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LIST OF DEFINITIONS 

 

The field of single-cell variability contains a number of terms which are used 

interchangeably in the literature (e.g. diversity, heterogeneity, noise, variability, 

and versatility).  For this dissertation, the following terms are used consistently 

for clarity: 

• “fluctuation” is a variation in a single-cell metric over time (e.g. speed, 

surface area). 

• “heterogeneity” is a variation in a population-level metric (e.g. average 

speeds, average DECCA). 

• “plasticity” is the ability to maintain metric variation, in a wide variety of 

conditions. 

• “variation” is a set of observed differences. 

• “variability” is the tendency of a system to generate differences. 

 

Using these definitions, speed fluctuation, speed heterogeneity, and speed 

variability are three unique terms. 

In addition, many metrics in this analysis were analyzed at both the single-cell 

and population level.  The terms “single-cell” and “population-level” are employed 

to assist the reader with the distinction, and the following definitions are 

consistent throughout the text: 

• “metric” is a type of measurement used to gauge some quantifiable 

component of a cell. 
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• “single-cell metric” is a measurement in which any cell has multiple values 

over time. 

• “population-level metric” is a measurement in which each cell in a 

population has a single value. 

 

Many metrics can be represented as both single-cell and population-level 

metrics.  For example, speed is a single-cell metric when evaluating the speed 

fluctuation for individual cells.  However, when individual cell speeds are 

averaged, and all these values are displayed for a cell line, speed becomes a 

population-level metric.   
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Cancer – The Problem 

Cancer is a major cause of death throughout the world, accounting for 7.4 

million deaths worldwide in 2004 alone.  If current worldwide trends continue, 

83.2 million people will die of cancer between 2008 and 2015 (World Health 

Organization, World Heath Statistics, 2008).  In the United States, cancer is the 

second leading cause of death, and accounts for 22.8% of deaths in the general 

population (Center for Disease Control, National Vital Statistics Reports, 2008).  

Due to the prevalence of this disease, a large amount of research and funding 

has been directed at finding a cure for cancer.  Great strides have been made, as 

evidenced by a downward trend in cancer deaths in the US since 1993 (National 

Cancer Institute, American Cancer Society, 2007).  However, there continues to 

be a great need for additional research, due to the complex nature of the 

disease.  Cancer is not simply one disease, but a cluster of several dozen related 

diseases.  For this reason, an optimal cure for one type of cancer is not 

necessarily transferable to the others.  Most likely, targeted strategies of 

treatment must be developed for all cancer types. 

All subtypes of cancer are progressive diseases, and most are divided into 

five distinct clinicopathologic stages.  Stage 0 refers to carcinoma in situ, a 

cancer that has not spread beyond its encapsulated boundary (the basement 
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membrane).  Stage I cancers indicate penetration, and limited invasion beyond 

the BM.  Stage II and Stage III denote more advanced local spread of the cancer.  

Stage IV refers to a cancer which has metastasized to a distant area of the body.  

Cancers of stage 0 and I generally have a good prognosis and are curable 

(Kumar et al., 2004).  Patient prognosis and life expectancy drops significantly 

when a patient’s cancer is found to be Stage III or IV.  The overwhelming cause 

of death for the majority of cancer sub-types is Stage IV metastasis.  For this 

reason, early detection and treatment of low-stage cancer is currently the best 

chance for cure.  However, there is still a great need for treatment of Stage III 

and IV cancers.  Attempts to halt or slow metastasis could dramatically increase 

the quality and length of life for those living with high-stage cancers. 

 

1.1.1 The Origins of Cancer 

The complexity of tumor progression and metastasis has driven decades 

of a reductionist approach to cancer research that has largely focused on 

identifying the causes of oncogenic transformation, tumor growth, and on 

dissecting the molecular bases of the disease (Christofori, 2006; Woodhouse et 

al., 1997).  Many molecular markers have been identified as contributors to the 

formation of detectable metastases (Woodhouse et al., 1997; Chambers et al., 

2002), but no single mutation can explain the pathology of cancer.  Cancer was 

first suggested to be a multi-mutational disease in 1953 (Nording, 1953), and 

since then it has become clear that all human cancers display a multitude of 
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genetic changes, and that a number of such alterations are required for the step-

wise progression of tumor development (Knudson, 1971).  

However, disease progression and variation between cancers are also 

affected by interaction with the surrounding tissue and soluble ligands 

(microenvironment).  These other factors, along with genetic mutation, may help 

explain the complexities of the disease of cancer (Sherwood, 2006; Bissell and 

Labarge, 2005).  It has become increasingly clear that the tumor 

microenvironment has a critical role in malignant tumor progression and invasion 

(Figure 1.1; Liotta et al., 2001; Geho et al., 2005; Quaranta, 2002; Quaranta and 

Giannelli, 2003; Quaranta et al., 2005).   

In total, cancer progression is thought to be a selective process 

determined by two key factors: the generation of heterogeneity, and the selection 

of variants most suited to survive (Dexter and Leith, 1986).  Understanding how 

heterogeneity develops is a crucial step towards enhanced clinical outcome. 

 

1.1.2 Variability of Cancer 

1.1.2.1 Variation in Cancer 

In human medicine, variation in cancer is seen at all levels, including clinical 

behavior, response to treatment, location of tumor, type of tumor, and variation of 

each cell within a tumor. Pathologically, cancers are well known to be highly 

heterogeneous, both grossly and microscopically (Kumar et al., 2004).  

Morphological heterogeneity, known as pleomorphism, is commonly seen in 

malignant tumors (Kumar et al., 2004).  Cell-to-cell variability is also seen in 



Figure 1.1 - Tumor microenvironment.  Many extrinsic factors present in and around a 
tmor are involved in cancer progression.

Anderson and Quaranta, 2008 Nature Reviews | Cancer

4
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cancer cell lines in vitro (Tomelleri et al., 2008; Brodt et al., 1985), including 

variation of proliferation, migration, metabolism, and morphology.  Understanding 

the causes and significance of cancer cell heterogeneity is a critical step in 

cancer research, and may have a key impact on clinical cancer therepies and 

prediction of response to treatment. 

1.1.2.2 Sources of Variation 

There are many sources that may generate heterogeneity within tumors, 

including: mutations, epigenetics (chromatin remodeling, gene silencing, and X 

chromosome inactivation), alternative splicing, variation in mRNA expression 

levels, variation in protein production, microenvironmental influence, and 

asymmetric distribution of organelles and cellular components during cell division 

(Goswami et al., 2008).   These sources can be broken down into three groups: 

genetic, epigenetic, and non-genetic sources of heterogeneity. 

There is ample evidence supporting the role of genetic heterogeneity in 

cancer progression.  For example, accumulation of mutations and chromosomal 

abnormalities/instability is common in cancer (Dutrillaux, 1995; Anderson et al., 

2001; Giaretti et al., 2003; Hermsen et al., 2002; Rabinovitch et al., 1999; 

Risques et al., 2003; Sieber et al., 2002), and has been shown to drive 

heterogeneity of cancer cell lines (Cifone and Fidler, 1981; Cram et al., 1983; 

Kraemer et al., 1983).  This heterogeneity has been correlated with malignant 

potential by contributing to the creation of variant subpopulations of cells with 

altered abilities (Chow and Rubin, 1999; Dexter and Leith, 1986; Poste et al., 

1981). 
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Epigenetic heterogeneity has also been implicated in cancer; specifically     

DNA methylation and histone modification (Egger, et al., 2004; Zhang and Dent, 

2005; Santos-Rosa and Caldas, 2005; Feinberg and  Tycko, 2004). 

Non-genetic heterogeneity’s role in cancer, in contrast, has not bee 

studied in detail.  One method that could be used to study non-genetic variability 

is to examine the variation in specific traits between individual cells within a 

population.  Intriguing observations have been reported through application of 

these types of experiments, such as the phenotypic variation in genetically 

identical individuals (Raser and O'Shea, 2005; Samoilov et al., 2006), genes 

regulating the variability of expression of other genes (Colman-Lerner et al., 

2005), methods to separate subpopulations (Loo et al., 2007; Slack et al., 2008), 

and variation as an evolvable trait (Fraser et al., 2004; Fraser and Kaern, 2009). 

Currently, there is renewed interest in investigating the cell-to-cell phenotypic 

heterogeneity in genetically homogenous cell populations. This is due in part to 

available new technology that allows quantitation of mRNA expression in single 

cells (Lin et al., 2007; Subkhankulova et al., 2008), the rise of high-content 

microscopy (Bullen, 2008; Glory and Murphy, 2007; Pepperkok and Ellenberg, 

2006), and the availability of image feature extraction software (Nixon and 

Aguado, 2007; Lamprecht et al., 2007), all of which make it possible to quantify 

heterogeneity at the single-cell level.   

Through the further development of assays to quantify single-cell variation, 

we can better understand the non-genetic heterogeneity present within cancer 

cell lines (Slack et al., 2008; Gordeon et al., 2007).  In general, biology at the 
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single-cell level has diverged sharply from our expectations (Levsky and Singer, 

2003), but significant progress has been made in the field with the application of 

model systems.  For example, research on Escherichia coli (Rosenfield et al., 

2005; Elowitz et al., 2002; Pedraza et al., 2005; Rosenfeld et al., 2005) and 

Saccharomyces cerevisiae (Colman-Lerner et al., 2005; Raser et al., 2004; Bar-

Even et al., 2006) demonstrate that even genetically identical single-celled 

organisms have substantial variation in phenotypic traits (Samoilov et al., 2006).  

Multiple traits demonstrating variation have been studied at the single-cell level, 

including: mRNA expression (Grossman et al., 1995; Elowitz et al., 2002; 

Kemkemer et al., 2002), protein transcription (Rosenfeld et al., 2005; Yu et al., 

2006), and phenotypic responses (Gascoigne and Taylor, 2008, Colman-Lerner 

et al., 2005).   These findings further demonstrate that genetically identical cells 

can have surprisingly large variation in these assorted traits.   

Non-genetic heterogeneity can occur along different time courses.  For 

example, variation in mRNA expression of a protein with a high turnover may 

lead to a subtle, transient phenotypic variation between cells.  However, 

alterations in a more stable, upstream-acting protein, might be passed along 

during cell division and lead to temporary inheritance, lasting two or more 

generations.  Thus, non-genetic heterogeneity could produce either transient or 

long-lasting effects, depending on the nature of the sub-cellular variation.  In this 

dissertation, various experimental and analytical methods are developed and 

utilized to study cancer cell heterogeneity. 
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1.2 Summary of Dissertation 

The following chapters are laid out in a logical order, and often refer to one 

another.  The overall outline is: i) introduction of the problem, ii) identification of 

the model system and experimental design, iii) evidence in support of the 

hypotheses, iv) design of additional metrics of analysis, v) development of a 

multivariate method of single-cell analysis, and vi) a summary of the results.  To 

a large extent, the following chapters can be read independently, since they lay 

out different areas of this research. 

 The introductory Chapter 1 lays out the problem of cancer as a disease, 

and identifies variability as a research topic that may spur novel research and 

advance our understanding of cancer. 

 Chapter 2 outlines the history, development, and use of migration assays 

in cancer research.  The logic behind utilizing cellular motility as a system for 

studying variability is laid out.  This chapter also introduces the experimental 

method used for data acquisition in this dissertation, and summarizes all data 

produced for the work. 

 Chapter 3 presents current research into variability between single cells, 

highlighting the phenotypic heterogeneity for a number of motility metrics.  The 

first hypothesis of this dissertation is presented: 

 

Hypothesis 1: a non-tumorigenic cell line will exhibit less variability of motility 

than a cancer cell line. 
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Data is presented in support of this hypothesis, utilizing the model system 

introduced in Chapter 2.  As a continuation of this research, a second hypothesis 

is proposed to examine the effect of the microenvironment on cell variability: 

 

Hypothesis 2: the removal of serum and mitogenic factors (EGF) will decrease 

the variability of motility of a non-tumorigenic cell line, and will not affect the 

variability of a cancer cell line. 

 

Results are provided which demonstrate that serum/EGF-depletion decreases 

the variability of the parental MCF10A cell line, but actually increases the 

variability of the derived, CA1d cancer cell line.  Evidence for these two 

hypotheses is provided through the quantification of the following metrics: 

individual cell speed fluctuation, variability of speed, population-level speed 

heterogeneity, day-to-day speed variability, and speed variation in response to 

serum/EGF-depleted media. 

 Chapter 4 reports results from the design of additional metrics to further 

examine motility for data captured for analysis in Chapter 3.  Persistence, step-

length distribution, motile cell fraction, and a novel metric, termed “instantaneous 

motion fraction” (IMF) are presented.  Information garnered from these metrics is 

used to probe differences between non-tumorigenic and cancer cell motility. 

 Chapter 5 outlines the development of a multivariate dynamic assay to 

study cell variability.  The primary goal was to quantitate multiple single-cell 

metrics from the same images.  Two algorithms are presented here, a surface 
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area algorithm, and a novel metric of cellular activity, termed “dynamic 

expansion/contraction of cell area” (DECCA).  Data is presented to demonstrate 

the feasibility of this technique, and its ability to produce three single-cell metrics 

dynamically (at every time point).  This dataset should be considered a proof-of-

principle, but some small conclusions can be gleamed from the example 

presented. 

 Finally, Chapter 6 offers a brief summary and discussion of the 

dissertation research as a whole, and the significance and implications of the 

work. 
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CHAPTER II 

 

MIGRATION ASSAYS 

 

2.1 Migration’s Role in Cancer 

The overwhelming cause of death for the majority of cancer sub-types is 

Stage IV metastasis (Section 1.1).  Attempts to halt or slow metastasis could 

drastically increase the quality and length of life for those living with high-stage 

cancers.  Migration plays a clear role in metastasis, and further knowledge of this 

process may aid in the development of new therapeutic interventions. 

 

2.1.1 Metastasis 

Metastasis occurs when cells from a primary tumor are transported 

through the bloodstream or lymphatic system, and begin to grow at a secondary 

site.  Metastasis of cancer cells results in 90% of the morbidity and mortality of 

solid tumors, and is one of the most critical factors for determining cancer 

prognosis (Sporn, 1997; Gupta et al., 2006).  Metastasis occurs in multiple steps, 

and these steps allow the tumor to: invade through surrounding tissue, 

intravasate into the vasculature, survive in the blood stream, extravasate at a 

foreign site, and grow and survive at the foreign site (Figure 2.1, Chambers and 

Matrisian,1997; Chambers et al., 2000). 

A single mutation can rarely account for a metastatic phenotype.  

Metastasis is most often the result of multiple mutations and phenotypic selection  



Figure 2.1 - Metastasis progression.  Metastasis is a multistep process, including: (1) primary 
tumor cell proliferation, (2) recruitment of blood vessels through angiogenesis, (3) local invasion by 
cancer cells, (4) intravasation into the circulatory system, (5) survival in the cirulation, (6) arrest at a 
secondary site, (7) extravasation out of a blood vessel and into the tissue.  The process is then 
repeated at the metastatic site.

McGee et al., 2006 EMBO reports

12
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within a tumor (Fidler and Hart, 1982; Liotta et al., 1983).  As an example, the 

Massague group used microarray technology to probe for genes that mediate 

breast cancer metastasis to the lung.  Their analysis revealed dozens of genes 

involved in a clinically relevant manner (Minn et al., 2005).  Metastasis is a 

complex process, and therefore the study of metastasis has been dissected into 

its component steps, and these processes are studied independently all over the 

world. 

 

2.1.2 Invasion 

The ability of cells to invade into surrounding tissues is a critical first phase 

in metastasis (Aznavoorian et al., 1993; Juhasz et al., 1993; Fidler, 2002).  This 

ability also involves multiple steps, and in the case of carcinomas, cells must 

cross the basement membrane.  To do so, cells must be capable of degrading 

the extracellular matrix (ECM), and migrating into surrounding tissue.  In vivo, 

cancer cells are often seen to invade through a morphological pattern called 

fingering (Kumar et al., 2004).   

Invasion is studied in a variety of ways.  In vitro assays have been 

designed to mimic cell invasion, these include: Boyden chamber assay, nest 

invasion assay, Platypus Oris invasion assay.  In this manner, researchers can 

examine factors that may increase or decrease the ability of cells to invade.  It is 

important to note that while these experiments can suggest particular cell lines or 

conditions that can lead to invasion, all experiments must be further tested in vivo 

to truly demonstrate an effect on a cell line’s invasive capacity. 
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2.1.3 Migration 

Cell Migration is often studied in an attempt to further understand the 

mechanisms behind cancer cell invasion and metastasis, since both mechanisms 

rely on the motility of cancer cells (Woodhouse et al., 1997, Clark et al., 2000, 

Condeelis and Segall, 2003).  Migration is essential for many physiological and 

pathological processes such as normal embryonic development, inflammation, 

wound healing, angiogenesis, and cancer metastasis (Trinkaus, 1984; 

Lauffenburger and Horwitz, 1996).  The process of eukaryotic cell migration 

includes a set of underlying, interlinked sub-processes including cytoskeletal 

reorganization, cell protrusion, attachment at the leading edge, cell contraction 

for physical translocation, and detachment of adhesion at the trailing edge of the 

cell (Lauffenburger and Horwitz, 1996; Sheetz, 1994; Chicurel, 2002).  Thus, 

migration is a highly complex, dynamic process that is stringently regulated not 

only by internal cellular signals, but also by external cues from the surrounding 

microenvironment (Lauffenburger, 1991; Quaranta, 2002).  Due to the intricacies 

of migration, and advancements in technology, migration has been studied in a 

number of ways. 

