evolution of phenomena such 

as cracking, wear, and corrosion play a large role in determining the health of a system. The system 

model is used for diagnosis to obtain information about the current state of the system. A 

sequential Monte Carlo then predicts future system states and estimates the RUL distribution. 

Finally, the prognosis capability of the resulting system model, diagnostic, and predictive 

algorithms are validated using a four step hierarchical procedure. The prognosis procedure is 

shown in Figure 20. 

 

 

Figure 20. Proposed Prognosis Methodology 

4.2.1 DBN System Modeling 

The proposed prognosis methodology first builds a DBN system model from heterogeneous 

information. A methodology for building such a model is discussed in Chapter 2. 
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4.2.2 Physics of Failure Models 

A key distinction between a system model capable of diagnosis and one capable of prognosis is that 

a prognostic model can estimate the evolution of damage in the future while a diagnosis model only 

needs the ability to infer the current state of damage. Diagnostic procedures based on fault 

signatures or pattern recognition are examples of this. While they may be able to detect and isolate 

damage, quantification can be done using least-squares based estimation, they do not necessarily 

have any ability to model progressive damage mechanisms such as crack growth, wear, and 

corrosion. One of the challenges of prognosis is developing accurate and comprehensive physics of 

failure models. These damage mechanisms are complex, varying with system design and dynamics, 

and can interact in many ways.  

 

For illustration, the example problem in this chapter considers a dynamic seal in a hydraulic 

actuator. Seal failure is discussed in great detail in [67].  

 

The volume of material removed from the seal per cycle depends on the friction force and sliding 

distance per cycle and may be calculated by 

 𝑉(𝑡) = 𝑤𝑠𝑒𝑎𝑙(𝑡)𝐹(𝑡)𝑑(𝑡) Eq. 43 

where 𝑤𝑠𝑒𝑎𝑙 is the wear rate of the seal in mm3/N/m, F is the frictional force on the seal, and d is  

the total sliding distance, and t refers to the load cycle. 

 



 94 

P

Piston Seal

L

 

Figure 21. Hydraulic actuator diagram showing dynamic seals  

For the seal shown in Figure 21, where L is the contact length of the seal and P is pressure, the 

leakage area (considered in Eq. 8 - Eq. 20 as  in Thompson et al. [72]) based on the volume of 

material removed is assumed to be 𝑎𝑙𝑒𝑎𝑘 = 𝑉(𝑡) 𝐿⁄ . 

 

The wear rate itself varies with factors such as the age of the seal, temperature, contaminants in the 

fluid. The load experienced by the seal also varies as does the velocity of the actuator. As a result 

the volume of material removed and leakage area are nonlinear functions. However, for the sake of 

demonstration, it is assumed that the leakage area and volume of material removed vary linearly. 

This implies that the wear rate is steady, which is possible outside of the initial wear-in phase and 

under constant environmental conditions. Additional information on seal wear is provided in 

Appendix B. 
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4.2.3 Diagnosis 

Diagnosis is the process of detecting and isolating damage in a system and quantifying the 

magnitude of damage. When the probability of a fault occurring crosses the detection threshold, a 

fault isolation procedure finds fault set candidates to further analyze. To isolate candidate fault sets, 

statistical inference computes the probability of each fault set. The magnitude of the fault may then 

be estimated.  

 

In the context of prognosis, diagnosis (or more generally, filtering) provides the initial conditions 

for prognosis of a UUT. The initial condition for prognosis has a large impact on the accuracy and 

precision of the RUL distribution. As such, it is important to understand and account for diagnosis 

uncertainty. Diagnosis under heterogeneous information using DBNs is discussed in Chapter 3. 

Details of Bayesian recursive filtering and particle filtering are given. 

 

4.2.4 Prediction 

In probabilistic prognosis, possible future states of the system are generated and the remaining 

useful life (RUL) distribution, 𝑟(𝑡), of the particular unit under test (UUT) is estimated. RUL is the 

amount of time a UUT is usable until corrective action is required and may be measured in hours, 

minutes, cycles, etc. Measurements are unavailable and the system model is assumed to be valid 

under future operating conditions. Prediction can be initiated at any time in the life of a system 

based on the last available state estimate. However, in this chapter, the time of prognosis, tP, the 

first time point for which a prognosis estimate is obtained, is after the time of  fault detection, tD. 

Figure 22 illustrates these important prognosis time indices.  
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Figure 22. Prognosis time indices: r*(t) is the ground truth RUL, tEoUP is the end of useful prognosis, dashed line 
depicts mean r(t). 

One approach to prediction when performing particle filtering on a DBN is a basic sequential Monte 

Carlo. Starting with the last belief state estimate (with measurements available), particles are 

recursively sampled through the two time slice DBN until some termination criteria is met, such as 

𝑃𝑟(𝑟(𝑡) = 0) is above some target threshold. Thus, there are 𝑁𝑠 trajectories of the variables of 

interest beginning at time t,  {𝚽(𝑡)}𝑖=1
𝑁𝑠 . Each trajectory consists of a series of predictions for the 

variables of interest, 𝚽(𝑡) = {𝝋(𝑡|𝑡),𝝋(𝑡 + 1|𝑡), …𝝋(𝐸𝑜𝑃|𝑡)}, where the end of prediction (EoP) is 

the time index of the last prediction before the end of life (EoL) is reached.  Particle weights are 

fixed from the last available measurement, as there is no basis for updating the weights (Eq. 39). 

This results in a particle-based approximation of RUL (similar to the belief state approximation), 

using the last available set of weights.  When a new measurement is obtained, a new RUL 

distribution is estimated.  

 

To further tailor the prognosis to a particular UUT, the conditional probability distributions in the 

DBN may be updated as measurements become available. This may be performed via Bayesian 
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updating of the distributions. If a conjugate prior is available, the update can be performed 

analytically. Otherwise, techniques such as Markov chain Monte Carlo (MCMC) may be required. 

