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 CHAPTER I 

 

BACKGROUND AND SIGNIFICANCE 

 

Obesity Epidemic 

 Obesity has reached epidemic proportions in the United States with 

approximately two-thirds of the adult population and nearly one-fifth of children and 

adolescents classified as overweight or obese [1].  With tremendous consequences to 

our personal health and society as a whole, the obesity epidemic has become one of the 

foremost health concerns facing our nation today.  It is well established that obesity 

increases the risk of many diseases and health conditions including cardiovascular 

disease, Type 2 Diabetes Mellitus (T2DM), hypertension, dyslipidemia, liver disease, 

osteoarthritis, and certain forms of cancer, with risk increasing progressively as adiposity 

increases.  Furthermore, obesity is associated with an increase in mortality such that 

obese individuals have a 10 to 50 percent increased risk of death from all causes 

compared to healthy weight individuals [2].  According to a recent study, for the first time 

in two centuries the current generation of children in the United States may have shorter 

life expectancies than their parents by as much as 5yrs, if the rapid rise in childhood 

obesity remains unchecked [136].  In addition to the health problems associated with the 

obesity epidemic, obesity also has a significant economic impact on the United States 

health care system.  For example, medical expenses attributed to overweight and 

obesity accounted for 9.1 percent of total medical expenditures in the United States for 

1998 according to one study [63]; a number that may be even higher today and does not 

include the indirect costs associated with related diseases and complications attributed 

to obesity.  It is truly difficult to quantify the full impact of the obesity epidemic to our 

health, quality of life, economy, and society. 
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 According to the National Institutes of Health, obesity and overweight together 

are the second leading cause of preventable death in the United States.  However, no 

effective therapy currently exists to combat the obesity epidemic.  Through 

understanding the causes and pathogenesis of obesity, it may be possible to design 

therapeutic targets aimed at both the treatment and prevention of obesity and associated 

complications.  

 

Energy Homeostasis 

 Even more striking than the consequences of the obesity epidemic is the 

dramatic rate at which the prevalence of obesity has increased over the last 25 yrs in the 

United States [120].  This rapid increase in the prevalence of obesity could be 

misinterpreted as evidence that body weight is not regulated.  However, abundant 

experimental evidence suggests that body weight is a tightly regulated variable.  For 

example, Bernstein et al. [21] demonstrated this regulation in an experiment in which a 

group of rats were force-fed via gastric catheters to a significant level of obesity 

compared to freely feeding, lean rats.  After several months of force-feeding the obese 

group, treatment was terminated and animals were allowed to feed freely.  Both groups 

were then followed for changes in body weight.  Interestingly, within a few weeks the 

obese group lost all the excess body weight generated by force-feeding at which point 

the growth rate of the obese group matched that of the lean group.  The rapid weight 

loss observed in the obese group was primarily mediated by a reduction in voluntary 

food intake.  However, changes in food intake alone could not account for the entire 

weight loss observed in the obese group suggesting energy expenditure was elevated.  

In addition, the “experimental obesity in man” studies describe a similar phenomenon of 

tight body weight regulation in humans [170].  In these studies, subjects were given a 

monetary incentive to consume as many calories as possible to generate a significant 
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amount of weight gain.  After significant weight gain was achieved compared to baseline 

levels, the monetary incentive to over-consume was removed but the subjects still 

received free access to food.  As observed in the rat study, the subjects lost all the 

excess body weight accrued during the incentivized feeding period and returned to their 

original body weight within a few months.  During this weight loss period, food intake 

was drastically reduced and only returned to normal levels when body weight was 

restored to basal levels.  In addition, it was noted that the amount of calories required to 

gain and subsequently maintain the elevated body weight was greater than expected 

based on the subjects’ basal energy requirements.  This suggested that over-

consumption resulted in an increase in total energy expenditure.  Together, the results 

from these studies and others demonstrate that body weight can be tightly regulated and 

provides evidence for the existence of a system regulating energy balance. This 

regulation is known as energy homeostasis.    

 Energy homeostasis is defined as the physiological process whereby energy 

intake is matched to expenditure over time to promote the stability of body fuel stored in 

the form of fat.  Energy intake is determined by the calories consumed from food, 

whereas energy expenditure is determined by a variety of components including basal 

metabolic rate, physical activity consisting of exercise and non-exercise activity, and the 

thermic effect of food.   When energy intake is equivalent to energy expenditure body 

weight is stable; termed neutral energy balance.  When energy intake exceeds energy 

expenditure, weight gain occurs and is termed positive energy balance. Conversely, 

when energy expenditure exceeds energy intake, weight loss occurs and is termed 

negative energy balance.  This concept of energy balance is illustrated in Figure 1.   

 However, this is a very simplistic depiction of a highly complex physiological 

process.  Current models of energy homeostasis indicate that the regulation of body 

adiposity occurs via a classical endocrine negative feedback loop involving the adiposity 
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Figure 1.  Diagram of Energy Balance  

Changes in body weight are determined by the relative balance between food intake and 
energy expenditure.   
  

Neutral Energy Balance
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5 
 

signals insulin and leptin (Figure 2).  In this model, insulin and leptin circulate in 

concentrations proportional to body fat content and act within the hypothalamus where 

they modulate both anabolic and catabolic neural circuits that regulate food intake and 

energy expenditure to maintain energy balance.  For example, in response to an 

increase in body adiposity, elevated insulin and leptin levels repress anabolic neural 

circuits that stimulate food intake and inhibit energy expenditure while simultaneously 

activating catabolic neural circuits that inhibit food intake and increase energy 

expenditure.  These combined effects result in negative energy balance to restore 

adiposity to basal levels.  Conversely, circulating insulin and leptin levels decrease in 

response to reductions in body adiposity.  In this setting, the activity of anabolic neural 

circuits is increased and the activity of catabolic neural circuits is decreased, ultimately 

resulting in a state of positive energy balance and the restoration of adiposity to basal 

levels.   

 

Adiposity Signals   

 Conceptually an adiposity signal must meet the following criteria (reviewed in 

[163]); it should be secreted into the plasma in proportion to body fat stores and enter 

the CNS in proportion to plasma levels, receptors for a putative signal should be 

expressed by brain neurons involved in energy intake, central administration of a 

putative adiposity signal should reduce food intake, and finally, deficiency (or inhibition) 

of the adiposity signal should increase food intake.  To date, insulin and leptin are the 

only known molecules to fulfill the criteria of adiposity signals.   
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Figure 2.  Model of Central Nervous System Control of Energy Homeostasis 

The adiposity signals insulin and leptin circulate in concentrations proportional to body 
fat content and act within the hypothalamus to regulate both anabolic and catabolic 
neural circuits. These insulin and leptin sensitive neural pathways interact with other 
regulatory circuits to modulate food intake and energy expenditure, ultimately resulting in 
the regulation of energy balance and maintenance of adipose stores.  Figure adapted 
from Schwartz et al.. [163].   
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 Leptin  

 The existence of adiposity signals in the regulation of energy homeostasis was 

first supported by the “parabiosis” experiments conducted in the 1970s which concluded 

that genetically obese ob/ob mice lacked a circulating factor that inhibited feeding, 

whereas obese mice with a different gene mutation (db/db) were resistant to this factor 

[43, 44].  In 1994, Zhang and colleagues identified the adipose tissue hormone leptin as 

the protein encoded by the ob gene and which is mutated in ob/ob mice to induce 

obesity [210].   

 Since its discovery, leptin, the product of the ob gene, has been extensively 

studied.  Leptin is a 167 amino acid hormone produced almost exclusively in adipose 

tissue [210] and its secretion is influenced by both the total amount of fat stores as well 

as short-term changes in energy status [46] [154] in which leptin production is stimulated 

by insulin and inhibited by fasting [110].  Consistent with its function as an adiposity 

signal, leptin circulates in proportion to body adiposity [46] and leptin transport across 

the blood-brain barrier occurs by a saturable receptor-mediated process [12].  

Consistent with the entry of leptin to the CNS from the plasma is the observation that 

leptin concentrations in human cerebrospinal fluid directly correlate with plasma 

concentrations [161].  Furthermore, leptin receptors are expressed by key hypothalamic 

neurons involved in energy homeostasis [37, 114] and direct administration of leptin into 

the CNS reduces food intake and body weight in a dose dependent manner [194].  

Combined with data indicating leptin deficiency (ob/ob) and leptin receptor mutation 

(db/db) result in severe genetic obesity, this information supports a role for leptin as an 

adiposity signal.  
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 Insulin 

 In addition to the glucoregulatory effects of the pancreatic hormone, insulin has 

also been implicated in the hypothalamic control of energy homeostasis.  Work 

conducted in the late 1970s and early 1980s first demonstrated the existence of neural 

circuits that respond to insulin and regulate food intake and adipose mass [202, 203].  

Like leptin, the secretion of insulin is influenced by the total amount of fat stores as well 

as by short-term changes in energy balance [7, 28, 144].  In addition, insulin shares 

many of the characteristics of leptin, making it a candidate adiposity signal.  Circulating 

insulin concentrations are proportional to adiposity and insulin enters the CNS in 

proportion to its plasma level [162] by a receptor mediated, saturable transport process 

across brain capillary endothelial cells [18].  Insulin receptors are also expressed by the 

same key hypothalamic neurons involved in energy homeostasis as leptin receptors [16].  

In addition, central administration of insulin reduces food intake and body weight in a 

dose dependent manner [202] whereas neuron-specific loss of insulin receptors results 

in obesity [33].  

 The concept that insulin functions as a catabolic adiposity signal via regulation of 

key hypothalamic neurons is not well appreciated.  Much of the reason for this is that 

insulin is primarily known as a prototypical anabolic hormone and for its glucoregulatory 

role in peripheral tissues.  However, that insulin exerts opposing actions in the CNS and 

periphery is actually consistent with the concept of an endocrine negative feedback loop 

in the regulation of adipose stores [132].  As with most physiological systems, when a 

signaling pathway is “turned on”, a downstream signal is often generated that will “turn 

off” the pathway.  The same is true in insulin’s regulation of energy homeostasis.  The 

peripheral anabolic actions of insulin to regulate glucose uptake and promote energy 

storage are balanced by the central catabolic actions of insulin to reduce energy stores 
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by decreasing food intake and increasing energy expenditure.  Together these opposing 

actions of insulin coordinately support an optimal body composition.    

 

Central Nervous System 

 The hypothalamus contains numerous histologically distinct nuclei and has been 

shown to be an important site in the regulation of energy homeostasis [201].  Rapid 

progress has been made over the last several years in identifying hypothalamic neuron 

populations that contain specific neurotransmitters, receptors, and other factors 

important in the regulation of energy homeostasis.  In particular, the arcuate nucleus of 

the hypothalamus (ARC) is uniquely positioned to receive and respond to an array of 

information pertaining to energy homeostasis.  Located around the base of the third 

ventricle, it lies immediately above the median eminence.  Capillaries in the underlying 

median eminence lack tight junctions and thus this region is thought to effectively lie 

outside the blood–brain barrier [32] allowing the ARC neurons ready access to 

information from both short-term and long-term signals of energy homeostasis.  The 

ARC contains both “anabolic” and “catabolic” neuron populations which interact with 

each other and send projections to downstream neurons within the hypothalamus, the 

forebrain, and the motor and autonomic areas of the brainstem to regulate energy 

homeostasis either directly or via connections with other brain nuclei [23, 201].  Anabolic 

pathways are defined herein as those that promote positive energy balance by 

stimulating food intake and reducing energy expenditure. Conversely, catabolic 

pathways are defined as those that promote negative energy balance by inhibiting food 

intake and increasing energy expenditure.   

 Within the CNS, a variety of neuropeptides have been shown to either increase 

or decrease food intake and also influence energy expenditure (reviewed in [124].  

Neurons containing neuropeptide Y (NPY; [39, 103] and agouti-related protein (AgRP; 
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[108, 135, 173] in the ARC were identified as anabolic effectors and neurons containing 

pro-opiomelanocortin (POMC; [201, 207] were identified as key catabolic effectors, both 

of which are responsive to insulin and leptin.   

 

 Anabolic NPY/AgRP Neurons 

 Since its discovery in 1982 [181], neuropeptide Y (NPY) has been identified as a 

major brain neuropeptide which is highly expressed in neurons of the hypothalamic 

arcuate nucleus [122] and is involved in the regulation of energy homoeostasis.  The 

most well known effect of NPY, its ability to stimulate food intake, was first demonstrated 

by injection of the peptide into the third ventricle of rodents [39, 103].  In accordance with 

these observations, food-deprived rats show marked increases in NPY concentrations in 

the ARC [19], which are paralleled by increases in hypothalamic NPY mRNA [29].  After 

refeeding, increases in regional NPY concentrations and NPY release fall towards 

normal [155].  Furthermore, injection of NPY into the third ventricle of rodents also 

reduces energy expenditure [24].  This effect may be explained by a reduction in 

sympathetic nerve activity that stimulates heat production in brown adipose tissue [56].  

NPY also acts as an insulin secretagogue via the autonomic nervous system thereby 

facilitating triglyceride deposition in peripheral tissues [209].  Together, these findings 

support a role for NPY as an anabolic hormone in the central regulation of energy 

homeostasis which causes a shift to positive energy expenditure. 

 However, studies in NPY knockout (-/-) mice suggest the presence of 

compensatory pathways in the control of energy homeostasis since these animals 

exhibit normal growth and a normal hyperphagic response to fasting [61].  One 

candidate is agouti-related peptide (AgRP), a molecule which is co-expressed in most 

NPY neurons in the ARC [201].  AgRP, like NPY, stimulates feeding when administered 

centrally and [135] levels are elevated in the hypothalamus of fasted rats [104].  Thus, 
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AgRP also appears to mediate anabolic pathways in the regulation of energy 

homeostasis.  

 In the brain, AgRP is synthesized exclusively in the ARC by neurons that project 

to adjacent hypothalamic areas [124] and it is an endogenous antagonist of the 

melanocortin 3/4 receptors in the catabolic pathway of energy homeostasis [201].  The 

demonstration that AgRP mRNA is abundantly co-localized with NPY identifies 

NPY/AgRP neurons as a unique subset that is capable of increasing food intake via two 

different mechanisms: by increasing NPY signaling and decreasing the catabolic 

melanocortin signaling pathway [72].  

 The primary physiological role of the anabolic NPY/AgRP neurons appears to be 

to sense and respond to states of negative energy balance.  Accordingly, neuronal 

activity increases in these neurons following a critical fall in the body’s energy stores and 

function to restore normal energy balance and body fat stores [201]. 

 

 Catabolic POMC Neurons  

 A major effector of the catabolic pathway of energy homeostasis is pro-

opiomelanocortin expressing neurons (POMC) of the hypothalamus.  The POMC gene is 

expressed in the hypothalamic arcuate nucleus [207], and undergoes tissue-specific 

post-translational processing [148].  In the hypothalamus POMC is processed to produce 

α-melanocyte-stimulating hormone (α-MSH, [148]), which exerts a tonic inhibitory control 

on food intake and energy storage through its actions in the CNS.  In addition, recall that 

the anabolic neuropeptide AgRP is an endogenous antagonist of melanocortin receptor 

signaling and represents one of several sites of crosstalk which exist between these two 

circuits.  Thus, the integration of energy homeostatic signals is a complex and 

interconnected process such that changes in one of the effector pathways can directly or 

indirectly influence the opposing effector pathway. 
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 The primary physiological role of POMC neurons appears to be to sense and 

respond to states of positive energy balance. These neurons are activated in response 

to both short- and long-term signals of nutrient excess.  Overall, data indicate that 

POMC neurons act homeostatically to restore normal energy balance and body fat 

stores under conditions of energy surplus.   

 

 Hypothalamic Leptin Signaling and Action   

 In the ARC, both the anabolic NPY/AgRP and catabolic POMC neurons express 

the long form of the leptin receptor and are responsive to changes in leptin [37, 114].  

Although several splice variants of the leptin receptor exist, the “long form” of the 

receptor (Ob-Rb) is critical to signal transduction [97] whereas the short form receptors 

are thought to be involved in the transport across the blood-brain barrier [186].  

Importantly, the long form of the receptor is highly expressed in the hypothalamus [60, 

62, 115].  The leptin signaling pathway is briefly reviewed below (Figure 3).   

 The leptin receptor represents a typical class-I cytokine receptor and like other 

class-I cytokine receptors, the leptin receptor has no intrinsic enzymatic activity [180].  

Thus, propagation of downstream signaling requires the associated tyrosine kinase, 

janus-activated kinase-2 (Jak2)[90].  Leptin binding stimulates the activation of Jak2 via 

auto-phosphorylation of the kinase [5].  Once activated, Jak2 phosphorylates several 

tyrosine residues on the intracellular tail of the leptin receptor promoting the recruitment 

of downstream signaling proteins [8, 199].  The family of signal transducers and 

activators of transcription (STATs) are latent transcription factors recruited to activate 

cytokine receptor/Jak kinase complexes [158].  Leptin signaling via Jak2 leads to 

activation of STAT3 [187].  Tyrosine phosphorylation of STAT molecules by Jak induces 

dimerization, nuclear translocation, and transcriptional activation of these molecules 

[158].  Activation of the leptin receptor leads to its own feedback inhibition of the 
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signaling pathway by inducing transcription of suppressor of cytokine signaling-3 

(SOCS-3) in a STAT3-dependent manner [26].  In addition to the STAT3 dependent 

effects of leptin, at least some of the hypothalamic effects of leptin appear to be 

mediated by phosphoinositide-3 kinase (PI3K) signaling.  The PI3K pathway is also 

involved in the regulation of gene transcription and may potentially induce rapid non-

genomic events affecting neuronal activity and neuropeptide release.   

 The leptin response in ARC neurons is coordinately regulated to maintain energy 

homeostasis via regulation of neuropeptide gene expression as well as neuronal activity 

and neuropeptide release [69, 147].  For example, leptin inhibits the anabolic NPY/AgRP 

neurons and suppresses expression of these orexigenic neuropeptides via both STAT3 

dependent and independent mechanisms [17, 163].   Recall that NPY/AgRP neurons 

tonically inhibit catabolic POMC neurons via synapses with these neurons in the ARC.  

Thus, leptin induced hyperpolarization of NPY/AgRP neurons (i.e. inhibition), leads to a 

reduction in neurotransmitter release and disinhibition of POMC neurons [58] resulting in 

reduced food intake and increased energy expenditure.  Conversely, decreased or 

deficient leptin activity increases food intake and reduces energy expenditure by 

activating anabolic NPY/AgRP neurons and inhibiting catabolic POMC neurons such that 

production and release of orexigenic neuropeptides is increased and production and 

release of anorexigenic neuropeptides is decreased [59].  In addition, leptin signaling 

activates and depolarizes the catabolic POMC neurons leading to an increase in POMC 

synthesis and neuropeptide release [48, 182] thereby resulting in reduced food intake 

and increased energy expenditure [35, 112].  The effect of leptin to increase energy 

expenditure appears to be mediated by an increase in sympathetic nervous system 

activity [74].  Taken together, leptin induces a spectrum of responses that leads to 

negative energy balance and reduced adiposity.  
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Figure 3.  Neuronal Leptin Receptor Signaling Cascade  

Leptin binding to ObRb leads to activation of the intracellular tyrosine kinase, Jak2, 
associated with the membrane-proximal regions of the receptor. Activated Jak2 then 
phosphorylates a number of cellular substrates including several tyrosine residues on 
the intracellular tail of the leptin receptor which recruits STAT3 to the receptor where it is 
phosphorylated by Jak2. Once phosphorylated, STAT3 molecules dimerize, translocate 
to the nucleus, and induce transcription of several target genes including SOCS-3.  
SOCS-3 expression leads to feedback inhibition of the leptin receptor signaling pathway.  
The PI3K pathway is also involved in the regulation of gene transcription and may 
potentially induce rapid non-genomic events affecting neuronal activity and neuropeptide 
release.  Figure adapted from Bjorbaek et al. [25]. 
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 Hypothalamic Insulin Signaling and Action  

 The signaling mechanism and the biological effects of insulin have primarily been 

studied in classical insulin target tissues, such as skeletal muscle, fat, and liver, with 

respect to glucose uptake, regulation of cell proliferation, gene expression and the 

suppression of hepatic glucose production.  However, insulin receptors are widely 

expressed throughout the brain, including the POMC and the NPY/AgRP neurons within 

the ARC [16], and recent work has focused on elucidating the signaling pathways and 

mechanisms underlying the anorexigenic effects of insulin within the hypothalamus. 

. The signaling pathway is similar in neuronal cells and is briefly reviewed here 

(Figure 4, detailed review in [200]).  Insulin action is mediated by the insulin receptor 

(IR), a member of the family of tyrosine kinase receptors.  Binding of insulin activates the 

intrinsic tyrosine kinase activity of the receptor, leading to the autophosphorylation of 

several tyrosine residues on the intracellular portion of the receptor.  Insulin receptor 

substrate (IRS) proteins are then recruited to the IR and activated by IR mediated 

tyrosine phosphorylation.  Following this phosphorylation step, IRS proteins activate 

PI3K, which consists of a p85 regulatory subunit and a p110 catalytic domain.  

Interaction between the p85 subunit and activated IRS molecule activates the p110 

domain of PI3K, which catalyzes the phosphorylation of membrane bound 

phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-

trisphosphate (PIP3).  PIP3 functions as an active signal transduction factor leading to 

the activation of several downstream signaling molecules including 3-phosphoinositide-

dependent kinase-1 (PDK1).  PDK1 is a serine/threonine kinase, which in turn activates 

protein kinase B (PKB, also called Akt).  Activation of PKB mediates multiple 

downstream effects of insulin signaling including the phosphorylation and exclusion of 

the transcription factor FoxO1 from the nucleus thereby regulating neuropeptide gene 
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expression.  For example, a recent study indicates that activation of FoxO1 promotes 

opposite patterns of coactivator-corepressor exchange at the AgRP and POMC 

promoters such that AgRP gene expression is activated and POMC gene expression is 

inhibited [89].   

 As with leptin, the energy homeostatic effects of insulin in the CNS are mediated 

by neuropeptide gene expression as well as neuronal activity and neuropeptide release.  

The anabolic NPY/AgRP neurons are inhibited by insulin and this inhibition is thought to 

mediate some of the anorectic actions of insulin [160].  For example, insulin was found 

to reduce the firing rate, and thus release of neuropeptide Y, in a population of 

NPY/AgRP neurons [175].  The effect of insulin to inhibit these neurons is dependent on 

signaling via PI3K and the opening of ATP-sensitive K+ channels [175].  In addition, 

central administration of insulin reduces the expression of the orexigenic NPY gene in 

the ARC [160, 172].  Conversely, the catabolic POMC neurons are activated by insulin 

resulting in an increase in POMC gene expression and release of the anorexigenic 

peptide, α-MSH [20].  Upregulation of α-MSH appears to mediate at least some of the 

anorexigenic effects of insulin since administration of a melanocortin antagonist prevents 

the observed insulin-induced reduction in food intake [20].  However, central insulin 

administration reduces weight to a greater extent than can be accounted for by reduced 

caloric intake alone [204] suggesting a role for insulin in the regulation of energy 

expenditure. Thus insulin, like leptin, induces a spectrum of responses that lead to the 

loss of body fat stores. 

 Together, insulin and leptin interact with neural circuits within the CNS that exert 

potent unidirectional effects on energy balance.  These neural circuits include those that 

stimulate food intake and reduce energy expenditure to promote weight gain (anabolic 

pathways) and those that reduce food intake and increase energy expenditure to 

promote weight loss (catabolic pathways).  In response to increases in adiposity, and  



17 
 

 

  

 

 

Figure 4.  Neuronal Insulin Receptor Signaling Cascade  

Binding of insulin to the extracellular α-subunits of the insulin receptor induces a 
conformational change thereby activating the tyrosine kinase activity of the β-subunits 
resulting in receptor auto-phosphorylation and subsequent phosphorylation of 
intracellular IRS proteins. PI3K is recruited to phosphorylated IRS proteins leading to 
activation of the p110 catalytic subunit of PI3K which mediates the conversion of PIP2 to 
PIP3 thereby initiating downstream signaling via serine/threonine kinases (i.e. PDK and 
PKB). These signals result in the diverse biological effects of insulin signaling in the CNS 
including regulation of gene transcription by FOXO proteins. Like leptin, insulin activation 
of PI3K in hypothalamic neurons and appears to alter neuronal activity and neuropeptide 
release. Figure adapted from Plum et al.. [141].  
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elevated levels of insulin and leptin act within the CNS to inhibit anabolic pathways 

stimulate catabolic pathways.  Conversely, in response to decreases in adiposity, 

reduced levels of insulin and leptin act within the CNS to “activate” anabolic pathways 

(i.e. remove inhibition) and “inhibit” catabolic pathways (i.e. reduce activation).  This 

coordinated regulation promotes the stability of body fat stores over time.  

 

Integrated Regulation of Energy Homeostasis  

 The “lipostatic model” of energy homeostasis linking food intake to the amount of 

energy stored as fat mass in the body as originally articulated by Kennedy [85], 

postulated that signals proportional to the size of fat stores become integrated with 

“other” regulators of food intake (i.e. short-term signals).  These short-term regulators of 

food intake can include extrinsic signals, such as social factors and the environment, as 

well as intrinsic signals including those generated in proportion to fat mass (i.e. the 

aforementioned adiposity signals) and those generated in response to the consumption 

of food [204].  The long-term maintenance of body weight and fat mass is determined by 

the short-term regulation of food intake and energy expenditure on a day to day basis 

and from meal to meal such that sustained changes in these two factors, over time, will 

lead to collective long-term effects on body weight and fat mass.  Therefore, it is 

important to understand the relationship between the short- and long-term regulation of 

food intake and energy expenditure. 

