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CHAPTER I 

 

INTRODUCTION 

 

 

Friction Stir Welding (FSW) is a solid state joining process that utilizes the heat 

produced between the material and a non-consumable rotating pin to join the desired 

materials or work pieces. This rotation causes a plasticized region of material to rotate 

about the tool. As the tool is moved through the material, the material on the leading edge 

enters the plasticized region and is swept around to the back of the tool where the lagging 

material is left to form a solid joint. [Midling et. al, 1996] In order to obtain a properly 

consolidated weld it is also necessary for there to be a shoulder above the pin, typically 

1.5-2 times the diameter of the pin, which rides along the surface of the work piece in 

intimate contact, while the pin is submerged in the work piece providing the stirring and 

heating. It is important to note that while the process is named Friction Stir Welding, 

friction is not the main source of energy for the weld but rather the shearing of the 

material at the interface between the tool and the material is.  

FSW presents numerous advantages over conventional fusion welding techniques 

such as eliminating the need for a shielding gas, requiring less energy per weld, and the 

lack of a flame or arc making it safer in the work place. Another advantage of FSW is its 

ability to join materials that are extremely difficult, or impossible to weld with 
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conventional fusion techniques. Also, since FSW is a solid state process there is no 

melting of the parent material which can lead to the formation of unwanted and 

detrimental intermetallic compounds often present during the welding of dissimilar 

metals such as Magnesium and Aluminum. FSW is able to successfully join materials 

such as aerospace high alloy aluminums (2000 and 7000 series), magnesium, metal 

matrix composites, and dissimilar metals.  Due to the advantages inherent to this process, 

FSW has been implemented by the automotive, aerospace, defense, and maritime 

industries. NASA has adopted FSW for use in the circumferential welds of the space 

shuttle’s external fuel tanks. Other NASA applications of FSW include the Boeing Delta 

IV heavy rockets used to launch the Mars Phoenix Lander in July 2007. General Motors 

has begun funding research in FSW and has even started using FSW for some spot 

welding applications in production.  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CHAPTER II 

 

LITERATURE REVIEW 

 

FSW Terminology 
 

 

 

Figure 1 FSW diagram for typical butt weld configuration [Mishra 2005] 

 

In FSW (See Figure 1) the tool can typically be described as having two parts and 

functions. The main part of the tool is the pin. The pin is the most important part of the 

tool in that it is submerged into the work piece (material to be welded.) It is the pin that 
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provides the stirring and heating of the work piece by both frictional heating and to a 

larger extent the shearing of the work piece. The shoulder is the other main part of the 

tool. The shoulder is placed in intimate contact with the work piece and also provides 

some frictional heating and contributes to the shearing of the work piece. It is the 

shoulder that provides the necessary pressure to successfully consolidate the welded 

material. The tool also has a larger shank that extends away from the work piece and 

allows for the Friction Stir Welding Machine to firmly grip and rotate the tool. The tool is 

typically placed at an angle with respect to the work piece (tilted 0° – 3° about the y-axis) 

such that the leading edge of the shoulder is slightly above the work piece, and the rear of 

the shoulder is slightly below the surface of the work piece. The part of the shoulder that 

is below the surface is known as the heel, and the amount of plunge experienced is called 

the heel plunge depth.  

 There are several terms used in FSW that help identify which part of the weld and 

tool are being discussed. When talking about the welding direction, this simply refers to 

the movement toward the unwelded material. More simply, it is the direction the pin 

appears to move relative to the backing anvil. The advancing and retreating sides of the 

weld can be defined by placing a tangential vector on the tool. The side of the tool in 

which the vector is in the same direction as that of the welding direction is called the 

advancing side, the side in which the vector is in the opposite direction is the retreating 

side. The nugget is the part of the weld that actually contains the sheared material. This is 

the zone that the tool affects mechanically and thermally.   

 In some instances there are tools with more intricate designs including those with 

fixed shoulders (to eliminate the heat input by the shoulder), threads and/or flutes on the 
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pin, non-axis symmetric pin design (Trivex) to increase stirring and shoulder features 

such as scrolls.  

 

FSW Process Parameters 

As in fusion welding, the feed rate is an important part of the process.  When 

discussing the feed rate it is common to use the term “welding speed” or “traverse rate” 

to describe the translational speed of the tool.  The term “Tool Rotation Speed” is used to 

classify the angular velocity (typically in rpm) of the tool. The direction of the tool is 

defined by looking down the tool towards the work piece, using the terminology 

“clockwise” and “counter (anti) clockwise.” The Forces present in FSW are also an 

important parameter for the process. The force parallel with the axis of tool rotation (z 

component) is defined as the “down force.” The force acting in parallel with the welding 

direction (x component) is known as the “traversing force”, and the force perpendicular 

to this (y component) is known as the “side force” [Threadgill 2007.] 

 

Weld Region Terminology 

It is also common to discuss the weld area in FSW with specific terminology. In 

Figure 2, the region labeled as A is the parent material which is unaffected by the thermal 

and mechanical processes. The region labeled as B is known as the Heat Affected Zone 

(HAZ) and is only affected thermally. No stirring or shearing occurs in this zone. The 

next zone, C, is the Thermomechanically Affected Zone (TMAZ).  The TMAZ extends 

from the advancing side HAZ to the retreating side HAZ. It is this zone that experiences 
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the mechanical shearing and thermal heating. For some metals such as aluminum the area 

within the TMAZ may not be entirely recrystallized. In this case the recrystallized area is 

contained within the zone labeled D is sometimes referred to as the as the “dynamically 

recrystallized zone” but the term “Weld Nugget” is preferred. Recrystallization is a 

process by which deformed grains are replaced by a new set of grains that nucleate and 

grow until the original grains are entirely consumed. Recrystallization is dependent on a 

critical temperature (different for each metal) and deformation. The recrystallization 

temperature can be estimated by taking 0.4 times the melting point of the metal when 

expressed on an absolute scale [DeGarmo 1997].  

 

Figure 2 Graphical representation of weld zone [Nandan 2008] 

 

For magnesium it can be difficult to distinguish the TMAZ and the nugget from 

each other. The exact mechanism of recrystallization is not known but is not relevant to 

microstructural classification [Threadgill 2007]. Figure 3.a represents a case when the 

nugget is not easily distinguishable; 3.b shows the well formed nugget. The interface 

between the weld zone and the base metal at the bottom of the weld is called the weld 

root. 
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Figure 3 a: Cross section of Mg AM50 b: Cross section of Al 2014A-T6 indicating 
the ‘zones’ of FSW. b: shows the well formed nugget [Threadgill 2007] 

 

Weld Joint Configuration 

 

Figure 4 Standard weld configurations. a) square butt b) edge butt c) T joint butt d) 
lap joint e) multiple lap joint f) T lap joint g) fillet joint [Mishra 2005] 

 The most common weld configurations can be seen in Figure 4. For FSW, the 

simple geometry of the butt joint (Fig 4.a) and lap joint (Fig 4.b) make them the most 

commonly used configurations. For the butt joint the two separate work pieces of equal 
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thickness to be joined are placed on the backing anvil. To ensure that the pieces do not 

separate due to the large axial forces present during welding the two pieces are firmly 

clamped in place.  The rotating tool is then plunged into the material until the shoulder 

has firm contact with the work piece, and is then traversed along the weld line. For the 

lap joint, the two work pieces to be joined are placed on top of one another (the pieces 

can be different thicknesses for this geometry.) The rotating tool is again plunged through 

the top plate (completely) so that some percentage of the length of the pin of the tool 

plunges into the bottom plate. The tool is then traversed through the material, resulting in 

the joining of the top plate to the bottom plate along the weld path. Other geometries not 

pictured would include pipe and spherical welding. 

 

Tool Design and Implementation 

One of the most important aspects of FSW is the design of the tool. The FSW tool affects 

the heat generation, material flow, power input, and weld quality. In the basic form, the 

shoulder provides the heating and restrains the material from leaving the weld zone, 

while both the pin and the shoulder contribute to the flow, or stirring of the material. The 

design of the tool can range from a smooth cylindrical pin with a flat shoulder to threads, 

flutes, flats, scrolls, etc., appearing on both the pin and shoulder. The pin can also have an 

asymmetrical shape. Tool design is driven by the application, such as reducing wear, 

reducing force, increasing stirring, increasing heating, etc. See table 1 for examples of 

more popular tool designs and their applications. 
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Table 1 Various tool designs from The Welding Institute [Nandan 2008] 

 

 

Weld Quality 

Manufacturing weld quality inspection distinguishes the differences between 

imperfections, flaws and defects. ASME standards define an imperfection in terms of a 

departure of a quality characteristic from its intended condition, and a flaw as an 

imperfection detectable by a non-destructive evaluation.  A defect is defined as a flaw of 

prescribed shape, size, orientation, location or properties as to be rejected.  

