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CHAPTER I 

 

INTRODUCTION 

 

1. Introduction 

 The evolution of the lower limb prosthesis over the recent decades has progressed from purely 

mechanical systems to systems that include microprocessor control.  When evaluating the basic function 

of standard mechanical knee prostheses, Figure 1-1, their function is to provide mechanical damping in 

order to extract energy from the system and limit the flexion of the knee joint in the back swing to prevent a 

collision of the knee joint at full extension.  These devices allow for restricted mobility of amputees and 

provide an abnormal gait pattern.  

           

Figure 1-1. Standard lower limb prostheses including mechanical damping knee with locking and solid ankle 
cushioned heel (SACH) foot. 

The current generation of lower limb prostheses, Figure 1-2, incorporate microprocessors to control 

either electromagnetic brakes or magnetic rheological fluid for the modulation of the damping in the knee 

throughout the gait cycle.  The incorporation of spring elements in the ankle, Figure 1-3, provides some 

power return in the gait cycle, but is incapable of producing net power.  The devices do provide users with 
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increased mobility; however they still do not replace the power generation capabilities of the missing limb. 

The inability to deliver joint power significantly impairs the ability of lower limb prostheses to restore many 

locomotive functions, including walking up stairs and slopes, running, and jumping, all of which require 

significant net positive power at the knee joint, ankle joint, or both (Winter and Sienko 1988, Nadeau et al. 

2003, Riener et al. 1999, Prilutsky et al. 1996, DeVita et al. 1996, Nagano et al. 1998, Jacobs et al. 1996).  

Further, although less obvious, even biomechanically normal walking requires positive power output at the 

knee joint and significant net positive power output at the ankle joint (Winter, 1991).  Transfemoral 

amputees walking with passive prostheses have been shown to expend up to 60% more metabolic energy 

relative to healthy subjects during level walking (Waters et al. 1976) and exert as much as three times the 

affected-side hip power and torque (Winter 1991), presumably due to the absence of powered joints.   

 

         
Figure 1-2. The Ossur Rheo knee (left) and the Otto Bock C-Leg (right) represent the cutting edge of 

microprocesser controlled damping prosthetic knees. 
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Figure 1-3. The Otto Bock Trias Foot represents a typical spring-action ankle. 

 

A prosthesis with the capacity to deliver power at the knee and ankle joints would address these 

deficiencies, and would additionally enable the restoration of biomechanically normal locomotion.  Such a 

prosthesis, however, would require 1) power generation capabilities comparable to an actual limb and 2) a 

control framework for generating required joint torques for locomotion while ensuring stable and 

coordinated interaction with the user and the environment.  

 

2. Literature Survey 

Prior work does exists on the development of powered knee transfemoral prostheses and powered 

ankle transtibial prostheses. Flowers (1973), Donath (1974), Flowers and Mann (1977), Grimes et al. 

(1977), Grimes (1979), Stein (1983), and Stein and Flowers (1988) developed a tethered electrohydraulic 

transfemoral prosthesis that consisted of a hydraulically actuated knee joint tethered to a hydraulic power 

source and off-board electronics and computation, Figure 1-4.  They subsequently developed an “echo 

control” scheme for gait control, as described by Grimes et al. (1977), in which a modified knee trajectory 

from the sound leg is played back on the contralateral side.   
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Figure 1-4. Flowers et al. (circa 1970’s) developed a hydraulically actuated knee prosthesis that pioneered 

the use of active joints. 

Specifically, Popovic and Schwirtlich (1988) report the development of a battery-powered active knee 

joint actuated by DC motors, Figure 1-5, together with a finite state knee controller that utilizes a robust 

position tracking control algorithm for gait control (Popovic et. al., 1995). With regard to powered ankle 

joints, Klute et al. (1998, 2000) describe the design of an active ankle joint using pneumatic McKibben 

actuators, although gait control algorithms were not described. Au et al. (2005) assessed the feasibility of 

an EMG based position control approach for a transtibial prosthesis.  Finally, though no published 

literature exists, Ossur, a major prosthetics company based in Iceland, has announced the development of 

both a powered knee and a self-adjusting ankle.  The latter, called the “Proprio Foot” (Figure 1-6) is not a 

true powered ankle, since it does not contribute power to gait, but rather is used to quasistatically adjust 

the angle of the ankle to better accommodate sitting and slopes.  The powered knee, called the “Power 

Knee” (Figure 1-7), utilizes an echo control approach similar to the one described by Grimes et al. (1977). 
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Figure 1-5. Electromagnetically actuated powered knee developed by Popovic with a battery pack. 

 

  
Figure 1-6. Ossur "Proprio" foot actively positions the foot for increased functionality. 

 

 

  
Figure 1-7. Ossur "Power Knee" uses electromagnetic actuation, which limits the battery life. 
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3. Motivation and Contribution 

 One of the most significant challenges in the development of a powered lower limb prosthesis is 

providing self-powered actuation capabilities comparable to biological systems.  State-of-the-art power 

supply and actuation technology such as battery/DC motor combinations suffer from low energy density of 

the power source (i.e., heavy batteries for a given amount of energy), low actuator force/torque density, 

and low actuator power density (i.e., heavy motor/gearhead packages for a given amount of force or 

torque and power output), all relative to the human musculoskeletal system.  Recent advances in power 

supply and actuation for self-powered robots, such as the liquid-fueled approaches described by Goldfarb 

et al. 2003, Shields et al. 2006, Fite et al. 2006, and Fite and Goldfarb 2006, offer the potential of 

significantly improved energetic characteristics relative to battery/DC motor combinations, and thus bring 

the potential of a powered lower limb prosthesis to the near horizon.  Specifically, the aforementioned 

publications describe pneumatic-type actuators, which are powered by the reaction products of a 

catalytically decomposed liquid monopropellant.  The proposed approach has been experimentally 

shown to provide an energetic figure of merit an order of magnitude greater than state-of-the-art batteries 

and motors (Shields et al. 2006, Fite and Goldfarb 2006). Based on this liquid-fueled approach, a 

prototype of a powered knee and ankle transfemoral prosthesis have been developed (Sup and Goldfarb 

2007).  

The development of a powered prosthesis changes significantly the nature of the user-prosthesis 

interface and control problem.  Unlike a passive device (e.g., a modulated damper knee joint) that can 

fundamentally only react to a user’s input, a powered device can both act as well as react.  As such, the 

prosthesis necessitates a reliable control framework for generating required joint torques while ensuring 
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stable and coordinated interaction with the user and the environment. This thesis proposes an intelligent 

control framework for the control of the powered knee and ankle transfemoral prosthesis.  

 

4. Organization of the Document 

The thesis is organized into four chapters. The references for each chapter is given at the end of the 

chapter. Chapter I presents the introduction and motivation for the intelligent control of a powered 

transfemoral prosthesis. Chapter II is a conference paper that is published in the Proceedings of the 10th 

International Conference on Rehabilitation Robotics (ICORR 2007). The paper presents a k-Nearest 

Neighbor algorithm based real-time gait intent recognition approach for use in controlling a fully powered 

transfemoral prosthesis described.  The proposed approach infers user intent based on the characteristic 

shape of the force and moment vector of interaction between the user and prosthesis.    

Chapter III is also a conference paper that is published in the Proceedings of the 10th International 

Conference on Rehabilitation Robotics (ICORR 2007).  This paper presents an active passive torque 

decomposition procedure for use in controlling a fully powered transfemoral prosthesis. The active and 

passive parts of the joint torques are extracted by solving a constrained least squares optimization problem.  

The proposed approach generates the torque reference of joints by combining the active part, which is a 

function of the force and moment vector of the interaction between user and prosthesis and the passive 

part, which has a nonlinear spring-dashpot behavior. The last chapter, Chapter IV, describes the 

experimental procedure for the calibration of the three axis socket load cell, the main component of the 

mechanical sensory interface of the powered prosthesis. 
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1. Abstract 

This paper describes a real-time gait intent recognition approach for use in controlling a fully powered 

transfemoral prosthesis.  Rather than utilize an “echo control” approach as proposed by others, which 

requires instrumentation of the sound-side leg, the proposed approach infers user intent based on the 

characteristic shape of the force and moment vector of interaction between the user and prosthesis.  The 

real-time intent recognition approach utilizes a K-nearest neighbor algorithm with majority voting and 

threshold biasing schemes to increase its robustness. The ability of the approach to recognize in real time 

a person’s intent to stand or walk at one of three different speeds is demonstrated on measured 

biomechanics data. 

 

2. Introduction 

Despite significant technological advances over the past decade, such as the introduction of 

microcomputer-modulated damping during swing, commercial transfemoral prostheses remain essentially 

limited to energetically passive devices.  That is, the joints of the prostheses can either store or dissipate 

energy, but cannot provide net power over a gait cycle. The knee and ankle joints of the native limb, 

however, generate significant net power output over a gait cycle during many locomotive functions, 

including walking upstairs and up slopes, running, and jumping (Winter and Sienko 1988, Nadeau et al. 

2003, Riener et al. 1999, Prilutsky et al. 1996, DeVita et al. 1996, Nagano et al. 1998, Jacobs et al. 1996) .  

Even during level walking, transfemoral amputees with passive prostheses exhibit asymmetric gait 

kinematics, expend up to 60% more metabolic energy relative to healthy subjects (Walters et al. 1976), 

and exert as much as three times the affected-side hip power and torque relative to healthy subjects, all of 
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which are indicative of the functional limitations of passive joints (Winter 1991). 

A major reason for the absence of powered joints in transfemoral (and transtibial) prostheses is the 

lack of energy source and actuator with suitable power density to provide the power and energy required 

for gait in a low-weight device.  Recent advances in power supply and actuation for self-powered robots, 

such as the liquid-fueled approach developed by Goldfarb et al. (Goldfarb et al. 2003, Shields et al. 2006, 

Fite et al. 2006, Fite and Goldfarb 2006), offer a power density that makes feasible a powered lower limb 

prosthesis. Based on this liquid-fueled approach, the authors have developed a prototype of a powered 

knee and ankle transfemoral prosthesis, as shown in Figure 2-1 (Sup and Goldfarb, 2006). The 

development of a powered prosthesis changes significantly the nature of the user-prosthesis interface and 

control problem.  Unlike a passive device (e.g., a modulated damper knee joint) that can fundamentally 

only react to a user’s input, a powered device can both act as well as react.  As such, the prosthesis 

necessitates a reliable control framework for generating required joint torques while ensuring stable and 

coordinated interaction with the user and the environment.  