 

2.2 Migration Assays 

Eukaryotic cell migration in various microenvironments has been 

qualitatively and quantitatively measured using a variety of in vitro methods 

(Chicurel, 2002; Dormann and Weijer, 2006; Roy et al., 2002; Stephens and 

Allan, 2003; Guan, 2004; Bahnson et al., 2005). These methods generally fall 
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into two major categories: the first includes techniques that monitor the average 

behavior of a large populations of cells, such as classical wound-healing assays 

and Boyden chamber techniques (Guan, 2004); the second involves tracking 

individual cell motility, which commonly uses time-lapse video-microscopy 

(Dormann and Weijer, 2006; Guan, 2004). Both types of assays have their merits 

and limitations (Table 2.1).  Studying population motility allows researchers to 

obtain quantitative data very quickly, often with minimal expense, but only 

provides information about the average behavior of cells.  Single cell analysis 

allows the acquisition of more detailed information about cell motility (e.g. turn 

angle, velocity, cellular persistence), but the reaping of quantitative data can be 

extremely labor intensive.  The second category of assays can also reveal sub-

cellular dynamics of single cells, such as changes in cytoskeletal organization, 

lamellipodial protrusion, and focal adhesion turnover (Weaver et al., 2006; Webb 

et al., 2003). 

Single cell analysis is also useful because it eliminates a number of 

variables that can confound the results obtained from classical wound-healing 

and Boyden chamber assays, such as cell-cell adhesion and proliferation (DiMilla 

et al., 1993; Zygourakis and Marckenscoff 1996; Watanabe et al., 1995).  

Furthermore, cells freshly removed from culture can be plated just prior to 

performing an experiment; whereas in wound-healing or Electric Cell-substrate 

Impedance Sensing (ECISTM) assays, cells must first be grown to confluence 

(Guan, 2004; Lovelady et al., 2007; Keese et al., 2004).  Seeding cells just prior 

to time-lapse microscopy allows the experimenter to control the extracellular 
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Table 2.1. Current migration assays. 
 
 
Category 
 

Assay Name Quantification Strengths Weaknesses 

 
Population Level Migration Assays: 
Wound Scratch - speed of wound 

closure quantified by 
sheet movement 
- number of cells which 
have migrated into the 
wound 
- time to re-establish 
confluent monolayer 

-Fast 
-Cheap 

-Population based  
-Poor repeatability 
-Low sensitivity 
-No control of ECM 
-Semi-quantitative 
-Cell proliferation 
interferes 
 

Wound Electronic Cell 
Impedance 
Sensor (ECIS) 

% wound closure 
quantified by 
impendence sensor 

-Fast 
-Highly 
repeatable 
-High sensitivity 
 

-Requires special 
equipment 
-Expensive 
-Population based 
-No real-time imaging 
-No control of ECM  
-Cell proliferation 
interferes 

Wound Circular Wound 
Healing (CWA) 

% wound closure 
quantified by image 
analysis software (e.g. 
Photoshop) 

-Fast 
-Cheap 
-Highly 
repeatable 
-Tip does not 
remove matrix 

-Requires special 
equipment 
-Low sensitivity 
-No control of ECM 
-Cell proliferation 
interferes 

Wound Platypus Oris 
System 

% wound closure 
quantified by plate 
reader or image analysis 
software 

-Fast 
-Highly 
repeatable 
-Quantifiable 
with plate reader 
 

-Requires special 
equipment 
-Low sensitivity 
-No ECM present in 
wound 
-Cell proliferation 
interferes 

Boyden Boyden Number of cells which 
have migrated through 
the filter 

-Fast 
-Cheap 
-Chemotaxis 
-Can utilize 
ECM 
 

-Cells must migrate 
through membrane 
-Only looks at a 
subset of cells 
-Low sensitivity 
-False negatives 

 
Single cell Level Migration Assays: 
Single 
cell 

Microfluidics X, Y coordinantes of 
every cell at every time 
point 

-Highly 
repeatable 
-Real time 
imaging 
-High resolution 
-Creation of 
gradients: 
 both soluble 
and ECM 

-Requires special 
equipment 
-Cells are unhealthy 
-Data analysis is 
labor intensive 
 

Single 
cell  

Cell tracking X, Y coordinantes of 
every cell at every time 
point 

-Real time 
imaging 
-High resolution 
-Can utilize 
ECM 

-Data analysis is 
labor intensive 
-Difficult at high cell 
density 
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matrix (ECM), a useful variable for migration studies.  ECM molecules, including 

proteins such as laminin (Ln) and fibronectin (Fn), play a critical role in regulating 

cell shape, polarity, and growth (Ingber, 1990; Wang and Inber, 1994).  In 

classical assays, which often involve incubating cells for extended periods of 

time, experimenters are commonly burdened by cells laying down their own 

matrix components, confounding ECM experiments using population migration 

studies.  Although single cell analysis overcomes many problems associated with 

other types of assays, it continues to be a labor intensive measure of cellular 

migration due to its capacity for generating an abundance of quantitative data. 

 

2.2.1 Quantitation of Migration 

As outlined on Table 2.1, every migration assay has different strengths, 

weaknesses, and methods of quantification.  These assays are quantified in a 

number of ways.  Most cell migration assays can be divided up into four types of 

quantification: 1) counting cells (Boyden camber assays, chemotaxis assays); 2) 

tracking individual cells using software programs (single cell migration assays); 

3) distance covered by a migrating sheet of cells (scratch assay, CIA, NEA); and 

4) electrical impedance (ECIS).  The time involved in quantitation, the level of 

automation, and the accuracy of all measurements vary between methods.  Due 

to our goal of quantifying heterogeneity of motility within and between cell lines, a 

single cell migration assay (Section 2.4) was used to produce data for this 

dissertation.  It is clear that only single-cell migration assays can provide 
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quantitative analysis of cell-to-cell variation, and a multitude of other metrics (e.g. 

turn angle, cell size, shape). 

 

2.2.2 Software used to Quantify Single-cell Migration 

Accurately quantifying single-cell migration assays is necessary to dissect 

out the higher order behavior of cell migration.  A whole range of commercially 

available software programs have attempted to provide automated cell tracking 

(e.g. MetaMorph, OpenLab and Image J plugins) (Zimmer et al., 2006).  These 

programs typically rely on thresholding, edge detection filters, or template 

matching—functions useful for capturing cell motility when applied appropriately.  

Some semi- and fully-automated programs designed for analysis of amoebae, 

progenitor cells, and various other motile cell populations have also seen some 

success (Ray and Acton, 2005; Soll, 1995; Wessels et al., 2006); however, such 

software has failed to catch on with eukaryotic cell migration researchers due to 

high error rates for tracking phase contrast images (Zimmer and Olivo-Marin, 

2005).  Manual tracking currently remains the gold standard for phase contrast 

movies of epithelial cell migration (Zimmer et al., 2006).   

 

2.3 Migration as a Model System to Study Variability 

Cancer was introduced as a disease of variability in Section 1.1.2.  For this 

dissertation, migration is used as a model system to study the variability of 

cancer cell lines at the single-cell level (see hypotheses, Section 1.2).  There are 
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a number of reasons why we chose migration as a model system to study cancer 

variability in vitro: 

• observation of migrating cells easily demonstrated the extreme amount of 

variation present, while methods to quantify and statistically represent this 

variation were lacking 

• in cell biology, cell speeds are typically examined by population based 

motility assays, and thus are represented by an average number, which 

can lead to misleading conclusions 

• our laboratory had access to automated stage microscopes, allowing the 

collection of up to 120 movies at a time, which made these experiments 

feasible 

• computationally, we now have the storage capacity and image processing 

ability to undertake these studies 

• to our knowledge, there have been no large scale studies of single-cell 

cancer migration in multiple microenvironments 

 

2.4 Experimental Design 

ECM proteins were coated on NuncTM polystyrene, non-tissue culture 

treated, 6-well microplate dishes (Cole Parmer, Vernon Hills, IL) for 1 h at room 

temperature (RT).  Dishes were then blocked with 5% milk (Regilait, France) in 

phosphate buffered saline solution (PBS, Invitrogen) for 1 h at 37ºC.  Cell lines 

were trypsinized (TrypLE Select, Invitrogen, Sunnyvale, CA), neutralized with 

growth media (L-15 media  supplemented as appropriate for each cell line), 
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washed three times in PBS, and 2x104 cells per well were resuspended in growth 

media in 6-well microplates.  Cells were allowed to adhere for 1 h within the 

heated (37ºC) microscope chamber prior to image capture. 

Time-lapse microscopy was conducted using a Zeiss Axiovert 200M 

microscope (Zeiss, Thornwood, NY) equipped with a temperature-controlled 

chamber and an automated x-y-z stage.  Microscopy was under the control of 

MetaMorph software (Molecular Devices, Sunnyvale, CA).  At the beginning of 

each experiment (0 h), 4-8 regions of interest (ROI) were selected at random 

from within each well for imaging.  Each ROI was focused manually, and the 

coordinates saved using MetaMorph’s “Multi-dimensional Acquisition” tool for 

subsequent imaging.  Phase-contrast images were captured automatically at 

each ROI every 5 min, for 4 h.  Following image capture, all 49 images from a 

particular coordinate were combined using MetaMorph to produce image stacks.  

Cell speed was quantified manually by tracking the center of each cell’s nucleus, 

using MetaMorph’s “Track Points” function. 

The selection of 5 min time resolution and 4 h movies was based on 

several criteria: 

1. A time resolution of 5 min allows accurate determination of 

persistence time for epithelial cells (previously reported persistence 

time was roughly 10 min (Dunn and Brown, 1987)). 

2. A movie duration of 4 h is required to determine if cells become 

diffusive over time, as calculated by the Furth equation for a 10 min 

persistence time (Furth, 1920). 
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3. Longer movie durations (more than 8 h) would have allowed cells to 

alter their matrix, and would not allow us to examine cell movement 

on different matrices. 

4. Limitations of storage space, processing power, and time spent on 

manual data analysis. 

 

Therefore, the time resolution and overall time for the experiment carefully 

balanced the need for a detailed dataset, and the need for a large dataset.  Since 

we were interested in studying heterogeneity, we needed hundreds of cells in a 

number of microenvironmental conditions.  Overall, the resolution and time 

course was based on the ability to answer our questions, as based on previously 

published literature. 

 

2.5 Summary of Migration Experiments 

For the analysis of cell migration, 47 individual experiments were 

undertaken.  These include the analysis of 6 cell lines, 2 conditions, and 6 

different types of ECM.  A full list of every experiment can be found on Table 2.2.  

In total, over 7,300 cells were tracked by hand, resulting in over 454,000 

individual x,y coordinates.  Actual x,y coordinates and/or average cell speed 

values were not included here due to size constraints (300+ pages).  The full 

dataset is located in an electronic copy in the Quaranta laboratory.  Chapters 3, 4 

and 5 utilize a subset of experiments, highlighted in Table 2.2, to test specific 

hypotheses. 
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Table 2.2 – Summary of cell migration experiments.  This table represents all cell 
migration experiments performed and quantified as a part of this dissertation.  A subset of 
these data were used for analysis in Chapter 3 and 4 (light gray shading), and Chapter 5 (dark 
gray shading).  Every row of this table is associated with 4 to 8 individual movies.  Full movies 
and data are stored in the Quaranta laboratory at Vanderbilt University. 
 

Date Cell Media Matrix Hours Res(min) # cells Data Points 

070612 HT-1080 Full L-15 LG3 12 5 53 7632 

  L-15 -HS LG3 12 5 53 7632 

070717 A431 Full L-15 Col 4 5 56 2688 

  Full L-15 FN 4 5 13 624 

071026 HT-1080 Full L-15 bLG4 4 5 86 4128 

  Full L-15 LN5 4 5 91 4368 

  Full L-15 PBS 4 5 90 4320 

071120 HT-1080 Full L-15 bLG4 4 5 65 3120 

  Full L-15 LN5 4 5 86 4128 

  Full L-15 FN 4 5 91 4368 

  Full L-15 PBS 4 5 59 2832 

071129 HT-1080 Full L-15 PBS 4 1 17 816 

  Full L-15 LN5 4 1 32 1536 

071218 MCF Full L-15 FN 4 5 141 6909 

  Full L-15 LN5 4 5 140 6860 

 AT1 Full L-15 FN 4 5 95 4655 

  Full L-15 LN5 4 5 103 5047 

 CA1d Full L-15 FN 4 5 113 5537 

  Full L-15 LN5 4 5 184 9016 

080114 MCF Depleted L-15 FN 4 5 40 1960 

  Depleted L-15 LN5 4 5 121 5929 

 AT1 Depleted L-15 FN 4 5 31 1519 

  Depleted L-15 LN5 4 5 103 5047 

 CA1d Depleted L-15 FN 4 5 35 1715 

  Depleted L-15 LN5 4 5 104 5096 

080128 MCF Full L-15 FN 4 5 76 3724 

 AT1 Full L-15 FN 4 5 79 3871 

 CA1d Full L-15 FN 4 5 90 4410 

080204 MCF Full L-15 FN 4 5 19 931 

  Full L-15 LN5 4 5 34 1666 

 AT1 Full L-15 FN 4 5 10 490 

 CA1d Full L-15 FN 4 5 35 1715 

  Full L-15 LN5 4 5 34 1666 

080213 MCF Full L-15 LN5 4 5 51 2499 

  Depleted L-15 LN5 4 5 68 3332 

 AT1 Full L-15 LN5 4 5 59 2891 

  Depleted L-15 LN5 4 5 79 3871 

 CA1d Full L-15 LN5 4 5 37 1813 

  Depleted L-15 LN5 4 5 51 2499 
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Table 2.2 continued 
Date Cell Media Matrix Hours Res(min) 

# 
cells 

Data 
Points 

080228 MCF Full L-15 LN5 4 5 32 1568 

  Depleted L-15 LN5 4 5 49 2401 

 AT1 Full L-15 LN5 4 5 34 1666 

  Depleted L-15 LN5 4 5 32 1568 

 CA1d Full L-15 LN5 4 5 27 1323 

  Depleted L-15 LN5 4 5 36 1764 

080313 MCF Full L-15 LN5 4 5 35 1715 

  Depleted L-15 LN5 4 5 37 1813 

 AT1 Full L-15 LN5 4 5 42 2058 

  Depleted L-15 LN5 4 5 33 1617 

 CA1d Full L-15 LN5 4 5 45 2205 

  Depleted L-15 LN5 4 5 51 2499 

080314 HT-1080 Full L-15 FN 4 5 32 1568 

  Full L-15 LN5 4 5 110 5390 

 A431 Full L-15 FN 4 5 76 3724 

  Full L-15 LN5 4 5 171 8379 

080318 HT-1080 Full L-15 FN 4 5 57 2793 

  Full L-15 LN5 4 5 160 7840 

 A431 Full L-15 FN 4 5 48 6027 

  Full L-15 LN5 4 5 123 6027 

080320 A431 Full L-15 FN 4 5 151 7399 

  Full L-15 LN5 4 5 154 7546 

080417 CAFTD Full L-15 FN 4 5 16 784 

  Depleted L-15 FN 4 5 19 931 

  Full L-15 LN5 4 5 40 1960 

  Depleted L-15 LN5 4 5 34 1666 

080513 MCF Full L-15 LN5 4 5 118 5782 

  Depleted L-15 LN5 4 5 145 7105 

 AT1 Full L-15 LN5 4 5 68 3332 

  Depleted L-15 LN5 4 5 120 5880 

 CA1d Full L-15 LN5 4 5 82 4018 

  Depleted L-15 LN5 4 5 110 5390 

080619 CA1d Full Matrigel Matrigel 4 5 6 294 

  
Depleted 
Matrigel Matrigel 4 5 4 196 

 A431 Full Matrigel Matrigel 4 5 8 392 

  
Depleted 
Matrigel Matrigel 4 5 6 294 

080620 CA1d Full Matrigel Matrigel 4 5 5 245 

  
Depleted 
Matrigel Matrigel 4 5 7 343 

 A431 Full Matrigel Matrigel 4 5 7 343 

  
Depleted 
Matrigel Matrigel 4 5 4 196 
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Table 2.2 continued 
Date Cell Media Matrix Hours Res(min) # cells 

