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CHAPTER I 
 

INTRODUCTION 

 

Development of cancer diagnostic models and discovery from DNA microarray data is of great 

interest in bioinformatics and medicine. Diagnostic models from gene expression data go beyond 

traditional histopathology and provide accurate, resource-efficient, and replicable diagnosis [Golub1999]. 

Furthermore, biomarker discovery in high-dimensional microarray data facilitates learning about the 

biology of cancer [Balmain2003]. Currently, building of cancer diagnostic models from microarray gene 

expression data has three challenging components: collection of samples, assaying, and statistical analysis. 

A typical statistical analysis process takes from a few weeks to several months and involves many 

specialists: clinical researchers, statisticians, bioinformaticians, and programmers. As a result, statistical 

analysis is a serious bottleneck in the development of cancer diagnostic models, and its enhancement by an 

automated or semi-automated system will benefit research significantly. Our goal is thus to build a system 

that takes microarray data as input and outputs a high-quality cancer diagnostic model, produces a reliable 

performance estimate, allows application of this model to unseen patients, and enables biomarker 

discovery. In order for the system to be clinically successful, it should implement the best known 

methodologies applicable to this domain and use sound techniques for model selection and performance 

estimation in an automated fashion. An ideal system should achieve the same or better quality than human 

analysts and complete the entire process within minutes or a few hours requiring minimal human effort. 

First, to inform development of such a system, we address the following questions by conducting a 

comprehensive algorithmic evaluation in the domain of cancer gene expression data: (a) Which one among 

the many powerful classifiers currently available for gene expression diagnosis performs the best across 

many cancer types? (b) How classifiers interact with existing gene selection methods in datasets with 

varying sample size, number of genes, and cancer types? (c) It is possible to increase diagnostic 

performance further using meta-learning in the form of ensemble classification? (d) How to parameterize 

the classifiers and gene selection procedures so as to avoid overfitting? Next, based on conclusions of the 

algorithmic evaluation, we develop a software system GEMS (Gene Expression Model Selector) for 
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classification and biomarker discovery in microarray gene expression data and conduct a preliminary 

evaluation of the system. 

This thesis is organized as follows: Chapter II describes existing software systems for cancer diagnosis 

from microarray gene expression data as well as prior research in this field. Chapter III summarizes 

methodology used for the algorithmic evaluation. The results of evaluation are presented in Chapter IV. 

The discussion and limitations of evaluation are provided in Chapter V, and conclusions are drawn in 

Chapter VI. Chapter VII introduces the system GEMS. Chapter VIII describes an evaluation of GEMS by 

applying the system to cancer microarray datasets (not used in algorithmic evaluation) and by assessing 

performance of developed diagnostic models using microarray datasets from different laboratories. Chapter 

IX provides directions for future research and outlines current limitations of GEMS. The thesis concludes 

with Chapter X. 
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CHAPTER II 
 

RELATED WORK 

 

Existing software systems 

Currently, there exist many dozens of software systems designed for microarray gene expression data 

analysis ([Causton2003] and [Parmigiani2003]). Since prior research has demonstrated superiority of 

supervised classification methods for cancer diagnosis over unsupervised techniques [Simon2003], we 

focused only on systems implementing supervised classification algorithms. Using this criterion, we 

identified 16 software systems (Table 1): 6 are commercial (names are shown with boldface in Table 1) and 

10 can be used free of charge for non-profit research. All systems have several of the following limitations. 

First, the performance quality of the learning algorithms selected for inclusion into the systems is unknown. 

Typically, the algorithmic palette reflects the authors’ preferences and their prior publication history; there 

is often limited evidence that these algorithms are indeed appropriate for this domain and equally 

important, that they are among the best performing ones. Second, many classification algorithms 

implemented in the software systems are not able to handle multicategory diagnosis, despite that most 

diagnostic tasks involve several diseases and that powerful multicategory classification methods do exist in 

machine learning. Third, none of the systems automatically optimizes the parameters and the choice of both 

classification and gene selection algorithms (also known as model selection) while simultaneously avoiding 

overfitting1. The user of these systems is left with two choices: either to avoid rigorous model selection and 

possibly discover a suboptimal model, or to experiment with many different parameters and algorithms and 

select the model with the highest cross-validation performance. The latter is subject to overfitting primarily 

due to multiple-testing, since parameters and algorithms are selected after all the testing sets in cross-

validation have been seen by the algorithms. We aim to address all these problems in the proposed software 

system for classification and biomarker discovery from microarray gene expression data. 

 
 

                                                      
1 Only one commercial software system, Partek Predict by Partek Inc., attempts to automatically conduct a rigorous 
optimization of the parameters and the choice of algorithms while providing unbiased performance estimates. 
Unfortunately, the current version 6.0 of Partek Predict does not completely implement this methodology, since it does 
not allow optimization of the choice of gene selection algorithms. 
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Table 1: Software systems for gene expression-based cancer diagnosis (supervised classification only). 
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Table 1 (continued): Software systems for gene expression-based cancer diagnosis (supervised 
classification only). 
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Prior methodological studies 

Previous studies in cancer diagnosis model creation from gene expression data provide limited 

evidence for selecting the best performing learning techniques. We identified 193 primary gene expression-

based cancer diagnosis studies using the ONCOMINE Cancer Microarray Database [Rhodes2004a], the 

UPITT Cancer Gene Expression Data Set Link Database [UPMC2004], and the Stanford Microarray 

Database [Gollub2003]. A review of these studies and publications that reanalyzed publicly available 

datasets (identified by querying ISI Web of Science Cited Reference Search and PubMed Central Citation 

Search for citations of primary microarray studies) revealed the following: 

• A typical study applies only a few (usually, 2-3) classification algorithms to a single cancer 

microarray dataset; 

• The majority of diagnostic tasks pursued by the studies are binary (i.e. with two possible 

outcomes), whereas real-life diagnostic problems are generally multicategory; 

• Researchers often apply parametric classifiers without rigorous optimization of their parameters; 

• Different computational experimental designs employed by the studies (e.g., N-fold cross-

validation, leave-one-out cross-validation, hold-out cross-validation, bootstrapping, etc) make the 

findings incomparable. 

We also located two meta-analyses covering the scope of our research: [Ntazni2003] and 

[Rhodes2004b]. According to [Ntzani2003], only 26% of studies in this domain attempted independent 

validation or cross-validation of their findings. This questions whether published results will generalize 

well to unseen patients. Unfortunately, neither of these two meta-analyses is aimed at the identification of 

the best performing methodologies, nor can be used to do so. The meta-analysis by Ntzani and Ioannidis 

[Ntzani2003] examined the predictive performance of DNA microarrays for cancer diagnosis and prognosis 

in general, without resorting to specific algorithms. The meta-analysis by Rhodes et al. [Rhodes2004b] is 

geared toward biomarker assessment across 40 studies and uses a single simplistic biomarker discovery 

method and an equally simplistic and a non-standard classifier. 

In addition, two recent bioinformatics studies ([Berrar2003] and [Romualdi2003]) performed 

comparative analyses of multicategory classification algorithms in the cancer ge  expression domain. 

However, the results of these evaluations cannot serve as a basis for the development of cancer diagnostic 

ne
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decision support system for the following two reasons: first, both evaluations are limited only to two 

micr

 chapters. 

 

oarray datasets and second, neither study optimized parameters of the classifiers in all datasets, which 

is likely to result in suboptimal application of diagnostic methods.  

For the above reasons, and given the plethora of classification algorithms applicable to gene 

expression-based cancer diagnostic problems, it was unclear what constitutes a small subset of methods that 

perform optimally across many datasets and cancer types. Therefore, we decided to conduct such an 

evaluation de novo in order to base our system on the currently best techniques for the chosen task and 

domain. The methods and results of this evaluation are discussed in the next
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CHAPTER III 
 

METHODS USED FOR ALGORITHMIC EVALUATION 

 

Support Vector Machine-based classification methods 

Support Vector Machines (SVMs) [Vapnik1998] are arguably the single most important development 

in supervised classification of recent years. SVMs often achieve superior classification performance 

compared to other learning algorithms across most domains and tasks; they are fairly insensitive to the 

curse of dimensionality and are efficient enough to handle very large-scale classification in both sample and 

variables. In clinical bioinformatics they have allowed construction of powerful experimental cancer 

diagnostic models based on gene expression data with thousands of variables and as little as few dozens 

samples  (e.g., [Furey2000], [Guyon2002], and [Aliferis2003a]). Moreover, several efficient and high-

quality implementations of SVM algorithms (e.g., [Joachims1999] and [Chang2003]) facilitate application 

of these techniques in practice. The first generation of SVMs could only be applied to binary classification 

tasks. Yet, most real-life diagnostic tasks are not binary. Moreover, all other things being equal, 

multicategory classification is significantly harder than binary classification [Mukherjee2003]. Fortunately, 

several algorithms have emerged during the last few years that allow multicategory classification with 

SVMs. The preliminary experimental evidence currently available suggests that some multicategory SVMs 

(MC-SVMs) perform well in isolated gene expression-based cancer diagnostic experiments ([Yeo2001], 

[Su2001], [Ramaswamy2001], [Yeang2001], and [Lee2003]). 