 

 Short-term Signals 

 The ability of short-term signals to impact meal size and number appears to be 

modulated, either directly or indirectly, by the size of the adipose mass and hence the 

adiposity signals insulin and leptin [123, 204].  The adiposity signals act as long-term 

signals to suppress food intake by interacting with the short-term meal-related signals. It 
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is through this interaction between long-term adiposity signals and short-term meal-

related signals that the control of food intake is integrated into the homeostasis of fat 

stores. Overall, energy homeostasis maintains fat mass stores over time through daily 

regulation of meal size and meal number [86] in the setting of long-term regulation.  

 The existence of meal-generated signals, including satiety factors, was first 

documented in the early 1970s when it was found that administration of the gut peptide 

cholecystokinin (CCK) to rats prior to food administration caused a dose-dependent 

decrease in meal size [66].  Since then, satiety factors have been extensively studied.  

Satiety factors are generated in response to the detection, processing, and absorption of 

food; accumulate during food consumption; contribute to meal termination; and thereby 

determine meal size [204].  In addition, there is evidence of an association between 

meal size and the interval to subsequent meal initiation [96] suggesting that factors 

determining meal initiation are coupled to those terminating the meal.   

 Several key features of satiety factors have been identified and are summarized 

briefly (reviewed in [204]).  First, when administered exogenously, satiety factors reduce 

meal size.  Second, blocking the action of endogenous satiety factors with specific 

antagonists increases meal size. Third, satiety factors can synergistically influence meal 

size by combining with other satiety factors.  Fourth, at doses that elicit modest 

reductions of meal size, satiety factors do not induce nausea or distress in animals.  

Fifth, satiety factors signal to the brain via afferent nerves as well as via receptors within 

the brain.  Finally, the repeated administration of satiety factors does not alter body 

weight despite effects on meal size.  For example, while the repeated administration of 

CCK to rats at the onset of every meal effectively reduces the size of each meal, there is 

a compensatory increase in the number of meals initiated such that cumulative food 

intake remains the same and energy balance is maintained [196].  Thus, although satiety 
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factors can potently affect food intake over the course of individual meals, they have 

limited influence on long-term adiposity by themselves.   

 As satiety factors signal meal termination, a complimentary signal exists that can 

initiate meal consumption.  The first peripheral orexigenic hormone, ghrelin, was 

identified as a twenty-eight-amino acid peptide produced mainly in the stomach [67].  

The secretion of ghrelin depends largely on nutritional state with circulating ghrelin levels 

increasing prior to and decreasing shortly after a meal [91] indicating a potential role for 

this hormone in meal initiation and satiety. Accordingly, the preprandial increase in 

ghrelin levels correlate with hunger scores in healthy humans and initiate meals in the 

absence of time and food-related cues [50].  Ghrelin enhances food intake by increasing 

the number of meals without altering meal size [83]. The appetite inducing effects of 

ghrelin are proposed to occur via three different pathways [92].  First, ghrelin released 

into the bloodstream from the stomach may cross the blood-brain barrier and bind to its 

receptors in the hypothalamus.  Second, ghrelin may reach the brain through vagal 

afferents to the hindbrain.  Third, ghrelin produced locally in the hypothalamus may 

directly affect the various hypothalamic nuclei.  At the level of the hypothalamus, ghrelin 

stimulates the activity of NPY/AgRP expressing neurons and has an inhibitory effect on 

POMC neurons [91].  Peripherally, ghrelin stimulates gastrointestinal motility, gastric 

acid secretion, and pancreatic exocrine secretion [49] and also has an effect on immune 

cell activation and inflammation [91].   

 

 Whole-body Physiology 

  Energy homeostasis is a complex process involving integrated whole-body 

physiology.  Although studies have shown the arcuate nucleus of the hypothalamus to 

be an important site in the regulation of energy homeostasis by the adiposity signals 

insulin and leptin, the integration of homeostatic signals involves multiple brain areas 
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and peripheral tissues [201].  Additional interoceptive information reaches ARC neurons 

via abundant intra- and extra- hypothalamic connections.  Neural inputs to the ARC from 

regions in the forebrain carry information pertaining to sensory perception, reward 

expectancies, learned associations, and other emotional needs and behaviors [201].  In 

the brainstem, the nucleus of the solitary tract (NTS), area postrema, and dorsal motor 

nucleus of the vagus have all also been implicated in the regulation of energy 

homeostasis [127].  For example, information from satiety factors generated in the 

gastrointestinal tract is conveyed to the NTS, located in the brainstem, via afferent 

nerves as well as via receptors within the brain itself [174, 183].  Information then passes 

anteriorly through the brainstem to the hypothalamus and other forebrain areas where 

there are extensive reciprocal connections between the hypothalamus and the 

brainstem.  Energy intake is coordinated on the basis of information received by both 

regions [163] [45, 54].   

 In addition to its role in regulating food intake, the hypothalamus also regulates 

energy storage and expenditure in part through its connections to the autonomic nervous 

system.  The parasympathetic nervous system, through the vagus nerve, promotes 

energy storage, whereas sympathetic nervous system (SNS) activation increases 

energy expenditure.  The parasympathetic system transmits signals via projections from 

the hypothalamus to the dorsal motor nucleus of the vagus, which in turn innervates the 

viscera, including the pancreatic β-cell [80].  Vagal modulation of β-cell function 

promotes a stoichiometrically excessive insulin hypersecretion in response to a fixed 

glucose load thereby increasing lipogenesis [80].  Conversely, hormonal, nutrient, and 

environmental changes modify the activity of projections from other key nuclei of the 

hypothalamus which lead to SNS activation.  SNS activation tends to mobilize energy 

stores by the following mechanisms: (1) increased circulating catecholamines stimulate 

glucagon secretion, which antagonizes insulin’s effects and indirectly inhibits insulin 
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secretion; (2) thyroid mediated increase in energy expenditure; (3) increased blood flow 

and oxygen consumption in skeletal muscle; and (4) increased thermogenesis and 

lipolysis via activation of β3-adrenergic receptors in adipose tissue [80].  

 Although functions as complex as feeding behavior and energy metabolism are 

undoubtedly controlled by many peptide and non-peptide neurotransmitters interacting at 

different levels, the coordinated regulation of these opposing pathways via the adiposity 

signals, insulin and leptin, is central to the maintenance of long-term energy 

homeostasis mediated by primary neurons located in the ARC.  Figure 5 illustrates the 

integration of peripheral signals to the central nervous system, the reciprocal pathways 

between regions of the hypothalamus and the hindbrain, and the coordinated response 

back to the periphery to regulate adipose mass and complete the feedback loop.   

 

Obesity: Disrupted Energy Homeostasis  

 Despite the evidence supporting a role for the hypothalamus in the regulation of 

energy homeostasis, the prevalence of obesity in the United States is increasing at an 

alarming rate.  While the mechanisms involved in the development of obesity remain to 

be fully elucidated, the obese state has been well studied and characterized.  It is well 

known that obesity is characterized by peripheral insulin resistance, but what is less well 

appreciated is that obesity seems to be characterized by hypothalamic resistance to the 

adiposity signals, insulin and leptin.  Obese individuals have markedly increased serum 

insulin [7] and leptin [46] levels, reflecting an increase in body adipose mass, yet food 

intake and energy expenditure are not appropriately regulated as would be predicted 

based on the homeostatic feedback loop described.  This suggests that the homeostatic 

effects of insulin and leptin are impaired at the level of the CNS, indicative of 

hypothalamic resistance.  Generally speaking, obesity represents a state of positive 

energy balance (weight gain) in which energy intake exceeds energy expenditure and  
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Figure 5.  Integration of Central and Peripheral Signals in the Regulation of Energy 
Homeostasis 
 
Hormonal, nutrient, and environmental cues provide information to the hypothalamus 
and hindbrain regarding short-term energy metabolism and long-term energy stores.  
The hypothalamus elicits anorexigenic (green arrows) and orexigenic (red arrows) 
signals to the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) which 
leads to efferent outputs from the hindbrain to promote energy storage via activation of 
the parasympathetic nervous system (vagus nerve) or promote energy expenditure via 
activation of the sympathetic nervous system.  Figure adapted from Isganaitis et al.. [80].   
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the effects of the adiposity signals insulin and leptin fail to appropriately reduce adipose 

stores via regulation of the hypothalamic circuits controlling food intake and energy 

expenditure.   

 

 Leptin resistance 

 A number of potential mechanisms have been postulated to underlie central 

leptin resistance in obesity including defects in leptin transport across the blood-brain 

barrier, leptin receptor signaling, as well as downstream neurons and signaling 

molecules that mediate the effects of leptin.  Except for leptin-deficient obese mice, most 

obese mammals have elevated plasma concentrations of leptin [46], yet they exhibit 

inappropriate levels of food intake and energy expenditure for the given level of leptin 

[64].  The observation that leptin administered directly into the brain is more potent at 

curbing appetite in obese mice than peripherally administered leptin has led to 

speculation that leptin resistance is due to limited availability of the hormone in the CNS 

[188].  Low CSF leptin levels have been documented in several rodent models of obesity 

including high-fat feeding and evidence indicates leptin transport is decreased in obesity 

[10].  However, resistance to the food lowering effects of centrally administered leptin is 

also observed in genetically obese and HF fed, obese rodents [51, 105], unpublished 

observations). Thus, inadequate transport does not fully explain the CNS leptin 

resistance seen in obesity, but appears to be a contributing factor.  In addition, the ability 

of leptin to activate the downstream signaling molecule, STAT3, in hypothalamic 

neurons is reduced when mice are fed a high-fat diet [57] suggesting a defect in leptin 

signaling.  These data suggest that dietary fat may be involved in multiple sites of 

hypothalamic leptin resistance from delivery to downstream signaling events by currently 

unknown mechanisms.   
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 Insulin resistance 

 Similar mechanisms have been postulated to underlie hypothalamic insulin 

resistance in obesity.  Like leptin, most obese mammals have elevated plasma 

concentrations of insulin [7, 46] yet exhibit inappropriate levels of food intake and energy 

expenditure for the level of insulin [64, 204].  Uptake of insulin from the plasma to the 

brain appears to be reduced in obese Zucker rats [178] and high-fat fed dogs [82], 

suggesting that insulin transport is a site of resistance.  However, previous work from our 

laboratory has demonstrated resistance to the food lowering effects of insulin 

administered directly into the brain in rats fed a high-fat diet [146].  Therefore inadequate 

transport does not fully explain the CNS insulin resistance seen in obesity.  Inactivation 

of insulin signaling via serine phosphorylation of IRS proteins is a common feature of 

peripheral insulin resistance [211] that is also implicated in the hypothalamus of high-fat 

fed rats [52].  In addition, studies have shown that activation of PI3K in hypothalamic 

neurons is required for the ability of centrally administered insulin to reduce food intake 

and hyperpolarize NPY/AgRP neurons [133, 175].  Thus, impaired signal transduction is 

another potential mechanism of central insulin resistance in high-fat diet-induced 

obesity.    

 Although high-fat diet-induced obesity is characterized by hypothalamic insulin 

and leptin resistance, the mechanisms involved remain to be fully elucidated.  Of note 

are the similarities between hypothalamic and peripheral insulin signaling as well as the 

importance of PI3K signaling in both hypothalamic insulin and leptin function.  Thus, it 

seems reasonable that the mechanism of hypothalamic insulin and leptin resistance may 

be analogous to those involved in peripheral insulin resistance and obesity.  Since 

insulin resistance has been extensively studied in peripheral tissues, findings from these 

studies may shed light on the mechanisms of resistance present in the CNS.  Here, 

several mechanisms are explored that have been identified in the development of high-
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fat diet-induced obesity and peripheral insulin resistance and may also be relevant in the 

development of hypothalamic insulin and leptin resistance.  

 

Potential Mechanisms Involved in High-Fat Diet-Induced-Obesity  

 

 Dietary Fat  

 Many factors are implicated in the development of obesity including dietary 

components such as fat and fructose, reduced physical activity, genetic susceptibility, 

stress, as well as a variety of other factors [30, 195].  Laboratory experiments in animals 

and clinical studies in humans have repeatedly shown that diet, particularly dietary fat 

and energy intake are strongly and positively associated with body weight gain [152, 

197].  Evidence from cross-sectional and longitudinal epidemiological studies indicates 

that a high-fat diet is an independent risk factor for increased adiposity and obesity [6] 

such that there is a direct relationship between dietary fat content and the degree of 

obesity from which a dose-response curve can be constructed [31, 70].  Furthermore, 

the type of fatty acids in the diet as well as the efficiency of fatty acid metabolism is 

reflected in both the plasma and body tissues and has profound effects on physiological 

and pathophysiological processes in the body [130, 189, 190].  For example, the fatty 

acid composition of the body is known to affect membrane properties, gene expression, 

metabolic signaling, as well as energy expenditure [190].  These effects appear to be 

modulated by fatty acid chain length, degree of fatty acid saturation, and background 

diet [190].  The obesigenic properties and cellular effects of dietary fatty acids could 

indicate of a role for these molecules in the development of hypothalamic insulin and 

leptin resistance.   

 Essential for a role of dietary fat in the development of hypothalamic insulin and 

leptin resistance is that fatty acid transport into the brain is an essential process 
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supplying fatty acids that are not locally synthesized and which are important signaling 

molecules and components of the phospholipid membrane [73].  In addition, common 

dietary fatty acids including palmitic acid also rapidly enter the brain and are primarily 

derived from FA-albumin complexes and to a lesser extent from circulating lipoproteins 

[176].  A current model of transport proposes that fatty acids cross the blood brain 

barrier mainly via passive diffusion or potentially with the aid of intracellular fatty acid 

binding proteins [73].  Acyl CoA synthetases then trap the fatty acids in the cell by 

forming acyl CoA molecules.  The metabolic fate of these molecules depends upon the 

cellular needs and the specific fatty acid.  In the brain, fatty acids function as structural 

components of the cell, are thought to be oxidized for energy, and can potentially act as 

signaling molecules [117].   

 

 Toll-Like Receptor 4  

 One recent target of fatty acid signaling that has been implicated in high-fat diet-

induced obesity is toll-like receptor 4.  The toll-like receptors (TLRs) are receptors 

expressed by cells of the innate immune system involved in the expression of 

proinflammatory cytokines [4, 81].  TLRs are stimulated by structural motifs known as 

pathogen-associated molecular patterns, or PAMPs, including lipopolysaccharide (LPS) 

[4].  Studies in mice known to have a defective LPS response later identified TLR4 as 

the specific “LPS receptor” [145].  LPS consists of three parts: lipid A, a core 

oligosaccharide, and an O side chain [149].  The lipid A moiety of LPS is noteworthy in 

that it is acylated with saturated fatty acids.  Furthermore, removal of these acylated 

saturated fatty acids results in complete loss of LPS activity and induces an antagonistic 

effect on native lipid A [125, 143].  These results suggest that acylated fatty acids play a 

critical role in ligand recognition and receptor activation of TLR4.  Additional studies 

have since demonstrated that saturated fatty acids, independently of LPS, induce TLR4 
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activity and downstream inflammatory markers whereas unsaturated fatty acids inhibit 

activation of TLR4 signaling pathways [98, 99].   

 The expression of TLR4 has been reported in most tissues of the body, including 

insulin-sensitive tissues [131] making TLR4 an intriguing target of fatty acid induced 

insulin resistance.  Consequently, the role of TLR4 in high fat diet-induced obesity and 

insulin resistance has been studied in several models of TLR4 deficiency and in various 

peripheral tissues. For example, Shi et al. [165] showed that high-fat feeding activated 

TLR4 signaling and inflammatory markers in adipocytes and macrophages, but that this 

effect was blunted in mice lacking TLR4.  Furthermore, TLR4 deficient mice were 

significantly protected from the ability of systemic lipid infusion to 1) suppress muscle 

insulin signaling and 2) reduce insulin mediated changes in systemic glucose 

metabolism [165].  Furthermore, mice with a loss-of-function mutation in TLR4 exhibit 

improved insulin sensitivity and enhanced insulin-signaling capacity in adipose tissue, 

muscle, and liver compared to control mice during high-fat feeding [184].  Additional 

studies in these mice demonstrated reduced liver triglyceride content and reduced 

expression of lipogenic and fibrotic markers with high-fat feeding compared to wild-type 

controls, indicative of improved hepatic function [142].  Together, these data support a 

link between TLR4 and high-fat diet-induced insulin resistance. 

 Elucidation of the TLR4 signaling pathway has revealed potential molecular 

mechanisms of fatty acid induced insulin resistance.  Briefly, ligand binding induces 

oligomerization of the receptor and recruits downstream adaptor proteins.  There are five 

adaptor proteins including myeloid differentiation primary response gene 88 (MyD88) 

[134].  TLR4 signaling has been divided into MyD88-dependent and MyD88-independent 

pathways.  From studies using MyD88-deficient macrophages, the MyD88 dependent 

pathways were shown to be responsible for pro-inflammatory cytokine expression.  Upon 

stimulation, MyD88 recruits and activates downstream signaling molecules resulting in 
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activation of the IκB kinase (IKK) complex which phosphorylates inhibitor of kappa B 

(IκB) proteins.  This phosphorylation leads to the degradation of IκB proteins and the 

subsequent translocation of the transcription factor NFκB, which controls the expression 

of proinflammatory cytokines [109].  Together, this data suggests TLR4 is a link between 

fatty acid signaling and inflammatory signaling pathways that have been implicated in 

peripheral insulin resistance (Inflammation as a mediator of insulin resistance will be 

discussed in detail below). 

 Phosphoinositide-3 kinase (PI3K) has been implicated in TLR4 signaling 

pathways and is an important component of hypothalamic insulin and leptin signaling.  

LPS, a TLR4 agonist, is known to activate PI3K and phosphorylation of PKB/Akt in cells 

[121, 156].  PKB/Akt further phosphorylates its downstream signaling molecules and has 

been shown to induce p65 phosphorylation resulting in enhanced NFκB transactivation 

[111].   Additional studies have been performed to clearly delineate the relationship 

between fatty acid-induced TLR4 activity and PI3K signaling.  Through a series of 

experiments utilizing inhibitors and dominant negative mutations of proteins in the TLR4 

signaling pathway, Lee et al. determined that saturated fatty acid induced NFκB 

activation and inflammatory gene expression was mediated at least in part by TLR4 

signaling involving MyD88 and PI3K pathways [100].  These studies also established 

that saturated and polyunsaturated fatty acids reciprocally modulate the TLR4 signaling 

pathways.  Saturated fatty acids induced TLR4 activation, phosphorylation of PKB/Akt, 

and NFκB activation, whereas unsaturated fatty acids inhibited TLR4 activity, 

phosphorylation of PKB/Akt, and NFκB activation ([100], Figure 6).  This data links fatty 

acids with components of the insulin and leptin signaling pathways (via PI3K) as well as 

inflammatory signaling pathways. 

 In addition to TLR4 expression in most peripheral tissues, mRNA expression has 

also been detected in the brain of humans [131].  Of all the TLR members, TLR4   
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Figure 6.  Reciprocal Modulation of Toll-like Receptor 4 Signaling Cascade 

Ligand binding induces oligomerization of the receptor and recruits downstream adaptor 
proteins and signaling cascades divided into MyD88-dependent and MyD88-
independent pathways. Shown here is a MyD88-dependent signaling cascade that 
results in activation of the IKK-IκBα-NFκB pathway.  Activation of IKKβ results in 
phosphorylation and targeted degradation of IκBα, thereby permitting translocation of the 
transcription factor NFκB to the nucleus where it controls the expression of 
proinflammatory cytokine target genes. NFκB activation and inflammatory gene 
expression is also mediated, at least in part, by TLR4 signaling involving PI3K-PKB 
signaling. In addition, TLR4 signaling activity is reciprocally modulated by saturated and 
unsaturated fatty acids such that saturated fatty acids induce activation of TLR4, PKB, 
and NFκB, whereas unsaturated fatty acids inhibit activity of these molecules. Figure 
adapted from Lee et al. [100]. 
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showed the highest expression in brain, liver, and skeletal muscle [131].  In rodents, 

TLR4 expression has also been documented in the CNS [95] with a low to moderate 

level of basal expression observed in the median eminence and several adjacent brain 

regions including the ARC and other hypothalamic nuclei involved in energy 

homeostasis [34].  Following a single injection of intravenous LPS (40ug/kg), TLR4 gene 

expression within the ARC of Sprague-Dawley rats was significantly increased at 15min 

but was quickly restored to basal levels by 30 min and down-regulated by 90 min [34].  

Although levels were low under basal conditions, the constitutive expression of TLR4 in 

these different brain regions as well as the response observed to LPS in the ARC, 

suggests a potential role of TLR4 signaling in the hypothalamus.  Activation of TLR4 by 

dietary fatty acids could induce hypothalamic insulin (and leptin) resistance as observed 

in peripheral tissues.  Furthermore, hypothalamic insulin (and leptin) resistance could 

potentially be mediated by the proinflammatory effects of TLR4.   

 

 Inflammatory IKKβ Signaling  

 Compelling evidence linking inflammation to insulin resistance derives from both 

epidemiological studies and experimental data in humans and animal models.  

Epidemiological data suggest that subclinical inflammation may represent an additional 

novel risk factor in the development of obesity and T2DM [55, 159].  As such, obesity is 

marked by a broad inflammatory response.  The first molecular link between obesity and 

inflammation was discovered by Hotamisligil et al. in 1993 [78] in work demonstrating the 

inflammatory cytokine tumor necrosis factor α (TNFα) is constitutively expressed in 

adipose tissue and over-expressed in rodent models of obesity.  Conversely, body 

weight reduction in obese individuals is associated with a reduction in both TNFα 

expression and improved insulin sensitivity [77].  Furthermore, in support of a direct role 

for inflammation in the development of insulin resistance, in vivo inhibition of TNFα in  
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obese rats significantly improved insulin sensitivity [78].  Since these initial findings, the 

IKK/NFκB pathway has been implicated in the development of insulin resistance at the 

cellular level and can be activated by several proinflammatory receptors [167] including 

TLR4.  These data provide convincing support for inflammation as a contributor to insulin 

resistance, and provide insights into the underlying molecular pathways.   

 Inhibition of the IKKβ pathway (the catalytic subunit of the IKK complex) with high 

doses of salicylates was originally used to lower blood glucose in diabetic patients [13, 

151].  Although no longer used to treat diabetes, this effect of IKKβ inhibition to reduce 

glucose levels led to studies investigating the relationship between IKKβ and insulin 

sensitivity.  Yuan et al. [208] reported that activation or over-expression of IKKβ 

attenuated insulin signaling in cultured cells, whereas inhibition of IKKβ reversed insulin 

resistance.  Furthermore, heterozygous deletion of IKKβ protected mice against the 

development of high-fat diet-induced insulin resistance [208].  These findings further 

support the role of inflammation in the pathogenesis of high-fat diet-induced insulin 

resistance, specifically via IKKβ signaling.  The molecular mechanism of IKKβ induced 

insulin resistance may involve both direct and indirect effects on the insulin signaling 

pathway to induce resistance.  As described previously, IKKβ induces transcriptional 

activity via activation of the transcription factor NFκB.  Several proinflammatory 

cytokines are direct target genes of NFκB, including TNFα and Interluekin 6 (IL-6), both 

of which are known inducers of insulin resistance [87].  In addition, evidence indicates a 

direct effect of IKKβ on the insulin signaling pathways via its function as a 

serine/threonine kinase.  Serine phosphorylation of the insulin receptor and IRS proteins 

by IKKβ reduces tyrosine phosphorylation and activity of these molecules thereby 

preventing the association and activation of PI3K and downstream effects [211].  It 

seems plausible that similar mechanisms may also be involved in the development of 

hypothalamic insulin and leptin resistance.  
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Pathogenesis of High-Fat Diet-Induced-Obesity.   

 High-fat fed, insulin resistant animal models of obesity are characterized by 

increased activation of IKKβ in peripheral tissues [168].  A significant amount of research 

has focused on establishing cause versus consequence in this relationship between 

dietary fat, inflammation, and insulin resistance in peripheral tissues.  Studies have 

demonstrated that infusion of FFAs induces peripheral insulin resistance [40] and that 

FFA infusion activates PKCθ [71], a known activator or IKKβ [106], whereas inhibition of 

IKKβ suppresses FFA-induced insulin resistance [88].  Furthermore, studies have shown 

an even stronger relationship between the accumulation of intracellular fatty acids and 

insulin resistance [93, 139, 140].  One model to explain this relationship suggests that 

increases in plasma free fatty acids with high-fat feeding leads to the accumulation of 

intracellular fatty acid metabolites, such as fatty acyl CoAs, diacylglycerol, and/or 

ceramides.  Accumulation of these molecules can then activate an inflammatory 

signaling cascade involving IKKβ, which leads to serine phosphorylation of IRS proteins 

and downregulation of the insulin signaling pathway [169].  In addition, it seems 

plausible that activation of IKKβ through the TLR4 signaling pathway could also 

contribute to insulin resistance via a similar mechanism (Figure 7).   