   
Figure 2-1. Power knee and ankle prosthesis prototype. 
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3. Prior Work in Powered Transfemoral Prosthesis 

The authors are not aware of any prior work in the development of a powered knee and ankle 

transfemoral prosthesis, although prior work has been published in the development of powered knee 

transfemoral prostheses. Specifically, Flowers et al. developed a tethered electrohydraulic transfemoral 

prosthesis that consisted of a hydraulically actuated knee joint tethered to a hydraulic power source and 

off-board electronics and computation (Flowers et al. 1973, Donath et al. 1974, Grimes et al. 1979, Grimes 

et al. 1977, Stein et al. 1983, Flowers et al. 1977). They subsequently developed an “echo control” scheme 

for gait control, as described by Grimes et al. (1977), in which a modified knee trajectory from the sound 

leg is played back on the contralateral side.  Popovic and Schwirtlich (1988) report the development of a 

battery-powered active knee joint actuated by DC motors, together with a finite state knee controller that 

utilizes robust position tracking control algorithm for gait control. Finally, Ossur, a major prosthetics 

company based in Iceland, has announced the limited launch of a powered knee, called the “Power Knee,” 

which purportedly uses sensors on the sound side leg as input for the control of the powered prosthesis. 

 

4. Interface Approaches 

Unlike existing passive prostheses (including microprocessor-controlled devices), the introduction of 

power into a prosthesis provides the ability for the device to act, rather than simply react. As such, the 

development of a suitable controller that provides for stable and reliable interaction between the user and 

prosthesis is paramount. The user interface and control issue can be addressed with widely varying 

approaches and at widely varying degrees of invasiveness. The major categories of interface, in order of 

increasing invasiveness, are (1) mechanical sensory interface, (2) surface electromyography (EMG) 
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interface, (3) implantable peripheral nervous systems (PNS) interface, and (4) implantable central nervous 

system (CNS) interface. Mechanical sensory interface (MSI) approaches use only sensors pertaining to 

the biomechanics of gait (i.e., as opposed to the physiology of gait), such as measurement of forces, 

torques, joint angles, and vertical orientation (i.e., inclination). Surface EMG, which is the approach used 

by actively powered myoelectric upper extremity prostheses, incorporates surface electrodes (often in the 

prosthesis socket) to extract command signals from the muscles in the residual limb. Some researchers 

have investigated the use of surface EMG control approaches for knee control in a lower limb prostheses, 

including (Aeyels et al. 1995, Donath 1974, Myers and Moskowitz 1981, Myers and Moskowitz 1983, Triolo 

and Moskowitz 1982, Aeyels et al. 1992, Peeraer et al. 1990). In the case of an upper extremity 

above-elbow myoelectric prosthesis, the combination of the biceps and triceps EMG provides a single 

bipolar signal, which is switched between the control of the terminal device and control of the elbow (i.e., 

does not enable simultaneous control of both joints). This approach would not be appropriate for an active 

knee and ankle joint leg, however, since locomotion requires simultaneous control of the knee and ankle. 

As such, an EMG approach would require at least two control channels (i.e., measurement from two sets 

of antagonist muscles). Implantable PNS approaches include the use of percutaneous electrodes 

implanted in the nerves, and/or the use of implantable capsules for extraction of the EMG signals, from 

which neural or EMG commands can be extracted. Finally, implantable CNS approaches utilize electrode 

arrays implanted in the cortex of the brain, from which motor commands can also be extracted. 

Presumably, the extent of control over the prosthesis would vary roughly inversely with the extent of 

invasiveness.  

As with any medical device or procedure, one would optimally wish to incorporate the least invasive 
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approach that achieves the desired specific aims, and as such, the proposed controller utilizes the 

non-invasive mechanical sensory interface approach. The lower limb, in particular, lends itself much more 

readily to non-invasive interface approaches than does the upper limb, since (1) the lower limb 

fundamentally interacts mechanically with the environment (i.e., the ground and the user) and (2) the tasks 

in which the lower limb engages are typically periodic in nature. Both of these qualities are leveraged in the 

proposed design. 

Although the commercially available passive computer controlled knee systems (e.g., C-leg, Rheo 

knee) already make use of signals only taken from the instrumented prosthesis for real-time mode 

detection and subsequent knee control, the previously cited works on powered knees all incorporate a 

variation of echo control, in which the sound-side (i.e., unaffected) leg is instrumented to provide input 

commands for the powered prosthesis. The obvious drawback to such an approach is that the sound-side 

(or unaffected) leg must be instrumented, which requires the user to don and doff additional equipment 

and associated wiring. The echo control approach also restricts the use of the prosthesis to unilateral 

amputees and also presents a problem for “odd” numbers of steps, in which an echoed step is undesirable. 

A more subtle, although perhaps more significant shortcoming of the echo-type approach is that suitable 

motion tracking requires a high output impedance of the prosthesis, which forces the amputee to react to 

the limb rather than interact with it. Specifically, in order for the prosthesis to dictate the joint trajectory, it 

must assume a high output impedance (i.e., must be stiff), thus precluding any dynamic interaction with the 

user and the environment, which is in turn contrary to the way in which humans interact with their native 

limbs. 

This paper offers an alternative approach to addressing the interface between user and prosthesis 
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that is both non-invasive and obviates the need for sound-side instrumentation.  Rather than gather user 

intent from the joint angle measurements from the contralateral unaffected leg, the proposed approach 

infers commands from the user via the (ipsilateral) forces and moments of interaction between the user 

and prosthesis.  Specifically, the user interacts with the prosthesis by imparting forces and moments from 

the residual limb to the prosthesis, all of which can be measured via a multi-axis load cell.  These forces 

and moments serve not only as a means of physical interaction, but also serve as an implicit 

communication channel between the user and device, with the user’s intent encoded in this measurement.  

Inferring user’s intent from the measured forces and moments of interaction provides several advantages 

relative to the echo approach.  First, no instrumentation or wiring apart from the prosthesis need be worn 

by the user.  Second, unlike an echo approach, the information flow is immediate (i.e., the user intent 

need not be delayed by a half cycle).  Third, the prosthesis command is decoupled from the unaffected 

side, and thus the user is not constrained to “even” patterns of gait.  Finally, unlike an echo approach, the 

proposed approach can be utilized on either a unilateral or bilateral amputee. 

This paper describes a method for the real-time recognition of user intent based primarily on the 

forces and moments of interaction between the user and prosthesis, and demonstrates on biomechanical 

data that the proposed approach can differentiate between standing and three different walking speeds. 

 

5. K-Nearest Neighbor Classification 

Gait intent recognition is a real time pattern recognition or signal classification problem. The signal in 

this case is the combination of socket interface forces and the dynamic state of the prosthesis, which is a 

vector of the knee and ankle angles as illustrated in Figure 2-2. Many methods exist for pattern recognition 
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and signal classification including nearest neighbor algorithms, neural networks, fuzzy classifiers, linear 

discriminant analysis, and genetic algorithms (Duda et al. 2001). Though each has its respective virtues, a 

k-nearest neighbor (k-NN) approach provides the advantages of relatively little training information and 

minimal computation, both of which render it particularly appropriate for real-time applications with limited 

computational capacity, such as the one proposed.  

 

Figure 2-2. Structure of the transfemoral prosthesis control system.. 
 

 

5.1 K-Nearest Neighbor Algorithm 

First proposed by Fix and Hodges (1951), the nearest neighbor rule is one of the simplest pattern 

classification algorithms. The approach classifies unlabeled examples based on their similarity with 

examples in the training set.  Given a set of n  labeled subsets, )},(,),,(),,{( 2211 nnn YXYXYXD K= , 

where iX  are the feature vectors in some input space and },,,{ 21 ni wwwY K∈ are the corresponding 

class labels, the k-nearest neighbor rule finds the k  “closest” labeled examples in the training set and  

classifies ux into the class that appears most frequently within the k-subset.  

The approach is most easily illustrated by the example shown in Figure 2-3, in which we wish to 

classify the unknown data point, ux , into one of four classes. In this case, the Euclidian distance metric is 

chosen to quantify the “closeness,” and the number of the nearest neighbors ( k ) to which we would like to 
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quantify the closeness of the data point is chosen to be five (note that the number depends on the number 

of classes, number of points, nature of the classes, etc.). As depicted in the figure, three of the nearest 

neighbors belong to the class 4w , while two belong to the class 1w . The data point is therefore assigned to 

class 4w , since it has the most “nearest neighbors” in that class. 

 
Figure 2-3. Illustration of the k-NN algorithm for the classification of an unknown example, ux ,  with 5 

nearest neighbors and 4 classes. 

 

5.2 Application of k-NN to Gait Mode Recognition  

For purposes of intent recognition in a powered prosthesis, the algorithm must be fast (relative to the 

step period), must be real-time (i.e., satisfaction of hard deadline constraints is needed due to the safety 

critical nature of the task), must be robust to noise, and must be computationally inexpensive since it will 

be implemented on an embedded computing platform with limited computational capability.  

 In this work, the k-NN algorithm described in the previous section is modified and enhanced to detect 

the different gait modes. At this point in its development, the k-NN based intent recognizer detects four 
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different gait modes, iq , which are standing ( 1q ) and three different walking speeds (slow ( 2q ), normal ( 3q ) 

and fast ( 4q )). Note that in a realistic implementation, several classes would be considered, including 

walking upstairs and downstairs and walking backwards. Despite this, the aforementioned set of four 

classes serves as an appropriate initial set with which to develop and test the proposed approach. 

At each time step of the algorithm, an unlabeled example vector consisting of the sensor 

measurement vector, T
anklekneeSSu FFx ],,,[

21
θθ= , is classified as one of the four gait modes. The sensor 

measurement consists of the socket load forces in the sagittal plane, 
1SF and 

2SF ,  and  the knee and 

ankle angles, kneeθ  and ankleθ . At each iteration, the distance of the new unclassified sample relative to the 

each class of data points is calculated. Two measures of closeness were compared, the Euclidian norm 

and the absolute norm. The distance of the unclassified sample vector, ux ,  relative to a vector, ix ,  in 

the training set is given for the Euclidian and absolute case respectively as: 

∑
=

−=
4

1

2)(
j

iui jjeuclidian
xxc  (1) 

∑
=

−=
4

1j
iui jjabs

xxc  (2) 

Once the k nearest neighbors are determined, the sample vector is classified as the class with the 

most members of this set. In order to decrease sensitivity to noise, classification of the current sample 

vector is additionally debounced and filtered. The debouncing is based on a threshold biasing scheme, in 

which at each time step, the number of members of the nearest neighbor set for the predominant class in 

the previous time step is multiplied by a biasing constant, 1>a . Appropriate tuning of this parameter 

decreases the likelihood of switching classes, and thus inhibits chattering between classes.  The output of 

the classifier is additionally filtered by a boxcar window of length p. Figure 2-4 lists the psuedocode of the 
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classification algorithm. 

 

Figure 2-4. Pseudocode of the k-NN based intent recognition algorithm. 
 