 Volumetric flaws arise from a lack of material in friction stir welds. This defect is 

often referred to as porosity, but since the lack of material is not attributed to the 

formation of gas bubbles in the weld it is a misnomer, and the term void is preferred. The 

void can be described as being buried, surface breaking, continuous (such as a 

wormhole), etc. Voids are caused by insufficient material flow and can occur in various 
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sizes and locations. Another volumetric flaw is weld flash, occurring along the edges of 

the weld (most commonly the retreating side), which results in material being extruded at 

the top of the weld region rather than remaining within the weld.  The appearance of 

excessive flash on a weld can be an indication of the formation of a void or worm hole. 

 Weld line flaws occur along the once planar interface between the two joined 

pieces. The appearance of sections of the joint line within the welded region is referred to 

as joint line remnant. The most serious type of this flaw occurs at the weld root. Flaws in 

the weld root can result from inadequate probe length, poor control of position/force, 

variations in work piece thickness, and local cooling. Weld imperfections, flaws, and 

defects can generally be eliminated (or at least significantly reduced) by insuring 

adequate flow, with proper process parameters for the material being welded, and tool 

geometry. 

 

Material Properties and Characteristics: Mg AZ31B H24 

Magnesium is an alkaline earth metal and is the sixth most abundant element in the 

Earth’s crust (about 2% by mass) and the ninth most abundant in the Universe.  By 

appearance, Mg is a silver/white metal and is typically coated with a thin oxide layer 

which reduces the metals reactivity giving it a dull and darkened appearance. The oxide 

layer also prevents corrosion, though Mg is readily corroded by chlorides and sulfates. 

Mg is also one the lightest naturally occurring metals (2/3 the density of aluminum) and 

has 94% of the tensile strength of aluminum.    
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 The chemical composition of Mg AZ31B H24 can be seen in Table 2. The 

mechanical properties can be seen in Table 3.  

Table 2 Chemical composition of Mg AZ31B 

Material  %Al  % Cu  %Fe  %Mg  %Mn  %Ni  %Si  %Zn 
AZ31B  2.5−3.5  0.05 max  0.005  balance  0.2 min  0.005 max  0.1 max  0.6 ‐1.4 

 

Table 3 Material properties of Mg AZ31B 

Material  Density  Tensile 
Strength 

Yield 
Strength 

Elastic 
Modulus 

Poisson’s Ratio 

AZ31B  1.77 kg/m^  260 MPa  200 MPa  44.8 GPa  0.35 
 

 Mg is also a highly reactive metal, reacting with water at room temperature. 

Placing Mg in water at room temperature will result in the formation of hydrogen bubbles 

on the surface of the metal. Mg is also highly flammable when it is powdered or shaved 

into thin strips (such as flash resulting from a weld). Once ignited, Mg can continue to 

burn in an oxygen environment, a nitrogen environment, and in water. Mg is difficult to 

ignite in a bulk state. Special considerations for safety should be taken when working 

with and around Mg. 

 Mg AZ31B is said to have good machinability. Given the proper tooling geometry 

Mg can be cut quickly, machined to a good finish, and machined with less power than 

needed for aluminum or steel. The tool geometry plays an important role in chip 

formation and flow, heat generation, and material build up on the tool. Proper geometry 

can reduce the amount of wear on the tool and allow for higher feed rates. The tool 

should always be kept sharp when cutting/drilling because dull tools can result in 

excessive heat buildup, problems with dimensional tolerances, and sparking along the 



12 
 

tools edge. The power required to machine magnesium is 56% less than the power 

required to machine aluminum. This alloy is also suitable for welding using conventional 

welding techniques (gas shielded arc) [Elektron 2006]. 

 The melting point of Mg is 650°C. The Mg alloy used for this research (AZ31B 

H24) has a slightly lower melting point of 630°C. As the temperature of the metal rises 

the material undergoes a linear decrease in density. Using the experiments of McGonigal 

et al. this linear change in the solid state ( ) has been calculated 

and reported in table 4. The expression and values were approximated from Figure 5 

[McGonigal 1961].  

Table 4 Temperature dependent density of Mg 

T 
(°C) 

Density 
g/cm3 

25  1.76 

50  1.76 
100  1.75 

150  1.74 
200  1.73 

250  1.72 
300  1.71 

350  1.70 
400  1.69 

450  1.68 
500  1.67 

550  1.66 
600  1.65 

650  1.64 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Figure 5 Liquid range diagram for Mg. Mg is reported as a solid to the threshold of 
923°K (650°C) [McGonigal 1961] 

 

Applications: Mg AZ31B H24 

AZ31B in a sheet or plate has good applications in medium strength situations at 

temperatures at or below 300° F. Since the alloy is non-magnetic, it also finds application 

in the electronic industry as RFI and EMI shielding. Mg is also the third most commonly 

used structural metal (following steel and aluminum). High grade car wheels made from 

Mg alloy are called “MAG Wheels” which are significantly lighter than their steel or 

aluminum counterparts. Chevrolet and Mercedes-Benz made race cars in the 1950’s with 

Mg alloy body panels which resulted in very light (and faster) automobiles. Porsche made 

the frame of their 917/053 automobile with a Mg alloy which won the 1971 Le Mans and 
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still holds the absolute distance record for this event. Volkswagen and Porsche both used 

Mg to make engine components including the engine block. More recently BMW used 

Mg in the engine blocks for their 1, 3, 5, 6, 7, Z4, Z5, X3 series automobiles in 2006 

selling 300,000 units [Int. Mg 2007]. The 2006 Z06 Corvette engine cradle was made 

using Mg and in the process advanced the technology for manufacturing automotive parts 

from Mg [Magnesium 2010]. 

 

Microstructure of Mg AZ31B subjected to FSW process 
 

 

Figure 6 Comparison of microstructure in an FSW cross section. a) base metal b) 
transition zone c) weld zone (nugget) [Esparza 2002] 

  

Figure 6 illustrates the evolution of grain size in MG AZ31B that has undergone 

the FSW process. The lighter areas of Figure 6 represent the grain (crystal) which 
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consists of a space occupied by a continuous crystal lattice. The dark lines surrounding 

the grains are the grain boundaries. The term grain structure refers to the arrangement of 

the grains of a specific crystal structure within the metal. The grain boundary is a region 

of misalignment between the characteristic lattice of the grains which acts as an area of 

separation. This area is usually one to three atoms in diameter (see Figure 7).  

 

 

Figure 7 Grains and Boundaries a) microscopic b) atomic [DOE 1993] 

 

The average size of the grain is an important feature for determining the mechanical 

properties of the metal. A smaller grain size (more refined) increases the tensile strength 

and ductility. A larger grain size increases creep; the permanent deformation that 

increases with time under a constant load [DOE 1993.] 
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From Figure 6 it can be seen that the average grain size decreases significantly from the 

base metal (6a) to the transition zone (6b) and finally the weld zone (6c). It is also noted 

that numerous observations of deformation twins and serrations of the grain boundaries 

were made in the base metal. However these were eliminated within the weld zone where 

the recrystallized and equiaxed (uniform in size and dimension) grain structures occurred. 

Esparza et al. reported an average grain size of 175µm in the base material and an 

average grain size of 25µm in the weld zone [Esparza 2002].  

 Another experiment looked at the grain structure evolution during FSW and was 

performed by Pareek et al [Pareek 2007]. The experiment involved butt welding 3.175 

mm plates of Mg AZ31B to itself at an array of welding speeds (3, 5, and 8 ipm) and 

rotation speeds (1500 and 2000 RPM). Microstructural evaluation of the surface of the 

base material and welded material produced the observation of dispersoids (particles of 

one material dispersed into another material) in the metal.  

 

Figure 8 Photomicrograph of the as-received Mg Alloy [Pareek 2007] 
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Figure 9 Dispersoids in the advancing side of weld [Pareek 2007] 

 

Figure 10 Dispersoids on the retreating side of the weld [Pareek 2007] 

Pareek found that the smaller dispersoids were composed of 97.7 wt. % Mg and 2.3 wt. 