 Although the model of fatty acid induced insulin resistance was originally 

described in peripheral tissues, a similar mechanism may also be involved in the 

development of hypothalamic insulin (and leptin) resistance.  In support of this 

hypothesis, De Souza et al. demonstrated that the consumption of a fat-rich diet induces 

the expression of several pro-inflammatory cytokines and inflammatory responsive 

proteins in the hypothalamus which was associated with reduced insulin signaling and 

increased serine phosphorylation of IR and IRS-2 compared to chow controls [52].  In 

addition, previous work from our laboratory has demonstrated that high-fat fed obese  
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Figure 7.  Proposed Cellular Mechanism of Fatty Acid-Induced Insulin Resistance  

An increase in delivery of fatty acids or decrease in intracellular metabolism of fatty acids 
leads to an increase in intracellular fatty acyl CoA levels.  The accumulation of fatty acyl 
CoA molecules induces activation of a serine/threonine cascade potentially mediated by 
IKKβ resulting in serine/threonine phosphorylation of the IR and IRS molecules and 
reduced activation of PI3K and other downstream effects of insulin signaling.  
Alternatively, extracellular saturated fatty acids may contribute to insulin resistance via 
activation of the TLR4 signaling cascade via a similar mechanism of IKKβ induced 
serine/threonine phosphorylation of the IR and IRS molecules independent of 
intracellular fatty acyl CoA accumulation. Figure adapted from Shulman [169]. 
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rats, characterized by hypothalamic insulin and leptin resistance, have increased 

accumulation of saturated long-chain CoA molecules and increased hypothalamic IKKβ 

activity compared to low-fat fed controls ([146], Figure 8).  These findings establish an 

important association between consumption of a HF diet, inflammation, and insulin and 

leptin resistance within key hypothalamic regions involved in the control of energy 

homeostasis.  Based on the current model of central nervous system control of energy 

homeostasis described, resistance to the effects of insulin and leptin to maintain adipose 

stores via regulation of hypothalamic circuits regulating food intake and energy 

expenditure would result in positive energy balance and obesity.  Thus, I hypothesize 

that establishing cause versus consequence of central LC-CoA accumulation and IKKβ 

activity in the development of hypothalamic insulin and leptin resistance will be crucial in 

delineating the pathogenesis of high-fat diet-induced obesity. 

 

Overview of Aims   

 In this body of work, I sought to elucidate the mechanisms involved in the 

development of high-fat diet-induced hypothalamic insulin and leptin resistance and how 

this may contribute to the onset of obesity.  My overall hypothesis is that dietary fat 

per se and not excess caloric intake contributes, either directly or indirectly, to the 

development of hypothalamic insulin and leptin resistance resulting in impaired 

regulation of body fat and the development of obesity. 

 The degree of fatty acid saturation, location of unsaturated bonds, and fatty acid 

chain length, have all been shown to influence insulin sensitivity.  The ability of fatty 

acids to modulate these various physiological processes in a chain length and saturation 

dependent manner suggests that fatty acids possess intrinsic obesogenic properties.  

Thus, as described in Chapter III, I investigate the potential of dietary fats with varying 

degrees of saturation to induce obesity and insulin resistance in free-feeding rats.   
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Figure 8. Hypothalamic LC-CoA Accumulation and IKKβ Activity in Obese, HF Fed 
Rats. 
 
Effect of DIO on hypothalamic long-chain fatty acyl-CoA content and inflammatory 
signaling. Hypothalamic content of palmitoyl-, stearoyl-, and oleoyl-CoA (A) and IKKβ 
phosphorylation (B) in low- and high-fat fed rats.  Error bars represent the standard error 
of the mean (SEM).  Student’s t-test was used to determine significance for comparisons 
between diet groups. * p<0.05, ** p<0.01.   
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However, it is well established that exposure to a high fat diet induces a characteristic 

hyperphagic response in animal models of diet-induced obesity.  This observation raises 

the question of whether dietary fat simply represents a more calorically dense food 

source.  Therefore I also utilize a pair-feeding paradigm (i.e. caloric restriction of the HF 

diet to the level of caloric intake of LF free-feeding animals) to delineate the obesogenic 

effects of dietary fats from the increase in caloric intake observed with high-fat feeding.  

 In Chapter IV, I directly assess the effects of two structurally distinct fatty acids 

that are major components of a common dietary fat (lard) on the hypothalamus.  I sought 

to determine whether exposure of the hypothalamus to excess saturated, but not 

unsaturated fat leads to hypothalamic accumulation of LC-CoAs that trigger 

inflammatory signaling (elevated IKKβ activity) and blunt insulin signaling in lean chow 

fed rats given an acute icv infusion of the saturated fat palmitate or the monounsaturated 

fat oleate.   

 The effect of the structural characteristics of dietary fatty acids on cellular 

function, in this case insulin sensitivity, may be explained by a receptor-ligand like 

interaction between specific fatty acids and “fat sensing” molecules.  Although several 

molecules are known to respond to fatty acids, we have identified Toll-like receptor 4 

(TLR4) as a potential target of high-fat diet-induced hypothalamic resistance and 

impaired body fat mass regulation.  TLR4 signaling is activated by saturated fatty acids, 

whereas unsaturated fatty acids inhibit saturated fatty acid-induced activation of TLR4 

signaling [99].  In Chapter V, I investigate the effect of TLR4 deficiency on high-fat diet-

induced obesity and hypothalamic insulin resistance. 

 Current models of energy homeostasis clearly implicate hypothalamic insulin and 

leptin signaling in the regulation of adipose stores.  Accordingly, these signaling 

pathways are thought to be disrupted in order for obesity to develop.  In Chapter VI, I 

examine the onset of high-fat diet-induced obesity to determine whether the initial onset 
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of hypothalamic insulin and leptin resistance in high-fat fed rats share a common time-

course and mechanism of development.  If these changes in hypothalamic insulin and 

leptin sensitivity are primary to the development of high-fat diet-induced obesity, then 

they should occur prior to the accumulation of excess body fat.  Thus, in these studies I 

first compared relative insulin sensitivities in central and peripheral tissues of HF fed 

rats, and second, determined whether the observed HF diet-induced changes in LC-CoA 

and IKKβ activation occur over a time-course consistent with a role in the onset of 

hypothalamic insulin and leptin resistance.  These changes in insulin and leptin 

sensitivity would in turn impair energy homeostasis, resulting in pathological weight gain 

and obesity.   

 The findings and interpretations from the experiments presented in this 

dissertation are summarized in Chapter VII.  Study limitations and caveats are also 

addressed.  These results raise several unanswered questions and future directions for 

study in understanding the mechanisms involved in the development of high-fat diet-

induced obesity.   
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Animal Care and Husbandry 

 All animal studies were performed in accordance with the Vanderbilt Institutional 

Animal Care and Use Committee guidelines under the supervision of the division of 

Animal Care. 

 

 Rats 

  Male Long-Evans rats were purchased from Harlan Indianapolis and housed 

individually when metabolic studies required an accurate measurement of food intake.  

Diet induced obesity was generated by feeding animals ad libitum for 8-10 wks a 

purified, micronutrient matched diet high in fat content relative to the low fat control diet 

(45% fat relative to kcal content vs 10%, D12451 vs D12450, Research Diets Inc; New 

Brunswick, NJ).  Nutritional information for all diets and custom diets are shown in Table 

1 (Research Diets Inc; New Brunswick, NJ).  The established model of high, saturated 

fat diet-induced obesity creates fasting hyperglycemia, hyperinsulinemia, impaired 

glucose tolerance, and hypothalamic insulin and leptin resistance in rodents with many 

characteristics similar to typical human obesity; thus it is an appropriate model for study.  

Typical metabolic parameters of a diet high in saturated fat from our laboratory are 

shown in Appendix A.  In all diet studies, animals were acclimated to the low fat control 

diet for 5-7 days and baseline body weight and adiposity were measured.  Animals were 

assigned to diet treatment groups after being randomized to minimize differences in 

adiposity.   
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Table 1: Composition of Diets 

 

 
 LF  

(D12450) 
HF  

(D12451) 
MU  

(custom) 
PU  

(custom) 
O3  

(custom) 
%kcal      

Protein 20 20 20 20 20 
Carbohydrate 70 35 35 35 35 
Fat 10 45 45 45 45 
kcal/gm 3.85 4.73 4.73 4.73 4.73 

g      
Soybean Oil 25 25 25 25 25 
Lard 20 177.5 0 0 0 
High Oleic 
Safflower Oil 0 0 177.5 0 0 

Safflower Oil 0 0 0 177.5 0 
Menhaden Oil 0 0 0 0 177.5 
 
 
 
 
Table 1: Macronutrient content and fat source are listed for all the diets used in rat and 
mouse studies.  The diets enriched in unsaturated fatty acids (MU, PU, and O3) were 
custom formulated and matched to the macronutrient content of the HF diet except 
varying in fat source and fatty acid composition.  All diets were purchased from 
Research Diets Inc (New Brunswick, NJ) and micronutrient matched.  
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 Mice 

 Male and female wild-type (WT, C57BL/10SnJ) and TLR4 deficient (T4, 

C57BL/10ScNJ) mice were purchased from Jackson laboratories for in house breeding.  

The TLR4 deficient mice are homozygous for a null mutation that corresponds to 

deletion of a 74-kb genomic fragment encompassing the TLR4 gene locus resulting in 

absence of both mRNA and protein [145].  Lines were maintained separately to eliminate 

potential differences caused by competition for nutrients, since T4 mice weigh 

significantly less than their WT counterparts at weaning and throughout diet 

administration.  To confirm loss of TLR4 expression and function, a TLR4 receptor 

ligand, lipopolysaccharide (LPS, 12.5 µg), was administered by intraperitoneal (ip) 

injection to a cohort of WT and T4 male mice.  Trunk blood, liver, and hypothalami were 

collected 1 hour post-injection to measure plasma and tissue interleukin-6 (IL-6) levels, a 

cytokine generated in response to LPS stimulation of the TLR4 receptor.  Additionally, a 

direct measure of TLR4 gene expression was made in WT and T4 mice by quantifying 

TLR4 mRNA levels.  For diet induced obesity studies, four-week old male and female 

WT and T4 mice were fed a HF (60% kcal fat, see Table 1) or LF diet ad libitum for 10 

wks.  Food intake, body weight, and body composition were measured twice a week.  

After 10 wks of diet administration, animals were sacrificed and tissues collected for 

analyses.  Trunk blood was collected for plasma metabolite measurements.  Indirect 

calorimetry studies were performed in a separate cohort of male WT and T4 mice in the 

Mouse Metabolic Phenotyping Center at Vanderbilt University.  

 

Intracerebroventricular (icv) Cannulation  

 Cannulation of the third ventricle in the brain allows perfusion of structures lying 

adjacent to third ventricle, i.e. the hypothalamus.  Placement of third ventricle cannula 

into Long Evans rats was performed using proper sterile technique and under general 
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anesthesia induced and maintained by inhalation of isoflurane.  Animals were secured in 

a stereotaxic apparatus and the surgical area shaved and thoroughly cleaned with 

Betadine.  A small anterior to posterior incision was made along the midline of the head 

and cleaned with sterile swabs to expose the skull.  The skull was leveled and properly 

aligned using lambda and bregma as reference points at the cranial plate junctions.  

After removing a small section of the skull at the insertion site, the cannula was targeted 

to the third ventricle by placing it 2.2 mm caudal to bregma and 7.5 mm ventral to the 

midsagittal sinus.  Dental cement (methyl methacrylate) was used to secure the cannula 

in place and it was affixed to the skull by prior placement of three small screws that 

served as anchor points.  Antibiotic (ceftriaxone, 0.1 g/kg body weight, ip) was given on 

the day of surgery and 2 days post-operatively.  Animals were allowed to recover for 5-7 

days after surgery during which body weight was monitored.  Surgical recovery was 

defined by steady weight gain and final body weight not less than 10% below pre-

surgery body weight.  Correct placement of cannula was verified by an angiotensin II 

drinking test.  If the cannula is placed correctly, angiotensin II activates the thirst center 

of the hypothalamus and direct administration to the third ventricle stimulates a 

measurable thirst response (>5 mls per hour for a 350-400 g rat).  For this test, 1 µl of a 

10 ng/µl angiotensin II solution was injected via ICV cannula and water consumption was 

measured over 30 min.  

 

Body Composition Analysis  

 Body composition was determined by nuclear magnetic resonance (NMR) 

spectroscopy to assess the percentage of body weight composed of adipose and lean 

mass.  These measurements were performed using the Echo MRI 700 (Echo Medical 

Systems, Houston, TX) for rats and the Minspec mq7.5 (Bruker Instruments, city, state) 

in the Mouse Metabolic Phenotyping Center at Vanderbilt University for mice.  Animals 
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were weighed immediately prior to collecting body composition measurements and 

measurements were performed at the same time of day throughout each study to 

minimize any fluctuations due to feeding status of the animals.  Measurement frequency 

was from once a day to once a week, which was dependent upon the study protocol.  

Animals were handled frequently and acclimated to the procedure prior to the start of 

each study to minimize any stress or novelty responses. 

 

Intraperitoneal Glucose Tolerance Test (IPGTT) 

 Glucose tolerance tests were performed in 4 hour fasted animals.  Blood glucose 

levels were measured prior to and after a bolus of ip glucose injection (50% dextrose 

solution in saline) using blood collected from the tip of the tail (Freestyle Flash 

glucometer, Abbott Laboratories, IL).  In rats, blood glucose measurements were 

collected at -20, 0, 20, 40, 60, 80, 100, and 120 min after a 3 g/kg lean mass dose of 

glucose administered at time zero.  In mice, blood glucose measurements were 

collected at -30, 0, 5, 15, 30, 60, 90, and 120 min with a 1 g/kg lean mass dose of 

glucose administered at the 0 minute time-point.  The dose and time-points measured 

were chosen based on previously reported data and reflect species differences in 

glucose metabolism between rats and mice.  As an index of glucose tolerance, the area 

under the curve was calculated from the blood glucose profiles using the 0 minute time-

point value as the baseline.   

 

Pair-Feeding Study  

 Male Long-Evans rats were divided into three treatment groups; low-fat, high-fat, 

and high-fat diet that was pair-fed (PF).  The low-fat and high-fat groups were given 

unrestricted access to diet containing 10% or 45% kilocalories fat (Table 1), respectively.  

The pair-fed group was given the same 45% high-fat diet, but access was limited to 
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match the caloric intake of the low-fat group and two-thirds of total daily calories were 

given to pair-fed rats at “lights off” with the remaining one-third given at “lights on”.  An 

IPGTT was performed after 3 wks of diet administration.  After 4 wks of diet 

administration, 4 hour fasted blood glucose levels were measured and animals given an 

intrapteritoneal injection of either saline or glucose (3 g/kg lean mass, 50% dextrose) to 

stimulate insulin secretion.  Blood glucose was measured again 15 min following 

intrapteritoneal injection, animals were euthanized, and tissues collected for analysis of 

p(S473)PKB, p(S177/181)IKKβ, and total IκBα levels.  Trunk blood, a mixture of arterial 

and venous blood collected via decapitation, was used for plasma insulin 

measurements.  

  

Fatty Acid Infusion   

 Palmitic (C 16:0) and oleic (C 18:1) fatty acids were obtained from Alltech 

Associates, Inc (Deerfield, IL) and 100 mM stock solutions of each were prepared as 

described by Cousin et al. [47].  Basically, fatty acids were dissolved in 0.1 M NaOH at 

70 °C in a shaking water bath and then complexed with bovine serum albumin (BSA, 

fatty acid-free) at 55 °C for 10 min to a final concentration of 1 mM fatty acid/10% BSA 

solution.  After cooling to room temperature, fatty acid solutions were sterile filtered (0.45 

µm pore size membrane filter) and stored at -20 °C.  On the day of a study, the fatty acid 

solution was heated to 55 °C for 15 min and cooled to room temperature immediately 

prior to use.  Following a 6 hour fast, previously cannulated male Long Evans rats 

maintained on standard chow diet (Lab Diet #5001) were subjected to icv infusion using 

a micropump (Harvard Apparatus 11 Plus Syringe Pump, Holliston MA) of fatty acid or 

vehicle at a rate of 0.5 µl/min for 4 hours, which delivers 0.5 nmoles fatty acid per minute 

for a total dose of 120 nmoles.  Animals were either euthanized and hypothalami 

collected for biochemical analyses, e.g. measurement of long chain acyl-CoA (LC-CoA) 
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content, or non euthanized animals were further assessed, i.e. insulin sensitivity.  To test 

insulin sensitivity, following icv fatty acid infusion, an icv bolus injection of either insulin 

or vehicle was administered.  Animals were euthanized and hypothalami collected for 

biochemical analyses.    

 

Long Chain Acyl-CoA Measurements  

 For quantitative analysis of hypothalamic acyl-CoA content, samples were 

prepared and CoA species purified on solid phase oligonucleotide purification columns, 

according to Deutsch et al. [53].  Samples were derivatized with n-butylamine for gas 

chromatography-electron ionization-mass spectrometry (GC-EI-MS) analysis, using a 

15-m DB-1 column (J&W Scientific; Folsom, CA) and selected ion monitoring using a 

Hewlett-Packard (HP) 6890 gas chromatograph coupled to an HP 5973 mass detector 

operated in the positive EI mode.  C16:0 (palmitoyl CoA), C18:0 (stearoyl CoA), and 

C18:1 (oleoyl-CoA) were quantified by calculating their respective peak areas.  A 

synthetic standard (C17:0, heptadecanoyl CoA) was used as an internal control.  

 

IKK Inhibitor Study  

 A pharmacological inhibitor of IKK (Inhibitor of kappa B kinase), PS-1145, was 

purchased from Sigma (St. Louis, MO) and its efficacy was determined by western blot 

analysis of its downstream target molecule, Inhibitor of kappaB alpha (IκBα), which is 

degraded after IKK phosphorylation.  Efficacy was determined from protein extracts 

prepared from the hypothalami of rats given an icv dose of PS-1145 (3 μg in saline) into 

the third ventricle (Appendix B).  For food intake studies, icv cannulated animals were 

fed either a low-fat or high-fat diet ad libitum for 8 wks and then received an icv dose of 

either vehicle or PS-1145 (10 μg) following a 4 hour fast.  Food intake was measured 

over a 4 and 24 hour period after treatment.  During food intake studies, animals were 



46 
 

also provided with kaolin pellets, a clay-like substance consumed in response to nausea 

or ‘visceral illness’.  Kaolin consumption was measured to monitor any indications of 

visceral illness (a non-specific reduction in food intake) due to icv treatments [118] 

(Appendix C).  For insulin sensitivity measurements, animals were pretreated with PS-

1145 (3 µg) via icv injection for 6 hours prior to insulin sensitivity measurements 

(described below) to determine the effect of IKK inhibition on insulin signaling. 

 

Cholecystokinin Study  

 Rats were habituated to regular handling and injections (ip saline) for 1 week 

prior to any study.  Immediately prior to onset of the dark cycle and after a 4 hour fast, 

either sulfated cholecystokinin (CCK) octapeptide (Bachem Inc; Torrance, CA) at a dose 

of 0.5 μg or saline vehicle was injected via ip in a final volume of 2.0 ml.  Food 

consumption was measured for 30 min post ip injections (i.e., the first 30 min of the dark 

cycle).  The protocol was adapted from Morton et al. [123].  The selection of the CCK 

dose was based on a dose-response study in which a 30-minute feeding response was 

measured relative to vehicle (saline) after an ip injection of CCK doses at 0, 0.5, 1, and 5 

µg just prior to onset of the dark cycle (Appendix D). 

 

Insulin and Leptin Sensitivity Meaurements 

 Hypothalamic insulin and leptin sensitivity was assessed by measuring activation 

of downstream signaling molecules in response to a direct insulin and leptin stimulation, 

respectively.  Cannulated animals received an icv injection of insulin (10 mU in 2 µl 

saline), leptin (3 µg in 2 µl PBS, phosphate buffered saline) or vehicle (2 µl).  Animals 

were euthanized 60 min post-injection, and mediobasal hypothalami dissected, snap 

frozen, and stored at -80°C for analyses.  Insulin sensitivity was determined by 

assessing insulin-stimulated activation (phosphorylation) of PKB/Akt, assessed by 
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western blotting for p(S473)Akt.  The icv insulin dose that was used induces a similar 

increase in hypothalamic pPKB as compared to the physiological insulin response 

induced by a fasting-refeeding cycle (Appendix E).  Leptin sensitivity was determined by 

leptin-stimulated activation via phosphorylation of Stat3, assessed by western blotting for 

p(Y705)Stat3.  The icv leptin dose used in these studies is similar to those reported in 

the literature to assess leptin action in the hypothalamus.   

  

Protein Extraction and Quantification 

 Total protein was extracted from hypothalamus, liver, muscle, and plasma 

samples.  Tissues were sonicated in a solution of T-Per Tissue Protein Extraction Buffer 

(Pierce/Thermo Scientific; Rockford, IL) containing 1:100 (v:v) of protease inhibitor 

cocktail and 1:100 (v:v) of phosphatase inhibitor cocktail (Sigma; St. Louis, MO).  For 

muscle samples, prior to sonication, tissues were pulverized with a tissue pulverizer.  

Following sonication, all samples were clarified by centrifugation at 10,000 x g for 20 min 

at 4 °C.  The protein extract (supernatant) was saved and its protein concentration 

determined.  Protein concentration was assessed in duplicate using a bicinchonic acid 

colorimetric assay (Pierce/Thermo Scientific; Rockford, IL) performed according to the 

manufacturer’s instructions with BSA as a protein standard.  Samples were diluted with 

T-Per buffer to the desired concentration for further analyses. 

 

SDS PAGE and Western Immunoblotting 

 Protein samples were mixed with 4x XT Sample Buffer and 20x XT Reducing 

Agent (Bio-Rad; Hercules, CA), heated to 85 °C for 10 min, and immediately loaded (20 

µg total protein per lane) along with a Kaleidoscope Precision Plus Protein Standard 

(Bio-Rad; Hercules, CA).  Protein samples and standard were subjected to denaturing 

electrophoresis on 10% Bis Tris gel with MOPS Running Buffer or 7% Tris Acetate gels 
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with XT Tricine Running Buffer using the Criterion XT Electrophoresis System according 

to the manufacturer’s instructions (Bio-Rad; Hercules, CA).  For immunoblotting, protein 

was transferred from the gel to a 0.2 µm nitrocellulose membrane using the Criterion 

Blotter module, according to the manufacturer’s instructions (Bio-Rad; Hercules, CA).  

Membranes were then blocked in StartingBlock T20 blocking buffer 

(Pierce/ThermoScientific; Rockford, IL) for 1 hour at room temperature and incubated 

with primary antibody in blocking buffer overnight at 4 °C with gentle rocking, washed 

three times in TBS (Tris Buffered Saline; 150mM NaCl, 20mM Tris pH 7.5) with 0.1% 

(v/v) Tween 20 (Sigma) for 10 min at room temperature, and incubated with species-

specific peroxidase-conjugated secondary antibody in 50/50 blocking buffer and TBS-T 

for 1 hour at room temperature.  Wash steps repeated, and antibody detection was 

performed using ECL Western Blotting Detection Reagents (Amersham Biosciences; 

Piscataway, NJ ) and BioMax XAR scientific imaging film (Kodak; Rochester, NY).  The 

luminescent image corresponding to each protein of interest was analyzed by 

densitometry using ImageJ software (National Institutes of Health, NIH). 

  Primary antibodies used for immunoblotting included: rabbit anti-p(S473)Akt 

(1:1,000; #9271, Cell Signaling), rabbit anti-p(S177/181)IKKβ (1:1000; #2687, Cell 

Signaling), rabbit anti-p(Y705)Stat3 (1:1000; #2687, Cell Signaling), total IκBα (1:1000; 

#9242, Cell Signaling), and goat anti-actin (1:5000; sc-1616, Santa Cruz).  Secondary 

antibodies used for immunoblotting included: horseradish peroxidase-conjugated goat 

anti-rabbit IgG (1:5000; W401B, Promega) and bovine anti-goat IgG (1:7500; sc-2350 

Santa Cruz). 

  

Enzyme Linked Immunosorbant Assay (ELISA)  

 IL- 6 levels, a measure of Toll-like Receptor4 (TLR4) stimulation by LPS, were 

determined from plasma and tissue (liver and hypothalami) in wild-type and T4 mice 
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using a solid phase sandwich ELISA (Invitrogen; Carlsbad, CA).  Briefly, a monoclonal 

antibody specific for IL-6 is coated on the wells of a microtiter plate.  Samples (500ug 

plasma and 50ug tissue protein extracts) and standards are incubated in the wells and 

IL-6 binds to the immobilized (capture) antibody.  After washing, a biotinylated detection 

antibody specific for IL-6 is added.  During this second incubation, the detection antibody 

binds to the immobilized IL-6 protein captured during the first incubation.  After removal 

of excess detection antibody, streptavidin-peroxidase (enzyme) is added.  This binds to 

the biotinylated detection antibody to complete the four-member sandwich (capture 

antibody, protein, detection antibody, enzyme).  After removal of all unbound enzyme, a 

substrate solution is added which is acted upon by the bound enzyme to produce color.  

The intensity of the colored product is directly proportional to the concentration of the IL-

6 in the sample.  The absorbance of the color produced is measured 

spectrophotometrically at 450 nm and the concentration of IL-6 in each plasma and 

tissue sample is calculated from a standard curve generated from the absorbance 

values of the standards.  Sample values were normalized to the average value of those 

obtained from low fat vehicle mice.  All standards and samples were measured in 

duplicate.   

