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CHAPTER I 

 

INTRODUCTION 

 

Natural disasters, such as earthquakes and hurricanes, can strike without warning, 

resulting in a range of destruction from structural damage to loss of life.  For this reason, 

research on structural control, which provides the basis for the design of structural 

systems where dynamic loads such as winds, earthquakes, waves, and traffic, are the 

governing design considerations, have become of interest in civil engineering.  One 

recent example of a major natural disaster is the Northridge earthquake that struck Los 

Angeles area on January 17, 1994.  The 6.7 magnitude earthquake resulted in 44 billion 

dollars of property damage, fifty-one deaths, scores of inhabitable buildings, and a 

number of collapsed bridges.  Natural disasters such as the earthquakes remind us of the 

challenge for structural engineers to design safer structures to better withstand such 

dangerous environmental effects. 

 

Structural Design and Control 

Numerous attempts have been made to find the optimal solution to alleviate the 

effects of dynamic loadings.  However, uncertainty is induced in the design process due 

to variability of nature and magnitude of external excitation resulting, say, from natural 

and man-made disasters, and variability of structural attributes such as stiffness and cost-

benefit ratio.  Theoretically, a structure with close to infinite stiffness would resist all 

environmental effects; however, this does not offer an economical solution. 
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Normal design of buildings involves proportioning the elements of the structure 

such that the constraints on strength and serviceability limit states are satisfied.  The 

conventional approach is to proportion the components to satisfy the strength limit states 

and then follow it up with serviceability checks. In the case of tall structures, however, 

where sensitivity to structural motion caused by environmental effects, like wind and 

earthquake, is an important element of serviceability limit state, the structure is first 

proportioned to satisfy the serviceability limit state and then followed up with strength 

limit state checks.   

As the building height increases and it becomes more slender, the influence of 

lateral loads becomes more significant. For an economical solution of the problem 

supplemental control techniques need to be applied to attenuate such motion.  Three 

methods of structural control are commonly considered:  passive control, active control, 

and semi-active or hybrid control.  The devices used in these methods provide 

supplemental means to enhance energy dissipation or absorption capabilities of a building 

structure (Teng 2002). 

 

Passive Control 

Passive devices involve control exclusively attained by altering the energy or 

stiffness within the system.  As these devices possess fixed, non-controllable properties, 

they do not require an external source of energy, therefore are independent from the input 

of earthquakes.  Passive control is commonly achieved in our daily activity, such as when 

suddenly applying the brakes in an automobile, the seatbelt prevents the body from 

moving forward out of the seat.  This restraint is an example of passive motion control.   
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The methodology for passive devices is to initially design the structural system to 

meet necessary strength and stiffness requirements.  The added stiffness reduces the 

dynamic response of the structures by absorbing and dissipating vibration energy, which 

when combined with the change in initial frequency, helps the structure avoid resonance.  

If correctly applied, passive devices provide many advantages in regions where small to 

moderate earthquakes are common.  Passive devices are the most frequently type of 

system control implemented because they involve no external power and such devices are 

inherently stable.  Passive devices have a low cost of maintenance and installation in both 

design and construction practice because the system only entails providing additional 

stiffness.  However, the adaptability of passive devices is of concern.  Because passive 

systems cannot be modified instantaneously, an accurate model of the physical system 

and reliable estimate of the design loading is critical to the effectiveness for any passive 

control system.  The design may also be over conservative due to the inability of a 

passive system to compensate for an unexpected loading.  Even if a passive device is 

ideally designed, these devices are meant to protect a structure from a particular dynamic 

loading; therefore the device may reduce responses in the first mode, but may not reduce 

responses in second or higher modes (Agrawal 2002).  Some of these disadvantages can 

be overcome by using different types of passive devices depending on the necessary type 

of control desired for the structure. 

 

Viscous Dampers  

Passive devices can be categorized into damping mechanisms such as viscous 

dampers, friction dampers, passive tuned mass dampers, and base isolation systems.  
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Viscous damping, or called material damping, dissipates energy due to the viscosity of 

the material which reduces acceleration and displacement for most of the desired 

frequency range.  A common example of viscous dampers is the ones mounted on 

building doors to prevent the door from slamming shut.  The schematic diagram for a 

viscous damper is shown in figure 1 below.  Fluid is forced through the orifices located in 

the piston head.  As the piston rod position is changed a resisting force is developed that 

depends on the velocity of the rod (Connor 2003).  Viscous dampers are most useful in 

areas where engineers wish to reduce displacement without increasing frequency.  

However, for medium to strong earthquakes, the damping effect is small since “the 

energy absorption due to yielding is much greater than that due to damping” (Soda 1996). 

 

Figure 1:  Viscous Damper 

 
Frictional Dampers  

Frictional damping dissipates energy due to the heat caused by friction between 

moving bodies in contact.  A frictional damper consists of the friction surface clamped 

together by high strength bolts with slotted holes.  Frictional pads are inserted at the bolt-

plate connections as shown in the figure 2 (Connor 2003).  The slip force is designed 
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large enough so that no sliding is caused by wind forces.  The beneficial approach to 

passive damping is that because energy is removed the response cannot become unstable.  

However frictional damping looses effectiveness during large seismic excitation 

(Miyamoto 2004). 

 

Figure 2:  Frictional Damper 

 
Passive Tuned Mass Dampers  

Passive tuned mass damper systems, shown in the figure 3 (Connor 2003), consist 

of an auxiliary mass, a spring, and a damper, which are attached to a structure in order to 

reduce the dynamic response of the structure, particularly under wind excitation.  The 

auxiliary mass limits the motion of the structure when it is subjected to a particular 

excitation causing the damper to resonate 90° out of phase with the motion of the 

structure.  The difference in the phase produces energy dissipation by the damper inertia 

force acting on the structure.  The advantage to tuned mass dampers is that since no 

mechanical parts are involved, little or no maintenance is required.  However, because 
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additional mass is introduced, a tuned mass damper added to an existing structure 

increases the overall mass of the system, which may violate design constraints imposed 

on the initial self-weight design.  In addition, tuned mass dampers are relatively 

ineffective during earthquakes due to their inability to reach a resonant condition and 

therefore dissipate energy under random excitation (Kwok 1995).  In recent years, tuned 

mass dampers have been installed in a number of buildings worldwide to reduce building 

vibration.  For instance, the John Hancock Tower in Boston, Massachusetts has been 

successfully equipped with tuned mass dampers. The building experienced large wind 

gusts that not only caused discomfort to occupants but also caused glass window panes to 

fail and fall to the ground.  To counteract sway and twisting motion, tuned mass dampers 

were successfully placed at opposite ends of the 58th floor (Christenson 2002).  It uses a 

big block of concrete floating in a bed of oil; computer-controlled hydraulics push it 

around to counter the building's sway.  A more recent example is the world’s tallest 

building Taipei 101 in Taipeh, Taiwan (Fig. 4), which has been successfully equipped 

with a tuned mass damper.  To control the excessive sway of the building under large 

wind gusts a massive pendulum with dampers has been installed.  It features the world's 

largest passive tuned mass damper, an 800-ton sphere 18 feet across (Fig. 5) that swings 

like a pendulum from the 92nd floor in the view of restaurant-goers. 
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Figure 3:  Passive Tuned Mass Damper 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 4.  World’s Tallest Building (1661 ft tall with101 stories) 
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Figure 5. 800 ton steel sphere used in the passive mass damper 

 

Base Isolation Systems  

Base isolation systems allow a structure to sit on top of rubber bearings to isolate 

the structure at the base to attenuate the effect of ground motion experienced by the 

structure.  A base isolation system, shown in the figure 6, consists of a set of flexible 

support elements, typically rubber bearings that have layers of natural rubber sheets 

bonded to steel plates, are proportioned such that the natural period of vibration of the 

isolated structure is much greater than the dominant period of excitation.  Although the 

relative motion between the structure and the support may be large, the absolute 

structural motion is small (Connor 2003).  The concept behind base isolation is similar to 

that of mounting mechanical equipment where the isolation system acts as a buffer 

between the equipment and the support.  Base isolation is best implemented in locations 

of high seismicity or if increased building safety and post-earthquake operations are 
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required, such as a hospital or a nuclear facility.  Base isolation may also be necessary if 

reduced lateral design forces are desired, or if an existing structure needs upgrading to 

satisfy current safety requirements.  For cost effectiveness, base isolation needs to be 

considered in the planning stages of the building project; if such a device is added after 

completion of the structural design, complications may arise since construction 

techniques may have to be altered.  The Toushin 24 Ohmori Building in Tokyo required 

an isolation system to reduce traffic vibrations from two adjacent railways, as well as 

reduce seismic motion.  The building, with one underground parking garage and nine 

stories above ground, was fitted with a combination of laminated rubber bearings and 

steel rod dampers.   

 

 

 

Figure 6. Typical base isolation system 

 

 

Another example of base isolation system is the renovation and upgrading of a 150 year 

old historic landmark (Fig. 7), the State House building of South Carolina, to meet 
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current code requirements for safety, to correct worn components, and to replace failing 

systems.  In addition, for protecting the structure from earthquake damage, a base 

isolation system was built under the existing foundations of the building, see Fig. 8. 

 

Figure 7.  State House, Columbia South Carolina 

 

 

Figure 8.  Base isolation system used under State House, Columbia, South Carolina 
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Active Control 
Active control, opposite to passive control, requires an external source of energy 

to control the motion of a structure.  Active control systems are best employed where 

weight is a critical issue, such as long span structures.  Because active devices measure 

and estimate the response over the entire building to determine appropriate control forces, 

these control systems can theoretically accommodate unpredictable environmental 

changes, meet performance requirements over a wide range of operating conditions, and 

compensate for the failure of a limited number of structural components.  Additionally, 

unlike passive control systems, active control systems have the ability to control different 

vibration modes and to accommodate different loading conditions, such as pulse-type 

loadings.  “Properly designed optimal active control systems are highly effective in 

reducing peak structural vibrations during earthquakes” (Marzbanrad 2004).  However, 

because active control is more complex than passive control due to the control 

equipment, active devices inherently possess a number of added complications.  The cost 

of capital, maintenance, reliance on external power, system reliability and stability are all 

concerns that have led to problems in acceptance by the profession (Connor 2003).  