6. Implementation and Experimental Validation  

 
6.1 Gait Experiments 

In order to validate the ability of the proposed approach to determine user intent in real-time, the 

authors generated an experimental database consisting of the appropriate data vectors for various data 

classes (i.e., for standing and three different walking speeds).  Note that two major differences exist 

between the conditions used for validation of the approach and the manner in which the approach would 

eventually be implemented in a prosthesis.  First, the gait data was generated by a normal subject rather 
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than from an amputee.  Second, the intent recognition algorithm was tested following the collection of all 

data, rather than in a real-time setting.  Both variations were a matter of experimental convenience, and 

neither affects significantly the validity of the results. Specifically, the use of a normal subject rather than an 

amputee affects two issues.  First, the mass distribution of the leg will be slightly different than if it were a 

prosthesis.  Second, since the vector of sagittal plane forces of interaction between the user and 

prosthesis is not readily measured in a normal subject, the algorithm instead used the vector of sagittal 

plane hip torque and ground reaction force, which are related to the former by a coordinate transformation.  

In other words, both force vectors fundamentally contain the same information, but are simply measured in 

different locations.  Regarding the real-time aspect, the algorithm was required to run at a high sampling 

speed (i.e., 10 msec) and to be strictly causal, and as such could have been implemented in real-time.  

Due to the use of a normal subject, however, the real-time implementation was not possible, since the hip 

torque could not be directly measured, but rather had to be computed via post-processing of the measured 

data (as is typical in the acquisition of kinetic gait data).  Note that in a transfemoral prosthesis (such as 

the one shown in Figure 2-1), the force data would be measured on the prosthesis, and thus would be 

available for real-time use. 

In order to generate appropriate kinematic and kinetic data for definition of the data classes and for 

testing of the approach, gait experiments were conducted in the Biomechanics and Sports Medicine 

Laboratory of the University of Tennessee at Knoxville. The experimental setup consisted of a 7-camera 

240 Hz VICON MX system and 2 AMTI multiaxis force platforms. As is standard in such a setup, hip, knee 

and ankle angles were measured via the cameras, the ground reaction force was measured using the 

multiaxis force plates, and the joint torques and forces were computed in post-processing via inverse 
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dynamics, based on inertial parameters estimated with lookup tables. The sampling rate for the cameras 

and the force plates were 100 Hz and 1000 Hz, respectively. Data collection consisted of two 30-second 

trials for standing (ST) and four trials each for standing to walking (S2W), walking to standing (W2S), slow 

walking (WS), normal walking (WN) and fast walking (WF). In the standing trials, the subject was asked to 

stand and shift his weight around as he normally would.  For the stand to walk transition, the subject was 

asked to stand on the force plate for approximately five seconds, then proceed to a normal walk at a 

self-selected pace.  For the walk to stand transition, the subject was asked to walk at a self-selected pace, 

then as naturally as possible come to a stop on the force plate.  For the slow, normal, and fast walking, 

the subject was asked to walk at those respective rates, while an optical interrupt timing system measured 

the walking speed between the subject’s entrance and exit of the camera viewing volume.  The minimum, 

maximum and average speeds for each class of walking speeds are shown in Table 2-1. The experimental 

setup and the human subject are shown during a measurement trial in Figure 2-5. 

 

 

Figure 2-5. Data collection for the demonstration of the proposed approach. 
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6.2 Class Database and Generation of Test Sequences 

Since kinetic data is only available during contact with the force plates, the amount of data with which 

to define various classes and test the system was limited.  Given the limited amount of data, all trials of 

each class were concatenated to form the database defining that particular class (i.e., standing, slow 

walking, normal walking, and fast walking). The “test” data was formed by assembling linear combinations 

of trial data and by inserting stand to walk and walk to stand transition data between the standing and 

walking data. Then the test data is smoothed with a low pass filter in order to remove the spikes occurring 

due to the concenation of the datasets. Recall, that each training set contains time marked arrays of the 

hip torque, the ground reaction force, knee and ankle angles, all at a sampling rate of 10 ms. The 

components of each data set were additionally scale-normalized between 0 and 1 in order to make the 

relative importance of all the time marked arrays equal.  Note that the normalization constants obtained 

from the training data will also be employed to normalize the measurement data at each sampling instant 

in the real-time application. Note also that the objective of the intent recognizer is only to determine intent 

for a single user, as opposed to generalized intent recognition across subjects.  As such, each subject 

would require a separate database defining the various classes of locomotion (i.e., a database 

representing the spectrum of user intentions).  

TABLE 2-1 

WALKING EXPERIMENT PARAMETERS 

Walking 
Mode 

Minimum 
Speed (m/s) 

Average 
Speed (m/s) 

Maximum 
Speed (m/s) 

Slow 1.01 1.04 1.07 
Normal 1.19 1.22 1.26 

Fast 1.45 1.51 1.56 
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Figure 2-6 shows an example of a “test” sequence of data, which represents a walking trial containing 

several different modes of gait over a total duration of approximately 25 seconds. In the trial scenario, the 

standing experimental subject starts with a transition from standing to slow walking, and then accelerates 

to normal and subsequently to fast walking. After two strides of fast walking, the person decelerates to 

normal and then slow walking. At the end of the trial, a transition from slow walking to standing is 

performed.  
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Figure 2-6. The hip torque (a), the ground reaction force (b), the knee angle (c), the ankle angle (d), and the 
different walking modes (e) for an example walking trial scenario. 
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7. Results and Discussion 

The k-NN intent recognizer was implemented on a PC with an Intel Pentium 4 (2 GHz) processor with 

1024MB memory using Matlab 7.0. In order to simulate real-time conditions, the algorithm was run with a 

fixed time step of 10 msec. The algorithm includes three parameters which can be tuned, based on the 

nature and amount of noise in the data, to result in the least mode estimation error.  The three parameters 

are the biasing constant, a, the number of nearest neighbors, k, and the length of the boxcar window, p. 

The value of the biasing constant, a, was experimentally tuned independently of the other parameters.  A 

higher value of this constant makes the algorithm more robust and prevents chattering between different 

modes, but, it also causes delays in the transitions which is not desirable.  Figure 2-7 shows a trial 

scenario depicting a transition from normal walking to fast walking. As can be seen, when the parameter 

2=a , the transition is recognized in approximately 0.17 seconds, although chattering is present in the 

classification. In the case that 3=a , the chattering does not occur and the delay in the recognition is 

nearly the same. When 4=a , the transition delay increases substantially to 0.4 seconds.  As such, the 

biasing constant was set to 3=a  for the work presented here, which was determined to be the best 

trade-off between delay and chatter. 

For the data shown in Figure 2-6, the values of the other two parameters were determined by an 

exhaustive search for the smallest estimation error with integer values of the parameters 253 ≤≤ k  and 

322 ≤≤ p .  The results of this search for both absolute and the Euclidian norms are shown in Table 2-2, 

which indicates that the smallest mode identification error is obtained when the absolute norm is used and 

the values of nearest neighbors, k, and the length of the boxcar window, p, are set to 7 and 16 respectively. 

The results for the “best case” set of parameters are therefore 3=a , 7=k , and 16=p , with the best 
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distance metric being the absolute norm.  Using these parameters on a different sequence of walking 

data, Figure 2-8 shows the intent recognition results for the three cases consisting of (a) the unmodified 

k-NN algorithm, (b) the k-NN algorithm with biasing constant, and (c) the k-NN algorithm with biasing and 

filtering. It can be easily seen that the biasing constant and filtering schemes improve the performance. 
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Figure 2-7. Effect of biasing constant on chattering and delay. 
 

TABLE 2-2 
MODE IDENTIFICATION ERROR FOR DIFFERENT PARAMETERS (%) 

(ABSOLUTE NORM (LEFT), EUCLIDIAN NORM (RIGHT)) 

 p=2 p=4 p=8 p=16 p=32 
k=3 6.53/7.88 5.91/7.51 4.85/6.02 3.07/5.06 3.41/5.54 
k=5 5.48/6.99 5.24/6.84 4.37/5.46 3.17/4.57 3.27/3.98 
k=7 4.23/4.98 3.94/4.68 4.08/4.91 2.69/4.31 3.41/5.46 
k=11 3.65/6.28 3.7/6.13 3.89/5.91 3.65/5.84 4.13/5.76 
k=15 4.03/4.39 4.27/4.65 4.61/4.8 4.71/5.24 4.95/5.5 
k=25 5.19/6.13 5.38/6.36 5.38/6.58 5.57/7.14 6.68/7.32 

The value of the parameter, a, is set to 3 in all the cases. 
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Regarding real-time implementation, the computation time for the case shown in Figure 2-8(c) was 

approximately 10% of the real-time (i.e., in real time, the algorithm would require approximately 10% of the 

processor utilization). It should be noted that the code execution time could be decreased by converting 

the code to a compiled language such as C++, although it should also be noted that an increased number 

of possible gait modes would increase code execution time.  
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Figure 2-8. Mode estimation for a 30.42 seconds trial walking scenario with the (a) plain k-NN algorithm, (b) 
k-NN with the biasing constant, (c) k-NN with both the biasing constant and the time based majority voting. 
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8. Conclusion 

The authors hypothesized that a user’s intent could be reliably inferred in real-time based on pattern 

recognition of the measured forces and moments of interaction between the user and prosthesis.  Based 

on a proposed k-NN intent recognizer and biomechanical experiments designed to validate the proposed 

approach, the notion of extracting in real-time user’s intent from socket interaction forces appears highly 

feasible.  Further work includes testing the ability to extract user intent for other gait modes, including stair 

ascent/descent, slope ascent/descent, and backward walking.  Further work additionally includes testing 

the proposed intent recognition approach on transfemoral amputees in a real-time setting. 
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1. Abstract 

This paper describes an active passive torque decomposition procedure for use in controlling a fully 

powered transfemoral prosthesis. The active and passive parts of the joint torques are extracted by solving 

a constrained least squares optimization problem.  Rather than utilize "echo control" as proposed by 

others, the proposed approach generates the torque reference of joints by combining the active part, which 

is a function of the force and moment vector of the interaction between user and prosthesis and the 

passive part, which has a nonlinear spring-dashpot behavior.   The ability of the approach to reconstruct 

the required joint torques is demonstrated in simulation on measured biomechanics data. 

2. Introduction 

Despite significant technological advances over the past decade, commercial transfemoral prostheses 

remain essentially limited to energetically passive devices.  The knee and ankle joints of the native limb, 

however, generate significant net power output over a gait cycle during many locomotive functions, 

including walking upstairs and up slopes, running, and jumping (Winter and Sienko 1988, Nadeau et al. 

2003, Riener et al. 1999, Prilutsky et al. 1996, DeVita et al. 1996, Nagano et al. 1998, Jacobs et al. 1996).   

A major reason for the absence of powered joints in transfemoral (and transtibial) prostheses is the lack 

of energy source and actuator with suitable power density to provide the power and energy required for gait 

in a low-weight device.  Recent advances in power supply and actuation for self-powered robots, such as 

the liquid-fueled approach developed by Goldfarb et al. (Goldfarb et al. 2003, Shields et al. 2006, Fite et al. 

2006, Fite and Goldfarb 2006), offer a power density that makes a powered lower limb prosthesis feasible. 