 

The RUL distribution is sensitive to many aspects of the problem. The initial state estimate 

provided by the diagnosis algorithm must be accurate. As such, the filtering algorithm and number 

of particles are important algorithmic design decisions. These decisions also involve a tradeoff 

between accuracy and computational effort, which must be considered. Optimal sensor placement 

and improved sensor reliability also impact the accuracy of the diagnosis.  

 

The accuracy of predictive models, including those for inputs (loads) and physics of failure models, 

is another large source of uncertainty in the RUL estimate. Because the prediction is recursive with 

no measurements available to correct the prediction, errors in prediction compound quickly and 

must be minimized.  

 

Three additional factors that affect the diagnosis (and prognosis) of a system are the sensitivity of 

the system measurements to damage, noise in the training and measurement data, and the 

sampling frequency at which measurements are obtained. If the sensitivity to damage is low and 

the noise large, diagnosis may be difficult or impossible. A low sampling frequency can deteriorate 

the quality of state estimates in systems that depend on previous states, such as nonlinear dynamic 

systems like the actuator system presented in Chapter 2. The state estimates amount to a linearized 

approximation of the state across the sampling interval (reciprocal of sampling frequency). As 

sampling rate decreases, the interval becomes wider and the linear approximation worsens. A 

higher sampling frequency decreases the sampling interval and reduces the error due to 

linearization, thus improving state estimates.   
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Measurement Gaps 

Systems may experience periods of times where measurements are unavailable. This may be a 

result of the system configuration, availability of measurements, failure of sensing systems, or the 

desire to have system state estimates at a higher frequency than the available measurements. For 

example, offline inspection data may be available for an aircraft on the ground, while onboard 

sensing provides a steady stream of information about temperature, altitude, windspeed, pressure, 

etc. These onboard measurements may only be available for portions of a flight (perhaps during 

cruising but not takeoff or landing). 

 

Using the same recursive sampling used for RUL estimate, predictions may be produced and used to 

fill in the information gaps. When a measurement becomes available, the particle filtering algorithm 

is used to update the last predicted system state. The particle filter update may be performed as 

long as at least one measurement is available. The process is shown in Figure 23. 

 

Figure 23. Handling measurement gaps 

4.2.5 Prognosis Validation 

Prognosis validation is essential to establish confidence in the RUL estimate. Many sources of 

uncertainty, including modeling errors, sensor faults, data noise, and unpredictable loading 

conditions and operating environments, strongly affect prognosis. Therefore, validation of a 

prognosis procedure must be done using strong performance metrics. These metrics must be 

carefully chosen, as many issues arise when evaluating prognosis algorithms, such as time scales or 

t 
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the ability to improve accuracy as more measurements are obtained [143]. Saxena et al. [143] 

propose a standard offline four metric hierarchical test to evaluate a prognosis algorithm. This 

hierarchical test assumes that prognosis improves as more measurements become available. 

Combined, these four metrics provide a means for testing and comparing prognostic algorithms.  

 

The first two metrics examine the accuracy of the RUL estimates by determining the probability p 

that the RUL estimate is between ±𝛼 of the ground truth RUL. This probability p is compared to a 

threshold value, β. It is desirable for p to be greater than β. The primary difference between the first 

two metrics is in how 𝛼 is determined, which results in a stricter test for the second metric than the 

first. 

 

In the first metric, prognostic horizon (PH) is considered. Prognostic horizon indicates the time at 

which RUL estimates using a particular prognostic algorithm for a particular system are within 

acceptable limits. The upper and lower limits are the ground truth RUL plus or minus a constant α, 

which is some percentage of the EoL value. PH is the difference between the true EoL time and the 

time when the prognostic algorithm attains this acceptable level of accuracy (𝑝 > 𝛽). As this is a 

validation metric, the true EoL is known. A longer PH is indicative of a better prognostic algorithm. 

Figure 24a provides a visual representation of prognostic horizon.  
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a) b) 
Figure 24. a) Prognostic horizon with +/- α bounds about the ground truth RUL  

 b) +/- α bounds for evaluating α-λ accuracy 

 

Prognostic horizon maintains upper and lower bounds that are always the same distance from the 

true RUL. The second validation metric, 𝛼 − 𝜆 accuracy, utilizes a stricter criterion that gradually 

tightens the limits about the RUL estimate (Figure 24b). Additionally, the accuracy of the RUL is 

considered at time 𝑡𝜆 , where 0 ≤ 𝜆 ≤ 1, 𝑡𝜆 = 𝑡𝑃 + 𝜆(𝑡𝐸𝑜𝐿 − 𝑡𝑃), and 𝑡𝑃is the time at which a 

prognosis estimate is first obtained. This metric reflects the idea that, as more information is 

collected about the system, the RUL estimate is expected to improve, and thus the accuracy 

requirement for the RUL estimate should become more stringent. The 𝛼 − 𝜆 accuracy is equal to 1 

when the increasingly stringent accuracy requirements are met, and zero otherwise.    

 

In step three, the relative accuracy (RA) of the prognostic algorithm is calculated. Instead of merely 

indicating that accuracy requirements have been met, the accuracy of the RUL estimates are 

quantified. At 𝑡𝜆 

 

 𝑅𝐴𝜆 = 1 −
|𝑟∗(𝑡𝜆) − 𝑟(𝑡𝜆)|

𝑟∗(𝑡𝜆)  
Eq. 44 
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where 𝑟(𝑡𝜆) is a central tendency point such as the mean or median of the RUL estimate at 𝑡𝜆 and 

𝑟∗(𝑡𝜆) is the ground truth RUL. The RA is computed separately for each time step at which RUL is 

estimated. RA is a value between 0 and 1, and values closer to 1 indicate better accuracy. 