Typically, an active control system consists of three main components:  (1) a 

monitor, which is the data acquisition system; (2) a controller, a module that decides on 

an intelligent course of action; and (3) an actuator, a set of physical devices that execute 

the instructions from the controller.  This algorithm is shown in figure 9.  The actuator is 

an integral component of the control system, which generates and applies the control 

forces at specific locations on the structure according to instructions from the controller 

(Connor 2003).  Civil structures require actuator systems, such as hydraulic systems, 

which are capable of generating large forces.  For example, the hydraulic systems, shown 
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in the figure 10, generate the force by applying a pressure on the face of the piston head 

contained within the cylinder.  Fluid is forced in or out of the cylinder through the 

hydraulic supply and return line to compensate for the piston displacement and maintain 

a certain pressure (Christenson 2002) .  A successful system of this type will have the 

capability to determine the present state of the structure, decide on a set of actions that 

will change this current state to a more desirable state, and carry out these actions in a 

controlled manner in a short period of time. 

 

Figure 9:  Active Control Algorithm 
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Figure 10:  Hydraulic Actuator System 

 

Active Mass Driver 

Two common active control devices are the active mass driver and the active 

variable stiffness.  In an active mass driver, an auxiliary mass is attached to the piston and 

supported by rollers shown in figure 11.  The mass moves with respect to the structure 

with an absolute acceleration.  Because force is generated by driving the mass, the 

actuator is designed to provide the required force at a certain level of acceleration.  A 

successful active mass driver was implemented in the Kyobashi Seiwa Building (Connor 

2003).  Two active mass drivers were installed on the top floor to reduce the maximum 

lateral response associated with building vibrations caused from earthquakes and strong 

winds.  Sensors were installed in the building at ground level, midheight, and the roof 

level to detect seismic motions and tremors.  A control computer analyzes each signal 

and issues a drive order.  Actuators then execute the control order and drive the masses 
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(Connor 2003).  Although active mass drivers are relatively simple to operate, research 

has found an inefficiency due to mechanical or frictional problem effects on movement in 

the higher frequency range (Yoshida 1995). 

 

Figure 11:  Active Mass Driver 

 
Active Variable Stiffness Control 

Active variable stiffness control reduces the energy input to buildings from 

external excitation by continuously shifting the stiffness of the building based on the 

nature of the excitation.  The resonant state is avoided by changing the stiffness through 

locking or unlocking certain devices, shown in the figure 12, located between the beams 

or diagonal braces of the structure.  This stand-by stiffness, controlled by oil movements, 

can be switched on and off at a particular time in accordance with the occurring 

earthquake.  An active variable stiffness system was implemented in the three-story 

Kajima Technical Research Institute building (Connor 2003).  The variable stiffness 

devices were installed between the steel brace tops and the lateral beams, which can alter 

the stiffness of the building by shifting from the locked mode to the unlocked mode.  The 
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active variable stiffness devices solve many of the problems encountered with most 

active control devices.  An active variable stiffness system can be activated and driven 

with a small amount of energy and typical safety concerns are alleviated because this 

system does not induce forces.  However, although an active variable system is effective 

in controlling interstory drifts, the system may cause significantly increased floor 

accelerations (Pnevmatikos 2003). 

 

Figure 12:  Active Variable Stiffness Control 

 
Semi-active Control 

Semi-active or hybrid control devices performance is bounded by passive and 

active control.  Semi-active control strategies are similar to active control strategy, expect 

the control actuator does not directly apply force to the structure, but instead it is used to 
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control the properties of a passive energy device, a controllable passive damper 

(Christenson 2002).  Another chief difference between active and semi-active control is 

that semi-active devices can only produce dissipative forces.  Semi-active control devices 

combine the positive aspects of passive and active devices, these devices are controllable, 

low-power, and reliable.  Some common types of semi-active devices are the hybrid-mass 

damper and the variable orifice damper. 

During its lifetime the earthquake and wind effects experienced by a building vary 

in strength, size, and frequency and are thus uncertain.  So it is necessary to develop 

control devices which will be adaptive to the characteristics of the external effect 

experienced by the structure at a particular time.  Such control devices should be 

inexpensive to install and easy to maintain.   

This thesis investigates one possible way of eliminating some of the 

disadvantages of the previously discussed control methods by using a biologically 

inspired technique.  In the subsequent chapters, diagonal-bracing systems implemented 

on ideal frames will be explored through means of computer simulation and experimental 

validation.  Depending upon the nature and magnitude of external excitation, the stiffness 

characteristics of the structure will be changed by introducing changes in the stiffness 

characteristics of the bracing systems.   
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CHAPTER II 

 

OBJECTIVE AND SCOPE 

 

 The magnitude, intensity and frequency of an earthquake to be experienced by a 

structure at a certain seismically active locality are uncertain.  So it is necessary to use 

structural control devices, which can adjust the attributes of the building to prevent 

damage and loss of life. The device should effectively perform its function during the 

whole period of time an earthquake or wind of certain magnitude lasts.  The best result 

would for these devices to have the property of adaptation observed in biologically 

inspired adaptability of the human body against the forces acting on it.  For example, 

active control is in play when a person is surfing.  When the surfer is on the board, the 

body is constantly adjusting balance and shifting footing to compensate for the changing 

waves in the water.  This concept can be applied to an adaptive control system for 

modifying the response of buildings subjected to earthquakes.  Of the many possibilities, 

the author chose to study the effect of stress induced bracing systems, because of 

simplicity and integral nature.  The main objective of this study, therefore, is to determine 

the effectiveness of stress induced bracing systems in controlling the response of framed 

structures subjected to earthquake excitation.  This objective will be realized through the 

following steps: 

1. Identification of representative structural systems including geometry, 

dimensions, and material; bracing systems; stress inducing mechanisms; the 

nature of earthquake excitation; and response quantities of interest. 
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2. Study the effect of induced stress on the stiffness of structural elements. 

3. Undertake analytical studies to determine the effect of induced stress in the 

dynamic response of the selected structures for the fo llowing conditions. 

a. Sinusoidal base input (Modal analysis) 

b. El Centro earthquake  

c. Different bracing arrangements. 

d. Different magnitudes of induced stress. 

4. Undertake laboratory experiments for some selected cases considered under Item 

No. 3. 

5. Validate the analytical results with experimental findings and discuss the 

numerical results. 

6. Draw conclusions and make recommendations about the efficacy of using stress 

induced bracing system for adaptive structural control under seismic excitation. 

 

Objective 1 is covered in the present chapter.  Objectives 2 and 3 are considered 

in Chapter III.  Work under objectives 4 and 5 are described in Chapter IV.  Objective 6 

can be found in Chapter V. 

 

Identification of Structural System 

 In identifying the structural system, the foremost consideration was the capacity 

of the shake table available for undertaking the experimental investigation.  The 

specifications of the shake table, shown in figure 13 manufactured by Quanser 
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Consulting, Inc., is given in Table 1.  The shake table is designed to subject earthquake 

excitation to scaled model structures. 

 

 

Figure 13. Quanser Shake II Shake Table 

 

Table 1:  Specifications of  Shake Table 

Parameter Value 
Table dimension 18” x 18” 

Maximum payload 33 lbs 
Operation bandwidth 0 - 20 Hz 

Peak Acceleration 7.5g 
Peak velocity 33 in/sec 

Maximum stroke ± 3 in 
Maximum force 157 lbs 

 

In view of the specifications in Table 1, single bay single and double story frames were 

decided upon.  The bay span was limited to 12 in.  The story height was typically taken as 

19.3 in.  Three materials for construction of the test frame were considered – wood 

(Pine), polycarbonate (Lexan), and aluminum.  In trial experiments, wood frame was 

found to be too stiff.  Polycarbonate frame was quite flexible but the decision for a type 

of bracing coupled with high structural flexibility was found to be difficult.  Both steel 
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wire with turnbuckles and rubber band were tried.  The first choice proved to be too stiff; 

whereas, the second choice failed to provide enough stiffness to the flexible structure.  

Eventually a combination consisting of polycarbonate beams and aluminum columns was 

found to be the best choice. 

 The components for the test model were readily available in the laboratory.   The 

single story test frame is shown in figure 14.  The span is 12 in, and frame height is 19.3 

in.  The aluminum columns are of size 4.25 in X 0.07874 in. The polycarbonate beam is 

of size 4.25 x 0.25 in. Steel wire was used as cross bracing in which stresses could be 

induced by tightening the bracing using a system of threaded eye-bolts and wing nuts. 

 

 

 
Figure 14:  Test Frame 
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CHAPTER III 

 

ANALYTICAL STUDIES 

 

Effect of Induced Stress on Stiffness 

The dominant frequency content of a structure determines the response of a 

structure to dynamic external excitation like that due to an earthquake.  So, modifying its 

frequency content can alter the response of the structure.  In order to modify the natural 

frequency of a structure either the mass or the stiffness characteristics of the structure 

need to be altered.  For active control during an earthquake, effecting changes in stiffness 

is the most practical solution.  Inducing initial forces or prestress in the structural 

elements can introduce changes in structural stiffness.  This concept is partially based on 

Lyapunov’s dynamic criterion of stability.  This criterion states that as the compressive 

axial load of a structural member approaches the critical buckling load, the natural 

frequency and stiffness of the member will approach zero.  Likewise, as the axial tensile 

load increases, the natural frequency and stiffness will increase (Jekabosons 2001). 

 To investigate the effects of prestress on a structural member, consider a straight 

homogeneous, two-dimensional pinned-pinned column of length L, acted on by an axial 

force P.  The six degrees of freedom are defined as u1, v1, ?1 for end 1 and u2, v2, ?2 for 

end 2, as shown in figure 15. 
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Figure 15:  Typical element showing degrees of freedom and directions of local axes 

 
 

Using Galerkin finite element approach, the matrix equation for deformation takes 

the following general form. 
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Here, E is elastic modulus, A is cross-sectional area of member, and I is the moment of 

inertia of member for bending in the plane of the plate. 

Second order correction to stiffness matrix due to pre- induced force P can be shown to be 
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 In order to evaluate the effect of axial force on the natural frequencies of 

vibration, an 11 in long member with one end pinned and the end on roller was analyzed 

for induced axial forces in tension and compression.  The values of elastic modulus, E = 

120574 psi and mass, m = 5.202×10-4lb·sec2/in.  In each case the first three natural 

frequencies were computed.  The induced axial force was normalized with respect to the 

Euler critical load.  Figure 16 shows the plot of the natural frequencies versus the 

normalized force. 