Based on this liquid-fueled approach, the authors have developed a prototype of a powered knee and ankle 

transfemoral prosthesis, as described in Sup and Goldfarb (2007) and shown in Figure 3-1. The 
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development of a powered prosthesis changes significantly the nature of the user-prosthesis interface and 

control problem.  Unlike a passive device (e.g., a modulated damper knee joint) that can fundamentally 

only react to a user’s input, a powered device can both act as well as react.  As such, the prosthesis 

necessitates a reliable control framework for generating required joint torques while ensuring stable and 

coordinated interaction with the user and the environment.  

   

Figure 3-1. Power knee and ankle prosthesis prototype. 

 

3. Prior Work in Powered Transfemoral Prostheses 

The authors are not aware of any prior work in the development of a powered knee and ankle 

transfemoral prosthesis, although prior work has been published in the development of powered knee 

transfemoral prostheses. Specifically, Flowers et al. developed a tethered electrohydraulic transfemoral 

prosthesis that consisted of a hydraulically actuated knee joint tethered to a hydraulic power source and 

off-board electronics and computation (Flowers et al. 1973, Donath et al. 1974, Grimes 1979, Grimes et al. 



 
 34

1977, Stein et al. 1983, Flowers et al. 1977). They subsequently developed an “echo control” scheme for 

gait control, as described by Grimes et al. (1977), in which a modified knee trajectory from the sound leg is 

played back on the contralateral side.  Popovic and Schwirtlich (1988) report the development of a 

battery-powered active knee joint actuated by DC motors, together with a finite state knee controller that 

utilizes robust position tracking control algorithm for gait control. Finally, Ossur, a major prosthetics 

company based in Iceland, has announced the limited launch of  a powered knee, called the “Power 

Knee”.   

 

4. Interface Approaches 

Unlike existing passive prostheses (including microprocessor-controlled devices), the introduction of 

power into a prosthesis provides the ability for the device to act, rather than simply react. As such, the 

development of a suitable controller that provides for stable and reliable interaction between the user and 

prosthesis is paramount. The user interface and control issue can be addressed with widely varying 

approaches and at widely varying degrees of invasiveness. The major categories of interface, in order of 

increasing invasiveness, are (1) mechanical sensory interface, (2) surface electromyography (EMG) 

interface, (3) implantable peripheral nervous systems (PNS) interface, and (4) implantable central nervous 

system (CNS) interface. Mechanical sensory interface (MSI) approaches use only sensors pertaining to 

the biomechanics of gait (i.e., as opposed to the physiology of gait), such as measurement of forces, 

torques, joint angles, and vertical orientation (i.e., inclination). Surface EMG, which is the approach used 

by actively powered myoelectric upper extremity prostheses, incorporates surface electrodes (often in the 

prosthesis socket) to extract command signals from the muscles in the residual limb. Some researchers 
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have investigated the use of surface EMG control approaches for knee control in a lower limb prosthesis 

(Aeyels et al. 1995, Donath 1974, Myers and Moskowitz 1981, Myers and Moskowitz 1983, Triolo and 

Moskowitz 1982, Aeyels et al. 1992, Peeraer et al. 1990). In the case of an upper extremity above-elbow 

myoelectric prosthesis, the combination of the biceps and triceps EMG provides a single bipolar signal, 

which is switched between the control of the terminal device and control of the elbow (i.e., does not enable 

simultaneous control of both joints). This approach would not be appropriate for an active knee and ankle 

joint leg, however, since locomotion requires simultaneous control of the knee and ankle. As such, an EMG 

approach would require at least two control channels (i.e., measurement from two sets of antagonist 

muscles). Implantable PNS approaches include the use of percutaneous electrodes implanted in the 

nerves, and/or the use of implantable capsules for extraction of the EMG signals, from which neural or 

EMG commands can be extracted. Finally, implantable CNS approaches utilize electrode arrays implanted 

in the cortex of the brain, from which motor commands can also be extracted. Presumably, the extent of 

control over the prosthesis would vary roughly inversely with the extent of invasiveness.  

As with any medical device or procedure, one would optimally wish to incorporate the least invasive 

approach that achieves the desired specific aims, and as such, the proposed controller utilizes the 

non-invasive mechanical sensory interface approach. The lower limb, in particular, lends itself much more 

readily to non-invasive interface approaches than does the upper limb, since (1) the lower limb 

fundamentally interacts mechanically with the environment (i.e., the ground and the user) and (2) the tasks 

in which the lower limb engages are typically periodic in nature. Both of these qualities are leveraged in the 

proposed design. 

The previously cited works on powered knees all incorporate a variation of echo control, in which the 
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sound-side (i.e., unaffected) leg is instrumented to provide position commands (delayed by one half cycle) 

for the powered prosthesis. The obvious drawback to such an approach is that the sound-side (or 

unaffected) leg must be instrumented, which requires the user to don and doff additional equipment and 

associated wiring. The echo control approach also restricts the use of the prosthesis to unilateral 

amputees and also presents a problem for “odd” numbers of steps, in which an echoed step is undesirable. 

A more subtle, although perhaps more significant shortcoming of the echo-type approach is that suitable 

motion tracking requires a high output impedance of the prosthesis, which forces the amputee to react to 

the limb rather than interact with it. Specifically, in order for the prosthesis to dictate the joint trajectory, it 

must assume a high output impedance (i.e., must be stiff), thus precluding any dynamic interaction with the 

user and the environment, which is in turn contrary to the way in which humans interact with their native 

limbs. 

 

5. Decomposition-Based Control 

This work offers an alternative control which employs the non-invasive MSI approach and obviates the 

need for sound side instrumentation. Figure 3-2 shows the structure of the proposed control system for the 

powered prosthesis. In the figure, the feedback loop for each joint incorporates the open loop joint 

dynamics and the decomposed passive impedance behavior, specified by the function ),( θθτ &
pp f= . The 

input to the feedback loop is an active torque component, which is a function of the user input measured by 

the socket load cell and specified by the function )( Saa Ff=τ . 
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Figure 3-2. Structure of the transfemoral prosthesis control system. 

 

One of the most significant aspects of the proposed controller is the inherent passivity of its structure. 

Specifically, because the behavior of the leg is decomposed into an active portion that is superimposed 

upon an underlying passive impedance, and because the active component is a function solely of the 

user’s input, the overall device behavior is guaranteed to be passive. As shown in Figure 3-2, since the 

function )θ(θ &,pf represents a passive mapping from θ  and θ&  to pτ  (by definition of the mapping), and 

since the natural leg dynamics from τ  to θ  and θ&  are also passive, passivity theory guarantees that 

the closed-loop formed by these two mappings is also passive (Slotine 1991). As such, the closed-loop 

portion of the device simply reacts to the user’s input, much the way a state-of-the-art passive prosthesis 

does. The only non-passive (i.e., active) portion of the controller is the component of torque directly 

resulting from the user’s input (i.e., from the socket interaction forces), over which the user has 

instantaneous and direct control  The proposed controller therefore creates a highly stable device over 

which the human has complete and reliable control. Alternatively stated, because of the structure of the 

proposed controller, the prosthesis simply reacts to what the user does to it, and as such will form a natural 

extension of the user. 
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In the remaining part of the paper, the active passive decomposition method will be explained and the 

joint torque reference generation procedure is presented. Finally, simulation results based on measured 

biomechanical data validate the effectiveness of the proposed approach. 

 

6. Active Passive Torque Decomposition 

Passive joint torque, pτ , is defined as the part of the joint torque,τ , which can be represented using 

spring and dashpot constitutional relationships (passive impedance behavior). The system can only store 

or dissipate energy due to this component. The active part can be interpreted as the part which supplies 

energy to the system and the active joint torque is defined as pa τττ −= .  This active part will be 

represented as an algebraic function of the user input via the MSI (i.e socket interface forces and torques).  

Gait can be considered a mainly periodic phenomena with the periods corresponding to the strides. 

Hence, the decomposition of a stride will give the required active and passive torque mappings for a 

specific gait mode. In general, the joint behavior exhibits varying active and passive behavior in each stride. 

Therefore, segmenting of the stride in several parts is necessary. In this case, decomposition of the torque 

over the entire stride period requires the decomposition of the different segments and piecewise 

reconstruction of the entire segment period. In order to maintain passive behavior, however, the segments 

cannot be divided arbitrarily, but rather can only be segmented when the stored energy in the passive 

elastic element is zero.  This requires that the phase space can only be segmented when the joint angle 

begins and ends at the same value. Figure 3-3 shows the phase portrait of normal speed walking and the 

four different stride segments, 321 ,, SSS  and 4S . Thus, the entire decomposition process consists of first 

appropriate segmentation of the joint behavior, followed by the decomposition of each segment into its 
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fundamental passive and active components. 

The decomposition of each segment shown in Figure 3-3 is converted to an optimization problem. In 

each segment of the stride, 2n data points are selected by sampling the angular position in equal intervals 

between its minimum and maximum and selecting the corresponding positive and negative angular 

velocities.  In this work, the number of angular position samples for each segment, n is set to be 100.  

The constrained least squares optimization problem given in (1) is constructed and solved. 

xtsdCx
x

≤− 0..
2
1min 2

2
 (1) 

where C , x and d are defined in (2) and (3) respectively. The indexing of the joint angular position, 

angular velocity and moment  samples are explained via the sketch in Figure 3-4. 
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Figure 3-3. Normal speed walking phase portrait of the knee joint and four stride segments. 
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Figure 3-4. Selection and indexing of data samples from Segment 1. 

 

The matrix C  consists of three sub-matrices, 21 ,CC and 3C . 1C  is the main part responsible for the 

fitting of the spring and dashpot constants, k and b. 2C  bounds the rate of change of the passive joint 

torque and ensures smoothness in the resulting passive joint torque, and 3C is basically a row of penalty 

constants, β , which penalizes large values of the spring and dashpot constants and thus limits the 

magnitudes of both. In this work, β is set to 0.1. 

The origin of each virtual spring is also added to the optimization problem formulation as a parameter in 

order to obtain a tighter passive torque fit. Therefore, the optimization problem given by (2) will be solved 

iteratively for a range of values of spring origin constant, α . The solution with the least error norm is 

selected as the optimal solution.  

The result of the above stated constrained optimization problem for segment 1 is shown in Figure 3-5.  

As can be seen from the figure, the decomposed passive part is very similar to the joint torque, and thus it 
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can be stated that the behavior of the joint is mainly passive. The result of the decomposition for the 

segment iS  is stored in iR of the form given in (4). 

[ ]
6221 nxactSSpasi FFR ττθθ &=  (4) 

xCpas 1=τ   (5) 

  

7. Joint Torque Reference Generation 

The procedure presented in the previous section decomposes the joint torques into active and passive 

parts. The joint torque references for the control of the prosthesis are generated by combining this active 

and passive torques. There are two major challenges to be solved. Firstly, the correct motion segment 

must be selected. Secondly, after the motion segment is selected at each sampling instant a new joint 

torque reference should be generated using the discrete mappings for the active and passive torque parts.  