 

Finally, if the prognostic algorithm satisfies all the previous metrics, a final metric to compute is 

convergence. Convergence is a measure of how quickly a metric, such as RA, improves with time.   A 

high rate of convergence is desirable and leads to a larger PH. To estimate convergence of a 

prognosis algorithm based on some metric M, 

 
𝐶𝑀 = [(𝑥𝑐 − 𝑡𝑃)2 + 𝑦𝑐2]1 2�  Eq. 45 

where 

 
𝑥𝑐 =

1
2
∑ (𝑡𝑖+12 − 𝑡𝑖2)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃
𝑖=𝑃

∑ (𝑡𝑖+1 − 𝑡𝑖)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃
𝑖=𝑃

 Eq. 46 

and  

 
𝑦𝑐 =

1
2
∑ (𝑡𝑖+12 − 𝑡𝑖2)𝑀(𝑡𝑖)2𝐸𝑜𝑈𝑃
𝑖=𝑃

∑ (𝑡𝑖+1 − 𝑡𝑖)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃
𝑖=𝑃

 Eq. 47 

 

𝑀(ti) is the non-negative prediction accuracy, EoUP is the end of useful prediction, and P is the time 

at which the prognosis algorithm makes its first prediction. End of useful prediction is the time 

after which corrective action cannot be performed before EoL. A high rate of convergence is better 

and leads to a larger PH. 

 

The effects of noise and sampling rate, as discussed in Chapter 3, Section 3.5, are apparent during 

prognosis and prognosis validation. Poor initial conditions provided from diagnosis limit the 

accuracy of prognosis from the beginning. Further, accumulated error due to low sampling rate may 

cause noticeable deviations from ground truth RUL estimates.  
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4.2.6 Summary of Prognosis Framework 

This section presented a framework for probabilistic prognosis. DBNs are used as a system 

modeling paradigm due to their ability to handle uncertainty and to integrate many types of 

information, both in the offline model construction phase and the online belief state updating phase. 

For prognosis, it is of particular importance to model complex physics of failure phenomena and 

integrate such models into the DBN. After the DBN model is established, the model is used for 

tracking the state of a particular UUT. Particle filtering is used to update the belief state as new 

measurements are obtained. Uncertainty in the state estimate (diagnosis) is quantified, and when a 

fault is detected, estimation of RUL via recursive prediction begins. The result is an estimate of the 

distribution of RUL. Section 2.4 considers the situation when there are gaps in the availability of 

measurements. 

 

When a prognosis procedure (DBN model of system combined with available measurements and 

filtering algorithm), is designed for a particular system, it is then validated using the 4 step 

hierarchical procedure outlined in Section 4.2.5. 

 

4.3 Illustrative Example 

The hydraulic actuator system described in Chapter 1 was considered to demonstrate the proposed 

methodology. Such a system is often used to manipulate the control surfaces of aircraft.  The system 

consists primarily of three subsystems: a hydraulic actuator, critical center spool valve, and an axial 

piston pump (Figure 4, Chapter 2). Expert opinion, reliability data, mathematical models, 

operational data, and laboratory data were used to construct a DBN model of the spool valve and 

hydraulic subsystems. Next, the DBN model was used to diagnosis a seal leak in the actuator. The 

RUL of the system was then estimated. 
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4.3.1 DBN Model Construction 

The DBN model for the actuator is constructed from heterogeneous information as in Chapter 2. 

The resulting DBN is shown in Figure 8. 

 

4.3.2 Diagnosis 

Diagnosis is performed as described in Section 2.3. The actuator was operated for 20 seconds with a 

leak occurring after 6 seconds. At this point, the system has already reached the steady state. 

Synthetic measurement data was generated using the Simulink model for two cases. In the first case, 

the data was not resampled (i.e. the sampling frequency remained 4 samples per second). In the 

second case, data was resampled at 2 samples per second. This was done to compare the effect of 

sampling rate on diagnosis and prognosis. The system responses and load were assumed to be 

measurable while the system parameters including wear rate and leakage area were assumed to be 

unobservable.  Inference via particle filtering (Ns = 250) was performed on the DBN to obtain 

filtered estimates of the system state.  

 

After obtaining the state estimate at cycle t, the probability of detection was calculated as in Section 

2.2. If the probability of detection exceeded 95%, an alarm was triggered. The fault was then 

isolated and quantified. Figure 25 shows maximum a posteriori (MAP) estimates of the system 

responses against their measured values for the 2 samples/sec series (not shown are responses for 

the 4 samples/sec series that appear similar). It is seen that the MAP system responses track the 

measured values closely. Figure 26 shows the MAP estimates of the system parameters for the 4 

samples/sec series, including the leakage area, and load against the ground truth values. This figure 

shows how the leakage area changes with time and how well the filtering procedure can infer the 

value of the leakage area. The system responses in Figure 25 are sensitive to changes in the supply 

pressure and leakage area, but insensitive to changes in the fluid bulk modulus. Changes in bulk 
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modulus, however, may result in effects such as changes in wear rate that have not been included in 

the ground truth model.  In both Figure 25 and Figure 26, the good estimates may be attributed to 

the use of an accurate physics-based model, but also to the use of synthetic measurement data 

whose sampling rate matched the internal sampling rate of the generative model. Thus, the 

performance of filtering is favorably biased. 

 

Figure 25. MAP estimates and measured values of actuator position and velocity, servovalve position 
and velocity, and pressure in each actuator chamber (2 samples/sec) 
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Figure 26. MAP estimate system parameters and load with ground truth and measured values (2 
samples/sec) 

4.3.3 Diagnosis Uncertainty 

Diagnosis uncertainty was quantified during filtering as in Section 3.3.3. Figure 27 shows the 

damage probability as it evolves with time for the 2 samples/sec case. The damage probability 

passes the alarm threshold soon shortly after the actual occurrence of the fault.  