As evident from Figure 16, as the tensile force is increased the natural frequencies 

of the column are increased and as the compressive force is increased, the natural 

frequencies of the column are decreased.  Therefore, to increase the frequency, induce 

tensile force and to decrease the frequency, induce compressive force.  An increase in 
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natural frequency signifies corresponding increase in stiffness; whereas, a decrease in 

natural frequency signifies increased flexibility.  If the objective is to reduce drift in the 

structure under earthquake excitation, an increase in the natural frequency may be 

necessary. 
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Figure 16:  Variation of frequency of a pinned-pinned column with initial axial force (P/Pcr)  

 
 
Analytical Solution 

A number of frames with different bracing arrangements were studied under free 

vibration as well as seismic excitation.  The finite element software ANSYS (Version 

5.3) was used for this purpose.  The single and two story frames considered are shown in 

Fig. 17.  It can be noted that in the case of the single story frame, three cases are shown-
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SS0, SS1, and SSX.  SS0 refers to the unbraced frame.  SS1 refers to the frame with 

single bracing and SSX refers to the frame with cross-bracing.  In the case of braced 

frames, a number of cases arise, namely, braces without induced force and braces with 

different types and levels of induced force.  In the case of the two-story frames, six cases 

are shown.  Only six of the ten possible cases are considered because these combinations 

are most often used in the field.  As before, the last digit (zero) in TS0 signifies an 

unbraced frame.  The characters L1 signify single bracing in the bottom story.  On the 

other had, the characters U1 signify single bracing in the upper story.  Therefore, L1U1 in 

TSL1U1-S and TSL1U1-O signify single bracing in the lower and upper stories with S 

representing same orientation and O representing opposite orientation.  In the case of the 

two-story frame cross-bracing can be provided in the lower, upper, or both stories.  The 

purpose of considering these cases is to identify the best possible realistic bracing 

configuration for the two frames considered in this study.  An alternative way for this 

would have been the use of an optimization algorithm to arrive at the best possible 

configuration for a given situation.  In an actual frame, the provision will exist for cross-

bracing in each story; depending upon the nature of excitation, a smart structure will 

activate the appropriate bracing by inducing the correct magnitude of forces in tensile or 

compressive force as needed.  The author of this thesis could not pursue the optimization 

technique due to the limited availability of such technique in the commercial software 

readily available to her for undertaking the required type of optimization. 
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Figure 17. Structural arrangement for single and two story frames 

 

During analysis, for all frames, the base is assumed fixed and the joints are 

assumed to be rigid.  Also, the braces are assumed to act as truss members only.   First, 

the unbraced frame is analyzed. Thereafter, braced frames with no prestress and then with 

different levels of prestress are considered. 

A view of the two story experimental frame mounted on the shake table is shown 

in figure 18.  The material characteristics of the frame were based on those for the 

SS0 SS1 SSX 

TS0 TSL1U1-S TSL1U1-O 

TSLX TSUX TSLXUX 



 27 

experimental setup discussed earlier.  The geometric and material data for the frame are 

summarized in Table 2 and drawn in figure 19. 

 

 

 
Figure 18:  Two-story building used for experiments 
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Table 2:  Properties of element types used in ANSYS  

Element 
Number 

ANSYS 
Element 

Type 

Young’s 
Modulus 

(psi) 

Mass 
Density 
(lb/in3) 

Mass 
(lb·sec2/in) 

Cross 
Sectional 
Area (in2) 

Area 
Moment of 
Inertia (in4) 

Total Beam 
Height (in) 

Shear 
Deflection 
Constant 

1 Beam3 10000000 2.56×10-4 ------------- 0.265625 0.0000865 0.0625 1 
2 Beam3 120572 1.056×10-4 ------------- 2.125 0.044271 0.5 1 
4 Mass21 ------------ --------- 0.007557 ----------- ---------- -------- ----------- 
5 Link1 8000000 7.2×10-4 ------------- Varied ---------- -------- ------------ 
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Figure 19:  Schematic of two-story frame 

 
 

One-Story Frame Analysis 

The ANSYS models for the single and double-story frames are shown in figures 

20-21, respectively.  Bold numbers indicate node numbers.  Each element type was 

selected to specifically reflect a particular component of the frame.  Elements 1-4 and 8-

12, representing the column and beam respectively, are of type Beam3, which is a two-

dimensional elastic beam with three degrees of freedom at each node – x - and y-

displacements, and rotation about the z-axis.  Nodes 4 and 10, representing locations of 

the mass of the accelerometer on each beam, are represented as element type Mass21, 

which is a structural mass with all six degrees of freedom.  Elements 5-6 and 12-13, 

representing the bracing, are element type Link1 allowing x- and y-displacements only.  

After the model was created, two types of analysis were performed, modal and transient 

analyses, which are discussed in the following sections. 

19.3” 

19.3” 

12” 

Aluminum 
Lexan 
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Figure 20:  ANSYS model of one-story frame 

 

 
Figure 21:  ANSYS model of two-story frame 
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Modal Analysis 

A full modal analysis of a bare frame was undertaken to establish core 

frequencies and responses.  Because no bracing was used, all internal pre- induced forces 

were shown as zero based on the Static Analysis.  Listed in table 3 are the frequencies 

from Modal Analysis  by ANSYS.  The corresponding mode shapes are shown in figure 

22. 

 

Table 3:  Modal frequencies of bare frame 

Mode Frequency 
1 4.4795 
2 32.001 
3 36.900 
4 60.500 
5 124.44 
6 128.15 
7 237.38 
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Figure 22:  Seven mode shapes of bare frame 
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Because the planar ANSYS model used seven degrees of freedom, seven 

frequencies and mode shapes were generated.  However, as seen in figure 22, mode 

shapes one and five have the same form, but the frequency of mode five is over twenty 

times the frequency of mode one.  This may be attributed to the coarseness of the model 

used, which failed to capture the mode shapes in needed details. 

 

Transient Analysis 

Next, a transient dynamic analysis was conducted to determine the dynamic 

response of the structure under El Centro.  In ANSYS, the full method of a transient 

analysis was carried out such that all types of nonlinearities are allowed.  In the full 

method, full system matrices, no matrix reduction, are used to calculate the transient 

response and allows for nonlinearities such as plasticity, large deflections, and large 

strain.  Displacement data for El Centro earthquake shown in table 4 was obtained from 

Shonkwiler and entered into the Load Step Options in ANSYS.  
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Table 4:  Base displacement data for El Centro Earthquake 

Time, sec Ground Displacement, in 
0.47 0.90 
0.60 0.70 
0.68 0.85 
0.82 0.00 
0.93 1.10 
1.07 -0.60 
1.17 0.45 
1.28 -0.50 
1.42 0.90 
1.53 -0.30 
1.65 1.10 
1.75 0.30 
1.87 1.10 
1.98 -0.50 
2.10 0.70 
2.23 -1.20 
2.37 0.75 
2.47 -0.30 
2.58 0.90 
2.70 -0.40 
2.82 0.70 
2.93 -0.50 
3.03 0.65 
3.15 -0.10 
3.27 -0.20 
3.38 -0.40 

 

The maximum ground displacement occurred approximately 2.1 seconds after the 

earthquake was triggered.  Therefore, only the first 3.4 seconds of the earthquake during 

which the maximum response as found occurred are considered, also verified by 

experimental results.  Figure 23 shows the displacement response of the unbraced 

structure. 
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Figure 23:  Bare frame earthquake response 

 
From the raw response values, the time history of sway displacement of the 

structure was determined by subtracting the base displacement from the floor 

displacement.  These results are plotted in figure 24. 
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Figure 24:  First story sway of bare frame 
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 The absolute maximum sway is noted as -0.073 inches at 2.24 seconds.  This 

result seems to make sense because it occurs shortly after the maximum displacement at 

2.1 seconds of the ground motion creating the slight phase difference in the response of 

the structure. 

Figure 25 shows the moment experienced at the base on the columns resulting 

from the earthquake. 

 
Figure 25:  Moment of left column at the base of the bare frame 

 
The moment experienced at column top is shown in figure 26 on the following page. 
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Figure 26:  Moment at first floor of bare frame 

 
 As seen in figures 25 and 26, both moments have a local maxima occurring 

around 2 seconds.  Although both plots have similar shapes, the moment at the top of 

column in figure 26 is slightly less than twice the moment at column base.  Because only 

the first 3.4 seconds of the earthquake are considered, the absolute maximum moment 

was probably not captured within the time period shown in figures 25-26. 

 

Analysis of Braced Frame 

After the bare frame analysis, a single diagonal brace with an area of 0.0707in2, 

unless noted otherwise, was added to the model shown in figure 27. 
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Figure 27:  ANSYS model with single brace 

 
This member was first analyzed as one with no pre-strain, and subsequently as a 

member with induced tension or compression.  In ANSYS, the introduction of 

compressive pre-strain in the brace induces tensile force in the columns.  On the other 

hand, the introduction of tensile pre-strain in the brace induces compressive forces in the 

columns.  During vibratory motion, the brace force may alternate between compression 

and tension. Moreover, to prevent premature buckling under induced compressive pre-

strain, the size of the brace member was so selected that its slenderness ratio, kL/r did not 

exceed the value 300. Based on this limit, an area of 0.0707in2 and a pre-strain of 

0.0000141in/in were arrived at; leading to an induced force of 7.97 lb induced in the 

brace.  Figure 28 also shows the internal forces in pounds by ANSYS with a pre-strain of 

+0.0000141.  The brace force is found to be 3.21 pounds. 
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Figure 28:  Internal forces in tensioned single brace frame 

 
 
With tensile and compressive pre-strains of ±0.0000141in/in as well as with zero pre-

strain, the results of modal analysis are shown in Table 5.  Due to limitations of the 

student version of ANSYS used in this study, a larger pre-strain could not be used. 

 

Table 5:  Frequencies for single braced frame 

Frequency Tension Zero Force Compression 
1 32.001 32.001 32.002 
2 34.500 34.501 34.501 
3 60.499 60.500 60.500 
4 120.08 120.08 120.08 
5 128.15 128.15 128.15 
6 210.03 210.03 210.03 
7 239.91 239.91 239.91 

 

 

 It may be noted that, as the pre-strain is too small, it has hardly any effect on the 

natural frequencies of vibration.   However, the results for the cross-bracing are more 

dramatic than the single bracing, as shown in table 6.  As expected, compressive pre-
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strain in the bracings increased the frequency, signifying stiffening of the structure.  The 

opposite is found to be true with a tensile pre-strain in the brace. 