% O, or simply magnesium oxide. The larger particles contained Mn and Al in addition 

to Mg and O (68.3 wt. % Mg, 20.5 wt. % Mn, 9.0 wt. % Al, and 2.2 wt. % O). The 

increased occurrence of these dispersoids on the advancing side was found to be a result 

of the geometry of the flow of material resulting from the rotation of the tool.  
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Table 5 Volume fraction of dispersoids [Pareek 2007] 

 

 

Table 5 shows the percentage of volume taken by the dispersoids by location as functions 

of the welding parameters. Although each of the welds in this study subjected to tensile 

evaluations broke on the advancing side no dispersoids were found on the fracture 

surfaces. This result suggests that the higher occurrence of the dispersoids on the 

advancing side did not affect the tensile strength but rather resulted from the 

heterogeneous microstructure at this location. 

 The effect of welding parameters on grain size showed that higher traverse rates 

resulted in a finer grain size and that higher rotation speeds resulted in a larger grain size.  
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Figure 11 Grain microstructure from center of weld a) FSW at 1500 rpm and 3 ipm 
b) FSW at 2000 rpm and 8 ipm [Pareek 2007] 

The decrease in the average grain diameter with increased welding (traverse) speeds was 

attributed to greater straining of the material which increased nucleation sites. The greater 

straining (deformation) of the metal (associated with the process parameters) imparts 

more energy into the metal which increases the creation of nucleation sites. As the 

nucleation rate (crystal formation) increases, the grain growth becomes more competitive, 

resulting in a finer average grain size. The increase in grain size with rotation speed was 

attributed to the higher temperatures associated with these higher rotation speeds [Pareek 

2007]. 

 The critical temperature for dynamic re-crystallization is related to temperature, 

strain, and strain rate. The Zener-Holloman parameter (Z) relates these variables as: 

 

Where  is the strain rate of the area of interest (weld zone), Q is the activation energy 

(energy threshold) of Mg AZ31B (129 kJ/mol), R is the gas constant, and T is the 

absolute temperature. The activation energy physically represents the energy needed for 
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deformation and is closely related to the activation energy of self-diffusion and the 

activation energy of creep [Spigarelli 2001]. Chang et al. established a relationship 

between grain size and Z for friction stir processed Mg AZ31B: 

ln (d)=9.0−0.27 x ln (Z) 

Where d is the dynamically recrystallized grain size within the affected zone. This 

empirical function shows that the average grain size would be refined with decreasing 

weld zone temperatures and increasing strain rates. Figure 12 shows the grain refinement 

of the weld and TMAZ zones for the array of welding parameters. The grain size, as 

predicted, became more refined with increasing the traverse rate and with a decrease in 

rotation speed. The grain refinement was less pronounced in the TMAZ [Pareek 2007]. 

 

Figure 12 Grain size measurements a) inside the weld zone b) the advancing (atmaz) 
and retreating (rtmaz) TMAZ zones [Pareek 2007] 

Tensile Properties of Mg AZ31B FSW Welds in Literature 
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Figure 13 Reported tensile strength of Mg AZ31B FSW samples. Rotation speed is 
indicated in the key. Welding Speed is the x-axis. Joint Efficiency (% parent tensile 

strength) is the y-axis. 

 

 Figure 13 shows a general synopsis of a sampling of the data currently available 

for Mg AZ31B FSW experiments. The lines shown on the graph represent a linear best fit 

to the data in order to capture the general trend of each report.  Lee et al. reported that 

tensile strength increased with rotation speed and decreased with welding speed [Lee 

2003 & 2002]. However, Afrin et al. reported that yield and tensile strength increased 

with welding speed and decreased with rotation speed due to a reduction in the heat 

generated within the weld zone [Afrin 2008]. Cao et al. (the only study found performing 

lap joints) also reported that tensile strength increased with welding speed but added that 

a maximum welding speed of 15 mm/s but remained constant at faster speeds [Cao 

2009]. The maximum reported tensile strength reported by Cao et al. was 52% of the 
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parent material. Comparisons will be made between the results in the literature and those 

of this research. 

 

Experimental Equipment and Procedure: FSW Machine 

 The Friction Stir Welding machine used for this study is a converted 1940’s era 

Kearney and Trecker Model K Number 2 three axis milling machine.  The machine was 

retrofitted with three additional motors and a control system. The system controls the 

spindle speed and the traverse, lateral, and vertical movements of the table. The machine 

can be seen in Figure 14. The welding machine is controlled via a National Instruments 

data acquisition device and in house written software. Forces and Torques were measured 

via a Kistler cutting force dynamometer mounted rigidly between the spindle head and 

the tool holder.    

 When welding, the material is firmly clamped to the anvil in the appropriate 

geometry (lap, butt, etc.). The tool is then moved into position over the starting point of 

the weld. The spindle motor is then engaged to the appropriate RPM for the experiment 

and the table is raised (rotating tool is lowered) into the material at approximately 0.1 

IPM. Once the tool is at the desired plunge depth the tool then traverses along the weld 

line. At the end of the weld the material is lowered (rotating tool is raised) and the weld is 

completed. The result of this leaves a “key hole” at the end of the weld which can be seen 

in Figure 15. 
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Figure 14 FSW Machine. CL: Clamps, TH: Tool Holder, ANV: Anvil, TM: 
Traverse Motor, VM: Vertical Motor, SM: Spindle Motor 
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Figure 15 The left side of the image presents the resulting "Key Hole" effect when 
the tool is removed from the material. The right side of the image presents the result 

from plunging the tool into the material. 

 

For safety purposes a large 5 gallon container of dry sand was kept on hand in the event 

that the magnesium was ignited. Mg readily reacts with water and would only intensify 

the fire if used as a suppressant. The sand would eliminate the oxygen supply of the 

ignited Mg. 
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CHAPTER III 

 

EFFECTS OF ROTATION AND TRAVERSE SPEEDS ON LAP JOINTS OF 

FRICTION STIR WELDED Mg AZ31B H24 

 

 

Introduction 

Previous investigations of welding Mg AZ31B using FSW such as Lee et al. state 

that high rotation speeds (1600-2500 rpm) and low traverse speeds (0.2 – 6.0 inches per 

minute) are best for producing sound welds with a relatively high tensile strength (85% of 

parent material.) The weld joint configuration used in the Lee study was the butt joint. 

The butt joint requires that two materials of identical thickness be abutted to one another. 

The rotating tool then moves along the joint line. In a study by Cao et al. 0.078 in sheets 

of Mg AZ31B were joined using FSW in the lap joint configuration with full penetration. 

In this study it was shown that the welding speed had a large impact on the formation of 

hooking defects with lower speeds resulting in larger defects. The study also showed that 

the tensile strength of the welds was strongly correlated to the welding speed up to a 

traverse speed of 35 inches per minute [Cao 2009].   

The goal for this investigation will be to produce reliable welds quickly such as 

those required in the automotive or aerospace industries, requiring higher welding and 

rotation speeds to meet the needs of high productivity and throughput. The effects of 
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welding speeds from 2 to 21 inches per minute on the quality of a lap joint will be 

evaluated based on tensile strength, hammer bend test, numerical modeling, and macro-

section evaluation.  

Experimental 

 The magnesium alloy of interest is a heat treated Mg - AZ31B H24, a wrought 

alloy, which has a substantial application in industry and has recently been qualified as a 

potential material for ballistic applications [Jones 2007].  

 For this experiment the lap weld joint configuration was used. Each welding 

sample consisted of 2 pieces of 9 in x 1 ½ in x 0.09 in AZ31B plate with a 1.5 in overlap. 

The plates were rigidly clamped to a steel anvil. See Figure 16 for the geometry of the 

weld. For each weld the FSW tool was rotated in a clockwise direction with the retreating 

side of the weld being closer to the lapped edge of the top plate (located at the left of the 

tool in Figure 16) also known as a left-handed lap weld.  

 

Figure 16: Experimental lap joint weld configuration 

 

 The FSW tool for this experiment was a modified Flared-triflute designTM based 

on the original design by The Welding Institute (TWI). The tool has a shoulder diameter 

of 0.625 in, a pin diameter of 0.250 in, and a pin length of 0.116 in. The length of the pin 
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allows for a complete penetration of the top plate with approximately 20% penetration 

into the bottom plate. A graphical representation of the tool used can be seen in Figure 

17. The tool has a cupped feature in the center of the threaded flute geometry to better 

promote the desired material flow. 