 

RNA Isolation and Quantitative Real-Time RT-PCR  

 Total RNA was extracted from liver tissue using TRIzol reagent (Invitrogen, 

Carlsbad, CA) according to instructions from the manufacturer.  Optical density 

measurements of the reconstituted RNA were taken at A260 and A280 to determine the 

concentration and the A260/280 ratio, to assess purity of the sample, using the Smart Spec 

Plus spectrophotometer (Bio-Rad; Hercules, CA).  RNA (1.0 µg) was reverse transcribed 

(Multiscribe RT Reverse Transcriptase, Applied Biosystems) and amplified in a one-step 

qRT-PCR reaction performed using the MyiQ Real-Time PCR Detection System with iQ 
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Real-Time SYBR Green PCR Supermix (Bio-Rad; Hercules, CA) and the following 

mouse-specific primer sets: TLR4 (receptor) forward 5’-GTTCTTCTCCTGCCTGACAC-

3’ and reverse 5’-AGGGACTTTGCTGAGTTTCTG-3’, SCD-1 (metabolic enzyme) 

forward 5’-CGTGGGTTGGCTGCTTGTG -3’ and reverse 5’-

GCTTCTCGGCTTTCAGGTCAG-3’, and mRPL13a (internal control) forward 5’-

AGATGCACTATCGGAAGAAGAAG-3’ and reverse 5’-

AGTCTTTATTGGGTTCACACCAG -3’.  The starting quantity (SQ) of each sample was 

calculated using a standard curve derived from a 2-fold serial dilution (0-50ng) of Mouse 

Reference RNA (SABiosciences, Frederick, MD).  The SQ mean was calculated for each 

sample and normalized to the SQ mean of mRPL13a obtained from the same RNA 

sample. These normalized values were used for subsequent comparison of the relative 

abundance of each mRNA of interest between different mice and/or experimental 

manipulation.  

 

Plasma Hormone and Metabolite Measurements 

 For all studies, trunk blood was collected in EDTA tubes and placed on ice.  

Samples were centrifuged at 500 x g for 10 min at 4 °C, the plasma supernatants were 

transferred to a new tube and stored at -80°C.  Plasma insulin and leptin concentrations 

were assayed via radioimmunoassay (RIA) using a double antibody procedure by the 

Hormone Assay and Analytical Services Core at Vanderbilt University with the 

respective Rat Insulin and Leptin RIA Kits or Mouse Insulin and Leptin RIA Kits 

(Linco/Millipore; St. Charles, MO).  Plasma free fatty acids (FFA) levels were analyzed 

using the Wako NEFA C Kit (Wako Chemicals Inc; Richmond, VA), an enzymatic 

colorimetric assay conducted in 96-well plate format and absorbance measured 

spectrophotometrically at 550 nm.  A standard curve was constructed from known 

concentrations of oleic acid (0.25-1.0mM) for sample calculations.  All samples and 
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standards were run in duplicate.  Plasma triglycerides were measured using an 

enzymatic colorimetric assay (Riachem; San Diego, CA) conducted in a 96-well plate 

and absorbance was measured spectrophotometrically at 520 nm.  A standard curve 

was constructed from known concentrations of triolein (0.5-10 mg/dl) for sample 

calculations.  All samples and standards were run in duplicate.    

 

Statistical Analysis 

  Data were analyzed using GraphPad Prism v4.03.  Briefly, mean +/- standard 

error of the mean (SEM) is reported.  Student’s T-test analysis was used for two-group 

comparisons and one-way ANOVA was used for comparison of three or more groups 

followed by the appropriate post hoc analysis to determine significance between the 

groups.  Repeated-measures two-way ANOVA with Bonferroni’s post-test was used to 

determine points of significance in measurements over time between groups.  

Correlation analyses using Pearson’s correlation was used to determine significance of 

data relationships.  p<0.05 was considered significant.  Specific analyses performed and 

sample sizes determined from power calculations are listed in figure and table legends 

where appropriate.  
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CHAPTER III 

 

OBESOGENIC PROPERTIES OF HIGH FAT DIETS ENRICHED WITH LONG CHAIN 

FATTY ACIDS OF VARING SATURATION 

 

Introduction  

 While many factors are implicated in the development of obesity, studies in 

humans and animals have repeatedly shown that dietary fat and total energy intake are 

strongly and positively associated with body weight gain and insulin resistance [197].  

The fatty acid composition of the body, which is a reflection of dietary fat consumption 

and fatty acid metabolism [130, 189], is known to affect several physiological processes 

such as membrane properties, gene expression, metabolic signaling, and energy 

expenditure [190].  These effects are dependent upon such structural properties of fatty 

acids as chain length, degree of saturation, and location of unsaturated bonds [177, 

190].  Therefore, I investigated the potential of specific long-chain fatty acid moieties to 

induce obesity and insulin resistance in free-feeding rats.   

 It is well known that in animal models of diet-induced obesity, diets high in fat 

content promote increased caloric intake.  This raises the question of whether dietary fat 

possesses inherent obesogenic properties or simply represents a more calorically dense 

energy source compared to other macronutrients (~9 kcal/g of fat versus ~4 kcal/g of 

carbohydrate or protein).  To delineate the obesogenic effects of dietary fats from the 

increase in caloric intake observed with high-fat feeding, I utilized a pair-feeding 

paradigm.  Pair feeding is restricting the consumption of a high-fat diet to the levels of 

caloric intake observed in free feeding low-fat fed animals.  I was able to assess the 

contribution of intrinsic properties of dietary fat in the absence of increased caloric intake 

on the development of obesity and insulin resistance.  Together, the following studies 
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address the intrinsic properties of dietary fatty acids on whole body energy homeostasis 

and the development of central and peripheral insulin resistance. 

 

Results  

 Saturation Dependent Effects of Dietary Fat in Long Evans Rats  

  Effects on body weight, adiposity, and plasma hormones  

 Weight and adiposity matched male Long Evans rats were divided into five 

dietary groups to investigate the saturation dependent effects of long-chain fatty acids on 

whole body metabolism.  High-fat (HF, 45% of total kcal from fat) and low-fat (LF, 10% of 

total kcal from fat) groups were fed a lard-based diet which consisted of a mixture of 

saturated, mono-unsaturated, and poly-unsaturated fatty acids with a composition of 

40:45:10 parts, respectively.  To determine the effect of specific fatty acid moieties in 

high-fat diet induced obesity, the experimental groups were fed high-fat diets (also 45% 

of total kcal from fat) enriched in specific long-chain fatty acids of varying degrees and 

sites of unsaturation; namely mono-unsaturated (MU), omega-6 poly-unsaturated (PU), 

and omega-3 polyunsatured (O3) fatty acids.  Importantly, these fat type specific diets 

contained the same number of calories per gram as the lard-based HF diet and the lard-

based HF diet is the only diet containing a significant amount of long-chain saturated fat.  

Rats were housed individually and fed their respective diets ad libitum for 10 wks.  The 

duration of high-fat feeding was chosen based on previous data, which indicated that 8-

10 wks was sufficient to induce high-fat diet-induced obesity in Long Evans rats 

(Appendix A).  All data measurements and end-point analyses are reported in Table 2 (p 

70).  

 Body weight and adiposity were measured twice a week throughout the 

experiment (curves are shown in Figure 9A,B).  After 10 wks of diet, the HF group 

weighed significantly more than the LF group (Figure 9C; HF vs LF p<0.05).  No other 
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high-fat diet treatment resulted in a significant gain in body weight compared to the LF 

group (Figure 9C), which suggests that the saturated fatty acid component of the HF diet 

was responsible for the weight gain associated with high-fat feeding.  This supports 

human evidence implicating saturated fatty acids in the development of diet-induced 

obesity [41].  Both the HF and MU diet significantly increased adipose mass compared 

to the LF diet (Figure 9D; HF vs LF p<0.01, MU vs LF p<0.05).  However, there 

appeared to be a graded effect of the various high-fat diets on adiposity such that as the 

degree of unsaturation increased, adiposity decreased.  The O3 group gaining the least 

amount of fat mass, whereas the HF group gained the most amount of fat mass among 

the high-fat diets thereby implicating the saturated fatty acid component of the HF diet in 

the increased adiposity associated with HF feeding. 

 Fasting plasma leptin levels were also measured after 10 wks of diet and were 

elevated in the HF group compared to the LF group (Figure 9E; p<0.01).  Even when 

normalized to body adiposity, significant hyperleptinemia was present in the HF group 

compared to the LF group (Figure 9F; p<0.05) indicative of leptin resistance.  However, 

the other high-fat diets did not induce a significant increase in fasting leptin levels 

compared to the LF group.   

 

  Effects on food intake and energy expenditure 

 High-fat diets are known to induce significant caloric intake compared to low-fat 

diets ([198] and our observations).  The excess caloric intake is thought to occur, in part, 

from the caloric density of fat compared to carbohydrates and protein (9 kcal/g of fat vs. 

4 kcal/g of carbohydrate or protein), as well as to the palatability of high-fat foods [198].  

In this experiment, I determined whether the degree of fatty acid saturation altered the 

intake of excess energy in response to high-fat feeding.  Although all the high-fat diets 

were similar in percent dietary fat content, food intake was not experimentally controlled,  
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Figure 9: Saturation Dependent Effects of Dietary Fats on Obesity  
 
Male Long Evans rats were fed either a 10%LF diet (LF), or 45% HF diets enriched in 
saturated (HF), mono-unsaturated (MU), omega-6 poly-unsaturated (PU), and omega-3 
polyunsatured (O3) long-chain fatty acids for 10wks.  A,B. Body weight and adiposity 
measurements. C,D. Cumulative body weight and fat mass gain over course of diet 
treatment. E,F. Absolute plasma leptin levels (4hr fasted) and leptin levels normalized to 
adiposity. Error bars represent the standard error of the mean (SEM).  Two-way ANOVA 
with Bonferroni’s post-tests was used to determine significance in panels A,B (all diets 
compared to LF, black symbols represent HF vs LF comparison, dark grey symbols 
represent MU vs LF comparison). One-way ANOVA with Dunnett’s Multiple Comparison 
Test was used to determine significance of all groups compared to a control group in 
panels C-F (all diets compared to LF). * p<0.05, ** p<0.01, ***p<0.001, n=5-6 per group. 
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which allowed for any differences in energy intake to be observed between the different 

high-fat diets.  All high-fat diet groups consumed significantly more calories over the 

course of the study than the LF group (Figure 10A; HF vs LF p<0.01, MU vs LF p<0.05, 

PU vs LF p<0.01, O3 vs LF p<0.05).  However, the group fed the lard-based HF diet 

enriched in long-chain saturated fat consumed the most calories of all the diets high in 

fat content and no major differences were observed in food intake between the 

unsaturated high-fat diets.   

 Caloric intake may account for some, but potentially not all, of the differences 

observed in body weight gain between the unsaturated high-fat diets (MU, PU, and O3) 

compared to the lard-based HF diet enriched in long-chain saturated fat.  The ability of 

these diets to induce body weight gain was calculated as feed efficiency.  Feed 

efficiency indicates how effectively the body stores nutrients and accrues mass (as 

opposed to utilizing nutrients for energy production), calculated as the amount of weight 

gained per kilocalorie consumed (wt gain/kcal).  Weight gain is a function of both food 

intake and total energy expenditure such that changes in body weight are determined by 

the relative balance between food intake and energy expenditure.  Since body weight 

gain and food intake are known, relative energy expenditure can be inferred from feed 

efficiency calculations.  For example, a high feed efficiency value (i.e. increased body 

weight gain per calorie consumed) indicates that energy expenditure is relatively low.  

Conversely, a low feed efficiency value (i.e. reduced body weight gain per calorie 

consumed) indicates that energy expenditure is relatively high.  No significant difference 

was observed in feed efficiency between the LF and HF group (Student’s T-test, LF vs 

HF p=0.2) indicating that energy expenditure is not appropriately increased with HF 

feeding to maintain body weight in the setting of increased food intake.  However, feed 

efficiency values were significantly lower in all unsaturated high-fat diet groups 

compared to the HF group (Figure 10B; MU vs HF p<0.01, PU vs HF p<0.05, O3 vs HF  
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Figure 10:  Saturation Dependent Effects of Dietary Fat on Food Intake and Feed 
Efficiency.   
 
Cumulative food intake measurements (A) and feed efficiency calculations as an index 
of relative energy expenditure (B) following 10wks of diet treatment in rats.  Error bars 
represent the SEM.  One-way ANOVA with One-way ANOVA with Dunnett’s Multiple 
Comparison Test was used to determine significance of all groups compared to a control 
group (panel A vs. LF, panel B vs HF group).  * p<0.05, ** p<0.01, n=6 per group. 
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p<0.01).  These lower feed efficiency values suggest that per calorie consumed, the 

animals fed unsaturated fat diets gained less body weight than animals fed the HF diet 

containing saturated fat.  This suggests that consumption of unsaturated fatty acids 

increase energy expenditure to compensate for the increased caloric intake (observed 

with all high-fat diets) to maintain energy homeostasis.   

 

 Effects of a Restricted High-Fat Diet  

  Effects on body weight and adiposity 

 Since animals fed the HF diet enriched in long-chain saturated fats consumed 

excess energy with respect to their energy needs, the deleterious metabolic effects of 

HF feeding could arise from increased energy intake, increased dietary fat content, or a 

combination of both.  To determine the contribution of excess caloric intake versus 

intrinsic obesogenic properties of dietary fat, changes in body weight and adiposity were 

measured in a separate study that included a group of pair-fed (PF) rats that were fed 

the HF diet in an amount that was matched to the caloric intake of LF fed controls on a 

daily basis.  All data measurements and end-point analyses are reported in Table 3 for 

reference (p 70).  Total caloric intake of the PF group was precisely matched to the 

average caloric intake of the LF group over the duration of the study (Figure11A).  As 

previously observed, ad libitum HF feeding significantly increased caloric intake 

(p<0.001) and HF fed animals gained significantly more body weight (p<0.05) and 

adipose mass (p<0.001) compared to LF fed controls (Figure 11A-E).  Caloric restriction 

in the PF group completely abolished the weight gain observed with high-fat feeding 

compared to the LF group (Figure 11B,D), which suggests that body weight is a direct 

corollary of caloric intake in these animals with no apparent effects on energy 

expenditure.  However, the PF group gained approximately 60% more fat mass than the 

LF group and this equaled approximately 80% of the amount of fat mass accrued by the  
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Figure 11: Effects of a Restricted High-Fat Diet on Body Weight and Adiposity. 
 
Food intake of the pair-fed (PF) group was calorically matched to that of the low-fat (LF) 
diet group fed ad libitum. A. Cumulative food intake measurements. The high-fat (HF) 
group fed ad libitum consumed significantly more calories than both the LF and PF 
groups. B,C. Body weight and adiposity measurements. D,E. Cumulative body weight 
and fat mass gain over course of diet treatment. Error bars represent the SEM. Two-way 
ANOVA with Bonferroni’s post-tests was used to determine significance in panels B,C 
(all diets compared to LF group, black symbols represent HF vs LF comparison, grey 
symbols represent PF vs LF comparison). One-way ANOVA with Tukey’s post-hoc 
analysis was used to determine significance between all groups in panels A,D and E.  * 
p<0.05, ** p<0.01, *** p<0.001, n=13-14 per group. 
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HF group (Figure 11C,E; fat mass gain PF vs LF p<0.05).  Although pair-feeding did not 

completely recapitulate the level of adiposity observed in the HF group, the amount of 

long-chain saturated fat consumed by the PF group was 15% less than the HF group.  

These data indicate that dietary long-chain saturated fats possess intrinsic obesogenic 

properties which significantly contribute to alterations in body composition wherein 

adiposity increases at the expense of lean mass. 

 

  Effects on glucose tolerance 

 A glucose tolerance test was performed to determine whether impaired glucose 

tolerance generally observed with long-term high-fat feeding is mediated by excess 

caloric intake or the intrinsic obesogenic properties of a diet enriched with long-chain 

saturated fat.  After 3 wks of diet treatment, the glucose excursion curves of the HF and 

PF group were similarly elevated compared to the LF group (Figure 12A) although area 

under the curve only reached significance in the PF group (Figure 12B; vs LF p<0.01).  

This is likely attributable to the moderately elevated basal glucose levels observed in the 

HF group as area under the curve was calculated from baseline glucose values.  These 

data suggest that inherent properties of dietary fat significantly contribute to the impaired 

glucose tolerance associated with high-fat feeding by increasing adiposity. 

 

 High-Fat Feeding, Independent of Increased Caloric Intake is Sufficient to Induce 

Hypothalamic Insulin Resistance 

 To determine whether dietary fat enriched in long-chain saturated fat, 

independent of excess caloric intake, would impair hypothalamic insulin signaling, a 

glucose bolus was administered via intraperitoneal injection to stimulate endogenous 

insulin secretion and assess hypothalamic insulin sensitivity in vivo.  Hypothalamic 

tissue samples were collected 15 min post-injection and protein extracts assayed for  
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Figure 12: Effect of a Restricted High-Fat Diet on Glucose Tolerance 
 
Dietary fat content, independent of caloric intake, induced a similar blood glucose 
excursion (A) and elevated AUC in response to intraperitoneal glucose tolerance test (B) 
compared to LF fed animals. Error bars represent the SEM. Two-way ANOVA with 
Bonferroni’s post-tests was used to determine significance in panel A (black symbols 
represent HF vs LF comparison, grey symbols represent PF vs LF comparison). One-
way ANOVA with Tukey’s post-hoc analysis was used to assess significance between 
groups in panel B. * p<0.05, ** p<0.01, n=9-11 per group. 
  

LF HF PF
0

2000
4000
6000
8000

10000
12000 **

p=0.06

A
U

C

B

A

-20 0 20 40 60 80 100
100

200

300

400

LF
HF
PF

**
**

time (min)

bl
oo

d
gl

uc
os

e
(m

g/
dl

)



62 
 

activation of the downstream insulin signaling molecule PKB.  Mean blood glucose 

concentrations and plasma insulin levels were similarly elevated in all three groups 

compared to vehicle controls following glucose injection despite slightly lower baseline 

glucose and insulin levels in the PF group (likely owing to the longer period of fasting 

imposed by the pair-feeding protocol; Figure 13A,B).  High-fat feeding, in both restricted 

and free-feeding animals, resulted in slightly higher baseline levels of phosphorylated 

PKB at serine 473 (pPKB, phosphorylation site leading to activation) compared to LF fed 

animals (Figure 13C, white bars).  Baseline pPKB levels were not further increased in 

response to glucose-stimulated insulin secretion in the HF or PF group, whereas in the 

LF group, glucose-stimulated insulin secretion was associated with a significant increase 

in pPKB (Figure 13C, white vs black bars; LF group p<0.01).  Moreover, when plotted 

versus plasma insulin levels, PKB phosphorylation was significantly correlated with 

plasma insulin concentration in the LF group (Figure 13D; R=0.73, p<0.05), but not in 

the HF or PF group.   

 

 High-Fat Feeding, Independent of Increased Caloric Intake, is Sufficient to  

Activate Inflammatory Molecules 

 Previous observations from our laboratory demonstrated an activation of 

hypothalamic proinflammatory signaling in high-fat fed obese rats as measured by an 

increase in phosphorylation of IKKβ.  To determine whether activation of IKKβ with high-

fat feeding is from excess caloric intake or intrinsic properties of a diet enriched in 

saturated fat, hypothalamic activation of IKKβ (phosphorylated active form, pIKKβ) and 

levels of the downstream target molecule, IκBα, were measured.  Activation of IKKβ 

leads to the phosphorylation and degradation of IκBα and subsequent activation of the 

transcription factor NFκB to propagate proinflammatory signaling thought to contribute to 

insulin resistance.  The inflammatory signaling pathway was activated in the HF group  
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Figure 13: High-Fat Feeding, Independent of Increased Caloric Intake, Induces 
Hypothalamic Insulin Resistance.   
 
Effect of pair-feeding on glucose-stimulated hypothalamic insulin signaling. A. Effect of 
dietary fat content on blood glucose, B. plasma insulin, and C. PKB activity following 15-
min vehicle (white bars) or glucose (3 g/kg lean mass; black bars) treatment 
administered intraperitonally. D. Relationship between plasma insulin levels and 
hypothalamic PKB activity. Error bars represent the SEM.  Student’s t-test was used to 
determine significance for comparison within diet treatment groups in panels A-C.  
Pearson’s correlation was used to determine significance in panel D. ** p<0.01, *** 
p<0.001, n=6-7 per group. 
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Figure 14: High-Fat Feeding, Independent of Increased Caloric Intake, Activates 
Hypothalamic Inflammatory Signaling Pathways 
 
Effect of pair-feeding on hypothalamic IKKβ activity.  Pair-feeding resulted in increased 
hypothalamic phosphorylation of IKKβ (A) and decreased total IκBα content (B) following 
4wks of diet treatment.  Error bars represent the SEM.  One-way ANOVA with Tukey’s 
post-hoc analysis was used to assess significance between groups * p<0.05, n=13-14 
per group. 
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as indicated by a ~30% increase in pIKKβ and ~30% reduction in total IκBα levels 

compared to LF fed controls (Figure 14A,B; p<0.05 in panel B only).  A similar effect was 

observed in the PF group in which consumption of a high-fat diet, even when limited to 

the caloric intake of the LF group, was associated with a significant increase in pIKKβ 

and reduction in total IκBα levels  (Figure 14A,B; PF vs LF p<0.05). 

 

Discussion  

 It is well known that diets high in fat induce obesity and insulin resistance in 

rodents and humans.  Evidence suggests that the ability of high-fat feeding to induce 

these effects is dependent upon both the amount and type of fatty acids in the diet [190].  

In these studies the saturation dependent effects of long-chain fatty acids on whole body 

energy homeostasis were investigated. 

 Long-Evans rats fed a high-fat diet enriched in long-chain saturated, but not 

unsaturated, fatty acids were characterized by significantly elevated body weight and 

body adiposity compared to low-fat fed rats after 10 wks of diet treatment.  These 

findings suggest that, whereas long-chain saturated fatty acids promote weight gain 

associated with high-fat feeding, long-chain unsaturated fatty acids protect against high-

fat diet-induced weight gain.  Furthermore, there appeared to be a graded effect of the 

long-chain unsaturated high-fat diets on adiposity such that as the degree of 

unsaturation increased, adiposity decreased.  Notably, animals fed the omega-3 

enriched high-fat diet gained the least amount of fat mass of all the high-fat diet fed 

groups suggesting that the location of unsaturated bonds also determines the 

obesogenic potential of specific fatty acids.   

 A current model of energy homeostasis proposes that body adiposity is regulated 

by the hormones insulin and leptin [163].  Both hormones function as negative feedback 

signals to reduce food intake and increase energy expenditure through actions mediated 
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by key brain regions involved in energy homeostasis [163].  In the setting of positive 

energy balance (weight gain, energy intake in excess of expenditure), this model 

predicts that increased circulating insulin and leptin levels elicit neuronal responses that 

reduce food intake, increase energy expenditure, and protect against increases in fat 

mass.  Indeed, this integrated response is well-described in lean animals [164], but 

appears to be disrupted in common forms of human obesity and in rodent models of 

high-fat diet-induced obesity.  In these forms of obesity, increased fat mass is 

accompanied by elevated plasma insulin and leptin levels, yet, food intake remains 

normal or elevated [102] and energy expenditure is hypothesized to be reduced for the 

degree of adiposity.  This suggests that DIO is characterized by functional hypothalamic 

resistance to insulin [52] and leptin [126]; which in turn, contributes to pathological 

weight gain and adiposity. 

 In these studies, elevated plasma leptin levels were accompanied by significant 

hyperphagia (excess caloric intake) in the HF group compared to the LF control group 

indicating functional hypothalamic resistance to leptin.  However, the high-fat diets 

enriched in unsaturated fatty acids did not induce a significant increase in fasting plasma 

leptin levels compared to the LF group and the hyperphagic response was moderately 

attenuated compared to the HF group.  In addition, feed efficiency values for the high-fat 

diets enriched in unsaturated fatty acids were significantly lower than the feed efficiency 

value of the HF diet containing saturated fat.  This suggests that energy expenditure is 

relatively elevated in these groups and that unsaturated fatty acids may promote the 

oxidation of excess energy.  This concept is supported by evidence that the structure of 

fatty acids appears to affect the degree of oxidation and deposition of fats.  Animal and 

human studies suggest that some fatty acids are prone to oxidation while others lead to 

fat storage.  For instance, evidence in the literature indicates that poly-unsaturated fatty 

acids have higher oxidation rates than saturated fatty acids [42] and produce a greater 
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thermogenic effect [179], increase in oxygen consumption [166] and higher sympathetic 

nervous stimulation [113] compared to saturated fatty acids due to both direct and 

indirect effects of fatty acids on lipid metabolism and lipid metabolic genes.  

Furthermore, in vivo and in vitro studies have shown that poly-unsaturated, but not 

mono-unsaturated or saturated fatty acids, suppress the expression of lipogenic genes 

[206].  This suggests that the consumption of unsaturated fatty acids increases energy 

expenditure to compensate for the increase in caloric intake associated with high-fat 

feeding to maintain body weight at levels similar to low-fat fed rats.  This counter-

regulatory response suggests that hypothalamic insulin and leptin sensitivity remain, at 

least partially, intact in the setting of an unsaturated fat diet, but not a saturated fat diet.  

Together, these data suggest that long-chain saturated fatty acids are an important 

contributing factor in the development of hypothalamic resistance to the adiposity 

hormones after high-fat feeding.   

 Since animals placed on a high-fat diet are characteristically hyperphagic 

(excess energy intake) (our observations and, [101, 205]), they are consequently 

exposed to both excess calories and excess dietary fat.  Although the previous data 

implicate long-chain saturated fatty acids as the most potent contributing factor in high-

fat diet-induced obesity, the deleterious metabolic effects of high-fat feeding could arise 

from increased energy intake, increased dietary fat content, or a combination of both.  

To determine the contribution of excess caloric intake versus the intrinsic obesogenic 

properties of dietary fat to diet-induced obesity, I performed a pair-feeding study.  Caloric 

restriction in the PF group completely abolished the weight gain observed with ad libitum 

high-fat feeding; suggesting that body weight is a direct corollary of caloric intake in 

these animals with no apparent effects on energy expenditure during this study.  