 

Table 6:  Frequencies for cross-braced frame 

Frequency Tension Zero Force Compression 
1 31.039 32.002 32.933 
2 33.554 34.534 35.487 
3 60.057 60.503 60.945 
4 119.78 120.89 121.99 
5 127.07 128.17 129.26 
6 234.88 235.33 235.78 
7 292.25 292.28 292.32 

 

The results of single story frame analysis for different cases follow hereinafter. 
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Earthquake Response for SS1 (Pre -strain – Tensile):  In this case of a single braced 

frame, a tensile pre-strain of 0.0000141in/in is induced and response analysis due to El 

Centro earthquake, as stated earlier, is undertaken.  Table 7 shows the frequency va lues 

based on modal analysis, and Figure 29 shows the story sway response of the frame.  The 

maximum positive and negative sway values are shown in Table 8.  

Table 7:  Frequency values from modal analysis 

Mode Frequency 
1 32.001 
2 34.500 
3 60.499 
4 120.08 
5 128.15 
6 210.03 
7 239.91 
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Figure 29:  Sway of tensioned induced single braced frame 

 
Table 8:  Maximum sway values 

 (in) Time, sec 
Positive Sway 0.003189 1.19 
Negative Sway -0.00709 2.24 
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Earthquake Response for SS1 (Zero Pre-strain):  In this case of a single braced frame 

with no induced pre-strain, the response analysis due to El Centro earthquake, as before, 

is undertaken.  Table 9 shows the frequency values based on modal analysis, and Figure 

30 shows the story sway response of the frame.  The maximum positive and negative  

sway values are shown in Table 10.  

Table 9:  Frequency values based on modal analysis 

Mode Frequency 
1 32.001 
2 34.501 
3 60.500 
4 120.08 
5 128.15 
6 210.03 
7 239.91 

 

Earthquake Response of One-Story Frame with Zero Force 
Diagonal Member

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0 0.5 1 1.5 2 2.5 3 3.5 4

Time, sec

S
to

ry
 S

w
ay

, i
n

 
Figure 30:  Sway of frame with zero-force brace member 

 

Table 10:  Maximum sway values 

 (in) Time, sec 
Positive Sway 0.001343 1.19 
Negative Sway -0.00246 2.24 



 43 

Earthquake Response for SS1 (Pre-strain—Compressive):  In this case of a single 

braced frame with a compressive pre-strain of -0.0000141in/in, the  response analysis due 

to El Centro earthquake, as mentioned earlier, is undertaken.  Table 11 shows the 

frequency values based on modal analysis, and Figure 31 shows the story sway response 

of the frame.  The maximum positive and negative sway values are shown in Table 12.  

Table 11:  Frequency values based on modal analysis 

Mode Frequency 
1 32.002 
2 34.501 
3 60.500 
4 120.08 
5 128.15 
6 210.03 
7 239.91 

 

One-Story Single Diagonal Compressive Brace

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.5 1 1.5 2 2.5 3 3.5 4

Time, sec

S
to

ry
 S

w
ay

, i
n

 
Figure 31:  Sway of frame with single compression induced brace 

 

Table 12:  Maximum sway values 

 (in) Time, sec 
Positive Sway 0.001836 1.19 
Negative Sway -0.00188 2.24 
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Earthquake Response for SSX (Pre-strain—Tensile):  In this case of a cross-braced 

frame, a tensile pre-strain of 0.0000141in/in is induced in both braces and response 

analysis due to El Centro earthquake, as discussed earlier, is undertaken.  Table 13 shows 

the frequency values based on modal analysis, and Figure 32 shows the story sway 

response of the frame.  The maximum positive and negative sway values are shown in 

Table 14.  

Table 13:  Frequency values based on modal analysis 

Mode Frequency 
1 31.039 
2 33.554 
3 60.057 
4 119.78 
5 127.07 
6 234.88 
7 292.25 
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Figure 32:  Sway of frame with tensioned cross-bracing 

 

Table 14:  Maximum sway values 

 (in) Time, sec 
Positive Sway 0.00069 1.19 
Negative Sway -0.00126 2.24 
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Earthquake Response for SSX (Pre-strain—Tensile):  In this case of a cross-braced 

frame with a brace area of 0.003in2, another analysis with tensile pre-strains of 

0.0000456in/in induced in both braces and response analysis El Centro earthquake, as 

discussed earlier, is undertaken.  Thus, this analysis can be used for comparing the results 

between the computer and the experimental results.  Table 15 shows the frequency values 

based on modal analysis, and Figure 33 shows the story sway response of the frame.  The 

maximum positive and negative sway values are shown in Table 16.  

Table 15:  Frequency values based on modal analysis 

Mode Frequency 
1 31.829 
2 33.678 
3 60.419 
4 70.858 
5 125.65 
6 127.95 
7 237.37 
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Figure 33:  Sway of frame with tensioned cross-bracing 

 
Table 16:  Maximum sway values 

 (in) Time, sec 
Positive Sway 0.000677 1.19 
Negative Sway -0.00121 2.24 
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Earthquake Response for SSX (Zero Pre-strain):  In this case of a cross-braced frame, 

no pre-strain is induced and response analysis due to El Centro earthquake, as discussed 

earlier, is undertaken.  Table 17 shows the frequency values based on modal analysis, and 

Figure 34 shows the story sway response of the frame.  The maximum positive and 

negative sway values are shown in Table 18.  

Table 17:  Frequency values based on modal analysis 

Mode Frequency 
1 32.002 
2 34.534 
3 60.503 
4 120.89 
5 128.17 
6 235.33 
7 292.28 
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Figure 34:  Sway of frame with zero force in cross bracing 

 

Table 18:  Maximum sway values 

 (in) Time, sec 
Positive Sway 0.000686 1.19 
Negative Sway -0.00126 2.24 
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Earthquake Response for SSX (Pre-strain—Compressive): In this case of a cross-

braced frame, a compressive pre-strain of -0.0000141in/in is induced and response 

analysis due to El Centro earthquake, as discussed earlier, is undertaken.  Table 19 shows 

the frequency values based on modal analysis, and Figure 35 shows the story sway 

response of the frame.  The maximum positive and negative sway values are shown in 

Table 20.  

Table 19:  Frequency values based on modal analysis 

Mode Frequency 
1 32.933 
2 35.487 
3 60.945 
4 121.99 
5 129.26 
6 235.78 
7 292.32 
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Figure 35:  Sway of frame with compression induced cross-bracing 

 
Table 10:  Maximum sway values 

 (in) Time, sec 
Positive Sway 0.000683 1.19 
Negative Sway -0.00127 2.24 
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Table 21 summarizes the maximum and minimum sway from the above graphs. 

Table 21:  Summary of maximum and minimum sway 

 

 

 From the above table and plots, the results indicate that induced tensile force does 

indeed reduce overall response frame sway due to earthquakes. 

 

Two-Story Frame Analysis 

 For the two-story frame analysis, the procedure followed was the same as 

described previously for one-story frames.  As before, a full modal analysis of a bare 

two-story frame was undertaken to establish baseline frequencies and responses.  The 

frequencies from Modal Analysis  by ANSYS are listed in table 22 on the following page.  

The corresponding mode shapes are shown in ensuing figure 36. 

 

 

 

 

 

 

 

 Positive Sway Negative Sway 
SS0 0.071369 -0.07258 

SS1—Tensile 0.003189 -0.00709 
SS1—Zero Force 0.001343 -0.00246 
SS1--Compressive 0.001836 -0.00188 

SSX—Tensile 0.000677 -0.00121 
SSX—Zero Force 0.000686 -0.00126 

SSX—Compressive 0.000683 -0.00127 
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Table 22:  Frequencies for bare two-story frame from modal analysis 

Mode Frequency 
1 2.5026 
2 6.9539 
3 28.643 
4 34.224 
5 34.281 
6 40.330 
7 58.152 
8 66.758 
9 115.01 
10 127.53 
11 128.54 
12 131.82 
13 226.65 
14 247.91 
15 389.36 
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Figure 36:  Mode shapes of two-story bare frames 
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Figure 36—cont’d 
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Similar to the single-story frames, because the planar ANSYS model used fifteen 

degrees of freedom, fifteen frequencies and mode shapes were generated using the h-

method.  Unlike the single story frames, each mode shape is unique.  Although some 

modes have similar shapes, such as mode shapes seven and ten, there are indeed subtle 

differences.  

 

Two-Story Transient Analysis 

 As with the single story frames, a transient analysis of the two-story frames was 

conducted.  Figure 37 shows the time earthquake displacement response of the unbraced 

two-story structure. 

 
Figure 37:  Earthquake displacement of bare two-story frame 

 
 From the response of the earthquake, the time history of story sway displacement 

of the structure was determined by subtracting each floor displacement from the base 

displacement.  The resulting response is plotted in figure 38. 
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Earthquake Response of Two-Story Bare Frame
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Figure 38:  Sway for two-story bare frame 

 
 The absolute maximum sway is noted as -0.1546 inches in the top floor at 2.27 

seconds.  This value of maximum sway occurs 0.03 seconds after the maximum value of 

the unbraced single story frame. 

 

The results of two-story frame analysis for different cases follow hereinafter. 
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Earthquake Response for TSUX (Pre-strain—Tensile):  In the case of the frame with 

cross-braced second floor, a tensile pre-strain of 0.0000141 in/in is induced and response 

analysis due to El Centro earthquake, discussed earlier, is undertaken.  Table 23 shows 

the frequency values based on modal analysis, and Figure 39 shows the first and second 

story sway response of the frame.  Unfortunately, because the story sways are almost the 

same, the blue line, denoting the sway of the first floor, lies directly underneath the pink 

line, denoted the second story sway.  The maximum positive and negative sway values 

are shown in Table 24. 

Table 23:  Frequency values based on modal analysis 

Mode Frequency 
1 2.5505 
2 27.852 
3 33.054 
4 34.083 
5 38.319 
6 57.778 
7 66.455 
8 112.28 
9 125.86 
10 126.73 
11 128.42 
12 225.81 
13 247.18 
14 344.41 
15 389.08 

 



 55 

Earthquake Response of Two-Story Frame with Tensile 
Cross-Bracing on Top Floor
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Figure 39:  Sway of tensioned TSUX frame 

 
 

Table 24:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.134992 2.12 0.13225 2.12 
Negative Sway -0.100654 2.25 -0.100894 2.25 
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Earthquake Response for TSUX (Zero Pre-strain):  In the case of the second floor 

cross-braced, no pre-strain and response analysis  due to El Centro earthquake, as 

discussed earlier, is undertaken.  Table 25 shows the frequency values based on modal 

analysis, and Figure 40 shows the story sway response of the frame.  Unfortunately, 

because the story sways are almost the same, the blue line, denoting the sway of the first 

floor, lies directly underneath the pink line denoting the second story sway.  The 

maximum positive and negative sway values are shown in Table 26. 