 

 
Figure 27. Damage probability with actual fault 

time (2 samples/sec) 

At the time of detection (t = 18 cycles / 9 secs), the all particles for the 2 samples/sec series have a 

value of 1.038E-8 for the leakage area. This is in contrast to a ground truth value of 9.339E-9. Note 

that all particles have the same value due to resampling. If this damage is judged to be severe 
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(having a high probability of exceeding some threshold value), this may provide a decision-maker 

with cause to take immediate action. If damage is considered less severe, a decision-maker may 

consider prognostic information and delay action. In any case, these leakage area values are the 

initial condition for prognosis starting at t = 9 sec. Figure 27 may be used to signal an alarm that a 

fault has occurred. In some cases, this alarm can be used to initiate RUL estimation or other tasks 

such as inspection. 

 

4.3.4 Prediction 

After alerting the presence of a leak above the leakage threshold of 7.578E-9 m2, estimation of the 

RUL distribution was performed as in Section 4.2.4. The RUL distribution assumes a failure 

threshold for leakage area of 4.123E-8 m2. The RUL distribution at the 25th cycle is shown in Figure 

28 for the 2 samples/sec series.  

 

 

Figure 28. RUL density estimate at t = 25 sec 

4.3.5 Computational Effort 

The above diagnosis has been performed with 12 Intel Nehalem processor cores working in parallel. 

Each belief state update in diagnosis takes approximately 30 seconds. The majority of the 
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computational effort is directed towards solving the differential equations for the actuator in the 

Matlab Simulink environment. 

 

4.3.6 Prognosis Validation 

By continuing to estimate the new RUL distribution as new measurements become available, the 

performance of the prognostic algorithm may be evaluated. In Figure 29, median RUL estimates are 

plotted against the ground truth RUL with +/- α bounds for the 2 samples/sec series. The +/- α 

bounds are selected to be +/-10% of the ground truth EoL about the current ground truth RUL. 

Figure 30 indicates whether the probability of the RUL estimate being between the +/- α bounds at 

a particular time is greater than a  

 
 

Figure 29. Ground truth RUL, median RUL, 
and α bounds with α = 0.10 (2 samples/sec) 

Figure 30. Probability that RUL is within α 
bounds with α = 0.10 (2 samples/sec) 
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Figure 31. Ground truth RUL, median RUL, and 
α bounds with α = 0.10 (4 samples/sec) 

Figure 32. Probability that RUL is within α 
bounds with α = 0.10 (4 samples/sec) 

 

threshold value, taken as 0.8. From this information, it is also determined that the prognostic 

horizon is about 2.5 cycles (1.3 seconds) because the first time that 0.6 ≤ 𝜋�𝑟�𝑡𝑗��−𝛼
+𝛼 is at t = 7,  the 

EoL is t = 26.5. This is 2.5 cycles before the EoL. Similarly, Figure 31 and Figure 32 show the same 

plots for the 4 samples/sec series and have a PH of 27.5 cycles (6.9 seconds). The increase in PH in 

the 4 samples/sec case over the 2 samples/sec case may be attributed to the sampling rate, as all 

else is the same. A higher sampling rate ensures nonlinear effects are not  missed. 

 

+/- α bounds that narrow as the EoL approaches are considered for both sampling rates in Figure 

33 and Figure 34 for λ = 0.5 and α = 0.20. λ = 0.5 considers the accuracy of the RUL estimate halfway 

between the time of prognosis and end of life, termed tλ. The bottom plots of  Figure 33 and Figure 

34 shows the λ-α accuracy, which is a binary value that indicates whether the probability of the RUL 

estimate being between the +/- α bounds at a particular time is greater than a threshold value, 

taken as 0.8 here. Note that the red line only indicates the median RUL estimate and that λ-α 

accuracy is calculated using the RUL distribution. The λ-α accuracy is generally zero for the 2 

sample/sec series, indicating that the RUL estimate is too diffuse to pass this test. The higher 

sampling rate results in much better performance on this metric for the 4 sample/sec case than the 

2 sample/sec case. Performance may be further improved by using additional samples. 
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Figure 33. Bounds used for calculating λ-α 

accuracy with α = 0.20 (top) and λ-α accuracy 
(bottom) for 2 samples/sec 

Figure 34. Bounds used for calculating λ-α 
accuracy with α = 0.20 (top) and λ-α accuracy 

(bottom) for 4 samples/sec 

 

  

Figure 35. Relative accuracy based on median 
RUL estimate 2 samples/sec 

Figure 36. Relative accuracy based on median 
RUL estimate 4 samples/sec 

  
Figure 35 and Figure 36 show the relative accuracy of the RUL density estimate based on the 

median RUL value, and shows that the median values are accurate. The 2 sample/sec series again 

lags the 4 sample/sec series in performance. The drop towards zeros accuracy is more a 

mathematical artifact than an indicator of poor RUL estimation. Considering Eq. 44, if the median 

RUL is zero, the RA is zero, regardless of the absolute difference between the median RUL and 

ground truth.  Based on the relative accuracy and excluding any zero values, the convergence is 

estimated to be 19.95 for the 4 sample/sec series. Convergence is not calculated for the 2 
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sample/sec series because it fails on λ-α accuracy.  When comparing prognostic algorithms, larger 

convergence values are desirable. 

 

4.3.7 Discussion 

The DBN-based methodology successfully integrates heterogeneous sources of information to 

diagnose the system and estimate RUL. Particle-filter based inference provides a seamless method 

for switching between probabilistic diagnosis and prediction while facilitating uncertainty 

quantification. 

