
STUDY OF TITANIUM DIOXIDE NANOPARTICLES 

VIA MOLECULAR DYNAMICS SIMULATIONS 

 

By 

 

Vishal Nitinchandra Koparde 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Chemical Engineering 

August, 2006 

Nashville, Tennessee 

Approved:  

Professor Peter T. Cummings  

Professor M. Douglas LeVan  

Professor Bridget R. Rogers  

Professor G. Kane Jennings  

Professor Sandra J. Rosenthal 



 

 

 

 

 

 

 

 

 

 

© Copyright by 

Vishal N. Koparde 

2006 

 

 

 

 

 

 

 

 

 

 



 iii 

DEDICATIONS 

 

 

 

 

 

 

 

 

 

 Dedicated to my mother, Mrs. Shubhangi N. Koparde, 

my Father, Mr. Nitinchandra D. Koparde, 

and my wife, Prajakta. 



 iv 

ACKNOWLEDGEMENTS 

 

I take this opportunity to express my gratitude and special thanks to my doctoral advisor, 

Dr. Peter T. Cummings, whose guidance and support has been very helpful during this 

research. His technical expertise along with his humor and enthusiasm has made working 

with him extremely enjoyable and memorable. I sincerely thank all my other committee 

members: Dr. Douglas LeVan, Dr. Bridger Rogers, Dr. Kane Jennings and Dr. Sandra 

Rosenthal for their support. I would like to thank Dr. Pavanandan Naicker and Dr. Jose 

Rivera-Rojas for their helpful conversation during the early stages of my doctoral work. I 

thank the current and past members of the Cummings Research Group that I may have 

interacted with. I thank the Chemical Engineering Department staff for all their help 

during my stay at the Vanderbilt University. 

 Most of all, I thank my parents for always encouraging me to pursue my dreams. I 

would like to thank my wife, Prajakta, for believing in me and filling my life with love 

and joy. I would also like to thank all my friends who have always been there for me and 

helped me get through tough times. 

 Finally, last but not the least, I would like to acknowledge the financial support 

from National Science Foundation and the following computational centers for computer 

time: 

(a) National Energy Research Scientific Computer Center 

(b) Center of Computational Sciences – Oak Ridge National Laboratory 

(c) Advanced Computing Center for Research and Education – Vanderbilt University. 



 v 

TABLE OF CONTENTS 

 

               Page 

COPYRIGHT ................................................................................................................. ii 

DEDICATIONS ............................................................................................................ iii 

ACKNOWLEDGEMENTS ........................................................................................... iv 

LIST OF FIGURES ..................................................................................................... viii 

LIST OF TABLES....................................................................................................... xiii 

Chapter 

I. INTRODUCTION....................................................................................................... 1 

I.1 Titanium Dioxide................................................................................................... 2 
I.1.1 Crystal Structure ............................................................................................. 3 
I.1.2 Manufacture of nano-TiO2............................................................................... 6 

I.2 Overview of Dissertation ....................................................................................... 9 

II. SIMULATION METHODOLOGY.......................................................................... 11 

II.1 Background ........................................................................................................ 11 
II.2 Newton’s equations of motion ............................................................................ 12 

I.2.1 Forcefield for TiO2 ........................................................................................ 13 

III. SINTERING OF TiO2 NANOPARTICLES ............................................................ 17 

III.1 Introduction....................................................................................................... 17 
III.2 Simulation Details ............................................................................................. 22 

III.2.1 Forcefield Selection.................................................................................... 22 
III.2.2 Simulation Method ..................................................................................... 22 

III.3 Results and Discussion ...................................................................................... 26 
III.3.1 Characterization of TiO2 nanoparticles........................................................ 26 
III.3.2 Sintering Simulations.................................................................................. 31 
III.3.3 Shrinkage, Neck Diameter and Number of Ions in the Neck Region............ 38 
III.3.4 Dependence on Particle Orientation............................................................ 44 
III.3.5 Dipole-dipole Interaction............................................................................ 48 
III.3.6 Relative Displacements of Ions in the Neck and Core Regions.................... 51 

III.4 Conclusions....................................................................................................... 55 