 

Table 25:  Frequency values based on modal analysis 

Mode Frequency 
1 2.5510 
2 28.543 
3 33.440 
4 34.283 
5 38.884 
6 58.154 
7 66.761 
8 113.05 
9 126.07 
10 127.54 
11 128.54 
12 226.14 
13 247.56 
14 344.43 
15 389.08 
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Earthquake Response of Two-Story Frame with Zero Force 
Cross-Bracing on Top Floor
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Figure 40:  Sway for zero pre-strained TSUX frame 

 
 

Table 26:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.134918 2.12 0.135221 2.12 
Negative Sway -0.100654 2.25 -0.100904 0.47 
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Earthquake Response for TSUX (Pre -strain—Compressive):  In the case of the 

second floor cross-braced, a compressive pre-strain of -0.0000141 in/in is induced and 

response analysis due to El Centro earthquake, as discussed earlier, is undertaken.  Table 

27 shows the frequency values based on modal analysis, and Figure 41 shows the story 

sway responses of the frame.  Unfortunately, because the story sways are almost the 

same, the blue line, denoting the sway of the first floor, lies directly underneath the pink 

line, denoting the second story sway.  The maximum positive and negative sway values 

are shown in Table 28. 

 

Table 27:  Frequency values based on modal analysis  

Mode Frequency 
1 2.5515 
2 29.174 
3 33.743 
4 34.515 
5 39.508 
6 58.525 
7 67.066 
8 113.80 
9 126.30 
10 128.04 
11 128.96 
12 226.47 
13 247.94 
14 344.45 
15 389.72 
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Earthquake Response of Two-Story Frame with 
Compressive Cross-Bracing on Top Floor

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4

Time, sec

S
to

ry
 S

w
ay

, i
n

First Story Sway
Second Story Sway

 
Figure 41:  Sway of compressive TSUX frame 

 
 

Table 28:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.134914 2.12 0.135217 2.12 
Negative Sway -0.100654 2.25 -0.100904 2.25 
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Earthquake Response for TSLX (Pre-strain—Tensile):  In the case of the first floor 

cross-braced, a tensile pre-strain of 0.0000141 in/in is induced and response analysis due 

to El Centro earthquake, as discussed earlier, is undertaken.  Table 29 shows the 

frequency values based on modal analysis, and Figure 42 shows the story sway responses 

of the frame.  The maximum positive and negative sway values are shown in Table 30. 

 

Table 29:  Frequency values based on modal analysis 

Mode Frequency 
1 4.3692 
2 28.251 
3 33.303 
4 33.580 
5 36.269 
6 58.049 
7 66.506 
8 114.50 
9 125.20 
10 127.02 
11 127.95 
12 225.94 
13 245.89 
14 278.47 
15 389.06 
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Earthquake Response of Two-Story Frame with Tensile 
Cross-Bracing on Bottom Floor

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

Time, sec

S
to

ry
 S

w
ay

, i
n

First Story Sway
Second Story Sway

 
Figure 42:  Sway of tensioned TSLX frame 

 
 

Table 30:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.001166 2.12 0.083181 2.12 
Negative Sway -0.0019 2.24 -0.07084 2.24 
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Earthquake Response for TSLX (Zero Pre-strain):  In the case of the cross-braced 

first floor, no pre-strain is induced and response analysis due to El Centro earthquake, as 

discussed earlier, is undertaken.  Table 31 shows the frequency values based on modal 

analysis, and Figure 43 shows the story sways response of the frame.  The maximum 

positive and negative sway values are shown in Table 32. 

 

Table 31:  Frequency values based on modal analysis 

Mode Frequency 
1 4.3698 
2 28.543 
3 34.108 
4 34.282 
5 36.449 
6 58.159 
7 66.759 
8 114.93 
9 125.91 
10 127.53 
11 128.55 
12 226.11 
13 246.10 
14 278.49 
15 389.36 

 



 63 

Earthquake Response of Two-Story Frame with Zero Force 
Cross-Bracing on Bottom Floor
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Figure 43:  Sway of zero pre-strained TSLX frame 

 
 

Table 32:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.000068 1.19 0.082455 2.12 
Negative Sway -0.00012 2.24 -0.07039 2.24 
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Earthquake Response for TSLX (Pre -strain—Compressive):  In the case of the first 

floor cross-braced, a compressive pre-strain of -0.0000141 in/in is induced and response 

analysis due to El Centro earthquake, as discussed earlier, is undertaken.  Table 33 shows 

the frequency values based on modal analysis, and Figure 44 shows the story sway 

responses of the frame.  The maximum positive and negative sway values are shown in 

Table 34. 

 

Table 33:  Frequency values based on modal analysis 

Mode Frequency 
1 4.3704 
2 28.770 
3 34.747 
4 35.017 
5 36.766 
6 58.261 
7 67.015 
8 115.30 
9 126.66 
10 127.65 
11 129.54 
12 226.28 
13 246.32 
14 278.52 
15 389.67 
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Earthquake Response of Two-Story Frame with 
Compressive Cross-Bracing on Bottom Floor
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Figure 44:  Sway for compressive TSLX frame 

 
 

Table 34:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.001158 2.12 1.578456 2.23 
Negative Sway -0.00191 2.24 -0.07084 2.24 
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Earthquake Response for TSL1U1-S (Pre-strain—Tensile):  In the case of the both 

floors singly braced in the same orientation, a tensile pre-strain of 0.0000141 in/in is 

induced and response analysis due to El Centro earthquake, as discussed earlier, is 

undertaken.  Table 35 shows the frequency values based on modal analysis, and Figure 

45 shows the story sways response of the frame.  The maximum positive and negative 

sway values are shown in Table 36. 

 

Table 35:  Frequency values based on modal analysis 

Mode Frequency 
1 28.543 
2 29.415 
3 33.886 
4 34.281 
5 49.930 
6 58.153 
7 66.758 
8 98.624 
9 116.76 
10 127.52 
11 128.54 
12 141.91 
13 226.69 
14 247.95 
15 389.36 
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Earthquake Response of Two-Story Single Tensile Diagonal 
Braces in Same Direction on Both Floors
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Figure 45:  Sway of tensioned TSL1U1 -S frame 

 
 

Table 36:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.00247 1.19 0.003242 1.19 
Negative Sway -0.00583 2.24 -0.00862 2.24 

 

 

 

 

 

 

 

 



 68 

Earthquake Response for TSL1U1-S (Zero Pre-strain):  In the case of the both floors 

singly braced in the same orientation, no pre-strain is induced and response analysis due 

to El Centro earthquake, as discussed earlier, is undertaken.  Table 37 shows the 

frequency values based on modal analysis, and Figure 46 shows the story sways response 

of the frame.  The maximum positive and negative sway values are shown in Table 38. 

 

Table 37:  Frequency values based on modal analysis 

Mode Frequency 
1 28.543 
2 29.415 
3 33.886 
4 34.282 
5 49.930 
6 58.153 
7 66.758 
8 98.624 
9 116.76 
10 127.53 
11 128.54 
12 141.91 
13 226.69 
14 247.95 
15 389.36 
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Earthquake Response of Two-Story Frame with Single Zero 
Force Same Direction Diagonal Brace on Both Floors
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Figure 46:  Sway of zero pre-strained TSL1U1 -S frame 

 
 

Table 38:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.002963 1.19 0.004229 1.19 
Negative Sway -0.00525 2.24 -0.00767 2.24 
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Earthquake Response for TSL1U1-S (Pre-strain—Compressive):  In the case of the 

both floors singly braced in the same orientation, a compressive pre-strain of -0.0000141 

in/in is induced and response analysis due to El Centro earthquake, as discussed earlier, is 

undertaken.  Table 39 shows the frequency values based on modal analysis, and Figure 

47 shows the story sway responses of the frame.  The maximum positive and negative 

sway values are shown in Table 40. 

 

Table 39:  Frequency based on modal analysis 

Mode Frequency 
1 28.543 
2 29.415 
3 33.886 
4 34.282 
5 49.930 
6 58.153 
7 66.758 
8 98.624 
9 116.76 
10 127.53 
11 128.54 
12 141.91 
13 226.69 
14 247.95 
15 389.36 
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Earthquake Response of Two-Story Frame with Single 
Compressive Diagonal Brace in Same Direction on Both 

Floors
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Figure 47:  Sway of compressive TSL1U1 -S frame 

 
 

Table 40:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.003506 2.12 0.005371 2.12 
Negative Sway -0.00467 2.24 -0.00632 2.24 

 

 

 

 

 

 

 



 72 

Earthquake Response for TSL1U1-O (Pre-strain—Tensile):  In the case of the both 

floors singly braced with opposite orientation, a tensile pre-strain of 0.0000141 in/in is 

induced and response analysis due to El Centro earthquake, as discussed earlier, is 

undertaken.  Table 41 shows the frequency values based on modal analysis, and Figure 

48 shows the story sway responses of the frame.  The maximum positive and negative 

sway values are shown in Table 42. 

 

Table 41:  Frequency values based on modal analysis 

Mode Frequency 
1 28.543 
2 29.483 
3 33.885 
4 34.281 
5 50.138 
6 58.151 
7 66.758 
8 98.196 
9 116.73 
10 127.53 
11 128.54 
12 141.66 
13 226.69 
14 247.96 
15 389.36 
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Earthquake Response of Two-Story Frame with Opposite 
Direction Tensile Single Diagonal Bracing on Both Floors
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Figure 48:  Sway of tensioned TSL1U1 -O frame 

 
 

Table 42:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.002454 1.19 0.004193 1.19 
Negative Sway -0.0058 2.24 -0.00741 2.24 
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Earthquake Response for TSL1U1-O (Zero Pre-strain):  In the case of the both floors 

singly braced with opposite orientation, no pre-strain is induced and response analysis  

due to El Centro earthquake, as discussed earlier, is undertaken.  Table 43 shows the 

frequency values based on modal analysis, and Figure 49 shows the story sway responses 

of the frame.  The maximum positive and negative sway values are shown in Table 44. 