 

The prognosis validation results indicate that the methodology provides reasonable median 

estimates of RUL, even as the RUL density estimates are sometimes diffuse. The sampling rate of the 

measurements is a large factor in whether or not prognosis is successful. Inclusion of inspection 

data may reduce the uncertainty in the leak area estimate and thus the RUL estimate. The accuracy 

of prognosis, of course, will vary depending on the system, available information, loading 

conditions, and environmental conditions. 

 

Computational effort is a persistent issue in particle-based methodologies, affected by the 

complexity of the system, models involved, simplifying assumptions, filtering algorithms, etc. The 

prognosis methodology described in this paper is flexible with respect to these decisions, so 

computational effort will vary. Reductions in computational effort may be achieved by using 

reduced order models (e.g. linearized model of actuator), feature selection and dimensional 

reduction techniques, and improved particle filtering techniques (e.g. Rao-Blackwellized particle 

filter [5]). Additionally, the ability to massively parallelize a particle filter using modern central 

processing units (CPUs) and graphics processing units (GPUs) provides the potential for greatly 
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decreased computation times. The actuator problem would see immediate decreases in 

computational time with additional processor cores. 

 

Thus far, the methodology has only been demonstrated using synthetic data, and needs to be tested 

further using real-world data. Further, more complex physics of failure models should be 

considered. 

 

4.4 Conclusion 

A methodology for DBN-based probabilistic prognosis is presented in this chapter, considering 

heterogeneous information sources and diagnosis uncertainty. First, expert opinion is used to 

establish the system definition and basic assumptions. Reliability data is used to calculate 

conditional probabilities for fault indicator variables for damage at the support and a crack. 

Operational and laboratory data are organized in a database and used for estimating a polynomial 

regression model.  This system model is used in online diagnosis via particle filter-based inference. 

The particles resulting from filtering integrate seamlessly into a sequential Monte Carlo predictive 

procedure, used for estimating RUL distribution. The prognosis results are validated using a four 

step hierarchical procedure. In the future, the methodology needs to be extended to systems of 

larger dimension, thus requiring feature selection, dimensional reduction, and more efficient 

inference.  
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CHAPTER V. 

5. RISK-INFORMED MAINTENANCE AND MISSION DECISION-MAKING  

 

5.1 Introduction 

 
Decision making methodologies in engineering system health management take remaining useful 

life (RUL) estimates derived from prognosis to develop and select maintenance policies or 

perform condition-based maintenance. While advanced diagnostics and prognostics provide vital 

information, good decision making with that information requires a methodology that effectively 

utilizes available information. 

 

In this chapter, mission-level decision-making when uncertain diagnosis and prognosis estimates 

are available is considered. Mission-level decisions decide between various usage scenarios that 

also include maintenance as an option. Additionally, it is desirable that the diagnosis and prognosis 

be based on all possible relevant information about the system. This information may be 

heterogeneous, including expert opinion, operational and laboratory data, mathematical models, 

and reliability data. 

 

For example, an aircraft ends a mission in a particular heath state, perhaps with diagnosed faults. A 

decision maker must decide if that aircraft is suitable for its next mission, a reduced mission, or 

requires immediate maintenance based on the results of diagnosis and prognosis, which is based on 

the expected load profiles for the possible missions. Additionally, other aircraft with their own 

health states, diagnoses and prognoses may be available, resulting in an assignment problem.  
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This chapter proposes a diagnosis prognosis based decision-making methodology that assigns 

systems to tasks based upon their current and estimated health.  First a DBN system model is 

constructed from heterogeneous information for each unique system. The DBNs are then used to 

diagnose the current state of each system. The diagnosis and prognosis results provided by this 

methodology then feed into an optimization problem that determines the best allocation of systems 

to mission alternatives. 

 

This primary contribution of this chapter is a methodology for decision-making that 1) combines 

heterogeneous information in a useful manner within a DBN system model and 2) enables optimal 

decision making based on diagnostics as well as remaining useful life (RUL) estimates. Previous 

work in the area of decision-making has seen RUL estimates and diagnostics used primarily for 

scheduling maintenance of a system, generally without considering multiple systems and non-

maintenance options. There is a need to consider resource allocation with multiple systems and 

possible missions while maintaining the health of the systems. 

 

The following sections review the methodology for constructing a DBN model from heterogeneous 

information, diagnosis, and prognosis. After reviewing these topics, details of a procedure for 

optimal mission and maintenance decision-making are provided. 

 

5.2 Model Construction 

A DBN model of the system is constructed as in Chapter 2. This probabilistic model integrates 

heterogeneous information (Figure 37) and enables diagnosis via particle filtering and prognosis. 

The availability of prognostic information is an important requirement for decision-making. 

 



 114 

 

Figure 37. Integration of heterogeneous information 

 

5.5 Decision-Making 

The power of diagnosis and prognosis information is its ability to improve the safety and reduce the 

cost of operating a system or collection of systems. Suppose there is a set of S systems and another 

set of possible mission alternatives, A. Each system i and mission pairing j has a cost C(i,j). This is a 

classic assignment problem. The cost function that is minimized is 

𝑓(𝑥) = ��𝐶(𝑖, 𝑗)
𝑗∈𝐴

𝑥𝑖𝑗
𝑖∈𝑆

 Eq. 48 

 
xij is the assignment of system i to mission alternative j and takes a value of 1 if assigned and 0 if not.  

 

The restraints are typically that each system must have a single assignment 

∑ 𝑥𝑖𝑗𝑗∈𝐴 = 1 for 𝑖 ∈ 𝑆, Eq. 49 

Each mission must have a single system assigned to it  

∑ 𝑥𝑖𝑗 = 1𝑖∈𝑆   for 𝑗 ∈ 𝐴, Eq. 50 

and that 
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𝑥𝑖𝑗 ≥ 0 for 𝑖, 𝑗 ∈ 𝑆,𝐴. Eq. 51 

 

Further, the standard problem assumes an equal number of systems and mission alternatives. 