 

Figure 17: Graphic of the FSW tool. The modified Flared-triflute designTM has been 
used with the addition of a cup to the end of the pin [Hendricks 2009]. 

 

 The material was prepped by removing the as-received wax like coating from 

both the top and bottom of each plate. This coating is put in place by the manufacture to 

help curb the reactivity of the metal to reduce the chances of it catching fire. Experiments 

were run in the Vanderbilt University Welding Automation Laboratory (VUWAL) 

facility to see if the inclusion of this coating in the process would affect the quality of the 

weld. Three samples were run for this experiment. The first was welded as received, the 

second was cleaned with alcohol, and the third was scrubbed to completely remove the 

coating. Each sample weld was performed at 2000 RPM and 6 IPM. The results of the 

tensile tests showed that there were no observable mechanical effects related to the 
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inclusion or exclusion of the coating. For the majority of the welds the coating was 

removed. Figures 18 and 19 illustrate the appearance of the metal as-received and cleaned 

of the coating.  

 

 

Figure 18 Sample of as-received Mg AZ31B. Sample is 3"x9"x0.09" The coating on 
the material prevents the Mg alloy from reacting with the environment. 

 

 

Figure 19 Sample of the cleaned Mg AZ31B. Sample is 3"x9"x0.09" 

 

 The lap joints were welded at both 1500 and 2000 RPM, a tilt angle of 1° for all 

welds, and a traverse rate of 2, 6, 10, 14, 18, and 21 inches per minute. The penetration 

depth was maintained such that the shoulder of the tool was held constant at 0.003 in 

below the surface of the top plate. The weld process involves lowering the rotating tool 
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into the material at 0.10 inches per minute until the proper plunge depth is achieved. The 

tool then remains at that location for 5 sec, followed by the tool traversing through the 

material. 

 1.5 inches were removed from the weld at the beginning and end to eliminate any 

transient welding conditions. Three 0.5 inch rectangular tensile shear specimens were 

taken from the beginning, middle, and end of each weld. A 0.75 inch wide section was 

taken from the beginning of the weld for the hammer bend test (see Figure 20.) The 

hammer bend test, as described by TWI, is a mechanical test specific to the lap weld 

configuration [TWI 2010]. The sample can either pass or fail the destructive test, which 

involved carefully hammering the sample such the top and bottom plates are subjected to 

a bending moment that puts a significant stress on the weld joint (see Appendix). A 

diagram of this test can be seen in Figure 26. 

  

Figure 20: Layout of the different specimens obtained from each weld 

 

Results and Discussion 

Tensile Strength of Mg AZ31B Lap Welds 
 

 During the tensile tests for a lap joint the sample experiences a rotation that 

occurs during the evaluation due to the geometry of the specimen (see Figure 1 of the 
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Appendix). In order to compare the tensile strength of the results of this experiment to 

tensile strengths reported in the literature a base specimen was created to the same 

geometry as the weld tensile sample by machining a larger piece of AZ31B to the 

appropriate dimensions (see Figure 21). Three of these samples were made and the 

ultimate tensile strength of this geometry was experimentally determined to be 102.1 

MPa. Each of the weld’s three tensile samples were then tested for tensile strength and 

compared as a percentage to the base specimen’s tensile strength.  

 

Figure 21: AZ31B machined to match the dimension of the tensile specimens for a 
baseline comparison. 
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Figure 22: Resulting averaged ultimate tensile strength for welds at 1500 RPMs 

 

 

Figure 23: Resulting averaged ultimate tensile strength for welds at 2000 RPMs 

 

 Figures 22 and 23 show the results of the tensile tests for each of the welds. For 

the 1500 RPM welds it was found that the highest averaged ultimate tensile strength was 

only 53% of the parent sample and occurred at a traverse rate of 18 inches per minute. 
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For the 2000 RPM welds it was found that the highest averaged ultimate tensile strength 

was 82% of the parent sample and occurred at a traverse rate of 21 inches per minute. 

Table 6 shows the ultimate tensile strength of each weld sample. The samples A, B, and 

C represent a tensile coupon taken from the beginning, middle, and end respectively. The 

UTS is reported as a percentage of the parent sample and the standard deviation is 

reported in MPa. 

Table 6 Ultimate Tensile Strength for each of the weld samples 

Weld ID  IPM  RPM  UTS A  UTS B  UTS C  Avg. UTS  Std. Dev 
Weld 6  2  2000  40.06%  33.59%  33.30%  35.65%  3.90 

Weld 5  6  2000  35.55%  39.57%  41.82%  38.98%  3.24 

Weld 1  10  2000  65.43%  62.78%  62.88%  63.70%  1.53 
Weld 2  14  2000  85.60%  69.83%  64.54%  73.33%  11.18 

Weld 7  18  2000  81.68%  76.89%  86.68%  81.75%  5.00 
Weld 8  21  2000  81.39%  79.73%  85.70%  82.27%  3.15 

               
Weld 9  6  1500  36.43%  43.78%  47.40%  42.54%  5.71 

Weld 3  10  1500  44.96%  54.85%  54.06%  51.29%  5.61 

Weld 4  14  1500  51.32%  53.97%  53.09%  52.79%  1.37 
Weld 10  18  1500  50.54%  53.18%  55.34%  53.02%  2.45 

Weld 11  21  1500  52.60%  50.93%  52.30%  51.94%  0.91 
 

 

 The maximum ultimate tensile strength for both the 1500 and 2000 RPM welds 

occurred at 18 inches per minute from the “C” tensile coupon and were 55.34% and 

86.68% respectively. The lowest ultimate tensile strength for the 2000 RPM welds 

occurred at 2 inches per minute and was 33.3% of the parent sample. Note that no weld 

was performed at 2 inches per minute for the 1500 RPM welds due to the poor 

performance at that traverse rate. The ultimate tensile strength of the welds increased 

with rotation and traverse speeds. 
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Weld Torque for Mg AZ31B Lap Welds 
 

 

Figure 24: Weld torque for 1500 and 2000 RPMs at 10 and 14 inches per minute. X-
axis represents the sample rate of the dynamometer during the weld (1 torque 

reading per second.) 

 

The lower weld torques resulted in a reduced weld power, P (watts), according to the 

weld power model: where Ω (radians per second) is equal to the spindle speed and M 

(Nm) is equal to the weld torque: 

P = Ω•M 

The total heat input at the interface, Q, is defined as: 

Q = P•β 
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where β (dimensionless) is the fraction of power dissipated by the tool into the weld 

material and the tool that is directly converted into heat. This β value is understood to be 

high. Santiago et al., [Santiago 2004], estimate this value to be 0.9 and De Vuyst et al. 

[De Vuyst 2007] quote a range of 0.9-1.0. Nandan et al. [Nandan 2008] refer to this (β) as 

the power efficiency factor, Cf. 

 

Figure 25: Plot of the theoretical heat input for different rotation and traverse 
speeds 

 

Most assume this value to be 1.0 and define the weld efficiency simply as weld power 

minus the portion of the heat dissipated (0-10%) via conduction through the tool.  

 For this experiment it was observed that the 2000 rpm samples resulted in lower 

torque values than the 1500 rpm samples. Using the given expression for heat generation 

at the interface and the torque curves in Figure 24 the theoretical heat input to the weld 

was calculated and can be seen in Figure 25. The higher rpm welds had a lower 

calculated heat input at the interface.  The lower torques associated with the higher RPMs 
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result in less total heat input at the tool/material interface, which is in good agreement 

with the results of Cao et al.  

 An increase in the traverse rate showed an increase in the calculated heat 

generation at the interface. However the function used to calculate the heat generation did 

not factor in the traverse speed of the weld. The measured torque was higher for the faster 

traverse rates but since the tool was in contact with the material for shorter amount of 

time (due to the increased traverse rate) the material was not exposed to as much heating. 

The results of Pareek et al. (see Figure 12) show that the grain size within the weld zone 

becomes more refined with an increase in the traverse and a decrease in rotation speed. 

The increase in ultimate tensile strength resulting from an increase in the traverse rate can 

be attributed to the decrease in the grain size within the weld due to the lower welding 

temperatures [Cao 2009].  