Data 
Points 

080707 MCF Full L-15 LN5 4 5 43 2107 

  Depleted L-15 LN5 4 5 72 3528 

 AT1 Full L-15 LN5 4 5 46 2254 

  Depleted L-15 LN5 4 5 63 3087 

 CA1d Full L-15 LN5 4 5 65 3185 

  Depleted L-15 LN5 4 5 51 2499 

080708 MCF Full Matrigel Matrigel 4 5 36 1764 

  
Depleted 
Matrigel Matrigel 4 5 42 2058 

 AT1 Full Matrigel Matrigel 4 5 27 1323 

  
Depleted 
Matrigel Matrigel 4 5 61 2989 

 CA1d Full Matrigel Matrigel 4 5 41 2009 

  
Depleted 
Matrigel Matrigel 4 5 26 1274 

080721 MCF Full L-15 LN5 4 5 27 1323 

  Depleted L-15 LN5 4 5 41 2009 

 AT1 Full L-15 LN5 4 5 34 1666 

  Depleted L-15 LN5 4 5 60 2940 

 CA1d Full L-15 LN5 4 5 86 4214 

  Depleted L-15 LN5 4 5 140 6860 

 MCF Full Matrigel Matrigel 4 5 69 3381 

  
Depleted 
Matrigel Matrigel 4 5 116 5684 

 AT1 Full Matrigel Matrigel 4 5 201 9849 

  
Depleted 
Matrigel Matrigel 4 5 255 12495 

 CA1d Full Matrigel Matrigel 4 5 110 5390 

  
Depleted 
Matrigel Matrigel 4 5 59 2891 

081223 MCF Full L-15 LN5 4 5 81 3969 

  Depleted L-15 LN5 4 5 43 2107 

 AT1 Full L-15 LN5 4 5 98 4802 

  Depleted L-15 LN5 4 5 65 3185 

 CA1d Full L-15 LN5 4 5 83 4067 

  Depleted L-15 LN5 4 5 45 2205 

090121 Clone10 Depleted L-15 LN5 8 5 38 3686 

  Full L-15 LN5 8 5 32 3104 

 Clone11 Depleted L-15 LN5 8 5 45 4365 

  Full L-15 LN5 8 5 71 6887 

 Clone4 Depleted L-15 LN5 8 5 47 4559 

  Full L-15 LN5 8 5 65 6305 

 Clone8 Depleted L-15 LN5 8 5 47 4559 

  Full L-15 LN5 8 5 84 8148 

 Clone9 Depleted L-15 LN5 8 5 33 3201 

  Full L-15 LN5 8 5 38 3686 

 CA1d Depleted L-15 LN5 8 5 43 4171 

  Full L-15 LN5 8 5 50 4850 
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Table 2.2 continued 
Date Cell Media Matrix Hours Res(min) # cells 

Data 
Points 

090123 Clone10 Depleted L-15 LN5 8 5 95 9215 

  Full L-15 LN5 8 5 51 4947 

 Clone11 Depleted L-15 LN5 8 5 26 2522 

  Full L-15 LN5 8 5 50 4850 

 Clone4 Depleted L-15 LN5 8 5 122 11834 

  Full L-15 LN5 8 5 73 7081 

 Clone8 Depleted L-15 LN5 8 5 55 5335 

  Full L-15 LN5 8 5 30 2910 

 Clone9 Depleted L-15 LN5 8 5 48 4656 

  Full L-15 LN5 8 5 13 1261 

 CA1d Depleted L-15 LN5 8 5 76 7372 

  Full L-15 LN5 8 5 64 6208 

        

TOTAL    648  7308 493,727 
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CHAPTER III 

 
 

ANALYSIS OF CELL LINE SPEED VARIABILITY 

 

3.1 Background 

Currently, there is renewed interest in investigating cell phenotypic 

heterogeneity within genetically homogenous cell populations. This is due, in 

part, to newly available technologies, such as the ability to accurately quantify 

mRNA expression in single cells (Lin et al., 2007; Subkhankulova et al., 2008), 

the rise of high-content microscopy (Bullen 2008; Glory and Murphy, 2007; 

Pepperkok et al., 2006), and the development of image feature extraction 

software (Nixon and Aguado, 2007; Lamprecht et al., 2007)--all of which make it 

possible to quantify heterogeneity at the single-cell level.  Data collected at the 

single-cell level can then be used to derive phenotypic distributions within a cell 

population, rather than be limited to average measurement values. Interest has 

also been piqued by intriguing observations, such as phenotypic variation in 

genetically identical individuals (Raser et al., 2005; Samoilov, 2006), genes 

regulating the variability of expression of other genes (Colman-Lerner et al., 

2005), introduction of methods to represent population heterogeneity as 

subpopulations (Loo et al., 2007; Slack et al., 2008), and the concept of variation 

itself as an evolvable trait (Fraser et al., 2004). However, investigations into 

dynamic eukaryotic cell heterogeneity have not yet received the same level of 

attention. This lag is not surprising, in part because the technology necessary to 
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quantitate the behavior of thousands of cells over time has just recently been 

introduced (affordable high-content, time-lapse microscopy).  Only one report, to 

our knowledge, has described dynamic heterogeneity at the single-cell level to 

date (Gascoigne and Taylor, 2008). 

Microscopy has been long used in the biological sciences as a tool for 

extraction of cellular data.  As computer processing power and storage capacity 

continue to advance, there is a push towards automated quantitation of cellular 

features from microscopic images.  The information contained in biological 

images is vast, and there are currently groups working both on feature extraction 

(Lamprecht et al., 2007) and data analysis techniques in order to make sense of 

overwhelmingly abundant datasets (Loo et al., 2007; Slack et al., 2008; Jones et 

al., 2009).  Both feature extraction and data analysis become more complex 

when attempting to draw quantitative data from cells dynamically over time. 

The motility characteristics, in particular persistence, of many cell types 

have been studied, but the study of dynamic heterogeneity has been mainly 

reserved for model organisms such as S. cerevisiae and E. coli.  Therefore, it is 

not surprising that investigations into cancer cell heterogeneity have not received 

the same level of attention as that of model organisms.  However, the concept of 

cancer cell heterogeneity is central to several hypotheses of cancer progression 

and thus research in this area may lead to novel cancer insights.  For example, 

tumor progression is commonly described as a selective process determined by 

two key factors: the generation of heterogeneity and the selection of variants 

most suited to survive (Dexter and Leith, 1986).  Heterogeneity is most often 
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viewed as the accumulation of genetic mutations within a tumor, which gives rise 

to increased variation of cellular phenotypes (Cifone and Fidler, 1981; Cram et 

al., 1983; Kraemer et al., 1983).  Meanwhile, selective pressures within a tumor 

are also varied, but are known to include: anoxia, malnutrition, fluctuating 

hormone levels, and interaction with immune cells (Cahill et al., 1999; Casanovas 

et al., 2005; Mitsumoto et al., 1998; Pennacchietti et al., 2003; Smalley et al., 

2005).  The interplay between phenotypic selection and tumor progression is a 

central feature of the clonal evolution theory of cancer (Nowell, 1976), and is 

thought to be a driver of cancer progression and invasion (Anderson et al., 2006; 

Anderson and Quaranta, 2008).  Further, in the clonal evolution theory, genetic 

mutations arise, and tumor cells compete against one another for space and 

resources.  Those clones that grow the fastest and are more suited for survival 

will, over time, constitute the majority of the tumor volume (Hanahan and 

Weinberg, 2000). There are other sources that also generate heterogeneity 

within tumors, such as epigenetics, alternative splicing, and variation in mRNA 

expression levels (Goswami et al., 2009).  These types of heterogeneity 

generation could increase the inherent flexibility within a cancer cell population, 

and allow the tumor to adapt to and survive in many types of microenvironments. 

Here, heterogeneity was examined at the single-cell level through the lens 

of cell motility.  We studied three genetically-related cell lines (one non-

tumorigenic, the others cancer) using high-content microscopy. We examined 

over 1,500 cells and characterized their motility, both at the individual and 

population levels, with respect to several motility-based metrics, including: 
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individual cell speed fluctuation, variability of speed, population-level speed 

heterogeneity, day-to-day speed variability, and speed variation in response to 

serum/EGF-depleted media. Our experimental workflow is depicted in Figure 3.1. 

Our primary goal was to pursue a proof-of-principle that heterogeneity of cell 

motility exists within cell lines and that it can be estimated quantitatively.  

Two hypotheses are proposed to address heterogeneity of motility in non-

tumorigenic and cancer cell lines: 

• Hypothesis 1: a non-tumorigenic cell line will exhibit less variability of 

motility than a cancer cell line. 

• Hypothesis 2: the removal of serum and mitogenic factors (EGF) will 

decrease the variability of motility of a non-tumorigenic cell line, and will 

not affect the variability of a cancer cell line. 

 

3.2 Experimental Design 

To address these hypotheses, the MCF10A family of cell lines was 

utilized.  MCF10A, a human cell line derived from spontaneous immortalization of 

normal breast epithelial cells that is non-tumorigenic in nude mice (Miller et al., 

1993), MCF10A-AT1 (AT1), a tumorigenic ras oncogene transformed version of 

the parental cell line (Dawson et al., 1996), and MCF10A-CA1d (CA1d), a cell 

line derived from xenograft-passaging the parental line in nude mice creating a 

highly invasive cell line (Santner et al., 2001).  This model system was selected 

for a variety of reasons: 

• all three cell lines stem from the same genetic background 
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• the system represents a progression of increasing invasive potential, from 

non-tumorigenic, to tumorigenic, to invasive 

• their in vivo ability to form tumors and invade are well characterized 

• the system is used regularly in our laboratory for other research projects, 

so cell behavior in vitro is well characterized, and reagents are readily 

available 

 

Single-cell migration assays (Section 2.4) were used to analyze the speed 

of the three cell lines in two types of media (full media and serum/EGF- depleted) 

to examine the role of the microenvironment on cell speed.  The logic behind 

analyzing motility to study heterogeneity can be found in Section 2.3. 

The majority of the data analyzed within this chapter was compiled from 5 

experiments (see Table 2.2, dates: 080213, 080228, 080313, 080721, 081223).  

These represent 5 of 7 experiments conducted where MCF, AT1, CA1d cell lines 

were tested, in both full and serum/EGF-depleted media, on Ln-332.  Two dates 

(080513, 080707) were not included to eliminate an additional 

microenvironmental variable (different batches of Ln-332). 

 

3.2.1 Materials and Methods 

3.2.1.1 Cell Culture 

MCF10A, a human cell line derived from spontaneous immortalization of 

normal breast epithelial cells that is non-tumorigenic in nude mice (Miller et al., 

1993), MCF10A-AT1 (AT1), a tumorigenic ras oncogene transformed version of 



Figure 3.1 - Measured motility metrics and analyses.  Phase-contrast images were captured 
automatically at each ROI every 5 min, for 4 h.  Image stacks were produced and cell speed was 
quanti�ed manually by tracking the center of each cell’s nucleus.  Individual cell speeds, and x, y 
coordinates were utilized for futher analysis.  Data analysis was performed at both the single-cell 
and population-level.  All single-cell speeds were analyzed statistically by bootstrapping of their 
standard deviations (to achieve 95% con�dence intervals).  Step-length was calculated as the 
distance a single cell travels between pauses (two consecutive frames at the same coordinate).  The 
distribution of step-lengths was analyzed by log/log plotting of data and curve �tting.  Fits were 
demonstrated signi�cant using a maximum likelihood estimation method.  At the population-level, 
cell line distributions were assessed using frequency histograms and tests for normality, skewness, 
and kurtosis.  Further, speed variation between media conditions was calculated by standard 
deviation, (non)parametric tests, and post-hoc tests.  The motile cell fraction and instantaneous 
motion fractions were also calculated from speed data.  in addition, non-normalized (Dunn) persis-
tence times were calculated, and persistence values were normalized using the Kipper method.  
Finally, persistence times were analyzed by curve �tting. 
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the parental cell line (Dawson et al., 1996), and MCF10A-CA1d (CA1d), a cell 

line derived from xenograft-passaging the parental line multiple times in nude 

mice creating a consistently tumorigenic and highly invasive cancer cell line 

(Santner et al., 2001), were maintained in GIBCO® DMEM/F-12 media 

(Invitrogen, Carlsbad, CA) supplemented with 5% horse serum (Invitrogen), 0.1 

µg/ml cholera toxin (Calbiochem/EMD Biosciences, Gibbstown, NJ), 10 µg/ml 

insulin (Invitrogen), 0.5 µg/ml hydrocortisone (Sigma, St. Louis, MO), and 20 

ng/ml epidermal growth factor (Invitrogen). All cell lines were kept in constant 

culture in a humidified atmosphere of 5% CO2 at 37°C. The MCF10A cell line 

was kindly provided by Dr. Joan Brugge (Harvard Medical School, MA) and the 

AT-1 and CA1d lines were provided by Dr. Fred Miller (Karmanos Institute, MI); 

all cell lines are readily available through the Vanderbilt Integrative Cancer 

Biology Center’s (VICBC) Tissue Culture Core Unit 

(http://www.vanderbilt.edu/VICBC/general.html).   For all assays performed, cells 

must be of consistently low passage number for repeatable results. 

3.2.1.2 Single Cell Motility Analysis 

Experiments were performed as previously described in Section 2.4 (see 

also Harris et al., 2008).  Briefly, the laminin (Ln) isoform Ln-332 (1 µg/mL; 

purified in-house) was coated on NuncTM polystyrene, non-tissue culture treated, 

6-well microplate dishes (Cole Parmer, Vernon Hills, IL) for 1 h at room 

temperature (RT).  Dishes were then blocked with 5% milk (Regilait, France) in 

phosphate buffered saline solution (PBS, Invitrogen) for 1 h at 37ºC.  Cell lines 

were trypsinized (TrypLE Select, Invitrogen, Sunnyvale, CA), neutralized with 
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growth media (L-15 media  supplemented with horse serum, cholera toxin, 

hydrocortisone, insulin, and EGF), washed three times in PBS, and 2x104 cells 

per well were resuspended in growth media in 6-well microplates.  Cells were 

allowed to adhere for 1 h within the heated (37ºC) microscope chamber prior to 

image capture. 

Time-lapse microscopy was conducted using a Zeiss Axiovert 200M 

microscope (Zeiss, Thornwood, NY) equipped with a temperature-controlled 

chamber and an automated x-y-z stage.  Microscopy was under the control of 

MetaMorph software (Molecular Devices, Sunnyvale, CA).  At the beginning of 

each experiment (0 h), six regions of interest (ROI) were selected at random from 

within each well for imaging.  Each ROI was focused manually, and the 

coordinates saved using MetaMorph’s “Multi-dimensional Acquisition” tool for 

subsequent imaging.  Phase-contrast images were captured automatically at 

each ROI every 5 min, for 4 h.  Following image capture, all 49 images from a 

particular coordinate were combined using MetaMorph to produce image stacks.  

Cell speed was quantified manually by tracking the center of each cell’s nucleus, 

using MetaMorph’s “Track Points” function. 

3.2.1.3 Cell Speed Data Analysis and Statistics: 

Data analysis was performed using SPSS, version 17 (SPSS, Inc., 

Chicago, IL).  For each cell line (both in the presence and absence of 

serum/EGF), 95% confidence intervals of individual cell standard deviations were 

computed to test if cells maintained constant speed. The Shapiro-Wilks W test 

was applied to all population-based data sets (by individual experiment, and for 
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pooled datasets) to test each distribution for normality (Gaussian behavior). 

Skewness coefficients were also calculated for each distribution. Kruskal-Wallis 

H tests were applied to pooled datasets to detect differences across experiments 

for each cell line (and medium condition) and Tamhane T2 post-hoc tests were 

applied to detect pair-wise individual experimental comparisons. The 

Kolmogorov-Smirnov two-sample non-parametric test was subsequently applied 

to data to check for significant differences (P < 0.05) across various groups (by 

cell line and microenvironmental conditions) for all measurements.  Parameters 

for each cell were grouped together in analysis. To analyze bin relationships 

between individual cells, paired Wilcoxon tests were used for all pairs of 

variables.  Cell speed data (unless indicated otherwise) are presented in terms of 

mean ± standard deviation (with 95% confidence intervals where indicated).   

 

3.3 Results 

Information garnered from this dataset was processed and analyzed in a 

number of ways.  Figure 3.1 is a flowchart depicting the metrics and analyses 

used in this study. 

 

3.3.1 Single-cells Exhibit Greater Speed Fluctuation in Cancer Cell Lines 

Three genetically related breast cell lines, MCF10A, MCF10A-AT1 (AT1), 

and MCF10A-CA1d (CA1d) were seeded in microplates coated with laminin-332, 

incubated either in full-serum or serum/EGF-depleted media, and time-lapse 

high-content microscopy performed as described in Section 3.2.1.2.  As shown in 

Figure 3.2A, individual cells from all three cell lines, and from both medium 
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conditions, displayed step-pause-step motion, which is entirely consistent with 

previous reports on epithelial cell motility (Potdar et al., 2009). However,  

individual cells carried out steps at highly fluctuating, non-constant speed over 

time (4 h, at a 5 min sampling interval) (Figure 3.2A).  Four cells from each 

population are presented, although approximately 500/line were tracked 

cumulatively. With the obvious exception of non-motile cells (cells that moved 

less than a cell diameter over the course of the experiment), nearly all cells 

exhibited speed that fluctuated widely across the 49 frames (Figure 3.2A). Due to 

the great difference in fluctuations between individual cell speed profiles, we 

applied stringent bootstrapping test to estimate 95% confidence intervals for 

individual cell standard deviations for each dataset (Table 3.1).  This test is 

robust to irregularly distributed data.  These calculated confidence intervals 

strongly support the fluctuation of speed within single cells and, of note, they 

never include zero, further indicating that cells consistently adopt variable speeds 

in consecutive frames. Both step-pause-step motion and fluctuating speed were 

observed in serum/EGF-depleted culture media as well (Figure 3.2A), suggesting 

they are intrinsic cell properties. 

 

 

 

 

Table 3.1 - Individual cell speeds fluctuate highly and are non-constant.  95% confidence 
intervals for individual cell standard deviations were obtained from bootstrapping. Note that 
confidence intervals do not include zero, demonstrating that cells are not maintaining constant 
speed during our observations. 
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3.3.2 Cell-to-cell Variability of Speed is Greater in Cancer Cell Lines 

 As demonstrated in Figure 3.2A, speed is variable within the cell lines we 

examined from single-cell to single-cell. Furthermore, the spread of speed 

variability is itself variable: it is broader in the aggressive cell line, and becomes 

even broader in serum/EGF-depleted media. In contrast, the speed variability 

spread appears to be dampened in the non-tumorigenic cell line. 