 

Table 43:  Frequency values based on modal analysis 

Mode Frequency 
1 28.543 
2 29.483 
3 33.886 
4 34.281 
5 50.138 
6 58.152 
7 66.758 
8 98.196 
9 116.73 
10 127.53 
11 128.54 
12 141.66 
13 226.69 
14 247.96 
15 389.36 
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Earthquake Response of Two-Story Frame with Opposite 
Direction Zero Force Single Diagonal Bracing on Both 

Floors
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Figure 49:  Sway of zero pre-strained TSL1U1 -O frame 

 
 

Table 44:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.002947 1.19 0.004193 1.19 
Negative Sway -0.00522 2.24 -0.00741 2.24 
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Earthquake Response for TSUL1U1-O (Pre-strain—Compressive):  In the case of the 

both floors singly braced with opposite orientation, a compressive pre-strain of -

0.0000141 in/in is induced and response analysis due to El Centro earthquake, as 

discussed earlier, is undertaken.  Table 45 shows the frequency values based on modal 

analysis, and Figure 50 shows the story sway responses of the frame.  The maximum 

positive and negative sway values are shown in Table 46. 

 

Table 45:  Frequency values based on modal analysis 

Mode Frequency 
1 28.543 
2 29.483 
3 33.886 
4 34.282 
5 50.139 
6 58.152 
7 66.759 
8 98.197 
9 116.73 
10 127.53 
11 128.54 
12 141.66 
13 226.69 
14 247.96 
15 389.36 
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Earthquake Response of Two-Story Frame with Opposite 
Direction Compressive Single Diagonal Bracing on Both 

Floors
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Figure 50:  Sway of compressive TSL1U1 -O frame 

 
 

Table 46:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.003487 2.12 0.000754 1.19 
Negative Sway -0.00465 2.24 -0.00276 2.24 

 

 

 

 

 

 

 

 



 78 

Earthquake Response for TSLXUX (Pre-strain—Tensile):  In the case of the both 

floors cross-braced, and induced tensile pre-strain of 0.0000141 in/in, the response 

analysis due to El Centro earthquake, as discussed earlier, is undertaken.  Table 47 shows 

the frequency values based on modal analysis, and Figure 51 shows the story sway 

responses of the frame.  The maximum positive and negative sway values are shown in 

Table 48. 

 

Table 47:  Frequency values based on modal analysis 

Mode Frequency 
1 28.429 
2 31.760 
3 34.172 
4 34.217 
5 58.093 
6 63.743 
7 66.691 
8 111.39 
9 120.88 
10 127.42 
11 128.41 
12 169.55 
13 226.68 
14 247.94 
15 389.29 
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Earthquake Response of Two-Story Frame with Tensile 
Cross-Bracing on Both Floors
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Figure 51:  Sway of tensioned TSLXUX frame 

 
 

Table 48:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.001564 1.19 0.002247 1.19 
Negative Sway -0.00282 2.24 -0.00406 2.24 
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Earthquake Response for TSLXUX (Zero Pre-strain):  In the case of the both floors 

cross-braced, and no pre-strain is induced, response analysis due to El Centro earthquake, 

as discussed earlier, is undertaken.  Table 49 shows the frequency values based on modal 

analysis, and Figure 52 shows the story sway responses of the frame.  The maximum 

positive and negative sway values are shown in Table 50. 

 

Table 49:  Frequency values based on modal analysis 

Mode Frequency 
1 28.543 
2 31.853 
3 34.282 
4 34.322 
5 58.153 
6 63.776 
7 66.759 
8 111.50 
9 121.00 
10 127.53 
11 128.54 
12 169.59 
13 226.74 
14 248.01 
15 389.36 
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Earthquake Response of Two-Story Frame with Zero Force 
Full Cross-Bracing on Both Floors
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Figure 52:  Sway of zero pre-strained TSLXUX frame 

 
 

Table 50:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.001557 1.19 0.000686 1.19 
Negative Sway -0.00283 2.24 -0.00124 2.24 
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Earthquake Response for TSLXUX (Pre-strain—Compressive):  In the case of the 

both floors cross-braced with an area of 0.009in2, and induced compressive pre-strain of  

-0.0000141 in/in, the response analysis due to El Centro earthquake, discussed earlier, is 

undertaken.  Table 51 shows the frequency values based on modal analysis, and Figure 

53 shows the story sway responses of the frame.  The maximum positive and negative 

sway values are shown in Table 52. 

 

Table 51:  Frequency values based on modal analysis 

Mode Frequency 
1 28.656 
2 31.945 
3 34.391 
4 34.427 
5 58.212 
6 63.810 
7 66.827 
8 111.61 
9 121.11 
10 127.65 
11 128.67 
12 169.63 
13 226.81 
14 248.07 
15 389.44 
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Earthquake Response of Two-Story Frame with 
Compressive Full Cross-Bracing on Both Floors
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Figure 53:  Sway of compressive TSLXUX frame 

 
 

Table 52:  Maximum sway values 

 First Story 
Sway, in 

Time, sec Second Story 
Sway, in 

Time, sec 

Positive Sway 0.00155 1.19 0.00224 1.19 
Negative Sway -0.00283 2.24 -0.00407 2.24 
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CHAPTER IV 

 

EXPERIMENTAL PROCEDURE 

 

 To validate the ANSYS predictions and to study the effectiveness of using braces 

with the preinduced forces for attenuating the of effect dynamic exciting forces like an 

earthquake, an experimental program was undertaken using a Quanser Shake Table II.  

The driving and data acquisition computer and shake table set-up is shown in figure 54.  

Quanser accelerometers were used to measure the floor level motions.  The single and 

double story frames described in Chapter III were used in the experimental study. 

 
Figure 54:  Complete testing set-up 
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Experimental Set-up 

The unbraced frames and braced frames with and without pre-strain considered in 

the tests are shown in figure 55.  Thus, the bracing combinations considered in the test 

were – a one-story bare and cross-braced frame, a two-story frame with only the bottom 

story cross-braced, and a two-story frame with both stories cross-braced.  In the case of 

braced frames, the structures were tested with no pre-strain and with pre-strain in the 

bracings. 

 
Figure 55:  Frame configuration considered for experimental tests 

 
 

Standard picture hanging wire strand used as bracing were tied and glued to eye-

bolts and secured with wing nuts.  A view of the  connection is shown in figure 56.  By 

turning the wing nuts, the induced tension on the bracing could be varied.  The resulting 

tensile force in the bracing was obtained by determining the fundamental natural 

frequency of vibration of an individual brace.  The procedure used consisted of plucking 

SS0 SSX 

TS0 
TSLX TSLXUX 
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the tension bracing and determining its natural frequency with a strobe light source which 

allowed changing of its flash rate.  In the test, the frequency of the strobe light source was 

set at 50 Hz and the tension in the braces was changed by turning the wing nuts until the 

plucked brace appeared stationary.  At this stage, the natural frequency of the brace was 

also 50 Hz.  A view of the set-up used is shown in figure 57.   

 

 
Figure 56:  Bracing connection 
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Figure 57:  Strobe light set-up 

 
Based on this frequency, the following equation (Serway 1998) can be used to compute 

the corresponding tension in the bracing. 

m
TL

L
f

2
1

= ? 22mLfT =                (5) 

With 1.366×10-4 lb·sec2/ft as the unit mass of the brace, the tension in the brace for f = 50 

Hz was found to be 1.366 lb.  In other words, all pre-strained braces have pre-tensions of 

the same magnitude. 

 

The details of the test procedure using the shake table are given in Appendix A.   

The following section contains the data collected from the Shake Table Experiments.   

Strobe light 
Frame and wire 
bracing 
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Natural Frequencies 

The measured fundamental natural frequency for each frame found by sweeping 

with sinusoidal base excitation is shown in Table 53. 

Table 53:  Natural frequencies of experimental frame configurations 

 Natural Frequency, Hz 
SS0 3.9 

SSX—Tensile 9.4 
SSX—Zero Force 9.0 

TS0 2.2, 6.2 
TSLX—Tensile 4.0 

TSLX—Zero Force 3.6 
TSLXUX—Tensile >10.0 

TSLXUX—Zero Force 6.9 
 

 The natural frequency of the frames increased significantly when braced.  

Inducing tension in the braces increases the frequency further. 

 

Earthquake Response 

As mentioned before, the shake table was driven by El Centro earthquake 

excitation.  The excitation induced in the shake table could be measured with an 

accelerometer mounted on it.  In addition, two additional accelerometers were installed at 

the floor levels to measure acceleration response of the floors.  The acceleration versus 

time plots are shown in figures 58-59 for table accelerations and the corresponding 

response due to El Centro earthquake input of the one-story frames. 
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El Centro
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Figure 58:  El Centro ground acceleration 

 
 The data for El Centro earthquake shown in figure 58 is based on the input data 

file for the same earthquake available in the shake table driving software WinCon.  It is 

to be noted that this represents only a part of the record.  The full El Centro earthquake 

record is reported in literature for the duration of 54.6 seconds, whereas the plot shown in 

figure 58 covers the duration of 23.59 seconds, representing the segment which will 

cause the most damage to the structure. 
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First Floor Acceleration of Bare Frame During El Centro
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Figure 59:  Bare frame first floor acceleration 

 
 Figures 60-61 show the acceleration response for the one-story cross-braced 

frames with zero pre-strain and a tensile pre-strain, respectively.  The zero pre-strain has 

a higher overall acceleration. 
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Floor Acceleration of Zero-Force One-Story Frame During El 
Centro
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Figure 60:  Frame acceleration with zero force bracing 

 

Floor Acceleration of Tensioned One-Story Frame During El 
Centro
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Figure 61:  Frame acceleration with tensioned bracing 
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Maximum acceleration data from the one-story tests and the time it occurred are shown in 

tables 54 and 55 respectively.  The times of occurrence of maximum and minimum 

acceleration are fairly consistent, but do vary slightly. 

Table 54:  Maximum accelerations of one-story frame 

 Positive Acceleration, g Negative Acceleration, g 
Table 0.348082 -0.261714 

No bracing 1.226956 -1.24405 
Zero-force bracing 1.186447 -1.34416 
Tensioned bracing 0.590892 -0.63729 

 

Table 55:  Time of maximum accelerations of one-story frame 

 Time of Positive 
Acceleration, sec 

Time of Negative 
Acceleration, sec 

Table 2.763416 2.901437 
No bracing 2.964459 3.60956 

Zero-force bracing 2.982464 2.923454 
Tensioned bracing 2.616405 2.784429 

 

The ensuing figures and tables detail the data collected from the two-story frames.   
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Earthquake Response for TS0:  This case corresponds to the two-story unbraced frame.  

In response to El Centro excitation, figure 62 shows the data collected from the 

accelerometer placed on the first floor.  Table 56 shows the corresponding maximums 

and the times these maxima occur.  Likewise, Figure 63 shows the data collected from 

the accelerometer placed on the second floor; and Table 57 shows the corresponding 

maximums and the time these maxima occur.   

