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CHAPTER I

INTRODUCTION

1.1 Nanoscience

Nanoscience is the study of matter on the atomic and molecular scale, where

relevant dimensions are on the order of 1-100 nanometers and quantum mechanical

effects are important. The invention of the scanning tunneling microscope (STM)

in 1981 marked the practical start of the modern field; for which the Nobel prize in

Physics was awarded to Binnig and Roher of IBM in 1986. This instrument allowed

the manipulation and imaging of matter with atomic precision. Since, the scope of

the field has expanded considerably. Nanotechnology has the potential to impact a

broad range of fields including medicine, biology, electronics, materials and energy.

The electronic, magnetic, optical and structural properties of materials on the

nanoscale are accessible experimentally. Measurements of these properties reveal the

quantum nature of nanoscale matter. However, the interpretation of those exper-

iments requires careful analysis and in many cases extensive numerical simulation.

For example the standard classical description of electron transport in conductors

is described by Ohm’s law; current is proportional to the potential difference across

a device, I = V/R. Conductance in this description is the inverse of resistance,

G = 1/R = σA/l, where σ is the conductivity, A is the cross sectional area and l

is the length of the channel. Experiments have revealed that this picture no longer

holds on the nanoscale. Conductance could be quantized as a function of electron
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energy, applied magnetic field or other parameter1–3.

1.2 Role of computation

Simulation is a valuable tool for not only understanding complex phenomena but

for predicting new directions for experimental investigation. Due to the complicated

quantum mechanical nature of matter at the nanoscale simple model systems fall

short of providing the required precision in practical cases. The many-body equa-

tions of quantum mechanics are unsolvable analytically except in very few special

cases. Numerical solution is then the way to calculate properties of systems without

introducing free parameters. Even numerical solution of the Schrödinger equation is

a difficult problem, with solutions only possible in small and simple systems. How-

ever, approximations to lower the computational cost at the expense of accuracy are

possible.

Density functional theory has emerged as a standard tool in describing the elec-

tronic structure of materials4–6. Instead of working with the full many-body wave-

function, a function of 3N coordinates, the electron density, with only 3 coordinates,

is the central quantity. Formally, density functional theory is exact. Density func-

tional methods, depending on the basis set, scale as O(N logN) or even O(N), where

N is the number of electrons. Compared to Hartree-Fock which is O(N4) to O(N3),

or perturbation theory methods which can be as high as O(N7) density functional

calculations are cheap. Low computational cost combined with recent advances in

describing exchange and correlation effects have lead to the widespread adoption. In

the standard formulation it is best suited for the description of isolated systems such
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as molecules and clusters or fully periodic systems such as solid crystals.

The case of a device, or scattering, region connected to semi-infinite electrodes is

not well described in the standard approach. In the past decade the extension of den-

sity functional methods to systems with open boundary conditions has been actively

developed7–9. A common approach used in many works is based on non-equilibrium

Green’s functions combined with a density functional theory Hamiltonian7. Calcu-

lations using the established methods, but applied to new systems, help to explain

existing experiments and highlight possible new directions. However, computational

study of some systems with existing frameworks is not possible without additional

development of computational methods. These factors drive to development of meth-

ods and formalism needed to calculate the electron transport properties of nanoscale

systems.

1.3 Overview

The focus of this thesis is the simulation of electron transport properties in

nanoscale devices. Work related to this dissertation has resulted in four peer re-

viewed journal articles10–13 and ten proceedings. The outline is as follows:

Chapter II introduces the necessary formalism. Here the foundations of density

functional theory, basis sets, quantum scattering theory and complex absorbing po-

tentials are described. The extension of the complex absorbing potential transport

framework to the general case of N electrodes is a key development presented in this

chapter.

Chapter III discusses computational aspects in detail. The parallelization strategy
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for a density functional theory code with an atomic orbital basis set is presented.

Also discussed are the implementation of a caching algorithm for memory efficient

calculations, solution of self consistent problems and efficient application of finite

difference operators. Finally, the convergence of transport properties is discussed

with a CO molecule adsorbed onto a mono-atomic gold wire as an example.

Chapter IV presents calculations related to nanowires. Transmission spectra for

mono-atomic gold chains, silicon nanowires and graphene nanoribbons with kinks and

related defects are shown. It is found that kink defects generally cause large drops

in conductance due to quantum interference effects. The conductance properties

of elongated gold nanowires are also studied, with geometries produced by accurate

molecular dynamics simulations. Polytetrahedral structures formed during elongation

are found to cause non-integer values in conductance traces.

Chapter V presents transport calculations for multi-terminal devices. A tight-

binding model is solved analytically to show the accuracy of the formalism developed

in Chapter II. Simulations of model systems with 8 terminals highlight some of the

quantum interference effects present in multi-terminal systems. Finally, more realistic

examples of a four terminal graphene cross junction and six terminal carbon nanotube

junction are simulated with a density functional theory Hamiltonian.

Chapter VI describes electronic devices which incorporate graphene. Graphene

is widely touted as an ideal electrode material, and some groups have considered

all-carbon devices by combining graphene and carbon nanotubes. In this chapter

the Schottky barrier in a graphene-carbon nanotube junction is calculated and the

potential of creating functional devices is discussed. Silicon is an important material
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in modern electronics, yet the interaction between graphene and silicon surfaces is

not well studied. In this chapter the interaction between graphene nanoribbons and

silicon with vacancy defects is examined. Since graphene does not possess a band

gap other two-dimensional materials have been proposed to combine with graphene

to form devices. Molybdenum disulphide is a two-dimensional material with a band

gap. The interaction of graphene and MoS2 is explored in this chapter.
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CHAPTER II

FORMALISM

In this chapter I present elements of density functional theory (DFT) and electron

scattering theory. A primary development of this work is the extension of the complex

adsorbing potential electron transport framework to the general case of N -terminal

devices10.

The chapter begins with a description of the fundamental theorems and equations

of DFT in section 2.1. Exchange and correlation effects are also addressed in this

section. Then, the representation of the density functional Hamiltonian with atomic

orbital, real-space grid and plane-wave basis sets is outlined in section 2.2. Next,

Section 2.3 presents the formalism for quantum transport calculations. In this section

the relevant equations of multichannel scattering theory are presented. With the

required background established a description of quantum transport calculations in

the complex adsorbing potential frameworks is given. In these sections I describe the

form of the complex potentials, the calculation of the density matrix and transmission

coefficients.

2.1 Density functional Hamiltonian

Density functional theory (DFT) is a formally exact method to solve the quan-

tum many-body problem. Remarkably, ground-state properties can be found with-

out directly working with the many-body wavefunction; instead one works with the
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ground-state electron density. This allows computationally efficient implementation

— a driving factor in the method’s wide adoption. In this section I review the foun-

dations of DFT; covering the Hohenberg-Kohn theorem, the Kohn-Sham equations,

pseudopotentials and exchange-correlation functionals. This is not intended to be a

comprehensive overview as excellent review articles4 and books5,6 are available.

The Hohenberg-Kohn (HK) theorem provides the basis for DFT:14

Hohenberg-Kohn theorem. For N electrons interacting in a static-external poten-

tial, V (r), the electronic density of the ground-state n0 (r) minimizes the functional

E[n (r)] = F [n (r)] +

∫

V (r)n (r) dr. (2.1)

The proof the of theorem is simple and can be found in most solid-state physics

textbooks15.

Kohn and Sham separated the functional, F [n (r)] into three parts

E[n (r)] = Ts[n (r)] +
1

2

∫ ∫

n (r)n (r′)

|r − r′| drdr′ + EXC [n (r)]. (2.2)

The first term, Ts[n (r)], is the kinetic energy of a non-interacting electron gas, the

second term is the Hartree (electrostatic) energy and the final term is the exchange

and correlation energy. The point of the separation is that the first two terms can

be easily dealt with while the final term contains the complicated many-body effects.

The exact form of the exchange and correlation term is unknown and approximations

must be made to use the theory in practice. Subsection 2.1.1 discusses the exchange-
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correlation functional in more detail.

With the constraint that the number of electrons in the system is fixed, enforced

via a Lagrange multiplier, and the separation introduced by Kohn and Sham the

Schrödinger equation for non-interacting particles can be obtained,

[

−1

2
∇2 + VKS (r)

]

ψi (r) = ǫiψi (r) . (2.3)

The previous equation provides a route to practical calculations using density func-

tional theory and is known as the Kohn-Sham equation. Here the electron density is

defined as

n (r) =
N
∑

i=1

|ψi (r)|2 . (2.4)

It is important to note that the potential in Equation 2.3 depends on the density

and therefore should be solved self-consistently with Equation 2.4. Details of the

self-consistent solution procedure are given later in subsection 3.1.

Coulomb potentials pose several computational difficulties. Since wave functions

must be orthogonal and many states near atomic cores are highly localized, those

states must be rapidly oscillating to maintain orthogonality. For an accurate all-

electron picture those oscillations must be captured by the basis used to represent

the wave-function. This corresponds to a high planewave cutoff or very fine real-space

grid spacings; implying large numbers of planewave coefficients or grid points which

must be computed and stored. The pseudopotential method involves replacing the

Coulomb potential and core electrons with an effective potential. The basis of the ap-
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proximation is the observation that core electrons are typically not chemically active.

That is, the energy contribution from core electrons remains constant if the atoms

are isolated or part of a molecule or solid. Pseudopotentials can take various forms

and extended discussion of the subject can be found in review articles16. The gen-

eration of useful pseudopotentials is the subject of significant literature17–20. While

details differ, a common feature is that beyond a certain cutoff radius the pseudopo-

tential and wavefunction match the full all-electron potential and wavefunction. In

general, increasing the cutoff radius reduces the cost of the calculation and reduces

the accuracy.

2.1.1 Exchange and correlation

A major issue in the practical application of DFT is that the exact form of the

exchange and correlation functional is only known for simple cases such as the free

electron gas. Vast literature exists on the development of accurate functionals (see

Reference21 and those within), a topic of past and current research. A comprehensive

survey of functionals is beyond the scope of this thesis. Here I present the conceptually

simple, but surprisingly accurate, local density approximation and end with some

comments about more complex functionals.

The local density approximation (LDA) is derived from a homogeneous electron

gas model and the functional is defined as

ELDA
XC [n (r)] =

∫

n (r) εXC (n (r)) dr (2.5)
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and the associated potential is

V LDA
XC (r) = εXC (n (r)) + n (r)

dεXC

dn (r)
. (2.6)

This functional depends only on the density at each point and is therefore fully local.

The exchange part of the energy density is known analytically and the correlation

part is known in the high and low density limits. Values between the limits are known

from accurate Quantum Monte Carlo simulations22. The results of the accurate

simulations are interpolated for use in calculations. A number of parameterizations

exist; such as Perdew-Zunger (PZ)23. The PZ parameterization is given by

EXC [n (r)] =

∫

εXC [n (r)]n (r) dr

≈
∫

[εX(n (r)) + εC(n (r))]n (r) dr

(2.7)

where

εX(n (r)) = −
(

81

64π

)1/3

n (r)1/3 (2.8)

and

εC(n (r)) =



















−0.1423(1 + 1.0529
√
rs + 0.3334rs)

−1 if rs ≥ 1,

−0.048 + 0.031 ln rs − 0.0117rs + 0.002rs ln rs if rs < 1

. (2.9)

Here the Wigner-Seitz radius is defined as

rs =

(

4πn (r)

3

)−1/3

. (2.10)
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Beyond the local density approximation there are many available functionals which

include additional non-local information24–38. There is a progression in terms of the

trade-off between information included and computational cost, with fully local and

and fully non-local representing the opposing ends of the spectrum21. Generalized

gradient (GGA) functionals include dependencies on the density and the gradient

of the density24–31. An extended discussion of GGA functionals can be found in

Reference39. More expensive are those functionals which depend on higher order

derivatives of the density known as meta-GGA (mGGA)32–34. Modern developments

include the addition of some percentage of Hartree-Fock exchange known as hybrid

functionals35,36. Another area of current research is the inclusion of van der Waals

interactions in functionals37,38 because local and semi-local functionals are unable to

correctly describe the asymptotic behavior of dispersion correlations. A review of the

performance of many of the most popular functionals can be found in Reference21.

2.2 Basis function representation of Hamiltonian

In order to solve the Kohn-Sham equations the wavefunctions must be expanded

in terms of some basis functions. The most common forms of basis functions are

planewaves, real-space grids and local atom centered functions. Less common, but

still in use are, wavelets and Lagrange functions. Basis sets differ in accuracy, compu-

tational efficiency and what type of geometry is best described by them. For example

planewaves are suited for periodic systems and are accurate as they form a complete

set with a single parameter controlling the accuracy. This section highlights three

common basis sets: numerical atomic orbitals, real-space grids and planewaves.
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2.2.1 Atomic orbitals

Atomic orbitals are a common choice for basis set in electronic structure calcula-

tions. Their localized nature makes them especially suited to efficient calculations.

However, the accuracy is more difficult to control than in the case of planewaves or

real-space grids, where the cutoff energy or grid spacing controls the accuracy.

A wavefunction expanding in terms of atomic orbitals is

Φ (r) =
Natom
∑

i=1

ni
∑

ki=1

lmax

i
∑

li=0

li
∑

mi=−li

cikilimi
φkilimi

(r −Ri) (2.11)

where Natom is the number of atoms in the system, ni is the number of orbitals for

each atom, lmax
i is the maximum orbital momentum for a given atom and Ri is the

position of atom i. The basis functions are defined by a radial and angular part,

φlm (r) = ϕl(r)Ylm(r̂), (2.12)

where Ylm is a spherical harmonic. Radial functions are either represented with

numerical tables or expanded in terms of other basis functions. Numerical tables allow

flexibility in the choice of radial function shape and are generally cheap as only a few

thousand stored values are needed to achieve acceptable accuracy in interpolation.

Generally the interpolation does not depend on the number of stored only values.

When these functions are further expanded in terms of basis functions, Gaussian

functions are a common choice. Depending on the choice of basis function type

integrals, such as the overlap of the φi, can be written analytically. In the case of

12



a Gaussian expansion the elements are expressed in terms of associated Laguerre

polynomials. The Kohn-Sham equations in the atomic orbital basis representation

are written as the general eigenvalue problem

HC = ESC, (2.13)

where the Hamiltonian matrix elements are

Hij = 〈φi(r −Ri)|H|φj(r −Rj)〉. (2.14)

Here the indices i, j are combined indices of k, l,m. The overlap matrix is defined as

Sij = 〈φi(r −Ri)|φj(r −Rj)〉 (2.15)

and the variational coefficients are

CT = (c1, c2, . . . , cN) , (2.16)

where cj = cikilimi
with j as a combined index. The dimension of the basis set is N .

2.2.2 Real-space grids

In the real-space approach the density, wavefunctions and potential are directly

represented on a discrete set of points in real-space. With a uniform spacing, h, the
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coordinates of each point are

r(i, j, k) = (ih, jh, kh) (2.17)

where i = 1, . . . , Nx; j = 1, . . . , Ny; and k = 1, . . . , Nz. Then all integrations needed

are simply
∫

Ω

f (r) dr ≈ h3
∑

ijk

f(r(i, j, k)). (2.18)

In this representation the dimension of the Hamiltonian is large — the total number

of grid points. However, the local part of the Hamiltonian is diagonal in this repre-

sentation. The non-local parts of the Hamiltonian, coming from the pseudopotential,

exchange-correlation potential, or kinetic energy, are localized in the neighborhood

of atoms and are very sparse. The kinetic operator acting on the wavefunction is

expanded in terms of a finite-difference

∇2ψ(r(i, j, k)) =

ND
∑

n=−ND

Cnψ(i+ n, j, k)

+

ND
∑

n=−ND

Cnψ(i, j + n, k)

+

ND
∑

n=−ND

Cnψ(i, j, k + n)

(2.19)

where Cn are finite difference coefficients and ND is the order of finite difference sten-

cil. Sufficient accuracy is normally reached with a value of ND = 4. The operation of

14



a local potential on a wavefunction in the real-space approach is just a multiplication,

V local (r)ψ (r) = V local(i, j, k)ψ(i, j, k) (2.20)

The non-local part of the pseudopotential is also sparse because it is zero beyond a

set radius from each atom. This restricts the range of points one must integrate over

to those within that radius:

∫

Ω

V nonlocal(r, r′)ψ (r′) dr′ =
∑

lm

〈valm|〈valm|ψ〉
〈ψps,a

lm |val |ψ
ps,a
lm 〉

=
∑

i′j′k′

V NL
ijk,i′j′k′ψ(i′j′k′),

(2.21)

where the prime indices only run over grid points that are within the non-local pseu-

dopotential radius of the atoms. Finally, the action of the Hamiltonian on the wave-

function can be written

HKSψ(r(i, j, k)) =

ND
∑

n=−ND

Cn [ψ(i+ n, j, k) + ψ(i, j + n, k) + ψ(i, j, k + n)]

+ V local(i, j, k)ψ(i, j, k) +
∑

i′j′k′

V NL
ijk,i′j′k′ψ(i′j′k′).