 Since these findings legitimate a comparison between cell lines, we 

calculated the ranges of the 95% confidence intervals.  As shown in Figure 3.2B, 

cells within the most invasive cancer cell line, CA1d, display greater variability of 

speed fluctuations than MCF10A (non-tumorigenic) and AT1. Further analyses 

with this metric, single-cell speed fluctuation within a cell line (Table 3.1), should 

be interesting to pursue in a larger panel of cancer cell lines. 

 

3.3.3 Population-level Speed Heterogeneity is Greater in Cancer Cell Lines 

Having demonstrated that individual cell speeds fluctuate and are non-

constant, we examined the distribution of cell speeds for cell lines at the 

population level. To simplify analyses and avoid confounding factors, we 

represented each cell by a single value.  Individual cell speeds were therefore 

calculated by averaging each cell’s speed across a time-lapse movie (N=49 

frames) (grey horizontal lines in Figure 3.2A).  

Figure 3.3B shows box-and-whisker plots for five pooled experiments, for 

all cell lines in both medium conditions; points, color-coded by experiment, 

represent individual average cell speeds. The spread of these points visualized 



38 

the cell-to-cell variability of speed within cell lines.  However, because of high 

day-to-day variation (as is often observed with cell line motility assays), it was not 

possible to draw statistical conclusions from these pooled data. Therefore we 

analyzed cell-to-cell variability within single experiments. Box and whisker plots 

of individual experiments are shown in Figure 3.3A.  The dark grey horizontal line 

within each box represents the mean speed for all pooled cells within a cell line. 

Comparison of the mean values masks underlying cell line heterogeneity. 

Instead, examining the scattering of the data points, including “outliers”, uncovers 

some interesting trends. For instance, the speed scatter is broader for the most 

aggressive cancer cell line, CA1d. This cell line also appears to contain the larger 

amount of outliers, which may explain some of its aggressive traits, at least in in 

vitro assays. 

 

3.3.4 Day-to-day Speed Variability is Greater in Cancer Cell Lines 

As displayed through scatter plots in Figure 3.3B, we saw a large amount 

of cell speed variability across individual experiments (CV > 0.3 for all cell lines 

and conditions).  However, cells were handled in a uniform fashion during 

preparation for individual experiments (e.g., passage number, confluence-state, 

micro-centrifuge settings, trypsinization time).  Interestingly, levels of variability 

seemed to be linked to cell lines.  Kruskal-Wallis tests confirmed that data from 

different experiments are significantly different  (P < 0.01, in all cases).  More 

interestingly, post-hoc Tamhame T2 pair-wise tests further revealed that only a 

single experiment (4) for MCF10A in full media varied  



Figure 3.3 - Cell-to-cell variability of speed is greater in cancer cell lines.  (A) Box-and-whisker 
plots for individual experiments.  Individual cells are represented by scattered points, the box 
outlines the 25th and 75th quartiles, the horizontal line repreesents the mean, and the whiskers 
represent the 95% con�dence intervals.  (B) Box-and-whisker plots for pooled experiments.  Points 
are color coded by experiment. (C)A ratio was calculated to compare the change in population-level 
speed heterogeneity between full and serum/EGF-depleted media conditions for all three cell lines 
within experiments.  A ratio > 1 indicates that cells demonstrated greater speed heterogeneity in 
serum/EGF-depleted media.
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from all other experiments performed for that cell line and condition (data not 

shown).  In contrast, both AT1 and CA1d in full medium revealed much more 

day-to-day variability. Of note, all cell types also displayed more day-to-day 

variability in serum/EGF-depleted medium than they did in their corresponding 

experiments in full medium. 

 

3.3.5 Cancer Cell Speed Variability Increases in Serum/EGF-Depleted Media 

To examine possible effects of serum/EGF-depletion on cell speed, a ratio 

was created between the cell speed range (i.e., variation measured for cell 

speed) in serum/EGF-depleted and full media, for individual experiments.  The 

resulting ratio reflects the effect of the microenvironment on cells within the same 

experiment (Figure 3.3C).  In all experiments performed, CA1d cells 

demonstrated a ratio > 1, indicating that this cell line has increased cell-to-cell 

variability in serum/EGF-depleted media.  In contrast, MCF10A cells displayed a 

ratio < 1 in 4 out of 5 experiments performed, indicating that in this non-

tumorigenic cell line cell-to-cell variability of motility decreased in serum/EGF-

depleted media.  AT1 cells showed an intermediate effect.  Similar results (with 

identical trends) were seen when 95% confidence intervals were used to create 

the ratio, rather than the range.  All cell tracks are displayed as windrose plots in 

Figure 3.4 to demonstrate this effect. 
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3.3.6 Cloned Cancer Cells Maintain Speed Variability and Response to 
Serum/EGF-Depleted Media 
 
 To eliminate the possibility of genetic heterogeneity influencing variability 

of migration speeds, we produced clones of CA1d cells.  We have analyzed five 

CA1d clones derived from individual cells via serial dilution.  If cell speed is 

genetically pre-determined, one would expect specific observations from 

analyzing cell speeds of cloned cells: 1) Cell speed variation would be 

substantially reduced, 2) Various clones would produce different mean cell 

speeds, and 3) The cell speed ratio (from full to serum/EGF-depleted media) 

would not be consistently greater than one.  To this end, two additional single-cell 

migration experiments were conducted to produce preliminary data to address 

these questions (refer to Section 3.1.1 for method).  These points will be 

addressed individually: 

1. As seen in Figure 3.5, the cell speed variation of the clones appears to 

decrease in full media.  However, this trend is obvious only in the pooled 

dataset.  In one experiment the parental CA1d cells in full media had a 

high level of variation, while in the other experiment the parental cell line 

had similar speed variation as the clones.  This experiment needs to be 

repeated to determine with confidence that CA1d cells maintain their 

speed variation even upon cloning. 

2. Differing mean speeds of the clones were not observed, decreasing the 

chance that a clonal subpopulation with increased migratory ability exists. 
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3. All five CA1d clones had a cell speed variability ratio greater than one, 

suggesting that the increase in speed heterogeneity in serum/EGF-

depleted media could not be entirely due to genetic heterogeneity.  

 

In total, preliminary results from the cloning experiment suggest that clonal 

selection does not eliminate cell speed heterogeneity, or response to 

serum/EGF-depletion.  However, these findings must be validated through 

additional experimentation. 

 

3.4 Significance / Discussion 

The study of cell variability at the single-cell level has accelerated in 

recent years, as computing power, storage capacity, and access to high-content 

automated microscopy and image processing software has increased (Bullen, 

2008; Glory and Murphy, 2007; Pepperkok et al., 2006).  It is now possible to 

obtain hundreds of thousands of images of cells, in a multitude of conditions 

dynamically over time.  With the application of these new techniques, we can 

begin to answer questions about the nature of phenotypic variability, and how 

cells alter their variability in response to microenvironmental changes. 

In this study, we have compared 3 genetically related cancer cell lines 

(with increasing invasive potential) with high-resolution motility assays, in order to 

better understand the similarities and differences between cancer and non-

tumorigenic cell motility.  In summary, we examined the movement of over 1,500 

cells at the individual- and population- levels, to examine two hypotheses:  
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• Hypothesis 1: a non-tumorigenic cell line will exhibit less variability of 

motility than a cancer cell line. 

• Hypothesis 2: the removal of serum and mitogenic factors (EGF) will 

decrease the variability of motility of a non-tumorigenic cell line, and will 

not affect the variability of a cancer cell line. 

 

The analysis was focused on investigation of individual cell speed, in the 

presence or absence of key nutrients (serum/EGF). The metrics examined 

included: individual cell speed fluctuation, variability of speed, population-level 

speed heterogeneity, day-to-day speed variability, and speed variation in 

response to serum/EGF-depleted media.  Through this analysis, evidence was 

provided that supports both hypotheses in our cell line panel, and further 

indicates that the most aggressive cell line tested (CA1d) actually increases 

variability of speed in serum/EGF-depleted media. 
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Figure 3.4 - Cell Tracks.   Cell paths of MCF10A, AT1, and CA1d cells migrating on Ln-332, and in full 
or serum/EGF-depleted media. Paths are of all cells (1,500+) tracked over a period of 4 h and are 
replotted such that all paths start from the origin.  Red dots indicate the stopping point of each cell 
at the end of the movie.
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Figure 3.5 - CA1d clones exhibit similar cell speed variability as the parental line.   (A) Box-and-
whisker plots for pooled experiments in full media.  Individual cells are represented by scattered 
points, the box outlines the 25th and 75th quartiles, the horizontal line repreesents the mean, and 
the whiskers represent the 95% con�dence intervals.  (B) Box-and-whisker plots for pooled experi-
ments in serum/EGF-depleted media.(C) A ratio was calculated to compare the change in 
population-level speed heterogeneity between full and serum/EGF-depleted media conditions for 
all CA1d clones within experiments.  A ratio > 1 indicates that cells demonstrated greater speed 
heterogeneity in serum/EGF-depleted media. 
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The MCF10A model system was designed to mimic tumor progression.  In 

this system, the parental MCF10A cells’ speed variability decreased for all 

metrics tested.  The Ras-transformed and tumorigenic AT1 cells’ speed variability 

showed a mixed phenotype.  The variability increased for some experiments and 

metrics, and decreased for others.  The most aggressive CA1d cells, which were 

passaged several times in vivo, were shown to exhibit increased cell speed 

variability for all metrics tested.  Thus it appears that, in this model, increased 

speed variability was selected for during cancer progression.  These findings 

need to be validated in other cell lines and model systems.  However, it is 

tempting to hypothesize that the variability of other traits may also be increased 

during cancer progression, leading to a highly heterogeneous cancer cell 

population, which could increase the adaptive potential of a cancer. 
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CHAPTER IV 

 

DESIGN OF ADDITIONAL METRICS TO QUANTITATE MOTILITY 

 

4.1 Background 

 A migrating cell achieves motion by protruding its leading edge and 

retracting its rear, resulting in a directional displacement.  This method of motility 

is a complex and dynamic mechanism of focal adhesions, actin polymerization, 

and dozens of protein-protein interactions and signaling cascades (see Section 

2.1.3).  However, the most widely used model to describe cellular motion is 

based on particle physics, and is termed a persistent random walk (PRW; 

Codling et al., 2008).  Mathematical models of cell migration are used to 

generate hypotheses, test parameters, and advance our understanding of cell 

motility.  These models are one of the main tools of systems biology (see Section 

5.1). 

A random walk, also known as Brownian motion, was first reported in the 

movement of pollen in solution by Brown in 1828, and was subsequently turned 

into the random walk theory (Uhlenbeck and Ornstein 1930).  Cells follow a 

modified version of this random walk, known as a PRW.  Cellular movement 

involves a correlation between successive step orientations (Codling et al., 

2008), creating a local directional bias.  Currently, PRW is the most widely used 

model to describe cellular motion (Codling et al., 2008).  To produce a PRW 

model of cell motion, the input usually required is turn angle distribution 
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(directional bias), and cell speed.  From the same data, one can compute the 

mean squared displacement, diffusion coefficient, and persistence time.  These 

values are used to create the PRW model for that particular cell type and 

condition.  One of the main assumptions made in the PRW model is that the cells 

are always in motion.  In Chapter 3 we saw that cells do not follow this basic 

assumption of the PRW model.  Our data demonstrates that cells pause 

frequently as they migrate (Figure 3.2).  In order to refine this model of cell 

migration, specifically to include cell pausing, one must accurately determine how 

many cells are paused at any given time, and how long they travel between 

pauses. 

 To address these questions we analyzed three population level metrics: 

distribution of step-lengths, persistence and moving-to-paused cell ratio.  These 

metrics were chosen to more accurately quantify cell motion, with a goal of 

refining our models of cell migration to a smaller scale.  These metrics can 

accurately quantitate the dynamics of cell pauses and allow easy integration of 

tracked cell data into mathematical models of cell motility.  Here we present two 

new metrics (step-length distribution and IMF) and demonstrate how they could 

be used to refine mathematical models of cell migration, focusing on accurately 

representing cell movement at the single-cell level based on experimental 

findings. 
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4.2 Experimental Design 

This chapter utilizes the same dataset as in Chapter 3 (see Section 3.2). 

 

4.2.1 Persistence 

One of the most common measurements of cell motility is persistence 

time, which assumes that cell motion can be described by a PRW.  Within the 

PRW model, persistence time is defined as the persistence in velocity or motion, 

since it is a combination of persistence in direction and speed (Dunn and Brown, 

1987).  The PRW model can be derived from the Langevin equations as 

described by the Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein 1930).  

The form of the model takes the shape as described by the Furth equation 

(Furth, 1920).  This equation describes the expected mean squared 

displacement over time.  Initially the motion is super-diffusive, meaning that a 

ballistic component dominates and the mean squared displacement increases 

exponentially.  This motion then transitions over to a diffusive regime for times far 

greater than the persistent time (Codling et al., 2008).  Thus, to calculate 

persistence time, one must observe cells for a long enough time interval for them 

to transition from a ballistic to diffusive movement regime (roughly 3 hours for a 

10 min persistence time). 
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4.2.2 Step-length 

 To accurately add cell pausing into cell migration models it is necessary to 

experimentally determine the distance a cell travels between consecutive 

pauses.  Step-length, flight length, and flight time are three metrics which are 

used in ecology to study foraging behavior of birds, bees, and mammals 

(Viswanathan et al., 1999; Gautestad and Mysterud, 2005).  The term step-length 

has also been used to describe the movement of molecular motors on polymers 

(Wallin et al., 2007).  All three terms are used to quantitate distance or time 

between pauses in motion, but we are not aware of a previous use of these 

metrics to quantify the motion of epithelial cells. 

4.2.3. IMF 

 Persistence and diffusion coefficients are often used to describe cellular 

motion.  However, both of these representations make a number of assumptions 

about cellular behavior.  In particular, they assume all cells are in motion at all 

time.  The instantaneous motion fraction (IMF) was developed to test this 

assumption, and to provide an additional metric to monitor differences in 

migration characteristics between cell lines and conditions.  It measures the 

percent of cells moving at each time point, and thereby also quantifies the 

fraction of cells paused at any given moment. 

 

4.2.4 Materials and Methods 

Cell Culture, Cell Preparation, and Time-lapse Microscopy were 

performed as described in Section 3.2.1.  
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4.2.4.1 Persistence Quantitation 

We calculated persistence times by both the traditional Dunn method (as 

described in Dunn and Brown, 1987), and the updated Kipper method (as 

described in Kipper et al., 2007).  The Kipper method reduces standard error of 

data to fit by ~50% over the classical Dunn method, and thus persistence times 

reported in this dissertation were calculated using the Kipper method.  For 

comparison, graphs mean squared displacement versus time are shown for both 

methods (Figure 4.3). 

4.2.4.2 Step-length Quantitation 

We also measured the overall distance traveled between cell pauses in a 

movie (defined by two consecutive frames at the same coordinate), and 

discarded all step-lengths (distances between pauses) below our tracking error 

threshold (lengths < 1 µm).  This data was binned in log 2k bins and plotted 

log/log as previously described (Sims et al., 2008) to determine if the data 

followed a power-law distribution.  In addition, data was plotted directly onto a 

Pareto distribution (a specific type of power-law distribution) to avoid possible 

problems with log/log binning (Edwards et al., 2007). 

 To verify the fits to a power-law distribution, we applied the MLE method, 

as previously described by Edwards (Edwards et al., 2007).  Importantly, this 

method does not bin the data, but instead uses the raw data, which eliminates 

false positives from log-log binning.  Furthermore, Edwards’ approach offers an 

alternative fit to an exponential distribution, and compares the fits via Akaike 

weights to see which distribution is a better fit.  Thus, the MLE method does not 
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assume that the data fits a power-law distribution, but instead compares two 

distributions, and determines which is the best fit. 

4.2.4.3 IMF Quantitation 

IMF was computed as the percentage of cells moving more than one pixel 

(our measurement error threshold) at each sampling interval. 

 

4.3 Results 

 

4.3.1 Highly Motile Cells are a Minority 

Data from Chapter 3 were further analyzed in terms of their distribution. 

Individual cell mean speeds were binned (Section 3.2.1.3) and represented as a 

population frequency histogram. Plots for each cell line (pooled experiments) in 

both media are shown in Figure 4.1 (individual experiments in Figure 4.2). The 

plots show that the binned data do not fit with a normal distribution (overlaid in 

Figure 4.1) neither for pooled nor individual datasets. The mean speed, standard 

deviation, and sample size (N) for each population is also shown.  

In almost all instances, distributions were positively skewed, indicating that 

individual cell speeds were more concentrated to the left in the plots (Table 4.2).  

This indicates that, in all cell lines, including the most aggressive ones, a majority 

of cells are slower moving or non-motile (this statement is true for all ECM 

substrates tested, see Table 2.2). This information is generally lost in classical 

migration assays (i.e. Boyden or scratch), because they do not typically examine 

or quantify non-motile cells. Nonetheless, it may be especially relevant when 
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establishing correlations between degree of invasiveness of a cancer cell line 

and its motility properties. Our data suggest that a few cells, located in the high-

speed tails, in these aggressive cell lines may be responsible for invasion. This 

possibility needs to be investigated in more detail. 