IV. SINTERING OF TiO2 NANOPARTICLES: COMPARISON WITH 
PHENOMENOLOGICAL MODELS ........................................................................... 57 



 vi 

IV.1 Introduction ...................................................................................................... 57 
IV.2 Melting point of TiO2 nanoparticles................................................................... 61 

IV.2.1 Simulation Details ...................................................................................... 61 
IV.2.2 Simulated X-ray Diffraction ....................................................................... 62 
IV.2.3 Pair Correlation Function ........................................................................... 65 
IV.2.4 Diffusivity.................................................................................................. 68 
IV.2.5 Lindemann Index........................................................................................ 70 

IV.3 Model Development.......................................................................................... 76 
IV.3.1 Surface Area Calculation............................................................................ 81 
IV.3.2 Model Predictions ...................................................................................... 84 

IV.4 Conclusions ...................................................................................................... 89 

V. WATER ADSORPTION ON TiO2 NANOPARTICLE SURFACE.......................... 91 

V.1 Introduction........................................................................................................ 91 
V.2 Simulation Details .............................................................................................. 93 

V.2.1 Forcefield Selection..................................................................................... 93 
V.2.2 Simulation Method ...................................................................................... 96 

V.3 Results and Discussion ....................................................................................... 98 
V.3.1 X-ray Diffraction Patterns............................................................................ 98 
V.3.2 Coordination Number Distributions ............................................................. 98 
V.3.3 Density profiles ......................................................................................... 105 
V.3.4 Water Coverage......................................................................................... 112 
V.3.5 Water Residence Time............................................................................... 114 
V.3.6 Water Orientation Distributions ................................................................. 117 
V.3.7 Bivariate Plots ........................................................................................... 124 

V.4 Conclusions...................................................................................................... 131 

VI. PHASE TRANSFORMATIONS DURING TiO2 NANOPARTICLE 
SINTERING................................................................................................................132 

VI.1 Introduction .................................................................................................... 132 
VI.2.1 Insight from Prior Simulations.................................................................. 137 

VI.2 Simulation Details........................................................................................... 140 
VI.2.1 Forcefield Selection.................................................................................. 140 
VI.2.2 Methodology ............................................................................................ 140 

VI.3 Results and Discussion.................................................................................... 142 
VI.3.1 Anatase + Rutile....................................................................................... 142 
VI.3.2 Rutile + Amorphous ................................................................................. 142 
VI.3.3 Anatase + Amorphous + Rutile................................................................. 143 
VI.3.4 Anatase + Amorphous .............................................................................. 144 
VI.3.5 Lower Temperature Simulations............................................................... 145 

VI.4 Conclusions .................................................................................................... 156 

VII. SUMMARY AND FUTURE WORK ...................................................................158 

VII.1 Summary ....................................................................................................... 158 



 vii 

VII.2 Possible Directions for Future Work .............................................................. 159 

Appendix 

A. DETERMINATION OF SIMULATED X-RAY DIFFRACTION DATA ...............161 

BIBLIOGRAPHY........................................................................................................163 

 



 viii 

LIST OF FIGURES 

 

               Page 

Figure I.1 Typical titania dry synthesis flame. ................................................................. 8 

Figure III.1 Snapshots of 3 nm rutile nanoparticle (a) Before equilibration 
and (b) After equilibration at 1473 K. Note the different orientations 
in (a) and (b). ........................................................................................................ 25 

Figure III.2 Simulated XRD patterns of 3 nm TiO2 nanoparticles at 573 K, 
973 K and 1473 K. ................................................................................................ 28 

Figure III.3 Ti coordination number along the radius of 3 nm anatase and 
rutile particles. ...................................................................................................... 30 

Figure III.4 Snapshots of a typical sintering simulation ................................................. 32 

Figure III.5 Temperature and configurational energy variation with time 
for 3 nm anatase sintering with initial temperatures of (a) 573 K, (b) 
973 K and (c) 1473 K............................................................................................ 35 

Figure III.6 Temperature and configurational energy variation with time 
for 3 nm rutile sintering with initial temperatures of (a) 573 K, (b) 
973 K and (c) 1473 K............................................................................................ 36 