(2.22)

Direct diagonalization of the Hamiltonian is impractical due to the large dimension,

but since the action of the Hamiltonian on the wavefunctions is known, a conjugate

gradient scheme (or other iterative method) can be used to obtain the wavefunctions.
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2.2.3 Planewaves

Planewaves are one of the most commonly used basis sets in solid state physics

due to their suitability in the description of periodic systems, such as bulk crystals,

and the simplicity of implementation. In a periodic system the potential obeys

v(R) = V (r +R), (2.23)

where R = n1a1 + n2a2 + n3a3. Here, ni are integers and ai are lattice vectors of

the crystal. With the Bloch theorem the wavefunction of a periodic system can be

written as a product of periodic function and a planewave

Ψ
i,k (r) = eik·ru

i,k (r) (2.24)

where u
i,k (r) is a periodic function and k is the crystal momentum. Expanding

u
i,k (r) in terms of planewaves

u
i,k (r) =

∑

G

c
i,G+ ke

ir·G (2.25)

The accuracy of the expansion can be expressed by a cutoff energy

Ecut = |G+ k|2 . (2.26)
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Only planewaves with E < Ecut will be used in the calculations. The density associ-

ated with a single eigenfunction is

n
ik (r) =

∣

∣

∣
u
i,k (r)

∣

∣

∣

2

=
∑

GG′

c∗
i,G+ kci,G′ + ke

ir·(G−G′
).

(2.27)

The total density can be constructed by integrating over the first Brillouin zone:

n (r) =
1

Ω

∑

i

∫

BZ

dkf
iknik (r) , (2.28)

where f
ik is an occupation number. In calculations a finite mesh is used and the

integral is replaced by a sum. Reasonable accuracy is obtained with this replacement

due to the smooth nature of the wavefunction in reciprocal space. The kinetic energy

is diagonal in the planewave representation

〈G+ k|T |G′ + k〉 = |G+ k|2 δGG′ , (2.29)

where |G+ k〉 = eiG+ k·r. The local potential elements are

〈G+ k|V |G′ + k〉 = V (G−G′) (2.30)

and the non-local potential elements are

〈G+ k|W |G′ + k〉 = W (G+ k,G′ + k). (2.31)
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The Hamiltonian is then

∑

G′

HG,G′cG′ + k = E
n,kcG+ k, (2.32)

where

HG,G′ = 〈G|H|G′〉

= 〈G|T + V +W |G′〉

= |G+ k|2 + V (G−G′) +W (G+ k,G′ + k).

(2.33)

Some additional steps are required before practical calculations with pseudopotentials

can be carried out. The details depend on the approach, but essentially the long range

divergence in the G = 0 term for Coulomb potentials is canceled by adding Gaussian

compensation charges.

2.3 Quantum transport calculations

Calculation of transport properties of nanoscale devices with a density functional

based framework has become commonplace since the early 2000s when the first works

appeared. Early efforts calculated the properties of devices with two electrodes con-

tacted to a scattering region with a combination of non-equilibrium Green’s func-

tions and a density functional theory Hamiltonian (NEGF+DFT)7,40 or by using the

Lippmann-Schwinger equation directly41,42. Since then frameworks based on other

methods have appeared43, but the NEGF+DFT framework has remained the stan-

dard. Several excellent books are available which cover the established quantum
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transport formalisms44–47. One such alternative method is based on complex poten-

tials48,49. In this section I describe the extension of the complex absorbing potential

(CAP) framework to the general case of devices with N electrodes. Compared to

the NEGF+DFT framework, the multi-terminal CAP method is easier to implement

and computationally advantageous10. The difficulty of working in the NEGF+DFT

framework with more than 2 electrodes is evident with only few works appearing with

just 3 or 4 terminals. The section is outlined as follows:

Subsection 2.3.1 describes the structure of a multi-terminal Hamiltonian with a

localized basis set. Subsection 2.3.2 presents basic necessary elements of multi-channel

scattering theory. Subsection 2.3.3 shows the calculation of transmission coefficients

and subsection 2.3.4 shows details of complex absorbing potential calculations.

2.3.1 Structure of Hamiltonian

The structure of a multi-terminal device is shown in Figure 2.1. In this work lo-

calized basis functions are used to represent the Hamiltonian of the system. Various

localized basis function sets have been tested in transport calculations, including lo-

calized atomic orbitals7,50–59 and box basis functions60. The Hamiltonian and overlap

matrices are sparse because localized basis functions only overlap with each other in

a given region. For transport calculations the system is divided into lead and scatter-

ing regions. Basis functions associated with each lead are restricted from interacting

with other leads. That is, there is no overlap between the sets of basis functions of

different leads. However, there is an overlap between lead and scattering region basis

functions.
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C

Figure 2.1: N-terminal junction. The CAP is added between the two dashed lines
and the shaded area represents the central scattering region.

The leads consist of periodically repeated cells. The size of the cells is chosen

such that the basis functions only connect the neighboring cells and the Hamiltonian

matrix of lead a has a block-tridiagonal structure:

Ha =

























h00a h10+a 0 0

h10a h00a h10+a 0

0 h10a h00a . . .

0 0 . . . . . .

























. (2.34)
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The overlap matrix of lead a is

Sa =

























s00a s10+a 0 0

s10a s00a s10+a 0

0 s10a s00a . . .

0 0 . . . . . .

























. (2.35)

Denoting the Hamiltonian matrices coupling lead a and the central region by τa and

the Hamiltonian of the central region by HC , the Hamiltonian of the N terminal

system takes the form

H =









































H1 0 . . . 0 0 τ+1

0 H2 . . . 0 0 τ+2

...
...

. . .
...

...
...

0 0 . . . HN−1 0 τ+N−1

0 0 . . . 0 HN τ+N

τ1 τ2 . . . τN−1 τN HC









































. (2.36)

In the following sections (2.3.3 and 2.3.4) bold fonts indicate that the quantity has

dimensions of the full system.

2.3.2 Elements of scattering theory

In this subsection some elements of formal multichannel scattering theory are re-

viewed. For more details refer to Reference61. These equations will be used in the
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following description of transport properties in multi-terminal devices given (espe-

cially Subsection 2.3.3).

The Lippmann-Schwinger equation is used to arrive at the transition probability

of an incoming state in lead b to an outgoing state in lead a. A wavefunction in

channel a is an eigenfunction of the channel Hamiltonian

Haφa = Eaφa (2.37)

These channel wavefunctions form a complete orthonormal set of states

∑

α

|φaα〉〈φaα| = 1. (2.38)

The Green’s function for channel a is given by

Ga(Ea + iǫ) =
1

Ea + iǫ−Ha

. (2.39)

The scattering wavefunction ψ±
a corresponding to the incoming or outgoing wave

function from a satisfies

Hψ±
a = Eaψ

±
a . (2.40)

Combining these two equations produces the Lippmann-Schwinger equation for ψ+
a

ψ+
a = (1 +G(Ea + iǫ)Va)φa (2.41)
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where + stands for an incoming wave boundary condition and

Va = H −Ha. (2.42)

Similarly, an outgoing solution in channel b is given by

ψ−
b = (1 +G(Eb − iǫ)Vb)φb. (2.43)

The transition matrix between a and b is defined by

T +
baφa = Vbψ

+
a = (Vb + VbG(Ea + iǫ)Va)φa. (2.44)

The transition probability from an incoming state in b to an outgoing state in a is

given by

S2
ab = |〈ψ−

b |ψ+
a 〉|2. (2.45)

Interchanging ψ+
a and ψ−

b , the matrix element Sab is calculated from

Sab = δab − 2πiδ(Ea − Eb)〈φb|Tab|φa〉. (2.46)

2.3.3 Transmission coefficient in multi-terminal systems

In this subsection the transmission coefficient between lead a and lead b of a

multi-terminal system is calculated. A general expression is derived and a useful

simplification for use in calculations is shown. The structure of the Hamiltonian is
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outlined in subsection 2.3.1. As mentioned previously, bold fonts indicate that the

quantity has dimensions of the full system.

The wavefunction of the system corresponding to the partition shown in Fig. 2.1

is

Ψ =









































ψ1

ψ2

...

ψN−1

ψN

ψC









































. (2.47)

The wavefunction of the isolated lead a (a = 1, . . .N) is

Φa =

















































0

...

0

φa

0

...

0

















































(2.48)

where φa is the eigenfunction of the Hamiltonian of lead a

Haφa = Eaφa. (2.49)
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The wavefunction with incoming asymptotic form in lead a is

Ψ+
a = (1 +G(Ea + iǫ)Va)Φa, (2.50)

where

G(E + iǫ) =
1

E + iǫ−H , (2.51)

and

Va =

























0 . . . 0 0 0 . . . 0 0

...
. . .

...
...

...
. . .

...
...

0 . . . 0 0 0 . . . 0 0

0 . . . 0 τa 0 . . . 0 0

























. (2.52)

Similarly, the wavefunction with outgoing asymptotic form in lead b is given by

Ψ−
b = (1 +G(Eb − iǫ)Vb)Φb. (2.53)

The transmission probability from lead b to lead a can be calculated from Eq. (2.45)

|〈Ψ−
b |Ψ+

a 〉|2 (2.54)

which can be rewritten as (see subsection 2.3.2)

|〈Φb|Vb (1 +G(E)Va) |Φa〉|2 = |〈Φb|VbG(E)Va|Φa〉|2 (2.55)
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where in writing the second equality the fact that Vb does not connect leads a and b,

〈Φb|Vb|Φa〉 = 0, (2.56)

is used. To calculate the transmission from lead b to lead a all lead wave functions

must be summed over. The Γ matrix associated with a lead a is

Γa = V +
a

(

∑

α

|Φα
a 〉〈Φα

a |
)

Va, (2.57)

and |k〉 stands for a complete set of states formed by superposing all lead bases. With

these definitions the transmission can be written

Tab(E) =
∑

αβ

|〈Φβ
b |VbG(E)Va|Φα

a 〉|2

=
∑

αβ

〈Φβ
b |VbG(E)Va|Φα

a 〉〈Φα
a |V +

a G(E)+Vb|Φβ
b 〉

=
∑

β

〈Φβ
b |VbG(E)ΓaG(E)+V +

b |Φβ
b 〉

=
∑

β

∑

k

〈Φβ
b |Vb|k〉〈k|G(E)ΓaG(E)+V +

b |Φβ
b 〉

=
∑

k

〈k|G(E)ΓaG
+(E)Γb|k〉

= Tr
[

G(E)ΓaG(E)+Γb

]

. (2.58)

In Eq. (2.58) the transmission coefficient is expressed by the Green’s function of

the whole system and by the Γ matrices. While the Hamiltonian of the system is a

sparse block structured matrix, the Green’s function matrix is not sparse. The sparse

structure of the Γ matrix, however, allows for the simplification of the transmission
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coefficient.

To calculate the Green’s function matrix G one has to invert

ES−H =









































ES1 −H1 0 . . . 0 0 τ+1

0 ES2 −H2 . . . 0 0 τ+2

...
...

. . .
...

...
...

0 0 . . . ESN−1 −HN−1 0 τ+N−1

0 0 . . . 0 ESN −HN τ+N

τ1 τ2 . . . τN−1 τN ESC −HC









































.

(2.59)

By defining

τ =

(

τ1 τ2 . . . τN−1 τN

)

, (2.60)

and the block diagonal matrix

ESL−HL =

































ES1 −H1 0 . . . 0 0

0 ES2 −H2 . . . 0 0

...
...

. . .
...

...

0 0 . . . ESN−1 −HN−1 0

0 0 . . . 0 ESN −HN

































, (2.61)

ES −H can be rewritten in the following block form

ES −H =









ESL −HL τ+

τ ESC −HC









. (2.62)
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The inverse of this matrix can be calculated by partitioning62

G(E) = (ES −H)−1

=









GL(E) −GL(E)τ+GC(E)τGL(E) −GL(E)τ+GC(E)

−GC(E)τGL(E) GC(E)









.

(2.63)

In the above equation the Green’s function of the center is

GC(E) = (ESC −HC − τGL(E)τ+)−1, (2.64)

and the Green’s function of the leads is

GL(E) = (ESL −HL)−1 =

































g1 0 . . . 0 0

0 g2 . . . 0 0

...
...

. . .
...

...

0 0 . . . gN−1 0

0 0 . . . 0 gN

































, (2.65)

where the gi(E) matrices are the Green’s functions of the individual lead units,

gi(E) = (ESi −Hi)
−1. (2.66)

Using the Green’s functions of the leads, the GC matrix can also be simplified to

GC(E) = (ESC −HC −
N
∑

i=1

Σi(E))−1, (2.67)
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where

Σi(E) = τigi(E)τ+i . (2.68)

With these results the expression of the transmission coefficient in Eq. (2.58)

Tab(E) =
∑

αβ

|〈Φβ
b |VbG(E)Va|Φα

a 〉|2 (2.69)

can be rewritten by using the equation

〈Φβ
b |VbG(E)Va|Φα

a 〉 = 〈φβ
b |τ+b GC(E)τa|φα

a 〉 (2.70)

which can be easily derived using Eqs. (2.63), (2.48) and (2.52). Repeating the

derivation in (2.58) with (2.70) results in a simplified expression for the transmission

coefficient

Tab(E) =
∑

αβ

|〈φβ
b |τ+b GC(E)τa|φα

a 〉|2

=
∑

αβ

〈φβ
b |τbGC(E)τa|φα

a 〉〈φα
a |τ+a GC(E)+τb|φβ

b 〉

=
∑

β

〈φβ
b |τbGC(E)ΓaGC(E)+τ+b |φ

β
b 〉

=
∑

β

∑

β′

〈φβ
b |τb|β′〉〈β′|GC(E)ΓaGC(E)+τ+b |φ

β
b 〉

=
∑

β′

〈β′|GC(E)ΓaGC(E)+Γb|β′〉

= Tr
[

GC(E)ΓaGC(E)+Γb

]

. (2.71)
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Here

Γa = τ+a

(

∑

α

|φα
a 〉〈φα

a |
)

τa

= τ+a
(

ga(E) − ga(E)+
)

τa (2.72)

= i
(

Σa(E) − Σa(E)+
)

,

and GC is the Green’s function of the central region and Γa and Γb are the imaginary

parts of the self-energies of leads a and b. This expression is the transmission coeffi-

cient used in two-terminal transport calculations44,45. In the present work a CAP is

added to the Hamiltonian of the leads and both Eqs. (2.58) and (2.71) will be used

in the calculations. The next section describes how the addition is done and how

transport calculations are carried out in the CAP formalism.

2.3.4 Complex absorbing potentials

Absorbing boundary conditions using complex absorbing potentials (CAPs) were

first introduced in time-dependent quantum mechanical calculations to avoid arti-

ficial reflections caused by the use of finite basis sets or grids63. These CAPs are

located in the asymptotic region and annihilate the outgoing waves preventing the

undesired reflections. CAPs are extensively used in quantum mechanical calcula-

tions of chemical reaction rates and in time-dependent wave packet calculations64–70.

Complex potentials have also been used in transport calculations of devices with two

terminals71,72.

The complex potentials not only absorb the outgoing waves but can also produce
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Figure 2.2: Schematic of a complex absorbing potential in one dimension. The scat-
tering region is highlighted in red and the complex potential is highlighted in blue.
The solid black curve is the real potential and the dashed black lines indicate the
start the complex absorbing potential.

reflections. Therefore the construction and optimization of reflection-free CAPs is

pursued by many research groups. Many different forms of pure imaginary potential

have been investigated, including linear, power-law65,67, polynomial68 and other pa-

rameterized functional forms (a recent review is provided by Muga et al.66). Besides

purely imaginary potentials, complex potentials have also been investigated69. In this

work the CAP suggested by Manolopoulos70 is used. This negative, imaginary CAP
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is derived from a physically motivated differential equation and its form is

−iw(x) = −i ~
2

2m

(

2π

∆x

)2

f(y), (2.73)

where x1 is the start and x2 is the end of the absorbing region (see Fig. 1), ∆x =

x2 − x1, c is a numerical constant, m is the electron’s mass and

f(y) =
4

(c+ y)2
− 4

(c− y)2
− 2, y =

c(x− x1)

∆x
. (2.74)

This CAP goes to infinity at the end of the absorbing region and is therefore exactly

transmission free. In the numerical implementation the range is extended by a small

amount, typically 0.01 Å, beyond the boundary in order to prevent numerical insta-

bilities associated with infinite numbers. The CAP contains only one parameter, the

width of the absorbing region ∆x. Its reflection properties are guaranteed to improve

as this parameter is increased. A schematic of the CAP in one dimension is shown in

Figure 2.2.