However, the PF group gained approximately 60% more fat mass than the LF group, 

which equaled approximately 80% of the amount of fat mass accrued by the HF group.  
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In addition, glucose tolerance was impaired with high-fat feeding independent of caloric 

intake.  Taken together, pair-feeding nearly recapitulated the level of adiposity achieved 

in the free-feeding HF group and completely recapitulated the impaired glucose 

tolerance associated with high-fat feeding.  These data indicate that dietary fats possess 

intrinsic obesogenic properties that significantly contribute to the deleterious metabolic 

effects of high-fat feeding independent of caloric intake. 

 Fatty acids are also known to modulate the production of cytokines and 

inflammatory responses.  Saturated fatty acids are associated with pro-inflammatory 

effects, whereas unsaturated fatty acids are associated with anti-inflammatory effects 

[27, 192].  The pro-inflammatory signaling associated with the consumption of saturated 

fat is known to induce peripheral insulin resistance by promoting inhibitory serine 

phosphorylation of key elements within the insulin signaling pathway involving signal 

transduction through the IKKβ pathway (a serine/threonine kinase cascade [76, 168]).  

However, it has been  unclear whether the effects of a high-fat diet enriched in long-

chain saturated fat on IKKβ activity and insulin sensitivity were mediated by excess 

caloric intake or excess dietary fat.   

 Given the similarities in the insulin signal transduction pathway between central 

and peripheral tissues, I hypothesized that a similar mechanism of high-fat diet-induced 

peripheral insulin resistance occurs within the hypothalamus and asked whether it is 

mediated by excess caloric intake or excess dietary fat.  In these studies, I observed 

insulin resistance in the hypothalamus of both calorically restricted and ad libitum high-

fat fed animals as evidenced by loss of glucose-stimulated insulin signaling above basal 

levels.  However, basal pPKB levels were moderately elevated in both HF and PF 

groups compared to LF controls.  This basal increase in hypothalamic pPKB levels with 

HF feeding has been observed by others [185], but does not appear to couple with 

insulin mediated changes in food intake and energy homeostasis.  This basal increase in 
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pPKB could potentially be due to insulin independent activation of the PI3K-PKB 

pathway as PI3K is a key regulatory protein involved in a variety of signaling cascades.  

For example, recall that the inflammatory TLR4 pathway also induces PI3K-PKB 

signaling associated with activation of the transcription factor NFκB (Chapter I).  

Nevertheless, insulin failed to stimulate further phosphorylation of PKB in hypothalami of 

HF and PF animals, and the increase in phosphorylation of PKB in response to insulin 

stimulation appears to determine insulin action.  In addition to the hypothalamic insulin 

resistance observed with HF feeding, hypothalamic activity of the inflammatory molecule 

IKKβ, a serine/threonine kinase, was increased in both calorically restricted and ad 

libitum high-fat fed animals compared to LF fed controls.  Taken together, HF feeding 

induced hypothalamic inflammation and insulin resistance irrespective of whether 

hyperphagia occurred, suggesting that dietary fats possess intrinsic obesogenic 

properties.    

  In summary, these studies demonstrated a graded effect of dietary fatty acids on 

adiposity, food intake, and feed efficiency in a saturation dependent manner and 

specifically implicate long-chain saturated fatty acids as the most potent mediator of the 

deleterious effects of high-fat feeding.  Furthermore, a diet enriched in long-chain 

saturated fat, independent of excess caloric intake, is sufficient to induce impaired 

glucose tolerance, hypothalamic inflammation, and hypothalamic insulin resistance.  

These findings support the hypothesis that dietary fat possesses intrinsic obesogenic 

properties in a saturation dependent manner.  
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Table 2: Saturation Dependent Effects of Dietary Fat 
 

          LF                  HF                   MU                 PU                O3 
Body wt (g) 479 ± 13 531 ± 27* 502 ± 20 497 ± 10 476 ± 12 
Body wt gain (g) 159 ±10 214 ± 16* 171 ± 17 168 ± 3 151 ± 7 
Adiposity (%) 13.3 ± 1.4 20.4 ± 2.8* 20.0 ± 1.3* 18.2 ± 1.2 14.8 ± 1.3 
Fat mass gain 
(g) 46 ± 6 99 ± 19** 86 ± 10* 72 ± 5 54 ± 6 

Leptin (ng/dl) 7.4 ± 1.0 20.3 ± 4.7** 14.5 ± 2.9 11.8 ± 1.8 6.7 ± 1.6 

Leptin/adiposity 0.56 ± 0.03 0.96 ± 0.12* 0.70 ± 0.07 0.63 ± 0.06 0.41 ± 
0.06 

Total food intake 
(kcal) 4714 ± 94 5594 ± 

263*** 5281 ± 98* 5308 ± 72* 5175 ± 45 

Feed efficiency 
 (bw gain/kcal) 

0.034 ± 
0.002 

0.037 ± 
0.001 

0.028 ± 
0.001*,## 

0.032 ±  
0.000 

0.029 ± 
0.001## 

 
 
Table 2: Metabolic parameters of rats following 10wks of diet treatment are reported as 
the group mean ± SEM.  One-way ANOVA with Dunnett’s Multiple Comparison Test was 
used to determine significance of all groups compared to a control group.  * symbols 
represent comparison to LF group and # symbols represent comparison to HF group.  
One symbol p<0.05, two symbols p<0.01, three symbols p<0.001, n=5-6 per group. 
 
 
 
 
 
Table 3: Metabolic Effects of a Restricted High-Fat Diet 
 

           LF                      HF                      PF           
Total food intake (kcal) 1890 ± 44 2235 ± 59*** 1906### 
Body wt (g) 394 ± 5 408 ± 9 388 ± 4 
Body wt gain (g) 96 ± 3 114 ± 5** 96 ± 3## 
Adiposity (%) 14.3 ± 0.8 18.1 ± 1.0*** 16.6 ± 0.6 
Fat mass gain (g) 21.1 ± 2.4 40.2 ± 3.6*** 33.0 ± 2.1# 
AUC 6872 ± 566  8566 ± 553 10230 ± 920** 
Basal glucose (mg/dl) 111 ± 9 120 ± 12 103 ± 10## 
 
 
Table 3: Metabolic parameters of rats following 4wks of diet treatment are reported as 
the group mean ± SEM.  One-way ANOVA with Tukey’s post-hoc analysis was used to 
assess significance between groups.  * symbols represent comparison to LF group and 
# symbols represent comparison to HF group.  One symbol p<0.05, two symbols p<0.01, 
three symbols p<0.001, n=13-14 per group. 
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CHAPTER IV 

 

SATURATED FAT ACTIVATES INFLAMMATORY PATHWAYS AND IMPAIRS INSULIN 

SIGNALING DIRECTLY WITHIN THE HYPOTHALAMUS 

 

Introduction    

 Diet-induced obesity is associated with hypothalamic resistance to the adiposity 

feedback signals insulin and leptin [52, 126].  A potential mechanism of insulin 

resistance in peripheral tissues proposes that intracellular accumulation of lipid 

metabolites such as long-chain fatty acyl-CoA molecules can activate inflammatory 

serine/threonine kinase signal transduction cascades involving IKKβ [169].  Activation of 

IKKβ is known to induce peripheral insulin resistance by promoting inhibitory serine 

phosphorylation of the insulin receptor and IRS proteins, thereby preventing the 

association and activation of PI3K and other downstream effects [211].    

 Findings from the previous chapter suggest that the saturated fatty acid 

component of a HF lard diet is the most potent mediator of the deleterious effects of 

high-fat feeding and is sufficient to induce hypothalamic inflammation (activation of 

IKKβ), and insulin resistance independent of excess caloric intake.  The two primary fatty 

acid components of lard are palmitate, a saturated fat, as well as oleate, a 

monounsaturated fat.  Thus, in this chapter I sought to determine whether the 

deleterious effects of high-fat feeding are specifically attributable to 1) saturated, and not 

unsaturated fat, and 2) direct action of saturated fat within the CNS on hypothalamic 

inflammation and insulin resistance.  Specifically, whether exposure of the hypothalamus 

to excess saturated fat leads to hypothalamic accumulation of LC-CoAs that trigger 

inflammatory signaling (elevated IKKβ activity) and blunt insulin signaling in lean chow 

fed rats given an acute icv infusion of palmitate or oleate. 
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Results  

 ICV Infusion of Fatty Acids Leads to Hypothalamic Accumulation of LC-CoA, 

Activation of IKKβ, and Impaired Insulin Signaling 

 To determine whether the effects of high-fat feeding on the accumulation of 

hypothalamic LC-CoA content can be mimicked by an acute local elevation in the long-

chain saturated fatty acid palmitate, palmitic acid was infused via icv into the third 

ventricle of the brain of rats maintained on a standard chow diet.  Following the 4 hour 

icv infusion of palmitate (0.5 nmole/min, 120 nmoles total), the hypothalamic content of 

palmitoyl- and stearoyl-CoA (16:0 and 18:0 respectively), two saturated fatty acid 

species, and oleoyl-CoA (18:1), a mono-unsaturated fatty acid species, were 

significantly elevated compared to the control icv vehicle infusion group (Figure 15A; 

white vs black bars: palmitoyl-CoA 14.9±1.3 vs 21.4±1.7, p<0.05; stearoyl-CoA 16.3±1.4 

vs 23.2±1.5, p<0.01; oleoyl-CoA 17.9±1.3 vs 25.7±1.1, p<0.05).  In addition to 

accumulation of these hypothalamic LC-CoA fatty acid species; hypothalamic IKKβ 

activity was significantly elevated with icv palmitate infusion compared to vehicle controls 

(Figure 15B; ~15% increase in pIKKβ, p<0.05).  Concomitant with increased LC-CoA 

content and elevated IKKβ activity with palmitate infusion, the ability of icv insulin to 

activate the downstream signaling molecule PKB was severely blunted with palmitate 

infusion compared to vehicle controls in which activation of PKB was readily detected 

(Figure 15C; veh-veh vs veh-ins 1.0±0.1 vs 1.8±0.2, p<0.01).  To determine whether 

hypothalamic LC-CoA accumulation would occur in response to a long-chain mono-

unsaturated fatty acid, oleic acid was also infused into the third ventricle of chow fed rats 

(4 hour infusion, 0.5 nmole/min, 120 nmoles total).  Oleic acid infusion failed to 

significantly increase any of the fatty acid LC-CoA species measured above those in the 

control vehicle group (Figure 15A, grey bars). 

 



73 
 

  IKKβ Inhibitor Represses Consumption of a High-Fat, but not a Low-Fat, Diet   

 While the previous data demonstrate a clear association between saturated fat 

induced IKKβ activity and insulin resistance, I sought to directly test the role of IKKβ in 

high-fat diet-induced hypothalamic insulin resistance.  Recall that insulin acts as a 

catabolic hormone within the hypothalamus to reduce food intake and increase energy 

expenditure.  However, food intake is not appropriately reduced in response to 

hyperinsulinemia associated with HF feeding indicative of hypothalamic insulin 

resistance.  Therefore, to test the role of IKKβ activity on hypothalamic insulin action, a 

pharmacological inhibitor of IKK (PS-1145, 10 μg) was administered into the third 

ventricle of rats fed either a high-fat (45%) or low-fat diet and 24 hour food intake 

measured.  As shown in Figure 16, this intervention had no effect on food intake in the 

LF group (animals that are characterized by relatively low hypothalamic IKKβ activity).  

In contrast, icv infusion of PS-1145 potently reduced 24 hour food intake in high-fat fed 

rats (~50% reduction vs HF-veh, p<0.01) characterized by hyperinsulinemia and 

increased hypothalamic IKKβ activity [146].  Efficacy of the inhibitor was confirmed in 

previous studies by measurements of a downstream IKKβ target and signaling molecule, 

IκBα.  Activation of IKKβ leads to the phosphorylation and degradation of IκBα and 

subsequent activation of the transcription factor NFκB to propagate proinflammatory 

signaling thought to contribute to insulin resistance. Activation of IKKβ induces 

phosphorylation and targeted ubiquitination/degradation of IκBα, thereby reducing 

protein levels of IκBα.  Inhibition of IKKβ would be expected to increase total IκBα 

protein.  Accordingly, hypothalamic IκBα content is significantly increased with inhibitor 

treatment compared to vehicle controls (Appendix B; ~50% increase vs veh, p<0.05). In 

addition, a dose-dependent effect on food intake was observed with inhibitor treatment 

as a lower dose of PS1145 (3 µg icv) reduces 4 hour food intake, but not 24 hour food 

intake (Appendix B).  Since food intake was not reduced in LF fed rats, the feeding 
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effects of PS-1145 do not appear to be due to visceral or non-specific illness.  In support 

of this observation, inhibitor treatment did not increase kaolin consumption, a marker of 

visceral illness in rodents (Appendix C, [118]).   

 

 IKKβ Inhibitor Increases Insulin Signaling in High-Fat Fed, Obese Rats  

 To further assess the role of IKKβ activity on hypothalamic insulin action, I  

tested whether pretreatment with the IKK inhibitor would improve insulin stimulated 

hypothalamic insulin signaling in high-fat fed rats.  IKKβ activity is proposed to inhibit the 

insulin signaling pathway; therefore, inhibition of the IKKβ activity would be expected to, 

at least partially, restore activation of insulin signaling.  Pretreatment with the IKK 

inhibitor PS1145 (3 µg, 6 h prior to 10 mU icv insulin) in high-fat fed rats significantly 

increased insulin stimulated phosphorylation of PKB in the hypothalamus (Figure 17; 

1.8±0.1 vs 1.4±0.1, p<0.05).  However, pretreatment with the IKK inhibitor alone (minus 

insulin) had no affect on phosphorylation of PKB compared to high-fat fed rats without 

inhibitor pretreatment.  

 

Discussion 

 Abundant evidence in animals and humans implicates both exogenous (lipid 

infusion) and endogenous (tissue long-chain acyl-CoAs) fatty acids in the pathogenesis 

of insulin resistance induced by activation of intracellular inflammatory signals.  For 

example, long-chain acyl-CoA content and IKKβ signaling are elevated in skeletal 

muscle sampled from morbidly obese, insulin-resistant humans [79].  In addition, 

exposure of cultured cells to palmitate induces insulin resistance via activation of the 

IKKβ/NF-κB signaling pathway [171].  A current model of peripheral insulin resistance 

suggests that lipid mediated activation of pro-inflammatory signaling molecules may 

contribute to impaired insulin signaling in the obese state.  Previous observations from 
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Figure 15:  Effect of Intracerebroventricular Fatty Acid Infusion on Hypothalamic Long-
Chain Acyl-CoA Content, IKKβ Activity, and Insulin Signaling  
 
A. ICV infusion of palmitic acid (black bars), but not oleic acid (grey bars), leads to 
increased hypothalamic content of LC-CoA molecules compared to vehicle controls 
(white bars).  B. ICV infusion of palmitic acid increases hypothalamic pIKKβ compared to 
vehicle controls and C. blunts insulin stimulated pPKB in the hypothalami of chow fed 
Long Evans rats.  Error bars represent the standard error of the mean (SEM).  One-way 
ANOVA with Dunnett’s Multiple Comparison Test was used to determine significance of 
icv infusion groups compared to the vehicle control group for each Acyl-CoA (panel A). 
Student’s t-test was used to determine significance in panels B (vehicle vs palmitate) 
and C (insulin vs vehicle treatment within each icv infusion group). * p<0.05, ** p<0.01, 
n=6-8 per group.  
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Figure 16: Effect of Pharmacological IKK Inhibitor on Food Intake  
 
 Pharmacological inhibition of hypothalamic IKK (icv, 10ug PS-1145) represses food 
intake in HF, but not LF, fed rats.  Error bars represent the standard error of the mean 
(SEM). Student’s t-test was used to determine significance between inhibitor and vehicle 
treatment on food intake within each diet group.   ** p<0.01, n=5-8 per group. 
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Figure 17: Effect of Pharmacological IKK Inhibitor on Hypothalamic Insulin Signaling in 
HF Fed, Obese Rats. 
 
Pharmacological inhibition of hypothalamic IKK enhances insulin-stimulated pPKB in HF 
fed, obese rats. Error bars represent the standard error of the mean (SEM).  Two-tail 
student’s t-test was used to assess significance between vehicle and insulin treated 
groups.  * p<0.05, ***p<0.001, n=4-5 per group. 
  

0.0

0.5

1.0

1.5

2.0

2.5

*
***

insulin - + - + - +
LF LF HF HF HF HFdiet

inhibitor - - - - + +

pP
KB

(re
la

tiv
e

un
its

)



78 
 

our laboratory and others [52] suggest that a similar mechanism of high-fat diet-induced 

insulin resistance may also occur in the hypothalamus of obese animals.  Thus, I sought 

to extend my initial findings in high-fat diet-induced obesity to determine the ability of 

fatty acids administered directly into the brain of lean, chow fed animals to induce 

hypothalamic insulin resistance via a similar mechanism.   

  Long-term high-fat feeding is associated with the accumulation of saturated, but 

not unsaturated, long chain fatty acyl-CoAs (LC-CoAs) within the hypothalamus of obese 

rats [146].  To determine if saturated fatty acids mediate the increase in hypothalamic 

LC-CoA content observed with HF feeding, I investigated the effects of icv palmitate 

infusion in lean rats maintained on a standard chow diet.  Palmitate infusion mimicked 

the effects of high-fat feeding to increase hypothalamic content of the saturated LC-CoA 

species, palmitoyl- and stearoyl-CoA, but unlike HF feeding also increased levels of the 

unsaturated fatty acid, oleoyl-CoA.  That oleoyl-CoA was also increased with icv 

palmitate infusion, but not HF feeding, suggests that the hypothalamic accumulation of 

LC-CoA under normal conditions (i.e. HF feeding) may also involve indirect effects of 

dietary fat on hypothalamic lipid metabolism.  In keeping with our hypothesis that 

saturated fatty acids specifically increase hypothalamic LC-CoA content, infusion of the 

monounsaturated fat, oleate, failed to induce a significant increase in any of the LC-CoA 

species measured compared to vehicle controls.  The accumulation of hypothalamic LC-

CoA is hypothesized to lead to activation of inflammatory signaling cascades involving 

IKKβ. 

 Previous work from our laboratory has demonstrated that high-fat diet-induced 

obesity is associated with both elevated LC-CoA content and activation of IKKβ in the 

hypothalamus [146].  This effect was recapitulated with icv palmitate infusion in lean, 

chow fed rats suggesting that saturated fatty acids are involved in the inflammatory 

response induced by high-fat feeding.  Activation of IKKβ can induce inhibitory serine 
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phosphorylation of components of the insulin signaling pathway and impair signal 

transduction.  This mechanism has been implicated in both the peripheral and central 

insulin resistance associated with HF DIO.  Concomitant with increased LC-CoA content 

and elevated IKKβ activity, icv palmitate infusion in lean rats maintained on a standard 

chow diet significantly blunted insulin signal transduction in the hypothalamus compared 

to vehicle controls in which activation of PKB was readily detected.  However, in contrast 

to the effects of long-term HF feeding on phosphorylation of PKB, palmitate infusion did 

not recapitulate the elevation in basal pPKB.  This suggests that chronic exposure to 

saturated fat is required to increase basal pPKB and impair insulin action via a 

mechanism similar to long-term depression as discussed in Chapter III, whereas acute 

exposure to saturated fat directly impairs insulin signal transduction.  This raises the 

possibility that dietary fat impairs hypothalamic insulin action via two distinct 

mechanisms. Together, these observations support a model in which consumption of a 

diet high in saturated fat contributes to the development of CNS insulin resistance 

possibly via a mechanism involving either elevated circulating FFA levels or increased 

de novo tissue synthesis of saturated fatty acids resulting in accumulation of LC-CoAs in  

hypothalamic neurons.  Furthermore, the finding that hypothalamic IKKβ signaling 

increases in response to an acute icv infusion of palmitate supports my hypothesis of a 

direct link between exposure to excess saturated fats and inflammatory signling within 

the hypothalamus.  While these data demonstrate a clear association between fatty acid 

induced IKKβ activity and insulin resistance in the hypothalamus, they do not establish a 

direct role of IKKβ in the development of fatty acid induced hypothalamic insulin 

resistance. 

 As a direct link between IKKβ activity and insulin resistance has been 

demonstrated in peripheral tissues [36, 208]; I sought to establish a similar relationship 

in the hypothalamus of HF fed obese rats compared to LF fed lean controls using a 
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pharmacological inhibitor of IKK.  Since HF feeding significantly increases hypothalamic 

IKKβ activity and IKKβ activity is proposed to impair hypothalamic insulin action; 

inhibition of the IKKβ signal would be expected to, at least partially, restore both the 

behavioral and biochemical effects of insulin action.  Recall that insulin acts as a 

catabolic hormone within the hypothalamus to reduce food intake and increase energy 

expenditure; effects that are blunted in HF DIO potentially via IKKβ mediated insulin 

resistance.  Accordingly, pharmacological inhibition of hypothalamic IKK potently 

reduced food intake in HF fed rats characterized by increased IKKβ activity and 

hypothalamic insulin resistance, but had no effect on food intake in LF fed rats 

characterized by relatively low IKKβ activity and hypothalamic insulin sensitivity.  In fact, 

IKKβ inhibition reduced food intake in HF fed group to levels below that of LF fed 

animals.  A possible explanation is that HF fed animals are characterized by 

hyperinsulinemia and hyperleptinemia.  If IKKβ activity mediates resistance to these 

hormones, removal of this signal will permit insulin and leptin signaling and reduce food 

intake in proportion to the signal (greater than in LF group).  In addition, pretreatment 

with the IKK inhibitor in HF fed rats modestly, but significantly, increased insulin 

stimulated activation of PKB in the hypothalamus of rats compared to insulin stimulation 

alone.  Together these data support a direct role of IKKβ in HF diet-induce insulin 

resistance. 

 In conclusion, these studies demonstrated that icv infusion of a saturated fatty 

acid (palmitate), but not an unsaturated fatty acid (oleate) recapitulated the effects of the 

HF lard-based diet to increase hypothalamic LC-CoA content and induce hypothalamic 

inflammation and insulin resistance.  In addition, these studies demonstrate that 

activation of IKKβ contributes to increased food intake and insulin resistance associated 

with HF DIO.  These results support a model in which cellular exposure to excess 

nutrients, specifically saturated fat, triggers cellular inflammation and insulin resistance 
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that in turn contributes to the pathogenesis of obesity.  The ability of specific fatty acids 

to modulate the activation of inflammation may represent a potential mechanism of high-

fat diet-induced hypothalamic resistance and obesity.  These saturation dependent 

effects led me to identify potential “fat sensing” target molecules that may be involved in 

the development of HF diet-induced obesity. 
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CHAPTER V 

 

DEFICIENCY OF THE PRO-INFLAMMATORY SIGNALING MOLECULE, TLR4, 

REDUCES BODY WEIGHT AND ADIPOSITY 

 

Introduction  

 Obesity and Type II Diabetes Mellitus are characterized by central and peripheral 

insulin resistance that in many cases is accompanied by a low-grade chronic 

inflammatory state [38, 55, 159, 204].  Current models of high-fat diet-induced obesity 

suggest that pro-inflammatory signaling molecules, when activated, can negatively 

impact the insulin signaling cascade to induce insulin resistance in central and peripheral 

tissues [52, 168, 169].  Although mechanisms linking dietary fat to pro-inflammatory 

signaling in these tissues is poorly understood, a recent link has been made between 

fatty acids implicated in high-fat diet-induced obesity and the toll-like receptor 4 (TLR4).   

 The toll-like receptor family members are expressed by cells as part of the innate 

immune system and are linked to the promotion of pro-inflammatory cytokines [4, 81].  

Lipopolysaccharide (LPS) of gram negative bacteria was identified as the original ligand 

of TLR4 [145]; specifically, the lipid A component of LPS, which is composed of acylated 

saturated fatty acids.  This saturated acid component is responsible for ligand 

recognition and receptor activation of TLR4, as removal of this component results in 

complete loss of LPS activity [125, 143].  Additional studies have demonstrated that long 

chain saturated fatty acids, independent of LPS, can function as a ligand and induce 

TLR4 activity along with downstream pro-inflammatory signaling; whereas certain 

unsaturated fatty acids act as antagonists of TLR4 signaling [98, 99].  Given that most 

tissues of the body, including the brain and insulin-sensitive tissues, express TLR4 [34, 
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95, 131], TLR4 is an intriguing target for a mechanism linking dietary derived fatty acids, 

pro-inflammatory signaling, and insulin resistance. 

 Elucidation of the TLR4 signaling pathway revealed that activation of IKKβ and 

the IKK complex promoted the subsequent translocation of the transcription factor NFκB 

to the nucleus where it regulates expression of several pro-inflammatory cytokines [109].  

The IKKβ/NFκB pathway has been implicated in the development of insulin resistance 

via both direct and indirect effects [167].  IKKβ can directly impair the insulin signaling 

pathway via inhibitory serine phosphorylation of the insulin receptor and IRS proteins 

thereby preventing the association and activation of PI3K and other downstream effects 

as discussed in chapter IV [211].  In addition, activation of NFκB can indirectly impair 

insulin action via transcription of pro-inflammatory cytokines, such as TNFα and IL-6, 

both of which are known inducers of insulin resistance [36, 78].  Data from our laboratory 

and presented here have defined a role of IKKβ centrally in HF DIO, and more 

specifically a diet enriched in long-chain saturated fat (an endogenous TLR4 agonist).  

Activation of IKKβ through the TLR4 signaling pathway induced by extracellular 

saturated fatty acids, may thus contribute to the development of high-fat diet-induced 

insulin resistance.   