Figure III.7 Temperature and configurational energy variation with time 
for 4 nm sintering with initial temperatures of (a) 573 K (anatase), (b) 
573 K (rutile) and (c) 973 K (rutile)....................................................................... 37 

Figure III.8 Shrinkage for (a) 3 nm anatase, (b) 3 nm rutile and (c) 4 nm 
particles. The indicated temperatures are the starting temperatures. ....................... 39 

Figure III.9 Neck Diameter for (a) 3 nm anatase, (b) 3 nm rutile and (c) 4 
nm particles. The indicated temperatures are the starting 
temperatures.......................................................................................................... 42 

Figure III.10 Number of ions in the neck region vs time for sintering 
anatase and rutile nanoparticles with different starting temperatures 
indicated in parentheses......................................................................................... 43 

Figure III.11 (a) Shrinkage, (b) Neck diameter and (c) Number of ions in 
the neck region for 3 nm anatase sintering simulations at various 
crystallographic orientations.................................................................................. 46 



 ix 

Figure III.12 (a) Temperature and (b) Configurational energy profiles of 3 
nm anatase sintering at various orientations........................................................... 47 

Figure III.13 Variation of dipole-dipole interaction of the nanoparticles at 
various initial orientations ..................................................................................... 50 

Figure III.14 Relative mobilities of Ti ions in the core and neck regions for 
a 3 nm anatase sintering simulation with initial temperatures of 573 
K, 973 K and 1473 K ............................................................................................ 53 

Figure III.15 Relative mobilities of Ti ions in the core and neck regions for 
a 3 nm rutile sintering simulation with initial temperatures of 573 K, 
973 K and 1473 K ................................................................................................. 54 

Figure IV.1 Melting point depression observed for gold particles.................................. 60 

Figure IV.2 X-ray diffraction patterns of 2.5 nm (a) anatase and (b) rutile 
nanoparticles with increasing temperature. ............................................................ 63 

Figure IV.3 X-ray diffraction patterns of 3.0 nm (a) anatase and (b) rutile 
nanoparticles with increasing temperature. ............................................................ 63 

Figure IV.4 X-ray diffraction patterns of 3.5 nm (a) anatase and (b) rutile 
nanoparticles with increasing temperature. ............................................................ 64 

Figure IV.5 X-ray diffraction patterns of 4.0 nm (a) anatase and (b) rutile 
nanoparticles with increasing temperature. ............................................................ 64 

Figure IV.6 g(Ti-Ti) for 2.5 nm (a) anatase and (b) rutile nanoparticles 
with increasing temperature................................................................................... 66 

Figure IV.7 g(Ti-Ti) for 3.0 nm (a) anatase and (b) rutile nanoparticles 
with increasing temperature................................................................................... 66 

Figure IV.8 g(Ti-Ti) for 3.5 nm (a) anatase and (b) rutile nanoparticles 
with increasing temperature................................................................................... 67 

Figure IV.9 g(Ti-Ti) for 4.0 nm (a) anatase and (b) rutile nanoparticles 
with increasing temperature................................................................................... 67 

Figure IV.10 Ionic diffusivities of Ti and O ions in (a) 2.5 nm, (b) 3.0 nm, 
(c) 3.5 nm and (d) 4.0 nm anatase and rutile nanoparticles over 
various temperatures. ............................................................................................ 69 

Figure IV.11 Lindemann Incides for (a) 2.5 nm, (b) 3.0 nm, (c) 3.5 nm and 
(d) 4.0 nm anatase and rutile nanoparticles ............................................................ 72 



 x 

Figure IV.12 Melting point of anatase and rutile nanoparticle calculated 
using Buffat-Borel (BB) model and molecular dynamics (MD) 
simulations. ........................................................................................................... 75 

Figure IV.13 Model solution for 3 nm anatase and rutile nanoparticles at 
(a) 573 K, (b) 973 K, and (c) 1473 K..................................................................... 80 

Figure IV.14 Surface area and Total volume of 3 nm anatase and rutile 
nanoparticles undergoing sintering at various starting temperatures 
calculated using the Meyer method........................................................................ 83 