By adding the CAP (as defined in Eqs. (2.73)-(2.74)) to the Hamiltonian of lead

j one obtains

H ′
j = Hj + iWj (2.75)

where Wj contains the matrix elements of the complex potential on the left and the

right. Note that in this section bold fonts indicate quantities which have dimensions

of the full system. Assuming that the basis states only connect the neighboring cells

in the lead, these matrices will have the same block tridiagonal structure as the leads’
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Figure 2.3: Complex absorbing potential in a crossbar device. The scattering region
is highlighted in green and the CAP is in blue.

Hamiltonian but for the non-periodic CAP the matrices in the diagonals will not be

identical:

Wj =

























w00
j w10+

j 0 0

w10
j w11

j w21+
j 0

0 w21
j w22

j . . .

0 0 . . . . . .

























(2.76)

The addition of a CAP makes the Hamiltonian a finite dimensional matrix; beyond

the range of the complex potential, the lead is effectively cut off. In the calculations

the complex potential starts at least one lead cell away from the central region (see
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Figures 2.1 and 2.3). With this choice, assuming that the basis functions in the

leads only connect neighboring supercells, the τi coupling matrices will not have

contributions from the complex potential. The Hamiltonian of the system is now

H ′ =









































H1 + iW1 0 . . . 0 0 τ+1

0 H2 + iW2 . . . 0 0 τ+2

...
...

. . .
...

...
...

0 0 . . . HN−1 + iWN−1 0 τ+N−1

0 0 . . . 0 HN + iWN τ+N

τ1 τ2 . . . τN−1 τN HC









































. (2.77)

The addition of a CAP only modifies the wavefunctions and the Green’s functions

in the region where the CAP is nonzero48. In the central region the electron density

and the transmission probability are the same as one would obtain using semi-infinite

leads without the CAP. The accuracy of the CAP approach in two-terminal transport

calculations has been demonstrated48. The transport coefficients calculated by the

CAP approach are in excellent agreement with the results of conventional calculations

using decimation or iteration73,74 to calculate the Green’s function of the leads.

In the CAP formalism, the transmission probability is calculated by using Eq.

(2.58) or (2.71). In the first approach, Eq. (2.58) is rewritten. After the CAP is

added to the Hamiltonian, the transmission coefficient is calculated using Eq. (2.58)

Tab(E) = Tr
[

G′(E)Γ′
aG

′(E)+Γ′
b

]

. (2.78)
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In this equation the prime indicates that the CAP is added. The Green’s function

with the CAP is defined by

G′(E) = (ES −H ′)
−1
, (2.79)

where H ′ is defined in Eq. (2.77). In a manner corresponding to the partitioning of

the Hamiltonian, the Green’s function matrix is partitioned as

G′ = (ES −H ′)−1 =

































G′
11 G′

12 . . . G′
1N G′

1C

G′
21 G′

22 . . . G′
2N G′

2C

...
...

. . .
...

...

G′
N1 G′

N2 . . . G′
NN G′

NC

G′
C1 G′

C2 . . . G′
CN G′

C

































. (2.80)

Using the results from the previous section, (2.71) and (2.73), the transmission is

rewritten as

Tab(E) = Tr
[

G′
C(E)Γ′

aG
′
C(E)+Γ′

b

]

(2.81)

= Tr
[

G′
C(E)τ+a (g′a − g′+a )τaG

′
C(E)τ+b (g′b − g′+b )τb

]

.

(2.82)

Using the identity

i
(

g′a − g′+a
)

= ig′a

(

(

g′a
+
)−1

− g′a
−1

)

g′a
+

= 2g′aWag
′
a
+

(2.83)
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the transmission is

Tab(E) = 4Tr
[

G′
C(E)τag

′
aWag

′+
a τaG

′
C(E)τbg

′
bWbg

′
bτb
]

. (2.84)

In this equation

G′
ab = g′aτ

+
a G

′
Cτbg

′
b. (2.85)

Using this the transmission becomes

Tab(E) = 4Tr
[

G′
abWaG

′
ab

+
Wb

]

(2.86)

= 4Tr
[

G′WaG
+Wb

]

where

Wi =

















































0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 0

0 0 Wi 0 0

0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 0

















































(2.87)

.

To calculate the transmission coefficients at many energy points the inverse G′ =

(EI−H ′)−1 must be recalculated for each energy point. Alternatively, the eigenvalue
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problem of the complex symmetric matrix H ′,

H ′Ck =

(

Ek −
i

2
∆k

)

Ck (2.88)

where Ek and ∆k are the real and imaginary parts of the eigenvalues, can be solved.

This allows use of the spectral decomposition of the Green’s matrix

G′(E) =
∑

k

CkC
T
k

E − Ek + i
2
∆k

. (2.89)

In this way only one diagonalization is needed and the Green’s function is available

for any energy at once. The dimension of the Hamiltonian is large, but it is a sparse

matrix so efficient diagonalization algorithms can be used. Additionally, the expan-

sion can be truncated by only including eigenfunctions with a real part of the energy

below a preset maximum. Numerical tests show that high-lying states do not con-

tribute to the spectral decomposition in the desired energy range around the Fermi

energy. Note that if the size of the Hamiltonian matrix does not allow direct diago-

nalization then one can use recursive methods, for example, those based on damped

Chebyshev polynomial expansions75–77 or the Lanczos algorithm78,79.

With the spectral representation, the transmission coefficient is rewritten in an

explicitly energy dependent simple form

Tab(E) =
∑

ij

1

E − Ei

1

E − E∗
j

U a
ijU

b
ij (2.90)
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where

Un
ij =

∑

kl

Cki(Wn)klC
∗
lj. (2.91)

This form again shows that once the eigenvalue problem is solved, the transmission

coefficient is available for any energy.

Alternatively, Eq. (2.71) can be used to calculate the transmission coefficient. In

that case, the Green’s function of each lead has to be calculated separately,

g′n(E) = (ESn −H ′
n)−1. (2.92)

Once the leads’ Green’s functions are available, the imaginary part of the leads’ self

energy can be calculated and Eq. (2.71) can be used.

In the zero bias (equilibrium) case, the electron density can be calculated in the

conventional way using Eq. (2.89). In the non-equilibrium case, the density can be

calculated as45

ρ(r) =
∑

µ,ν

φ∗
µ(r)Re [Dµν ]φν(r), (2.93)

where φν are basis functions and D is the density matrix defined by45

D =
∑

b

1

2π

∫ +∞

−∞

dEG′(E)W (E)G′†(E)f(E − µb) (2.94)

= − 1

π

∫ +∞

−∞

dEIm [G′(E)f(E − µa)] (2.95)

+
1

2π

∑

b 6=a

∫ +∞

−∞

dE
[

G′(E)Wb(E)G′†(E)
]

× [f(E − µb) − f(E − µa)] .
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Using the spectral representation (Eq. (2.89)) the density matrix can be rewritten as

Dνµ = − 1

π

∫ +∞

−∞

dEIm

[

∑

k

CνkC
∗
µk

E − Ek + i
2
∆k

f(E − µa)

]

+
1

2π

∑

b 6=a

∫ +∞

−∞

dE

[

∑

ij

CνiC
∗
µjU

b
ij

(E − Ei + i
2
∆i)(E − Ej − i

2
∆j)

]

× [f(E − µb) − f(E − µa)]

= Im

[

∑

k

CνkC
∗
µkp

a
k

]

+
∑

b 6=a

∑

ij

CνiC
∗
µjU

b
ijq

ab
ij

(2.96)

where

pak = − 1

π

∫ +∞

−∞

dE
1

E − Ek + i
2
∆k

f(E − µa), (2.97)

and

qabij =
1

2π

∑

b 6=a

∫ +∞

−∞

dE
f(E − µb) − f(E − µa)

(E − Ei + i
2
∆i)(E − Ej − i

2
∆j)

. (2.98)
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CHAPTER III

COMPUTATION

Computational techniques take on a large role in quantum mechanical simulations

due to the increased demands on computer resources such as memory and CPU power.

This section presents details related to a number of computational issues including the

numerical solution of self-consistent problems, parallelization of a density functional

theory code with an atomic orbital basis set, convergence of computed transport

properties, memory efficiency and implementation of finite difference operations.

3.1 Self-consistent solution

The Kohn-Sham equations, Eqs. (2.3), depend on the electron density and the

electron density depends on the eigenfunctions of the Kohn-Sham equation through

Eq. (2.4). This dependence requires a self-consistent solution. Solving a non-linear

self-consistent eigenvalue problem is non-trivial and requires much computational

effort. The steps of a typical self-consistent calculation are shown in Figure 3.1.

First an initial guess is generated. Then the matrix elements of the Hamiltonian are

calculated from the density. This step involves the solution of the Poisson equation

to obtain the Hartree potential and the calculation of the exchange and correlation

potential. These are the main parts of the density functional Hamiltonian which

depend on the electronic density. There are various methods to calculate a new

density from the Hamiltonian. As mentioned above, one possibility is to construct
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Figure 3.1: Self-consistent solution procedure

the new density through Eq. (2.4). In the case of a transport calculation the Green’s

function is calculated from the Hamiltonian and is then integrated over energy to

obtain the new density. This new density is checked against the input density; if the

two match then the loop exits and analysis of the data can be done. Otherwise, a

new trial density is generated and the procedure is repeated.

An important detail is how the new trial densities are generated. Simply using the

newly calculated density as the new trial density will not work due to the nonlinear

nature of the problem. The most obvious scheme is to take a linear combination of
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the input, ni−1, and output density, ni

ni+1 = (1 − α)ni−1 + αni. (3.1)

Here α is a small parameter which is typically 0.001 − 0.1 depending on the problem

and completeness of the basis. While solution of the self-consistent problem is now

possible, this approach is very inefficient. A simple improvement is to dynamically

adjust α at each iteration. Further efficiency gains can be made with more advanced

algorithms.

Pulay mixing, also known as DIIS (Direct inversion in the iterative subspace), is

the standard approach used in many codes80. The method is essentially a least squares

extrapolation to the density with minimal residual at each step. I have implemented

both dynamically adjusted linear mixing and Pulay mixing in the group’s DFT code.

Figure 3.2 shows a comparison of the methods.

Here I provide details of the implementation and derivation of the Pulay scheme

implemented in the code. Start with the assumption that the final self-consistent

density, n, can be approximated by a linear combination of previous guess vectors

n =
m
∑

i

cin
i. (3.2)

This assumption holds if the previous guess vectors, ni, are near enough to the

solution, which is the case in typical calculations. The residual vector can also be
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Figure 3.2: Comparison of density mixing methods for an NH3 molecule. The max-
imum value of the residual of the density as a function of self-consistent iteration is
shown.
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written in this form,

r =
m
∑

i

cir
i. (3.3)

A correct solution will minimize the norm of the residual vector,

〈r|r〉 =
m
∑

ij

c∗i cj〈ri|rj〉 (3.4)

with the constraint that
∑m

i ci = 1. The equation to minimize is then

L = c†Sc− λ

(

1 −
m
∑

i

ci

)

(3.5)

where λ is a Lagrange multiplier and Sij = 〈ri|rj〉. Taking ∂L
∂ck

= 0 the following

linear equation is obtained

































S11 S12 . . . S1m −1

S21 S22 . . . S2m −1

. . . . . . . . . . . . . . .

Sm1 Sm2 . . . Smm −1

−1 −1 . . . −1 0

































































c1

c2

. . .

cm

λ

































=

































0

0

. . .

0

−1

































. (3.6)

This linear equation is easily solved to obtain the desired ci which are then used to con-

struct a density with minimal residual. In large systems long wavelength oscillations

in the charge density can make convergence difficult to obtain. These oscillations

can be damped by using a modified metric to compute the distance between trial
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solutions, Sij in Eq. (3.6). The metric is defined in terms of q, the wave vector

〈a|b〉 = 〈a|M |b〉, (3.7)

where M =
∑ |q〉f(q)〈q| and f(q) = 1 − w

q
81. The parameter w determines the

strength of the damping. This form of the metric is used in planewave calculations,

with the idea that contributions from low wave vectors have greater effect that those

from high wave vectors. In real space the metric is approximated by

f(R) =















































1 + w/8 R = 0

w/16 R = 1

w/32 R = 2

w/64 R = 3

(3.8)

where R = 0 is the on the grid point, R = 1 is the 1st nearest neighbor point, and so

on. Tests show that use of this metric reduces the number of required self-consistent

iterations in large systems.

3.2 Parallel implementation

Often when calculating the properties of systems with large simulation cells and

many atoms, the required walltime and memory will be too great. A parallel im-

plementation can reduce the wait for results or increase the available memory by

distributing the calculation across a number of processors. I have developed parallel

DFT and NEGF codes using a combination of OpenMP, for use on shared memory
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systems, and MPI for communications between nodes.

The density functional theory code is parallelized at a high level over atomic or-

bitals. A subset of orbitals that overlap is assigned to each node. Figure 3.3a shows

the non-zero matrix elements in the calculation with each color representing a different

node. The localized nature of the orbitals makes this distribution suited to calculat-

ing matrix elements and the density. However, this distribution is not efficient for the

solution of eigenvalue problems. An algorithm converts this parallel representation to

a two-dimensional block cyclic representation for use with the parallel linear algebra

library ScaLAPACK82. Figure 3.3b shows the distribution of non-zero matrix ele-

ments in the two-dimensional block cyclic case. The scaling of the approach is shown

in Figure 3.4. The poor scaling of the diagonalization routine is the limiting factor of

the straight forward approach. More sophisticated diagonalization methods such as

RMM-DISS or subspace diagonalization are more suited to parallel computation and

are under consideration. Alternatively, the diagonalization can be avoided entirely by

calculating the Green’s function from the Hamiltonian and integrating over energy to

obtain the new density. In this approach every energy point is independent, making

parallelization trivial.

3.3 Convergence of transport properties

Calculations of transport properties with the NEGF formalism are expensive com-

pared to standard ground state calculations. The main performance bottleneck is the

calculation of the Green’s function because it requires the inversion of the resolvent

Hamiltonian. Small sets of atomic orbitals (AO) are often used to minimize the
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Figure 3.3: Distributions of matrix elements used in parallel calculations. Each color
represents a different processor
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Figure 3.4: Parallel scaling of a calculation of tetraphenyl-porphyrin molecule con-
tacted to two Au nanowires. There are 260 atoms in the simulation box and 4680
orbitals with a double zeta basis set. The calculation was done on 1 node of the
Hopper machine at NERSC with two twelve-core AMD ’MagnyCours’ 2.1-GHz pro-
cessors.
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dimension of the Hamiltonian. This approach has been very successful due to its sim-

plicity. However, there are a number of problems. It is known that large numbers of

AOs are needed to obtain converged transport properties60. Often 27 AOs per atom

are needed. As a result, accurate calculations for large systems are often prohibitively

expensive.

In this subsection the convergence of the transmission coefficient is investigated.

The calculation is performed with a large atom-centered basis set. Before the Green’s

function is calculated the system is divided into boxes. In each box, the Hamiltonian

is diagonalized and the eigenstates are ordered by energy. From each box the N lowest

energy states are used as a new basis for the system, upon which the full Hamiltonian

of the system is now projected. By arranging the boxes such that their dividing

walls are orthogonal to the transport direction, the desired tridiagonal form for the

Hamiltonian is retained. This allows the reuse of computation routines designed for

use with the AO basis and the accuracy of large atomic orbital basis sets without the

full cost of inverting the Hamiltonian.

3.3.1 Example: Au chain with adsorbed CO

As a simple example a CO molecule adsorbed onto a mono-atomic gold chain is

used. The transmission coefficient calculated with different sized atomic orbital basis

sets is shown in Figure 3.5. In this case 27 basis functions per atom were required

to converge the transmission curve. This corresponds to an expensive calculation

for even modest systems with fewer than 100 atoms. In Figure 3.5 the transmission

coefficient was computed with the method described above. Initial calculation was
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Figure 3.5: Transmission coefficient as a function of energy for a Au chain with an
adsorbed CO molecule. For each curve the self-consistent ground state and transmis-
sion is calculated with the basis set indicated. A basis set of 27 or more AOs per
atom is needed to obtain a converged transmission curve.

done with 36 atomic orbitals per atom. The legend indicates the number of states

per atom that were kept in the calculation. This is proportional to the dimension of

the Hamiltonian and Green’s function. The accuracy of the full 36 state-per-atom

calculation was achieved with 18 states per atom using the box basis method.

3.4 Memory efficiency

A common situation is that more memory is required than is currently available.