First Floor Acceleration of Unbraced Two-Story Frame
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Figure 62:  First floor acceleration of TS0 frame 

 
 

Table 56:  Maximum first floor acceleration values 

  Time, sec 
Positive Acceleration, g 0.703211 4.018619 
Negative Acceleration, g -0.617751 3.780581 
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Second Floor Acceleration of Unbraced Two-Story Frame
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Figure 63:  Second floor acceleration of TS0 frame 

 
Table 57:  Maximum second floor acceleration values 

  Time, sec 
Positive Acceleration, g 0.815529 7.31913 
Negative Acceleration, g -1.013307 3.824589 
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Earthquake Response for TSLX (Zero Pre-strain):  In this case the two-story frame 

with cross bracing in the first floor and zero induced force was subjected to base 

excitation corresponding to the El Centro earthquake.  Figure 64 shows the data collected 

from the accelerometer placed on the first floor.  Table 58 shows the corresponding 

maximums and the times these maxima occur.  Likewise, Figure 65 shows the data 

collected from the accelerometer placed on the second floor; and Table 59 shows the 

corresponding maximums and the times these maxima occur.   

 

First Floor Acceleration of Two-Story Frame with Zero-Force 
Cross Bracing on Bottom Floor
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Figure 64:  First floor acceleration of zero pre-strained TSLX frame 

 
 

Table 58:  Maximum first floor acceleration values 

  Time, sec 
Positive Acceleration, g 1.134172 2.961451 
Negative Acceleration, g -1.063362 3.08947 
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Second Floor Response of Two-Story Frame with Zero-Force 
Cross-Bracing on Bottom Floor
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Figure 65:  Second floor acceleration of zero pre-strained TSLX frame 

 
 

Table 59:  Maximum second floor acceleration values 

  Time, sec 
Positive Acceleration, g 1.24649 3.006458 
Negative Acceleration, g -1.423514 2.847434 
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Earthquake Response for TSLX (Pre -strain—Tensile):  This case is similar to the last 

case, except that tensile forces of 1.366 lbs are induced in the bracings.  Figure 66 shows 

the data collected from the accelerometer placed on the first floor due to El Centro 

earthquake.  Table 60 shows the corresponding maximums and the times these maxima 

occur.  Likewise, Figure 67 shows the data collected from the accelerometer placed on 

the second floor; and Table 61 shows the corresponding maximums and the times these 

maxima occur.   

 

First Floor Acceleration of Two-Story Frame with Tensioned 
Cross-Braceing on Bottom Floor
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Figure 66:  First floor acceleration of tensioned TSLX frame 

 
 

Table 60:  Maximum first floor accelerations 

  Time, sec 
Positive Acceleration, g 0.650714 2.952459 
Negative Acceleration, g -0.62996 2.78043 
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Second Floor Acceleration of Two-Story Frame with 
Tensioned Cross-Bracing on Bottom Floor
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Figure 67:  Second floor acceleration of tensioned TSLX frame 

 
 

Table 61:  Maximum second floor accelerations 

  Time, sec 
Positive Acceleration, g 1.253815 3.452536 
Negative Acceleration, g -1.294103 2.830438 
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Earthquake Response for TSLXUX (Zero Pre -strain):  In this case both the floors of 

the two-story frame are cross-braced and the response to El Centro excitation is recorded 

with induced force in the bracings.  Figure 68 shows the data collected from the 

accelerometer placed on the first floor.  Table 62 shows the corresponding maximums 

and the times these maxima occur.  Likewise, Figure 69 shows the data collected from 

the accelerometer placed on the second floor; and Table 63 shows the corresponding 

maximums and the times these maxima occur.   

 

First Floor Acceleration of Two-Story Frame with Zero-Force 
Full Cross Bracing
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Figure 68:  First floor acceleration of zero pre-strained TSLXUX frame 

 
 

Table 62:  Maximum first floor acceleration 

  Time, sec 
Positive Acceleration, g 1.239165 3.033472 
Negative Acceleration, g -1.063362 3.909609 
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Second Floor Acceleration of Two-Story Frame with Zero-
Force Full Bracing
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Figure 69:  Second floor acceleration response of zero pre-strained TSLXUX frame 

 

 

Table 63:  Maximum second floor acceleration 

  Time, sec 
Positive Acceleration, g 1.557807 3.054475 
Negative Acceleration, g -1.277011 3.933612 
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Earthquake Response for TSLXUX (Pre-strain—Tensile):  This case is similar to the 

last case, except that a tensile force of 1.366lbs is induced in the bracings.  Figure 70 

shows the data collected from the accelerometer placed on the first floor.  Table 64 shows 

the corresponding maximums and the times these maxima occur.  Likewise, Figure 71 

shows the data collected from the accelerometer placed on the second floor; and  Table 65 

shows the corresponding maximums and the times these maxima occur.   

 

First Floor Acceleration of Two-Story Frame with Tensioned 
Full Cross-Bracing
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Figure 70:  First floor acceleration response of tensioned TSLXUX frame 

 

Table 64:  Maximum first floor acceleration 

  Time, sec 
Positive Acceleration, g 0.500549 2.618405 
Negative Acceleration, g -0.477353 2.510389 
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Second Floor Acceleration of Two-Story Frame with 
Tensioned Full Cross-Bracing
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Figure 71:  Second floor acceleration response of tensioned TSLXUX frame 

 
Table 65:  Maximum second floor acceleration 

  Time, sec 
Positive Acceleration, g 0.651935 2.684417 
Negative Acceleration, g -0.588451 2.51439 

 
 
 

It is interesting to note that although the zero-force bracing provides slight 

reduction in maximum positive acceleration, the maximum negative acceleration is 

increased.  One reason for this is when the wires were slackened, compression may have 

been introduced into the columns resulting in the increased maximum accelerations.  

However when examining the graphs, the overall acceleration is  decreased.  As expected, 

the pre-tensioned bracing results in the most acceleration reduction. 
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CHAPTER V 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

Summary 

 The primary objective of this research effort was to determine the effectiveness of 

bracing systems with pre- induced stresses in improving the performance of a structure 

subjected to dynamic excitations like those due to earthquake, wind, and the like.  

Various passive, semi-active, and active alternatives were evaluated.  For the purpose of 

present study commonly used diagonal bracing system was chosen. 

 A single and a double-story single bay frame were considered as the basic 

structures for study.  Apart from unbraced systems, different bracing arrangements were 

investigated.  External dynamic excitation at the base of the structures was applied as a 

segment of the El Centro earthquake.  Both analytical and experimental studies were 

undertaken to ascertain the effectiveness of the bracing system with and without pre-

induced stresses.  The analytical studies were undertaken using the finite element 

software ANSYS.  The experimental studies were undertaken using a bench top shake 

table (Quanser Shake Table II). 

 As part of the analytical study, frequencies and mode shapes were determined and 

the effect of bracings with and without pre- induced stresses was noted.  In addition, the 

time-history response of the systems was investigated for El Centro excitation. 

 As part of the experimental study, the base of the structures considered was 

excited by sine sweep to determine the frequencies and mode shapes.  Moreover, the 
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shake table was subjected to El Centro earthquake input and temporal responses of the 

structures were recorded. 

 A major difficulty in experimental study was the inability to completely remove 

the kinks present in the wire strand used for bracing.  The experimental results reflect this 

fact.  However, the analytical results are based on perfectly taut bracing with or without 

pre-induced strain. 

 

Conclusions  

 The analytical and ANSYS results are compared and evaluated as below.  In table 

66 is shown the analytical and experimental fundamental frequency values.  In general, 

the analytical values are larger than the experimental values.  The primary reason for this 

may be attributed to greater base and joint flexibility in the test model as compared to the 

analytical model, which assumed perfectly fixed base and ideally rigid joints.  In 

addition, the presence of kinks in the test model led to reduced stiffness and hence 

smaller frequency values.  It may be noted from the table that, in general, the discrepancy 

is more in the case of braced models than the unbraced models.  To check this reasoning, 

the TSLXUX—Tensile case was run again with pinned base condition giving a 

fundamental frequency which was less than that for fixed base condition by 34%.  This 

further signifies the importance of proper joint modeling in the analytical model.  So, the 

bracings have larger influence on structural stiffness.  It is interesting to note that the use 

of pre- induced strain has very little effect on frequency values predicted by the analytical 

model.  This is expected because of the small magnitude of pre- induced force applied to 

the bracings.  In the experimental study, the pre- induced force was somewhat larger and 
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hence the larger difference.  In the analytical study, a larger pre- induced force could not 

be used due to numerical difficulties posed by ANSYS.  In the case of the test model 

also, a larger pre- induced force could not be created because it affected the geometry of 

the structure. 

Table 66:  Analytical and experimental natural frequencies 

 Analytical Experimental 
SS0 4.4795 3.9 

SSX—Tensile 32.933 9.4 
SSX—Zero Force 32.002 9.0 

TS0 2.5026, 6.9539 2.2, 6.2 
TSLX—Tensile 4.3704 4.0 

TSLX—Zero Force 4.3698 3.6 
TSLXUX—Tensile 28.656 >10.0 

TSLXUX—Zero Force 28.543 6.9 
 

 Analytical studies were undertaken for three single-story cases and six double-

story cases as shown in figure 17.  In table 66 only those cases are shown for which 

experimental studies were undertaken. 

 

Table 67:  Analytical natural frequencies for all nine cases 

Braced Frequency Unbraced 
Tension Zero Force Compression 

SS0 4.4795 ---------- ---------- ---------- 
SS1 ---------- 32.001 32.001 32.002 
SSX ---------- 31.829 32.002 32.933 
TS0 2.5026 --------- --------- ---------- 

TSUX ---------- 2.5505 2.5510 2.5515 
TSLX ---------- 4.3692 4.3698 4.3704 

TSL1U1-S ---------- 28.543 28.543 28.543 
TSL1U1-O ---------- 28.543 28.543 28.543 
TSLXUX ---------- 28.429 28.543 28.656 
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Table 67 shows the fundamental frequencies for three cases of single-story frame 

and six cases of double-story frames shown in figure 17.  It is clear from the values 

shown that the bracing system has significant effect on the frequency and hence the 

stiffness of the structures.  It is however not clear what effect will the pre- induced force 

in the bracings have on the response simply because the magnitude of the pre- induced 

force happened to be too small and hence of no consequence.  It was mentioned earlier 

that numerical difficulties with ANSYS prevented the use of a larger value.  In spite of 

very small demonstrated effect of the pre- induced force, it may be noticed that, as 

expected, a tensile pre- induced strain caused lowering of stiffness.  On the other hand, a 

compressive pre- induced strain caused rising of stiffness.  It is, however, instructive to 

actually study the effect of larger pre- induced forces, maybe, using a different software. 