Figure IV.15 Temperature profiles obtained from molecular dynamics 
simulations (MD) and the model solutions of 3 nm anatase sintering 
with the starting temperatures of (a) 573 K, (b) 973 K, (c) 1173 K and 
(d) 1473 K............................................................................................................. 86 

Figure IV.16 Temperature profiles obtained from molecular dynamics 
simulations (MD) and the model solutions of 3 nm rutile sintering 
with the starting temperatures of (a) 573 K, (b) 973 K, (c) 1173 K and 
(d) 1473 K............................................................................................................. 87 

Figure IV.17 Fitted surface tension at various initial temperatures (3 nm 
anatase and rutile sintering). .................................................................................. 88 

Figure V.1 Snapshot of 3 nm rutile nanoparticle in hydrothermal water 
(Cyan-Ti ion and Yellow-O ion; Red-Water oxygen; White-Water 
hydrogen).............................................................................................................100 

Figure V.2 Simulated X-ray diffraction patterns of 2.5 nm (a) anatase and 
(b) rutile nanoparticles in vacuum, in hydrothermal water and in 
water at ambient conditions. .................................................................................101 

Figure V.3 Simulated X-ray diffraction patterns of 3.0 nm (a) anatase and 
(b) rutile nanoparticles in vacuum, in hydrothermal water and in 
water at ambient conditions. .................................................................................102 

Figure V.4 Density profiles of water molecules around 3 nm and 4 nm 
anatase and rutile nanoparticles at hydrothermal conditions..................................108 

Figure V.5 Density profile of water oxygens from the surface Ti ions at 
hydrothermal and ambient conditions...................................................................109 

Figure V.6 Density profile of water hydrogens from the surface O ions at 
hydrothermal and ambient conditions...................................................................110 

Figure V.7 Density profiles of water H and water O from the nanoparticle 
surface .................................................................................................................111 



 xi 

Figure V.8 Water coverage with changing particle diameter at 
hydrothermal and ambient conditions. ..................................................................113 

Figure V.9 Time correlation functions of anatase and rutile nanoparticles 
at ambient and hydrothermal conditions. ..............................................................116 

Figure V.10 Probability density functions of angles 

! 

",#,$  and 

! 

"  for 3 nm 
rutile nanoparticle at hydrothermal conditions. .....................................................118 

Figure V.11 Schematic representation of preferred water orientations in 
Region 1 and 2. ....................................................................................................121 

Figure V.12 Probability density functions of angles 

! 

",#,$  and 

! 

"  for 3 nm 
rutile nanoparticle at ambient conditions. .............................................................123 

Figure V.13 Bivariate plots for 2.5 nm rutile nanoparticle in water at 
ambient conditions: (a) Region 1, (b) Region 2.....................................................126 

Figure V.14 Bivariate plots for 3.0 nm rutile nanoparticle in water at 
ambient conditions: (a) Region 1, (b) Region 2.....................................................127 

Figure V.15 Bivariate plots for 3.0 nm anatase nanoparticle in water at 
ambient conditions: (a) Region 1, (b) Region 2.....................................................128 

Figure V.16 Bivariate plots for 3.0 nm rutile nanoparticle in water at 
hydrothermal conditions: (a) Region 1, (b) Region 2. ...........................................129 

Figure V.17 Bivariate plots for 3.0 nm rutile nanoparticle in water at 
ambient conditions: Region 3. ..............................................................................130 

Figure VI.1 Enthapies w.r.t bulk rutile of rutile, anatase and brookite with 
varying surface area. ............................................................................................135 

Figure VI.2 Energy of particles relative to bulk rutile as a function of 
surface area at 300 K from molecular dynamics simulations.................................135 

Figure VI.3 Free energy as a function of number of TiO2 units for anatase 
and rutile in (a) vacuum and (b) water. .................................................................136 

Figure VI.4 Energy of particles relative to bulk rutile as a function of 
surface area at 1473 K. .........................................................................................138 

Figure VI.5 Variation of energy w.r.t bulk rutile of 3 nm anatase, rutile 
and amorphous particles. ......................................................................................139 

Figure VI.6 Temperature versus time for various sintering simulations. .......................146 

Figure VI.7 Energy profiles of various sintering simulations. .......................................147 



 xii 

Figure VI.8 Simulated X-ray diffraction patterns of anatase + rutile 
nanoparticle sintering with starting temperature 1473 K. ......................................148 