A switching system modeling approach incorporating both discrete and continuous states is used for the 

reconstruction of the torque reference signal. The state chart shown in Figure 3-6 will govern the discrete 

dynamics of the controller. Since the sequence of the segments is ordered (i.e., the direction of the motion 

for a specific gait mode does not change), each segment can transition only to the next one, where the 

transition guard function can be written as a inequality in terms of θ  and θ& . The transitions between 

segments take no time and the dynamics of the controller are governed by the { })(;),( Siaip Fff θθ &  pair at 

each sampling instant. The joint reference torque is 

)(),( Sapparef Fff
ii

+=+= θθτττ &  (6)



 
 43

-14 -13 -12 -11 -10 -9 -8

2

2.5

3

3.5

S
pr

in
g

 c
on

st
an

t, 
k 

(N
-m

/d
eg

)

Angular position (deg)

-150 -100 -50 0 50
0

0.5

1

1.5

D
as

hp
ot

 
co

ns
ta

nt
, b

 
(N

-m
/d

eg
-s

 )
Angular velocity (deg/s)

0 20 40 60 80 100 120 140 160 180 200
-20

0

20

40

60

80

To
rq

ue
 (N

-m
)

Data points

 

 

Knee torque
Passive Knee Torque
Active Knee Torque

 
Figure 3-5. The output of the decomposition for Segment 1 showing the  spring and dashpot constants and 

the active and passive knee torques (Spring origin, α .is 23 degrees.). 
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Figure 3-6. Structure of the switched control system. 
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The decomposition algorithm presented in this work gives the result matrix, R, for each segment. The 

discrete data in R is used to construct the joint torque reference for the continuous measurements of 

another trial in the same gait mode. At each sampling instant of the algorithm, the measurement vector 

T
mSmSmm FFm ],,,[ _2_1θθ &=  will be acquired. For the reconstruction of the passive knee torque part, the 

Euclidian error norm between the T
mm ][ θθ &  and the angular position and velocities of all the samples in 

that segment T
ii ][ θθ &  is calculated as shown in (7) and stored in the vector e . 

22 )()( imimie θθθθ && −+−=  (7) 

Then two elements of this vector with the least error norm are found and the passive knee torque 

reference is found as a weighted linear combination of the passive knee torques corresponding to these 

points. The reconstruction of the active knee torque part is similar where only  },,{ pasτθθ &  is changed with 

},,{ 21 actSS FF τ . 

 

8. Implementation and Experimental Validation  

In order to generate appropriate kinematic and kinetic data for the design of the controller and for testing 

of the approach, gait experiments were conducted in the Biomechanics and Sports Medicine Laboratory of 

the University of Tennessee at Knoxville. The experimental setup consisted of a 7-camera 240 Hz VICON 

MX system and 2 AMTI multiaxis force platforms. As is standard in such a setup, hip, knee and ankle 

angles were measured via the cameras, the ground reaction force was measured using the multiaxis force 

plates, and the joint torques and forces were computed in post-processing via inverse dynamics, based on 

inertial parameters estimated with lookup tables. The sampling rate for the cameras and the force plates 

were 100 Hz and 1000 Hz, respectively. Data collection consisted of four trials each slow walking (WS), 
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normal walking (WN) and fast walking (WF).  For the slow, normal, and fast walking, the subject was 

asked to walk at those respective rates, while an optical interrupt timing system measured the walking 

speed between the subject’s entrance and exit of the camera viewing volume.  The minimum, maximum 

and average speeds for each class of walking speeds are shown in Table 3-1. The experimental setup and 

the human subject are shown during a measurement trial in Figure 3-7. Figure 3-8 shows the angular 

position, angular velocity and torque of the knee joint for a walking experiment with normal speed. 

 

 

Figure 3-7. Data collection for the demonstration of the proposed approach. 
 

 

TABLE 3-1  
WALKING EXPERIMENT PARAMETERS 

Walking 
Mode 

Minimum 
Speed (m/s) 

Average 
Speed (m/s) 

Maximum 
Speed (m/s) 

Slow 1.01 1.04 1.07 
Normal 1.19 1.22 1.26 

Fast 1.45 1.51 1.56 
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Figure 3-8. The angular position, angular velocity and torque of the knee joint for a walking experiment with 
normal speed. 

 

9. Results and Discussion 

The code for the decomposition algorithm and reconstruction is implemented in Matlab. One stride of the 

normal walking experiment data is decomposed and the result matrix R is acquired. Then using R, the 

knee joint torque reference for another trial of the gait data is represented by the structure shown in Figure 

3-2. Instead of the socket interface forces, the ground reaction force and the hip moment are used.  

The original knee torque and the reconstructed knee torque reference are shown in Figure 3-9(a). As 

can be observed from the figure, the reconstructed knee torque trajectory is a good approximation of the 

original knee torque. Figure 3-9(b) shows the angular velocity versus the knee torque. The loops in the 
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original knee torque versus angular position plot are also present in the reconstructed knee torque 

reference versus angular position plot. This shows that the active passive decomposition preserves the 

energetic behavior of the system. 
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Figure 3-9. Original knee torque and the reconstructed knee torque reference versus time (a) and the 
angular position (b). 
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10. Conclusion 

This paper proposes a method for the control of a powered transfemoral prosthesis.  The approach is 

based on the decomposition of knee torque into 1) a fundamentally passive component, which is an 

algebraic function of joint angle and angular velocity, and 2) an active component, which is an algebraic 

function of the measured forces between the user socket and the prosthesis.  The paper presents a 

method for decomposing measured data into these passive and active algebraic functions, and describes 

a method for generating real-time torque trajectories based on these functions and the measured joint 

angles and angular velocities and interaction forces.  The effectiveness of the approach is demonstrated 

on measured biomechanical data.  Future work will utilize the proposed approach for the real-time control 

of the powered transfemoral prosthesis. 
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CHAPTER IV 

 

THREE AXIS SOCKET LOAD CELL CALIBRATION 

 
 

The proposed control algorithm for the powered prosthesis determines the user intent based on the 

characteristic shape of the force and moment vector of interaction between the user and prosthesis. 

Moreover, the active passive decomposition based control for generating the joint torques uses the force 

and moment vector in order to map the active part of the joint torques. Therefore, the precise 

measurement of the force and moment vector is a very critical task for the control performance of the 

whole powered prosthesis. This force and moment vector is measured by a three axis socket load cell, 

which is stationed just above the knee. It measures the sagittal plane moment, SM , frontal plane moment, 

FM , and the vertical axial load, F , above the knee. Due to the interaction of different forces and 

moments, calibration is necessary in order to make precise measurements. For the calibration of the 

socket load cell, an experimental setup consisting of two orthogonal bars is constructed. The socket load 

cell is at the intersection of the two bars. One of the bars is connected to two pneumatic pistons which can 

exert different forces and moments on a plane to the load cell. The other bar can exert different moments 

and forces to the load cell by changing the weights on the bar (See Figure 4-1). 

 576 measurements ranging from -400N to 1100N for the axial load, -50Nm to 50Nm for the frontal 

plane moment and -120Nm to 120Nm for the sagittal plane moment is done. The analog outputs for the 

three measurement channels are recorded using Matlab/Simulink and data acqusition board. First order 

linear least square fits were fit to the raw data using the standard definition for least squares: 
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Using the calibration data in the linear least squares equation the following matrix results: 
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 The results for the axial load, frontal plane moment and sagittal plane moment are shown in Figure 4-2 

to Figure 4-4, respectively. It is seen that the square root of the mean squared error is 81.6 N for the axial 

load measurement, 3.9 Nm for the sagittal plane moment measurement and 1.9 Nm for the frontal plane 

moment measurement. It is also observed that higher order fits to the raw data does not increase the fitting 

accuracy substantially and it is decided to use the first order linear fitting.  
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Figure 4-1. Three axis socket load cell calibration setup 
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Figure 4-2. Axial force versus Estimated Axial Force 



 
 54

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
Frontal moment vs Estimated frontal moment in [Nm]

 

 

Mf
Mfest

 

Figure 4-3. Frontal moment versus Estimate frontal moment. 
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Figure 4-4. Sagittal plane moment versus estimated sagital plane moment. 
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APPENDIX A 

MATLAB CODES  

1. K-Nearest Neighbor Algorithm Main Script 

%% Robotic Leg Intent Recognizer Design 

% Author: Atakan Varol 
  
% Clean the environment 
clc, clear, close all, warning off 
  
%% Generate the walking data struct for datasets from expriment measurements 
sm_const = 3; 
[mg, n] = create_experiment(sm_const); 
  
%% K-Nearest Neighbor Intent Recognition Code 
  
% Trial dataset name array 
trial_set_list = ['wsl_tr1'; 'wsl_tr2'; 'wsl_tr3'; 'wsl_tr4'; ... % 1  2  3  4 
    'wno_tr1'; 'wno_tr2'; 'wno_tr3'; 'wno_tr4'; ...               % 5  6  7  8 
    'wfa_tr1'; 'wfa_tr2'; 'wfa_tr3'; 'wfa_tr4'; ...               % 9  10 11 12 
    'w2s_tr1'; 'w2s_tr2'; 's2w_tr1'; 's2w_tr2'; 'sta_tr1'];     % 13 14 15 16 17 
  
% Museum Walking Scenario 
trial_sets = [17 15 1 2 5 6 9 10 11 12 7 8 3 4 5 6 1 2 13 17]; 

  
% Create the trial set 
trial_data_lc1 = []; 
trial_data_lc2 = []; 
trial_data_ankpos = []; 
trial_data_knepos = []; 
mode_real = []; 
  
for ind = 1: length(trial_sets) 
    trial_data_lc1 = [ trial_data_lc1; eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.lc1'])]; 
    trial_data_lc2 = [ trial_data_lc2; eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.lc2'])]; 
    trial_data_knepos = [ trial_data_knepos; eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.knepos'])]; 
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    trial_data_ankpos = [ trial_data_ankpos; eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.ankpos'])]; 
  
    % Create the real mode vector 
    if trial_sets(ind) <= 4 
        mode_real = [mode_real; 2*ones(length(eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.lc1'])),1)]; 
    elseif trial_sets(ind) <= 8 
        mode_real = [mode_real; 3*ones(length(eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.lc1'])),1)]; 
    elseif trial_sets(ind) <= 12 
        mode_real = [mode_real; 4*ones(length(eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.lc1'])),1)]; 
    elseif trial_sets(ind) <= 14 
        mode_real = [mode_real; linspace(2,1,length(eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.lc1'])))']; 
    elseif trial_sets(ind) <= 16 
        mode_real = [mode_real; linspace(1,2,length(eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.lc1'])))']; 
    elseif trial_sets(ind) <= 17 
        mode_real = [mode_real; 1*ones(length(eval(['mg.', 

trial_set_list(trial_sets(ind),:), '.lc1'])),1)]; 
    end 
end 
% Normalize the trial data 
trial_data_lc1_norm = smooth(trial_data_lc1/ n.lc1,2); 
trial_data_lc2_norm = smooth(trial_data_lc2/ n.lc2,2); 
trial_data_knepos_norm = smooth(trial_data_knepos/ n.knepos,2); 
trial_data_ankpos_norm = smooth(trial_data_ankpos/ n.ankpos,5); 
  