However, it need not be the case that there be the same number of systems and mission 

alternatives and that every mission alternative have a system assigned to it.  There may be limits on 

the number of systems that can be assigned to a particular mission. In this chapter, only one system 

may be assigned to a mission alternative. However, the constraints may vary by situation.  Further, 

the value xij is limited to 0 or 1, making the optimization discrete. 

 

If multiple limit states are present, the cost function may be expanded by considering a cost 

function and weight for each limit state in the set of limit states, G. The cost function is then 

 

𝑓(𝑥) = ���𝑤𝑘𝐶𝑖(𝑗,𝑘)
𝑗∈𝐴𝑖∈𝑆

𝑥𝑖𝑗
𝑘∈𝐺

 Eq. 52 

 

where 𝑤𝑘is a weight given to each limit state. Note that the cost C now varies depending on the limit 

state. 

 

The crux of the optimization is determining the values Ci(j,k). Each system in S has a remaining 

useful life (RUL) distribution for each limit state, πijk. Each mission alternative has a threshold RUL 

value gjk for each limit state.  

 

𝐶𝑖(𝑗, 𝑘) = 𝑝𝑖𝑗𝑘 = 𝑃𝑟�𝑅𝑈𝐿𝑖𝑗𝑘 <  𝑔𝑗𝑘� Eq. 53 
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Thus, the optimization seeks to find the assignments xij which minimize the probability that any of 

the limit states are violated for any of the mission alternatives. 

 

Note that, if limit states are characterized by abrupt faults, the probabilities pijk may be calculated 

without need for prognosis. For example, pijk may be calculated directly if the time to failure 

distribution is known. 

 

5.6 Numerical Example 

5.6.1 Problem Description 

To illustrate the methodology, a hydraulic actuator system is considered. Hydraulic actuators 

provide the force to move critical flight control surfaces on many aircraft. In the hydraulic actuator 

described in Chapter 2, an axial piston pump pressurizes hydraulic fluid that moves a piston and 

moves the control surface. The position of the pump is modulated by a servo-valve, which controls 

the flow of fluid into the chambers of the actuator.   

 

Several potential faults are considered for the actuator, based on faults discussed in [68] and the 

[55]. In this section, the seal leak is exclusively considered, as it is a progressive fault that can be 

used to estimate RUL. 

 

For the sake of illustration, consider three aircraft whose airworthiness is determined by their 

actuators. Suppose these three such aircraft are to be assigned to missions A, B, and C, where 

missions A and B correspond to different durations and load profiles and mission C is a 

maintenance option. Each mission has an allowable limit for the volume of leakage as well as upper 

and lower limits on the supply pressure and hydraulic fluid bulk modulus.  



 117 

5.6.2 Actuator Health States 

Each of the three actuators is subjected to different load profiles, control signals, system 

parameters (supply pressure, bulk modulus), leakage, faults, and total time of operation. Due to 

these different histories, each actuator has a different health state (initial condition for prognosis) 

at the time the assignment problem is performed. 

 

5.6.3 Mission 

Each mission has a unique duration, allowable leakage, probabilistic loading, and deterministic 

control signal.  Prognosis is performed for each actuator for each possible mission, resulting in 9 

instances of prognosis. The RUL distribution πijk was estimated by determining how long it would 

take an actuator to exceed the threshold leakage for a particular mission. Based on the RUL 

distribution, the probability of the RUL being less than the mission duration, pijk, was estimated.  

 

5.6.4 Cost Function and Assignments 

With the probabilities pijk available, the cost matrix Ci(j,k) was then populated by Eq. 53. For the 5 

abrupt faults, exponentially distributed time to failure densities were used to estimate pijk. Table 17, 

Table 18, and Table 19 show the cost matrix for each actuator for each of the three missions (M1, 

M2,M3). A value of 1 for an abrupt fault indicates that the fault has already occurred. The failure 

rate for each abrupt fault is assumed to be the same regardless of the system or mission, however 

the amount of operational time for each system varies, resulting in different probabilities. 

 

Weights were assigned for each of the six limit states (0.8 for the seal leak and 0.04 for each of the 

other 5 limit states). The cost function (Eq. 52) was then minimized to find the optimal assignment 

using Microsoft Excel.  The resulting assignment is shown in Table 20. 
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Table 17. Actuator 1 cost matrix 

Actuator 1 M1 
Pr(RUL11k<g1k) 

M2 
Pr(RUL12k < g2k) 

M3 
Pr(RUL13k < g3k) 

Seal Leak 0.84 0.72 .7 

Electrical Fault .022 .025 .027 

Valve Fault 1 1 1 

Pump Fault .054 .061 .065 

Water Leak .104 .118 .139 

Air Leak .124 .139 .150 
 

Table 18. Actuator 2 cost matrix 

Actuator 2 M1 
Pr(RUL21k < g1k) 

M2 
Pr(RUL22k < g2k) 

M3 
Pr(RUL23k < g3k) 

Seal Leak 0.929 0.870 0.830 

Electrical Fault 0.024 0.027 0.029 

Valve Fault 0.092 0.102 0.110 

Pump Fault 0.058 0.065 0.070 

Water Leak 0.113 0.126 0.135 

Air Leak 0.134 0.150 0.160 
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Table 19. Actuator 3 cost matrix 

Actuator 3 M1 
Pr(RUL31k < g1k) 

M2 
Pr(RUL32k < g2k) 

M3 
Pr(RUL33k < g3k) 

Seal Leak 0.830 0.750 0.710 

Electrical Fault 1.000 1.000 1.000 

Valve Fault 0.081 0.092 0.099 

Pump Fault 0.051 0.058 0.063 

Water Leak 0.100 0.113 0.122 

Air Leak 0.118 0.134 0.144 

 

Table 20. Assignments 

 M1 M2 M3 

A1  X  

A2 X   

A3   X 

 