 

 

Table 4.1 - Cell lines populations are non-normal and positively skewed.  Shapiro-Wilks 
W tests revealed that, in almost all cases, experimental distributions (i.e., for all cell lines, in 
both conditions) were found to be non-normal (P<0.05).  Interestingly, in almost all instances, 
distributions were positively skewed, indicating that individual cell speeds were more 
concentrated to the left of the mean in the plots. Kurtosis values reflect the “peakedness” of 
the distributions; higher values reflect that more variance is due to infrequent extreme 
deviations (outliers), as opposed to modest deviations. 
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Figure 4.1 - Cell speed is non-normally distributed.  Indvidual cell speeds were calculated by 
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4.3.2 Persistence Increases for all Cell Lines in Depleted Media 

A well-established measure of motility in a cell line is persistence, which 

assumes a PRW model. In PRW, persistence is defined as the length of time a 

particle (here, a cell) remains “persistent in velocity or motion, or simply 

persistence in motion, since it is a combination of persistence in direction and 

persistence in speed” (Dunn and Brown, 1987).  Calculation of this parameter 

reveals important information about cell movement, which is overlooked by 

representing only speed.  Graphs of the classical, non-normalized (Dunn) 

migration persistence parameter are shown in Figure 4.3A.  However, since this 

method is associated with a high level of error, we also applied an updated 

method that can reduce error by as much as 50% (Kipper et al., 2007, see also 

Section 4.2.4.1).  Graphs of normalized persistence by experiment are shown in 

Figure 4.3B, calculated persistence time (P (min)) values are shown graphically 

in Figure 4.3C, and raw data for Kipper persistence time is shown in Table 4.2.  

These results indicate that all three cell lines increase their persistence in the 

absence of serum/EGF.  These findings compare well with previous research by 

Lauffenburger’s group and colleagues, who found that in two-dimensions, cell 

persistence increased when EGF was removed (Kim et al., 2008). This 

concordance of results shows that our data collection strategy is adequate to be 

fitted with standard PRW models of motility. However, since PRW persistence 

time did not distinguish between non-cancer and cancer cell lines, we pursued 

additional population level metrics. 
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4.3.3 Step-lengths Appear to Follow a Pareto Distribution 

We observed that cells often paused (same coordinates in two 

consecutive frames, Figure 4.4A), and the distances traveled between pauses 

(step-lengths) appeared to be highly variable (Figure 3.2).  However, a standard 

log/log binning method revealed a distribution of step-lengths with an underlying 

pattern, consistent with a power-law (Figure 4.4B).  The significance of this fit 

was demonstrated independently using a maximum likelihood estimation (MLE) 

method, as detailed in Section 4.2.4.2. The MLE was explicitly used to compare 

fitting of an exponential distribution versus a Pareto distribution (a particular 

implementation of a power-law distribution). The MLE strongly favored the Pareto 

distribution for all cell lines under full media conditions (Figure 4.5A) and 

MCF10A in serum/EGF-depleted conditions. These findings are summarized in 

bar-graph form in Figure 4.5B (pooled Akaike weight confidence; full analysis in 

Table 4.3). 

Table 4.2 – Persistence time calculated using Kipper method. Curve fits for persistence 
time (P (min)) and standard deviation are shown. Persistence time was not able to be 
calculated for Experiment 1 of AT1 in serum/EGF-depleted media, and thus was omitted.  
These results indicate that all three cell lines increase their persistence in the absence of 
serum and EGF.  These findings compare well with previous research performed 
independently by another group.   
 

 
 



Figure 4.4 - Step-length distribution is linear on a log-log plot. (A) Red lines highlight the steps 
in a randomly chosen single-cell.  A step is the time between cell pauses.  A step-length is the 
distance traveled by the cell during a step.  (B) Step-length data was binned in log 2^k bins and 
plotted log/log as described in Sims et al., 2008, in order to determine if the data followed a 
power-law distribution.  A straight line in log/log is indicative of a power-law distribution.
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Figure 4.5 - Step-lengths are organized around a power-law distribution.  We measured 
the overall distance traveled between cell pauses in a movie (de�ned by two consecutive 
frames at the same coordinate).  (A) Data was plotted directly onto a Paretto distribution (a 
type of power-law distribution) to avoid possible problems with log/log binning.  To verify 
the �ts to a power-law distribution, we applied the MLE method (B).  This approach o�ers an 
alternative �t to an exponential distribution, and compares the �ts via Akaike weights to see 
which distribution is a better �t.  A 100% Akaike weight value demonstrates the highest 
certainty that data �ts the Pareto distribution, rather than an exponential.  Akaike weights 
for individual experiments can be found in Table 4.3. (C) Percentage of cells with step-
lengths too large to quantify (cells that did not pause, or paused only once during the 4 hour 
movies).
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The fitting of a power-law distribution indicates that the vast majority of cell 

step-lengths are short, and that long steps are infrequent (Figure 4.5A). The 

implication of these findings is that, even though the speed of moving cells 

fluctuates, the distance cells can cover between pauses (step-lengths) appears 

to be regulated in an orderly fashion. It will be interesting to further investigate 

the relationship between length of steps and possible underlying molecular 

mechanisms that provide cells with the ability to cover distances of shorter 

versus longer length. Along these lines, it appears that in non-cancer cells, under 

serum/EGF-depleted conditions, the step-length is maintained within the power-

law distribution, whereas neither AT1 nor CA1d step-lengths fit the Pareto 

Table 4.3 - MLE analysis of step-lengths. We measured the overall distance traveled 
between cell pauses in a movie (defined by two consecutive frames at the same coordinate).  
This data was fit to a Pareto distribution (as shown in Figure 4.5A).  We demonstrated the 
significance of the Pareto fit using a maximum likelihood estimator (MLE) method.  100% 
Akaike weight is indicative of a perfect Pareto curve fit.  Grayed boxes indicate rejected 
Pareto fits due to low Akaike weight. 
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distribution consistently (Figure 4.5B), as their step-lengths became very large. 

Thus, it is tempting to speculate that cancer cells have lost intrinsic and/or 

extrinsic mechanisms that dampen length of steps.  

 

4.3.4 IMF Increases in Cancer Cell Lines in Depleted Media 

To follow up on the analysis of persistence and step-length distribution, we 

sought to quantify the percentage of motile cells at any given time.  The motile 

cell fraction was a metric used previously (Kim et al., 2008), but which was of 

limited use to us due to its extreme variability (Fig 4.6A).  So here we introduce 

and utilize IMF, computed as the percentage of cells moving more than one pixel 

(our measurement error threshold) at each sampling interval (Figure 4.6B). The 

IMF metric is quite robust and associated with low error across many 

experiments for both non-cancer and cancer cell lines. It was perhaps the metric 

with the least variation of all measured, suggesting that the percentage of cells 

trying to initiate motion at any instant is an intrinsic property of cell lines. It is 

interesting that the IMF for both non-cancer and cancer cell lines is very close 

under full media conditions. In contrast, under serum/EGF-depleted media, the 

non-cancer cell IMF remains the same, whereas the cancer cells’ IMF increases 

by about 40% (Figure 4.6B), suggesting that IMF may be sensitive to extrinsic 

factors in cancer but not in non-cancer cells. This conclusion, obviously, needs 

confirmation from larger scale experimentation. 

We also measured the “Motile Cell Fraction” calculated as previously 

reported (Kim et al., 2008).  The total number of cells traveling a distance of more 
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than one cell diameter over the course of the entire experiment (distance greater 

than 20 µm) was divided by the total number of tracked cells.  By this method, we 

observed large error bars in Motile Cell Fraction for the more aggressive cell 

lines (AT1 and CA1d) (Figure 4.6A). It is tempting to speculate that the outcome 

(measured by Motile Cell Fraction) of attempts to initiate motion (measured by 

IMF) is tightly constrained in the non-cancer cell line, whereas that outcome is 

more irregular in the cancer cell lines possibly because of loss of regulation.  

 

4.4 Significance and Discussion 

In the pursuit of motility metrics that can quantify variability, especially in 

cancer cell lines, we have described analytical methods based on time-lapse 

microscopy data. The conclusions from our studies indicate that in the three cell 

lines observed, highly motile cells were in the minority, even for our aggressive 

cancer cell line.  In the midst of high levels of variability, three stable motility 

metrics were observed: persistence, step-length distribution, and IMF.  Cell step-

lengths appeared to be organized around a power-law distribution.  Further, IMF, 

but not persistence, is a metric that can distinguish the change in cancer cell 

motility properties under conditions of serum/EGF depletion. More studies are 

needed to verify our findings that step-length distribution and IMF are useful 

metrics for analyzing altered motility characteristics in multiple cell lines on 

varying microenvironments. 

When modeling cell migration at the population level, it is fairly standard in 

the field to use the PRW.  The PRW was developed to model particle movements 



Figure 4.6 - IMF of cancer cells increases upon serum/EGF-depletion.  (A) To calculate the motile 
cell fraction, the total number of motile cells was divided by the total number of tracked cells.  Here, 
we have de�ned “motile cells” as any cell traveling more than 20µm (approximately one cell 
diameter) during the four hour period of our movies.  (B) We calculated the percentage of cells that 
are moving at any given moment.  We termed this parameter “instantaneous motile fraction, ” and 
de�ne its ratio as the number of cells that have moved more than one pixel (measurement error 
threshold), divided by the total number of cells, for every frame.  By examining the IMF, it is clear 
that the cancer cell lines, AT1 and CA1d, become more likely to move in serum/EGF-depleted 
media, while there is no change in the IMF for the non-cancer MCF10A cells.
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in physics, and includes both a random and persistent component of direction, 

with a resultant feature of a biased turn angle distribution towards continuing in 

the direction the particle was already traveling.  One of the key assumptions in 

the PRW model is that all particles are in motion.  Importantly, our data 

demonstrate that these assumptions are not accurate.  In particular, we have 

shown that individual cells move at a non-constant speed (Figure 3.2), only a 

subset of cells are motile (Figure 4.1), and even motile cells stop moving 

frequently (Figure 4.5A)   The PRW method can accurately model the average 

behavior of a large number of cells over a long time period, but is not necessarily 

acceptable for modeling motility at the cellular level, since its most basic 

assumptions do not reflect the biology. 

To aid in the more accurate modeling of cellular migration, we have 

included the motile cell fraction, as presented in Kim et al., 2008 (Figure 4.6A).  

We have also added a two additional metrics, the step-length distribution (Figure 

4.5A), and the instantaneous motile fraction (Figure 3C), which provides the 

percentage of cells that are in motion at any given time point.  These three 

measurements can be experimentally determined, and subsequently integrated 

into probability density functions to produce models of cellular migration that are 

more accurate at the single-cell level (Figure 4.7). 



Figure 4.7 - Single-cell motion model.  Outline of a method to mathematically model 
single-cell and population-level motility utilizing motile cell fraction, IMF, persistence, and 
step-length distance.  Probability density functions (PDF) could be used to create accurate 
representations of heterogeneity mathematically.  The dashed line indicates a small contribu-
tion towards the “moving” cell population from “non-motile” cells.  This model would agree with 
the PRW model in aggregate, but at lower levels would more accurately model single-cell 
behavior.
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CHAPTER V 

 

DEVELOPMENT OF ADDITIONAL DYNAMIC ASSAYS TO STUDY 
VARIABILITY 

 

5.1 Systems Biology – Multivariate Analysis 

Systems Biology is a paradigm within biological sciences that seeks to 

understand the complex nature of biological systems by integrating information, 

rather than reducing it into component parts.  The term systems biology was 

coined in 1948 by Norbert Weiner (Wiener, 1948), and since then systems 

biology has sought to bring together vast amounts of information to understand 

biology at a systems level.  Systems biology research is by nature multivariate, 

meaning that experiments measure many metrics under numerous conditions.  

Computer algorithms are then used to tease apart meaning from these large 

datasets.   

The systems biology method is necessary to understand complex 

regulatory systems that cannot be solved by a reductionist approach.  In 2002, 

Kitano summed up the systems biology method by stating, “To understand 

biology at the system level, we must examine the structure and dynamics of 

cellular and organismal function, rather than the characteristics of isolated parts 

of a cell or organism” (Kitano, 2002).  This model can be utilized to enhance our 

knowledge of cellular migration, and to understand the adaptability and 

heterogeneity inherent in the system. 
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5.1.1 System’s Approach to Studying Cellular Migration 

 The systems biology approach can be applied to cell migration in order 

to gain further understanding of the interrelations between many facets of 

motility, including: morphology, speed, adhesion, and spreading.  Typically, the 

process of motility is broken down into component parts, which are often studied 

independently.  In contrast, the study of migration via the systems approach 

seeks to capture large amounts of data from many metrics, and to analyze this 

multivariate data to understand the whole process at a systems level.  This 

approach allows integration and may lead to enhanced understanding of higher 

ordered states of migration (Kitano, 2001). 

   With the addition of microscopes with automated stages, and the massive 

increases in processing power and data storage, it is now possible to produce 

enormous amounts of image data in an automated fashion.  The bottleneck in 

imaging research is no longer data acquisition; it is now data analysis (Zimmer 

and Olivo-Marin, 2005).  Using computer-aided image analysis or semi-

automated quantitative approaches is ideal to efficiently cope with complex 

processes such as cell behavior (Soll, 1995; Soll et al., 1988).  Many researchers 

have utilized computer-assisted analysis, but semi- and fully-automated systems 

are still beyond most cell motility laboratories.   

Other types of image analysis, such as kymography, currently have no 

automation beyond stacking images through time, along a one-dimensional line 

(Hinz et al., 1999).  Fully automated systems must be developed to analyze the 
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vast number of conditions necessary to use a systems biology approach to 

understanding cell motility in the context of the microenvironment. 

 

5.1.2 Multivariate Analysis 

Cell speed is just one of the single-cell motility metrics that can be 

measured by looking at single cell migration movies.  Other metrics include: focal 

adhesion turnover, lamellapodial dynamics, surface area, cellular morphology, 

and invadapodia formation.  Some of these measurements require special 

treatments such as stains, or fluorescent matrix deposited below the cells, and 

thus have not been combined into a single experiment.  However, understanding 

the interplay of these metrics is critical for fully understanding cell migration in 

greater detail. 

As a part of this dissertation, a method of multivariate analysis was 

designed and implemented as a proof-of-principle experiment.  This analysis 

measures three metrics per cell from a standard phase-contrast single-cell 

migration movie.  The analysis measures cell speed, surface area, and a novel 

measurement: Dynamic Expansion and Contraction of Cell Area (DECCA) (see 

Figure 5.1 for flowchart).   

Although our understanding of individual processes underlying cell 

migration continues to increase, major gaps in information concerning how they 

are coordinated spatially and temporally still remain (Lauffenburger and Horwitz, 

1996).  New techniques need to be developed that can bring insight into how 

these individual processes interact by quantifying dynamic cell movements and 
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analyzing single cells in an automated manner.  Computer-assisted, quantitative 

analysis of migrating cells provides an objective means of comparing migration 

properties of cells and yields insight into the underlying mechanisms of cell 

motility.  Here, we report a dynamic multivariate analysis of single-cell motility 

that includes a combination of both novel algorithms/image analysis methods 

(surface area; DECCA) and existing techniques (cell speed).   

 

5.2 Experimental Design 

Single-cell migration assays (Section 2.4) were used to analyze the three 

metrics of two cell lines (HT-1080 and A431) on two types of matrix (Ln-332 and 

Fn) to demonstrate that a multivariate analysis at the single-cell level was 

feasible, and to examine the interrelatedness of the variables based on cell lines 

and different ECM conditions.  All data analyzed within this chapter was compiled 

from 2 experiments (see Table 2.2). 

A new dynamic multivariate single cell assay was developed to analyze 

three metrics of cellular migration: cell speed, surface area, and DECCA (Figure 

5.1).  The first measurement we present, cell speed, was captured using a 

standard manual cell-tracking technique (Metamorph) from movies generated by 

time-lapse, phase contrast microscopy.  The second measurement utilized a 

custom-written MATLAB algorithm designed to threshold images to calculate cell 

surface area. Obtaining surface area measurements gives us insight into the 

shape and overall health of cells.  For example, epithelial cells tend to decrease 

their surface area when unhealthy or stressed and many cell lines change their 
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shape upon differentiation, which is often reflected by a change in surface area.  

The third measurement, DECCA, is a novel measurement of total cell activity.  

That is, DECCA captures the pixel intensity change from one frame to the next, 

and averages these changes over the length of the movie.  Thus, a higher 

DECCA value represents a higher amount of cell activity.  This measurement is 

not necessarily a measurement of cell migration, as membrane protrusion 

without translocation, can also lead to high DECCA values. These three values 

were then combined using a unique identifier system to obtain three 

measurements per cell (for 1,000+ individual cells, from 2 cells lines, on 2 

substrates).   