% Particle filter parameter initialization 
p = 16;                   % # of points in one frame for time based majority voting 
k = 7;                   % # of nearest neighbours 
alpha  = 3;              % threshold level adjustment constant 
cost_norm = 1;           % 1 --> abs norm;  2 --> euclidian norm 
sim_time = length(trial_data_lc1);   % Total simulation time steps 
t = 1;                               % Initial time 
disp_int = 100;                      % interval between data displays 
  
mode_frame = zeros(p,1); 
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%Prepare the data matrix 
mg.dataset_list = ['ws1'; 'ws2';'ws3';  'wn1'; 'wn2';'wn4'; 'wf1'; 'wf2'; 'wf3'; 

'st1']; 
dataset_len = []; 
dataset_lc1_arr = []; dataset_lc2_arr = []; 
dataset_knepos_arr = []; dataset_ankpos_arr = []; 
for t =  1 : length(mg.dataset_list) 
    dataset_len = [dataset_len, eval(['mg.' , mg.dataset_list(t,:),'.len'])]; 
    dataset_lc1_arr = [dataset_lc1_arr; eval(['mg.' , 

mg.dataset_list(t,:),'.lc1_norm'])]; 
    dataset_lc2_arr = [dataset_lc2_arr; eval(['mg.' , 

mg.dataset_list(t,:),'.lc2_norm'])]; 
    dataset_knepos_arr = [dataset_knepos_arr; eval(['mg.' , 

mg.dataset_list(t,:),'.knepos_norm'])]; 
    dataset_ankpos_arr = [dataset_ankpos_arr; eval(['mg.' , 

mg.dataset_list(t,:),'.ankpos_norm'])]; 
end 
  
% KNN Algorithm main loop 
for t = 1:sim_time 
  
    % Cost calculation 
    if cost_norm == 1   % abs norm 
        cost =  abs(trial_data_lc1_norm(t) - dataset_lc1_arr) + ... 
            abs(trial_data_lc2_norm(t) - dataset_lc2_arr) + ... 
            abs(trial_data_knepos_norm(t) - dataset_knepos_arr) + ... 
            abs(trial_data_ankpos_norm(t) - dataset_ankpos_arr); 
    elseif cost_norm == 2 % euclidian norm 
        cost = sqrt(  (trial_data_lc1_norm(t) -dataset_lc1_arr).^2 + ... 
            (trial_data_lc2_norm(t) - dataset_lc2_arr).^2 + ... 
            (trial_data_knepos_norm(t) - dataset_knepos_arr).^2 + ... 
            (trial_data_ankpos_norm(t) -  dataset_ankpos_arr).^2); 
    end 
  
    % Mode estimation for the iteration 
    [cost_val, cost_ind] = sort(cost); 
    mode = zeros(4,1); % 1 --> standing ; 2 --> slow; 3 --> medium; 4 --> fast 
    for ind = 1:k 
        if cost_ind(ind) <= sum(dataset_len(1:3)) 
            mode(2) = mode(2) + 1; 
        elseif cost_ind(ind) <= sum(dataset_len(1:6)) 
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            mode(3) = mode(3) + 1; 
        elseif cost_ind(ind) <= sum(dataset_len(1:9)) 
            mode(4) = mode(4)+ 1; 
        elseif cost_ind(ind) <= sum(dataset_len(1:10)) 
            mode(1) = mode(1) + 1; 
        end 
    end 
    [dum mode_est_plain(t)] = max(mode); 
     
    % Hysteresis 
    if ( t > 1) 
        mode(mode_est_iter(t-1)) = (alpha*mode( mode_est_iter(t-1))); 
    end 
    [dum mode_est_iter(t)] = max(mode);    % Select the mode with the most 

neighbour count 
  
    % Majority vote 
    mode_frame(2:p) = mode_frame(1:p-1); 
    mode_frame(1) = mode_est_iter(t); 
    mode_est_gen(t) = mode_est_iter(t); 
    mode = zeros(4,1); % 1 --> standing ; 2 --> slow; 3 --> medium; 4 --> fast 
    if ( t >= p) 
        for ind = 1:p 
            if  mode_frame(ind) == 1 
                mode(1) = mode(1) + 1; 
            elseif  mode_frame(ind) == 2 
                mode(2) = mode(2) + 1; 
            elseif mode_frame(ind) == 3 
                mode(3) = mode(3) + 1; 
            elseif mode_frame(ind) == 4 
                mode(4) = mode(4) + 1; 
            end 
        end 
        [dum1 dum2] = max(mode);    % Select the dominant mode in the frame 
        mode_est_gen(t) = dum2(1); 
    end 
  
    % Display 
    if (mod(t,disp_int)==0) 
        disp(sprintf('Iteration: %d, Time: %0.5g, Mode: %d',t, t/100, 

mode_est_iter(t))) 
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    end 
end 
  
% Visualization 
figure(1); 
subplot 311, plot((1:sim_time)/100, mode_real, 'k-',(1:sim_time)/100, 

mode_est_plain,'ko') 
title('a) Plain K-NN') 
ylabel('Gait mode') 
axis([0 30.42 0.8 4.2]) 
subplot 312, plot((1:sim_time)/100, mode_real, 'k-',(1:sim_time)/100, 

mode_est_iter,'ko') 
title('b) K-NN with biasing constant') 
ylabel('Gait mode') 
axis([0 30.42 0.8 4.2]) 
subplot 313, plot((1:sim_time)/100, mode_real, 'k-',(1:sim_time)/100, 

mode_est_gen,'ko') 
title('c) K-NN with biasing constant and the time based majority voting') 
ylabel('Gait mode') 
xlabel('time in s') 
axis([0 30.42 0.8 4.2]) 
legend('real mode', 'predicted mode') 
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2. Active-Passive Decomposition Procedure Main Script 

 
%% Robotic Leg Control Design 
Author: Atakan Varol 

 

% Clean the environment 
clc, clear, close all, warning off 
  
%% Generate the walking data struct for datasets from expriment measurements 
sm_const = 3; 
[mg, n] = create_experiment(sm_const); 
  
  
%% Active-passive decomposition method 1 
  
len_data_smooth = 100;  % moving average smoothing filter frame size for knepos, 

knevel and knemom 
epsi = 1e-3;            % very small number 
out_const = 10;         % outlier const 
  
% Get the knepos, knevel and knemom -  interpolate them to 10000 points 
knepos_int = smooth(interp([mg.wn2.knepos(end-10+1:end) ; mg.wn2.knepos; 

mg.wn2.knepos(1:10)] ,100),len_data_smooth); 
knevel_int = smooth(interp([mg.wn2.knevel(end-10+1:end) ; mg.wn2.knevel; 

mg.wn2.knevel(1:10)] ,100),len_data_smooth); 
knemom_int = smooth( interp([mg.wn2.knemom(end-10+1:end) ; mg.wn2.knemom; 

mg.wn2.knemom(1:10)] ,100), len_data_smooth); 
hipmom_int = smooth( interp([mg.wn2.lc2(end-10+1:end) ; mg.wn2.lc2; 

mg.wn2.lc2(1:10)] ,100), 3*len_data_smooth); 
gref_int= smooth( interp([mg.wn2.lc1(end-10+1:end) ; mg.wn2.lc1; 

mg.wn2.lc1(1:10)] ,100), 3*len_data_smooth); 
knevel_int = knevel_int(1001:end-1000); 
knepos_int = knepos_int(1001:end-1000); 
knemom_int = knemom_int(1001:end-1000); 
hipmom_int = hipmom_int(1001:end-1000); 
gref_int= gref_int(1001:end-1000); 
  
% Create first linear programming problem (for the first segment) 
% Segment 1 with -15 degree angular position offset 
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res_norm_hist = []; 
for offset_seg1 = -23 
    ind_seg1 = 1050:3390; 
    knepos_seg1 = knepos_int(ind_seg1);                  % Impose boundary value  
    knepos_seg1_offset = knepos_seg1  - offset_seg1;     % For easier 

optimization formulation 
    knevel_seg1 = knevel_int(ind_seg1); 
    knemom_seg1 = knemom_int(ind_seg1); 
    max_knepos_seg1 = max(knepos_seg1_offset); 
    min_knepos_seg1 = min(knepos_seg1_offset); 
  
    tr_len = 100; 
    knepos_seg1_trial = linspace( max_knepos_seg1, min_knepos_seg1, tr_len); 
    delta = abs(knepos_seg1_trial(2) -  knepos_seg1_trial(1)); 
  
    knemom_lp_seg1 = zeros(2*tr_len+1,1); 
    mat_lp_seg1 = zeros(2*tr_len+1,3*tr_len); 
  
    posind_hist = zeros(tr_len,1); 
    velind_hist = zeros(2*tr_len,1); 
    for t = 1:tr_len 
        [ind1_list] = knepos_seg1_offset > knepos_seg1_trial(t) - delta/2  & ... 
            knepos_seg1_offset < knepos_seg1_trial(t) + delta/2 & ... 
            knevel_seg1 > 0 ; 
        ind1 = find(ind1_list == 1, 1, 'first'); 
        posind_hist(t) = ind1; 
        velind_hist(t) = ind1; 
  
        [ind2_list] = knepos_seg1_offset > knepos_seg1_trial(t) - delta/2  & ... 
            knepos_seg1_offset < knepos_seg1_trial(t) + delta/2 & ... 
            knevel_seg1 < 0; 
        ind2 = find(ind2_list == 1, 1, 'last'); 
        velind_hist(2*tr_len + 1 - t) = ind2; 
    end 
    posind_hist = posind_hist(end:-1:1); 
    velind_hist = velind_hist(end:-1:1); 
    knemom_lp_seg1 = [ knemom_seg1(velind_hist); ... 
        knemom_seg1(velind_hist(1:end-1)) -  knemom_seg1(velind_hist(2:end)) ;   

0]; 
    mat_lp_seg1 = [ [ diag(knepos_seg1_offset(posind_hist)); 

diag(knepos_seg1_offset(posind_hist(end:-1:1))) ], ... 
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        diag(knevel_seg1(velind_hist))]; 
    mat_lp_seg1 = [mat_lp_seg1 ; [ mat_lp_seg1(1:end-1,:) -  

mat_lp_seg1(2:end,:)]]; 
    mat_lp_seg1 = [mat_lp_seg1 ; 0.2*ones(1,300)]; 
    options = optimset('MaxIter', 2e3); 
    [kb_list_seg1 res_norm res eflag] = lsqlin(mat_lp_seg1, knemom_lp_seg1, [], 