Below we outline the principles behind SVM algorithms used in the study. Full technical descriptions 

can be found in the references provided in text. A detailed review of binary SVMs, exact mathematical 

formulations of both binary and multiclass SVM algorithms, and an illustration of MC-SVMs methods via 

a solution of example cancer diagnostic problem are presented in Appendices A, B, and C, respectively 

[Statnikov2005]. In the description of methods below, k is the number of classes or distinct diagnostic 

categories, and n is the number of samples or patients in the training dataset. 
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Figure 1: A binary SVM selects a hyperplane (bold line) that maximizes the width of the “gap” (margin) 
between the two classes. The hyperplane is specified by “boundary” training instances, called “support 
vectors” shown with circles. New cases are classified according to the side of the hyperplane they fall into.  
 
 
Binary SVMs 

The main idea of binary SVMs is to implicitly map data to a higher dimensional space via a kernel 

function and then solve an optimization problem to identify the maximum-margin hyperplane that separates 

training instances [Vapnik1998]. The hyperplane is based on a set of boundary training instances, called 

support vectors. New instances are classified according to the side of the hyperplane they fall into (Figure 

1). The optimization problem is most often formulated in a way that allows for non-separable data by 

penalizing misclassifications. 

 

Multiclass SVMs: One-Versus-Rest (OVR) 

This is conceptually the simplest multiclass SVM method (see [Kressel1999] for details). Here we 

construct k binary SVM classifiers: class 1 (positive) versus all other classes (negative), class 2 versus all 

othe

 have theoretical justification 

such as the analysis of generalization, which is a relevant property of a robust learning algorithm.  

r classes, … , class k versus all other classes (Figure 2a). The combined OVR decision function 

chooses the class of a sample that corresponds to the maximum value of k binary decision functions 

specified by the furthest “positive” hyperplane. By doing so, the decision hyperplanes calculated by k 

SVMs “shift”, which questions the optimality of the multicategory classification. 

This approach is computationally expensive, since we need to solve k quadratic programming (QP) 

optimization problems of size n. Moreover, this technique does not currently

*

**
*

Class 1

*** **
*

*

*
**

*
Class 2

*

**
*

Class 1

*** **
*

*

*
**

*
Class 2
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s applied to a three-class diagnostic problem. (a) MC-SVM One-Versus-Rest 
onstructs 3 classifiers: (1) class 1 vs classes 2 and 3, (2) 2 vs 1 and 3, and (3) 3 vs 1 and 2. (b) MC-SVM 
ne-Versus-One constructs 3 classifiers: (1) class 1 vs class 2, (2) 2 vs 3, and (3) 1 vs 3. (c) MC-SVM 

basis of One-Versus-One SVM classifiers. (d) MC-SVM 
ammer and Singer construct a single classifier by maximizing 

marg
 

Figure 2: MC-SVM algorithm
c
O
DAGSVM constructs a decision tree on the 
methods by Weston and Watkins and by Cr

in between all classes simultaneously.  

 
Multiclass SVMs: One-Versus-One (OVO) 

This method involves construction of binary SVM classifiers for all pairs of classes; in total there are 

22
=⎟⎟

⎠

⎞
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⎝
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SVM problem is solved (with the underlying optimization problem to maximize

)1( −kk  pairs (see Figure 2b and [Kressel1999]). In other words, for every pair of classes, a binary 

 the margin between two 

classes). The decision function assigns an instance to a class which has the largest number of votes, so-

called Max Wins strategy [Friedman1996]. If ties still occur, a sample will be assigned a label based on the 

classification provided by the furthest hyperplane. 
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One of the benefits of this approach is that for every pair of classes we deal with a much smaller 

optimization problem, and in total we need to solve k(k-1)/2 QP problems of size smaller than n. Given that 

QP optimization algorithms used for SVMs are polynomial to the problem size, such a reduction can yield 

substantial savings in the total computational time. Moreover, some researchers postulate that even if the 

entire multicategory problem is non-separable, while some of the binary sub-problems are separable, then 

OVO can lead to improvement of classification compared to OVR [Kressel1999]. Unlike the OVR 

approach, here tie-breaking plays only a minor role and does not affect the decision boundaries 

significantly. On the other hand, similarly to OVR, OVO does not currently have established bounds on the 

generalization error. 

 

Multiclass SVMs: DAGSVM 

The training phase of this algorithm is similar to the OVO approach using multiple binary SVM 

classifiers; however the testing phase of DAGSVM requires construction of a rooted binary decision 

directed acyclic graph (DDAG) using classifiers (see Figure 2c and [Platt2000]). Each node of this 

graph is a binary SVM for a pair of classes, say (p, q). On the topologically lowest level there are k leaves 

e 

der in 

irically in [Platt2000].  

In addition to inherited advantages from the OVO method, DAGSVM is characterized by a bound on 

the generalization error.  

 

Multiclass SVMs: 

f QP problem, a bounded formulation, decomposition 

techniques can provide a significant speed-up in the solution of the optimization problem ([Hsu2002], 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k  

corresponding to k classification decisions. Every non-leaf node (p, q) has two edges – the left edg

corresponds to decision “not p” and the right one corresponds to “not q”. The choice of the class or

the DDAG list can be arbitrary as shown emp

Method by Weston and Watkins (WW) 

This approach to multiclass SVMs is viewed by some researchers as a natural extension of the binary 

SVM classification problem (see Figure 2d, [Hsu2002] and [Weston1999]). Here, in the k-class case one 

has to solve a single quadratic optimization problem of size (k-1)n which is identical to binary SVMs for 

the case k=2. In a slightly different formulation o
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[Pla

timality of CS, as well as the bounds on generalization has not been demonstrated yet.   

hods 

en 

cancer diagnosis (e.g., [Khan2001], [Ramaswamy2001], [Pomeroy2002], [Nutt2003], [Signh2002], and 

m-dimensional space (where m is the 

num

mined by some distance metric, typically Euclidian distance [Mitchell1997].  

tt1999]). This method does not have an established bound on the generalization error, and its optimality 

is not currently proved. 

 

Multiclass SVMs: Method by Crammer and Singer (CS) 

This technique is similar to WW (see Figure 2d, [Hsu2002] and [Crammer2000]). It requires solution 

of a single QP problem of size (k-1)n, however uses less slack variables in the constraints of the 

optimization problem, and hence it is cheaper computationally. Similarly to WW, the use of 

decompositions can provide a significant speed-up in the solution of the optimization problem [Hsu2002]. 

Unfortunately, the op

 

Non-SVM classification met

In addition to five MC-SVM methods, three popular classifiers, K-Nearest Neighbors (KNN), 

Backpropagation Neural Networks (NN), and Probabilistic Neural Networks (PNN) were also used in this 

study. These learning methods have be extensively and successfully applied to gene expression based 

[Berrar2003]). 

 

K-Nearest Neighbors (KNN) 

The main idea of KNN is that it treats all samples as points in the 

ber of variables) and given an unseen sample x, the algorithm classifies it by a vote of K nearest 

training instances as deter

 

Backpropagation Neural Networks (NN) 

Backpropagation Neural Networks are feed-forward neural networks with signals propagated only 

forward through the layers of units. These networks are composed of (I) an input layer of units, which we 

feed with gene expression data, (II) hidden layer(s) of units, and (III) an output layer of units, one for each 

diagnostic category, so-called 1-of-n encoding (see Figure 3a and [Mitchell1997]). The connections among 

units have weights and are adjusted during the training phase (epochs of a neural network) by 
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backpropagation learning algorithm. This algorithm adjusts weights by propagating the error between 

network outputs and true diagnoses backward through the network and employs gradient descent 

ptimization to minimize the error function. This process is repeated until we find a vector of weights that 

ork is complete, unseen data instances are fed to 

the i

Probabilistic Neural Networks (PNN) 

Probabilistic Neural Networks belong to the family of Radial Basis Function (RBF) neural networks 

[Mitchell1997]. RBF networks are feed-forward neural networks with only one hidden layer. The primary 

difference between a backpropagation neural network with one hidden layer and an RBF network is that for 

the latter one, the inputs are passed directly to the hidden layer without weights. The Gaussian density 

function is used in a hidden layer as an activation function. The weights for the connections among the 

hidden and the output layer are optimized via a least squares optimization algorithm. A key advantage of 

RBF networks is that they are trained much more efficiently than backpropagation neural networks. 