If after distributing the problem across several CPUs more memory is still needed,
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Figure 3.6: Transmission coefficient as a function of energy for a Au chain with an
adsorbed CO molecule. The legend indicates the number of basis states per atom
used in the calculation of the truncated basis and transmission curve. The solid black
curve calculated with 36 states corresponds to the full 4-zeta basis. All curves except
for “12” are on top of each other.

it is possible to recalculate the real-space representation of the atomic orbital basis

functions as needed instead of precomputing and storing the values. The real-space

representation of the orbitals represents a significant memory requirement. For exam-

ple, in a system with No = 10000 orbitals, a grid spacing of 0.25 and an orbital cutoff

radius of rcut = 4.5 Å, a sphere of radius rcut around an atom will contain roughly

Ng ≈ 20000 grid points. Since the value of the orbital at each point is required, NgNo

double precision values must be stored in memory — taking up roughly 1.6 GB. In a

parallel calculations there is some overhead due to multiple CPUs needing copies of
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a given orbital.

The group’s DFT code now contains the option to recalculate the real-space rep-

resentation as needed. However, a naive implementation would result in a very ineffi-

cient code. Suppose there are two atoms which have overlapping basis functions and

each atom has 18 atomic orbitals. Then, to calculate the overlap, the real-space rep-

resentation must be accessed 18 × 18 = 324 times. It is undesirable to recalculate at

every access for this reason. Ideally it should be calculated once at each self-consistent

step. The code implements a least recently used (LRU) caching algorithm.

The algorithm is effective because of the localized nature of the orbitals. Atoms

are ordered so that spatial locality is maximized; in the case of a system with one

dimension larger than the others (as in a nanowire) this amounts to ordering the atoms

by their coordinate along the transport axis. So an orbital only overlaps with a finite

set of other orbitals, which will have a nearby index. In a loop over all pairs of orbitals

a certain real-space representation will be accessed many times in a short number of

iterations and then much less frequently elsewhere. The LRU cache manages accesses

to the representations. A preset maximum number of representations will be stored

at a time. When a representation is requested a check is done to see if it is in the

cache. If it is, then the value is returned immediately, and is marked as accessed. If

not, the value is calculated and copied into the cache. When the cache is full, the

representation which has not been accessed recently is replaced by the newly requested

value. The walltime as a function of number of stored representations is shown in

Figure 3.7. After a critical value of cache size is reached the walltime is significantly

reduced. This is related to the finite number of orbitals that each orbital overlaps.
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Figure 3.7: Walltime and memory as a function of cache size setting. Walltime is
shown in blue and memory needed for the real-space representation is shown in red.
The test system is a gold chain with an adsorbed CO molecule. There are 29 atoms
and 512 basis functions in the calculation.

The crossover point, and thus the required size of cache for efficient calculations, can

be estimated by MintNAO where Mint is the average number of atoms within a radius

of 2rcut from each atom and NA0 is the average number of orbitals per atom. In the

test case shown in Figure 3.7 with are 512 basis functions and 29 atoms Mint ≈ 5

and NAO = 18 so the speedup should occur when approximately 90 basis function

representations are stored. As the transition does not depend on the total number of

atoms or basis functions significant memory savings are possible in large systems.
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3.5 Finite difference operations

Computing the action of finite difference operators on quantities defined on a grid

represents a significant factor in many computations. Especially in the case of a large

system with many grid points and a grid basis. Most commonly one uses the Laplace

operator in the calculation of the kinetic energy and in the solution of the Poisson

equation. In this section efficient implementation of the action of Laplace operator is

shown.

As in (2.19) the action of a fourth order finite difference Laplace operator on a

function f is

∇2f(i, j, k) =
4
∑

n=−4

Cnf(i+ n, j, k) + Cnf(i, j + n, k) + Cnf(i, j, k + n), (3.9)

where Cn are finite difference coefficients. For a simplified discussion a first order finite

difference operator will be used in the examples. A straightforward implementation

in FORTRAN is given below:

1 do k=1,z

2 do j=1,ny

3 do i=1,nx

4 nab_f(i,j,k) = c0*f(i,j,k) + &

5 c1*(f(i-1,j,k)+f(i+1,j,k)+f(i,j-1,k)+f(i,j+1,k)+f(i,j,k-1)+f(i,j,k+1))

6 end do

7 end do

8 end do

This style of implementation suffers from poor memory access properties and will

as a consequence run slowly. Better spatial and temporal memory locality can be
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achieved introducing a block size.

1 do kk=1,nz,bs

2 do jj=1,ny,bs

3 do ii=1,nx,bs

4 do k=kk,min(nz, kk+bs-1)

5 do j=jj,min(ny, jj+bs-1)

6 do i=ii,min(nx, ii+bs-1)

7 nab_f(i,j,k) = c0*f(i,j,k) + &

8 c1*(f(i-1,j,k)+f(i+1,j,k)+f(i,j-1,k)+f(i,j+1,k)+f(i,j,k-1)+f(i,j,k+1))

9 end do

10 end do

11 end do

12 end do

13 end do

14 end do

The exact value of bs needed for optimal performance depends on the specific

system, and factors such as cache size will result in different performance character-

istics. Numerical tests with an Intel Core 2 Quad suggests a value in the range 8-20

is a good choice for bs. An alternative is to reorder grid points themselves, but this

results in a more complicated mapping of grid point index to spatial location.
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CHAPTER IV

NANOWIRES

In this chapter transport properties of nanowires are studied with first-principles

calculations. Relevant experimental and theoretical findings are discussed in Section

4.1, followed by specific calculations. Sections 4.2 through 4.4 focus on the elec-

tronic properties of kinked nanowires. The role of quantum interference effects in

atomic chains, silicon nanowires and graphene nanoribbons is examined in these sec-

tions. The final sections relate to gold nanowires: Section 4.5 discusses the impact of

structural changes in nanowires undergoing elongation on the observed conductance

traces, and Section 4.6 investigates the properties of a proposed molecular switch

based on a porphyrin molecule in a gold nanowire break junction. The work pre-

sented in this chapter on atomic chains, silicon nanowires and gold nanowires has

been published11,13.

4.1 Background

One-dimensional nanowires exhibit outstanding electronic, transport and optical

properties83–86 and are promising candidates for future nanodevice applications87–89.

The electrons in these structures are subject to quantum confinement and their mo-

tion is limited to one dimension leading to unique effects such as quantized conduc-

tance3,90, Peierls instabilities91 and Luttinger liquid behavior92. Nanowires with a

wide range of composition and morphology have been observed. Crystalline wires with
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diameters ∼ 0.5 − 500 nm composed of metals, such as gold or silver93, semiconduc-

tors such as silicon and GaAs94, and insulators such as SiO2 have all been fabricated.

Additionally, a range of core-shell structures89,95, dopant distributions96–98 , surface

terminations96,99 and crystallographic orientations100–102 have been explored. Chains

composed of single atoms are less common, but are found in break junctions3,90,103

and on surfaces104–109. Molecular units, such as DNA or thin strips of graphene110,

also exhibit one-dimensional phenomena and can be considered as nanowires. The

large range of possible configurations allow significant influence over the properties of

nanowires, motivating the extensive study of how to effectively tune wire parameters.

In a perfect one dimensional nanowire the conductance is equal to NG0 where

G0 = e2/h is the conductance quantum and N is the number of available conduction

channels at the Fermi energy. Defects in the wire introduce a scattering potential caus-

ing reflections which alter the electronic properties of the nanowire. An example, the

decrease in conductance of an mono-atomic chain of Au atoms when a CO molecule

is adsorbed, is described in subsection 3.3.1. Some possible defects are surface re-

constructions, dopant atoms and change in crystallographic orientation. Scattering

on defects causes an interference between the scattered wavefunctions inducing reso-

nances, standing waves and other quantum phenomena that alter the conductance of

the nanowire.

Recent advances in experimental methods have allowed the introduction of kinks,

turns and zigzags in nanowires with control over direction, length and placement86,111,112.

Similar control has been demonstrated over the geometry of graphene nanoribbons113,114.

Control over the kinking of Ge nanowires has been achieved via chemical means, allow-
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ing the easy selection of kinked wire geometry115. These kinked wires are envisioned

as nonlinear connections between nanodevice components, allowing for design of cir-

cuits and topologies that are impossible or impractical with straight wires only. The

controllable nature of these defects offers the opportunity to further explore the role

of defects in nanowires. Work presented in this chapter is focused on understanding

the effects of kink defects on electronic properties.

4.1.1 Atomic chains

In mechanically controlled break junction experiments a thin wire is pulled apart

in a vacuum at low temperature. Early observations found quantization of conduc-

tance in break junctions103. Later efforts included imaging the structures simul-

taneously with conductance measurements and improved control over atomic chain

formation3,90. Chains of gold atoms that were approximately 1 nm long were ob-

served.

Chains of atoms on surfaces are typically formed via manipulation of atoms, either

with a scanning tunneling microscope(STM) or via self-assembly. Early observations

found self-assembled chains of indium atoms could be combined through manipu-

lation with a STM tip to form wires over 70 nm long on Si(100)2x1 surfaces107.

Researchers were aware of the potential of atomic chains on surfaces as platforms

for studying low-dimensional transport physics. A STM was used to create chains of

gold atoms on NiAl(110) surfaces and spatially resolved conductance measurements

of a chain with 20 atoms provided the effective electron mass, dispersion relation and

density of states in the one-dimensional wire104. Gold wires on Si(335) surfaces have
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been characterized with STM and tight-binding calculations illustrated the interac-

tion between neighboring chains105. Wang et al. characterized self-assembled gold

chains on Ge(001) and examined the growth process106. Later, others found that

gold chains on this surface are very loosely coupled to the surface and other wires,

demonstrating one-dimensional electron liquid behavior109. After continued study the

same group published evidence of Tomonaga-Luttinger liquid behavior, a signature

of one-dimensional electrons, in the Au-Ge(001) system108.

4.1.2 Silicon nanowires

Several investigations of transport properties in silicon nanowires have been car-

ried out116–131. A variety of methods have been used, ab initio and tight-binding

approaches have both been used with Green’s function and transfer matrix based

approaches for the transport. Studies of pristine, passivated and doped wires have

been published and the effects of surface defects has also been studied.

A number of works examined the link between wire surfaces and electronic prop-

erties. The IV characteristics of small pristine and passivated (hydrogen) wires were

calculated with NEGF-DFT by Ng et al. IV characteristics are shown to depend

strongly on length, growth direction and surface passivisation. The effect of metal

electrodes is examined and a wire length of 3 nm is suggested as a minimum to regain

intrinsic wire properties118. Lherbier et al. used a Kubo-Greenwood approach and an

NEGF-DFT approach to explore the effects of surface roughness in different trans-

port regimes127. Svizhenko et al. used a NEGF-TB approach to study the effects

of growth direction and surface roughness on small passivated (hydrogen) wires. A
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current falloff at high bias voltage is calculated. Surface roughness is found to sup-

press low bias current and conductance and to decrease the current as wire length is

increased. They suggest that in small wires a transition to the Anderson localization

regime may occur at room temperature119. Markussen et al. calculated the resis-

tance and mean free path in long wires. A real-space Kubo method and a recursive

Green’s function method were both used to study metallic and semiconducting wires;

both methods are shown to give similar results. Long unpassivated wires are found

to be very sensitive to defects in the surface but largely unaffected by disorder in

the wire core. A strong dependence on defects in the surface passivisation is also

found124. Ponomareva et al. studied the energetics of various wire geometries and

found that tetrahedral wires in [111] direction were the most stable. They also dis-

covered that these wires have superior conducting properties when compared to other

wire geometries. Their results are obtained with a tight-binding approach, but they

do some supplemental calculations with an ab initio method. The transport results

were obtained with a transfer matrix approach122.

Other works instead focused on the role of dopants in nanowires. Crossover from

ballistic to diffusive transport when silicon nanowires are doped with B or P was

studied from a perspective of scaling theory132. It was found that information from

single dopant scattering was sufficient to predict the main trends of the crossover.

The energetics of Mn doped Si nanowires was studied by Giorgi et al.133. They

demonstrated the role of Mn’s favored alignment in 〈111〉 Si nanowires in stabilizing

the ferromagnetic ordering. The effects of dopants on conductance in passivated

wires was studied by Serra et al. with an ab initio method based on the Landauer
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formalism. Impurities in the core are found to cause significant scattering and surface

trapped impurities are found to have little effect120. In contrast to bulk Si, B-doped

nanowires have lower resistance than those doped with P (the opposite is true in

bulk)121.

Some authors have focused on the properties of interfaces. The interface between

Al(100) wires and carbon nanotubes was found to reduce the measured conductance

of carbon nanotubes7. Landman et al. studied passivated nanowires connected to

aluminum electrodes. They find that short wires (less than 1 nm) are metallic due to

gap states induced by the contacts. Longer wires are found to have Schottky barriers

with heights 1.5 to 2 times higher than the bulk value. Calculations were done with

a combination of DFT and a transfer matrix approach123.

Ricardo Rurali has written an extensive review article detailing previous studies

from a theoretical point of view134. However, little work has been presented on kink

defects in nanowire systems, first-principles or not.

4.2 Atomic chains

In this section various kinks are introduced in mono-atomic gold chains and the

relation between kink geometry and change in conductance is examined. Background

information is provided in Section 4.1.1. Atomic chains have proven to be good

platforms for studying low-dimensional electron transport physics.

Kinked structures with 2, 3 and 4 turns are examined: an angle, a triangle and a

step, respectively (see Figure 4.1). The Au-Au distance is fixed at 2.9 Å for all calcu-

lations in this section. The presence of a kink substantially modifies the potential felt
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(a)

(b)

(c)

Figure 4.1: Au nanowires with different kinks. The boxes indicate electrode and
scattering regions with the electrode region highlighted in green.
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Figure 4.2: Average self-consistent potential along transport direction for several
configurations. The potential is calculated by averaging the self-consistent potential
along the transport direction.

by the electrons. This is illustrated in Figure 4.2 where the self-consistent potential

in a straight wire is compared to a wire with an angle (Figure 4.1a, α = π/2) and

a step (Figure 4.1c). Figure 4.2 shows that the kinks introduce a substantial per-

turbation that depends on the geometry of the kinks. The conductance is supressed

compared to a perfect wire by the introduction of the scattering potential (see Figure

4.3). Figure 4.3 shows that the transmission probability of a kinked wire depends on

the kink angle and is reduced compared to the straight wire.

The geometry dependence of the low-bias conductance, G = T (EF ), where EF

is the Fermi energy, for the three model kink structures (Figure 4.1) is shown in

Figure 4.4. In the case corresponding to Figure 4.1a the two turns are separated by
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Figure 4.3: Transmission coefficient at zero bias for several kink angles of an
monatomic gold chain in vacuum. The solid black curve corresponds to the infi-
nite equally spaced chain in vacuum. Gold atoms are separated by 2.9 Å. A gold
chain with an angled kink is shown in figure 4.1a
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Figure 4.4: Conductance at the Fermi level for mono-atomic Au nanowires with a a)
single kink as function kink angle b) triangular kink as a function of number of atoms
in the triangle c) step as function of step length for a step height of 3 atoms.

5 atoms and the angle of α varies from 0 to π/2 (with 0 corresponding to no kink).

For small angles, θ < π/6, there is only a small decrease in conductance (Figure

4.4). The change in potential is lower when the kink has a low angle. In the range

π/6 < θ < π/2 the conductance steadily decreases as the angle is increased.

Increasing the number of turns, but maintaining the linear structure, gives a

triangular kink (Figure 4.1b), chosen to be equilateral for simplicity. The number of

atoms in the kink Nt is always odd because each leg has the same number of atoms.

As Nt is increased, the conductance is suppressed, almost completely.

The last monatomic wire geometry studied is a step (Figure 4.1c). The conduc-

tance is calculated by fixing the number of atoms in the sides to be equal to three
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and varying the number of atoms in the top segment. As the number of atoms in

the top segment of the step, Ns, is increased there is an even-odd oscillation of the

conductance. This even-odd oscillation is similar to the conductance oscillation be-

havior in ideal equally spaced atomic chains135–138. Some authors predict perfect

conductance for chains composed of an odd number of atoms136,137,139, some find the

opposite135,140. Some authors predict oscillations with periods greater than two141–143.

With the geometry shown in Figure 4.1c the even number chains are perfect conduc-

tors while the chains with an odd number of atoms have conductance of G ≈ 0. An

isolated short monatomic chain behaves like a molecule. The calculations show that

the wavefunction of the lowest unoccupied state of the chain is an odd function if the

number of the atoms in the chain is even and an even function if the number of atoms

is odd. When the chain of atoms (top segment in Figure 4.1c) is contacted with the

rest of the system, the wave function at the Fermi level is localized for odd number

of atoms. An extended resonance like wavefunction is formed at the Fermi level with

an even number of atoms. This latter wavefunction is a current carrying state while

the former completely suppresses the conductance.