New methods of image analysis were designed for the surface area and 

DECCA measurements.  These calculations were performed via custom written 

algorithms.  This multivariate assay was used to test two cell lines (HT-1080 and 

A431), on two types of extracellular matrix (FN and Ln-332).  
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Figure 5.1 - Overview of mulivariate pro�ling of single-cells.  This �owchart represents 
the step-wise progression of our image analysis technique, including: (A) phase-contrast 
image capture (6 random �elds per well, in duplicate) and manual application of unique 
identifying numbers to all cells (i.e., A1-A7); (B) tracking the center of each cell nucleus 
manually using Metamorph software to quantify cell speed; (C) selection of regions of 
interest (ROI) manually from original phase contrast images using MATLAB; (D) creating 
computer-generated thresholded images in MATLAB to calculate cell surface area, and (E) 
creating computer-generated di�erential images in MATLAB by subtracting the pixel 
intensities from one frame to the next.  (F) Di�erential images were further processed by 
taking the absolute value of the pixel intensities to obtain the DECCA measurement.  The 
scale bar seen in part (A) is equal to 100μm.  Image axes in (B-F) are MATLAB generated 
coordinates for each image and ROI.
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5.2.1 Surface Area 

A number of methods have also been used to quantify morphological 

changes at the cellular level, including a diagonal measurement of cell elongation 

(Mueller-Rath et al., 2007), human interpretation of shapes (Jokhadar et al., 

2007), and most commonly surface area measurements (Alexopoulos et al., 

2002; Toraason et al., 1990; Carpenter et al., 2006; Opstal et al., 1994).  These 

studies have looked at morphology as an indicator of differentiation, apoptosis, 

and various other processes (Ray et al., 2005; Mukherjee et al., 2004).  

Traditional surface area measurements tend to rely on two types of analyses: 

edge detection through thresholding and edge-based segmentation (Alexopoulos 

et al., 2002).  Some weaknesses of these techniques include the need for 

fluorescent cellular markers and an assumption of a particular cell shape (e.g., a 

spherical cell)—both of which can lead to complications, depending on your 

model system (Alexopoulos et al., 2002; Truskey and Proulx, 1990; Ionescu-

Zanetti et al., 2005).  For these reasons, surface area measurements must be 

optimized for specific cell types (Alexopoulos et al., 2002).  Many epithelial cell 

lines spread out and lie flat against the surface they are seeded on, and have a 

wide variety of shapes, with multiple leading edges at once; this variety of shapes 

and decrease in contrast makes edge detection, by traditional means, much less 

accurate (Alexopoulos et al., 2002).  Although a number of assays currently exist 

to examine cell morphology, both at the cellular and sub-cellular levels, there is 

still certainly room for new, quantitative techniques that can be used for accurate 

analyses of cell shape and other motility parameters. 



Figure 5.2 - Surface area algorithm for image analysis.  (A) Custom-written, MATLAB algorithms 
were developed to measure surface area of cells (in pixels).  Blue text indicates an integrated 
MATLAB function and black is used for all other text and commands.  (B) Sample phase contrast 
images (top row) and corresponding micrographs of thresholded surface area images (middle row) 
are presented for a small, medium, and large cell.  The calculated number of pixels that corresponds 
to each cell is also listed for reference (bottom row).
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stdev_m = std (image_3d, 0,3);
stdev_v = reshape (stdev_m,1,[ ]);
[num,stdev] = hist (stdev_v,20);
[pks, locs] = findpeaks (num);
ii = locs(1);
midstd_background = stdev(ii);
mask_background = stdev_m<=midstd_background;
mask3d_background = zeros (nRows,nCols,nTimes);
for time = 1:nTimes
 mask3d_background(:,:,time) = mask_background;
end
background_3d = mask3d_background.*image_3d;
length = sum(mask3d_background(:));
background_v = zeros (1,length);
ii = 0
for time = 1:nTimes
 for row = 1:nRows
  for col =1:nCols
   if background_3d(row,col,time)~=0
    ii = ii +1;
    background_v(ii) = background_3d(row,col,time);
   end
  end
 end
end
background_mean = mean(background_v);
background_std = std(background_v);
background_leveled_v = background_v -background_mean;
mean (background_leveled_v)
background1_std = std(background_leveled_v)
abs_unmasked_3d = image_3d-background_mean;
mask_abs3d = abs_unmasked_3d>=1.5*background1_std|abs_unmasked_3d<=-1.7*background1_std;
abs_3d = abs_unmasked_3d.*mask_abs3d;

abs_v = Generate1d(abs_3d);
count_3d = abs_3d ~= 0;
count_v = sum(sum(count_3d,1),2);
count_v = squeeze(count_v);
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5.2.2 DECCA 

Migration of epithelial cells follows a number of specific processes that are 

typically associated with specific changes in cell size and shape.  Thus, one can 

gain insight into the specific mechanisms of cell movement by studying these 

morphological changes.  Kymography is one method that has been used to gain 

insight into the mechanisms of actin, cortactin, and various other molecules 

involvement in membrane protrusion (Bryce et al., 2005; Cai et al., 2007).  This 

technique involves high-resolution time lapse microscopy to capture subcellular 

motion.  Kymography is used for relatively small sample sizes (due to highly 

magnified imaging), during relatively short periods of time, for the study of events 

such as lamellipodial dynamics, microtubule polymerization, and many other 

motility events contributing to shape change (Cai et al., 2007; Bear et al., 2002; 

Kellermayer et al., 2008).   

In this manner, DECCA measures the protrusive activity of cells, whether 

or not they actually migrate processively.  A high DECCA value means that a cell 

has moved during the movie, possibly due to migration, but it may also be due to 

the additive effect of membrane ruffling and cell shape change over time.  When 

combined with cell speed data, one can determine if the DECCA number 

corresponds to cell migration or cell shape change. 
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for time = 2:nTimes
 for row = 1:nRows
  for col = 1:nCols
    unit = image_3d(row,col,time)-image_3d(row,col,time-1);
   if unit >= limit
    difpos_3d(row,col,time) = unit;
   elseif unit <= unit <= -limit
    difneg_3d(row,col,time) = unit
   elseif unit < limit && unit > -limit
    difpos_3d(row,col,time) =  0;
    difneg_3d(row,col,time) = 0;
   else
    display (’Menu Error in Masking, line 119’)
   end
  end
 end
end

difinc_3d = difpos_3d + difneg_3d
adifinc_3d = abs(difinc_3d);

B

Figure 5.3 - DECCA algorithm for image analysis.  (A) Custom-written, MATLAB algorithms 
were developed to measure DECCA.  Blue text indicates an integrated MATLAB function and 
black is used for all other text and commands.  (B) Sample phase contrast images (top row) and 
corresponding micrographs of di�erential (middle row), and DECCA images (bottom row) are 
presented for a sample motile cell over a short time series (205-220 min).  In di�erential images, 
color is representative of the change in intensity between phase contrast images from frame-
to-frame (blue is a negative intensity change, green is no change, and yellow/red is a positive 
change).  DECCA images are obtained by calculating the absolute value of pixels present in 
corresponding di�erential images, and this value is averaged across an entire movie to produce 
a cell’s DECCA measurement.  The solid scale bar represents 100μm.
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5.2.3 Materials and Methods 

5.2.3.1 Cell Culture 

Human fibrosarcoma HT-1080 cells (CCL-121) and human epidermoid 

carcinoma A431 cells (CRL-1555) were purchased from American Type Culture 

Collection (Manassas, VA).  Both lines were maintained in Dulbecco's modified 

Eagle's medium (DMEM; Life Technologies, Inc., Rockville, MD) supplemented 

with 10 % fetal bovine serum (FBS; Gemini, Irvine, CA) and 1 % glutamine / 

penicillin / streptomycin antibiotics (Life Technologies), and incubated at 37 °C in 

a humidified, 5 % CO2, 95 % air atmosphere. 

5.2.3.2 Cell Preparation 

The laminin (Ln) isoform Ln-332 (1µg/mL; purified in-house) or human 

plasma fibronectin (Fn; 10 µg/mL; Millipore, Billerica, MA) was coated on NuncTM 

polystyrene, non-tissue culture treated, 6-well microplate dishes (Cole Parmer, 

Vernon Hills, IL) for 1 h at room temperature (RT).  The dishes were then blocked 

with 5% milk (Regilait, France) in phosphate buffered saline solution (PBS, 

Invitrogen) for 1 h at 37ºC. 

Cell lines were trypsinized (TrypLE Select, Invitrogen, Sunnyvale, CA), 

neutralized with L-15 media (Invitrogen) supplemented with 10% FBS, washed 

three times in PBS, and resuspended at a density of 2x104 in L-15 media 

supplemented with 10% FBS in 6-well microplates.  Cells were allowed to adhere 

for 1 h within the heated (37ºC) microscope chamber. 
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5.2.3.3 Time-lapse Microscopy 

Time-lapse microscopy was conducted using a Zeiss Axiovert 200M 

microscope (Zeiss, Thornwood, NY) equipped with a temperature-controlled 

chamber and an automated x-y-z stage (0.2 µm repeatability).  Microscopy was 

under the control of MetaMorph software (Molecular Devices, Sunnyvale, CA).  

At the beginning of each experiment (0 h), six fields were manually selected at 

random from within each well (in duplicate).  Each region was focused manually, 

and the specific x, y, and z coordinates for each was saved using MetaMorph’s 

“Multi-dimensional Acquisition” tool.  Phase-contrast images were captured 

automatically every 5 min for 4 h.  Following image capture, all 49 individual 

images from each particular coordinate were combined using MetaMorph to 

produce image stacks. 

5.2.3.4 Cell Speed Quantitation 

Image stacks (with 49 slices; sample slice seen in Figure 5.1A) were 

opened in MetaMorph, and the “Track Points” function was used to manually 

track cells (Figure 5.1B).  All cells that remained within the field were tracked by 

following the center of their nucleus.  Cells that collided with other cells and 

dividing cells were included in our analysis (there was no significant difference 

between touching, non-touching, and dividing cells’ speed, results not shown).  

Tracking data was exported to a Microsoft Excel spreadsheet for storage.  The 

cell speed parameter was finally calculated by averaging all data collected for 

each cell first, followed by averaging all cells for that sample population, and final 

presentation of data includes mean ± standard deviation (SD) of that particular 
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set.  After manually tracking cell speed, a unique identifier (based on date, cell 

line, ECM component, microscopy field, and cell number) was assigned to every 

cell, by manually inserting text next to each cell in the final frame of each movie 

(see Figure 5.1A). This ID system was applied for simplification of binning cells 

prior to multivariate analysis.  

5.2.3.5 Computer-assisted Quantitative Analysis (Surface Area and DECCA) 

All subsequent image analysis was performed on non-compressed, 16-bit, 

TIFF image stacks.  Computational and programming support was provided by 

MathWorks™ MATLAB® (Natick, MA).  We used both custom-written algorithms 

and several advanced MATLAB image-processing toolbox functions, further 

described below.  For each field’s stack of microscopic images, a user-defined 

rectangular region of interest (ROI) was manually drawn around each cell to be 

analyzed, and all pixels in each ROI  were systematically processed one at a 

time by the software (Figure 5.1C). Subsequently, using two separate, custom-

written algorithms for MATLAB, two processed image sequences were produced:  

1) intensity-weighted thresholded images (Figure 5.1D, used to calculate surface 

area) and 2) differential intensity images (Figure 5.1E).  These two image 

sequences were then used to derive measurements for cellular surface area and 

DECCA (Figure 5.1F), respectively, as described in detail below. 

5.2.3.6 Surface Area Quantitation 

Intensity-weighted, thresholded images were generated using a custom-

written MATLAB thresholding algorithm that separates pixels of the background 

from pixels within the cells based on intensity (Figure 5.2A). Temporal SD’s were 
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calculated for each pixel, which resulted in an array of SD’s for each image stack.  

A histogram of these values was automatically created and the peaks of each 

determined by a standard MATLAB “Imaging Toolbox” function.  Each peak of 

the histogram represents the mean for each different pixel class, with the lowest 

peak representing the background of each image, which was applied as the 

threshold value for our images. All pixels at the same row and column (i.e., in the 

same image) that were an SD of intensity lower than the background peak were 

subsequently saved to a list in Microsoft Excel.  When complete, this list 

represents the intensity characteristic of the background for each image stack.  

This mean value of each stack (taken from the list) was then subtracted from 

each pixel in each movie, in order to set the new mean of the background to 

approximately zero.  This leveled image stack was further thresholded and all 

pixel values within 1.7 SD of the background mean were again reduced to zero.  

This particular number (1.7) was optimized for our cell types and images, and 

may vary considerably if the user includes different cell lines or image-capture 

techniques. In other words, algorithms have been fine-tuned for our model, to 

remove background noise and appropriately normalize all phase contrast 

images, prior to further quantitative analysis of surface area. 

After images were thresholded to remove background using the above 

technique, all remaining non-zero pixels were taken to represent the selected cell 

(Figure 5.2B); the number of pixels quantitated for each ROI represented the SA 

measurement for the cell of interest.  All 49 frames for each individual cell were 

then averaged to produce a mean surface area measurement ± SD for that cell 
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over time.  This measurement was taken for all adherent, healthy cells of all 

frames that were in focus and recognized by the software; the occurrence of cells 

not recognized by the software was negligible (results not shown).  

5.2.3.7 DECCA Quantitation 

In brief, DECCA is an index number for the total amount of cell motion 

over time.  This motion is not correlated directly with cell migration, as a non-

moving cell can ruffle its membrane and produce a DECCA value without 

physically translocating across a surface or substrate.  In this way, the DECCA 

measurement incorporates both cell motility, and cell shape change.  This 

parameter is calculated as described below. 

Differential intensity images (see Figure 5.1E) were generated using a 

custom-written arithmetic algorithm in MATLAB that subtracts the pixel intensity 

value of each pixel from its counterpart in the same row and column in the next 

frame (Figure 5.3A).  These differential intensity images show the relative change 

in pixel intensity (with color-coded scale) from frame to frame (Figure 5.3B), and 

in this way highlight dynamic cell motion.  A non-zero value for a differential pixel 

indicates an intensity change for that particular pixel from the last frame.  Images 

were thresholded by setting all differential pixels with a value lower than 250 to 

zero.  It is important to note that this value (250) was optimized for our cell types 

and microscopy technique, and may vary if the user includes different cell lines or 

image-capture techniques.  This analysis results in the creation of an image 

stack with colored pixels representing the change in pixel intensity from one 

frame to another.  The color and pattern of this differential image stack 
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represents the magnitude and area of cellular motion.  These differential image 

stacks can be viewed as movies to observe the dynamics of cellular motion over 

time.  We have also developed an index number to quantify the total amount of 

cellular motion within these movies.  To create the index number, the absolute 

value of each pixel was taken and the differential values for all pixels in each 

frame were summed to produce the total absolute differential intensity for each 

frame.  This parameter was averaged across each stack to obtain the DECCA 

measurement presented for each cell (displayed as intensity units). 

5.2.3.8 Data Analysis and Statistics 

Data analysis was performed using SPSS, version 16 (SPSS, Inc., 

Chicago, IL).  The Shapiro-Wilks test for normality was  applied to all data sets 

for distribution analysis. The Kolmogorov-Smirnov two-sample non-parametric 

test was subsequently applied to data to check for significant differences (P < 

0.05) across various groups (i.e., by cell line and substrate) for all 

measurements.  For follow-up correlation studies, the unique cell identifying 

numbers were used to manually combine all three sets of data, so that all 

parameters for each cell were grouped together in analysis. To analyze 

relationships between the three measurements, Spearman’s R correlation 

coefficients were calculated for all pairs of variables.  All data are presented in 

terms of mean ± standard deviation (with 95% confidence intervals where 

indicated). 
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5.3 Results 

 

5.3.1 Cell Speed Quantitation 

A431 cells were plated in microplates coated with either 1 µg/mL Ln-332 

or 10 µg/mL Fn, and time-lapse microscopy experiments were performed in 

duplicate.  As displayed in Figure 5.4A, A431 cells exhibited a mean cell speed of 

0.82 ± 0.44 µm/min on Ln-332 (grey; N=3 (415 cells)) and 0.41 ± 0.21 µm/min on 

Fn (white; N=2 (272 cells)).  Cell speed on Ln-332 substrate was found to be 

significantly faster than on Fn (p < 0.001).  Furthermore, there was no evidence 

of a difference (p > 0.05) between A431 cell speed measurements within 

duplicates performed each day, nor between repeated experiments, 

demonstrating the repeatability of our manual cell tracking method (results not 

shown).  

HT-1080 cell speed was also examined by seeding cells either on 1 µg/mL 

Ln-332 or 10 µg/mL Fn-coated microplates, and experiments were performed, in 

duplicate, as above.  As depicted in Figure 5.4A, the mean speed of HT-1080 

cells was calculated to be 1.07± 0.45 µm/min on Ln-332 (grey; N = 2 (254 cells)) 

and 0.91 ± 0.37 µm/min on Fn substrate (white; N = 1 (84 cells)), which was 

found to be a significant difference (p < 0.05). Furthermore, there was no 

evidence of a difference (p > 0.05) found between duplicates, or across days of 

experimentation, further demonstrating the repeatability of our manual cell 

tracking results.  In summary, both A431 and HT-1080 cells showed a 



Figure 5.4 - Quantitation of cell speed, surface area, and DECCA.  A431 or HT-1080 cells 
were allowed to adhere to laminin-332 (Ln-332) or �bronectin (Fn) coated microplates for 1 h at 
RT. Time-lapse microscopy was used to capture cell motility for 4 h. (A) For cell speed quanti�-
cation, cells’ paths were tracked manually using MetaMorph software. On Ln-332 (grey), A431 
(N = 415 cells) and HT-1080 (N = 254 cells) speed was found to be signi�cantly di�erent (p < 
0.05). Similarly, on Fn (white), A431 (N = 272 cells) and HT-1080 (N = 84 cells) speed was also 
found to be signi�cantly di�erent (p < 0.05). Each cell lines’ speed on the two substrates was 
also signi�cantly di�erent (p < 0.05). (B) Cell surface area measurements were captured using 
custom-written MATLAB algorithms, which removed background pixels via thresholding. All 
remaining pixels were taken to represent the cell. On Ln-332 (grey), A431 and HT-1080 cell 
surface area measurements were signi�cantly di�erent (p < 0.05); on Fn (white),
measurements were also signi�cantly di�erent (p < 0.05). (C). DECCA measurements were 
obtained using custom-written MATLAB algorithms, which took the absolute value of 
subtracted pixel intensities frame to frame, to produce a cell activity index.  There was a 
signi�cant di�erence between cell lines, with HT-1080 cells having a higher DECCA on both 
matrices (p < 0.001). There was also a signi�cant di�erence on A431 DECCA on di�erent 
matrices (p < 0.001); however, there was no di�erence between matrices for HT-1080 cells (p > 
0.05). All plots represent mean (—), 95% con�dence interval (box), and standard deviations 
(whiskers).
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reproducible and significant difference in mean cell speed, with HT-1080 cells 

migrating faster than A431 cells across both matrices (p < 0.05).  In 

addition, both cell lines migrated faster on Ln-332 than on Fn (p < 0.001). 