 

5.6.5 Discussion 

The example decision making problem has illustrated the basic steps in allocating systems to 

missions using diagnosis and prognosis results. The procedure can be expanded to handle more 

systems, limit states, and missions – including maintenance. Additional work needs to be done to 

solve the decision making problem for a system composed of various components, with some of 

these components being redundant in parallel and series configurations. More realistic systems and 

mission need to be considered.  
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5.7 Conclusion 

 
A methodology for mission-level decision making has been described in this chapter. The 

methodology incorporates information from expert opinion, operational and laboratory data, 

reliability data, and mathematical models by constructing a DBN model of a system. Through a 

particle filter, the most recent measurements from the system are included in the most recent 

estimate of the system’s health. In prognosis, an estimate of the RUL distribution is obtained. Thus 

in decision making, past information about the system, the current health state, and predictions 

about the future health state are included. 

 

In future work, the methodology needs to be tested on a realistic system. The methodology should 

also be expanded to consider series and parallel system configurations. Subsequently, testing with 

real-world data and real-world applications should be performed to develop confidence in the 

methodology. 
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CHAPTER VI. 

6. CONCLUSION 

 

6.1 Summary 

The demand for more reliable and more cost effective systems has resulted in a need for advanced 

system analysis methods. These methods support mission and maintenance decision-making and 

aim to increase system availability, uptime, and optimize resource allocation.  Ideally, these 

methods take advantage of all information available about a system. However, the heterogeneous 

nature of information requires a framework for decision support that can integrate information in 

many formats from various sources and account for many types of uncertainty. 

 

This dissertation proposed a dynamic Bayesian network (DBN) based methodology for decision-

making under uncertainty and in the presence of heterogeneous information. The methodology is 

divided into the tasks of system modeling, diagnosis, prognosis, decision-making. The system-

modeling approach in Section 2 constructs a DBN model of the system that incorporates expert 

opinion, reliability data, mathematical models, operational data, and laboratory data. The 

probabilistic nature of DBNs allows them to handle uncertainty in the information used to build the 

DBN. Further, the ability to update and sample the distributions of the variables in light of new 

information makes DBNs suitable for diagnosis and prognosis. The system modeling methodology 

was demonstrated for a hydraulic actuator. 

 

After establishing a methodology for building a DBN system model in the presence of 

heterogeneous information, the diagnosis problem was then considered in Section 3. Once the DBN 
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model of the system is constructed, approximate inference via particle filtering was pursued to 

update the system variables in light of new information. The online state estimates provided during 

particle filtering provides important information that enables quantification of the uncertainty in 

fault detection, isolation, and quantification. Diagnosis is demonstrated for a cantilever beam with 

potential damage at the support and a midspan crack. 

 

When a fault is diagnosed, it is necessary to determine how that fault affects system performance. 

In the prognosis methodology of Section 4, the future state of the system is predicted and the 

remaining useful life (RUL) estimated. Conveniently, prediction may be done using a sequential 

Monte Carlo beginning with the sample-based state density estimate obtained during diagnosis. 

This state estimate reflects the knowledge contained in the DBN model as well as information 

contained in measurements. Special consideration is given for physics of failure models, as accurate 

modeling of progressive damage is crucial in estimating RUL. Prognosis is then validated using an 

offline procedure that considers the accuracy of the RUL estimate. The methodology is illustrated 

on a hydraulic actuator with a seal leak. 

 

With prognosis and diagnosis information available, decision-making may commence. Chapter 5 

considered an optimization problem for assigning a set of like systems to a set of missions, 

including maintenance. The cost function is based on the RUL estimates obtained for each system 

on each mission. The optimization minimizes the total probability of failure across all systems and 

missions. Thus, RUL information is turned into an actionable plan for a decision maker. The 

decision-making methodology is demonstrated for a set of hydraulic actuators with multiple 

possible missions. 

 

Some of the key contributions of this work are: 
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1. Proposed a methodology for system modeling under heterogeneous information. The 

methodology integrates expert opinion, reliability data, mathematical models, laboratory data, and 

operational data into a dynamic Bayesian network system model.  

 

2. Developed a methodology for DBN-based diagnosis of a mechanical system under heterogeneous. 

The methodology is a general approach that uses the existing DBN model of the system. 

Additionally, the methodology can handle systems with multiple faults. 

 

3. Quantified diagnosis uncertainty in the context of particle filtering by estimating the probability 

of detecting any fault, estimating the isolation probabilities of all fault combinations, and estimating 

the distribution of damage parameters.  

 

4. Developed a methodology for prognosis of a system under heterogeneous information. The 

methodology seamlessly integrates with the diagnosis procedure and utilizes the same DBN model 

of the system. 

 

5. Formulated an optimization problem for solving the decision-making problem with multiple 

systems and multiple assignments. The formulation considers multiple limit states and accounts for 

probabilistic diagnostic and prognostic information. 

 

6.2 Future Work 

The methodology presented in this dissertation provides many different opportunities to direct 

future research efforts. In general, these efforts are focused on testing the methodology and 

improving supporting technologies.  
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Synthetic data has been used to illustrate the methodology using a hydraulic actuator system and 

cantilever beam. However, the methodology still needs to be tested using real-world data to 

demonstrate its viability under actual operating conditions. Testing should be done starting with 

relatively simple systems, as superior supporting technologies may be required to consider more 

complex systems. 

The primary hurdle for the methodology proposed in this dissertation is computational effort when 

learning DBNs and performing diagnosis and prognosis. Supporting technologies such as 

dimensional reduction, feature selection, and particle filtering influence the required amount of 

computational effort. For example, Rao-Blackwellized particle filtering can provide a significant 

reduction in computational effort. Utilization of more advanced technologies in these areas would 

allow the proposed methodology to be used for more complex systems.  