The variation of conductance in these model systems highlights some of the possi-

ble peculiarities of constructing circuits from kinked systems and illustrates the rich

variety of possible conductance properties depending on the kink geometry.

4.3 Silicon nanowires

Silicon nanowires are single crystals of silicon which are thin in two dimensions

and extended in the third. They are considered as potential building blocks for future
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electronics144. Many devices based on silicon nanowires have been demonstrated, in-

cluding diodes144, transistors144–146, chemical sensors85 and lasers147. A brief overview

of previous theoretical efforts focused on transport properties can be found in the in-

troduction to this chapter (in section 4.1). Allowable geometries of nanowires are

limited by several factors including crystal structure and growth conditions. The

effect of kinks in realistic examples of Si nanowires148 are presented in this section.

Many configurations are possible with Si nanowires and advances in experimental

methods have allowed the introduction of kinks, turns and zigzags in nanowires with

control over direction, length and placement86,111,112. Si nanowires are commonly

grown along low-index crystal directions [100], [110], [111] and [112] and kinks between

many of these directions have been observed. In the calculations a system of a [100]

wire with a [111] kink is considered as shown in Figure 4.5. Along the [100] direction

the wire is surrounded by 4 (100) surfaces and along the [111] direction the wire is

surrounded by 6 (110) surfaces. The length of the [111] section along the transport

direction is varied from l = a/2 to l = 3a/3, where a is the lattice constant of the wire.

The wires have a diameter of about 1 nm. The calculated transmission for straight

[100] and [111] nanowires is shown in Figure 4.6. As in the case of an infinite gold

wire (see Section 4.2 the conductance is an integer multiple of G0, corresponding to

the number of open channels. Introducing kinks into the wire causes scattering which

decreases the conductance significantly. The conductance values of nanowires with a

kink are shown in Table IV.1. Figure 4.7 shows that in the l = 0.5×a and l = 1.5×a

cases the conductance is completely suppressed while in the case of l = 1.0 × a the

conduction is decreased by a factor of 20. The difference in conduction for wires with
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Figure 4.5: A [100] silicon nanowire with a [111] kink. The length of the kink is 0.5a
along the transport direction. The [100] wire is enclosed by four (100) surfaces. The
[111] kink is enclosed by 6 (110) surfaces. The boxes indicate the lead and scattering
regions (electrode region highlighted in green).

Table IV.1: Conductance in several Si nanowires. Kinked L = x corresponds to a
[100] nanowire with a [111] kink that is x Åalong the [100] axis.

System G(G0)
Pristine [100] 4.04
Pristine [111] 1.98

Kinked L = 0.5a 1.5 × 10−10

Kinked L = 1.0a 7.2 × 10−2

Kinked L = 1.5a 2.6 × 10−7

different kink lengths is likely due to resonance mechanism similar to the case of the

mono-atomic gold step described in Section 4.2.

The last set of examples shows the conductance change in the cases of Si and Al

nanowire step structures. The stepped Si nanowires can be constructed by connecting

one of the segments shown in Figure 4.5 with its mirror image. The wires point along

the [100] direction and have a step with [111] segments for legs. Along the top of the

step points along [100]. The stepped Al wires have the same basic structure as the
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Table IV.2: Conductance in several nanowires. Lk is the length of the [111] legs of
the step along the [100] axis in units of the wire’s lattice constant. LT is the length
of the top section of the step in units of the wire’s lattice constant. The conductance
of the straight Al wire is 7G0.

Lk, LT (SiNW) G(G0) Lk, LT (AlNW) G(G0)
0.5, 2.0 6.3 × 10−3 1.5, 4 0.12
0.5, 3.0 2.1 × 10−2 0.5, 2 0.21
0.5, 4.0 6.4 × 10−2 0.5, 3 0.27
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Figure 4.6: Transmission coefficient as a function of energy for [100] and [111] unpas-
sivated Si nanowires.
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Figure 4.7: Transmission coefficient as a function of energy for kinked SiNWs. The
numbered curves to [100] wires with [111] kinks of different lengths. The legend
indicates the length of the kinked section where a is the lattice constant of Si.

70



stepped Si nanowires except they are based on the fcc lattice instead of the diamond

lattice. The conductance of the stepped Si nanowire for various geometries is shown

in Table IV.2. In each case the conductance is found to be small. The conductance

of the stepped Si nanowire is somewhat larger than an individual kink. This shows

that quantum states formed in the stepped structure influence the conductance and

a stepped structure is not a simple superposition of two kinks. Table IV.2 shows the

conductance of the stepped Al nanowire. The conductance of a straight Al nanowire

of the same diameter is 7 G0. The conductance of the stepped Al nanowire is much

smaller than that of the straight wire but it is larger than the similar Si nanowire

structures.

4.4 Graphene nanoribbons

Graphene is a two-dimensional monolayer of carbon atoms in a honeycomb lat-

tice. Since 2004, when the material was found in a isolated form149, there has been

significant interest in the material150, especially once the the massless Dirac fermion

nature of charge carriers was confirmed by additional experiments151,152. Narrow

strips of graphene, graphene nanoribbons, are predicted to exhibit electronic proper-

ties, such as a band gap, which make them potentially useful components of electronic

devices at the nanoscale110,153–155. A variety of methods can be used to create nar-

row strips of graphene: carbon nanotubes can be chemically unzipped156, standard

lithography techniques can be used to obtain ribbons with widths ∼ 10nm157, smaller

ribbons can be created with scanning tunneling microscope lithography114 and small

ribbons can be created via chemical self-assembly methods113. These narrow strips
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of graphene, known as graphene nanoribbons, have been the subject of many stud-

ies110,153–155,158,159.

With the recent development of methods allowing atomically precise fabrication

of graphene nanoribbons, the influence of various geometric factors can be studied

in a controlled way. When a bottom-up self-assembly technique113 is used, control

can be exerted by modifying the precursor molecules. Thus, exotic shapes with long-

range order, such as kinked or bent nanoribbons, can be obtained. Similar results

can be achieved with other precision methods114. It is possible to have a graphene

nanoribbon aligned along a particular lattice direction and at another point change

the lattice direction of the wire. In this work these nanoribbons are referred to

as bent or kinked, but it should be noted that they are not deformed or strained.

Varied configurations of the graphene nanoribbons could be combined to achieve

functional circuit components. Understanding the relation between atomic positions

and electronic properties is key to the design.

A number of theoretical works have investigated the role of edges in graphene

nanoribbons. Yan. Q. et al. have explored the influence of edge doping on current-

voltage characteristics160. The effect of various terminating edges with different chem-

ical groups was investigated by E. Kan et al.161. Few works have focused on the effects

edge disorder at the DFT level162 while many have investigated at the tight-binding

level163,164. In all these works strong dependence was found on the particulars of the

atomic configurations. In other work, quantum interference effects in junctions with

multiple electrodes10 and nanowires with kinks11 were shown to be important. In

this section the role of kinks and extra edge atoms in thin graphene nanoribbons are
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Figure 4.8: Thinnest possible graphene nanoribbons with a kink. From top to bot-
tom there are the cases with two, three and five rings in the kinked section. These
correspond to the curves labeled 2,3 and 5 in 4.9.
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Figure 4.9: Transmission coefficient for kinked graphene nanoribbons as a function of
the number of rings in the kinked region (see Fig. 4.8). The solid black line indicates
the case of no kink in the ribbon.
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Figure 4.10: Current-voltage response of kinked graphene nanoribbons. The curves
correspond to transmission functions shown in figure 4.9.

Figure 4.11: Armchair nanoribbon with a chevron shaped kink. The structure corre-
sponds to nanoribbons made in Reference113.
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Figure 4.12: Transmission in an armchair ribbon with a chevron shaped kink (see Fig.
4.11). The solid black curve is the conductance of perfect nanoribbon corresponding
to the electrode used in the chevron calculation. The dashed red curve corresponds
to the graphene nanoribbon with a chevron kink.

investigated.

First, the role of bends or kinks in thin graphene nanoribbons is examined. In

scanning electron microscope images of graphene nanoribbons changes in lattice di-

rection within ribbons are clearly visible114. The length of these bends is expected

to strongly affect the conductance behavior of the graphene nanoribbon in the phase

coherent regime. Nanoribbons with varying lengths of kink segment are shown in

Figure 4.8, with the middle ribbon representing the simplest planar kinked ribbon

with two bends. A lattice constant of a = 1.42 Å is used and the distance between C
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and H atoms is 1.09 Å. The length of the kink is measured in terms of how many rings

are in the kink segment. The conductance as a function of number of atoms in the

kink is shown in Figure 4.9. In the ideal case (curve 0) the conductance at the Fermi

energy is 2 and is an integer multiple of the quantum of conductance G0 = 2e2/h

for other energies. Once a bend has been introduced the transmission probability for

electrons decreases due to scattering and is no longer an integer multiple of G0. The

conductance decrease is proportional to the length of the kinks. The lowest conduc-

tance is about 0.1 G0, which is about 20 times smaller than the conductance of the

straight ribbon. The current-voltage response is shown in Figure 4.10.

Next, the case of a single chevron shape embedded in an armchair graphene

nanoribbon (see Figure 4.11) , a geometry seen in recent nanoribbons created via

a self-assembly technique113, is investigated. The transmission as function of elec-

tron energy is calculated for the ideal ribbon where the band gap is found to be

Eg ≈ 0.5 eV. When a chevron shaped kink is introduced, the band gap increases

to Eg ≈ 1.5 eV. In the ideal case the conductance is a multiple of the quantum

of conductance. The transmission for the ideal case and the chevron kink case are

show in Figure 4.12 by the solid black and dashed red curves, respectively. While

the chevron section also has armchair edges, the scattering is enough to decrease the

transmission.

Another type of defect is the addition of an extra ring of carbon atoms on the

edge. This type of edge defect is expected to be common in ribbons fabricated by a

number of different techniques, such as chemically unzipped carbon nanotubes. An

example of the thinnest possible zigzag graphene nanoribbon with five extra rings on
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Figure 4.13: A zigzag nanoribbon with extra rings on one edge. The structure shown
corresponds to the curve labeled 5 in Fig. 4.14.

one edge is shown in Figure 4.13. The transmission function for different numbers

of extra rings is shown in Figure 4.14. In general, extra rings cause a decrease in

conductance. When a single extra ring is added, the conductance is suppressed over

a wide range of energies, indicating localization of the wavefunction. As the number

of extra rings is increased, the decrease is not monotonic; e.g. when the number of

extra rings is increased to two the transmission is suppressed, but not to the same

extent as in the single ring case. Depending on the energy, different numbers of rings

may demonstrate higher conductance.

In summary, the transport properties of graphene nanoribbons with kinks (changes

in direction) and with extra rings was investigated. The dependence of conductance

on length of the kink section and number of extra rings shows effects of quantum

interference and wavefunction localization. Changes in direction were found to cause

more significant changes in conductance than addition of extra rings on the edges.

The effect of extra rings on the edge was to introduce a scattering center and reduce

the number of available conduction channels from two to one. While in the kinked
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Figure 4.14: Conductance of zigzag graphene nanoribbons with extra rings on one
edge. The solid black curve indicates the ideal graphene nanoribbon with no extra
rings. The labels indicate the number of consecutive extra rings added to the edge.
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ribbon case the induced scattering resulted in non-integer conductance.

4.5 Gold nanowires

In this section junctions created by mechanically deformed metallic nanowires

are studied. The connection between structural changes which occur during elonga-

tion and resulting material properties is examined in detail with molecular dynamics

simulations and first principles calculations of low-bias conductance.

Changes to the crystalline structure, such as slipping or reorientation, have been

well characterized165–168. Conditions which facilitate the formation of mono-atomic

chains have been identified3,90,167–169. However, limited attention has been focused on

non-crystalline structures which form during the elongation process.

ReaxFF reactive force field is designed to approach the accuracy of quantum

mechanical methods with significantly lower computational expense170. The force

fields are constructed by fitting analytical curves to data from density functional

theory calculations171. The particular parametrization acceptably reproduces both

high and low coordination states. A comparison of energy per particle for different

geometries is shown in Figure 4.15. ReaxFF produces more reliable geometries and

improved energies compared to tight-binding second moment approximation methods

when compared against DFT calculations with the PBE functional13.

The simulations focus on the elongation of fcc Au nanowires aligned along the

< 100 > direction. Nanowires with diameters D = 1.1, 1.5, 1.9 nm are elongated at

various rates ranging from 0.1 − 5 m/s. Simulations of low temperature (10K) and

room temperature (298K) are shown. The key development is the identification of
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Figure 4.15: a) DFT energy per particle vs ReaxFF energy per particle. b) DFT
energy per particle vs TB-SMA energy per particle. Open symbols indicate struc-
tures obtained with each method independently and filled symbols indicate geome-
tries taken from DFT calculations. (c-q) snapshots of geometries obtained with each
method.

polytetrahedral clusters forming in the neck region of wires as they elongate. As wires

are elongated, a region where the wire is thinner forms due to the tensile strain on the

wire. In this region, depending on conditions, structures consisting of several tetra-

hedral subunits are observed. Figure 4.16 illustrates some of the possible structures.

The number of structures with different local coordination numbers, determined with

the Rylm method based on spherical harmonics, is shown in Figure 4.17. There are

two peaks present, at cn = 6 and cn = 8. A dependence on the diameter of the

elongated nanowire is seen where the ratio of cn = 6 to cn = 8 structures increases
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Figure 4.16: Elongated Au nanowire snapshots with polytetrahedron structures.
Polytetrahedral structures are highlighted in red. c) Different observed clusters, cn
is the coordination number of the cluster

as the diameter of the wire is increased.

In mechanical break junctions the conductance is recorded as the wire is stretched.

To simulate the conductance trace of a stretched wire snapshots of the elongating wire

are saved. The conductance of the saved geometries is then calculated by computing

the transmission spectra and taking G = T (EF ). A typical trace shows a series of

steps which correspond to changes in the wire geometry as it is stretched. Non-

integer values are seen throughout the process, but as the wire cross-section becomes

very small, integer values are more common. Gradual changes in the conductance
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Figure 4.17: Frequency of clusters as a function of coordination number in three
Au nanowires. The diameter of the nanowire is a) D=1.1nm b) D=1.5nm and c)
D=1.9nm. The simulations are done at 298 K and histograms are taken from simu-
lations with elongation rates ranging from 0.1 to 5 m/s.

traces, as opposed to step-like behavior, are seen to correspond to the formation of

polytetrahedra structures in the neck of the wires. This is consistent with recent

related work by Tavazza et al168.

While not the lowest possible energy configurations of few gold atoms, the struc-

tures formed in elongated wires play a role in determining the conductance properties

of the wires. Further, as the simulations suggest, the increased number of polytetra-

hedral structures at room temperature highlights the need to consider their effect.
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Figure 4.18: Conductance and number of polyhedra as a function of wire elongation.
(a-b) correspond to T=298K with the ReaxFF potential, (c-d) correspond to T=10K
with the ReaxFF potential and (e-f) correspond to T=10K with the TB-SMA poten-
tial. In all cases the wire diameter is 1.1nm and the elongation rate is 1 m/s. The
snapshots are taken for geometries with conductance of 3 G0

4.6 Au-tetraphenyl-porphyrin

Tetraphenyl-porphyrin (TPP) based molecules are established building blocks in

nanoscale systems on surfaces172–174. The wide use of this molecule is generally due

to the structural stability and varied chemistry available because the center of the

molecule can hold hydrogen or metal atoms. Due to these factors the self-assembly

of many structures is possible; including films175,176, networks177,178 and chains179.

The development of effective nanoscale electronic switches is a major research goal

of many groups. Switches operated by light180, current181,182 and other means183–186

have all been demonstrated. Recently, it has been shown that TPP molecules can be

used to created four-level conductance switches based on proton transfer173. After
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Figure 4.19: 1-H tetraphenyl-porphyrin molecule with gold contacts

deprotonation there is a single hydrogen in the center ring of the molecule. Four

distinct conductance levels are observed in STM measurements.

Another common tool for studying molecular electronic characteristics are break

junctions. Recently electron transport measurements have been controllably repro-

duced187 and others have found clear signatures of quantum interference in conduc-

tance measurements188. It is natural then to investigate if the switching effect is

present in break junctions with TPP molecules and whether effects of quantum in-

terference are visible.