 

Hammer Bend Test 

 The welds were subjected to another destructive mechanical test specifically 

developed to qualify the lap joint configuration. The Hammer Bend Test (see Figure 26) 

also known as an “S” bend test. A weld is said to successfully pass this test if the weld 

bends outside of the weld region without a crack propagating into the welded region. If a 

crack does propagate into the weld region the weld is said to fail this test. The parent 

material can crack, as is the case most often for the Mg, but as long as the weld does not 

crack the weld still passes the test. The results for the Hammer Bend Test can be seen in 

Figure 27. 
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Figure 26: Left: Top plate of weld is clamped firmly while the bottom plate is struck 
in the direction of the arrow until a 90 degree bend occurs. Right: The bottom plate 
is now clamped firmly while the top plate is hit in the direction of the arrow until an 
"S" shape bend is achieved [Hendricks 2009]. 

 

 

Figure 27: Results of the hammer bend test. Only the 2000 RPM welds passed this 
test. 

 

 Figure 27 uses a “1” to indicate successfully passing the test, and a “-1” to 

indicate failing the test. It can be seen that only the 2000 RPM welds successfully passed 

the Hammer Bend Test. It is also worth noting that only those welds at 10 inches per 

minute and higher passed the test for the 2000 RPM welds. The 10 inch per minute weld 
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had an average tensile strength of 63.70%, 10% stronger than that of the strongest 1500 

RPM welds. The hammer bend test strongly correlated with the results of the tensile tests 

and was a good indicator of weld quality.  

 

Surface features of the Welded Mg AZ31B 

 The physical appearance of the 2000 RPM welds can be seen in Figure 28. The 

sections of welds included in Figure 28 came from between the middle and end tensile 

coupons. In Figure 28 samples “b” and “c” did not have the coating removed. As 

previously mentioned the inclusion of this pickling layer in the weld has no appreciable 

effect on weld strength. The appearance of weld flash on “a” in Figure 28 did not occur 

for the entire length of the weld but was included to demonstrate some of the weld 

defects observed during the experiment. All of the 2000 RPM welds had no visual 

surface defects apart from the formation of “slight” weld flash which was caused by the 

non-uniformity in the thickness of the received materials.  
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Figure 28 Photograph of the welds at 2000 RPM. a) 6 ipm b) 10 ipm c) 14 ipm d) 18 
ipm e) 21 ipm 

 

From Figure 28 it can be seen that the welds have no appreciable surface defects to 

indicate volumetric defects. The surface of the welds is smooth and even. However, to 

fully qualify the welds interior inspection of the weld must be performed to check for 

voids such as fissures and worm holes, or other related weld flaws/defects. To perform 

these analysis sections of the weld were removed for metallurgical analysis.  
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Cross Sections of the Welded Mg AZ31B 

 The weld sections were taken from between the middle and last tensile coupons 

(see Figure 20), the same locations as those from Figure 28. The samples were then cut 

and trimmed to approximately the size of the weld zone (TMAZ) and a portion of the 

parent material on both the retreating and advancing sides of the weld. All of the cross 

sections were taken to have the advancing side to the left and the retreating side to the 

right when looking at the weld with the weld surface being on the top (see Figure 16). 

The samples were cut with a wet saw using a diamond tipped saw blade in order to 

produce a clean metal surface for polishing (see Figure 29).  

 

Figure 29 Mounted sample of AZ31B etched to relieve weld zone. Also shown is a 
graphical representation of the tool profile with relation to the weld zone. 

 

Once cut, samples were hot mounted into black resin pucks. These resin pucks make it 

easier to handle the sample for polishing, etching, and imaging. Once mounted the 

samples were polished using increasingly finer polishing paper until a mirror like finish 
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appeared in the metal. The samples were then etched with dilute acetic acid in order to 

make the weld zone visible. The samples were imaged at both low resolution (1x) and 

high resolution (10x) to help see the weld zone and any defects that were present. 

 

Figure 30 Weld 10: 18 ipm 1500 rpm 55% parent UTS, a) 1x image of weld zone b) 
10x view of hooking defect on advancing side c) 10x view of joint line remnant 

within weld zone, d) 10x view of gap between parent plates (unwelded)  

 

Weld 10, which had the as received coating removed before welding, is shown in Figure 

30. The weld zone is uniform and shows good integration between the top and bottom 

plates. However, this weld did have volumetric defects that may be a cause of the low 

tensile strength. Image “b” in Figure 30 shows a hooking defect on the advancing side of 

the weld. It can also be seen that a joint line remnant (JLR) exists for approximately 50% 

of the weld (see Figure 2 of the Appendix for a sketch of the hooking defect). The 

occurrence of this flaw only appears on the retreating side of the weld where the material 

is beginning to be being deposited. This JLR is significantly smaller than the gap between 

the plates of the unwelded material. This line is also accentuated by the oxide layers 

occurring at the boundary between the two plates and the etchant used to bring out the 
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weld zone. The material within the weld zone (Figure 30 “b” and “c”) also has a much 

smoother appearance than that of the material outside of the weld zone (Figure 30 “d”) 

indicating that the material of both plates in the weld zone experienced to some extent 

uniform heating/plastic deformation. Meaning the two plates in the weld zone are 

indistinguishable. 

 

Figure 31 Weld 11: 21 ipm 1500 rpm 52% parent UTS, a) 1x image of weld zone b) 
10x view of gap between parent plates (unwelded) c) 10x view of hooking defect on 
advancing side d) 10x view of joint line remnant within weld zone, e) 10x view of the 
interface between the weld zone joint line remnant and the gap between the parent 
plates  

 

Weld 11, which had the as received coating removed before welding, is shown in Figure 

31. The weld zone is uniform through both the top and bottom plates. Figure 31 “c” 

shows the hooking defect on the advancing side of the weld similar to that of weld 10. 

The JLR as shown in Figure 31 “d” is similar to that of weld 10, but is not a continuous 

line, and also occurs on the retreating side of the weld. Figure 31 “d” shows the 

discontinuity of the joint line remnant. There is a large weld flaw seen in Figure 31 “a” 

(circled) that appears to be a collection of oxides to the left of the weld path. Again the 
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weld zone has a distinct uniformity between the top and bottom plates that is not seen 

outside of the weld zone. 

 

 

 

Figure 32 Weld 1: 10 ipm 2000 rpm 65% parent UTS, a) 1x image of weld zone, b) 
10x view of the hooking defect on the advancing side of the weld, c) 10x view of 
material within the weld zone, d) 10x view of joint line remnant within the weld 
zone, e) 10x view of gap between parent plates (unwelded) 

 

Weld 1, which did not have the as received coating removed before welding, is shown in 

Figure 32. The effects of the inclusion of this coating can be seen in the Figure. The 

bright areas on the bottom and top of Figure 32 “a” are the results of this layer. The 

effects are also noticeable at the interface between the top and bottom plates. The size of 

the JLR is slightly larger due to the increased quantity of the oxide/coating layer. The 

difference between the JLR and the gap between the top and bottom plates can be seen in 

Figure 32 “d” and “e”. The JLR is less formed with more non-uniformity along its length. 

The hooking defect occurred for this sample along the advancing side of the weld, the 

same as that of the 1500 rpm welds. Weld flash can be seen on both the advancing and 
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retreating sides of this weld which indicates that the plunge depth placed too much of the 

shoulder beneath the surface of the weld. This can lead to volumetric voids within the 

weld. In this case no volumetric voids were detected. 

 

Figure 33 Weld 2: 14 ipm 2000 rpm 85% parent UTS, a) 1x image of weld zone, b) 
10x view of gap between parent plates (advancing), c) 10x view of the hooking defect 
on the advancing side, d) 10x view of joint line remnant within the weld zone, e) 10x 
view of gap between parent plates (retreating) 

 

Weld 2, which did not have the as received coating removed before welding, is shown in 

Figure 33. Weld flash is again visible on both sides of the weld for this sample. The 

increased plunge depth resulted in an apparent increase in axial loading evidenced by the 

increase in gap size between the unwelded portions of the top and bottom plates. 

However there were no observed volumetric defects for this sample. A hooking defect 

was seen in this weld along the advancing side of the weld though this weld successfully 

passed the hammer bend test. The JLR was also seen on the retreating side of the weld 

zone but was considerably less uniform than that of the gap between the unwelded zones. 