 

5.3.2 Surface Area Quantitation 

The same movies used to quantify cell speed in the previous results were 

also used to determine cell surface area measurements.  A blinded investigator 

produced this data, with no knowledge of cell speed results.  Of all the cells 

captured during time-lapse microscopy for initial cell speed analysis, only 3.1% 

(34 / 1080 total cells) were lost during this surface area analysis, due to 

unfocused images or cells leaving frames mid-movie.  

As depicted in Figure 5.4B, the mean cell surface area of A431 cells on 

Ln-332 and Fn substrates was calculated to be 0.78 x104 ± 0.46 x104 and 0.59 

x104 ± 0.32 x104 pixels, respectively.  Mean cell surface area of HT-1080 cells on 

Ln-332 (grey) and Fn (white) was 0.94 x104 ± 0.51 x104 and 0.99 x104 ± 0.51 

x104, respectively.  There was a significant difference between surface area 

measurements of the two cell lines, with HT-1080 cells having a higher surface 

area on both matrices (p < 0.001).  This computer-assisted analysis (that HT-

1080 cells were larger than A431 cells) was confirmed by the researcher who 

performed the manual cell tracking data analysis, demonstrating the accuracy of 

the computed-assisted surface area measurements.  There was also a significant 

difference on A431 cell surface area on different matrices (p < 0.001), however, 

there was no difference between matrices for HT-1080 cells (p > 0.05). 
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5.3.3 DECCA Quantitation 

The same movies used to quantify cell speed and surface area were also 

used to determine DECCA values (see Figure 5.1 for clarification), for the 

analysis of total cellular motion (as described in sections 5.2.2 and 5.2.3).  Again, 

a blinded researcher produced this data, with no knowledge of cell speed results.  

The DECCA of A431 cells on Ln-332 and Fn was calculated to be 2.22 x106 ± 

1.33 x106 intensity units and 1.05 x106 ± 0.45 x106 intensity units, respectively.  

The DECCA of HT-1080 cells on Ln-332 and Fn was 3.20 x106 ± 1.35 x106 

intensity units and 3.04 x106 ± 1.33 x106 intensity units, respectively (Figure 

5.4C).  There was a significant difference between cell lines, with HT-1080 cells 

having a higher DECCA on both matrices (p < 0.001).  There was also a 

significant difference on A431 DECCA on different matrices (p < 0.001), however 

there was no evidence of a difference between matrices for HT-1080 cells (p > 

0.05). 

 

5.3.4 Multivariate Correlations 

Cell speed, surface area, and DECCA measurements correlated 

significantly for all pairs, in both A431 and HT-1080 cell lines, and on both 

matrices (Figure 5.5).  Spearman’s correlation coefficients (ρ) were calculated for 

the data grouped by cell line, matrix, and in its entirety.  Speed vs. surface area 

typically showed a low correlation (ρ = 0.163-0.349), while speed vs. DECCA    
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(ρ = 0.394-0.594) and surface area vs. DECCA (ρ = 0.434-0.545) both showed a 

medium level of correlation (Figure 5.5).  This trend indicates that larger cells 

tended to migrate faster, and have a higher cell activity level than smaller cells, 

as anticipated for these particular cell types.  These results again demonstrate 

the validity of our method. Furthermore, since the trend was present in two cell 

lines, and on two different matrices, our method has been demonstrated to be 

reproducible for a variety of experimental conditions.  

 

5.4 Significance / Discussion 

Our experimental results demonstrate the repeatability and reliability of 

our technique. Our data indicate low to medium-high correlations between all 

three metrics, depending on the particular cell line and substrate combinations.  

This range of relationships was anticipated for these cells, due in part to their 

high migration rates, and various shape changes observed in culture, when 

plated on Ln-332 or Fn (Winterwood et al., 2006).  However, given different 

experimental guidelines (i.e., cell lines, ECM components, or introduction of 

mutations), these trends may certainly change.  For example, NRK49F cells with 

defects in Rho or adducin have been shown to have active lamellipodial ruffling, 

while being unable to migrate (Dove, 1999).  Based on these findings, we 

hypothesize that these mutant cells would have an unchanged cell surface area 

and DECCA (compared to wild type), but their cell speed would decrease 

drastically.  Furthermore, inclusion of leukocytes, or various other immune cells,  



Figure 5.5 - Correlation between variables.  Regression plots for A431 cells (A) and HT-1080 
(B) cells on both Ln-332 (gray markers) and FN (black markers).  All Spearman’s correlation 
coe�cients (r) demonstrated various positive levels of correlation between the three measure-
ments when grouping by both cell line and ECM substrate.

88

B 

A 

DECCA (intensity units x 10^6) 

S
u

rf
ac

e 
ar

ea
 (

p
ix

el
s 

x 
10

^4
) 

Surface area (pixels x 10^4) 

C
el

l s
pe

ed
 (μ

m
/m

in
)

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 

3. 5 

3. 0 

2. 5 

2. 0 

1. 5 

1. 0 

0. 5 

0. 0 

M 

DECCA (intensity units x 10^6) 

S
ur

fa
ce

 a
re

a 
(p

ix
el

s 
x 

10
^4

) 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

DECCA (intensity units x 10^6) 

C
el

l s
pe

ed
 (μ

m
/m

in
)

Surface area (pixels x 10^4) 

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 

3. 5 

3. 0 

2. 5 

2. 0 

1. 5 

1. 0 

0. 5 

0. 0 

C
el

l s
pe

ed
 (μ

m
/m

in
)

DECCA (intensity units x 10^6) 

3. 5 

3. 0 

2. 5 

2. 0 

1. 5 

1. 0 

0. 5 

0. 0 

C
el

l s
p

ee
d

 (
μ

m
/m

in
)

 

1.5 

3. 5 

3. 0 

2. 5 

2. 0 

1. 5 

1. 0 

0. 5 

0. 0 

0.0 3.0 9.0 7.5 6.0 4.5 12.0 10.5 

1.5 0.0 3.0 9.0 7.5 6.0 4.5 12.0 10.5 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

1.5 0.0 3.0 9.0 7.5 6.0 4.5 12.0 10.5 

1.5 0.0 3.0 9.0 7.5 6.0 4.5 12.0 10.5 

Ln-332 (r=.594) 
Fn (r=.568) 

A431 

HT-1080 

Ln-332 (r=0.434) 
Fn (r=0.522) 

Ln-332 (r=0.240) 
Fn (r=0.349) 

Ln-332 (r=0.426) 
Fn (r=0.394) 

Ln-332 (r=0.212) 
Fn (r=0.163) 

Ln-332 (r=0.467) 
Fn (r=0.545) 



89 

may also significantly alter results, as these cells are commonly very motile, but 

much smaller and produce less dynamic shape changes.  

As outlined in Chapter 2, cell speed analysis is one important component 

of studying cell migration. While methods of automated cell tracking exist in 

commercial software programs, they are not widely used in the field because 

either they require labeling of cells, or their accuracy and reproducibility 

(compared to manual tracking) is lacking (Chon, et al, 1997).  Many researchers 

prefer to track unlabeled cells using phase contrast microscopy, both for ease of 

use and to eliminate added variables.  A fully automated system, termed the 2D 

DIAS, has been developed to study the motility of Dictyostelium amoebae 

(Wessels et al., 2006; Wessels et al., 2008), but thus far it has been more difficult 

to develop such a system for epithelial cells, due to their complex behavior and 

irregular cell shape (Zimmer, et al 2005).  Ultimately, one of our immediate goals 

is to update our current manual speed tracking method to include a similar 

automated system, but not at the expense of accuracy. 

Surface area analysis is also an important component of cell migration 

studies because cell size can be linked to cell shape and health. In general, cells 

that have suffered mild insults shrink in size as one of the first steps in the 

apoptotic pathway (Elmore 2007; Kerr et al., 1972).  Differentiation of cell lines is 

also often associated with a change in cell size that may be reflected in our 

surface area measurements (Aharon and Bar-Shavit, 2006; Zouboulis et al., 

1994).  There are currently a number of available methods to obtain surface area 

measurements through image analysis. However, many of these methods rely on 
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either the use of fluorescent labeling of cells, differential interference contrast 

(DIC) microscopy images, and edge detection methods that require heavy 

computing power, and also often making assumptions about a general cell 

shape.  For some applications, our method of surface area estimation will work 

well for eukaryotic cells.  It is not as accurate as some methods referenced 

above, but it shows relative changes in surface area very well for phase contrast 

images, and with very little processing power needed for our algorithm.  In 

addition, our method allows a researcher to follow surface area changes over 

time (results not shown). 

  The introduction of the DECCA measurement is a significant contribution, 

as this technique captures cell activity in a way that no other applications have 

demonstrated previously. It is important to note that DECCA measures the 

protrusive activity of cells, whether or not they actually move in a processive 

manner (i.e., across a substrate).  In fact, a DECCA index need not correlate 

positively with movement; any positive correlation with cell speed is an indication 

of how efficient cell activity is towards actual migration.  A simple example 

includes comparison of a motile cell that physically moves across a field, 

compared to a non-motile cell.  The moving cell will always have a DECCA value, 

since its “footprint” changes from frame to frame.  However, the non-moving cell 

may have a low or high DECCA, depending on the protrusion activity of particular 

cell.  The cell may be completely inactive (if all images are the same, DECCA = 

0), or it may change shape without moving its nucleus by lamellapodial ruffling or 

creating numerous cell protrusions that lead to shape change.  As a result, the 
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image pixel intensity changes, even though their nucleus does not move. A 

manual version of differential imaging was previously shown in a publication by 

Fukui et al., and was referred to as producing “difference pictures” (Fukui et al., 

1991).  However, we are unaware of any other algorithms/computational 

methods that reflect the same activity as DECCA.   Originally, DECCA was 

developed with the intent to distinguish between two cell types that have the 

same migration speed, but very different membrane protrusion dynamics.  For 

example, our analysis demonstrated that although HT-1080 cell speed was 

significantly altered (p < 0.01) by changing the matrix, the surface area and 

DECCA of these same cells were essentially unaltered (p > 0.05).  This data may 

indicate that HT-1080 cells have the ability to spread and become activated by 

both matrices, but for reasons yet to be determined, the cells have a significantly 

slower migration rate on Fn.  Although we cannot explain these differences 

based on our preliminary analysis, our assay was able to provide additional 

insight, which would have been missed using population-based cell migration 

techniques or classical motility tracking assays.  By understanding the interplay 

between cell speed, surface area, and DECCA measurements, our method may 

lead to additional cell migration hypotheses and findings. 

Knowledge of the fundamental biological mechanisms of cell motility is 

currently spurring the development of novel pharmacological and genetic 

approaches that attempt to harness this process, in order to ultimately overcome 

pathological events such as cancer metastasis.  Researchers have screened 

thousands of compounds for the ability to inhibit cell migration, in hopes of 
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developing new drug targets (Yarrow et al., 2005).  However, commonly used 

assays that study these interactions cannot distinguish off-target effects.  For 

example, adding formaldehyde to cells would surely halt their cell migration, but 

will do so by fixing and killing the cells, not because it is a specific inhibitor of 

migration. In some instances, applying a DECCA measurement may be a useful 

control for cell health, because of its high resolution and focus on individual cell 

parameters.  However, in order to use our method for large scale screens such 

as these, some parameters of our experiment will need to be improved upon. We 

are actively developing many other aspects of this method that can facilitate 

more efficient data collection and analysis.  The most notable addition needed is 

fully-automated cell tracking software as we mention earlier.  We are currently 

working on a new cell tracking system using our differential imaging method to 

develop a completely automated technique for epithelial cells similar to those for 

amoebae. 

A method of auto-selection could be implimented to narrow the ROI to the 

minimum window size.  With our current program, and operator must manually 

select the ROI.  Future versions of the program will auto-select all ROIs by 

means of a fast, movie-spanning analysis of the SD of pixel intensity both 

spatially and temporally.  By auto-selecting ROIs, we will decrease both image 

processing time and non-specific background by applying minimally sized ROIs.  

Other modifications to our image processing programs are also being adopted, 

including changes to noise reduction, and image normalization methods. 
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Another powerful addition to this method is the ability to look at speed, 

surface area, and DECCA at all time points over the course of the movies.  For 

our initial proof-of-principle analysis presented here, all data points were 

averaged over the course of the movie (e.g. one cell speed measurement per cell 

per movie).  In fact, there were 49 individual measurements each for cell speed, 

surface area, and DECCA.  We are keenly aware that our multivariate method 

has the ability to study the stop-and-go pattern of cell locomotion or the change 

of surface area and DECCA over time using the same statistical techniques 

introduced in chapters 3 and 4. 

Here, we present a method that produces a multivariate profile for 

individual cells based on three metrics: cell speed, surface area, and DECCA.  In 

this regard, we can generate three dimensional plots, where each data point 

represents an individual cell (Figure 5.6).  In the future, we plan to use this 

technique to separate interesting sub-populations within specific cell lines using 

similar statistical techniques that are used for statistical analysis of cell sorting 

data (Bindschadler and McGrath, 2007; Mochizuki et al., 1996).  In this manner, 

we can further dissect the complex mechanisms of cell migration utilizing the 

systems biology method, and improve our understanding of cellular adaptability 

and heterogeneity. 

 



Figure 5.6 - 3-D Graphs.  Multivariate analysis plotted in three dimensions.  Every point 
represents one cell’s averaged speed, surface area, and DECCA metrics.
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CHAPTER VI 

 

SUMMARY AND DISCUSSION 

 

6.1 Project Summary 

An analysis of cell line heterogeneity by image-based migration assays 

was undertaken with the goals of: 1) testing and quantitating heterogeneity of cell 

speeds, 2) exploring the differences in cell speed between non-tumorigenic and 

cancer cell lines, and 3) developing novel tools and metrics for the study of 

dynamic characteristics of cancer cells.  To this end, over 7,300 cells were 

manually tracked, from a variety of cell lines, in an assortment of 

microenvironmental conditions. 

 

6.1.1 Demonstration of Heterogeneity in Cell Speeds 

 Cell speed heterogeneity is routinely overlooked or ignored in the literature 

by presenting average speeds.  Many models of cellular migration also ignore the 

presence of speed heterogeneity.  For example, the commonly used PRW model 

assumes all cells are in motion at all times.  To address these assumptions, 

single-cell motility assays were performed (Section 2.4) for thousands of cells in 

many environmental conditions (Table 2.1).  Results from these data 

unambiguously demonstrate cell speed heterogeneity, and further demonstrate 

that cell speed is non-normally distributed (Figures 4.1 and 4.2).  Thus, by 
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studying only cell speed averages a large quantity of data is overlooked, and 

furthermore, results may be misleading. 

 

6.1.2 Development of Metrics to Further Quantify the Motility of Epithelial 
Cells 
 
 As this project progressed, it became obvious that a number of 

experimental observations could not be quantified by traditional cell motility 

metrics.  Therefore, new metrics were designed to accurately quantify both 

single-cell motility characteristics, as well as population-level motion dynamics, 

with the goal of quantifying cell parameters that were previously unmeasured. 

At the single-cell level, the metrics IMF and DECCA were designed as a 

part of this dissertation.  IMF is used to measure the percent of time a cell is in 

motion.  For the IMF analysis presented in Figure 4.6B, this metric showed more 

consistency from experiment-to-experiment as compared to the previously 

published metric, motile cell fraction.  IMF can be thought of as attempts by the 

cell to initiate motion, whether or not it leads to effective motion.  DECCA was 

another metric designed as a part of this project.  DECCA is a measurement of 

total cellular movement activity as measured by changes in light intensity over 

time in phase-contrast microscopic images.  This metric allows the quantification 

of cell motion which does not necessarily translate into translocation.  Thus, two 

cells with identical cell speeds can often be distinguished by their DECCA values.  

Both of these metrics provide researchers with quantitative tools that describe 

single-cell motion in new ways. 
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Analysis at the population-level lead to the development of a number of 

novel statistical measurements for quantifying heterogeneity, including: variability 

of cell speed fluctuations, step-length distributions, and speed variation in 

response to microenvironmental changes.  The first, variability of cell speed 

fluctuations, quantitates the heterogeneity of cells within a population in terms of 

cell speed fluctuation.  If all the cells within a population fluctuate their speeds in 

the same fashion, the value of this metric will be low, indicating the cells are 

acting similarly, and by extension, are not heterogeneous.  In this fashion, the 

metric can quantitate motility heterogeneity within a population.  The second 

metric, step-length distributions was borrowed from ecological analyses of 

foraging behavior (Viswanathan et al., 1996).  The metric quantifies the distance 

traveled by cells between consecutive pauses.  To our knowledge, this type of 

analysis has not been undertaken for epithelial cells.  This metric was shown to 

follow a Pareto distribution, which may be altered for cancer cells in serum/EGF-

depleted media.  The final metric developed was speed variation in response to 

microenvironmental change. This metric quantitates the change in speed 

variation of a cell line when exposed to different conditions.  The metric utilizes 

experimental controls to reduce experiment-to-experiment variability.  The 

development of these three population-level metrics allow the quantitation of 

heterogeneity across cell lines and conditions. 