Optimized geometries of individual 0H-TPP, 1H-TPP and 2H-TPP molecules

are obtained with supercell calculations using VASP189. Using a conjugate gradi-

ent method, geometries were optimized until forces were below 0.05 eV/Å. Then

molecules were contacted to FCC gold nanowire electrodes as in Figure 4.19. With

ends of the electrodes held fixed, atomic coordinates were again optimized with VASP

until forces were below 0.05 eV/Å. The local density approximation was used for ex-

change and correlation and projector augmented waves were used to represent core
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Figure 4.20: Transmission in tetraphenyl-porphyrin molecules between gold elec-
trodes. Transmissions for 1H-TPP molecules are shown by the solid black curve.
The four configurations produce identical curves within the resolution of the figure.
The dashed blue curve shows the transmission through a 0H-TPP.

electrons. Transport calculations were done at zero-bias with the GPAW code where

a double zeta plus polarization (dzp) basis set was used. The transmission curves are

shown in Figure 4.20. The black curve represents the calculated transmission of the

four possible single hydrogen configurations. No difference is visible in the resolution

of the plot. The dashed blue curve shows the case of no hydrogen in the macrocy-

cle of the molecule. These results suggest that molecules with different numbers of

hydrogen atoms can be distinguished. However, it also indicates that the difference

between proton location is not easily discerned in break junction geometries.
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4.7 Summary

In summary, a number of issues related to nanowires have been addressed. The

role of kink-like defects in several classes of nanowires was studied. Mono-atomic

chains, silicon nanowires and graphene nanoribbons were used as example systems.

Generally it is found that the kink geometry strongly influences the electronic prop-

erties. In most cases the kink suppresses the conductance and the kinked wires are

not good conductors, but certain geometries can induce resonance states and in that

case the conductance of the kinked wire remain similar to the conductance if the ideal

wire. This indicates that kinks introduced via defects should be carefully monitored

when considering device performance and fabrication. Thicker kinked wires are likely

to be better conductors as there are many more conduction channels available and

the perturbation induced by the kink has less effect. In a possible break junction

experiment where a tetraphenyl-porphyrin molecule expected to shown switching be-

havior no clear evidence of switching was found. Polytetrahedral structures formed in

elongated gold nanowires were studied and their influence on conductance and wire

formation were elucidated.
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CHAPTER V

MULTI-TERMINAL DEVICES

In this chapter applications of the multi-terminal formalism developed in Chapter

II are presented. First an overview of current experimental and theoretical efforts

relating to multi-terminal devices is presented in section 5.1. Section 5.2 contains

the solution to an analytic model system, which is used to demonstrate the accuracy

of the method and highlight interesting features of multi-terminal systems. Next,

numerical examples with a density functional theory Hamiltonian of a four-terminal

graphene device and six terminal carbon nanotube junction are presented. Work

shown in this chapter has been published10.

5.1 Background

Electron transport calculations in two-terminal nanodevices have been rapidly

developing ever since the first transport measurements. Due to the simplicity of the

formulation, the Non-equilibrium Green’s function (NEGF) approach using density

functional theory’s (DFT) Kohn-Sham Hamiltonian has become a popular approach

to calculate transport properties of nanostructures7,50–59.

It is well known from classical electronic measurements that four-terminal tech-

niques are preferable to two-terminal techniques. The application of four-terminal

techniques to nanoscale systems, however, is a difficult task. Scanning tunneling mi-

croscopes (STM) with four probes have recently become available190 (although far
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less common than standard STM). These devices allow the desirable four-terminal

electronic measurements. For example, a four-probe measurement of a ZnO nanowire

allowed characterization of the intrinsic wire properties without contact effects, al-

lowing a clearer understanding of the role of surface defects in ZnO nanowires191.

Other three- and four-probe measurements with flexible organic transistors192 and

gated molecular junctions193 have been published. The four-terminal resistance of

a nanowire formed in a GaAs/AlGaAs heterostructure was measured194. Measure-

ments with two and three terminals have been used to characterize crossed nanotube

junctions195.

Beyond devices with three and four terminals quantum crossbar structures, grids

of nanowires, are becoming more common — devices have been demonstrated with

a variety of methods and materials. Grids of InAs nanowires on SiO2 were shown to

produce high performance nanoscale transistors196. Fabrication of grids with a wide

range of metal nanowires (gold, chromium, titanium, niobium, platinum, nickel and

aluminum) has been demonstrated197, with wires as small as 8 nm shown to form

large aligned arrays. Later, crossbar devices with individually addressed wires were

used to make functional circuits198. Crossbar structures have also been created with

layer-by-layer deposition of graphene on silicon carbide199. Similar to devices based on

nanowires, networks of carbon nanotubes attached to nanopillars have been grown200.

Following in the traditional approach of the semiconductor industry, researchers have

focused on increasing the total number of device components and the density of

components201. These crossbar devices have been analyzed in the context of classical

electrical circuits. However, as the relevant device dimensions are decreased, quantum
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mechanical effects will play a larger role.

Computational approaches for three-terminal and four-terminal calculations have

recently become available202–212. The first multi-terminal calculations used tight bind-

ing Hamiltonians202,210–212. The extension of the Green’s function formalism to three

and four terminal systems was used to study graphene T (three terminals) and cross

(four terminals) junctions202. The transport properties are found to depend strongly

on the atomic details of the scattering region. Early studies with tight-binding Hamil-

tonians analyzed three-terminal molecular junctions with benzene molecules and pro-

posed their use as quantum interference based transistors211,212. The scattering matrix

formalism was also extended for structures with three and four terminals where it was

used to show the unique spin transport properties in these systems210. However, the

method was only presented for two-dimensional devices.

Few first-principles calculations exist204,208. These calculations use the NEGF

formalism extended to the three- and four-terminal cases. An implementation of

the NEGF formalism for four terminals with a DFT Hamiltonian, with particular

attention to the application of finite bias voltages, was described by Saha et al.204;

the primary focus was the demonstration of the method and they described examples

of a radialene molecule contacted to carbon chains and two crossed carbon chains with

varying separation. In the following year the same group went on to investigate an

organic molecule contacted to four gold nanowires208. It was found that a 9,10-Bis((2′-

para-mercaptophenyl)-ethinyl)-anthracene molecule contacted to the gold nanowires

via thiol groups exhibited large negative differential resistance and other non-linear

effects in current-voltage response.
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The extension of the NEGF formalism to four-terminal devices is straightforward

but tedious. In the case of the two-terminal NEGF, the Hamiltonian of the system is

infinite dimensional, but it has a block tridiagonal matrix structure which allows for

efficient evaluation of the Green’s function for each energy point. In the four-terminal

case the structure of the Hamiltonian matrix is more complicated204, and while the

matrix is still sparse with nonzero block matrices, the calculation of its inverse is more

difficult. The extension to more than four terminals is possible but the calculation

becomes even more complex.

A complex potential quantum transport framework was recently developed10,48,213.

In this approach complex absorbing potentials (CAPs) are added to the Hamiltonian

in the leads and transform the infinite open system into a finite closed system by

effectively cutting the leads off at a finite distance from the central region. Excellent

agreement with non-equilibrium Green’s function calculations was found48. However,

much less computational effort was required because the evaluation of Green’s func-

tions for the leads is avoided in the CAP formalism. In the multi-terminal case, a

CAP is added to the Hamiltonian of each lead and the transmission coefficients are

calculated by using a transmission formula that is generalized for the multi-terminal

case. The main advantage of the approach, as in the two-terminal case, is that one can

deal with finite dimensional matrices instead of infinite dimensional ones. Another

advantage is the simplicity of the implementation, which allows the approach to be

easily extended for N-terminal junctions. Details of the formalism and the extension

to the general case of N terminals are presented in Chapter II and are published in

Reference10.
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5.2 Analytic model

In this section an analytically solvable model system is used to show the accuracy

of the multi-terminal transport formalism developed in Chapter II. The model is

based on a tight-binding Hamiltonian and the analytic solution is given in detail

for the case of 4 electrodes. Then 4 and 8 terminal systems will be discussed with

numerical examples. The accuracy of the method and some interesting features of

multi-terminal systems are highlighted.

The tight-binding Hamiltonian with first nearest-neighbor interaction is

HTB =
∑

i

ǫi|i〉〈i| − t
∑

i

(|i〉〈i+ 1| + |i+ 1〉〈i|) . (5.1)

The system consists of five regions: four leads and a central scattering region.

Assuming that leads only interact with the center region the Hamiltonian of the

device is

H =

































H1 0 0 0 τ+1

0 H2 0 0 τ+2

0 0 H3 0 τ+3

0 0 0 H4 τ+4

τ1 τ2 τ3 τ4 HC

































, (5.2)

where Hi is the Hamiltonian of lead i (i ∈ {1, 2, 3, 4}) and τi is the Hamiltonian

matrix that couples lead i to the central region C. Lead i is kept at a potential Vi.

Considering on-site elements 2t, and connecting elements −t, the Hamilontian of the
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central region is

HC =

































2t+ V1 0 0 0 −t

0 2t+ V2 0 0 −t

0 0 2t+ V3 0 −t

0 0 0 2t+ V4 −t

−t −t −t −t 4t+ VC

































. (5.3)

The Hamiltonian of the lead i is an infinite tridiagonal matrix,

Hi =

























2t+ Vi −t 0 0

−t 2t+ Vi −t 0

0 −t 2t+ Vi . . .

0 0 . . . . . .

























. (5.4)

The connection matrices, τi, have one non-zero element, −t, located in the final

column of row i. For example:

τ3 =

































. . . 0 0

. . . 0 0

. . . 0 −t

. . . 0 0

. . . 0 0

































(5.5)
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The self-energy of a lead i is

Σi = τigiτ
+
i . (5.6)

The Green’s function of the lead is

gi =
E − Vi

2t2
− i

2

√

1 − (E − Vi − 2t2)2

4t2
=
e−iφi

t
(5.7)

where

φi = arccos

(

E − Vi − 2t

2t

)

. (5.8)

With these definitions the self-energy matrices, Σi are 5 × 5 and contain only one

non-zero element te−iφi located on the diagonal at (i, i). For example,

Σ2 =

































0 0 0 0 0

0 te−iφ2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

































. (5.9)

The Green’s function for the central region is

GC(E) =
1

E −HC − Σ1 − Σ2 − Σ3 − Σ4

. (5.10)
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With these definitions the Green’s function is

GC(E) =

































a1 0 0 0 −t

0 a2 0 0 −t

0 0 a3 0 −t

0 0 0 a4 −t

−t −t −t −t E − 4t− VC

































−1

, (5.11)

where ai = E− 2t−Vi − te−tφi . The Green’s function can be written in the following

block form

GC =









A T+

T B









−1

(5.12)

where

A =

























a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4

























, (5.13)

T = −
(

t t t t

)

and B = (E − 4t− VC) . (5.14)

The inverse of block matrix can be found by partitioning62 (see also Eq. 2.63)

GC =









A−1 + A−1T+STA−1 −A−1T+S

−STA−1 S









(5.15)
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where S is the inverse of the Schur compliment of A,

S = (B − TA−1T+)−1. (5.16)

Since A is diagonal

A−1 =

























f1 0 0 0

0 f2 0 0

0 0 f3 0

0 0 0 f4

























(5.17)

where fi = a−1
i . With the previous definitions

S =

[

E − 4t− VC − t2
n=4
∑

i=1

fi

]−1

. (5.18)

From this point forward S will be referred to as s to reflect the fact that it is a scalar.

The elements of the Green’s function can now be explicitly calculated,

GC =

































d1 F12 F13 F14 stf1

F21 d2 F23 F24 stf2

F31 F32 d3 F34 stf3

F41 F42 F43 d4 stf4

stf1 stf2 stf3 stf4 s

































(5.19)

where di = fi + st2f 2
i and Fij = st2fifj. The expression for the transmission between
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two leads is

Tij = Tr
[

ΓiG
+
CΓjGC

]

(5.20)

where

Γi = i
[

Σi − Σ+
i

]

. (5.21)

The structure of Γi is sparse with only one non-zero element, ri = −2t sinφi, located

at (i, i). Now consider ΓjG; The effect of multiplying by Γj is to pick out row j from

G. For example,

Γ2G
+ =

































0 . . . 0

r2G
+
21 . . . r2G

+
25

0 . . . 0

...
...

0 . . . 0

































. (5.22)

Multiplying the terms and taking the trace gives

Tij = 4t2 sinφi sinφj |Fij|2 (5.23)

for i 6= j. Note that this expression is general and holds for any number of leads.

5.2.1 Four-terminal junction

As a first example the transmission in the four-terminal device shown in Fig. 5.1

is calculated. The system is described by a tight binding Hamiltonian, discussed

previously. The Hamiltonian of the leads is defined in Eq. (5.4) with Vi = 0 and
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Table V.1: Transmission in four-terminal junctions. The energy is in atomic units.

E CAP Analytical
0.0 0.000465 0.000096
0.1 0.110523 0.109824
0.2 0.151629 0.151405
0.3 0.173274 0.173261
0.4 0.186677 0.186729
0.5 0.195814 0.195856
1.0 0.216982 0.216996
1.5 0.225005 0.225001
2.0 0.229159 0.229155

t = 50 (in atomic units). The Hamiltonian of the central region is defined in Eq.

(5.3) with t = 50 and VC = 10 (in atomic units). This value for t corresponds to

the values obtained with a three point finite difference discretization with a step

size of 0.1 atomic unit. The transmission coefficient calculated by using the CAP

is compared to the analytical solution in Table V.1 and in Fig. 5.2. Due to the

symmetry of the Hamiltonian in this model, the transmission between any two leads

is identical. Table I shows that the results of the CAP calculation are in excellent

agreement with the analytical calculations. The agreement improves as the energy

increases, because the CAP can more easily absorb the higher energy wave functions.

The accuracy can be increased further by increasing the range of the CAP. Fig. 5.2

shows that the transmission monotonically increases with energy. This is similar to

the behavior of the transmission probability of a one-dimensional step barrier, where

the transmission converges to 1 with increasing energy. In the four terminal case the

transmission converges to 1/4.
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Figure 5.1: 4-terminal junction.

5.2.2 Eight-terminal junction

The next analytically solvable example is the eight-terminal junction shown in

Figure 5.3. The crossing points A, B, C, and D are separated by 21 sites. The same

Hamiltonian is used as in the previous 4-terminal example, except that VC = 0 is

used in the present case. Thus the scattering in the 8-terminal junction is purely due

to the cross points. In the 8-terminal example there are three different transmission

coefficients T12, T14 and T15 (connecting lead 1 to leads 2, 4, and 5; see Figure 5.3); all

other transmissions are equal to these three due to the symmetry of the Hamiltonian.

Figure5.4 shows the transmission coefficients calculated by using the CAP and by the

analytical solution. The results of the CAP and analytical approaches are in perfect

agreement.

The top graph of Figure 5.4 shows the transmission between leads 1 and 2, T12.

This transmission is much larger than the other two transmissions T14 and T15 (see
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Figure 5.2: Transmission in a 4-terminal junction. The results of the CAP and the
analytical calculation are in complete agreement and cannot be distinguished in the
resolution of the figure.
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Figure 5.3: 8-terminal junction.

Figure 5.4). This is not surprising, because these two leads are directly connected and

there is only one scattering center between the two leads. The transmission oscillates

around 5/16 with an amplitude of 4/16. This oscillation is due to the interference

between the waves that directly scatter from 1 to 2 and those that go around the

square and get backscattered from the vertices A, B, C, and D. The frequency of

the oscillation increases with the distance between crossing points because the energy

spacing of the standing waves between crossing points decreases and more and more

standing waves contribute to the interference.

The bottom graph of Figure 5.4 shows the transmission coefficients T14 and T15.
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Figure 5.4: Transmission in a 8-terminal junction. The paths of electrons between
terminals is shown in the top panel. The results of the CAP and the analytical
calculation is in complete agreement and cannot be distinguished in the resolution of
the figure.
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These transmissions behave similarly to T12, oscillating around 1/16. The interference

effect causes a very interesting behavior: in certain energy regions the transmission

from 1−5 is larger than the transmission from 1−4, which is along a straight line. The

period of oscillations, similar to the previous case, depends on the distance between

the crossing points.

5.3 Numerical Examples

5.3.1 Four-terminal graphene device

The first realistic example is a four-terminal graphene cross junction. A cross

junction consists of an intersection between armchair and zigzag graphene ribbons.

The geometry of the device is shown in Figure 5.5. The region within the dotted box

is the scattering region of the device. The armchair leads are na = 8 unit cells wide

and the zigzag leads are nz = 6 unit cells in width. Matrix elements are calculated

with density functional theory using an atomic orbital basis set.

In contrast to the simple devices discussed previously, with the graphene device

there are more unique values for the transmission coefficients between leads. This

is caused by the broken symmetry of the system at the corners of the cross region.