 



44 
 

 

 

 

Figure 34 Weld 7: 18 ipm 2000 rpm 87% parent UTS, a) 1x image of weld zone, b) 
10x view of the observed hooking defect (advancing), c) 10x view of joint line 

remnant within the weld zone d) 10x view of parent material 

 

Weld 7 can be seen in Figure 34. This is the strongest weld from the study. The 

appearance of the hooking defect is again observed to be on the advancing side of the 

weld. Also, the JLR is again observed on the retreating side of the weld. In this case 

Figure 34 “b” shows the discontinuities of the joint line. Further, the hooking defect 

observed is much less significant. Figure 34 “d” captures the appearance of the 

unwelded/unaffected material for comparison to that of the material in the weld zone. 

This sample had no appreciable formation of weld flash and no volumetric flaws/defects. 

 

 



45 
 

 

 

Figure 35 Weld 8: 21 ipm 2000 rpm 86% parent UTS, a) 1x image of weld zone, b) 
10x view of the observed hooking defect (advancing), c) 10x view of the material 

within the welded zone d) 10x view of joint line remnant within the weld zone and 
volumetric weld flaw e) 10x view of joint line remnant within the weld zone 

 

Weld 8 can be seen in Figure 35. There was a hooking defect on the advancing side of the 

weld. Within the welded zone, Figure 35 “c”, there is significant mixing between the top 

and bottom plate; there was no visible JLR. Figure 35 “d” shows a volumetric defect 

within the middle of the weld path. The JLR, Figure 35 “d” and “e” show the 

discontinuities within the joint line.  Weld 8 was the second strongest weld in this study. 

This weld also passed the hammer bend test. There was some observable flash on the 

retreating side of the weld which resulted in a larger gap between the unwelded portions 

of the top and bottom plates on the retreating side. 

 Each of these welds were chosen to provide examples of what made the weld joint 

significantly stronger or weaker than the other welds in the study. Weld numbers 10 and 
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11 were the strongest of the 1500 rpm welds but failed the hammer bend test. These 

welds also only tested for a tensile strength of a maximum 55%. Upon initial observation 

the weld surface was smooth, uniform, and showed no sign of surface defects or flaws. 

However, when cross sectioned it was seen that both of these welds contained hooking 

defects along the advancing side of the weld. Also, the weld zones of these samples 

showed joint line remnants that were “shifted” upward (in relation to the cross section). 

This shift upward seems to be related to a possible lack of stirring in the downward 

vertical direction near the pin surface. With the lower rotation speed of these samples, 

when compared to the 2000 rpm welds, the results of the tensile experiments are in 

agreement with the cross section evaluations. However, these welds (10 and 11) failed 

each of the mechanical tests at the interface between the top plate and weld zone on the 

advancing side and not on the retreating side where the JLR was present.  

 It was observed that each of the cross sectioned welds (Figures 30, 31, 32, 33, 34, 

35) contained small (white in appearance) particles within the weld zone. It is thought 

that these particles are similar to the dispersoids observed by Pareek et al. However no 

analysis was performed to determine the exact chemical composition of the particles, but 

they are similar in appearance and size to the results of Pareek et al. The inclusion of the 

dispersoids within the weld zone has no affect on the tensile strength of the welds [Pareek 

2007].  Also the observance of these particles did not tend to favor the advancing side 

over the retreating side as seen in the results of Pareek et al.  

 The remaining weld samples that were cross sectioned were chosen based upon 

their higher tensile strengths and their passing the hammer bend test. Weld 1 had the 

lowest tensile strength for a weld that successfully passed the hammer bend test. From 
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this, the hammer bend test could be used as a reasonable indicator of weld strength. 

Further, the hammer bend test requires less time and resources to complete making it an 

even better candidate for a cursory examination of weld strength. Welds 2, 7, and 8 all 

exhibited excellent weld strength at over 85% of the parent material strength. Each of 

these welds (all at 2000 rpm) had hooking defects on the advancing side and JLR s on the 

retreating, similar to that of the 1500 rpm weld samples.  The JLR for these welds was 

observed to have been displaced in a downward direction from the original joint line 

interface. This downward displacement, especially near the pin, could be attributed to the 

increased material flow caused by the threaded pin and the increased rotational velocity. 

Each of these welds fractured outside of the weld zone during the tensile tests.  

 The effect of the presence of the JLR and hooking defect within the weld zones 

on tensile strength is unclear. Each weld in the study exhibited, to some extent, the 

presence of both of these defects. Typically the presence of these defects, or voids, 

severely reduces the strength of the weld joint. However welds 1, 2, 7, and 8 all exhibited 

good tensile properties (65-87%).   

 

Figure 36 Graphical representation of a typical full penetration butt weld joint 
configuration 

 



48 
 

 One possible explanation for the significant presence of the JLR seen in the lap 

welded Mg AZ31B could be attributed to the joint configuration itself. The typical butt 

joint weld configuration can be seen in Figure 36. The tool is represented by the blue 

object, the material by the green rectangles, and the TMAZ by the dark semi-circle. The 

welding direction is into the page. For this weld, the joint line is completely mechanically 

disrupted by the pin. If any JLR remains it would be dislocated to the outer edge of the 

weld zone. Further, the presence of oxide layers between the plates is minimal as the 

surface area of the material joint line is significantly small. If there is a presence of the 

JLR it can be reduced by increasing the length of the pin, effectively mechanically 

displacing more of the original joint line.  

 

Figure 37 Graphical representation of a typical lap weld joint configuration 

 

When considering the lap joint weld configuration it can be seen that the joint line 

extends for the entire length of the material perpendicular to the weld line. The typical 

geometry of a lap joint can be seen in Figure 37. For this geometry the pin of the tool 

only directly mechanically displaces the portion of the joint line that overlaps with the 

weld path, meaning that the stirring must take place through the rigid interface created by 

the top and bottom plates. Further, the presence of oxides is significantly higher for this 

geometry, several times over that of the butt weld, which was clearly observed in the 
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cross sections of the weld samples. Increasing the length of the pin is not a reasonable 

way to eliminate the JLR (as is the case for butt joints) since it will not help increase the 

amount of the joint line being mechanically affected. Instead the pin would need to have 

its diameter increased. However, increasing the pin diameter would require that the 

diameter of the tool shoulder be increased to maintain a proper pin to shoulder ratio. A 

better option to eliminate, or at least reduce, the presence of the JLR would be to: a) use a 

tool with a higher static to swept volume ratio such as the A-skewTM tool design (see 

Table 1), b) use a weave-type weld path to increase the width of the weld nugget c) some 

combination of a and b. Increasing the width of the weld zone would help reduce the 

presence of the JLR.  

 The observed JLR is also reported by Cao et al. in their 2009 publication. Termed 

the “kissing bond”, the boundary between the top and bottom plate throughout the weld 

zone was characterized by Cao as having irregular morphologies which they attributed to 

the oscillating welding forces of the process.  Moreover, Cao et al. determined that these 

“kissing bonds” are formations of oxide bands which are typical for welding Mg alloys. It 

also stated that the width of a kissing bond is much narrower than that of a hooking 

defect but can be detrimental to the tensile strength of a weld [Cao 2009]. The presence 

of the joint line remnant does not affect the tensile properties of the weld [Kumar 2010]. 

The tool used in this study did however provide sufficient stirring and material flow (see 

Figure 38). 
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Figure 38 Weld 3 10 ipm, 1500 rpm, 55% UTS of parent material, non-etched. 
Retreating side is to the left of the image, advancing to the right. 

 

In Figure 38 it can be seen that there was sufficient stirring at the bottom of the weld and 

throughout the weld zone. JLR can be seen on the retreating side and a slight hooking 

defect is visible on the right outside of the weld zone. 

 

Summary of Experimental Lap Weld Results 
 

• It has been demonstrated that friction stir welding is a viable method for joining 

Mg AZ31B H24 in a lap joint configuration with a single pass. 

• Welding forces were significantly higher (100%) for Mg AZ31B than for Al 6061 

T6. 

• Higher rotation speeds increased the overall tensile strength of the welds by 

increasing the stirring.  

• Increasing the traverse speed increased the overall tensile strength of the welds; or 

rather colder welds increased the tensile strength of the welds.  
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• The results of this experiment are the highest reported tensile strength for Mg 

AZ31B lap welds, 87% parent strength, 35% stronger than previously reported by 

Cao et al. 