 

 of neural networks for a 4-category diagnostic problem with 
m-d
Neur

o

best fits the training data. When training of a neural netw

nput units, propagated forward through the network, and the network outputs classifications.  

 

Figure 3: Simplified illustration of the design
imensional samples of variables (genes) and training set containing N samples. (a) Backpropagation 
al Network contains inputs for m variables (genes); hidden layer contains 3 units (this number is 

usually determined by cross-validation); and output layer contains a unit for each diagnostic category (1-of-
n encoding scheme). (b) Probabilistic Neural Network contains  inputs  for m variables (genes); pattern 
layer contains N units (a unit for each training instance); competitive layer contains 4 units (a unit for each 
diagnostic category) and receive inputs only from pattern units that are associated with the category to 
which the training instance belongs; and output layer contains a unit for each diagnostic category. 
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 Probabilistic Neural Networks are made up of (I) an input layer, (II) a hidden layer consisting of a 

pattern layer and a competitive layer, and (III) an output layer (see Figure 3b, [Demuth2001] and 

[Specht1990]).  The pattern layer contains one unit for each sample in the training dataset. Given an unseen 

training sample x, each unit in the pattern layer computes a distance from x to a specific training instance 

and applies a Gaussian density activation function. The competitive layer contains one unit for each 

iagnostic category, and these units receive inputs only from pattern units that are associated with the 

category to which the training instance belongs. Each of unit in the competitive layer sums over the outputs 

of the pattern layer and computes a probability of x belonging to a specific diagnostic category. Finally, the 

output unit corresponding to maximum of these probabilities outputs 1, while those remaining output 0. 

 

Ensemble classification methods 

Given that learners used in this study are different in a sense that they give preference to different 

models, the final classification performance may be improved via use of algorithms that combine outputs of 

individual classifiers, so-called ensembles of classifiers. This idea has received much attention in machine 

learning literature (e.g., [Ho1994] and [Sharkey1996]) and has been recently applied to the gene expression 

domain ([Dudoit2002] and [Valentini2003]). Learning how to combine classifiers to further improve 

performance is an additional meta-learning problem. Since there is no consensus on which methods are the 

best in ensembling classifiers, we considered a number of techniques: the most common approach by 

majority voting [Freund1995] and more complex approaches, Decision Trees (DT) [Murthy1997] and MC-

SVM methods (OVR, OVO, DAGSVM). When algorithms were applied for ensembling of classifiers, the 

input dataset consisted of attributes corresponding to the outputs of classifiers (either SVM or both SVM 

and non-SVM algorithms) and the original class labels. Combining classifiers by DT or MC-SVM methods 

t 

s to 

optimize performance while avoiding overfitting as described in the experimental design subsection.  

d

could yield majority voting for some cases, but DT or MC-SVMs allow many more ways to construc

ensemble of classifiers. 

 

Parameters for the classification algorithms 

Parameters for the classification algorithms were chosen by nested cross-validation procedure
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For all five MC-SVM methods we used a polynomial kernel pT ryxyxK )(),( +⋅= γ , where x and y 

are samples with gene expression values and p, γ, r are kernel parameters. We performed classifier 

optimization over the set of values of cost C (the penalty parameter of SVMs) = {0.0001,0.01,1,100} and p 

= {1,2,3}. The kernel parameters γ and r were set to default values as in [Chang2003]: γ = 1/number of 

variables and r = 0. For Backpropagation Neural Networks, we performed optimization by implementing 

early stopping regularization techniques following [Goodman1996] on top of the Matlab Neural Network 

toolbox with parameter selection in a nested cross-validation fashion in order to avoid overfitting. In 

particular, we used feed-forward NN with one hidden layer and the number of units chosen from the set 

{2,5,10,30,50} based on cross-validation error. We employed gradient descent with adaptive learning rate 

propagation, mean squared error performance goal set to 10-8 (an arbitrary value very close to zero), 

imal number of epochs in the range [100, 10000] based on the early 

stopp

The parameter σ was set the same for all diagnostic categories. Similarly, we performed a thorough 

optimization of the KNN classifier over all possible numbers of neighbors K ranging from 1 to the total 

number of instances in the training dataset based on cross-validation error. 

 

Datasets and data preparatory steps 

The datasets used in this work are described in Table 2. In addition to nine multicategory datasets 

which were most of the multicategory cancer diagnosis datasets in humans found in the public domain at 

the time the present study was initiated, two binary datasets (i.e. with two diagnoses), DLBCL and 

Prostate_Tumor, were also included to empirically confirm that the employed MC-SVM learners behave 

well in binary classification tasks as theoretically expected. 

The studied datasets were produced primarily by oligonucleotide-based technology. Specifically, in all 

datasets except for SRBCT, RNA was hybridized to high-density oligonucleotide Affymetrix arrays HG-

U95 or Hu6800, and expression values (average difference units) were computed using Affymetrix 

GENECHIP analysis software. The SRBCT dataset was obtained by use of two-color cDNA platform with 

back

fixed momentum of 10-3, and an opt

ing criterion of [Goodman1996]. For Probabilistic Neural Networks, we optimized the smoothing 

factor σ, a parameter of the Gaussian density function, over 100 different values ranging from 0.01 to 1.00. 
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cons tering for a minimal levecutive image analysis performed by DeArray Software and fil el of expression 

[Khan2001]. 

The genes or oligonucleotides with “absent” calls in all samples were excluded from the analysis to 

reduce the amount of noise in the datasets ([Lu2002] and [Wouters2003]), and if this was the case, the 

number of genes is listed in bold in Table 2. While setting up datasets for experiments, we took advantage 

of all available documentation in order to increase the number of categories or diagnoses for the outcome 

variable. For example, the original Brain_Tumor1 data analysis had only two categories – glioblastomas 

and anaplastic oligodendrogliomas. Instead of a binary classification problem, we solved a diagnostic 

problem with four outcomes: classic glioblastomas, non-classic glioblastomas, classic anaplastic 

oligodendrogliomas, and non-classic anaplastic oligodendrogliomas. 

In summary, the 11 datasets had 2-26 distinct diagnostic categories, 50-308 samples (patients), and 

2308-15009 variables (genes) after the data preparatory steps outlined above. All datasets are available for 

download from www.gems-system.org.  

We note that no new methods to preprocess gene expression data were invented. We relied instead on 

standard normalization and data preparatory steps performed by the authors of the primary dataset studies. 

In addition to that, we performed a simple rescaling of gene expression values to be between 0 and 1 for 

speeding up SVM training. The rescaling was performed based on the training set in order to avoid 

overfitting. 

Table 2: Cancer-related human gene expression datasets used in this study. In addition to 9 multicategory 
data
behave as well as binary SVMs in binary classification tasks as theoretically expected. The column “Max. 

 

Sam- Variables Cate- Variables / 

308 15009 26 49 9.7% [Ramaswamy2001]

60 5726 9 95 15.0% [Staunton2001]

Brain
Brain

Leukemia2 AML, ALL, and mixed-lineage leukemia (MLL) 72 11225 3 156 38.9% [Armstrong2002]

83 2308 4 28 34.9%

Dataset name ReferenceDiagnostic Task

sets, 2 datasets with two diagnoses were included to empirically confirm that MC-SVM methods 

prior” indicates the prior probability of the dominant diagnostic category. 

ples (genes) gories Samples

11_Tumors 11 various human tumor types 174 12533 11 72 15.5% [Su2001]

14_Tumors 14 various human tumor types and 12 normal tissue types
9_Tumors 9 various human tumor types

Number of
Max. 
prior 

 

_Tumor1 5 human brain tumor types 90 5920 5 66 66.7% [Pomeroy2002]

_Tumor2 4 malignant glioma types 50 10367 4 207 30.0% [Nutt2003]

Leukemia1 Acute myelogenous leukemia (AML), acute lympboblastic leukemia 
(ALL) B-cell, and ALL T-cell 72 5327 3 74 52.8% [Golub1999]

Lung_Cancer 4 lung cancer types and normal tissues 203 12600 5 62 68.5% [Bhattacherjee2001]

SRBCT Small, round blue cell tumors (SRBCT) of childhood [Khan2001]

Prostate_Tumor Prostate tumor and normal tissues 102 10509 2 103 51.0% [Singh2002]