 The role of TLR4 in high-fat diet-induced obesity and insulin resistance has been 

studied in several models of TLR4 deficiency and in various peripheral tissues [142, 165, 

184].  These studies support a link between TLR4 and high-fat diet-induced peripheral 

insulin resistance via activation of inflammatory signals.  However, lacking from these 

original studies was discussion of a potential role for TLR4 in central insulin signaling 

and regulation of energy homeostasis.   Since TLR4 is 1) expressed in central tissues 

associated with the regulation of energy homeostasis, 2) is regulated by dietary fat in a 

saturation dependent manner, and 3) initiates an inflammatory signaling cascade 

associated with insulin resistance; it is a likely candidate in the mechanism of high-fat 
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diet-induced hypothalamic resistance and obesity.  It seems plausible that activation of 

TLR4 by dietary fatty acids may also induce hypothalamic resistance via a similar 

inflammatory mechanism as diet-induced obesity.  Whether dietary fat activates 

inflammatory molecules via TLR4 signaling in the hypothalamus to induce insulin 

resistance and impair energy homeostasis is therefore an important unanswered 

question.  I hypothesize that loss of TLR4 will ameliorate high-fat DIO, in part, via 

centrally mediated mechanisms. 

 

Results  

 Mouse Model of TLR4 Deficiency 

 I utilized a mouse model of TLR4 deficiency to study the effects of TLR4 

signaling on high-fat diet-induced obesity.  Mice originally identified as unresponsive to 

LPS were determined to lack the gene encoding TLR4 (C57BL/10ScNJ mice, T4).  The 

absence of the TLR4 gene in these mice was confirmed by assessing the inflammatory 

response to LPS, an agonist of TLR4, and quantitative determination of mRNA levels. 

LPS treatment failed to induce cytokine expression as measured by IL-6 levels and 

TLR4 mRNA was undetectable in T4 mice (Figure 18 and 19 respectively).  Baseline 

plasma IL-6 levels were below assay detection (< 7.8 pg/ml) in both wild-type (WT) and 

T4 male mice (Figure 18A).  Following a single intraperitoneal injection of LPS plasma 

cytokine levels of IL-6 were dramatically elevated in WT mice compared to vehicle 

controls (3500±585 pg/ml).  This effect was almost completely abolished in T4 mice 

(160±30 pg/mg) and plasma IL-6 levels were significantly reduced compared to LPS 

treated WT mice (p<0.001; Figure 18A).  LPS treatment induced a significant increase in 

liver IL-6 production in WT mice compared to vehicle controls (Figure 18B, # symbols; 

WT-veh vs WT-LPS 4600±190 vs 3100±360 pg/ml, p<0.01), but had no effect in T4 mice 

(T4-veh vs T4-LPS 1600±180 vs 1900±150 pg/ml, p=ns).  Furthermore, the levels of IL-6 
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in livers of T4 mice were significantly lower than respective WT controls independent of 

LPS treatment (Figure 18B, * symbols; WT-veh vs T4-veh, p<0.01; WT-LPS vs T4-LPS 

p<0.001).  Although LPS administered peripherally did not increase local IL-6 production 

within the hypothalamus in either WT or T4 mice (Figure 18C; veh vs LPS, p=ns), 

hypothalamic IL-6 levels were significantly lower in T4 mice compared to WT controls 

independent of LPS treatment (T4 vs WT, vehicle groups, 86±11 vs 160±8 pg/mg, 

p<0.01; LPS groups, 89±9 vs 140±23 pg/mg, p<0.01).  In addition, TLR4 mRNA levels 

were measured by real-time RT- PCR in liver samples of male and female mice.  TLR4 

message was detected in all WT mice, but not in T4 mice, confirming our model of TLR4 

deficiency (Figure 19A,B).  In addition, diet had no appreciable effect on TLR4 

expression. 

 

 Effect of TLR4 Deficiency on Body Weight and Composition 

 As demonstrated in Chapter III, diets enriched in long-chain saturated fat 

promote obesity.  In addition these fats are also associated with chronic inflammation in 

both rodents and humans [68].  Since saturated fatty acids are known to activate TLR4 

and downstream inflammatory signaling pathways associated with insulin resistance and 

obesity, I sought to determine whether deletion of TLR4 would protect against high-fat 

diet-induced obesity.  Male and female WT and T4 mice were placed on either a low-fat 

(LF; 10%kcal from fat, Table 1) or high-fat (HF; 45%kcal from fat, Table 1) diet at 4 wks 

of age and followed for 10 wks.  All metabolic data values are listed in Table 4 and 5 

(male and female data, respectively; p 105-6).  Body weight curves and end-point 

analyses are shown for both male and female mice (Figure 20A-H).  Male and female 

TLR4 deficient mice weighed significantly less than respective WT controls on the same 

diet over the course of the 10 week study (Figure 20A,B).  However, no overt growth 

abnormalities were apparent in T4 male or female mice as body weight gain was similar 
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Figure 18: Mouse Model of TLR4 deficiency: LPS Response   
 
Plasma (A), liver (B), and hypothalamic (C) levels of the inflammatory cytokine IL-6 
following intraperitoneal injection of vehicle or LPS (12.5µg, 1 hour), a TLR4 agonist, in 
WT (white bars) and TLR4 deficient male mice (T4, black bars).  Error bars represent the 
standard error of the mean (SEM).  One-way ANOVA with Bonferroni’s Multiple 
Comparison Test was used to determine significance between selected pairs. * symbols 
represent WT vs T4 comparisons within treatment groups, and # symbols represent veh 
vs LPS comparisons within each genotype.  Two symbols p<0.01, three symbols 
p<0.001, n=4 per group.  
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Figure 19:  Mouse Model of TLR4 deficiency: TLR4 mRNA 

Relative hepatic expression of TLR4 mRNA is shown for both male (A) and female (B) 
mice.  TLR4 mRNA levels were undetectable in all T4 groups (black bars, no statistical 
analyses performed comparing WT vs T4).  In addition, 10 wks of diet treatment had no 
effect on TLR4 expression in WT mice.  Error bars represent the SEM.  Student’s t-test 
was used to determine significance comparing LF vs HF diet treatment in WT mice. n=4-
5 per group. 
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to WT controls regardless of diet treatment (Figure 20C,D respectively).  Body 

composition analyses were performed to determine whether TLR4 deficiency altered 

adiposity or merely resulted in a “smaller” body plan.  After 10 wks of diet, T4 mice were 

leaner and gained less fat mass than WT controls in both male and female mice (Figure 

20E-H, T4 vs WT within diet treatments, all comparisons significant except LF female 

group).  High-fat feeding significantly increased adiposity in WT mice compare to LF fed 

controls (WT-LF vs WT-HF; males p<0.001, females p<0.001).  High-fat feeding induced 

a similar increase in adiposity of male T4 mice (50% vs 55% in WT mice) although 

absolute percent adiposity was significantly lower, whereas high-fat feeding had no 

effect on adiposity in female T4 mice.  Female T4 mice were completely protected from 

HF diet-induced obesity.  

 

 Effect of TLR4 Deficiency on Food Intake and Energy Expenditure   

 Body weight and adiposity are regulated by the relative balance between food 

intake and energy expenditure through the process of energy homeostasis.  To 

determine whether the differences in body weight and adiposity observed in TLR4 

deficient mice could be attributed to a disruption of energy homeostasis, food intake and 

energy expenditure were assessed in these mice.  Food intake data was monitored 

weekly and reported as cumulative caloric intake (Figure 21).  TLR4 deficiency had no 

effect on total food intake compared to WT controls except in LF fed female mice in 

which food intake was slightly reduced (T4-LF vs WT-LF, ~10% lower, p<0.05).  In 

addition, TLR4 deficiency had no effect on high-fat diet-induced hyperphagia (excess 

caloric intake).  Food intake was similarly elevated in WT and T4 mice compared to LF 

fed controls (~15% increase in male mice, ~20-25% increase in female mice).   

 Feed efficiency was calculated as an estimate of energy expenditure and is 

shown in Figure 22.  The rationale for estimating energy expenditure from feed efficiency  
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Figure 20: Effect of TLR4 Deficiency on Body Weight and Composition 
 
Body weight and adiposity measurements for male and female WT and TLR4 deficient. 
Error bars represent the SEM.  Two-way ANOVA with Bonferroni post-tests was used to 
determine significance in panels A-B, E-F.  Symbols above the lines represent WT vs T4 
on HF diet, symbols below the lines represent WT vs T4 on LF diet.  One-way ANOVA 
with Bonferroni’s Multiple Comparison Test was used to determine significance in panels 
C-D, G-H. * symbols represent WT vs T4 within diet, and # symbols represent LF vs HF 
within genotype.  One symbol p<0.05, two symbols p<0.01, three symbols p<0.001, 
n=13-20 per group in male mice, n=8-11 per group in female mice. 
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calculations was discussed in detail in Chapter III.  Briefly, feed efficiency is calculated 

as the amount of weight gained per kilocalorie consumed (wt gain/kcal) and indicates 

how effectively the body stores nutrients and accrues mass (as opposed to utilizing 

nutrients for energy production).  Since body weight gain and food intake are known, 

relative energy expenditure can be inferred based on the energy balance equation.  No 

differences were observed in feed efficiency between WT and T4 male mice within the 

diet groups suggesting that TLR4 deficiency does not affect energy expenditure in male 

mice.  Furthermore, diet did not significantly affect feed efficiency in male mice (HF vs 

LF, p=ns).  In female mice, TLR4 deficiency did not significantly alter feed efficiency (WT 

vs T4, within diet comparisons p=ns), but HF diet significantly increased feed efficiency 

in both WT and T4 mice compared to their respective LF fed counterparts (HF vs LF, 

~20% increase in WT and T4).  

  While feed efficiency addresses body weight gain and energy expenditure, a 

related calculation addresses body composition and energy storage.  Calculated as fat 

mass gain divided by kilocalories consumed this value, termed energy efficiency, 

indicates how effectively the body stores nutrients in the form of adipose stores (Figure 

22C,D).  Essentially, a relative increase in energy efficiency means that per calorie 

consumed, more adipose tissue is accrued.  In male mice, high-fat feeding induced a 

significant increase in energy efficiency in both WT and T4 male mice compared to their 

LF fed counterparts (Figure 22C; LF vs HF, p<0.001 in WT and T4).  However, relative 

to WT controls, energy efficiency was significantly reduced in T4 male mice fed both 

diets (Figure 22C; T4 vs WT, ~50% decrease in LF p<0.05, and ~33% decrease in HF 

p<0.001).  In female mice, high-fat feeding induced a significant increase in energy 

efficiency in WT mice (Figure 22D; HF vs LF, ~50% increase p<0.01), but had no effect 
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in T4 mice.  Relative to WT controls, energy efficiency was significantly reduced in HF 

fed T4 female mice (Figure 22D; T4 vs WT, ~50% decrease p<0.01).   

 To confirm the estimates of energy expenditure derived from the feed efficiency 

calculations above, indirect calorimetry and activity measurements were collected before 

and after 10 wks of HF feeding in a cohort of male mice (Figure 23A-C).  Indirect 

calorimetry provides an estimate of basal energy expenditure, calculated as heat 

production from measurements of oxygen consumption and carbon dioxide production 

(by-products of energy metabolism).  Heat production was normalized to lean mass as 

lean mass is considered to be metabolically active tissue accounting for the majority of 

energy expenditure, as well as to account for differences observed in body weight and 

body composition attributed to genotype and/or diet effects.  In accordance with feed 

efficiency calculations in male mice above, heat production (i.e. energy expenditure) was 

similar across all groups (Figure 23A).  In addition, no significant differences in 

locomotor activity (# of beam crosses) were observed between WT and T4 mice, or 

between baseline and 10 wks of HF diet (Figure 23B).  Respiratory quotient (RQ) is an 

index of substrate utilization calculated as the ratio of carbon dioxide production to 

oxygen consumption.  Based on oxidation equations for glucose and fat metabolism, a 

RQ value of 1 indicates carbohydrate utilization, whereas a RQ value of 0.7 indicates 

fatty acid utilization.  The closer the RQ value to 1, the greater the proportion of 

carbohydrates metabolized for energy, whereas the closer the RQ value to 0.7, the 

greater the proportion of fatty acids metabolized for energy.  No differences were 

observed in the RQ values of WT and T4 mice at baseline or after 10 wks of high-fat 

feeding indicating that TLR4 deficiency does not preferentially alter substrate utilization. 

However, 10wks of high-fat feeding significantly reduced RQ in WT and T4 mice 

compared to baseline levels (Figure 23C; HF vs LF, p<0.001 for both WT and T4).   

 



92 
 

 
 

 
 
 
 
 
 
 
 
Figure 21: Effect of TLR4 Deficiency on Food Intake  
   
Cumulative food intake in male (A) and female (B) mice.  Error bars represent the SEM.  
One-way ANOVA with Bonferroni’s Multiple Comparison Test was used to determine 
significance between selected pairs.  * symbols represent WT vs T4 within diet, and # 
symbols represent LF vs HF within genotype.  One symbol p<0.05, three symbols 
p<0.001, n=13-20 per group in male mice, n=8-11 per group in female mice. 
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Figure 22.  Effect of TLR4 Deficiency on Feed and Energy Efficiency   
 
Feed efficiency was calculated as an index of energy expenditure in male (A) and female 
(B) mice.  A related calculation, energy efficiency, is an index of obesogenic potential in 
male (C) and female (D) mice.  Error bars represent the SEM.  One-way ANOVA with 
Bonferroni’s Multiple Comparison Test was used to determine significance between 
selected pairs.  * symbols represent WT vs T4 within diet, and # symbols represent LF 
vs HF within genotype.  One symbol p<0.05, two symbols p<0.01, three symbols 
p<0.001, n=13-20 per group in male mice, n=8-11 per group in female mice. 
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Figure 23: Effect of TLR4 Deficiency on Energy Expenditure  
 
Indirect calorimetry was used to assess energy expenditure in male mice before and 
after 10 wks of HF feeding.  Heat production, normalized to lean mass (A), ambulatory 
activity (B), and respiratory quotient (C) values were measured in these mice.  Error bars 
represent the SEM.  One-way ANOVA with Bonferroni’s Multiple Comparison Test was 
used to determine significance between selected pairs.  # symbols represent LF vs HF 
comparison within genotype, p<0.001, n=6-10 per group.  
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 Effect of TLR4 Deficiency on Glucose Tolerance  

 In order to determine if TLR4 deficiency had an effect on peripheral glucose 

metabolism, an intraperitoneal glucose tolerance test (IPGTT, 1g/kg lean mass) was 

performed following 10 wks of LF and HF feeding.  No difference was observed in 

fasting blood glucose, fasting plasma insulin, and glucose excursion curves quantified as 

area under the curve (AUC) during an IPGTT between WT and T4 LF fed mice (Figure 

24A-F, male and female mice).  However, 10 wks of HF feeding induced fasting 

hyperglycemia, hyperinsulinemia, and impaired glucose tolerance in WT male mice, 

whereas TLR4 deficient male mice were completely protected from these effects.  In 

female mice, HF feeding did not significantly increase fasting blood glucose or impair 

glucose tolerance in WT or T4 mice compared to respective LF fed controls and only 

moderately elevated fasting plasma insulin levels (Figure 24B, D, F).  Together, these 

data suggest that female mice, independent of TLR4 deficiency, are relatively protected 

from high-fat diet-induced impairments in glucose metabolism; a finding that has been 

confirmed by others [153].  However, TLR4 deficiency protected male mice against 

impaired glucose metabolism induced by HF feeding.    

 

 Effect of TLR4 Deficiency on Lipid Metabolism 

 The following parameters were assessed to determine whether the reduced 

adiposity in TLR4 deficient mice is potentially due to gross alterations in lipid 

metabolism; fasting plasma free fatty acids (FFA), triglycerides (TG), and leptin levels  

(Tables 4,5; p 106-7), as well as mRNA levels of stearoyl CoA desaturase-1 (SCD-1; 

Figure 25), a key mediator of lipid metabolism.  No significant differences in plasma FFA 

or TG levels were observed between WT and T4 male mice fed both diets (except WT 

vs T4 fed LF diet, ~25% difference, p<0.05).  In female mice, plasma FFAs and TGs 

were significantly elevated in LF, but not HF, fed T4 mice compared to WT controls (T4 
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vs WT, LF diet, ~65% increase in FFA, ~35% increase in TGs).  Plasma leptin levels 

were significantly lower in HF fed T4 mice compared to WT controls (10.2±1.7 vs 

43.1±0.9, p<0.001).  While no differences were observed in leptin levels among female 

mice, female leptin levels were comparable to levels observed in LF fed WT male mice.  

SCD-1 is a delta-9 fatty acid desaturase; a lipogenic enzyme catalyzing the synthesis of 

monounsaturated fatty acids.  Along with palmitate, stearate is the major substrate for 

the enzyme stearoyl-CoA desaturase, which catalyzes the conversion of stearate to 

oleate [157].  Oleate is the preferred substrate of SCD-1 for the synthesis of TG and 

other complex lipids [157].  Hepatic mRNA levels of SCD-1 are shown in Figure 25 (HF 

diet only, WT and T4 male and female mice).  SCD-1 mRNA levels were significantly 

reduced in male T4 mice compared to WT controls (0.09±0.02 vs 0.28±0.06 relative 

units, p<0.05) consistent with reduced liver TG accumulation observed in another mouse 

model of TLR4 deficiency [142].  Although there was no difference in SCD-1 mRNA 

levels of WT and T4 female mice, the levels of SCD-1 in female mice were comparable 

to that of T4 male mice, i.e. significantly lower than WT male mice (WT, 0.14±0.02; T4, 

0.09±0.01) suggestive of reduced liver TG accumulation and improved hepatic function. 

 

 Effect of TLR4 Deficiency on Inflammatory IKKβ Signaling  

 The phenotype of decreased body weight and adiposity combined with the 

changes observed in glucose metabolism of TLR4 deficient mice suggests that TLR4 is 

involved in energy homeostasis (i.e. central insulin and leptin sensitivity) and peripheral 

insulin sensitivity.  The association between high-fat diet induced obesity and 

inflammation makes TLR4 a likely candidate as a potential mediator of this relationship 

because it is activated by fatty acids in a saturation dependent manner and induces an 

inflammatory signaling cascade known to be involved in the development of insulin 

resistance.  Thus, I investigated whether the metabolic effects of TLR4 are potentially  
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Figure 24: Effect of TLR4 Deficiency on Glucose Tolerance  

An intraperitoneal glucose tolerance test was performed after 10 wks of diet treatment in 
male and female mice (A-B) and area under the curve was calculated from baseline 
blood glucose values as an index of glucose tolerance (C-D).  Four hour fasting plasma 
insulin levels are shown in panels E,F.  Error bars represent the SEM.  Two-way ANOVA 
with Bonferroni post-tests was used to determine significance in panels A-B.  Symbols 
above the lines represent WT vs T4 on HF diet.  One-way ANOVA with Bonferroni’s 
Multiple Comparison Test was used to determine significance between selected pairs.  * 
symbols represent WT vs T4 within diet, and # symbols represent LF vs HF within 
genotype.  One symbol p<0.05, two symbols p<0.01, three symbols p<0.001, n=13-20 
per group in male mice, n=8-11 per group in female mice. 
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Figure 25: Effect of TLR4 Deficiency on a Major Regulator of Hepatic Lipid Metabolism  

Hepatic mRNA levels of stearoyl-CoA desaturase-1 (SCD-1) were determined by 
quantitative real-time reverse transcriptase PCR in HF fed male and female mice.  Error 
bars represent the SEM.  Student’s t-test was used to determine significance in male 
and female mice separately, WT vs T4.  * p<0.05, n=4-5 per group in male and female 
mice
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mediated via central or peripheral effects, or a combination of both.    In this study, 

hypothalamic pIKKβ levels were elevated following 10 wks of HF feeding in WT and T4 

male mice compared to LF fed controls (Figure 26A; LF vs HF, WT 1.00±0.16 vs 

1.46±0.20 relative density, p=0.08, T4  0.22±0.08 vs 1.02±0.08 relative density, p<0.01).  

However, absolute levels of pIKKβ were lower in TLR4 deficient male mice compared 

toWT controls (T4 vs WT; LF diet p<0.01, HF diet p=0.09).  No differences were 

observed in hypothalamic pIKKβ levels among female groups (Figure 26B).  In the liver, 

no differences in pIKKβ were observed between WT and T4 mice (Figure 26C,D).  

 

Discussion 

 In these studies I utilized a mouse model of TLR4 deficiency to examine the 

effects of TLR4 signaling in high-fat diet-induced obesity.  Dietary fatty acids, specifically 

saturated fatty acids, activate TLR4 and downstream inflammatory signaling molecules 

associated with the development of insulin resistance.  Previous work investigating TLR4 

action in peripheral tissues supports a role for TLR4 in high-fat diet-induced insulin 

resistance via activation of inflammatory molecules.  Since TLR4 is also expressed in 

regions of the central nervous system associated with the regulation of energy 

homeostasis, I hypothesized that activation of TLR4 by dietary fatty acids may also 

induce hypothalamic insulin resistance via a similar inflammatory mediated mechanism 

in diet-induced obesity.  The phenotype of decreased body weight and adiposity 

combined with the changes observed in glucose metabolism of TLR4 deficient mice 

indicates that TLR4 may be involved in both energy homeostasis (i.e. hypothalamic 

insulin and leptin sensitivity) and peripheral insulin sensitivity.  Thus, I investigated 

whether these metabolic effects of TLR4 signaling were mediated via central effects, 

peripheral effects, or a combination of both.   
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Figure 26: Effect of TLR4 Deficiency on IKKβ Activity 
 
Phosphorylation of IKKβ in hypothalamic (A-B) and liver (C-D) tissues in male and 
female mice.  Error bars represent the SEM.  One-way ANOVA with Bonferroni’s 
Multiple Comparison Test was used to determine significance between selected pairs.   
* symbols represent WT vs T4 within diet, and # symbols represent LF vs HF within 
genotype.  Two symbols p<0.01, n=5-8 per group in male and female mice.  
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 These studies were performed in both male and female mice.  Of consequence 

to these studies are the well appreciated gender specific metabolic differences.  For 

example, data from both clinical and experimental studies have revealed that in addition  

to its well characterized role in sexual development and reproduction, the sex hormone 

estrogen exerts beneficial effects on insulin action and glucose homeostasis [107].  In 

experimental animal models, ovariectomy was shown to impair insulin sensitivity and 

glucose metabolism, a deleterious metabolic effect reversed by chronic administration of 

estrogen [94, 191].  Furthermore, evidence indicates that the estrogen receptor ERα is 

the main receptor involved in energy balance [15] as global deletion of ERα results in 

obese, insulin resistant mice [75].  Disruption of ERα in the hypothalamus leads to 

weight gain, increased visceral adiposity, hyperphagia, hyperglycemia and impaired 

energy expenditure in female mice [128].  However, the mechanisms by which estrogen 

influence insulin sensitivity and glucose metabolism remains poorly understood.  In light 

of this, the results from male and female mice in these studies are discussed separately. 

 Since saturated fatty acids are known TLR4 ligands, a diet low in fat would be 

expected to have a minimal effect on TLR4 activity, whereas a diet high in fat would be 

expected to increase TLR4 activity in WT mice.  Thus, in a setting of low TLR4 activity 

(LF diet), I predicted there would be no significant differences between WT and TLR4 

deficient mice.  Conversely, in a setting of elevated TLR4 activity (HF diet), I predicted 

there would be significant differences between WT and TLR4 deficient mice if TLR4 is a 

determinant of high-fat diet-induced obesity.  Final body weight and adiposity levels were 

significantly reduced in LF fed female TLR4 deficient mice compared to WT controls.  

Since an effect was observed with LF feeding, either only a small amount of dietary fat is 

sufficient to activate TLR4 in WT mice, or TLR4 deficiency exerts additional anti-obesity 

effects independent of diet.  Furthermore, TLR4 deficient female mice were completely 

protected from increased adiposity associated with HF feeding. 
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 To determine whether the reduced body weight and adiposity observed in TLR4 

deficient female mice could be attributed to altered energy homeostasis; food intake and 

energy expenditure (approximated by feed efficiency calculations) were assessed in 

these mice.  Cumulative food intake was slightly reduced in LF fed T4 female mice 

compared WT controls whereas TLR4 deficiency per se had no effect on energy 

expenditure as calculated by feed efficiency.  This could potentially explain the lower 

body weight and adiposity in LF fed T4 mice.  However, food intake was similarly 

increased and energy expenditure similarly decreased with HF feeding in both WT and 

T4 mice compared to LF fed controls indicating a state of positive energy balance.  This 

may explain the increase in body weight of both WT and T4 female mice compared to LF 

fed controls.  Thus, although T4 mice weighed less than WT controls, TLR4 deficiency 

failed to protect female mice against HF diet-induced weight gain.   

 Although TLR4 deficiency did not protect against body weight gain, recall that T4 

female mice were completely protected from increased adiposity associated with HF 

feeding.  Related to the concept of feed efficiency, energy efficiency calculations indicate 

how well the body stores nutrients in the form of adipose mass.  Results from these 

calculations indicate that TLR4 deficient female mice store less energy in the form of 

adipose mass per calorie consumed than WT mice.  These data suggest that TLR4 may 

be involved in the central regulation of adipose stores, potentially via TLR4 mediated 

activation of IKKβ resulting in impaired hypothalamic insulin sensitivity and disrupted 

energy homeostasis.   