[],[],[],zeros(300,1),100*ones(300,1),[],options) ; 
    kb_list_seg1(kb_list_seg1 < epsi) = 0; 
    k_seg1 = kb_list_seg1(1:100); 
    b_seg1 = kb_list_seg1(101:300); 
    knemom_fit_seg1  = mat_lp_seg1(1:end-2*tr_len,:)*kb_list_seg1(1:end); 
  
    res_norm_hist = [res_norm_hist res_norm]; 
end 
[val, ind ] = min(res_norm_hist) 
indlist_gen = []; 
indlist_gen = [indlist_gen ; (1049 + velind_hist)]; 
indlist_seg1 = 1049+velind_hist; 
  
figure(1), 
subplot 311, plot(knepos_seg1(posind_hist), k_seg1, 'r.-'), 
ylabel('Spring constant, k'), 
xlabel('Angular position (deg)'), axis tight, grid on 
subplot 312, plot(knevel_seg1(velind_hist), b_seg1, 'r.-'), 
ylabel('Dashpot constant, k'), 
xlabel('Angular position (deg)'), axis tight, grid on 
subplot 313, plot(1:length(knemom_lp_seg1)-2*tr_len, 

knemom_lp_seg1(1:end-2*tr_len) , 'r.',... 
    1:length(knemom_lp_seg1)-2*tr_len, knemom_fit_seg1, 'g.','LineWidth',2), 

grid on 
  
% Create the second linear programming problem (for the second segment) 
% Segment 2 with -15 degree angular position offset 
res_norm_hist = []; 
for offset_seg2 = -23 
    ind_seg2 = 3391:6830; 
    knepos_seg2 = knepos_int(ind_seg2);          % Impose boundary value    

knepos_seg2_offset = knepos_seg2  - offset_seg2; % For easier optimization 

formulation 
    knevel_seg2 = knevel_int(ind_seg2); 
    knemom_seg2 = knemom_int(ind_seg2); 
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    max_knepos_seg2 = max(knepos_seg2_offset); 
    min_knepos_seg2 = min(knepos_seg2_offset); 
  
    tr_len = 100; 
    knepos_seg2_trial = linspace( min_knepos_seg2, max_knepos_seg2, tr_len); 
    delta = abs(knepos_seg2_trial(2) -  knepos_seg2_trial(1)); 
  
    knemom_lp_seg2 = zeros(2*tr_len+1,1); 
    mat_lp_seg2 = zeros(2*tr_len+1,3*tr_len); 
  
    posind_hist = zeros(tr_len,1); 
    velind_hist = zeros(2*tr_len,1); 
    for t = 1:tr_len 
        [ind1_list] = knepos_seg2_offset > knepos_seg2_trial(t) - delta/2  & ... 
            knepos_seg2_offset < knepos_seg2_trial(t) + delta/2 & ... 
            knevel_seg2 > 0 ; 
        ind1 = find(ind1_list == 1, 1, 'first'); 
        posind_hist(t) = ind1; 
        velind_hist(t) = ind1; 
  
        [ind2_list] = knepos_seg2_offset > knepos_seg2_trial(t) - delta/2  & ... 
            knepos_seg2_offset < knepos_seg2_trial(t) + delta/2 & ... 
            knevel_seg2 < 0; 
        ind2 = find(ind2_list == 1, 1, 'last'); 
        velind_hist(2*tr_len + 1 - t) = ind2; 
    end 
    knemom_lp_seg2 = [ knemom_seg2(velind_hist); ... 
        knemom_seg2(velind_hist(1:end-1)) -  knemom_seg2(velind_hist(2:end)) ;   

0]; 
    mat_lp_seg2 = [ [ diag(knepos_seg2_offset(posind_hist)); 

diag(knepos_seg2_offset(posind_hist(end:-1:1))) ], ... 
        diag(knevel_seg2(velind_hist))]; 
    mat_lp_seg2 = [mat_lp_seg2 ; [ mat_lp_seg2(1:end-1,:) -  

mat_lp_seg2(2:end,:)]]; 
    mat_lp_seg2 = [mat_lp_seg2 ; 0.1*ones(1,300)]; 
    options = optimset('MaxIter', 2e3); 
    [kb_list_seg2 res_norm res eflag] = lsqlin(mat_lp_seg2, knemom_lp_seg2, [], 

[],[],[],zeros(300,1),100*ones(300,1),[],options) ; 
    kb_list_seg2(kb_list_seg2 < epsi) = 0; 
    k_seg2 = kb_list_seg2(1:100); 
    b_seg2 = kb_list_seg2(101:300); 
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    knemom_fit_seg2  = mat_lp_seg2(1:end-2*tr_len,:)*kb_list_seg2(1:end); 
  
    res_norm_hist = [res_norm_hist res_norm]; 
end 
[val, ind ] = min(res_norm_hist) 
indlist_gen = [indlist_gen ; (3390 + velind_hist)]; 
indlist_seg2 = 3390+velind_hist; 
  
figure(2), 
subplot 311, plot(knepos_seg2(posind_hist), k_seg2, 'r.-'), title('Segment2 

spring values'), axis tight, grid on 
subplot 312, plot(knevel_seg2(velind_hist), b_seg2, 'r.-'), title('Segment2 

dashpot values1'), axis tight, grid on 
subplot 313, plot(1:length(knemom_lp_seg2)-2*tr_len, 

knemom_lp_seg2(1:end-2*tr_len) , 'r.',... 
    1:length(knemom_lp_seg2)-2*tr_len, knemom_fit_seg2, 'g.','LineWidth',2), 

grid on 
  
 % Create the third linear programming problem (for the third segment) 
% Segment 3 with -15 degree angular position offset 
  
res_norm_hist = []; 
% for offset_seg3 = -25:0 
for offset_seg3 = -23 
    ind_seg3 =  6831:12614; 
    knepos_seg3 = knepos_int(ind_seg3);                  % Impose boundary value 

- just for computational purposes 
    knepos_seg3_offset = knepos_seg3  - offset_seg3;       % For easier 

optimization formulation 
    knevel_seg3 = knevel_int(ind_seg3); 
    knemom_seg3 = knemom_int(ind_seg3); 
    max_knepos_seg3 = max(knepos_seg3_offset); 
    min_knepos_seg3 = min(knepos_seg3_offset); 
  
    tr_len = 100; 
    knepos_seg3_trial = linspace( max_knepos_seg3, min_knepos_seg3, tr_len); 
    delta = abs(knepos_seg3_trial(2) -  knepos_seg3_trial(1)); 
  
    knemom_lp_seg3 = zeros(2*tr_len+1,1); 
    mat_lp_seg3 = zeros(2*tr_len+1,3*tr_len); 
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    posind_hist = zeros(tr_len,1); 
    velind_hist = zeros(2*tr_len,1); 
    for t = 1:tr_len 
        [ind1_list] = knepos_seg3_offset > knepos_seg3_trial(t) - delta/2  & ... 
            knepos_seg3_offset < knepos_seg3_trial(t) + delta/2 & ... 
            knevel_seg3 > 0 ; 
        ind1 = find(ind1_list == 1, 1, 'first'); 
        posind_hist(t) = ind1; 
        velind_hist(t) = ind1; 
  
        [ind2_list] = knepos_seg3_offset > knepos_seg3_trial(t) - delta/2  & ... 
            knepos_seg3_offset < knepos_seg3_trial(t) + delta/2 & ... 
            knevel_seg3 < 0; 
        ind2 = find(ind2_list == 1, 1, 'last'); 
        velind_hist(2*tr_len + 1 - t) = ind2; 
    end 
    posind_hist = posind_hist(end:-1:1); 
    velind_hist = velind_hist(end:-1:1); 
    knemom_lp_seg3 = [ knemom_seg3(velind_hist); ... 
        knemom_seg3(velind_hist(1:end-1)) -  knemom_seg3(velind_hist(2:end)) ;   

0]; 
    mat_lp_seg3 = [ [ diag(knepos_seg3_offset(posind_hist)); 

diag(knepos_seg3_offset(posind_hist(end:-1:1))) ], ... 
        diag(knevel_seg3(velind_hist))]; 
    mat_lp_seg3 = [mat_lp_seg3 ; [ mat_lp_seg3(1:end-1,:) -  

mat_lp_seg3(2:end,:)]]; 
    mat_lp_seg3 = [mat_lp_seg3 ; 0.2*ones(1,300)]; 
    options = optimset('MaxIter', 5e3); 
    [kb_list_seg3 res_norm res eflag] = lsqlin(mat_lp_seg3, knemom_lp_seg3, [], 

[],[],[],zeros(300,1),100*ones(300,1),[],options) ; 
    kb_list_seg3(kb_list_seg3 < epsi) = 0; 
    k_seg3 = kb_list_seg3(1:100); 
    b_seg3 = kb_list_seg3(101:300); 
    knemom_fit_seg3  = mat_lp_seg3(1:end-2*tr_len,:)*kb_list_seg3(1:end); 
  
    res_norm_hist = [res_norm_hist res_norm]; 
end 
  
[val, ind ] = min(res_norm_hist) 
indlist_gen = [indlist_gen ; (6830 + velind_hist)]; 
indlist_seg3= 6830 + velind_hist; 
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figure(3), 
subplot 311, plot(knepos_seg3(posind_hist), k_seg3, 'r.-'), title('Segment3 

spring values'), axis tight, grid on 
subplot 312, plot(knevel_seg3(velind_hist), b_seg3, 'r.-'), title('Segment3 

dashpot values1'), axis tight, grid on 
subplot 313, plot(1:length(knemom_lp_seg3)-2*tr_len, 

knemom_lp_seg3(1:end-2*tr_len) , 'r.',... 
    1:length(knemom_lp_seg3)-2*tr_len, knemom_fit_seg3, 'g.','LineWidth',2), 

grid on 
  
% Create the fourth linear programming problem (for the fourth segment) 
  
% Segment 4 with -15 degree angular position offset 
  
res_norm_hist = []; 
% for offset_seg4 = -25:0 
for offset_seg4 = 20 
    ind_seg4 = [12615:length(knepos_int) , 1:1050]; 
    knepos_seg4 = knepos_int(ind_seg4);                  % Impose boundary value 

- just for computational purposes 
    knepos_seg4_offset = knepos_seg4  - offset_seg4;       % For easier 

optimization formulation 
    knevel_seg4 = knevel_int(ind_seg4); 
    knemom_seg4 = knemom_int(ind_seg4); 
    max_knepos_seg4 = max(knepos_seg4_offset); 
    min_knepos_seg4 = min(knepos_seg4_offset); 
  
    tr_len = 100; 
    knepos_seg4_trial = linspace( min_knepos_seg4, max_knepos_seg4, tr_len); 
    delta = abs(knepos_seg4_trial(2) -  knepos_seg4_trial(1)); 
  
    knemom_lp_seg4 = zeros(2*tr_len+1,1); 
    mat_lp_seg4 = zeros(2*tr_len+1,3*tr_len); 
  
    posind_hist = zeros(tr_len,1); 
    velind_hist = zeros(2*tr_len,1); 
    for t = 1:tr_len 
        [ind1_list] = knepos_seg4_offset > knepos_seg4_trial(t) - delta/2  & ... 
            knepos_seg4_offset < knepos_seg4_trial(t) + delta/2 & ... 
            knevel_seg4 > 0 ; 
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        ind1 = find(ind1_list == 1, 1, 'first'); 
        posind_hist(t) = ind1; 
        velind_hist(t) = ind1; 
  