DLBCL Diffuse large b-cell lymphomas (DLBCL) and follicular lymphomas 77 5469 2 71 75.3% [Shipp2002]
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Experimental design for model selection and evaluation 

Two experimental designs were employed to obtain reliable performance estimates and avoid 

over

achine learning literature regarding 

whet

el involves: (a) finding the best parameters for the classification 

algo

-validation procedure 

erformance of the final diagnostic model. Cross-validation is a method for providing an estimate of the 

performance of a diagnostic model produced by a learning procedure A on available data D.  First, one 

partitions the data D into N non-overlapping and balanced subsets of cases. Then, the following is repeated 

N times: A is trained on the N-1 subsets (training set) and tested on the hold-out subset (testing set). Finally, 

the average performance ρ of A over the N testing sets is reported. This methodology produces an unbiased 

performance estimate ρ of the model produced by A by training on all the available data D (i.e., all N 

subsets comprise the training set). The pseudo-code of the procedure referred to as cross-validation for 

fitting. Both experimental designs are based on two loops. The inner loop is used to determine the best 

parameters of the classifier (i.e. values of parameters yielding the best performance on the validation 

dataset). The outer loop is used for estimating the performance of the classifier built using the previously 

found best parameters by testing on an independent set of patients. Design I uses a stratified 10-fold cross-

validation in the outer loop and a stratified 9-fold cross-validation in the inner loop [Weiss1991]. It is often 

referred to as nested stratified 10-fold cross-validation. Design II uses leave-one-out cross-validation 

(LOOCV) in the outer loop and a stratified 10-fold cross-validation in the inner loop. We chose to employ 

both designs because there exists contradictory evidence in the m

her N-fold cross-validation provides more accurate performance estimates than LOOCV and vice-

versa for zero-one loss classification [Kohavi1995]. 

Building of the final diagnostic mod

rithm using a single loop of cross-validation analogously to the inner loop in Designs I and II; (b) 

building the classifier on all data using the previously found best parameters; and (c) estimating a 

conservative bound on the classifier’s future accuracy by running either Design I or II. 

 

Nested cross

The nested cross-validation procedure ([Scheffer1999] and [Dudoit2003]) allows the simultaneous 

optimal selection of parameters (tuning) of a classifier and the unbiased (non-overfitted) estimation of the 

p
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performance estimation is shown in Figure 4, where for simplicity A is a classifier with a fixed parameter 

α. 

Cross-validation for performance estimation: 
 

1. Repeat N times:  
• Training set ← N-1 subsets; 
• Testing set ← remaining subset; 
• Train the classifier A on the training set using parameter α; 
• Test it on the testing set. 

 
2. Return ρ, the average performance of A over N testing sets.  

 
 

Figure 4: Cross-validation for performance estimation. 
 

Cross-validation for model selection:
 

1. Repeat for i = 1, …, m:  

• Training set ← N-1 subsets; 

• Train the classifier A

a. Repeat N times: 

• Testing set ← remaining subset; 
 on the training set using parameter αi; 

• Test it on the testing set. 

α
b. Record P(i), the average performance of A over N testing sets.  

2. Determine j, where j = argmax P(i) for i = 1, …, m; 
3. Train the classifier A on the entire data D using parameter αj and return 

the resulting classification model. 
 

 
 

Figure 5: Cross-validation for model selection. 
 

Nested cross-validation: 
 

1. Repeat N times: 
• Training set ← N-1 subsets; 
• Testing set ← remaining subset; 

1.1. Repeat for i = 1, …, m:  
 

a. Repeat N-1 times (for samples only in the training set): 

 Testing_validation set ← remaining subset; 

 est it on the testing_validation set. 

o Training_validation set ← N-2 subsets; 
o
o Train the classifier A on the training_validation set using parameter αi; 
o T

b. Record P(i), the average performance of A over N-1 testing_validation sets. 
1.2. Determine αj, where j = argmax P(i) for i = 1, …, m; 
1.3. Train the classifier A on the training set using parameter αj. 

 

2. Return ρ, the average performance of A over N testing sets. 
• Test the classifier obtained in step 1.3 on the testing set. 

 
 

 

inner loop (dashed box). 
 

 

Figure 6: Nested cross-validation for performance estimation in the outer loop and model selection  in the 
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Typically however, a classifier used for learning is parametric and the optimal value of parameters 

should be estimated and used to produce the final model. Let us assume that the classifier can be applied 

with parameter α taking m values = {α1, α2, α3,…, αm-1, αm}, where αi is a vector with the following 

parameters:  

• Choice of classification algorithms (e.g., K-Nearest Neighbors, Support Vector Machines); 

• Parameters of the specific classification algorithms (e.g., number of neighbors K for K-

Nearest Neighbors, penalty parameter C for Support Vector Machines); 

ssification, such as gene selection, normalization, 

imputation, and others (e.g., gene selection by signal-to-noise ratio, gene selection by 

ANOVA);  

• Parameters of algorithms applied prior to classification (e.g., number of genes to be used for 

classification). 

To estimate the optimal value of the parameter α, cross-validation is used again. The performance P(i) 

of learner A trained with parameter αi is estimated for i = 1, …, m by cross-validation. The final model is 

built by training A on all available data D using the parameter αj, where j = argmax P(i)  for i = 1, …, m 

ion is used only for model selection and it does not provide 

an unbiased performance estimate for the final model and so we call this procedure cross-validation for 

model selection. 

In order to combine optimal model selection and unbiased performance estimation, the cross-

validation for model selection is “nested” inside the cross-validation for performance estimation to obtain 

the nested cross-validation procedure (Figure 6). The dashed box in Figure 6 corresponds to cross-

validation for model selection (steps 1.1, 1.2, and 1.3) “nested” into the steps 1 and 2 belonging to cross-

validation for performance estimation. Since the optimized classifier is each time evaluated on a testing set 

not used for learning, the resulting performance estimate ρ is unbiased.  

The algorithm in Figure 6 avoids the following common pitfall in estimating the performance of a 

diagnostic model produced by a parametric classifier: Quite often, the procedure in Figure 5 is used to 

 

= argmax P(i)  for i = 1, …, m is often reported as an estimate of performance of 

• Choice of algorithms applied prior to cla

(Figure 5). Notice that in Figure 5 cross-validat

identify the best parameter values and to build the final model; however, the best cross-validation

erformance P(j), where j p
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the 

d the more complex models the classifier can build, the more acute becomes the problem. In 

contrast,  on 

procedu s 

they generali

 

Gene selecti

To stud nsionality reduction can improve classification performance, we applied all 

classifier

[Furey2000] lected according to four gene selection methods/metrics: (1) ratio of genes 

betw

 

dataset 14_Tumors with prior probability of the major class = 9.7% compared to an accuracy of 75% for a 

binary dataset DLBCL with prior of the major class =75.3%. 

The second metric is relative classifier information (RCI), which corrects for differences in prior 

probabilities of the diagnostic categories, as well as the number of categories. RCI is an entropy-based 

final model, instead of applying a second cross-validation loop over the whole model selection 

procedure as in Figure 6. For a sufficiently large number of attempted parameter values, one is likely to be 

found that by chance alone provides a high estimate of cross-validation performance. The less the available 

sample is, an

 the described nested cross-validation protocol will be able to identify whether the model selecti

re i selecting values that by accident produce models that perform well on the test sets, or indeed 

ze well to unseen cases. 

on 

y how dime

s with subsets of 25, 50, 100, 500, and 1000 top-ranked genes, following the example set by 

. Genes were se

een-categories to within-category sums of squares (BW) [Dudoit2002]; (2-3) signal-to-noise (S2N) 

scores [Golub1999] applied in a one-versus-rest (S2N-OVR) and one-versus-one (S2N-OVO) fashion; and 

(4) Kruskal-Wallis nonparametric one-way ANOVA (KW) [Jones1997]. The ranking of the genes was 

performed based on the training set of samples to avoid overfitting. 

 

Performance metrics 

We used two classification performance metrics. The first metric is accuracy since we wanted to

compare our results with the previously published studies that also used this performance metric. Accuracy 

is easy to interpret and simplifies statistical testing. On the other hand, accuracy is sensitive to the prior 

class probabilities and does not fully describe the actual difficulty of the decision problem for highly 

unbalanced distributions. For example, it is more difficult to achieve an accuracy of 50% for a 26-class 
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measure that quantifies how much the uncertainty of a decision problem is reduced by a classifier relative 

to classifying using the priors [Sindwani2001].  