 Although there were no clear differences in hypothalamic IKKβ activity in female 

mice, there was a trend towards reduced pIKKβ levels in HF fed TLR4 deficient female 

mice compared to HF fed WT controls (~30% reduction, p=ns) in support of my 

hypothesis that reduced inflammatory signaling in the hypothalamus of TLR4 deficient 

mice contributes to the reduced adiposity observed in these animals via improved 
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energy homeostasis.  In addition, hepatic IKKβ activity and glucose tolerance were not 

improved in TLR4 deficient mice suggesting that the reduced adiposity in T4 mice is not 

due to peripheral effects.  However, HF feeding failed to induce a significant 

inflammatory response, increase plasma insulin and leptin levels, and only modestly 

impaired glucose tolerance in female mice.  The relative protection from high-fat diet 

induced insulin resistance in female mice may be explained by the beneficial metabolic 

effects of estrogen. 

 The same measurements and analyses were performed in male WT and T4 

mice.  As observed in female mice, final body weight and adiposity levels were 

significantly lower in male T4 mice compared to WT controls independent of diet.  

Although TLR4 deficiency did not completely protect male mice from diet-induced 

obesity, loss of TLR4 activity improved overall energy homeostasis resulting in a lean 

phenotype. 

 Energy homeostasis is maintained by the balance of food intake and energy 

expenditure and these processes are largely regulated by hypothalamic insulin and 

leptin signaling that become impaired in models of high-fat diet-induced obesity.  To 

determine whether the reduced body weight and adiposity observed in TLR4 deficient 

male mice could be attributed to improved hypothalamic regulation of energy 

homeostasis; food intake and energy expenditure were assessed in these mice.  

However, TLR4 deficiency had no effect on cumulative food intake and energy 

expenditure compared to WT mice.  Although TLR4 deficiency did not significantly alter 

food intake and energy expenditure, energy efficiency calculations indicate that for the 

same caloric intake, TLR4 deficient male mice store less energy in the form of adipose 

mass compared to WT controls independent of diet treatment and may account for the 

reduced adiposity observed in these mice.   
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 As described above, a reduction in hypothalamic inflammatory signaling may 

contribute to the reduced adiposity observed in these mice via improved insulin 

sensitivity and energy homeostasis.  In line with this, hypothalamic pIKKβ levels were 

reduced in T4 mice compared to WT controls independent of diet treatment, whereas no 

differences were observed in hepatic pIKKβ levels.  These data point to a centrally 

mediated effect of TLR4 deficiency on adiposity.  However, TLR4 deficiency also 

improved high-fat diet-induced hyperglycemia, hyperinsulinemia and impaired glucose 

tolerance compared to WT controls.  These improvements in peripheral glucose 

homeostasis could account for the reduced adiposity observed in these mice as well.  In 

accordance with a peripheral effect of TLR4, Stearoyl-CoA Desaturase 1 (SCD-1) mRNA 

levels were reduced in male TLR4 deficient mice compared to WT controls.  SCD-1 

activity is involved in lipid metabolism and deficiency of SCD-1 reduces triglyceride 

accumulation, protects against weight gain, and increases insulin sensitivity [119, 150].  

Although the mechanism of increased SCD-1 in TLR4 deficient mice is unknown, this 

could at least partially explain the improved glucose homeostasis and decreased 

adiposity in male mice. 

 In conclusion, both male and female TLR4 deficient mice weigh less and are 

leaner than respective WT controls on both a low-fat and high-fat diet suggesting a 

potential role for TLR4 in the regulation of adipose stores.  I propose that the reduced 

adiposity observed in both male and female TLR4 deficient mice may occur via a 

mechanism of decreased hypothalamic inflammatory signaling resulting in improved 

adiposity hormone signaling and improved energy homeostasis.  Although these results 

suggest that TLR4 mediated inflammatory signaling within the hypothalamus may 

contribute, at least in part, to modulation of energy homeostatic pathways and adipose 

accumulation; based on our observations it is not possible to rule out other pathways 

and mechanisms involved in the development of diet-induced obesity.  Whether CNS 
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resistance occurs early in the course of HF feeding and actively contributes to increased 

food intake, adiposity and peripheral insulin resistance characteristic of DIO is an 

additional important question to be addressed. 
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Table 4: Metabolic Profile of Male Mice 
 
 
 
  LF                                                HF 

WT                     T4 WT                     T4 

Body wt (g) 30.1  ± 0.3 28.1 ± 0.4* 35.0 ± 0.8### 31.1 ± 
0.9***,## 

Body wt gain (g) 12.4 ± 0.4 12.7 ± 0.5 16.6 ± 0.7### 15.1 ± 1.0# 

Adiposity (%) 15.9 ± 0.8 9.5 ± 0.6*** 29.2 ± 1.5### 22.2 ± 
1.4***,### 

Fat mass gain (g) 3.4 ± 0.3 1.8 ± 0.2* 8.8 ± 0.7### 5.9 ± 0.6***,###

Total food intake 
(kcal) 645 ± 5 642 ± 4 736 ± 5### 719 ±10### 

Feed efficiency 
 (bw gain/kcal) 0.019 ± 0.001 0.019 ± 0.001 0.023 ± 0.001 0.021 ± 0.001 

Energy efficiency  
(fat gain/kcal) 0.005 ± 0.000 0.003 ± 

0.000* 
0.012 ± 
0.001### 

0.008 ± 
0.001***,### 

Heat Production 
(kcal/hr/g lean mass) 0.024 ± 0.001 0.025 ± 0.001 0.024 ± 0.000 0.023 ± 0.001 

Locomotor Activity(# 
beam crosses) 51600 ± 7580 58500 ± 9070 57300 ± 9630 60900 ± 1280 

Respiratory Quotient 0.89 ± 0.006 0.88 ± 0.005 0.77 ± 
0.005### 

0.75 ± 
0.006### 

AUC 4220 ± 330 4430 ± 390 13450 ± 
2200### 6240 ± 680*** 

Glucose (mg/dl) 152 ± 7 136 ± 5 196 ± 11### 147 ± 4** 

Insulin (ng/dl) 0.56 ± 0.12 0.48 ± 0.11 1.13 ± 0.14## 0.58 ± 0.05** 

Leptin (ng/dl) 8.0 ± 0.9 2.8 ± 0.3 43.1 ± 3.9### 10.2 ± 1.7***,# 

FFA (mmol/L) 0.41 ± 0.06 0.46 ± 0.05 0.43 ± 0.07 0.47 ± 0.06 

TG (mg/dl) 126 ± 5 95 ± 6 112 ± 11 91 ± 6 
 
 
 
 
Table 4:  Metabolic parameters of male WT and TLR4 deficient (T4) mice following 10 
wks of LF and HF feeding are reported as the group mean ± SEM.  One-way ANOVA 
with Bonferroni’s Multiple Comparison Test was used to determine significance between 
selected pairs.  * symbols represent WT vs T4 within diet, and # symbols represent LF 
vs HF within genotype.  One symbol p<0.05, two symbols p<0.01, three symbols 
p<0.001, n=13-20 per group. 
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Table 5: Metabolic Profile of Female Mice 

 
 
  LF                                                 HF 

WT                     T4 WT                     T4 

Body wt (g) 22.3 ± 0.5 21.2 ± 0.2 25.9 ± 1.4## 23.0 ± 0.4* 

Body wt gain (g) 7.7 ± 0.3 8.0 ± 0.2 11.6 ± 1.0### 12.0 ± 0.3### 

Adiposity (%) 14.1 ± 0.7 11.2 ± 0.8 23.2 ± 2.4### 12.9 ± 1.1*** 

Fat mass gain (g) 1.8 ± 0.2 1.4 ± 0.2 4.5 ± 0.9### 2.2 ± 0.3** 
Total food intake 
(kcal) 559 ±11 520 ± 6* 663 ±15### 662 ±12### 

Feed efficiency 
 (bw gain/kcal) 0.014 ± 0.001 0.015 ± 0.000 0.016 ± 

0.001# 
0.018 ± 
0.000## 

Energy efficiency  
(fat mass gain/kcal) 0.003 ± 0.000 0.003 ± 0.000 0.007 ± 

0.000## 
0.003 ± 
0.000** 

AUC 3240 ± 345 3560 ± 210 4370 ± 220 4660 ± 510 

Glucose (mg/dl) 120 ± 5 124 ± 4 120 ± 5 116 ± 2 

Insulin (ng/dl) 0.26 ± 0.02 0.27 ± 0.03 0.40 ± 0.01## 0.44 ± 0.03### 

Leptin (ng/dl) 5.5 ± 0.7 4.4 ± 0.8 6.5 ± 0.6 3.8 ± 0.9 

FFA (mmol/L) 0.28 ± 0.02 0.46 ± 0.06* 0.25 ± 0.03 0.31 ± 0.04 

TG (mg/dl) 89 ± 7 122 ± 11* 81 ± 5 75 ± 4### 
 
 
 
 
Table 5:  Metabolic parameters of female WT and TLR4 deficient (T4) mice following 10 
weels of LF and HF feeding are reported as the group mean ± SEM.  One-way ANOVA 
with Bonferroni’s Multiple Comparison Test was used to determine significance between 
selected pairs.  * symbols represent WT vs T4 within diet, and # symbols represent LF 
vs HF within genotype.  One symbol p<0.05, two symbols p<0.01, three symbols 
p<0.001, n=8-11 per group. 
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CHAPTER VI 

 

HIGH-FAT DIET-INDUCED HYPOTHALAMIC INSULIN AND LEPTIN RESISTANCE 

ARE MECHANISTICALLY AND TEMPORALLY DISTINCT AT THE ONSET OF 

OBESITY. 

 

Introduction  

 Our laboratory previously demonstrated that high-fat feeding is associated with 

hypothalamic accumulation of long-chain fatty acyl-CoA (LC-CoA) molecules and 

activation of the pro-inflammatory molecule IKKβ in diet-induced obese rats.  Work from 

chapter III specifically implicated long-chain saturated fat in DIO independent of 

increased caloric intake.  In support of these findings, work from chapter IV 

demonstrated that an acute icv infusion of a saturated fatty acid, palmitate, recapitulated 

the hypothalamic effects observed with chronic HF feeding (i.e. accumulation of LC-CoA 

and increased IKKβ activity) in lean chow fed rats.  In these studies, long-chain 

saturated fat impaired hypothalamic insulin signaling and this effect is proposed to occur 

via a mechanism of LC-CoA induced inflammatory signaling similar to the mechanism of 

insulin resistance described in peripheral tissues.   

 Current models of energy homeostasis clearly implicate hypothalamic insulin and 

leptin signaling in the regulation of adipose stores.  Accordingly, these signaling 

pathways are thought to be disrupted in order for obesity to develop.  Since insulin and 

leptin can utilize common intracellular signal transduction pathways [Niswender 2004, 

Niswender 2001], neuronal resistance to these hormones may involve the same or 

similar mechanisms.  Thus, I hypothesize that dietary long-chain saturated fats induce 

hypothalamic insulin and leptin resistance via a mechanism of LC-CoA induced 

inflammatory signaling, ultimately resulting in the development of obesity.   
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 However, it is easy to imagine a scenario in which obesity leads to these 

changes in LC-CoA accumulation and inflammatory signaling in the hypothalamus, 

instead of these hypothalamic changes leading to obesity.  Obesity is characterized by 

peripheral insulin resistance, increased lipolysis, and elevated circulating FFA; all of 

which could potentially lead to the accumulation of lipid within the hypothalamus.  In 

addition, obesity is often associated with low grade inflammation.  This could account for 

the activation of IKKβ within the hypothalamus.  Together, these data would suggest that 

obesity causes hypothalamic insulin and leptin resistance.  I propose, however, that 

high-fat feeding induces obesity via impairments in hypothalamic insulin and leptin 

sensitivity that result in disrupted energy homeostasis.  This is then exacerbated by 

obesity and peripheral insulin resistance.  To address this hypothesis, I first sought to 

determine whether central resistance precedes peripheral resistance and second, 

whether the high-fat diet-induced changes in LC-CoA and IKKβ activity occur over a 

time-course consistent with a role in hypothalamic insulin and leptin resistance, thereby 

disrupting  energy homeostasis and resulting in obesity.  If these changes are primary to 

the development of HF DIO, then they should occur prior to the accumulation of excess 

body fat.  Thus, in the following studies I first compared relative insulin sensitivities in the 

hypothalamus, liver, and muscle tissue of HF fed rats, and second, I determined whether 

changes in LC-CoA accumulation and IKKβ activation may contribute to impaired 

hypothalamic insulin and leptin signaling prior to the onset of obesity in HF fed rats. 

 

Results  

 Relative Insulin Sensitivity in Central and Peripheral Tissues  

 To determine whether the hypothalamus is more susceptible to high-fat diet-

induced insulin resistance than peripheral tissues, I compared the relative insulin 

sensitivity of key peripheral tissues to that observed in the hypothalamus of rats from the 



110 
 

pair-feeding study in chapter III.  Relative insulin sensitivity was assessed by the ability 

of a peripheral glucose bolus to induce insulin mediated activation of PKB in the liver, 

skeletal muscle, and hypothalamus of rats fed a low-fat (LF) or high-fat diet (ad libitum, 

HF, and pair-fed, PF, to the caloric intake of the LF group) for 4 wks (Figure 27A-F).  In 

all tissues of LF fed rats, phosphorylation of PKB was significantly elevated following 

glucose injection compared to vehicle controls (Figure 27A-C, LF-glu vs LF-veh p<0.01).  

This effect remained intact with high-fat feeding in liver and muscle tissues (Figure 27; 

panel A, HF p<0.01 and PF p<0.001; panel B PF p<0.05), but was completely blunted in 

the hypothalamus of high-fat fed rats (Figure 27C).  Likewise, when plotted versus 

plasma insulin levels, PKB phosphorylation was significantly correlated with plasma 

insulin concentration in all tissues of the LF group indicating insulin sensitivity (Figure 

27D-F).  Insulin sensitivity appeared intact in liver tissue of HF fed animals (Figure 27; 

panel D, HF p<0.001 and PF p<0.001) and in muscle tissue of calorically restricted HF 

fed animals (Figure 27; panel E, PF p<0.001), whereas insulin-stimulated activation of 

hypothalamic PKB was completely inhibited in HF fed animals (Figure 27F, HF and PF 

p=ns).  These data suggest that the hypothalamus may be more susceptible than 

peripheral tissues to HF diet-induced insulin resistance.   

 

 Early Onset of High-fat Diet-induced Obesity 

 It is well documented that rats fed a high-fat diet gain significantly more body 

weight and fat mass compared to low-fat fed controls over time.  However, it is 

remarkable how quickly this change occurs upon exposure to a high-fat diet.  I observed 

a predictable pattern of diet-induced obesity in which body weight significantly diverged 

by six days (Figure 28A; p<0.05), and adiposity significantly diverged by three 

days(Figure 28B; p<0.05) of ad libitum HF feeding compared to LF fed controls.  In 

addition, a predictable pattern of food intake was observed during this period at the  
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Figure 27: Effect of Dietary Fat Intake on Relative Insulin Sensitivity in Central and 
Peripheral Tissues 
 
A,B,C. Glucose stimulated pPKB in liver, skeletal muscle, and hypothalamus, 
respectively.  D,E,F. Relationship between plasma insulin levels and phosphorylation of 
PKB in liver, skeletal muscle, and hypothalamus, respectively. Error bars represent the 
standard error of the mean (SEM).  Student’s t-test was used to determine significance 
of glucose stimulated pPKB compared to vehicle controls for each diet treatment (A-C).  
Pearson’s correlation was used to determine significance of correlation within each diet 
treatment (D-F).  n=4-6 per group for panels A-C, n=8-12 for panels D-F. 
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onset of obesity.  Total gram intake was significantly higher in the HF group at day 2 

compared to the LF group (Figure 28C); whereas total caloric intake was significantly 

higher in the HF group throughout the entire feeding study (Figure 28D).   

 Based on this time-course of HF DIO, I assessed key molecular mediators 

thought to be involved in the development of high-fat diet-induced hypothalamic insulin 

and leptin resistance and obesity.  Measures of hypothalamic LC-CoA content, IKKβ 

activity, and sensitivity to the adiposity signals insulin and leptin were determined at 

time-points before (2d), concurrent with (3d), and after (7d) adiposity diverged  to 

establish a basis for causality versus consequence of these parameters in the 

development of HF DIO.    

 

 Accumulation of Long Chain CoA and Activation of IKKβ with High-Fat Feeding 

 Hypothalamic LC-CoA content and pIKKβ levels were measured to determine 

whether changes in these parameters may contribute to the development of obesity.  

Although no differences were observed in LC-CoA levels of LF and HF fed rats after two 

or three days of diet (Figure 29A, C respectively), but all three LC-CoA species 

measured were significantly elevated in the HF group compared to LF controls after 

seven days of diet (Figure 29E; 16:0 p<0.01, 18:0 p<0.001, and 18:1 p<0.05).  However, 

a different pattern of IKKβ activity emerged at the onset of HF DIO.  High-fat  feeding 

induced a significant increase in IKKβ activity (pIKKβ) after only two days of diet 

compared to LF controls (Figure 29B; p<0.05) and a near significant increase after three 

days of diet administration (Figure 29D; p=0.07).  After seven days of HF feeding 

though, differences in pIKKβ were no longer observed between the groups (Figure 29F).  

In conjunction with my previously published data illustrating elevated pIKKβ levels with 

10 wks of HF feeding [146]; these data indicate that activation of IKKβ is bimodal with 

elevated pIKKβ levels at early time-points in HF DIO (prior to and concurrent with  
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Figure 28: Early Onset of High-Fat Diet-Induced Obesity 

A,B. Daily body weight and adiposity measurements. C,D. Daily food intake 
measurements. Error bars represent the SEM.  Two-way ANOVA with Bonferroni’s post-
tests was used to determine significance. * p<0.05, ** p<0.01, ***p<0.001, n=22-24 per 
group.           
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increased adiposity, 2d and 3d respectively), levels restored to basal at an intermediate 

time-points in HF DIO (after adiposity diverged, 7d), and levels again elevated with long-

term HF feeding (10wks).  

 

 Progression of Insulin and Leptin Resistance with High-Fat Feeding  

 To determine whether these changes in hypothalamic LC-CoA content and IKKβ 

activity with HF feeding altered hypothalamic insulin and leptin sensitivity, activation of 

their respective downstream signaling molecules PKB and Stat3 were assessed 

following an icv infusion of insulin or leptin (Figure 30A-F).  Insulin-mediated activation of 

PKB, as determined by a significant increase in phosphorylation compared to vehicle 

controls, was demonstrated in the LF group at all time-points measured (Figure 

30A,C,E).  Intact insulin signaling was also observed in the HF group after two and three 

days of diet (Figure 30A,C).  However, insulin-mediated phosphorylation of PKB was 

completely blunted after seven days of HF diet (Figure 30E).  Hypothalamic resistance to 

insulin signal transduction occurred concurrently with the observation of increased 

hypothalamic LC-CoA content after seven days of HF feeding.  Leptin-mediated 

activation of Stat3, as determined by a significant increase in phosphorylation compared 

to vehicle controls, was demonstrated in the LF group at all time-points measured 

(Figure30B,D,F).  However, HF feeding impaired leptin-mediated phosphorylation of 

Stat3 after two and three days of diet (Figure 30B,D), whereas leptin signaling was intact 

after seven days of diet (Figure 30F).  This pattern of hypothalamic sensitivity to leptin 

signal transduction is inversely correlated with the pattern of IKKβ activity such that 

when IKKβ activity is elevated, leptin signaling is impaired (2 and 3d of HF feeding).  

Conversely, when IKKβ activity is restored to basal levels, leptin signaling is intact (7d of 

HF feeding).  
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Figure 29: Effect of High-Fat Feeding on Hypothalamic Long Chain CoA Content  
and IKKβ Activity at the Onset of Diet-Induced Obesity 
 
Hypothalamic content of (A,C,E) palmitoyl-, stearoyl- and oleoyl-CoA  and (B,D,F) 
phosphorylated IKKβ are shown prior to (2days), concurrent with (3days), and after 
(7days) adiposity diverges in HF fed animals compared to LF fed controls. Error bars 
represent the SEM. Student’s t-test was used to determine significance (points represent 
HF vs LF for each LC-CoA moiety and pIKKβ). * p<0.05, ** p<0.01, *** p<0.001, n=6-10 
for panels A,C,E and n=5-6 per group for panels B,D,F.   
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Figure 30: Hypothalamic Insulin and Leptin Sensitivity at the Onset of Diet-Induced 
Obesity.  
 
Activation of (A,C,E) insulin and (B,D,F) leptin signaling cascades are shown prior to 
(2days), concurrent with (3days), and after (7days) adiposity diverges in HF fed animals 
compared to LF fed controls. Error bars represent the SEM. Student’s t-test was used to 
determine significance (points represent treatment vs. vehicle controls in both diet 
groups). * p<0.05, ** p<0.01, n=4-6 per group.  
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 Fasting plasma insulin and leptin levels were also measured at these key 

timepoints.  Although plasma insulin levels were slightly elevated in the HF group 

compared to LF fed controls at each time-point measured, the differences failed to reach 

statistical significance (Figure 31A).  However, plasma leptin levels were significantly 

higher in the HF group compared to LF fed controls at all time-points measured (Figure 

31B; p<0.05 at 2, 3, and 7d). 

 

 Food Intake Response to Cholecystokinin 

  In addition to a direct measure of insulin and leptin signaling following icv infusion 

of these hormones, I utilized an indirect method to probe hypothalamic insulin and leptin 

sensitivity.  Several studies have shown a clear relationship between the long-term 

energy homeostatic circuits in the hypothalamus and the short-term satiety signals in the 

hindbrain such that in the setting of hypothalamic resistance, the hindbrain is no longer 

sensitive to the effects of short-term satiety signals on food intake [123].   

I took advantage of this relationship to indirectly test hypothalamic insulin and leptin 

sensitivity in our model of HF DIO by assessing 30min food intake following an ip 

injection of cholecystokinin (CCK) in 4 hour fasted rats.  Cholecystokinin is a meal-

generated satiety factor that signals meal termination and effectively reduces meal size.  

The results of these studies at time-points of interest are shown in Figure 32.  

Cholecystokinin effectively reduced food intake in the LF group by 35-60% at 2, 3, and 7 

days of diet compared to vehicle controls (panels A, B, and C respectively).  In the HF 

group, CCK failed to reduce food intake at 2 and 3 days of diet compared to vehicle 

controls (Figure 32A,B).  However, the CCK effect was restored in the HF group and 

reduced food intake by approximately 55% compared to vehicle controls after seven 

days of diet (Figure 32C).  These data suggest hypothalamic resistance occurs with 2 

and 3 days of HF feeding; whereas hypothalamic sensitivity is intact after 7 days of HF  
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Figure 31: Plasma Insulin and Leptin Profile at the Onset of Diet-Induced Obesity.  
 
Effect of HF feeding on plasma (A) insulin and (B) leptin levels prior to (2days), 
concurrent with (3days), and after (7days) adiposity diverges. Error bars represent the 
SEM. Student’s t-test was used to determine significance (points represent HF vs LF diet 
at each time-point). * p<0.05, ** p<0.01 n=5-6 per group.  
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feeding.  This pattern of hypothalamic sensitivity to CCK mimics the pattern of 

hypothalamic leptin sensitivity demonstrated by icv injection. 

 

 Inhibition of IKKβ Reduces Food Intake in Setting of Elevated pIKKβ 

   To mechanistically test the role of IKKβ activity on hypothalamic sensitivity and 

feeding behavior, 24 hour food intake was measured following pharmacological inhibition 

of IKK via icv injection (same compound used in chapter IV, PS-1145, Figure 33A-C).  

Inhibition of IKKβ significantly reduced 24 hour food intake in HF fed animals compared 

to vehicle controls after 2 and 3 days of diet (p<0.001 and p<0.01, respectively), when 

IKKβ activity was elevated, but not at 7 days of diet, when IKKβ activity was similar to 

levels observed in LF fed controls.  Inhibition of IKKβ did not affect food intake in LF fed 

controls at any time-point.   

 

Discussion  

 In previous chapters, both chronic high-fat feeding a diet enriched in saturated fat 

(chapter III) and acute intracerebroventricular administration of saturated fat (chapter IV) 

increased hypothalamic LC-CoA content and IKKβ activity in rats characterized by 

impaired insulin and leptin signaling.  In this chapter, I extended these findings to the 

onset of diet-induced obesity to determine whether these changes are mechanistically 

involved in the development of hypothalamic insulin and leptin resistance and obesity.  

Hypothalamic resistance is proposed to occur via a mechanism similar to peripheral 

insulin resistance in which accumulation of LC-CoA is thought to activate IKKβ and 

induce downregulation of both the insulin and leptin signaling pathways within the 

hypothalamus.  Impaired hypothalamic insulin and leptin signaling would result in 

disrupted energy homeostasis and lead to the development of obesity and peripheral 

insulin resistance. 
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Figure 32: Food Intake Response to Cholecystokinin at the Onset of Diet-Induced 
Obesity.  
 
Food lowering response to CCK as an indirect measure of hypothalamic sensitivity (A) 
prior to, (B) concurrent with, and (C) after adiposity diverges in HF fed animals 
compared to LF fed controls. Error bars represent the SEM. Student’s t-test was used to 
determine significance between groups (points represent CCK vs vehicle treatment 
within each diet group). * p<0.05, ** p<0.01, n=6-8 per group.  
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Figure 33: Effect of Pharmacological IKK Inhibitor on Food Intake at the Onset of Diet-
Induced Obesity. 
 