However, the differences between the different values for turning a corner are small

and similar behavior is observed. The calculated transmission is shown in Figures

5.6. Results are in agreement with the results of tight-binding calculations202. It is

interesting to note that there is no gap for transmission between the two armchair

leads, but there is a gap for transmission between the two zigzag leads. A similar gap
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Figure 5.5: Graphene cross-junction device. Atoms in the scattering region are high-
lighted in blue.

is found for the transmission between the two types of leads.

5.3.2 Six-terminal carbon nanotube junction

The final example is a six-terminal junction built from three (5, 0) semiconducting

nanotubes. Two tubes are placed parallel to each other. The third tube, oriented per-

pendicular to the other two, is placed on top as shown in Figure 5.7. Ideal structures

for the nanotubes are used.

The transmission coefficients as a function of energy are shown in Figures 5.8

and 5.9. Similar to the graphene case, the symmetry of the system is broken by the

relative orientations of the nanotubes. That is, T24 is not the same as T35. However,

the two curves have similar features. Since the nanotubes in this configuration are
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Figure 5.6: Transmission coefficient in a graphene cross-junction device.

loosely coupled, the transmission along the axis of any given nanotube is very similar

to that through an isolated nanotube. Figure 5.8 shows that T23 and T16 both retain

their semiconducting gap. The transmission along the two tubes is however not the

same because one has two scattering centers and the other only has one. Due to

the weak nature of the coupling the transmission through leads on different tubes

is significantly lower (see Figure 5.8). The lowest transmission is seen to be from

terminals 2 to 4 where the electron would have to go through all three tubes.
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Figure 5.7: 6 terminal CNT junction.
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Figure 5.8: Transmission in a 6 terminal CNT junction.
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Figure 5.9: Transmission in a 6 terminal CNT junction.

5.4 Summary

In this chapter the accuracy of the complex absorbing potential approach to first-

principles transport calculations was demonstrated along with evidence for quan-

tum effects in multi-terminal junctions. First, background information related to

multi-terminal calculations and nanoscale experiments was given. Second, a simple

tight-binding Hamiltonian model was solved analytically. The analytical results, non-

equilibrium Green’s function calculation and complex absorbing potential calculation

were in complete agreement. Then examples with 4 and 8 terminals were calculated

with the tight-binding Hamiltonian. Unique effects of quantum interference were

found in this system. The probability of electron transmission to a given electrode

was found to depend on the energy of the electron. A 4-terminal graphene junction
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and a 6-terminal carbon nanotube junction were examined with a Kohn-Sham density

functional theory Hamiltonian. Good agreement was found with previous results and

the signatures of quantum interference were found to be present in the six terminal

junction.
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CHAPTER VI

GRAPHENE ELECTRONICS

Graphene is widely touted as an ideal electrode material (for a brief overview of

graphene see section 4.4). In this Chapter the contact properties of graphene with

carbon nanotubes and MoS2 are discussed. The work on graphene-CNT junctions is

presented in Section 6.1. Another two-dimensional material, molybdenum disulphide

(MoS2), has recently become a topic of interest due its optical properties. However,

as a new material the design of good contact materials requires further study. In

Section 6.2 I examine graphene-MoS2 bilayers with electronic structure calculations.

Relevant background information will be given at the beginning of each section.

6.1 Graphene-carbon nanotube junctions

In this section the properties of carbon nanotube(CNT)-graphene junctions are

investigated with first-principles electronic structure and electron transport calcula-

tions. Contact properties are found to be key factors in determining the performance

of nanotube based electronic devices. In a typical single-walled CNT-metal junction

there is a p-type Schottky barrier of up to ∼ 0.4 eV which depends on the nan-

otube diameter. Calculations of the Schottky barrier height (SBH) in CNT-graphene

contacts indicate that lower barriers are present with graphene electrodes. Current-

voltage (IV) characteristics of junctions with finite contact region suggest the suitabil-

ity of the junctions for applications and provide insight to explain recent experimental
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findings.

Carbon nanotubes (CNTs) and graphene have attracted a lot of attention be-

cause of their unique electrical, optical, thermal, and mechanical properties214–217.

Graphene has very large electron mobility at room temperature150 and is easy to fab-

ricate on a wafer scale218,219, but does not possess a band gap150, making it challenging

to create graphene-based transistors with the large on/off ratios which are required for

logic applications220. While CNTs have a useful large energy gap allowing fabrication

of transistors with large on/off ratios, the performance of these transistors crucially de-

pends on the contacts between the CNT and the electrodes214–217. All-carbon hybrid

architectures suited for applications are possible through the combination of advanta-

geous material properties of graphene and nanotubes. For example, a highly efficient

all-carbon solar cell could be constructed by combining CNTs to efficiently generate

electron-hole pairs221 with transparent conductive graphene electrodes222–225.

A long standing issue for CNT and graphene based electronics has been the quality

of contacts with electrode materials such as Pd, Ti, or Al226–229. A common feature of

the CNT-metal contacts has been the presence of a Schottky barrier at the nanotube-

metal interface230,231. The Schottky barriers severely limit transistor conductance

in the “ON” state, and reduce the current delivery capability — a key factor of

device performance. High work-function metal (e.g. Pd) contacts have reduced the

Schottky barrier providing nearly ohmic contacts to single-walled CNTs214,228,232 and

enabled room-temperature conductance near the ballistic transport limit. Generally

it is found that Pd has a negligible Schottky barrier height (SBH) when nanotubes

have a diameter larger than ∼ 1.4 nm, and that smaller nanotubes such as the (8,0)
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Figure 6.1: Charge transfer between graphene and an (8,0) nanotube. Self-consistent
density is obtained for the case of the nanotube far away from the graphene and the
case of the graphene and nanotube separated by d ≈ 3.0 Å. The system is periodic
along the nanotube axis. Blue indicates an excess of charge and yellow a depletion.

(diameter ∼ 0.62 nm) have barriers of up to ∼ 0.4 eV, depending on diameter. The

SBH at CNT-metal contacts has also been previously studied with first-principles

calculations233–237, which find that the SBH depends strongly on the atomic details

of the system and agreement with the experimental findings that the Ti and Pd(100)

contacts have the lowest SBH.

While the properties of graphene or CNTs in contact with common electrode met-

als have been investigated214,228,232–237, junctions between the two materials have been

the subject of only a few studies. T. Pei et al.238 recently presented measurements

with few layer graphene and large nanotubes (diameter unspecified). They conclude

that graphene is an unsuitable electrode material for use in transistor devices based

on the few devices they measured. However, it should be noted that detailed analysis
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of the contact geometry is lacking and it is well known that the work function of

graphene depends on the number of layers239. Another group has demonstrated that

the inclusion of a graphitic interface layer shows improved electronic characteristics

in single wall CNT devices240. It has also been shown that contact resistance between

graphite and multiwalled CNTs can be tuned by controlling the contact geometry241.

In this section, contact properties of graphene-CNT interfaces are investigated

with first-principles calculations. The p-type Schottky barrier height (SBH) is cal-

culated for semiconducting (8,0) and (10,0) nanotubes on graphene surfaces with

the potential profile lineup method233,242. These calculations correspond to the limit

of an extended clean contact region between graphene and a long CNT. With this

model it is shown that the SBH is low compared to that found in Pd-CNT contacts.

Simulations with a finite contact region show the role of contact region length, edge

effects and nanotube chirality in determining the electrical properties. The calcula-

tions show that the electronic properties of the junction are primarily determined by

the nanotube chirality.

First the barrier heights are calculated in ideal contacts, followed by current-

voltage characteristics for (8,0) and (10,0) CNTs in contact with graphene with dif-

ferent length of overlap of graphene and CNTs in the scattering region are presented.

The section concludes with a discussion of the results in terms of recent experiments.

Two types of geometries are used in this work: a “device” geometry with a car-

bon nanotube connected to a graphene lead (see Figure 6.2) and an “ideal” contact

geometry where a carbon nanotube sits atop a graphene sheet in a periodic cell (see

Figure 6.1). Different methods were used to obtain optimized coordinates in each
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case. In the “ideal” case the total energy is minimized by optimizing a number of

geometric factors such as rotation of the nanotube, nanotube – graphene distance

and translation of the nanotube with respect to the graphene. Following this an

unconstrained optimization is done until all forces are less than 0.01 eV/Å. This

approach is used to avoid local minima in the energy landscape. All calculations

for this geometry are done with density functional theory (DFT) as implemented in

VASP189. Projected augmented waves are used to represent core electrons and the

local density approximation is used for exchange and correlation. The Brilloiun zone

is sampled by 15 points along the nanotube axis generated with the Monkhorst-Pack

method. In the other case of the “device” geometry, a different procedure is used

due to the large cell size, large number of atoms and the non-periodic nature of the

geometry. A code based on planewaves is more suitable for smaller systems with

periodic simulation cells and is impractical for application to large non-periodic sys-

tems which contain large amounts of vacuum. In this case a szp atomic orbital basis

set is used. Coordinates are optimized until all forces are less than 0.05 eV/Å and

the electrode Brilloiun zones were sampled with a 3 × 25 grid of kpoints generated

by the Monkhorst-Pack method. The self-consistent calculation of the scattering re-

gion is done with 3 tranverse kpoints and electron transmission probability curves are

generated with 31 transverse kpoints to obtain converged values.

The potential profile lineup method has been used to study the Schottky barrier

between metal and semiconductor242. A similar approach that has been used to

study CNT-metal junctions233,234 is adopted in this section. The difference between

the Fermi level of the combined system and valence band edge of the semiconductor
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Figure 6.2: Graphene-carbon nanotube device. The nanotube is (8,0) and the
graphene is aligned along the zigzag direction with an overlap region of 10 Å. The
boxes indicate scattering and electrode regions with the electrode regions highlighted
in greeen.
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is the p-type Schottky barrier:

∆p = EF − EV , (6.1)

where EF is the Fermi level of the combined graphene-nanotube system and EV is

valence band edge of the nanotube. The SBH, ∆p, can be determined by comparing

features of the metal/semiconductor combined system to those of the pure semicon-

ductor system by rewriting (1) as

∆p = (EF − 〈V1〉CNT) − (EV − 〈V2〉CNT) . (6.2)

The average potential at an atomic core in system i is indicated by 〈Vi〉. The atomic

core potential is used to line up the energy levels of the nanotube-only calculation

and the combined graphene-nanotube calculation. In the calculation EF and 〈V1〉

are taken from the combined system and 〈V1〉 is evaluated only with the carbon

atoms which are furthest from the graphene. This is done to reduce error associated

with charge transfer. Charge transfer was analyzed via a Bader charge analysis243,

where the density is partitioned accoring to zero-flux surfaces indicating the charge

assosiated with each atom. Analysis reveals that the charge transfer is limited to the

interface region. The valence band edge EV and 〈V2〉 are taken from a calculation

with a nanotube only. In this case, with only the nanotube in the simulation cell, the

average is done over all atoms in the nanotube.

This approach is used to calculate the p-type Schottky barrier heights for (8,0)
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Table VI.1: Properties of nanotubes: Eb is the calculated band gap, d is the nanotube
diameter, and ∆p is the p-type Schottky barrier

Nanotube Eb (eV) d (nm) ∆p (eV)
(8,0) 0.55 0.63 0.094
(10,0) 0.8 0.78 0.04

and (10,0) nanotubes with calculated band gaps of 0.55 eV and 0.8 eV, respectively.

These nanotubes are the smallest “big gap” semiconducting nanotubes with diameters

of ∼ 0.62 nm and ∼ 0.78 nm. A SBH of 0.094 eV was found in the (8,0) case and

0.04 eV was found in the (10,0) case, significantly lower than the valued measured

in Pd-CNT junctions ∆p ≈ 0.4 eV227. These results are summarized in Table VI.1.

This is in contrast to the measured value of ∆p ≈ 0.4 eV in Pd-CNT junctions227.

The redesitribution of charge between the graphene and CNT is shown in Figure 6.1

indicating the formation of bonds. The low Schottky barrier can be attributed to the

similiar work function of graphene (4.5 eV) and CNT (4.5-4.8 eV)244 and the quality

of contact in the calculation. While the workfunction of small zigzag nanotubes is

known to vary with nanotube diameter, deviation from the 4.5 eV value is expected

to start with (8,0) nanotubes (∼ 4.75 eV) and increase with smaller diamter244.

Measurements done with multi-layer graphene (with a varying workfunction239) and

unclear contact quality that show the presence of barriers238 can be attributed to

these factors. This conclusion is supported by measurements where a graphitic layer

surrounds the nanotube and improved characteristics such as higher “ON” currents

are observed after an annealing process240.

To compliment the calculation of the SBH the current-voltage (IV) characteristics
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Figure 6.3: Calculated current-voltage response for various CNT-graphene junctions.
The low-bias transmission spectrum is integrated to obtain the IV curves. Curves
with (8,0) and (10,0) nanotubes with a 5 Å and 10 Å of overlap with the graphene
are shown (see Figure 6.2).

of CNT-graphene junctions with (8,0) and (10,0) nanotubes are investaged within

the NEGF-DFT formalism. For each nanotube two different lengths of overlap region

between the CNT and graphene electrode, namely 5 Å and 10 Å, are used. The

graphene electrodes are aligned along the zigzag direction. Some general trends can be

observed in the computed IV characteristics (see Figure 6.3). Increasing the length of

the overlap region between the carbon nanotube and graphene decreases the transport

gap toward the value expected for just the nanotube alone. This suggests that the

influence of edge effects is decreased as the overlap region is extended. The size of
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transport gap depends also on the CNT — the nanotube with the larger band gap,

the (10,0) has a larger transport gap. These points indicate that the charactistics of

junctions depend strongly on the specific nanotube employed. Note that the profile

of the IV curve differs between nanotubes: junctions with (8,0) nanotubes show a

small initial increase in current followed by a sharper increase at high voltages, while

the (10,0) nanotubes show a single sharp increase in current. In the high bias regions

the current obtains high values on the order of 20 µA which is roughly the electron-

phonon interaction limited value in singe-wall nanotubes that are longer than the

electron mean free path245. One can then expect that in a clean interface between a

carbon nanotube and graphene the interface will not be the limiting factor.

In conclusion the electronic properties of CNT-graphene contacts were presented

in this section. First, it was shown that the p-type Schottky barrier is low in very

long ideal junctions with (8,0) and (10,0) nanotubes. Values for the SBH of 0.094 eV

and 0.04 eV were found for the (8,0) and (10,0) cases, respectively. These signifcantly

lower than the reported values for Pd of ∆p ≈ 0.3 − 0.4 eV. To further investigate

the transport properties the current-voltage response of (8,0) and (10,0) nanotubes

in contact with graphene was calculated. The chirality of the nanotube was found to

be more important than the length of the contact region. These calculations provide

qualitative insight into the role of the junctions in determining the IV characteristics.

Recent experiments offer conflicting opinions on the suitability of graphitic carbon

contacts for applications, such as transistors. The results indicate that the contacts

are suitable and suggest that an experiment with single-wall nanotubes contacting

suspended graphene may be required to diminish substrate effects.
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6.2 Graphene and MoS2

Figure 6.4: Graphene-MoS2 bilayer. The unit cell used in calculations is shown by
the black box.

A variety of two-dimensional materials have been predicted and, since the exper-

imental realization of graphene, others have been observed152. Notable are the oxi-

dized forms of graphene and boron nitride (BN)246 which has a direct band gap247 and

small lattice mismatch with graphene, making248 it a suitable substrate material249.

Molybdenum disulphide is another two-dimensional material with a potentially wide

range of applications. In bulk form MoS2 has an indirect gap, but in single layers

it has a direct gap of 1.8 eV250. Strikingly, this was shown when photoluminescence

increased as the number of layers was decreased, highlighting the transition of bulk to

the single layer regime. The single layer form has been shown to possess long range

order and good stability251 and has been manufactured with standard mechanical
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cleavage, laser thinning252 and chemical means253,254. Functional transistors based

on single layers of the material with high on/off ratios of over 108 and high mobilities

of 200−500 cm2V −1s−1 255 have been demonstrated. For comparison, electron mobil-

ity in silicon is 450 − 1400 cm2V −1s−1 and mobilities as high as 200000 cm2V −1s−1

have been reported in graphene256. However, the reported high mobility in MoS2 is

atypical and much lower observed mobilities are common. This has recently motivated

searches for contact materials which outperform the usual Au electrodes. With den-

sity functional calculations using a PBE functional, it was suggested that Ti contacts

are a reasonable alternative257.