 

Overall research design 

To maintain the feasibility of this study, we pursued a staged factorial design: in stage I, we conducted 

a fully factorial design involving datasets and classifiers without gene selection; in stage II, we focused on 

the datasets for which the full gene sets yielded poor performance and applied gene selection in a factorial 

shion. In addition, we optimized algorithms using accuracy only and limited the possible cardinalities of 

s to only five choices as described in the subsection on gene selection. 

gardless of how much performance is 

overestim in the inner loop (which, in the worst case, may result in not choosing the best possible 

n), the outer loop guarantees proper estimation of performance. 

 

 cross-validated paired t-test for comparison of 

N-fo

multitude of datasets. That is why we decided to use random permutation testing which does not rely on 

fa

selected gene set

While the above choices restricted the number of models generated, the resulting analyses still 

generated more than 2.6⋅106 diagnostic models. The total time required was 4 single-CPU months using 

Intel Xeon 2.4 GHz platform. Out of this set of models, only one model was selected for each combination 

of algorithm and dataset.  

Notice that, despite the very large number of examined models, the final performance estimates are 

not overfitted. This is because only one model is selected per split for the estimation of the final 

performance and it is applied to previously unseen cases. Thus, re

ated 

parameters’ combinatio

Statistical comparison among classifiers 

To test that differences in accuracy between the best method (i.e. one with the largest average 

accuracy) and all remaining algorithms are non-random, we need a statistical comparison of observed 

differences in accuracies.  

In machine learning, the major study about comparison of supervised classification learning 

algorithms is that of Dietterich which suggests using N-fold

ld accuracy estimates for a single dataset [Dietterich1998]. However, the author clearly admits that this 

test violates independence and, even more importantly, does not address how this procedure is applied to a 
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independence assumptions and can be straightforwardly applied to several datasets [Good2000]. For every 

algorithm X, other than the best algorithm Y, we performed the following steps: (I) We defined the null 

ypothesis H0 to be: classification algorithm X is as good as Y, i.e. the accuracy of the best algorithm Y 

orithm X is zero. (II) We obtained the permutation distribution of 

h

minus the accuracy of alg XYΔ , the 

estim

0

order to increase the 

resol

Imp

 [Murthy1997] for 

T, and we used our own implementations of KNN, ensemble classification, gene selection, as well as 

 

ator of the true unknown difference between accuracies of the two algorithms, by repeatedly 

rearranging the outcomes of X and Y at random. (III) We computed the cumulative probability (p-value) of 

XYΔ  being greater than or equal to observed difference XYΔ̂  over 10,000 permutations. If the p-value was 

smaller than 0.05, we rejected H  and concluded that the data support that algorithm X is not as good as Y 

in terms of classification accuracy, and this difference is not due to sampling error. In 

ution of simulated sampling distribution, we computed a single value of accuracy over all samples 

from all datasets. In other words, we treated classifier’s predictions from all 11 datasets as if we had one 

large dataset with samples from all individual datasets. 

 

lementations of algorithms 

We used the MC-SVM algorithms implemented by the LibSVM team [Chang2003], since they use 

state-of-the-art optimization methods SMO [Platt1999] and TRON [Lin1999] for the solution of MC-SVM 

problems. The implementation of NN and PNN classifiers was based on the Matlab Neural Networks 

toolbox [Demuth2001]. We applied Matlab R13 implementation of the CART algorithm

D

statistical comparison algorithms. 
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CHAPTER IV 

The performance results of experiments without gene selection obtained using Design I (nested 

stratified 10-fold cross-validation) with accuracy and RCI as a performance metric are shown in Tables 3 

 for Design II are almost identical and are provided only in Appendix E, section 

1 [Statnikov2005]. The fact that we obtained similar results with two different experimental designs is 

evidence in favor of the reliability of performance estimation procedures. 

 
Table 3: Performance results (accuracies) without gene selection obtained using a nested stratified 10-fold 
cross-validation design (Design I). These results are further improved by gene selection (see Figure 7). The 
last column in the bottom table reports average performa
 

 

RESULTS OF ALGORITHMIC EVALUATION 

 

Classification without gene selection  

and 4, respectively. Results

nce computed over datasets. 

 

 
 
 

9_Tumors 11_Tumors 14_Tumors Brain_Tumor1 Brain_Tumor2 Leukemia1
% 74.98% 91.67% 77.00% 97.50%

CS 65.33% 95.30% 76.60% 90.56% 72.83% 97.50%

PNN 34.00% 77.21% 49.09% 79.61% 62.83% 85.00%

Multicategory classification
Method

M
C

-S
V

M

OVR 65.10% 94.68
OVO 58.57% 90.36% 47.07% 90.56% 77.83% 97.32%
DAGSVM 60.24% 90.36% 47.35% 90.56% 77.83% 96.07%
WW 62.24% 94.68% 69.07% 90.56% 73.33% 97.50%

KNN 43.90% 78.51% 50.40% 87.94% 68.67% 83.57%
NN 19.38% 54.14% 11.12% 84.72% 60.33% 76.61%

no
n-

SV
M

Leukemia2 Lung_Cancer SRBCT Prostate_Tumor DLBCL
OVR 97.32% 96.05% 100.00% 92.00% 97.50% 89.44%
OVO 95.89% 95.59% 100.00% 92.00% 97.50% 85.70%
DAGSVM 95.89% 95.59% 100.00% 92.00% 97.50% 85.76%
WW 95.89% 95.55% 100.00% 92.00% 97.50% 88.03%
CS 95.89% 96.55% 100.00% 92.00% 97.50% 89.10%
KNN 87.14% 89.64% 86.90% 85.09% 86.96% 77.16%
NN 91.03% 87.80% 91.03% 79.18% 89.64% 67.73%
PNN 83.21% 85.66% 79.50% 79.18% 80.89% 72.38%no

n-
SV

M

Averagesory classification Binary classifcation
Method

M
C

-S
V

M

Multicateg
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Table 4: Performance results (RCI) without g ained using a nested stratified 10-fold cross-
alidation design (Design I). These results are further improved by gene selection (see Figure 8). The last 

column in the bottom table reports average performance computed over datasets. 
 

 
Notably, RCI performance metric revealed different results compared to accuracy. For example, the 

best RCI for 14_Tumors dataset is 90.96% and for Prostate_Tumor is 71.14%. In contrast, when accuracy 

was employed, we obtained 76.60% in 14_Tumors and 92% in Prostate_Tumor. The difference can be 

explained by the difficulties of the classification problems - 14_Tumors is much harder (it has 26 classes 

with prior of the most frequent class 9.7%, see Table 2) than Prostate_Tumor (it is a binary problem with 

prior 51%, see Table 2). 

According to Table 3, in 8 out of 11 datasets, MC-SVMs perform cancer diagnoses with accuracies > 

90%. The results for RCI performance metric are similar (Table 4): in 7 out of 11 datasets, MC-SVMs yield 

diagnostic performance with RCI > 90%. Overall, all MC-SVMs outperform KNN, NN, and PNN 

significantly. The only exception is KNN and PNN applied to 14_Tumors dataset which outperformed

VO and DAGSVM, but still were unable to perform better than more robust MC-SVM techniques, OVR, 

ene selection obt
v

9_Tumors 11_Tumors 14_Tumors Brain_Tumor1 Brain_Tumor2 Leukemia1
90.53% 82.31% 77.49% 93.90%

DAGSVM 78.67% 92.24% 65.64% 80.77% 80.27% 90.16%

KNN 63.38% 83.93% 82.73% 67.86% 64.48% 64.45%

61.73% 68.85%

Multicategory classification
Method

M
C

-S
V

M

OVR 77.00% 95.80%
OVO 78.24% 92.24% 64.99% 80.77% 80.27% 93.05%

WW 76.22% 95.80% 86.30% 80.77% 74.75% 93.90%
CS 77.25% 96.20% 90.96% 80.77% 74.44% 93.90%

NN 65.57% 67.80% 16.24% 61.42% 62.49% 53.06%
PNN 55.59% 81.39% 81.40% 43.86%no

n-
SV

M

Leukemia2 Lung_Cancer SRBCT Prostate_Tumor DLBCL
OVR 94.42% 89.45% 100.00% 71.14% 90.91%

AveragesMulticategory classification Binary classifcation
Method

87.54%
OVO 92.35% 87.95% 100.00% 71.14% 90.91% 84.72%
DAGSVM 92.35% 87.95% 100.00% 71.14% 90.91% 84.55%
WW 91.90% 87.46% 100.00% 71.14% 90.91% 86.29%
CS 91.90% 91.40% 100.00% 71.14% 90.91% 87.17%
KNN 76.95% 68.48% 80.71% 51.09% 63.08% 69.74%
NN 78.02% 64.97% 87.50% 33.25% 58.36% 58.97%
PNN 73.51% 59.72% 68.92% 39.22% 38.23% 61.13%no

n-
SV

M
M

C
-S

V
M

 

O
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WW, and CS. The superior classification performance of the SVM-based methods compared to KNN, NN, 

and PNN reflects that SVMs are less sensitive to the curse of dimensionality and more robust to a small 

number of high-dimensional gene expression samples than other non-SVM techniques [Aliferis2003b]. A 

more detailed explanation of this matter follows in the next subsection on classification results with gene 

selection. 