• The results are also on the same level as the highest reported % parent strength of 

butt joint welds, 85% parent strength by Lee, et al. 
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CHAPTER IV 

 

A CFD MODEL FOR THE FRICTION STIR WELDING OF Mg AZ31B 

 

 

Introduction 

 To gain better understanding of the processes present during the friction stir 

welding of Mg AZ31B a computational fluid dynamics model (CFD) of the process was 

created. The use and application of CFD for FSW is a widely accepted method of 

modeling as previously published by Cox et al. (2010), Lammlein et al. (2009, 2010), 

Sinclair et al. (2009), and Crawford et al. (2006). Each of these models from the 

Vanderbilt University Welding Automation Laboratory were created to either predict the 

effects of specific variable changes in the process or to help explain an observation that 

was unexpected or not well understood. CFD models of FSW provide the users with 

information regarding temperature and velocity profiles of the welded material and tool 

and to some extent the axial loading on the tool during welding. While the prediction of 

forces is not as directly comparable to the actual process, general trends and behaviors 

have been predicted with the models. However there are some differences between the 

previously created models and that of the model used for the purposes of this study. 

 The aforementioned models dealt strictly with an aluminum alloy (Al 6061 T6) 

using steel tools with smooth pins, conical pins, and threaded pins. The model created for 

this study has two distinct differences: a) the material modeled is a magnesium alloy (Mg 
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AZ31B) which has been discussed very little in recent publications b) the tool used for 

the experiment has threads, flutes, and a cupped tip which makes the creation of the mesh 

slightly more involved. The description and results of the model will be described. 

 

Creating the Mg AZ31B CFD Model 

 The model was created using a commercially available CFD software package 

called FLUENT created by the company Ansys. FLUENT was the software package used 

for the previously mentioned CFD models. FLUENT is a general CFD code based on the 

finite volume method located on a collocated grid or mesh. While FLUENT is used to 

handle the simulation of the process, Gambit (also created by Ansys) allows the user to 

import a design from another CAD program or can be used to create the geometries, 

boundaries, grids, and meshes for the model; the latter was used for this study.  

 

Tool Geometry and Mesh  

 The tool used for this experiment is a modified tri-flute design. The 3D geometry 

of the tool pin can be seen in Figure 39.  
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Figure 39 3D geometry of the tool pin created using Gambit. The tool is threaded, 
has 3 notches in a triangular orientation, and a cupped tip. 

 

 

Figure 40 a) CFD tool pin vertical profile b) CFD tool pin horizontal profile (bottom 
- up) 
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The tool was created to have the same overall physical dimensions and similar 

characteristics as the tool used for the experimental section. The tool has a shoulder 

diameter of 0.625 in, a pin diameter of 0.250 in, and a pin length of 0.116 in. Only a 

portion of the plate was modeled (3” x 6”) since only a small area is mechanically 

affected. The thermal boundaries were handled via boundary conditions (conduction, heat 

flux, fixed temperatures, etc.) The plates were modeled as a continuous plate without the 

rigid boundary inherent with the lap welds.  

 Once the geometries for the FSW tool and material samples were created Gambit 

was used to create the three dimensional mesh/grid that FLUENT will use to solve the 

CFD model.  The mesh was created to have more nodes and therefore more refinement 

around the areas of interest (the tool pin, shoulder, and probe bottom.) The choice of 

increased mesh refinement largely parallels areas of the geometry with finer details. A 

tetrahedral type volumetric element was used for the entire model. The tool consisted of 

43,188 nodes and 234,100 elements. The material plate consisted of 77,737 nodes and 

419,614 elements. The minimum skewness for an element within the model was 1 x 10-6 

and the maximum skewness was 0.749.  Skewness is a measure that describes the aspect 

ratios for the elements in the model and a skewness of greater than 0.75 is not wanted. 

Only one element in the model had a skewness of 0.749.  
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Figure 41 Mesh of the shoulder and tool pin. The left (in the image) side of the 
shoulder has a visibly larger mesh size since it is not in direct contact with the 

material.  

 

From Figure 41 it can be seen that the mesh size is more refined for the pin (and threads) 

than for the rest of the tool. This is because (as previously stated) the pin in directly in 

contact with the material that is being mechanically displaced and has the highest level of 

geometrical intricacy (threads, flutes, cups).  Figure 42 shows a closer view of the tool 

meshing. 
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Figure 42 Close-up view of the meshing used for the tool 

 

Figure 42 better shows the distinction between mesh refinements for areas of the tool. It 

can be seen that there is significant difference between the mesh size used for the 

interface between the threads and the cup, the pin and the shoulder, and the shoulder 

section located at the top left of the image. A refined mesh could be used for the entire 

model but would drastically increase the run time without providing a better or more 

accurate solution. Figure 43 provides a look at the meshing used for the entire model. 
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Figure 43 Complete mesh used for the model 

 

Again, one can be see the differences in mesh refinement between the tool and the plate. 

In Figure 43 the mesh used for the shoulder, plate, and pin can be seen. There are fewer 

nodes in use on the side walls of the plate than that of the pin and shoulder due to the lack 

of rapid mechanical and thermal activity at these boundaries.  

 
Boundary Conditions 

The boundary conditions for this model can be seen in Figure 44.  The tool itself was 

modeled as a single solid mass. To model the thermal effects of the tool shank, tool 

holder, and heat transfer up through the spindle a specific heat transfer coefficient was 

used. A coefficient of 100 W/m2K was used for the top of the tool and a coefficient of 30 

W/m2K was used for the sides of the tool. The heat input through the interface between 

the shoulder and the material were modeled as a heat flux which was adjusted to agree 

with the observed experimental torque values. The top surface of the plate was given a 

convective heat transfer coefficient of 20 W/m2K and the bottom surface of the plate was 

given a conductive heat transfer coefficient of 100 W/m2K. The top of the plate interfaces 
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with the ambient air while the back of the plate is in contact with a large thermal mass. 

The “fresh” material was set to be 300°K while the exit was modeled as a pressure outlet.  

The rotation of the tool was modeled by setting the velocities of the walls representing 

the pin, shoulder, and the bottom of the pin as having a local tangential velocity about the 

central axis of the tool (tilted 1° relative to the coordinate from of the model.)  

 

Figure 44 Boundary conditions used for the CFD model of the FSW of Mg 
(graphical representation). 

 

CFD Model for FSW of Mg AZ31B 

 The CFD model was created using the Eulerian, finite volume, CFD solver, 

FLUENT. The mechanically affected zone is modeled as having a viscosity, which can 

be approximated using the visco-plastic model modified by Sellars and Tegart, a widely 
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used model [Sellars 1966]. The flow stress, as defined by Sellars et al., appears as the 

following expression: 

 

Where A (s-1), n, σR (MPa) (effective stress), and Q (kJ mol-1), the activation energy, are 

all defined to be material constants determined from curve fitting experimentally 

obtained data with the Sellars and Tegart formulation [Tello 2010]. The effective stress 

(σR) is sometimes expressed as alpha (α (1/MPa)) and is obtained from curve fitting 

experimental data.  The effective stress (also known as the von Mises stress) is a scalar 

value that measures the intensity of the entire stress state as it includes the three principal 

stresses in the x, y, and z directions, along with the shear stresses on the x, y, and z planes 

[Logan 2007]. R is the universal gas constant and T is the reference temperature (°K).The 

results of their work can be seen in Figure 45.  This expression is similar to the 

calculation used for the Zener-Holloman parameter. For example, re-writing the Zener-

Holloman parameter using the Sellars formulation for strain rate yields a similar 

relationship relating stress with the activation energy and temperature, which helps to 

characterize dynamic recrystallization [Pareek 2007].  

 

Substituting this expression back into the Sellars formulation of strain rate yields (another 

form of the Sellars and Tegart expression used in the literature): 
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Figure 45 Hot deformation data for Mg AZ31B (temperature range is 
approximately 350 - 715°K) [Tello 2010] 

 

The values used for the expression can be seen in Figure 45 (A = 7.78x108 s-1, n = 4.36, 

Q = 129 kJ mol-1, σR = 53.3 MPa).  

 FLUENT requires that the material being modeled have a defined viscosity. 