Inhibition of IKKβ Reduces Food Intake in Setting of Elevated pIKKβ.  Relative IKKβ 
activity (A) prior to, (B) concurrent with, and (C) after adiposity diverges in HF fed 
animals compared to LF fed controls. Error bars represent the SEM. Student’s t-test was 
used to determine significance (points represent IKK inhibitor vs vehicle treatment within 
each diet group). ** p<0.01, *** p<0.001, n=7-9 per group.  
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 The first premise of my hypothesis is that hypothalamic insulin and leptin 

resistance cause disruption of energy homeostasis, which in turn leads to the 

development of obesity and peripheral insulin resistance.  Thus, hypothalamic resistance 

is expected to occur prior to peripheral insulin resistance.  Comparison of the relative 

insulin sensitivity of central and peripheral tissues in calorically restricted HF fed animals 

to LF fed controls (Figure 27, LF vs PF) indicated that the hypothalamus is more 

susceptible to high-fat diet-induced insulin resistance than the liver and muscle.  This 

evidence is consistent with my hypothesis that hypothalamic resistance leads to the 

development of peripheral insulin resistance associated with obesity.  

 According to my hypothesis, hypothalamic insulin and leptin resistance occurs 

via a mechanism in which hypothalamic accumulation of LC-CoA molecules activate the 

IKKβ pathway resulting in impaired insulin and leptin signal transduction.  In order to 

determine whether LC-CoA accumulation and activation of IKKβ occured in a time-frame 

consistent with a role in the development of hypothalamic insulin and leptin resistance 

and obesity, a time-course of high-fat diet-induced obesity was established in this rodent 

model.  In this model, a statistically significant increase in adiposity is consistently 

observed by day 3 of ad libitum HF (45%kcal fat) feeding compared to LF fed controls.  

Based on this time-course of HF DIO, hypothalamic LC-CoA content and IKKβ activity 

were assessed at time-points before (2d), concurrent with (3d), and after (7d) adiposity 

diverged to establish a basis for causality versus consequence of these parameters in 

the development of HF diet-induced hypothalamic insulin and leptin resistance and 

obesity.  Significant hypothalamic accumulation of LC-CoA molecules was observed by 

day seven of HF feeding, after adiposity diverged. These data indicate that hypothalamic 

accumulation of LC-CoA is not required for the initial development of HF DIO but may be 

necessary for the persistence of obesity.  According to my hypothesis, the accumulation 

of intracellular LC-CoA molecules induces activation of IKKβ signaling.  If this hypothesis 
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is correct, a similar pattern of IKKβ activity would be expected to occur with HF feeding.  

However, pIKKβ levels were significantly elevated after two and three days of HF 

feeding; time-points prior to accumulation of hypothalamic LC-CoAs and prior to 

increased adiposity.  Together these data suggest that 1) hypothalamic LC-CoA 

accumulation and IKKβ activity are temporally uncoupled with HF feeding at the onset of 

obesity, 2) hypothalamic activation of IKKβ, but not LC-CoA accumulation, occurs in a 

time-frame consistent with a potential role in the development of obesity, and 3) 

hypothalamic activation of IKKβ is bimodal. 

 To determine whether  hypothalamic accumulation of LC-CoA molecules and/or 

activation of IKKβ could potentially play a role in the development of hypothalamic insulin 

and leptin resistance, I assessed activation of the respective downstream signaling 

molecules PKB and Stat3 following icv infusion of insulin or leptin.  The adiposity signals 

insulin and leptin are thought to have largely redundant functions and tightly coupled 

signaling pathways in the hypothalamus.  However, in these studies the sensitivities of 

these two signals were uncoupled at the onset of HF DIO in this rodent model.  

Hypothalamic insulin signaling remained intact prior to (2d) and concurrent with (3d) the 

onset of obesity, but was completely blunted after adiposity diverged (7d).  In contrast, 

hypothalamic leptin signaling was impaired at time-points prior to (2d) and concurrent 

with (3d) the onset of obesity, but was restored to levels observed in the LF fed controls 

after seven days of diet.  Thus, while insulin and leptin both function as adiposity 

negative feedback signals within the hypothalamus, the development of HF diet-induced 

hypothalamic insulin and leptin resistance are temporally and potentially mechanistically 

distinct.  The pattern of hypothalamic insulin resistance corresponded with the pattern of 

LC-CoA accumulation such that when LC-CoA content was elevated, insulin signaling 

was impaired.  Conversely, the pattern of hypothalamic leptin resistance corresponded 

with the pattern of IKKβ activity such that when pIKKβ was increased, leptin signaling 
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was impaired.  Together, these results suggest that the accumulation of LC-CoA may be 

mechanistically involved in the development of HF diet-induced hypothalamic insulin 

resistance, whereas activation of IKKβ may be mechanistically involved in the 

development of HF diet-induced hypothalamic leptin resistance.  In addition, these 

results indicate that hypothalamic leptin, but not insulin, resistance occurs in a time-

frame consistent with a causative role in the development of HF DIO and may be the 

primary determinant in HF DIO.  

 To confirm the results observed in the insulin and leptin signaling studies, I 

assessed hypothalamic sensitivity indirectly by determining the ability of a short-term 

satiety signal, CCK, to modulate food intake.  Studies have shown that in the setting of 

hypothalamic insulin and leptin resistance, the hindbrain is no longer sensitive to the 

effect of CCK to reduce meal size [123].  Peripheral administration of CCK failed to 

reduce food intake in the HF group at time-points prior to (2d) and concurrent with (3d) 

increased adiposity.  This is consistent with the presence of hypothalamic resistance at 

these time-points and corresponds with activation of IKKβ and impaired leptin signaling.  

However, CCK administration effectively reduced food intake in HF fed animals after 

seven days of diet; when hypothalamic leptin, but not insulin signaling, was intact.  This 

raises the possibility that hypothalamic modulation of the hindbrain response to CCK is 

dependent upon leptin, but not insulin, signaling.  This possibility is supported by 

evidence in the literature demonstrating a synergistic relationship between leptin and 

CCK in the regulation of food intake [14, 193].     

 To determine whether activation of IKKβ, associated with impaired leptin 

signaling at the onset of HF DIO, directly alters hypothalamic regulation of energy 

homeostasis, I investigated the effects of IKKβ activity on food intake.  Central 

administration of a pharmacological IKK inhibitor significantly reduced 24 hour food 

intake in HF fed animals at time-points consistent with elevated IKKβ activity and 
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impaired leptin signaling, but had no effect on food intake at seven days of HF feeding; 

when IKKβ activity was at basal levels and leptin signaling was intact.  These data 

support a direct role of IKKβ activity in the development of HF diet-induced hypothalamic 

leptin resistance and disrupted energy homeostasis.   

 Together, the results from these studies both support and contradict my original 

hypothesis that HF DIO occurs via a mechanism in which hypothalamic accumulation of 

LC-CoA activates IKKβ and impairs hypothalamic insulin and leptin signaling, resulting in 

disrupted energy homeostasis and the development of obesity.  These findings are 

summarized in the figure below (Figure 34) illustrating the relationship between 

hypothalamic insulin and leptin sensitivity to hypothalamic LC-CoA accumulation, IKKβ 

activity, and CCK sensitivity over the course of HF diet-induced obesity.  Together these 

data suggest that 1) LC-CoA accumulation and IKKβ activity are temporally and 

mechanistically uncoupled in the hypothalamus at the onset of DIO; 2) insulin and leptin 

resistance are temporally and mechanistically uncoupled in the hypothalamus at the 

onset of DIO; and 3) suggests leptin, but not insulin, resistance is primary in the 

development of obesity. 

 In light of the conclusions drawn from these findings, there are two important 

points to discuss.  First, in these studies HF DIO was defined to occur when adiposity 

diverged (3d of diet).  However, HF diet induced obesity results in both increased 

adiposity as well as increased body weight in free-feeding rodents.  The presence of 

both increased adiposity and increased body weight was observed between six and 

seven days of HF feeding; the time-point at which increased LC-CoA content and 

impaired insulin signaling were observed.  Thus, although accumulation of LC-CoA and 

impaired insulin signaling did not occur in a time-frame consistent with a causative role 

in the development of HF DIO as defined by increased adiposity, these changes may still 

be an important determinant in the development of both increased adiposity and body 
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weight.  Second, hypothalamic insulin and leptin signaling were assessed following 

direct infusion of these hormones into the third ventricle.  This route of administration 

bypasses a potentially critical step in signal transduction, transport across the blood-

brain barrier.  There is some experimental evidence to suggest that HF diets impair 

receptor-mediated transport of insulin and leptin across the BBB [11, 82].  Thus, 

hypothalamic resistance may potentially occur prior to the time-points observed in these 

studies due to a reduction in transport across the BBB with HF feeding.  Specifically, 

hypothalamic insulin resistance may occur prior to seven days of HF feeding which could 

potentially indicate a more prominent role of hypothalamic insulin signaling in the 

development of HF DIO.   
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Figure 34: Summary of Relative Changes in Key Molecular Mediators in the 
Pathogenesis of Diet-Induced Obesity with High-Fat Feeding.   
 
Pattern of high-fat diet induced changes in LC-CoA (red line), pIKKβ (purple line), 
hypothalamic insulin (blue line) and leptin (green line) sensitivity, and CCK sensitivity 
(gold line) relative to low-fat fed controls in the development of obesity.    
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CHAPTER VII 

 

SUMMARY AND FUTURE DIRECTIONS 

 

 Obesity has rapidly become a worldwide epidemic with a seemingly 

uncontrollable rise in prevalence over the last two decades.  Evidence suggests that in 

non-obese individuals, caloric intake is closely matched to energy expenditure to 

maintain stable body weight and adiposity over time.  The regulation of body adiposity 

can be modeled as a classical endocrine feedback loop which involves the “adiposity 

signals” insulin and leptin and the CNS.  These hormones normally circulate in 

proportion to body fat mass and directly interact with key neuronal subsets within the 

CNS, one of these being the arcuate nucleus (ARC) of the mediobasal hypothalamus.  

Insulin and leptin responsive neurons function coordinately in a series of neural circuits 

that allow the CNS to co-regulate various aspects of energy homeostasis including food 

intake and energy expenditure to promote the stability of body fat stores.  Conversely, 

obesity is a state of dysregulated energy homeostasis characterized by hypothalamic 

resistance to the adiporegulatory effects of insulin and leptin.  Understanding the 

mechanism of hypothalamic resistance is integral in developing strategies to control the 

obesity epidemic.   

 While many factors are implicated in the development of obesity, dietary fat 

remains one of the most potent predictors of obesity [152, 197].  In chapter III, I 

examined the obesogenic potential of various dietary fats.  Results from these studies 

demonstrated that dietary fats possess intrinsic obesogenic properties in a saturation 

dependent manner and specifically implicated saturated fatty acids as the most potent 

mediator of the deleterious effects of HF feeding.  Furthermore, a diet enriched in 
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saturated fat, independent of excess nutrient intake, is sufficient to induce hypothalamic 

resistance to the negative feedback adiposity signals and increase adiposity.   

  To determine whether the deleterious effects of high-fat feeding are specifically 

attributable to direct action of saturated fat within the CNS; in Chapter IV I investigated 

the direct effects of dietary fat in the brain of lean chow fed animals.  More specifically, 

whether exposure of the hypothalamus to excess saturated fat leads to hypothalamic 

accumulation of LC-CoAs that trigger inflammatory signaling (elevated IKKβ activity) and 

blunt insulin signaling in lean chow fed rats given an acute icv infusion of palmitate or 

oleate.  In these studies infusion of a saturated, but not unsaturated fat, mimicked the 

effects of HF feeding to increase hypothalamic content of LC-CoA molecules, and 

increase IKKβ activity in lean chow fed rats.  Concomitant with increased LC-CoA 

content and elevated IKKβ activity, icv palmitate infusion (i.e. saturated fatty acid) was 

sufficient to significantly blunt the ability of insulin to activate the downstream signaling 

molecule PKB in the hypothalamus.  These results demonstrated a clear association 

between increased LC-CoA content and IKKβ activity with impaired hypothalamic insulin 

signaling.  That pharmacological icv inhibition of IKK potently reduced food intake in 

obese, HF fed rats characterized by increased IKKβ activity and hypothalamic insulin 

resistance, but had no effect on food intake in LF fed rats (animals characterized by 

relatively low hypothalamic IKKβ activity and hypothalamic insulin sensitivity) suggested 

a direct role of IKKβ on insulin action to reduce food intake.  Furthermore, hypothalamic 

insulin signaling was enhanced in HF fed rats pretreated with the IKK inhibitor.  These 

results support a model similar to that of peripheral insulin resistance in which cellular 

exposure to excess nutrients, particularly saturated fat, triggers cellular inflammation and 

insulin resistance that in turn contributes to impaired energy homeostasis and the 

development of obesity.  The ability of specific fatty acids to modulate the activation of 

inflammation may represent a potential mechanism of high-fat diet-induced hypothalamic 
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resistance and obesity.  These structural effects led me to identify potential “fat sensing” 

target molecules that may be involved in the development of HF diet-induced obesity. 

 Since fatty acids are known to function as endogenous ligands for various 

receptors in a structure dependent manner; in Chapter V I investigated the role of the 

innate immune receptor, TLR4, in the development of high-fat diet-induced hypothalamic 

resistance and obesity.  TLR4 was identified as a candidate in the mechanism of high-fat 

diet-induced hypothalamic resistance and obesity since it is 1) expressed in central 

tissues associated with the regulation of energy homeostasis, 2) is regulated by dietary 

fat in a saturation dependent manner, and 3) initiates an inflammatory signaling cascade 

associated with insulin resistance.  Body weight and adiposity were significantly reduced 

inTLR4 deficient mice compared to WT controls; an effect associated with reduced 

plasma and tissue markers of inflammation in TLR4 deficient mice.  In line with my 

hypothesis, a reduction in inflammatory molecules may lead to improved hypothalamic 

insulin and leptin signaling and promote energy homeostasis.   

 The phenotype of decreased body weight and adiposity in TLR4 deficient mice 

compared to their respective WT controls suggested a potential role for TLR4 in the 

regulation of adipose stores.  Although these results suggested that TLR4 mediated 

inflammatory signaling within the hypothalamus contributed, at least in part, to 

modulation of energy homeostatic pathways and adipose accumulation; based on our 

observations it was not possible to rule out other pathways and mechanisms involved in 

the development of HF diet-induced hypothalamic resistance and obesity.   

 Whether hypothalamic resistance occurs early in the course of HF feeding and 

actively contributes to increased food intake, adiposity, and peripheral insulin resistance 

characteristic of DIO remains an important unanswered question.  Data presented herein 

have demonstrated that both chronic and acute exposure to saturated fatty acids 

increase hypothalamic LC-CoA content and IKKβ activity in rats characterized by 
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impaired insulin and leptin signaling.  In chapter VI, I extended these findings to the 

onset of DIO to determine whether these changes are mechanistically involved in the 

development of hypothalamic insulin and leptin resistance and obesity.  I hypothesized 

that dietary saturated fat induces hypothalamic insulin and leptin resistance via a 

mechanism of LC-CoA induced inflammatory signaling, resulting in disrupted energy 

homeostasis and the development of obesity and peripheral insulin resistance.  Results 

from these studies both supported and contradicted several aspects of this hypothesis.   

While insulin and leptin both function as adiposity negative feedback signals within the 

hypothalamus, the development of HF diet-induced hypothalamic insulin and leptin 

resistance were temporally and potentially mechanistically distinct.  Long-Chain CoA 

accumulation appeared to be mechanistically involved in the development of insulin 

resistance, whereas activation of IKKβ appeared to be mechanistically involved in the 

development of leptin resistance.  Furthermore, hypothalamic leptin, but not insulin, 

resistance occurred in a time-frame consistent with a causative role in the development 

of HF DIO. 

 While this body of work has focused on the role of long chain saturated fat in the 

development of diet-induced obesity; several other interesting questions became evident 

based on our findings that warrant further investigation.  For example, when animals 

were fed the HF diet restricted to the caloric intake of the LF fed animals (i.e. pair-fed), 

total body weight gain was similar to the LF group yet the proportion of energy stored as 

adipose tissue was significantly elevated.  This difference in adiposity for the same 

caloric intake may be explained by fuel partitioning, the allocation of metabolic fuels 

among tissues and metabolic pathways.  Under normal circumstances, fuel partitioning 

serves to maintain a steady supply of energy-yielding substrates to meet the needs of 

various tissues through the balance between fuel oxidation and storage [65].  However, 

disturbances in fuel partitioning compromises energy balance such that an imbalance in 



132 
 

favor of fuel storage results in obesity [65].  Given the differences observed in the 

obesogenic potential of the various fatty acid species we investigated, it is intriguing to 

ask whether omega-3 or polyunsaturated fatty acids would have a different effect on 

weight gain and adipose storage under the pair-feeding conditions.  Furthermore, it 

would be exciting to investigate the mechanisms involved in determining the metabolic 

fate of ingested calories and how the lipid composition alters these mechanisms, either 

via direct or indirect pathways and either centrally, peripherally, or a combination of both.   

 One of these potential targets of lipid action is the innate immune receptor TLR4.  

Although we observed a reduction in whole body inflammation and improved body 

composition in TLR4 deficient mice compared to WT mice on both diets, it is not possible 

to attribute these effects entirely to improved central energy homeostatic signaling since 

these animals were globally deficient in TLR4.  Thus, it would be beneficial to determine 

the contribution of TLR4 signaling specifically in the hypothalamus to HF diet-induced 

insulin and leptin resistance and obesity via generation of brain specific TLR4 knock-out 

mice or use of icv pharmacological agonists and antagonists.  In fact, a recently 

published paper investigated the effects of daily ip administration of a TLR4-inhibiting 

antibody in rats fed a HF diet for 8 weeks.  Results from these studies demonstrated that 

inhibition of TLR4 attenuated weight gain and activation of inflammatory cytokines 

associated with HF feeding [116].  Furthermore, Milanski et al. suggests that TLR4 acts 

as a predominant molecular target for saturated fatty acids in the hypothalamus and is 

an important mediator of hypothalamic dysfunction during the development of obesity 

[116].  

 However, recall that TLR4 deficiency did not completely protect mice against HF 

diet-induced increases in inflammation, body weight, and adiposity in our studies.  This 

suggests that additional pathways may be involved in the effects of dietary lipids to 

induce inflammation and obesity.  Studies have provided strong evidence for the 
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contribution of endoplasmic reticulum stress (ER stress) as a mechanism linking the 

consumption of HF diets and obesity to insulin resistance [129, 138].  ER stress can be 

induced by metabolic and nutritional factors such as high levels of glucose and lipids and 

stimulates cytokine production [138].  Cytokine production induced by ER stress could 

potentially lead to both insulin and leptin resistance in the hypothalamus making this an 

interesting target for further research.  Along these lines, a paper published within the 

last several months, reported that increased hypothalamic ER stress inhibits leptin 

receptor signaling and augments HF diet-induced obesity [137]. 

 Another question which remains to be addressed is how dietary lipids ultimately 

induce a signal within the hypothalamus and alter energy homeostasis within a relatively 

short period of time at the onset of obesity.  Upon ingestion of a HF meal, fatty acids are 

transported via chylomicrons as trigylcerides to the liver where they are processed and 

exported to the circulation attached to lipoprotein particles (VLDL).  Fatty acids then 

enter various tissues through a receptor mediated process.  Lipoprotein receptors are 

expressed at the blood-brain-barrier and may be involved in a direct effect of dietary fatty 

acids in the development of hypothalamic resistance and impaired energy homeostasis.  

However the contribution of fatty acids from lipoproteins is thought to be a small 

proportion of total circulating fatty acids.  The majority of circulating plasma fatty acids is 

derived from adipose tissue and closely reflects the composition of lipid stores in the 

adipose tissue.  Adipose stores are relatively stable and changes in dietary lipid 

composition would take weeks to months to become reflected in these pools.  Thus, the 

short-term effects of HF feeding are not likely due to direct effects of free fatty acids in 

the hypothalamus but may be mediated by indirect effects of HF feeding.  One possibility 

could be the presence of a gut-derived signal, either a circulating factor or a neurally 

mediated signal that changes in response to the ingestion of fat and alters hypothalamic 

insulin and leptin sensitivity.  While elucidation of a gut-derived signal is outside the 
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scope of this project, whether the effect of dietary fatty acids on hypothalamic sensitivity 

is mediated directly or indirectly is an important question in the mechanism of HF DIO. 

 Potentially the most interesting finding from this work, however, is the disconnect 

between the development of insulin and leptin resistance at the onset of obesity.  One 

limitation of these studies though is that the method used to assess insulin and leptin 

sensitivity (icv infusion and downstream signaling) bypasses a potential site of 

resistance at the level of hormone transport across the blood-brain barrier.  Studies to 

address transport as well as signaling could potentially reveal a different pattern of 

insulin and leptin resistance than reported here (i.e. insulin resistance at earlier time-

points due to impaired transport) and warrants further investigation.  Leptin transport and 

action in the hypothalamus could possibly be assessed by peripheral administration of a 

leptin dose and measurement of the food intake response and activation of the signaling 

cascade.  However, the leptin dose required to induce a hypothalamic response is cost 

prohibitive in rats.  Furthermore, this technique would not be suitable to test insulin 

transport and action in the hypothalamus due to the hypoglycemic effects of a peripheral 

insulin dose.  Instead, insulin transport and action in the hypothalamus could be 

assessed following a glucose bolus or following a fasting-refeeding paradigm to induce 

pancreatic insulin secretion.  However, the potency of these methods to stimulate insulin 

secretion can vary across groups and the results not be directly comparable.  Clearly 

these approaches contain inherent flaws as well.  However, transport across the blood-

brain barrier is still an important component of hypothalamic insulin and leptin action to 

address at the onset of HF diet-induced obesity as evidence indicates that hormones 

and circulating metabolites including nutritional status and triglycerides modulate the 

blood-brain barrier transport system [9, 84].    

 In addition to the disconnect between the development of insulin and leptin 

resistance is the bimodal response in leptin sensitivity we observed in our studies with 
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impaired leptin signaling at early and late time-points (day 2,3 and wk10) in the 

development of obesity and intact signaling at the intermediate time-point (day 7).  One 

potential explanation for the early impairment in leptin signaling with high-fat feeding 

could be evolutionary in origin.  Under conditions of intermittent food supplies, the ability 

to adapt to starvation is fundamentally important to the survival of the species.  Along 

these lines, evidence suggests that the dominant role of leptin occurs in response to 

starvation to prevent depletion of energy stores [3].  With the availability of an energy-

dense food source, the apparent leptin “resistance” may actually be a permissive 

response to temporarily allow overconsumption of the high-fat diet as a survival 

mechanism for future periods of prolonged fasting despite the overabundance of nutrient 

availability today and may partially explain genetic susceptibility to obesity.  Another 

potential explanation for leptin resistance is the influence of non-homeostatic factors in 

the control of food intake including palatability and novelty in rodents [22].  It has been 

hypothesized that cortico-limbic processes can override homeostatic regulatory circuits 

via neural projections between the accumbens and the hypothalamus [22].  Leptin 

signaling was restored following the initial exposure to high-fat diet and increase in food 

intake (day 7), possibly as these initial responses were attenuated, but was again 

impaired after prolonged exposure to high-fat diet.  The leptin resistance following 

prolonged exposure to high-fat diet may represent a “pathological” resistance in 

response to dietary fat and occur via a different mechanism.  Insight into both the early 

and late mechanisms of leptin resistance may prove beneficial in the development of 

pharmacological treatments for obesity. 

 In conclusion, this body of work has extended previous studies in our laboratory 

investigating hypothalamic insulin and leptin resistance in HF fed obese rats and 

describes potential mechanisms involved in the development of HF diet-induced 

hypothalamic resistance and obesity.  However, it is evident that more work is required 
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to tease out the exact mechanisms of hypothalamic insulin and leptin resistance as well 

as the distinct roles of insulin and leptin function as adiposity signals in the 

hypothalamus.  Further elucidation of the mechanisms involved in the development of 

diet-induced hypothalamic insulin and leptin resistance and distinct functional roles of 

these adiposity hormones will aid in potential therapeutic treatments to curb the obesity 

epidemic.  
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Appendix A. Baseline Metabolic Parameters of High-Fat Diet-Induced Obesity Model in 
Rats 

 

Baseline metabolic parameters in a rat model of HF DIO.  Effect of high-fat feeding on 
body weight (i), body adiposity (ii) and plasma insulin (iii) and leptin (iv) levels compared 
to low-fat fed controls. Plasma insulin (v) and leptin (vi) levels across groups are 
significantly correlated with changes in body adiposity, as is area under the curve (AUC, 
viii) of the glucose excursion curve during an intraperitoneal glucose tolerance test (vii).  
* p<0.05, **p<0.01.  
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Appendix B. Efficacy and Dose Response of IKK Inhibition  

 

 

 

 

 

Pharmacological inhibition of IKK was confirmed by measurement of IκBα protein levels 
following treatment with PS-1145 (3µg).  Efficacy of IKK inhibition was dose dependent 
as a lower dose reduced food intake at 4hr but not 24hr (3µg vs 10µg shown to reduce 
both 4 and 24hr food intake).  * p<0.05  
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Appendix C. Kaolin Intake Test of Visceral Illness with IKK Inhibition 

 

 

              

 
 
 
 
 
Effect of IKK inhibitor treatment on 24hr kaolin consumption, a marker of “visceral” or 
non-specific illness.   
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Appendix D. CCK Dose Response 

 

 

 

 
 
 
 
 
Effect of intraperitoneal CCK on 30min food intake in 4hr fasted rats. ** p<0.01 
compared to vehicle control (0ug dose). 
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Appendix E. Comparison of Pharmacological ICV Insulin Infusion and Physiological 
Insulin Response to a Fasting-Refeeding Cycle 

 

 

 

 

 

 
 
 
 
 
 
Hypothalamic phosphorylation of PKB in response to physiological (refed, 4hr access to 
high-carb diet after fast) and pharmacological (ins, 10mu insulin icv) insulin stimulation in 
24hr fasted rats compared to vehicle controls (veh).   * p<0.05, ** p<0.01. 
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