Among MC-SVMs, OVR, WW, and CS yield the best results and are not statistically significant from 

each other at the 0.05 level (Appendix E, section 2 [Statnikov2005]). On the other hand, OVO, DAGSVM, 

KNN, PNN, and NN have poorer performance than the above methods to a statistically significant degree. 

OVO and DAGSVM perform very similar, which is due to the fact that both MC-SVM methods use the 

same binary SVM classifiers. We conjecture that OVO and DAGSVM perform worse than other MC-SVM 

methods because both algorithms are based on one-versus-one binary classifiers that use only a fraction of 

total training samples at a time (samples that belong to two classes) and ignore information about 

distribution of the remaining examples which may be significant for the classification. In case of large 

sample sizes, we expect MC-SVMs OVO and DAGSVM to perform as good as WW, CS, and OVR (for 

example, see [Hsu2002]). 

According to Tables 3 and 4 and results of application of the binary SVM implementation SVMLight 

[Joachims1999] to DLBCL and Prostate_Tumor datasets (not shown here), we conclude that our 

impl

imes the number of categories explains observed classification accuracies in the 

data

ementations of MC-SVM algorithms perform the same classifications as binary SVMs and, hence, 

handle binary diagnostic problems appropriately as expected. 

We tried to explain classification performance of the best MC-SVM algorithms OVR, WW, and CS by 

fitting inverse power curves motivated by the ideas described in [Cortes1993]. We found that in high-

dimensional spaces of microarray gene expression data, the number of samples divided by the product of 

the number of variables t

sets. When we reduced dimensionality by gene selection, or employed RCI performance metric, or 

used other classification algorithms, this behavior disappeared. More details can be found in Appendix E, 

section 3 [Statnikov2005]. It is important to note that curve fitting procedure used in this study is very 

simplistic since it does not incorporate predictors describing degree of biological difficulty and assumes 

that datasets and learning tasks used in this study are representative. 
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Table 5: Total time of classification experiments without gene selection for all 11 datasets and two 

 

OVR 19.28 772.43

Time in hoursMethod

experimental designs. 

 

 KNN took 3.40 hours for Design I and 109.60 hours for Design II, while the 

slow

Clas

Design I Design II

OVO 9.86 388.11
DAGSVM 9.93 390.97

CS 7.88 289.01

PNN 186.19 N/A
-S

V
M

no
V

 

Finally, we also analyzed execution time for all learning algorithms applied without gene selection 

(Table 5). The fastest MC-SVM methods CS and WW took 7.95 and 7.88 hours for Design I and 289.01 

and 290.77 hours for Design II, respectively. The slowest MC-SVM technique OVR completed within 

19.28 hours for Design I and 772.43 hours for Design II. This technique is slowest among MC-SVM 

algorithms since it constructs several classifiers repeatedly employing all samples from the training dataset. 

The fastest overall algorithm

WW 7.95 290.77

KNN 3.40 109.60
NN 195.68 N/A

M
C

n-
S

M

est overall algorithms NN and PNN took 195.68 hours and 186.19 hours, respectively, for Design I. 

All experiments were executed in the Matlab R13 environment on eight Intel Xeon 2.4GHz dual-CPU 

workstations connected in a cluster.  

 

sification with gene selection  

The summary of application of the four gene selection methods BW, S2N-OVR, S2N-OVO, and KW 

to the four most “challenging” datasets 9_Tumors, 14_Tumors, Brain_Tumor1, and Brain_Tumor2 using 

accuracy and RCI as a performance metric is presented in Figures 7 and 8, respectively. It should be noted 

that a more rigorous way to do gene selection with validation of number of genes and gene selection 

method is very expensive computationally (that is why it was not pursued here as explained in the methods 

chapter). 
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Figure 7: Performance results (accuracies) of classification experiments with gene selection obtained using 

Brain_Tumor1, Brain_Tumor2. The white bars correspond to classification results without gene selection. 

combination of gene selection method and number of genes for a specific classifier. The abbreviation “No 

 

a nested stratified 10-fold cross-validation design (Design I) for 4 datasets: 9_Tumors, 14_Tumors, 

The black bars correspond to results with gene selection. The text above each bar indicates the optimal 

GS” stands for “No gene selection”. 

The results show that gene selection significantly improves classification performance of non-SVM 

ets, accuracy is improved by up to 14.97%, 59.78%, 22.67% and RCI 

is im

2005]). The remaining algorithms, MC-SVMs OVO and DAGSVM, KNN and PNN, have 

statistically significant poorer performance. Finally, neither of the four gene selection methods performs 

significantly better than the other ones. 

learners. In particular, for some datas

proved by up to 19.52%, 69.95%, 34.98% for KNN, NN, and PNN, respectively. Gene selection also 

improves accuracy of MC-SVMs up to 9.53% and, hence, improves accuracy of the overall best classifier. 

Although KNN, NN, and PNN perform closer to MC-SVMs, three MC-SVM algorithms, OVR, WW, and 

CS, still outperform non-SVM methods in most of cases. We also found that these three MC-SVM methods 

are not statistically significant from each other and NN at the 0.05 level (Appendix E, section 2 

[Statnikov
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Figure 8: Performance results (RCI) of classification experiments with gene selection obtained using a 
nested stratified 10-fold cross-validation design    (Design I) for 4 datasets: 9_Tumors, 14_Tumors, 
Brain_Tumor1, Brain_Tumor2. The white bars correspond to classification results without gene selection. 
The black bars correspond to results with gene selection. The text above each bar indicates the optimal 
combination of gene selection method and number of genes for a specific classifier. The abbreviation “No 
GS” stands for “No gene selection”. 
 

As we have empirically found, the non-SVM methods KNN, PNN, and NN benefit significantly more 

than MC-SVMs from gene selection. A number of observations can explain this behavior: In high-

dimensional spaces, KNN has high variance of the prediction since all training points are located close to 

the edge of the sample [Hastie2001]. Furthermore, many irrelevant variables in the data dominate distances 

between samples which presents a significant problem for prediction [Mitchell1997]. PNN encounter 

problems similar to KNN, in particular because they rely on Parzen windows for density estimation which 

generally require exponential sample to the data dimensionality [Duda2001]. Backpropagation Neural 

Networks are sensitive to high dimensionality for at least two reasons: First notice, that the larger the 

number of variables, the larger is the number of weights in this type of neural network. Because of this, (I) 

there may be more local minima in the error landscape and it is thus more probable for backpropagation to 

get “trapped” in one of them, and (II) the model space becomes exponentially larger with the addition of 
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each weight, and so it becomes harder to identify a model that generalizes. In comparison, the family of 

SVMs allows for effective optimization search procedure by utilizing convex formulation with a single 

optimum justified by Statistical Learning Theory [Vapnik1998]. Furthermore, SVMs seem relatively 

insensitive to the curse of dimensionality, possibly due to the specific regularization mechanism they 

employ. In particular, this is reflected by the following: (I) many established generalization bounds do not 

depend on the data dimensionality [Herbrich2002], and (II) even linear SVMs assign zero weights to 

irrelevant variables [Hardin2004]. On the other hand, the SVM algorithm may assign non-zero weights to 

weakly relevant variables [Hardin2004] which explains why effective variable selection can still improve 

SVM classification. 

 

Ensemble classification 

For the case when no gene selection was performed, ensembles do not outperform the best non-

ensemble methods with the exception of the Decision Trees ensemble classifier for Brain_Tumor2 dataset, 

which improves classification accuracy by 1.67%. Other ensembles often achieve similar performance to 

 

 

he best classification performance (over all gene selection methods, 

subsets 

the best non-ensemble methods (Appendix E, section 4 [Statnikov2005]).      

Next, we considered three datasets 9_Tumors, Brain_Tumor1, and Brain_Tumor2 where we

previously observed improvement of classification performance by gene selection. For each dataset we

lected a subset of genes yielding tse

of genes, and learning algorithms) and constructed combined classifiers. According to results, 

ensembles perform worse than the best non-ensemble models (Appendix E, section 4 [Statnikov2005]). 