Colegrove et al. approximated the viscosity ( ) of the metal using a ratio of the effective 

stress and the strain rate [Colegrove 2005] (see Figure 3 of the Appendix for the user 

defined function (UDF) used to approximate the viscosity in FLUENT): 
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As the metal approaches the melting temperature significant softening occurs which 

reduces the amount of additional energy needed for plastic deformation. Mg AZ31B’s 

temperature dependent properties were listed and discussed in an earlier section (page 10 

of this thesis). The total heat input was calculated using the weld power method as 

previously discussed (page 33 of this thesis). However for review the expression for weld 

power has the form: 

P = Ω•M 

The total heat input at the interface, Q, is defined as: 

Q = P•β 

Where P is the weld power (W), Q is the heat input (W), Ω is the tool rotation speed 

(rad/s), M is the observed torque (N•m), and β represents the fraction of heat transmitted 

into the weld. The rotation speed was set to 70% of the experimental value 2000 rpm’s. 

The feed rate for the model was 10 inches per minute. The viscosity, density, and rotation 

(spindle) speed were increased iteratively in order to reach a sound and converged model.  

 

Results and Discussion of the CFD Model 

The results of the model are in good agreement with, and help explain the experimental 

observations. The model was used to observe the heat transfer and material flow within 

the weld zone. The highest temperature reported in the model was around 600°C and 

occurred within the geometry of the tool. This is slightly higher than the experimentally 

observed, though the experimental observation was made higher up the shank of the tool 
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using thermal imaging equipment (the experimental observation from the shank is in 

good agreement with the temperature of the shank from the model, approx. 530°C). 

These temperatures are below the melting point of Mg AZ31B.  

 

Figure 46 Static temperatures found within the weld zone. The cross section view is 
taken halfway through the vertical tool plane. The advancing side is to the left of the 

tool. 

 

From Figure 46 it can be seen that the advancing side of the tool is significantly hotter 

over a larger percentage of the area than that of the retreating side. This difference in 

temperature most likely stems from the removal (resistance) of material from the 

advancing side and the deposition of the material on the retreating side. The lower 

temperatures on the retreating side provide a better picture as to why the joint line 
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remnant only appears on the retreating side of the pin. The appearance of the joint line 

remnant typically suggests that there is insufficient stirring from the pin, and therefore the 

oxide layer is not able to be completely broken up by the tool. From this we can see that 

the lower temperatures on the retreating side can be related to the observed presence of 

the joint line remnant in each of the welds that were cross sectioned. These results are in 

agreement with Kumar et al. which found that it is on the advancing side that the material 

begins undergoing plastic deformation. Having this initial interface on the advancing side 

avoided the formation of the joint line remnant [Kumar 2010].  

The higher temperatures on the advancing side are above the solidus point (605° C) for 

Mg AZ31B. At this temperature the metal begins to soften but it not completely melted 

making it easier for the metal to plastically deform. The advancing side of the tool is 

mostly above this temperature while the retreating side of the tool is mostly below. The 

higher temperatures on the advancing side indicate that the material on this side is 

significantly softer which would make it easier for the tool to break up the joint line. The 

lower temperature on the retreating side of the tool may play a part in the formation of 

the joint line remnant.  
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Figure 47 Velocity magnitudes found within the weld zone. The cross section view is 
taken halfway through the vertical tool plane. The advancing side is to the left of the 

tool. 

 

The velocity profile of the pin (as seen in Figure 47) provides a closer look at the flow of 

material around the pin. There is some error on the advancing side that suggests material 

outside of the shoulder is being stirred which is experimentally known and observed to 

not be the case, and will not be considered. However, the model does show that the 

mechanical stirring does tend to favor the advancing side over the retreating, though not 

as pronounced as that observed in the temperature profiles. The tool exhibits excellent 

mixing in both the vertical and horizontal directions, although there is a section at the 



66 
 

center of the cup that appears to have no substantial material movement. This lack of 

movement appeared in one of the cross sectioned welds as a weld void (Figure 35 “d”). 

 

Figure 48 Comparison between CFD results and experimental cross sections 

 

The experimental and CFD results are compared in Figure 48. The joint line remnant 

seen on the retreating side in the experimental cross sections is in good agreement with 

the significantly lower temperatures on the retreating side found in the CFD cross section. 

The red and very dark orange sections of Figure 48 represent the area of the weld zone 

that is between the solidus and liquidus temperatures. It can be seen that most of the weld 

zone on the retreating side of the weld is not within this temperature zone. Within this 

area on the macro-section it can be seen that there is no observable JLR. On the retreating 

side of the weld zone the temperature is below the solidus temperature and the presence 

of the JLR is very pronounced. The CFD model also manages to capture the general 

shape of the boundary of the TMAZ seen in the experimental cross sections and shows a 

good level of mixing top to bottom. 
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CHAPTER V 

 

CONCLUSIONS 

 

 The results of the experiment showed a strong correlation between the resulting 

joint efficiency and the traverse/rotation speed of the tool. Unlike the majority of the 

findings in the literature, it was found that welding at higher traverse rates greatly 

increased the tensile strength of the welds. Similarly, increasing the rotation speed also 

increased the joint strength of the weld samples.  The maximum ultimate tensile strength 

for both the 1500 and 2000 RPM welds occurred at 18 inches per minute and were 

55.34% and 86.68% respectively. The lowest ultimate tensile strength for the 2000 RPM 

welds occurred at 2 inches per minute and was 33.3% of the parent sample.  

 The increased strength associated with the higher traverse rates is thought to be 

due to the reduced size of the grain structure as reported in the literature. Smaller grain 

sizes in the material increase the tensile strength and the ductility of the metal, which was 

observed in this experiment. The correlation between tensile strength and rotation speed 

is thought to be related to the increased strain (deformation) experienced by the 

workpiece. The higher rotation speeds increase the amount of deformation in the metal 

which helps to further refine the grain structure.   

 The higher rotation speeds inherently provide more stirring which helped break 

up the layer of oxide between the two plates. This layer of oxide can lead to a poor joint 
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line which may result in the formation of defects that can cause the welds to be weak. 

The increased stirring reduces the amount of the joint line remnant observed in the weld 

macro-sections but it does not eliminate it. Using a tool with a larger static pin to swept 

volume ratio (similar to the A-skew tool in Table 1) would promote more stirring and 

may help to eliminate the observed joint line remnants in each weld. The observation of 

the dispersoids within the weld zones can be attributed to the reactivity of the Mg AZ31B 

with the natural air environment during the weld. Repeating these welds in an inert 

environment such as a nitrogen or argon atmosphere may eliminate the formation of these 

dispersoids.   

 The results of the fluid dynamic model showed that there was a significant 

difference between the temperature gradient on the advancing side of the weld and that of 

the retreating side. It was found that a majority of the material on the advancing side was 

above the solidus temperature (605°C) while only a small portion of the weld on the 

retreating side was above this temperature. At this higher temperature, the material on the 

advancing side is softened, which increases the extent to which the material is plastically 

deformed (throughout the TMAZ). The absence of a joint line remnant (JLR) on the 

advancing side and the presence of the JLR on the retreating side may be an indication of 

an increase in stirring. Welding (FSW) Mg AZ31B above its solidus temperature results 

in a larger area of the HAZ that experiences plastic deformation. When Mg AZ31B is 

above the solidus point it begins to soften and increases the effectiveness of the FSW tool 

to stir (shear) the material. 

 It has been demonstrated that friction stir welding is a viable method for joining 

Mg AZ31B in a lap joint configuration with a single pass. High rotation speeds and 
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traverse speeds were found to produce the strongest welds. Experiments to help reduce 

the occurrence of the joint line remnant should be performed to further the understanding 

of joining this metal alloy. Different tool geometries and/or the welding procedure itself 

could be altered as previously mentioned to reduce the occurrence of defects. 
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APPENDIX 
 

 

1. Example of the rotation resulting from a tensile test on a lap weld sample. Hendricks et 

al. created a finite element model to capture the rotation of an Al6061 lap weld 

undergoing a tensile test. Note the out of plane rotation. The blue mesh represents the 

original part and the white mesh represents the deformed part. 

 

Appendix Figure 2 [Hendricks 2009] 
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2.The hooking defect occurs when the oxide layer between the top and bottom plate is not 

disrupted by the rotation of the pin. The appearance of the hooking defect can occur on 

both sides of the pin (advancing and retreating) and can reduce the strength of the weld. 

A drawing of the hooking defect can be seen below.  

 

Appendix Figure 3. Drawing of the hooking defect observed in lap welds of Mg 
AZ31B. The black lines represent the hooking defect. This defect creates a stress 

concentration. 
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3.  User Defined Function (UDF) used in FLUENT model to set an approximate viscosity 

function of Mg AZ31B. 

 

Appendix Figure 3 UDF created to approximate the viscosity of the plasticized 
metal. 
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