Research into the DBN representation of dynamic systems may also prove beneficial. Dynamic 

systems, such as the hydraulic actuator, that are described by ordinary differential equations 

(ODEs), have been modeled using deterministic nodes that call an ODE solver. A more elegant and 

efficient solution may potentially be found by exploring the relationship between DBNs and ODEs, 

thus enabling rapid adaptation of the proposed methodology to a wide variety of systems. 

There are many possible extensions to the methodology presented in this dissertation. As new 

technologies are developed, there will be a need to test and validate them and to compare their 

performance to existing technologies, on their own and in the context of system modeling, diagnosis, 

prognosis, and decision-making.  
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APPENDIX 

A. Gaussian Process Regression 

An introduction to Gaussian processes by Rasmussen [144] is summarized in this appendix. A 

Gaussian process (GP) is a set of random variables where the distribution over any subset of the 

variables is a joint Gaussian distribution, consistent with the joint Gaussian distributions over other 

subsets of variables. A GP is fully specified by a mean function 𝑚(𝑥) and covariance function 

𝑘(𝑥, 𝑥′). A function f may be distributed as a GP, 𝑓(𝑥)~𝐺𝑃(𝑚,𝑘). 

The difference between a GP and a Gaussian distribution is that a GP is specified by functions 

instead of vectors of values. Gaussian distributions are thus indexed by the positions of the values 

in the vectors while GPs are indexed by the argument x, which has a corresponding value f(x). 

Given a set of input data, 𝐱 = {𝑥1 … 𝑥𝑛}, the mean and covariance functions may be evaluated such 

that 𝜇𝑖 = 𝑚(𝑥𝑖) for 𝑖 = 1 …𝑛 and 𝛴𝑖𝑗 = 𝑘�𝑥𝑖, 𝑥𝑗�. With the set of corresponding responses f(x) 

available, 𝐟~𝑁(𝜇,𝛴). The process is now a multivariate Gaussian distribution. 

The purpose of the GP regression is given test inputs, some training cases x with function values f 

and test inputs 𝐱∗, estimate the function values 𝐟∗. The joint distribution over all of these quantities 

of interest is  

 � 𝐟𝐟∗
�~𝑁��

𝝁
𝛍∗� , �

𝛴 𝛴∗
𝛴∗𝑇 𝛴∗∗

��  (1) 

where 𝝁 = 𝑚(𝑥𝑖), 𝑖 = 1 …𝑛 for the training means and similarly for the test means 𝛍∗. 𝛴 is the 

matrix of training set covariances, 𝛴∗ the training-test covariances, and 𝛴∗∗ the test set covariances. 

The conditional distribution of  𝐟∗ given f is 

 𝐟∗|𝐟~𝑁�𝛍∗ + 𝛴∗𝑇𝛴−1(𝐟 − 𝝁),𝛴∗∗ − 𝛴∗𝑇𝛴−1𝛴∗�  (2) 

The posterior process given the data D is  
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𝑓|𝐷~𝐺𝑃(𝑚𝐷 ,𝑘𝐷), 

𝑚𝐷(𝑥) = 𝑚(𝑥) + 𝛴(𝐱, 𝑥)𝑇𝛴−1(𝐟 − 𝝁) 

𝑘𝐷(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) −  𝛴(𝐱, 𝑥)𝑇𝛴−1𝛴(𝐱, 𝑥′) 

 (3) 

where 𝛴(𝐱, 𝑥) is the vector of covariances between the training data 𝐱 and the test data point x. 

Generally speaking, the mean function 𝑚(𝑥) and covariance function 𝑘(𝑥, 𝑥′) have some set of 

hyperparameters θ. These hyperparameters may be estimated by maximizing the the log marginal 

likelihood, 

 𝐿 = 𝑙𝑜𝑔�𝑝(𝐟|𝐱,𝜃)� = −
1
2
𝑙𝑜𝑔|𝛴| −

1
2

(𝐟 − 𝝁)𝑇𝛴−1(𝐟 − 𝝁) −
𝑛
2
𝑙𝑜𝑔(2𝜋)  (4) 
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B. Seal Wear 

 

A dynamic seal prevents leakage when there is relative motion between two surfaces. The seal 

under consideration prevents leakage between the two chambers of the actuator. Modeling the 

failure of a seal can become complicated very quickly, as a number of factors influence seal failure, 

including, material characteristics, amount of seal compression, surface irregularities, seal size, 

fluid pressure, pressure pulses, temperature, fluid viscosity, fluid contamination, fluid/material 

compatibility, allowable leakage levels, and assembly and quality control procedures. The failure 

symptoms include excessive leakage and slow mechanical response. Many mechanisms and causes 

of these symptoms are described in [67].  

 

In this dissertation, the wear mechanism is considered for a seal in a hydraulic actuator. Generally, 

seal leakage is due to wear caused by friction between the seal and piston, which removes seal 

material and allows fluid to pass between the chambers of the actuator. There are multiple wear 

mechanisms including adhesive wear, abrasive wear, surface fatigue, fretting wear, and erosive 

wear [145]. Lancaster [146] explains many of the complexities of  abrasive wear while Briscoe and 

Sinha [147] and Briscoe [148] review wear of polymers. Due to the complexity of the mechanisms 

of wear, wear is typically modeled through the use of an experimentally determined wear rate.   

 

Nikas [149] has written an extensive literature review on seal wear in actuators. The leakage area is 

the result of the removal of seal material — typically a polytetrafluoroethylene (PTFE) polymer — 

which is a function of load, distance traveled, material properties of the actuator and seal, geometry 

of the actuator, temperature, hydraulic fluid viscosity, and contaminants. Experimentally 

determined wear rates (mm3/m/N) are available for PTFE composites used in hydraulic actuators 

e.g. Sawyer et al. [150] and Khedkar et al. [151].   
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