We believe that in our study, ensemble classifiers did not improve final classification performance for 

the following two reasons: First, samples misclassified by non-SVM algorithms are almost always a strict 

superset of samples misclassified by MC-SVM algorithms. Second, SVM algorithms are fairly stable in a 

sense that small changes in the training data do not result in large changes in the predictive model’s 

behavior [Kutin2002], and according to [Dudoit2002] stable algorithms do not usually tend to benefit from 

the ensemble classification. 
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Comparison with previously published results  

Most of the results from this study are not exactly comparable with the analyses provided in the 

original studies due to differences in the setup of dataset/learning task, experimental design, gene selection, 

classifiers, etc. that vary from study to study. However, the reported results in the literature confirm that 

MC-SVMs as applied here perform equally as well, or even better, compared to previously published 

models on the same datasets (Appendix E, section 5 [Statnikov2005]). 
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CHAPTER V 
 

DISCUSSION AND LIMITATIONS OF ALGORITHMIC EVALUATION 

 

One of the limitations of the present study is that we use accuracy and RCI as our performance 

measures. These metrics do not incorporate information about confidence of the predictions as well as 

different misclassification costs of diagnostic categories. On the other hand, accuracy was used in 

published studies and it is easy to interpret and simplifies statistical comparison, while RCI is insensitive to 

prior class probabilities and accounts for the difficulty of the learning problem. There are currently no 

mature performance metrics applicable for multiclass domains and suitable for our classifiers with both 

confidence information and consideration of misclassification costs. Initial attempts were introduced by 

[Lee2003], [Mossman1999], and [Ferri2003], however much needs to be done before we obtain a workable 

metric for experiments such as those presented here. 

As we mentioned, the choice of KNN, NN, and PNN classifiers as the baseline techniques was 

grounded on prior successful applications to gene expression based cancer diagnosis (e.g., [Khan2001], 

[Ramaswamy2001], [Pomeroy2002], [Nutt2003], [Signh2002], and [Berrar2003]). We have also 

experimented with other non-SVM classifiers, such as Decision Trees (DT) [Murthy1997] and Weighed 

Voting (WV) classifiers applied both in OVR and OVO fashion ([Golub1999], [Ramaswamy2001], and 

[Yeang2001]). We found that both with and without gene selection, DT perform significantly worse than 

MC-SVMs, worse than KNN, and similarly or worse than NN and PNN. Likewise, WV classifiers are 

significantly outperformed by MC-SVMs, KNN, NN, and PNN. More details about these additional 

experiments with DT and WV classifiers can be found in Appendix E, section 6 [Statnikov2005]. 

A particularly interesting direction for future research is to improve our existing gene selection 

procedures with selection of the “optimal” number of genes by cross-validation2. Furthermore, we are 

interested in applying various multivariate Markov blanket and local neighborhood algorithms which have 

been previously successfully applied to cancer gene expression and several other domains and do guarantee 

efficient identification of a set of relevant attributes under fairly broad assumptions ([Aliferis2003c], 

[Tsamardinos2003]).  
                                                      
2 The functionality to cross-validate number of genes is already implemented in the software system. 
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To the best of our knowledge, currently there exists only one work aimed at evaluation of MC-SVM 

algorithms [Hsu2002]. That study is outside of the realm of biomedicine since [Hsu2002] considered such 

classification tasks as wine recognition, letter recognition, shuttle control, etc. with the number of variables 

ranging from 4 to 180 and sample sizes greater than 500 in the majority of tasks, which is not typical for 

microarray cancer gene expression datasets. However, it is worthwhile to mention the major conclusions of 

that evaluation. The authors empirically found the following: (1) using a Gaussian radial basis kernel, all 

MC-SVM methods perform similarly; (2) DAGSVM and OVO have the fastest training time; and (3) for 

problems with large sample size, WW and CS yield fewer support vectors compared to OVR, OVO, and 

DAGSVM. The work by Hsu is complementary to ours and is not overlapping due to significant 

differences in the problem domain and dataset characteristics. For example, in our experiments, MC-SVM 

methods OVO and DAGSVM achieved inferior classification performance compared to other MC-SVM 

algorithms. 
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CHAPTER VI 
 

CONCLUSIONS OF ALGORITHMIC EVALUATION 

 

We conducted the most comprehensive systematic evaluation to date of multicategory diagnosis 

algorithms applied to the majority of multicategory cancer-related gene expression human datasets publicly 

available. Based on results of this evaluation, the following conclusions can be drawn: 

• For multicategory classification of cancer from microarray gene expression data, Support Vector 

Machines (SVMs) are the best performing family among the tested algorithms outperforming K-

Nearest Neighbors, Backpropagation Neural Networks, Probabilistic Neural Networks, Decision 

Trees, and Weighted Voting classifiers to a statistically significant degree; 

• Among multicategory Support Vector Machines, the best performing techniques are: one-versus-

rest, the method by Weston and Watkins, and the method by Crammer and Singer; 

• The diagnostic performance can be moderately improved for SVMs and significantly improved for 

the non-SVM methods by gene selection; 

• Ensemble classification does not improve performance of the best non-ensemble diagnostic 

models; 

• The obtained results favorably compare with the primary literature on the same datasets. 

We believe that practitioners and software developers should take note of these results when 

considering construction of decision support systems in this domain, or when selecting algorithms for 

inclusion in related analysis software. 
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CHAPTER VII 
 

SYSTEM FUNCTIONALITY AND DEVELOPMENT 

 

Based on results of conclusions of algorithmic evaluation, we have developed a system, GEMS (Gene 

Expression Model Selection). The system provides to the user an implementation of all and only the best 

performing learning algorithms in this domain. Given a microarray dataset on input, the system can 

auto t

I. 

 

III. 

. 

 

Figure 9: An example screen-shot of GEMS. The left part of the screen contains options for the current 
analysis step (classification algorithm). The summary of the entire project is shown in the right part of the 
screen. 

ma ically perform one the following tasks: 

Generate a classification model optimizing the parameters of classification and gene selection 

algorithms as well as the choice of the classifier and gene selection methods using cross-

validation for model selection (Figure 5); 

II. Estimate classification performance of the optimized model by nested cross-validation (Figure 6); 

Perform tasks I and II, i.e. generate a classification model and estimate its performance; 

IV Apply an existing model to a new set of patients. 
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able 6: List of algorithms currently implemented in the system GEMS. 
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In order to execute the tasks mentioned above, the user may select the type of the experimental design 

-fold cross-validation or leave-one-out cross-validation), the algorithm(s) to be used for classification, 

gene selection, and normalization, and the ranges of parameters over which optimization should take place. 

Table 6 summarizes all implemented algorithms. As the system evolved and based on discussions with our 

biomedical colleagues, we added new functionality to the system, namely, several simple gene expression 

normalization methods, area under ROC curve performance metric (for binary diagnostic problems), and 

two state of the art local causal discovery algorithms ([Aliferis2003c] and [Tsamardinos2003]) shown with 

boldface in Table 6. To guide the user’s choices according to the available computational power and time, 

the system outputs the number of models to be generated while the user is selecting analysis options. 

GEMS provides an intuitive wizard-like user interface abstracting the microarray data analysis process and 

not requiring users to be experts in data analysis. Each step in the interface contains a form with options for 

a specific stage of analysis (Figure 9):  

• overall task selection 

• dataset specification  

• cross-validation design 

• normalization 

• classification  

• gene selection 

• performance estimation 

• logging 

• report generation 

• execution of analysis 

Since the system can perform one out of four tasks outlined above, each task corresponds to a different 

sequence of steps. The overall software architecture of GEMS is shown in Figure 10. The system 

implements a client-server architecture consisting of a computational engine and an interface client. The 

computational engine is separated from the client and consists of intercommunicating functional units 

corresponding to different aspects of analysis. Upon completion of analysis, a detailed report is generated 

in HTML format with links to system input and output files as well as links to NCBI website with 

(N
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info

 
 

 architecture of GEMS. 

rmation on selected genes. The GEMS graphics user interface is implemented using Borland Delphi 6.0 

and the computational engine is programmed in Mathworks Matlab 6.5.1 and Microsoft Visual C++ 6.0. 

Figure 10: Software
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Estimate classification 
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CHAPTER VIII 
 

PRELIMINARY EVALUATION OF THE SYSTEM 

 

In order to debug the interface and the algorithmic engine of the system, we repeated most of 

experiments performed in the algorithmic evaluation using GEMS, and we found that published results 

completely matched the system outputs. Next, we performed two studies to evaluate the system. First, we 

applied GEMS to several microarray datasets, not included in our previous study, and compared the 

resulting system performance with the published models. Second, we performed a cross-dataset evaluation 

of the system. This involved using the system to build a classifier from a gene-expression dataset, 

estimating its cross-validation performance on the same dataset, and then applying that classifier to a 

different dataset (using the same genes and diagnostic target) produced by an independent research group.  