        [ind2_list] = knepos_seg4_offset > knepos_seg4_trial(t) - delta/2  & ... 
            knepos_seg4_offset < knepos_seg4_trial(t) + delta/2 & ... 
            knevel_seg4 < 0; 
        ind2 = find(ind2_list == 1, 1, 'last'); 
        velind_hist(2*tr_len + 1 - t) = ind2; 
    end 
    knemom_lp_seg4 = [ knemom_seg4(velind_hist); ... 
        knemom_seg4(velind_hist(1:end-1)) -  knemom_seg4(velind_hist(2:end)) ;   

0]; 
    mat_lp_seg4 = [ [ diag(knepos_seg4_offset(posind_hist)); 

diag(knepos_seg4_offset(posind_hist)) ], ... 
        diag(knevel_seg4(velind_hist))]; 
    mat_lp_seg4 = [mat_lp_seg4 ; [ mat_lp_seg4(1:end-1,:) -  

mat_lp_seg4(2:end,:)]]; 
    mat_lp_seg4 = [mat_lp_seg4 ; 0.2*ones(1,300)]; 
    options = optimset('MaxIter', 2e3); 
    [kb_list_seg4 res_norm res eflag] = lsqlin(mat_lp_seg4, knemom_lp_seg4, [], 

[],[],[],zeros(300,1),100*ones(300,1),[],options) ; 
    kb_list_seg4(kb_list_seg4 < epsi) = 0; 
    k_seg4 = kb_list_seg4(1:100); 
    b_seg4 = kb_list_seg4(101:300); 
    knemom_fit_seg4  = mat_lp_seg4(1:end-2*tr_len,:)*kb_list_seg4(1:end); 
  
    res_norm_hist = [res_norm_hist res_norm]; 
end 
  
[val, ind ] = min(res_norm_hist) 
indlist_gen = [indlist_gen ; (12615 + velind_hist)]; 
indlist_seg4 = mod(12615 + velind_hist, length(knemom_int)); 
  
  
figure(4), 
subplot 311, plot(knepos_seg4(posind_hist), k_seg4, 'r.-'), title('Segment4 

spring values'), axis tight, grid on 
subplot 312, plot(knevel_seg4(velind_hist), b_seg4, 'r.-'), title('Segment4 

dashpot values1'), axis tight, grid on 
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subplot 313, plot(1:length(knemom_lp_seg4)-2*tr_len, 

knemom_lp_seg4(1:end-2*tr_len) , 'r.',... 
    1:length(knemom_lp_seg4)-2*tr_len, knemom_fit_seg4, 'g.','LineWidth',2), 

grid on 
  
  
start = indlist_gen(indlist_gen > length(knepos_int)) -length(knepos_int) ; 
indlist_gen = [start; indlist_gen(1:end-length(start))]; 
knemom_pas_raw = [knemom_fit_seg1(1:200)' knemom_fit_seg2(1:200)' 

knemom_fit_seg3(1:200)' knemom_fit_seg4(1:200)']; 
% Smooth 
sim('calc_active'); 
knemom_pas = smooth([knemom_pas(end-1000+1:end)' ;knemom_pas'; 

knemom_pas(1:1000)'] ,400);  
knemom_pas = knemom_pas(1001:end-1000);  
knemom_act = smooth(knemom_int - knemom_pas,400) 
  
  
% Plot the segments 
figure(5); cla 
hold on 
plot(knepos_seg1, knevel_seg1,'r.', 'Linewidth',2) 
plot(knepos_seg2, knevel_seg2,'g.', 'Linewidth',2) 
plot(knepos_seg3, knevel_seg3,'b.', 'Linewidth',2) 
plot(knepos_seg4, knevel_seg4,'m.', 'Linewidth',2) 
hold off; grid on; axis square 
legend('Segment 1', 'Segment 2' ,'Segment 3', 'Segment 4' ,'Location', 

'BestOutside') 
xlabel('Angular position (deg)') 
ylabel('Angular velocity (deg/s)') 
  
% Plot the experiment data 
figure(6); cla 
subplot 311, plot(0.01*((1:length(mg.wn2.knepos))-1),mg.wn2.knepos,'k', 

'Linewidth',2) 
ylabel('Angular position (deg)'), grid on , axis([0 1.37 1.1*min(mg.wn2.knepos) 

1.1*max(mg.wn2.knepos)]) 
subplot 312, plot(0.01*((1:length(mg.wn2.knepos))-1),mg.wn2.knevel,'k', 

'Linewidth',2) 
ylabel('Angular velocity (deg/s)'), grid on, axis([0 1.37 1.1*min(mg.wn2.knevel) 

1.1*max(mg.wn2.knevel)]) 
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subplot 313, plot(0.01*((1:length(mg.wn2.knepos))-1),mg.wn2.knemom,'k', 

'Linewidth',2) 
ylabel('Torque (N-m)') , xlabel('time (s)'), grid on, axis([0 1.37 

1.1*min(mg.wn2.knemom) 1.1*max(mg.wn2.knemom)]) 
  
% Reconstruct 
  
% Get the knepos, knevel and knemom -  interpolate them to 10000 points for 
% another walking scenario 
knepos_int_tr = smooth(interp([mg.wn4.knepos(end-10+1:end) ; mg.wn4.knepos; 

mg.wn4.knepos(1:10)] ,100),len_data_smooth); 
knevel_int_tr = smooth(interp([mg.wn4.knevel(end-10+1:end) ; mg.wn4.knevel; 

mg.wn4.knevel(1:10)] ,100),len_data_smooth); 
knemom_int_tr = smooth( interp([mg.wn4.knemom(end-10+1:end) ; mg.wn4.knemom; 

mg.wn4.knemom(1:10)] ,100), len_data_smooth); 
hipmom_int_tr = smooth( interp([mg.wn4.lc2(end-10+1:end) ; mg.wn4.lc2; 

mg.wn4.lc2(1:10)] ,100), 3*len_data_smooth); 
gref_int_tr= smooth( interp([mg.wn4.lc1(end-10+1:end) ; mg.wn4.lc1; 

mg.wn4.lc1(1:10)] ,100), 3*len_data_smooth); 
knevel_int_tr = knevel_int_tr(1001:end-1000); 
knepos_int_tr = knepos_int_tr(1001:end-1000); 
knemom_int_tr = knemom_int_tr(1001:end-1000); 
hipmom_int_tr = hipmom_int_tr(1001:end-1000); 
gref_int_tr = gref_int_tr(1001:end-1000); 
  
sim('decomp_reconstruct') 
% smooth knemom_ref 
knemom_ref = smooth(knemom_ref(:,2), 5); 
plot(knepos_int_tr(1:10:end), knemom_int_tr(1:10:end),'g-', ... 
     knepos_int_tr(1:10:end), knemom_ref(1:end-1),'r-','LineWidth',2) 
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3. Three Axis Socket Load Cell Calibration Script 

%% Three Axis Socket Load Cell Calibartion Script 
% Author: Atakan Varol  
 
close all 
clear  
clc 
  
load('exp_meas_nlc.mat'); 
% exp_meas2 contains the followin columns: 
% mom_sagittal mom_frontal force meas_val1 meas_val2 meas_val3 
data(:,6) = data(:,6) - 1.5; 
  
%% Sagittal moment fit 
  
v1 = data(:,5); 
v2 = data(:,6); 
v3 = data(:,7); 
Ms = data(:,2); 
  
A = [ v1.^0 v1.^1 v2.^1 v3.^1]; 
  
x_Ms = pinv(A)*Ms; 
Ms_est = A*x_Ms; 
figure(1); 
subplot 311; plot(1:length(Ms),Ms,'r.',1:length(Ms),Ms_est,'g.') ; title('Ms') 
subplot 312; plot(1:length(Ms),Ms_est,'r.') ; title('Ms estimated') 
subplot 313; plot(1:length(Ms),Ms-Ms_est,'r.') ; title('Ms-Ms estimated') 
figure(2);   plot(Ms, Ms_est,'r.' ,-130:130,-130:130,'g-','LineWidth', 2) ; 

title('Ms vs Ms estimated'),axis square; grid on 
figure(3); bar(x_Ms) 
sqmav_Ms = sqrt(mean((Ms - Ms_est).^2)) 
  
%% Frontal moment fit 
  
v1 = data(:,5); 
v2 = data(:,6); 
v3 = data(:,7); 
Mf = data(:,3); 
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A = [ v1.^0 v1.^1 v2.^1 v3.^1]; 
  
x_Mf = pinv(A)*Mf; 
Mf_est = A*x_Mf; 
figure(4); 
subplot 311; plot(1:length(Mf),Mf,'r.',1:length(Mf),Mf_est,'g.') ; title('Mf') 
subplot 312; plot(1:length(Mf),Mf_est,'r.') ; title('Mf estimated') 
subplot 313; plot(1:length(Mf),Mf-Mf_est,'r.') ; title('Mf-Mf estimated') 
figure(5);   plot(Mf, Mf_est,'r.' ,-130:130,-130:130,'g-','LineWidth', 2) ; 

title('Mf vs Mf estimated'),axis square; grid on 
figure(6); bar(x_Mf) 
sqmav_Mf = sqrt(mean((Mf - Mf_est).^2)) 
  
%% Ground Reaction force fit 
  
v1 = data(:,5); 
v2 = data(:,6); 
v3 = data(:,7); 
F = data(:,4); 
  
A = [ v1.^0  v2.^1  ]; 
  
x_f = pinv(A)*F; 
F_est = A*x_f; 
figure(7); 
subplot 311; plot(1:length(F),F,'r.',1:length(F),F_est,'g.') ; title('F') 
subplot 312; plot(1:length(F),F_est,'r.') ; title('F estimated') 
subplot 313; plot(1:length(F),F-F_est,'r.') ; title('F-F estimated') 
figure(8);   plot(F, F_est,'r.' ,-500:1200,-500:1200,'g-','LineWidth', 2) ; 

title('F vs F estimated'),axis square; grid on 
figure(9); bar(x_f) 
sqmav_F = sqrt(mean((F - F_est).^2)) 
  
figure(10) 
[v1m,v2m] = meshgrid(-10 : 0.1 : 10, -10 : 0.1 : 10); 
  
res = x_f(1)*1 + x_f(2)*v1m + x_f(3)*v1m.^2 + x_f(4)*v2m + x_f(5)*v2m.^2; 
mesh(v1m, v2m, res) 
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APPENDIX B 

SIMULINK MODELS  

 
Figure B-1. Active/Passive Torque Decomposition Procedure Torque Reconstruction Main Simulink 

Block Diagram 



 
 73

 
Figure B-2. Joint Torque Reconstructor for the Reconstruction Simulink Block of the Active/Passive 

Torque Decomposition Procedure. 
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Figure B-3. Mode Selector for the Reconstruction Simulink Block of the Active/Passive Torque 
Decomposition Procedure. 

 