It is natural to consider the combination of graphene and MoS2, where graphene

is ideal as an electrode material and MoS2 provides the useful direct band gap. A side

view of the combined graphene-MoS2 system is shown in Figure 6.4. However, few

works have been published on the combination of the two materials258–260. Density

functional calculations suggest an inter-layer spacing of 3.32 Å and small band gap

of 2 meV induced in the graphene258, otherwise theoretical analysis of the combined

material has not been published. Combinations of the materials have been demon-

strated via a solution-phase method260 with the goal of creating a battery electrode

material, but the realization of single layer MoS2 is unclear via this method. Another

group showed a similar method for producing MoS2 nanoflakes on reduced graphene

oxide259.

Calculations in this section were done with the GPAW261,262 code using a double

zeta plus polarization LCAO basis, projector augmented waves for the core electrons

and a 16 x 8 Monkhorst-Pack sampling of the Brillouin zone. To account for the
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Figure 6.5: Graphene-MoS2 bilayer spacing calculated with several exchange-
correlation functionals. The vertical lines indicate the minima of fitted curves. The
values from top to bottom are 3.22, 3.76, 3.51 and 3.51.
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Figure 6.6: Graphene-MoS2 bilayer density and potential. The average location of
each plane of atoms is shown by the dashed blue lines. On the left the vacuum level
is 0 eV, the plane averaged potential is shown with a solid black line and the Fermi
level is indicated by the dashed red curve. On the right the all-electron density is
shaded in green and the black line is the pseudo-valence density.
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Table VI.2: Graphene-MoS2 properties computed with a range of exchange-
correlation functionals. The MoS2 band gap, Eg, p-type and n-type Schottky barrier
heights, ∆p and ∆n, and tunneling barrier height ΦB are shown.

XC functional Eg (eV) ∆p (eV) ∆n (eV) ΦB (eV) d (Å)
LDA 1.593 1.243 0.349 -1.444 3.22
PBE 1.571 1.404 0.167 1.021 3.76

vdW-DF 1.575 1.285 0.289 0.988 3.51
vdW-DF2 1.590 1.417 0.173 0.538 3.51

different unit cells of graphene and MoS2 a simulation box with 108 C atoms in the

graphene layer and 96 atoms in the MoS2 layer was used. There is still a small

lattice mismatch, so MoS2 was strained by approximately 1% to match the optimized

graphene cell. The layers were separated from the edge of the simulation box by 10

Å on both sides.

In bulk form graphene and MoS2 layers are bound by van der Waals forces, which

are not described correctly by standard functionals. For this reason all simulations in

this section were done with a range of exchange-correlation functionals: LDA, PBE,

vdW-DF263 and vdW-DF2264 . Figure 6.5 shows the total energy as a function of

layer separation (distance between the highest C atom and lowest S atom) for each

functional and Table VI.2 summarizes computed properties such as band gap for the

range of functionals. In the case of LDA an interlayer spacing of 3.22 Å was found,

which compares well to a value found by another group using LDA with a planewave

basis set258. As expected PBE predicts a larger value than LDA of 3.76 Å. However,

when two related functionals which contain van der Waals corrections are used values

of 3.51 Å are found. The vdW-DF2 functional is preferred to the vdW-DF functional
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Figure 6.7: Projected density of states on S atoms in graphene-MoS2. The top and
bottom curves correspond to the top and bottom layers of S atoms. Solid blue lines
indicate the case of free standing MoS2 and the dashed red lines show MoS2 on
graphene. The bottom layer of S atoms is closer to the graphene in this case.

as it shows slight improvement over vdW-DF when compared against accurate coupled

cluster calculations264. In light of these factors the vdW-DF2 functional is used in

generating the figures in this section.

Photocurrent measurements have revealed information about defect/impurity trap-

ping in MoS2 and the Schottky barrier between Au (and Ti) and MoS2
265. Using the

potential profile lineup method233,242, as in section 6.1, the Schottky barrier height

can be calculated in graphene-MoS2 contacts. Barrier heights and band gaps calcu-

lated with the different functionals are shown in Table VI.2. All functionals used

consistently underestimate the experimental MoS2 gap of 1.8 eV. Figure 6.6 shows

the potential and density in the combined system, averaged in planes parallel to the
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layers. In the left panel of Figure 6.6 the vacuum level is shown at 0 eV and the

dashed red line indicates the Fermi level. On average the potential is just above

the Fermi level indicating a barrier for electrons passing between the materials, the

difference between this potential maximum and Fermi level is defined as ΦB. In par-

ticular, LDA predicts no barrier for electrons with ΦB = −1.444 eV and vdW-DF2

predicts ΦB = 0.538 eV. However, as these are plane-averaged values there are po-

tential paths for electrons in the region between the graphene and bottom layer of

S atoms. The region of potential exceeding the Fermi level is approximately 0.2-0.5

Å with the functionals that predict a barrier — much shorter than the 0.9 Å and

1.59 Å reported for Ti and Au, respectively257. On the right panel of Figure 6.6 the

all-electron density is shown in green and the pseudo-valence density is shown by the

solid black curve. The explanation of paths in the potential allowing charge transfer

is supported by the non-zero electron density in the contact region.

The local density of states near the Fermi energy is an important factor in deter-

mining the electronic properties of a junction. Figures 6.7, 6.8 and 6.9 compare the

projected density of states on the S, C and Mo atoms in the cases when the graphene

and MoS2 are separated and in contact. In Figure 6.7 a distinction between the top

and bottom S atoms is made, where the bottom atoms are closest to the graphene

layer. When brought into contact with graphene the states of the S and Mo atoms

are shifted towards the Fermi level, with the Mo states moving the closest. Note that

the presence of the graphene does not significantly alter the character of the curves,

only shifts them. Graphene’s density of states is shifted with the Dirac point above

the Fermi level when in contact. To quantify the shifts in states from the contact
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Figure 6.8: Projected density of states on C atoms in graphene-MoS2

in terms of barriers the p-type Schottky barrier, ∆p, was calculated, as in Section

6.1, with the potential profile lineup method and the n-type barrier was calculated

by ∆n = Egap − ∆p. The results for the range of functionals are given in Table VI.2.

The analysis is completed by examining the spatial distribution of individual states

near the Fermi level. The HOMO-2 through LUMO+2 pseudo-wavefunctions squared

are shown in Figure 6.10. As in the case of Figure 6.6, the wavefunctions are averaged

in planes normal to the graphene and MoS2 layers. The HOMO, LUMO, LUMO+1

and LUMO+2 states are delocalized across the graphene and MoS2 and are especially

associated with the Mo layer suggesting that this state will play a role in transfer of

charge between the graphene and MoS2. In contrast, the HOMO-1 and HOMO-2

states are strongly associated with the graphene layer.
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Figure 6.9: Projected density of states on Mo atoms in graphene-MoS2

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
<	*	>/


8

10

12

14

16

18

Y 
(�

)

S

Mo

S

C

HOMO-2
HOMO-1
HOMO
LUMO
LUMO+1
LUMO+2

Figure 6.10: Spatial distribution of states near the Fermi level in graphene-MoS2.
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In conclusion, the electrical contact properties of graphene-MoS2 junctions were

examined with density functional theory calculations using a range of exchange-

correlation functionals. Analysis was mainly done in terms of van der Waals corrected

functionals, with barrier heights, band gaps, charge density distribution, density of

states and wavefunctions near the Fermi level all investigated. The calculations show

that graphene should form good contacts with MoS2 which allow the creation of high

quality devices.
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CHAPTER VII

CONCLUSION

In this dissertation the properties of nanoscale devices including molecular break

junctions, nanowires, nanotubes, graphene and MoS2 were investigated primarily with

density functional theory. Ground state properties such as density of states and opti-

mized geometries were computed via standard density function theory and transport

properties were calculated by non-equilibrium Green’s function and complex absorb-

ing potential frameworks using a DFT Hamiltonian. A key development included the

extension of the complex absorbing potential framework to the general N-terminal

case.

The formalism used throughout this thesis is presented in Chapter II. There

the foundations of density functional theory, including the Hohenberg-Kohn theo-

rem, Kohn-Sham equations, basis sets and exchange and correlation functions can be

found. In addition, elements of scattering theory and the extension of the complex

absorbing potential formalism to the general case of devices with N terminals are

presented. As crossbar geometries are realized with thinner, more densely packed

wires201, the need for analysis which accounts for quantum effects will become more

necessary. With multi-probe STMs becoming more available and self-assembly tech-

niques advancing more, multi-terminal measurements of nanoscale systems will be

made. The formalism described in this thesis sets the groundwork for calculation of

electronic properties of these systems.
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Details of the computational techniques are presented in Chapter III. The self-

consistent solution procedure, parallel implementation, memory efficiency and finite

difference operations are discussed. Also, the issue of convergence in calculated trans-

port properties is addressed with an example calculation. These computational tech-

niques have been implemented in the Varga group’s DFT suite and provide the ground

work for studying larger and more complex systems with less time.

Nanowires are examined in Chapter IV; the focus of this chapter is on kinked

nanowires and gold nanowire break junctions. Atomic chains, silicon nanowires and

graphene nanoribbons with kink and related defects are discussed. In general it

found that quantum interference effects are responsible for significant decreases in

conductance and, in some cases, large on/off oscillations in conductance. The role of

polytetrahedral clusters in elongated gold nanowires was examined through transport

calculations where the geometry was taken from snapshots of molecular dynamics

simulations. Finally, it was found that a proposed molecular switch, tetraphenyl-

porphyrin, did not show signs of switching when contacted with two gold nanowires

in a break junction configuration. Extension of this work to passivated nanowires

and the inclusion of finite voltages in the calculations are possible future directions

of this work. However, computational advances will be required as the dimension of

the realistic systems shown here is large.

Multi-terminal devices were discussed in Chapter V. Validation of the formalism

was done on a model system with a tight-binding Hamiltonian. The analytical so-

lution of the model system in the case of a single junction of N wires is presented

and compared with numerical results and perfect agreement was found. The model
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calculations also highlighted the unique oscillations in the transmission spectra of

crossbar systems. A density functional Hamiltonian was used to study a four termi-

nal graphene junction and a six terminal carbon nanotube junction.

Graphene based electronics were analyzed in Chapter VI. The electronic proper-

ties carbon nanotube-graphene junctions were simulated. When graphene is used as

an electrode a lower p-type Schottky barrier was found than in the case of a standard

electrode metal. The chirality of the nanotube is found to be the most important fac-

tor in determining electrical characteristics. Transport calculations supplement the

discussion by showing the favorable IV characteristics of the junctions. Graphene’s

interaction with another two-dimensional material, MoS2, was also addressed in this

chapter. Different exchange-correlation functionals were evaluated in determining the

equilibrium geometry and electronic properties. It was found that graphene could pro-

vide a suitable alternative to Au electrodes for creating high quality MoS2 devices.

A recent development known as valleytronics makes use of the fact that some mate-

rials have multiple minima in momentum space with matching energies266–268. Two

papers appearing at nearly the same time show that polarized light can be used to

preferentially excite carriers in a single valley269,270. Future work will examine the

valley polarization in the combined system of graphene and MoS2.
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[127] Aurélien Lherbier, Martin P. Persson, Yann-Michel Niquet, François Triozon,
and Stephan Roche. Quantum transport length scales in silicon-based semicon-
ducting nanowires: Surface roughness effects. Physical Review B, 77(8):085301,
Feb 2008.

[128] T. Markussen, R. Rurali, A.P. Jauho, and M. Brandbyge. Transport in silicon
nanowires: role of radial dopant profile. Journal of Computational Electronics,
7(3):324–327, 2008.

[129] Man-Fai Ng, Liping Zhou, Shuo-Wang Yang, Li Yun Sim, Vincent B. C. Tan,
and Ping Wu. Theoretical investigation of silicon nanowires: Methodology,
geometry, surface modification, and electrical conductivity using a multiscale
approach. Physical Review B, 76(15):155435, Oct 2007.

141



[130] Troels Markussen, Riccardo Rurali, Antti-Pekka Jauho, and Mads Brandbyge.
Scaling theory put into practice: First-principles modeling of transport in doped
silicon nanowires. Physical Review Letters, 99(7):076803, Aug 2007.

[131] Tomoki Iwanari, Toyo Sakata, Yutaka Miyatake, Shu Kurokawa, and Akira
Sakai. Conductance of si nanowires formed by breaking si-si junctions. Journal
of Applied Physics, 102(11):114312, 2007.

[132] Troels Markussen, Riccardo Rurali, Antti-Pekka Jauho, and Mads Brandbyge.
Scaling theory put into practice: First-principles modeling of transport in doped
silicon nanowires. Physical Review Letters, 99(7):076803, Aug 2007.

[133] G. Giorgi, X. Cartoixà, A. Sgamellotti, and R. Rurali. Mn-doped silicon
nanowires: First-principles calculations. Physical Review B, 78(11):115327, Sep
2008.

[134] Riccardo Rurali. Colloquium: Structural, electronic, and transport properties
of silicon nanowires. Rev. Mod. Phys., 82(1):427–449, Feb 2010.

[135] N. D. Lang. Anomalous dependence of resistance on length in atomic wires.
Physical Review Letters, 79(7):1357–1360, Aug 1997.

[136] Petr A. Khomyakov and Geert Brocks. Stability of conductance oscillations in
monatomic sodium wires. Physical Review B, 74(16):165416, Oct 2006.

[137] R. H. M. Smit, C. Untiedt, G. Rubio-Bollinger, R. C. Segers, and J. M. van
Ruitenbeek. Observation of a parity oscillation in the conductance of atomic
wires. Physical Review Letters, 91(7):076805, Aug 2003.

[138] Y. J. Lee, M. Brandbyge, M. J. Puska, J. Taylor, K. Stokbro, and R. M. Niem-
inen. Electron transport through monovalent atomic wires. Physical Review B,
69(12):125409, Mar 2004.

[139] H.-S. Sim, H.-W. Lee, and K. J. Chang. Even-odd behavior of conductance in
monatomic sodium wires. Physical Review Letters, 87(9):096803, Aug 2001.

[140] P. Havu, T. Torsti, M. J. Puska, and R. M. Nieminen. Conductance oscillations
in metallic nanocontacts. Physical Review B, 66(7):075401, Aug 2002.

[141] Tomoya Ono. First-principles study on evenodd conductance oscillation of pt
atomic nanowires. The Journal of Physical Chemistry C, 113(15):6256–6260,
2009.

[142] Ying Xu, Xingqiang Shi, Zhi Zeng, Zhao Yang Zeng, and Baowen Li. Conduc-
tance oscillation and quantization in monatomic al wires. Journal of Physics:
Condensed Matter, 19(5):056010, 2007.

[143] K. S. Thygesen and K. W. Jacobsen. Four-atom period in the conductance of
monatomic al wires. Physical Review Letters, 91(14):146801, Sep 2003.

142



[144] Y. Cui and C.M. Lieber. Functional nanoscale electronic devices assembled
using silicon nanowire building blocks. Science, 291(5505):851, 2001.

[145] Y. Cui, Z. Zhong, D. Wang, W.U. Wang, and C.M. Lieber. High performance
silicon nanowire field effect transistors. Nano Letters, 3(2):149–152, 2003.

[146] Hou T. Ng, J. Han, Toshishige Yamada, P. Nguyen, Yi P. Chen, and M. Meyyap-
pan. Single crystal nanowire vertical surround-gate field-effect transistor. Nano
Letters, 4(7):1247–1252, 2004.

[147] X. Duan, Y. Huang, R. Agarwal, and C.M. Lieber. Single-nanowire electrically
driven lasers. Nature, 421(6920):241–245, 2003.

[148] V. Schmidt, J. V. Wittemann, and U. Gosele. Growth, thermodynamics, and
electrical properties of silicon nanowires. Chemical Reviews, 110(1):361–388,
2010.

[149] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon
films. Science, 306(5696):666–669, 2004.

[150] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials,
6(3):183–191, Mar 2007.

[151] Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim. Experimental observation of
the quantum hall effect and berry’s phase in graphene. Nature, 438(7065):201–
204, 2005.

[152] KS Novoselov, D. Jiang, F. Schedin, TJ Booth, VV Khotkevich, SV Morozov,
and AK Geim. Two-dimensional atomic crystals. Proceedings of the National
Academy of Sciences of the United States of America, 102(30):10451, 2005.

[153] Vernica Barone, Oded Hod, and Gustavo E. Scuseria. Electronic structure and
stability of semiconducting graphene nanoribbons. Nano Letters, 6(12):2748–
2754, 2006. PMID: 17163699.

[154] Y.W. Son, M.L. Cohen, and S.G. Louie. Half-metallic graphene nanoribbons.
Nature, 444(7117):347–349, 2006.

[155] Katsunori Wakabayashi. Electronic transport properties of nanographite ribbon
junctions. Physical Review B, 64:125428, Sep 2001.

[156] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K.
Price, and J.M. Tour. Longitudinal unzipping of carbon nanotubes to form
graphene nanoribbons. Nature, 458(7240):872–876, 2009.
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