 

Application of GEMS to new datasets 

We selected five human cancer microarray gene expression datasets to test our system: 6_Tumors 

hedden2003], Leukemia3 [Yeoh2002], Lung_Cancer2 [Beer2002], DLBCL2 [Savage2003], nd 

7 for description of datasets and diagnostic tasks). All five 

datasets were produced using Affymetrix oligonucleotide technology and processed as in our algorithmic 

evaluation. None of these datasets was included in our previous studies. 

The results of application of GEMS to these datasets are presented in Table 84. The analyses 

completed within 10-30 minutes per dataset and yielded performance results comparable or better than ones 

obtained by human analysts and previously published in literature. 

 

 

                                                     

[S a

Lung_Cancer33 [Gordon2003] (see Table 

 
3 This dataset contains the same adenocarcinoma samples as in previously analysed Lung_Cancer data 
[Bhattacharjee2001]. However, Lung_Cancer3 dataset contains additional mesothelioma samples and is now used to 
solve a different diagnostic problem (adenocarcinoma vs. mesothelioma) compared to diagnosis developed using 
Lung_Cancer data (adenocarcinoma vs. squamous vs. small-cell lung cancer vs. pulmonary carcinoids vs. normal 
tissues). 
4 Notice that for DLCBL2 dataset Savage et al. reported 88.7% accuracy in their paper [Savage2003], however in the 
supplement the authors clarified that their classification procedure might be biased, since they optimized their classifier 
based on testing sets. When experiments were repeated using nested cross-validation, the authors obtained 83.9% 
accuracy (see supplement to [Savage2003]). 
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Table 7: Cancer-related human gene express or preliminary evaluation of GEMS system. 
he column “Max. prior” indicates the prior probability of the dominant diagnostic category. 

 

 have large variance, and (2) the dataset 

ay not be representative of the general population. Therefore, we used GEMS to conduct two analyses 

onstruction and evaluation of the classifier on one dataset and consecutive independent validation on 

another data. The results are summarized in Table 9, and the text below describes our experiments and 

6_Tumors 97.2% 96.0%

Leukemia3 98.4% 98.4%

Lung_Cancer2 100.0% 100.0%

ion datasets used f
T

Sam- 
ples

Variables 
(genes)

Cate- 
gories

Variables / 
Samples

Leukemia3 6 types of leukemia 248 12135 6 49 31.9%

Dataset name Diagnostic Task
f

Max. prior 

 
 
 
Table 8: Results of application of GEMS to five microarray datasets not employed for algorithmic 
evaluation. 

GEMS 
classification accuracy

Published
classification accuracyDataset name

6_Tumors 6 various human tumor types 353 7069 6 20 32.0%

Lung_Cancer2 Lung cancer and normal tissues 96 7129 2 74 89.6%

Lung_Cancer3 Mesothelioma and adenocarcinoma 181 12533 2 69 82.9%

DLBCL2 Diffuse large b-cell lymphomas (DLBCL) and 
mediastinal large B-cell lymphomas (MLBCL) 210 32404 2 154 83.8%

Number o

 
 
 
 
Cross-Dataset evaluation of the system 

Lung_Cancer3 99.4% 99.3%

DLBCL2 87.1% 83.9%

Many researchers believe that even though small cross-validation error is an important finding, it still 

requires further validation on an independent data [Simon2003]. There are two reasons for doing this: (1) 

cross-validation performance estimates in very small samples may

m

with c

findings in detail. 
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Table 9: Results of cross-dataset experiments: first, we used a dataset to build a diagnostic model and to 
estimate its future performance by cross-validation, and then we applied this model and computed its 
erformance on a different dataset. More details on datasets used for these experiments are provided in 

Tables 2 and 7. 
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First, we used the Lung_Cancer [Bhattachajee2001] and Lung_Cancer2 [Beer2002] datasets with the 

diagnostic task to differentiate between cancerous and normal tissues. The Lung_Cancer dataset contains 

186 tumor and 17 normal samples, and Lung_Cancer2 dataset contains 86 tumor and 10 normal samples. 

The datasets were produced using different microarray technologies: Lung_Cancer dataset was obtained 

using Affymetrix Human Genome U95A chips with 12,600 oligonucleotide probes, while Lung_Cancer2 

dataset was obtained using Affymetrix HuGeneFL chips with 7,129 oligonucleotide probes. The mapping 

of 6,623 probes from HuGeneFL to 7,094 probes from Human Genome U95A was derived using 

Affymetrix array comparison spreadsheets [Jiang2004]. Next, we used GEMS to generate a classification 

model and estimate its performance in a nested cross-validation fashion using Lung_Cancer dataset. We 

decided to use area under ROC curve (AUC) as a performance metric since both datasets are not balanced 

in terms of distribution of cancerous and normal samples. GEMS created a classification model and 

estimated its cross-validation performance to be 100% AUC. When this model was applied to 

Lung_Cancer2 data, the actual performance was again 100% AUC. We emphasize that, Lung Cancer2 was 

never seen by the model neither during training, nor during the performance estimation phase. 

Similarly, we used Leukemia1 [Golub1999] and Leukemia2 [Armstrong2002] datasets with the goal to 

build a classifier to predict whether a patient has acute lymphoblastic leukemia (ALL) or acute 

myelogenous leukemia (AML). The Leukemia1 dataset contains 47 ALL and 25 AML samples, and 

Leukemia2 dataset contains 24 ALL and 28 AML samples. Again, the datasets were produced using 

different microarray technologies: Leukemia2 dataset was obtained using Affymetrix Human Genome 

U95A chips, while Leukemia1 dataset was obtained using Affymetrix HuGeneFL chips. We used a similar 

approach as described above to map probes between datasets. Next, we fed Leukemia2 dataset to GEMS to 

create a classification model and estimate its performance in a nested cross-validation fashion (AUC = 

100%). When this model was applied to Leukemia1 data, the final classification performance was 99.15% 

AUC. 

In summary, the performance of the models as estimated by the system on one dataset is 

approximately equal to its performance on the independent dataset. This provides further confidence on the 

use of nested-cross-validation design both for generating the models and for estimating their performance. 
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CHAPTER IX 
 

LIMITATIONS AND FUTURE RESEARCH 

 

Although GEMS is a highly robust system for cancer diagnosis and discovery, it can be improved in 

several ways. Since many biomedical researchers and practitioners are interested in causal discovery, we 

are planning to extend and perform an evaluation of the computational causal discovery algorithms 

implemented in the system. The system evaluation presented in this paper was laboratory based with 

authors functioning as users of the system. In the future we plan to conduct a fielded evaluation of the 

system, ideally, with various types of users from different institutions and organizations. We also believe 

that gene selection capabilities of the system can be extended by SVM-based gene selection, such as the 

RFE algorithm [Guyon2002], and additional Markov-blanket based techniques ([Aliferis2003c] and 

[Tsamardinos2003]). The current version of GEMS communicates with SVM classifiers by a file 

input/output interface. A dynamic linked library or similar interface can provide significant speed-up of 

GEMS by eliminating necessity to write and read multi-megabyte microarray data files. Finally, the output 

report produced by the system provides minimal links to existing knowledge about genes. In particular, it 

will be useful to link the report on selected genes to GO terms and known pathways and interactions.  
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CHAPTER X 
 

CONCLUSION 

 

In this work we described GEMS (Gene Expression Model Selector), a system for automated 

development and evaluation of cancer diagnostic models and biomarker discovery from microarray gene 

expression data. Unlike past efforts, this system is informed by a comparative evaluation of many 

classification and related algorithms (e.g., cross-validation, gene selection, etc) applicable for this task and 

domain. In a preliminary evaluation of the system with 5 cancer gene expression datasets not employed for 

the algorithmic comparison, GEMS completed the analysis of each dataset within 10-30 minutes and the 

output model performed as well as or better than previously published models obtained by human analysts. 

Also, we used this system to perform cross-dataset analysis of cancer diagnostic models using two pairs of 

different datasets corresponding to two different diagnostic tasks. We found that the diagnostic models 

obtained by GEMS in one dataset generalize well in data from a different laboratory and that nested cross-

validation performance estimates well approximate the error obtained by the independent validation. The 

system is available for download from http://www.gems-system.org free of charge for non-commercial use. 
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