In total, the metrics developed through this work have expanded the 

toolset available to the researcher interested in cell heterogeneity; providing us 

with the ability to study cancer at a whole new level. 
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6.1.3 Exploration of Changes in Cell Motility Between Cancer and Non-
tumorigenic Cell Lines 
 

Using the metrics outlined in Section 6.1.2, we were able to more 

accurately probe for differences between the motility of non-tumorigenic and 

cancer cell lines.  Results indicated that the motility characteristics of cancer and 

non-tumorigenic cell lines in the presence of full media were virtually 

indistinguishable (Figure 6.1A and Figure 3.4).  Cells of all three cell lines moved 

with similar speed, persistence, and IMF, and their step-lengths followed a 

power-law distribution.  However, when serum and EGF were removed from the 

media, there was a strong divergence in phenotypic response.  The non-

tumorigenic MCF cells decreased their speed, variation, variability, and 

heterogeneity, while persistence increased (Figure 6.1B).  In contrast, cancer 

cells increased their speed, variation, variability and heterogeneity, as well as 

their persistence and IMF.  Furthermore, cancer cells may have a breakdown in 

their power-law distribution of step-lengths.  In total, it appears that in cancer 

cells, the cells are more likely to move, pause less frequently, and move in a 

faster and more persistent fashion than non-cancer cells (Figure 6.1C). 

 

 

 

 

 

 

 



Figure 6.1 - Cancer Cell Motility changes.  Summary of changes to cell motility metrics studied in 
Chapters 3 and 4.  Blue denotes no change, and red indicates altered values. (A) In full media, cancer 
and non-cancer cells in this model system behave in  a nearly identical fashion.  Cells are either 
“Moving” or “Paused.”  Individual cells switch from moving to paused, or vice versa, based on the IMF 
and step-length distribution.  (B) Non-cancer cells, when exposed to serum/EGF-depleted media, 
exhibit a speed decrease, and all metrics of variation, variability, and heterogeneity also decrease.  In 
addition, the IMF is decreased and persistence is increased.  Step-length distribution is unchanged.  
Thus, moving cells are a�ected by the change in media.  (C) Cancer cells, when exposed to 
serum/EGF-depleted media increase their speed, variation, variability, and heterogeneity, as well as 
their persistence and IMF.  Furthermore, there is a breakdown of the powerlaw distribution of 
step-lengths.  In total, cancer cells in depelted media are more likely to move, move in a more 
persistent manner, and with increased speed.  However, the variability of all metrics observed is also 
increased.
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6.2 Conclusions 

The analysis of the cell lines in the MCF10A model system in Chapters 3 

and 4 led to several conclusions: 

• Single-cells exhibit greater speed fluctuation in cancer cell lines 

• Cell-to-cell variability of speed is greater in cancer cell lines 

• Population-level speed heterogeneity is greater in cancer cell lines 

• Day-to-day speed heterogeneity is greater in cancer cell lines 

• Cancer cell speed variability increases in serum/EGF-depleted 

media, while non-tumorigenic cell speed variability decreases. 

• Cloned cancer cells maintain speed variability and response to 

serum/EGF-depleted media 

• Persistence increases for all cell lines in depleted media 

• Cell step-lengths appear to follow a Paretto distribution 

• IMF of cancer cells increases in depleted media 

 

Based on metrics described in Chapter 3 and 4, MCF, AT1, and CA1d cells are 

not easily distinguishable by traditional motility analyses in full media.  However, 

a switch to serum/EGF-depleted media creates an environment where the 

motility characteristics of non-tumorigenic and cancer cell lines diverge.  These 

differences are summarized graphically in Figure 6.1.  Furthermore, these 

differences would have been missed by traditional PRW models of migration, due 

to the fact that all three cell lines displayed similar levels of persistence.  Thus, 
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the novel metrics developed in this dissertation allow one to distinguish cancer 

from non-cancer based on motility assays, and to quantify their differences. 

The development of a multivariate assay in Chapter 5 led to the following 

conclusions: 

• multivariate dynamic assays at single-cell resolution are possible 

• A431 and HT10-80 cells, in full media, display positive correlation between 

cell speed, surface area, and DECCA 

• HT10-80 cell speed, surface area, and DECCA was significantly higher 

than that of A431 cells 

• both cell types displayed higher cell speed and surface area on Ln-332, as 

compared to Fn 

• A431 cells displayed increased DECCA on Ln-332, while HT-1080 

DECCA values were not significantly changed. 

 

This dynamic multivariate analysis of single-cell motility was a proof-of-principle 

analysis, demonstrating, how the future of single-cell analysis may progress 

towards multivariate strategies to be analyzed by the systems biology approach. 

 

6.3 Significance 

 

6.3.1 Single-cell Assays 

The data produced to support this dissertation represents the first analysis 

and quantitation of epithelial cell speed heterogeneity.  Single-cell heterogeneity 
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is currently of great interest in the field of cell biology (Feinerman et al., 2008; 

Spencer et al., 2009; Brock et al., 2009; Fraser et al., 2009; Colman-Lerner et al., 

2005; Gascoigne et al., 2008; Cang et al., 2008).  Many researchers are realizing 

that the future of cellular biology will be defined by the ability to understand what 

is going on at the single-cell level, since “biology at the single-cell level sharply 

diverges from expectations” (Levsky and Singer, 2003).  This body of work 

outlines the first effort to quantify the inherent motility heterogeneity of epithelial 

cells.  As single-cell videomicroscopy-obtained metrics become automatically 

quantifiable by computer algorithms, multivariate analysis will become a standard 

practice, much as wound healing and Boyden chamber assays have been for 

decades.  Commercially-available software currently exists which is capable of 

obtaining multiple parameters per cell, such as: Surface area, eccentricity, 

circumference, length, and intensity (Carpenter et al., 2006).  The component 

missing from this software for true single-cell, dynamic multivariate analysis is 

accurate cell tracking. 

The bottleneck of single-cell epithelial motility analysis has always been 

tracking the cells manually.  However, we are on the verge of being able to 

automatically track single-cells using H2B-RPF labeled nuclei for florescent 

images, and using advanced cell segmenting techniques for phase contrast 

images (Walter Georgescu, personal communication).  When tracking becomes 

fully automated, there will be a vast increase in data of all cell lines and a 

multitude of media conditions, drugs, and ECMs.  It is my intent that this work 

serve as a benchmark for analyzing the heterogeneity of motility behavior, and 
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that the metrics developed in this dissertation will be commonly used to 

quantitate motility in the near future. 

As technology progresses, it will be necessary to integrate numerous 

assays and techniques into a powerful software application allowing acquisition 

of multivariate data.  One example of such a technique can be found in 

CellProfiler, an open source, MATLAB based program designed for high-content 

microscopy images (Carpenter et al., 2006).  Currently this software is limited to 

end-point assays due to a lack of tracking software, but this hurdle will soon be 

overcome.  Software for data visualization is also necessary.  Looking at 6 cell 

lines, in 6 conditions, with 20 metrics produces data with 720 dimensions.  A 

challenge of these datasets will be to make them human-interpretable.  A few 

possibilities exist.  The Althchuler and Wu laboratory currently employ the 

principal-component analysis method to reduce dimensionality of their data to 

isolate subpopulations.  They have successfully reduced a 1,536 dimension 

dataset to 25 dimensions, without losing predictive power (Slack et al., 2008).  

Thus, the software is becoming available to search for subpopulations in 

enormous datasets. 

 

6.3.2 Influence of Variability on Other Phenotypic Traits 

 The discovery of non-genetic phenotypic heterogeneity of cell 

speeds suggests that other traits may also demonstrate non-genetic 

heterogeneity.  In fact, research on single-cell variability of mRNA and protein 

levels indicates that heterogeneity of phenotypic traits may be widespread (Bar-
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Even et al., 2006; Raser and O’Shea, 2005; Samoilov et al., 2006).  Colman-

Lerner et al. have demonstrated cell-to-cell variation of yeast mating pheromone 

response.  It appears likely that other quantitative single-cell metrics will also be 

highly heterogeneous in cell populations.  These other metrics could be studied 

with the statistical analyses presented here to quantitate their heterogeneity.  

Thus, the statistical analyses and multivariate techniques developed here can be 

applied to many types of analyses from other fields, including proliferation, 

metabolism, and signaling. 

 

6.3.3 Phenotypic Plasticity 

Quantitation of plasticity (demonstrated by the ability to maintain variation 

in a variety of microenvironments) is a clear next step of this research.  One 

could hypothesize that cancer cells demonstrate a higher level of plasticity than 

non-tumorigenic cells.  Increased plasticity would allow cancer cells to thrive in 

many microenvironmental conditions, while non-tumorigenic cells would lose 

their phenotypic hetereogeneity.  This hypothesis could be tested by quantitation 

of a number of single-cell metrics for multiple cell lines, in many 

microenvironmental conditions.  Cells demonstrating high variation of quantitative 

metrics in a large percentage of conditions would be considered highly plastic.  

Quantitation would be achieved by a frequency histogram of binned metric 

ranges.  The more the histogram is shifted to the right, the greater a cell line’s 

plasticity.  It would be interesting to compare the plasticity of several cancer cell 

lines, to determine if plasticity is cell line dependant, or if it is a trait of all cancers.  
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Other questions could be analyzed by this type of analysis: 1) does the plasticity 

of cancer cell lines increase as the number of passages in vivo increases?  2) 

does plasticity increase upon multiple exposures to drugs or other forms of a 

harsh microenvironment?  3) does plasticity correlate with invasive/metastatic 

potential? 

Going one step further, plasticity could be calculated and visualized in a 

human-interpretable manner for dozens of metrics, for dozens of cell lines, in 

hundreds of microenvironmental conditions.  All of this data (hundreds or 

thousands of dimensions), could be visualized in a single histogram per cell line.  

Average values from the frequency histograms mentioned above (for metric 

ranges) would then themselves be represented on a frequency histogram.  

Peaks at a high range indicate high plasticity, while a distribution at lower ranges 

is indicative of low plasticity. 

An analysis of plasticity would bring my multivariate, single-cell, dynamic 

analysis to the next level, and would lead to advanced understanding of how 

heterogeneity plays a role in cancer progression. 

 

6.3.4 Relevance to Cancer Progression 

For decades, the clonal theory of cancer has predominated (see Section 

1.1.1).  However, recent research suggests that non-genetic heterogeneity may 

also factor into cancer progression (Brock et al., 2009).  From this research, the 

non-genetic heterogeneity theory of cancer has arisen.  This theory suggests that 

cancer cells may evolve the ability to adapt to their environment through 
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phenotypic heterogeneity brought about by gene expression variability (Fraser 

and Kaern, 2009; Brock et al., 2009).  In essence, this theory proposes that 

cancer cells can evolve through both genetic and non-genetic means into a 

highly variable state.  Those cells that are more variable are then more likely to 

survive the variety of conditions they meet within a tumor, which can include: 

hypoxia, fluctuating growth factors, immune system response, ECM alteration, 

tissue restructuring, and drug treatment.  By evolving the ability to obtain a highly 

heterogeneous population from a single genotype, a clonal population of cancer 

cells will become more likely to survive a selective environment for a limited 

duration (Brock, et al., 2009).  A comparison between the clonal theory and the 

non-genetic heterogeneity theory is outlined in Figure 6.2. 

 It is likely that both the clonal theory and the non-genetic heterogeneity 

theory play a role in cancer development.  For example, continuous, sustained 

environmental changes may select for rare mutants and lead to a clonal 

population (e.g. for the case of chemotherapy regimes), while transient changes 

can be handled by the non-genetic heterogeneity present within the tumor.  It is 

important for cancer therapy to determine which theory predominates during 

cancer progression for different disease models.  This end is achievable by 

continued development of single-cell heterogeneity analyses. 

 

6.3.5 Distinguishing cancer from non-cancer 

New metrics have been developed which, in this system, can distinguish 

cancer cells from non-tumorigenic cells via motility assays.  This has broad  



Figure 6.1- Non-genetic heterogeneity theory of cancer.   

Initial, transformed cell

Cancer Progression

Non-genetic Heterogeneity 
Theory

Further growth

Clonal Expansion
Theory

Diversi�cation of 
phenotypes due 

to genetic 
mutation

Diversi�cation of 
phenotypes, but 
same genotype

High mutation 
rate

Mutation 
confering 

heterogeneity

Harsh Microenvironmental conditions 
(e.g. drug exposure, or hypoxia)

Surviving cells are 
genotypically and 

phenotypically 
homogenous

Survivors were 
quiescent or had 

particular proteins 
upregulated at the 

time.  Cells are 
genotypically 
homogenous 

Phenotypically and 
genotypically 
homogenous 

tumor.  Will 
eventually re-gain 
genetic heteroge-

neity due to 
mutations.

Phenotypic 
heterogeneity is 

restored after the 
insult is removed, 
since variability is 

not genetically 
determined

Resulting Clonal 
Populations

107



108 

implications for cancer modeling, and suggests we may be able to determine the 

mechanism driving the alteration of cancer cell motility, since we now have the 

assays and metrics to measure these differences.  For example, drug inhibitors 

of different areas of the migration pathway could be utilized to pinpoint the 

mechanism behind heterogeneity of motility. 

The researched presented here indicates that variability and heterogeneity 

may be a stronger predictor of cancer versus non-cancer than other methods 

such as cell speed, proliferation, or ability to form colonies in soft agar.  Thus, 

single-cell analysis may one day be used for clinical diagnosis and/or prognosis.  

Phenotypic signatures may exist which could be found to correlate with disease 

progression, metastasis, or specific mutations.  Alternatively, single-cell analyses 

could be used to screen patient tumor biopsies for drug sensitivity.  Significant 

challenges would need to be overcome to move this type of analysis into the 

pathology laboratory, including: 

• clear phenotypic signatures that are predictive of clinical outcome 

• automated data analysis 

• ability to extract and efficiently culture cancer cells from a tumor 

• faster turnaround time for results 

 

In total, results from Chapters 3 and 4 have broad implications in cancer 

research: 
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• there is significant heterogeneity of phenotypic response even upon 

transient exposure to changing environments (response was tested 

from 2-6 hours) 

• Cancer cell variability and heterogeneity of motility is altered upon 

micro-environmental change 

• The changes in variability and heterogeneity in response to serum 

and EGF depletion of CA1d cells are not due to genetic 

heterogeneity 

 

6.4 Questions Raised 

 This project has raised a number of questions which can be addressed in 

the near future: 

 

• Do phenotypic subpopulations exist, or is there a continuum of cell states? 

Qualitative assumptions must be made in order to separate out 

subpopulations.  There must be a reason for stating that one group of cells is 

different from another.  Separating out subpopulations due to speed, surface 

area, or any other metric is ineffective unless there is a phenotypic difference that 

is experimentally or clinically relevant.  Thus, the test of whether a subpopulation 

is truly present is the presence of a clear reason behind differentiating two 

groups (i.e. drug sensitivity, patient life expectancy, or disease progression).  Any 

subpopulations determined by algorithms must be validated through 

experimental observations. 
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• Can cells switch from one subpopulation to another over time? 

Most studies aimed at distinguishing subpopulations do so through endpoint 

assays.  However, it is unknown if an individual cell belonging to one 

subpopulation is destined to remain within that particular subpopulation for its 

lifetime.  It is possible that cells can switch from one group to another.  This 

question can be answered through dynamic multivariate single-cell assays. 

 

• what happens at longer time points? 

The research presented here only looks at a short term response to 

microenvironmental change.  It is currently unknown if this response will be 

maintained over longer time periods.  This question can be addressed in the 

near-term by utilizing automatic tracking software currently being developed. 

 

• Is the study of variability applicable in 3D systems or in vivo? 

Condeelis et al., have demonstrated that single-cell analysis is possible in 

vivo by the use of multi-photon microscopy (Condeelis and Segall, 2003).  This 

type of analysis may be a valuable tool for cancer research, but requires the 

development of algorithms and tools to automate quantification in their model in a 

much more high-throughput manner.  Current quantitation methods for 3D or in 

vivo motility studies are much less advanced than those for 2D. 

 

• What happens at higher cell concentrations? 
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The research presented looks only at sparsely plated cells, to minimize the 

effect of cell-cell contact, and to reduce the dataset to a reasonable size.  Cell 

segmentation and tracking becomes more complicated as the cell density 

increases.  However, the use of H2B-RFP to visualize the nucleus, coupled with 

advanced cell segmentation algorithms, will allow us to address trends between 

motility metrics and cell density. 

 

6.5 Concluding Remarks 

 Effective treatment of cancer will require both the development of new 

methods of therapeutic intervention, and also the ability to determine which 

patients will receive the most benefit from specific types of intervention.  

Development of targeted treatments for cancer will be aided through 

technological and scientific insights into the biological mechanism driving cancer 

cell heterogeneity.  The work presented in this dissertation provides important 

additions to the study of single-cell variability, and provides robust tools for future 

investigations in this field. 
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