Figure VI.9 Snapshots of 3 nm anatase + 3 nm rutile sintering simulation....................149 

Figure VI.10 Simulated X-ray diffraction patterns of rutile + amorphous 
nanoparticle sintering with starting temperature 1473 K. ......................................150 

Figure VI.11 Snapshots of 3 nm rutile + 3 nm amorphous sintering 
simulation. ...........................................................................................................151 

Figure VI.12 Simulated X-ray diffraction patterns of anatase + amorphous 
+ rutile nanoparticle sintering with starting temperature 1473 K. ..........................152 

Figure VI.13 Snapshots of 3 nm anatase + 3 nm amorphous + 3 nm rutile 
sintering simulation..............................................................................................153 

Figure VI.14 Simulated X-ray diffraction patterns of anatase + amorphous 
nanoparticle sintering with starting temperature 1473 K. ......................................154 

Figure VI.15 Snapshots of 3 nm anatase + 3 nm amorphous sintering 
simulation with a starting temperature of 1473 K. ................................................155 

 



 xiii 

LIST OF TABLES 

 

               Page 

Table I.1 Crystal structure, lattice parameters (a,b and c) and number of 
atoms per cell (Z) for various TiO2 polymorphs....................................................... 5 

Table II.2 Matsui-Akaogi forcefield parameters ............................................................ 15 

Table III.1 Percentages of Ti ion coordination number at various 
temperatures for 3 nm anatase and rutile particles.................................................. 29 

Table V.1 SPC/E interaction parameters ....................................................................... 95 

Table V.2 Coordination number distributions of 2.5 nm anatase 
nanoparticle in vacuum and in water at hydrothermal and ambient 
conditions.............................................................................................................103 

Table V.3 Coordination number distributions of 2.5 nm rutile nanoparticle 
in vacuum and in water at hydrothermal and ambient conditions. .........................103 

Table V.4 Coordination number distributions of 3.0 nm anatase 
nanoparticle in vacuum and in water at hydrothermal and ambient 
conditions.............................................................................................................104 

Table V.5 Coordination number distributions of 3.0 nm rutile nanoparticle 
in vacuum and in water at hydrothermal and ambient conditions. .........................104 



 1 

CHAPTER I 

 

INTRODUCTION 

 

Interest in the physics of condensed matter, which is at size scales larger than individual 

atoms or molecules but much smaller than bulk matter, has developed rapidly in the past 

three decades (Franks 1987; Dewdney 1988; Siegel 1993; Oakley and Hanna 2004). It is 

out of this interest that the terms of “nanoscience” and “nanotechnology” have emerged. 

Nanoscience and nanotechnology are defined as the sciences and technologies where 

dimensions and tolerances in the range of 0.1 to 100 nm play a critical role. The fact that 

controlling the size of matter in the nanometer range could considerably alter its physical 

and chemical properties when compared with bulk has been the impetus behind this 

curiosity. For example, the mechanical, thermal, electrical and magnetic properties of 

ceramics, sintered materials and composites are greatly enhanced by reducing the grain 

size. Other properties like strength, ductile-brittle transition, transparency, dielectric 

constant and permeability can also be enhanced by direct size reduction (Franks 1987). 

 Due to the novel and enhanced properties of nanosized materials they are quickly 

finding many applications in medicine (Sahoo and Labhasetwar 2003; Silva 2004), 

electrochemistry (Gooding 2005), electronics (Tsukagoshi, Yoneya et al. 2002) and 

aerospace (Laurvick and Singaraju 2003). The use of small biodegradable nanoparticles 

have completely changed the science of drug delivery, with more specificity and 

sustained drug release over days or even weeks. The discovery of single and multi-walled 

carbon nanotubes has been a boon to the field of  electronics, where their small size, high 
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chemical and thermal stability, high elasticity, high tensile strength and high conductivity 

have been largely exploited in applications, such as sensing, high speed communications 

and in making nanodevices like the carbon nanotube field-effect transistor. 