In table 68 is shown a summary of the analytical results of time-history analysis 

due to El Centro earthquake.  In the case of single-story frames, it is clear from the table 

that the use of bracing with or without pre-induced force caused significant drop in the 

drift index.  For instance, in the case of SSX-T the reduced value of the maximum drift 

index is less than 1% of the value for the unbraced frame.  Likewise, in the case of SSX-

C the reduced value of the maximum drift index is less than 2% of the value of the 

unbraced frame. 

 In the case of two-story frames, for TSUX (-T, -0, -C) in which cross-bracing is 

used in the top story only, the drift index in the bottom-story is increased by about 38%.  

On the other hand, in the upper story, the drift index decreases by about 5.7%.  As 

discussed above, no definite conclusions can be drawn about the effect of pre- induced 
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force because there is hardly any difference in the maximum response between the cases 

with and without pre- induced forces.   

In the case of TSLX (-T, -0, -C), in which cross-bracing is used in the bottom 

story only, the drift indices for the bottom-story are almost the same for both –T and –C 

cases.  For the same cases, the drift indices are close to 1%.  On the other hand, for -0 

case it is almost zero.  So, the pre- induced strain has no beneficial effect on the lower 

story drift index.  The drift indices for the –T and –C cases were increased by 36%.  In 

the -0 case it is slightly larger.  From this study, it is clear that bracing the lower story 

alone does not have any beneficial effect in controlling the drift index in an earthquake 

response. 

In the case of the two-story frame with single bracing in each story inclined in the 

same direction, the results are very interesting.  For instance, in the case of TSL1U1-S (-

T, -0, -C) the drops in lower story drift indices are 97.4%, 97.0%, and 96.4% 

respectively.  It is clear from this result that bracing with pre- induced tension is most 

effective and that bracing has significant effect on reducing the drift index in the lower 

story.  In the case of the upper story, the drops are 98.5%, 97.6%, and 96.4%.  So, the 

behavior of the upper story is almost identical to the behavior of the lower story. 

 In the case of the two-story frame with single bracing in each story inclined in 

opposite directions, the response is similar to that of the previous case. 

 In the case of the two-story frame with cross-bracings in each story, the drift in 

the upper story is almost zero, whereas, in the lower story the drift index is about 1.6% of 

that for the unbraced case. 
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 It may be stated from above that two-story frames with cross-bracing in both the 

stories is most effective in controlling the drift index during an earthquake.  However, the 

case where a single bracing is used in each story inclined in the same direction the drift 

response is almost equally good. 

 In table 69 is shown the experimental results of time-history response for single 

and double-story frames excited by El Centro earthquake.  This table differs from table 

68 in that it shows maximum values of negative and positive accelerations and the times 

of occurrence for three cases of single-story frames and five cases of doub le-story frames.  

So, there is no scope for comparison with the analytical solutions.  The bracing system, 

where used, in these frames are of X-type only.  It should also be noted that in the 

experimental set-up only tensile force could be induced in the bracings.  The acceleration 

data shown in the table do not follow a definite pattern and hence definite conclusions 

cannot be drawn.  However, it may be noted that lowest acceleration values are obtained 

when tensile forces are induced in the bracings both for single-story and double-story 

frames. 

 

Recommendations  

 In general, it can be concluded that frames with bracings having pre- induced 

forces have beneficial effect on the dynamic response of a structure due to earthquake 

excitation.  However, before drawing definitive conclusions more analytical and 

experimental studies are required to be undertaken in the following lines: 

1. Significant improvement in the test model, the bracing system, and the method of 

inducing and measuring force in the bracing is absolutely essential. 
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2. To select an analytical tool which can effectively handle the nonlinear behavior of 

the problem in hand is necessary.  Possible use of the full blown version of 

ANSYS, versus the student version, will handle these problems. 

3. A feedback and control system needs to be developed for adaptive application of 

this structural control scheme. 
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Table 68:  Time-history analytical results summary for El Centro earthquake 

  Positive 
Sway, in 

Time, 
sec 

Negative 
Sway, in 

Time, 
sec 

Positive 
Sway 

(Second 
Floor), in 

Drift, in Time, 
sec 

Negative 
Sway 

(Second 
Floor), in 

Drift, in Time, 
sec 

SS0 0.07137 2.11 -0.0726 2.24 ------------ -------  --------- ------------ -------  ----------- 
SS1-T 0.00319 1.19 -0.0071 2.24 ------------  ------- ---------- ------------  ------- ---------- 
SS1-0 0.00134 1.19 -0.0025 2.24 ------------  ------- ---------- ------------  ------- ---------- 
SS1-C 0.00184 1.19 -0.0019 2.24 ------------  ------- ---------- ------------  ------- ---------- 
SSX-T 0.00068 1.19 -0.0012 2.24 ------------  ------- ---------- ------------  ------- ---------- 
SSX-0 0.00069 1.19 -0.0013 2.24 ------------  ------- ---------- ------------  ------- ---------- 
SSX-C 0.00683 1.19 -0.0013 2.24 ------------  ------- ---------- ------------  ------- ---------- 

TS0 0.09829 1.91 -0.1027 2.25 0.15087 0.05258 1.9 -0.1546 -0.05197 2.27 
TSUX-T 0.13492 2.12 -0.1007 2.25 0.13523 0.0003 2.12 -0.1009 -0.00024 2.25 
TSUX-0 0.13492 2.12 -0.1007 2.25 0.13522 0.0003 2.12 -0.1009 -0.00025 2.25 
TSUX-C 0.13491 2.12 -0.1007 2.25 0.13522 0.0003 2.12 -0.1009 -0.00025 2.25 
TSLX-T 0.00117 2.12 -0.0019 2.24 0.08318 0.08202 2.12 -0.0708 -0.06894 2.24 
TSLX-0 6.8E-05 1.19 -0.0001 2.24 0.08246 0.08239 2.12 -0.0704 -0.07027 2.24 
TSLX-C 0.00116 2.12 -0.0019 2.24 0.08318 0.08202 2.12 -0.0708 -0.06893 2.24 

TSL1U1-S-T 0.00247 1.19 -0.0058 2.24 0.00324 0.00077 1.19 -0.0086 -0.00279 2.24 
TSL1U1-S-0 0.00296 1.19 -0.0053 2.24 0.00423 0.00127 1.19 -0.0075 -0.00222 2.24 
TSL1U1-S-C 0.00351 2.12 -0.0047 2.24 0.00537 0.00187 2.12 -0.0063 -0.00165 2.24 
TSL1U1-O-T 0.00245 1.19 -0.0058 2.24 0.00419 0.00174 1.19 -0.0074 -0.00161 2.24 
TSL1U1-O-0 0.00295 1.19 -0.0052 2.24 0.00419 0.00125 1.19 -0.0074 -0.00219 2.24 
TSL1U1-O-C 0.003487 2.12 -0.00465 2.24 0.000754 -0.00273 1.19 -0.00276 0.00189 2.24 
TSUXLX-T 0.001564 1.19 -0.00282 2.24 0.002247 6.83E-4 1.19 -0.00406 -0.00124 2.24 
TSUXLX-0 0.001557 1.19 -0.00283 2.24 0.000686 -8.71E-4 1.19 -0.00124 0.00159 2.24 
TSUXLX-C 0.00155 1.19 -0.00283 2.24 0.00224 6.9E-4 1.19 -0.00407 -0.00124 2.24 
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Table 69:  Time-history experimental results summary for El Centro earthquake 

 Positive 
Acceleration, 

g 

Time, sec Negative 
Acceleration, 

g 

Time, 
sec 

Positive 
Acceleration 

(Second 
Floor), g 

Time, sec Negative 
Acceleration 

(Second Floor), 
g 

Time, sec 

Table 0.348082 2.763416 -0.261714 2.901437 ------------ ------------ ------------ ------------ 
SS0 1.226956 2.964459 -1.24405 3.60956 ------------ ------------ ------------ ------------ 

SSX-T 0.590892 2.616405 -0.63729 2.784429 ------------ ------------ ------------ ------------ 
SSX-0 1.185447 2.982464 -1.34416 2.923454 ------------ ------------ ------------ ------------ 

TS0 0.703211 4.018619 -0.617751 3.780581 0.815529 7.31913 -1.013307 3.824589 
TSLX-T 0.650714 2.952459 -0.62996 2.78043 1.253815 3.452536 -1.294103 2.830438 
TSLX-0 1.134172 2.961451 -1.063362 3.08947 1.24646 3.006458 -1.423514 2.847434 

TSUXLX-T 0.500549 2.618405 -0.477353 2.510389 0.651935 2.684417 -0.588451 2.51439 
TSUXLX-0 1.239165 3.033472 -1.063362 3.909609 1.557807 3.054475 -1.277011 3.933612 
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APPENDIX A 

 

TEST PROCEDURE 

 

 This appendix will detail the procedure followed in the experimental set-up in 

order to run the shake table through the computer. 

1) Make sure the MultiQ is properly connected to the Power Module and the PC as 

shown in Figure A1. 

 
Figure A1:  Computer and shake table set-up 

 
2) Make sure that the Power Module is properly connected to the Shake Table. 

3) Turn the Power Module switch to the “ON” position.  When you turn on the Power 

Module, the “Left” and “Right” LED’s will blink continuously.   See figure A2 on the 

following page. 
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Figure A2:  Power Module 

 
4) Before you open the WinCon program, run the “boot.exe” DOS executable one time.  

This will initialize the power amplifier.  Once you run the executable, the LED’s will 

stop flashing. 

5) Open the WinCon application.  See figure A3. 

 
Figure A3:  Computer screen and WinCon application 
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6) Calibrate the shake table by loading the file “cal_x.wcp” using File/Open. 

7) Click the “Start” button.  This should move the shake table slowly to the central 

position and stop.  The light on the Power Module marked “Cal”, “OK”, and 

“Enable” will be lit up until the table reaches the home position. 

8) Choose a model to run.  For example, load the “sine_x.mdl” using Model/Open. 

9) Click “Start”.  Adjust the frequency and amplitude of the wave by clicking on the 

respective dials and turning them shown in figure A4. 

 
Figure A4:  Frequency and amplitude controls 

 
10) This begins the motion of the table and displays plots developing on the graph of 

displacement vs. time and acceleration vs. time as shown in figure A5. 

 
Figure A5:  Shake table output plots 
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