 Nanoparticles are found almost everywhere around us. Nano-size carbon black 

particles have been used as reinforcing additive in tires for about 100 years. Various 

vaccines often consist of proteins with nanoscale dimensions. Sensors for modern 

computer disks are made from layered inorganic materials with nanometer thickness. 

Nanomaterials are added to cloth in order to contribute to stain resistance. Cosmetics 

contain zinc oxide and TiO2 nanoparticles as sunscreens. PPG has introduced “self-

cleaning” window glass products, that have a surface layer of TiO2 nanoparticles. 

Nanoscale bits of clay are added to reinforced plastics used in cars manufactured by GM. 

Ceramic nanoparticles with entrapped biomolecules have potential applications in drug 

delivery. 

 Thus, the applications of nanoparticles are almost unlimited. In the work 

described here, titanium dioxide nanoparticles, which have numerous applications in 

optics, sensing and as photocatalysts, are studied. The fact that these nanoparticles are 

extremely small and have only a few hundred to a few thousand atoms (ions) makes 

molecular dynamics simulations a strong candidate for studying them. 

 

I.1 Titanium Dioxide 

Titanium dioxide or titania (TiO2) is a widely occurring transition metal-oxide 

semiconductor used in science and technology. Due to its opacity, it has been used over 

the years as a while pigment in paints (Reck and Seymour 2003) and paper (Dutt, 
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Upadhyaya et al. 2002). However, nowadays nanosized titania is broadly used as a raw 

material in electronics and structural ceramics. It is used in dye-sensitized solar cells and 

in high temperature separation and photocatalytic applications (Ohtani, Okugawa et al. 

1987; Augugliaro, Loddo et al. 1995; Martin, Lee et al. 1995). Recently, nano-titania has 

been used as a catalyst in many different heterogeneous reactions under ultraviolet light, 

such as alcohol dehydration (Fox and Dulay 1993), degradation of paint pigments 

(Hotsenpiller, Bolt et al. 1998), oxidation of aromatic compounds (Fujihira, Satoh et al. 

1981), nitrogen oxide reduction (Gruy and Pijolat 1992) and removal of toxic 

contaminants from wastewater (Ohtani, Okugawa et al. 1987; Martin, Lee et al. 1995). 

Tetrafluorobenzoic acid modified TiO2 nanoparticles are used as lubricant additives to 

improve the tribological properties of the base oil (Ye, Cheng et al. 2003). 

 

I.1.1 Crystal Structure 

It has been reported in the literature that titanium dioxide occurs in eleven different 

polymorphs with distinct structures (Swamy, Gale et al. 2001). Anatase, rutile and 

brookite are the three polymorphs that are abundantly found in nature (Banfield and 

Veblen 1992; Gribb and Banfield 1997; Penn and Banfield 1998). Recently, TiO2 (B) has 

been added as the fourth naturally occurring TiO2 polymorph found at very low pressures 

(Banfield, Veblen et al. 1991). In all polymorphs of TiO2, titanium is in octahedral 

coordination, i.e., its coordination number equals six. However, the number of shared 

edges increases from two in rutile, to three in brookite, to four in anatase. It has been 

suggested (Evans 1966) that the relative stability in the bulk phase of these phases may 

be inversely related to the number of shared edges, i.e., rutile more stable than brookite, 
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which in turn is more stable than anatase. The structure of anatase and rutile is tetragonal, 

while that of brookite is orthorhombic (Banfield, Veblen et al. 1991), and they belong to 

the I41/amd, P42/mnm and Pbca space groups, respectively (Kim, Enomoto et al. 1996). 

Their lattice parameters, a, b and c, are reported in Table I.1 (Bokhimi, Morales et al. 

2001).  
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Table I.1 Crystal structure, lattice parameters (a,b and c) and number of atoms per cell 
(Z) for various TiO2 polymorphs. 
Phase Space group A ( Å) B ( Å) c ( Å) Z 

Anatase I41/amd 3.785  9.514 4 

Rutile P42/mnm 4.593  2.959 2 

Brookite Pbca 9.182 5.456 5.143 8 

 



 6 

 In the bulk form, rutile is the most stable polymorph of titania under ambient 

conditions, while anatase, brookite and TiO2 (B) are considered to be metastable as they 

irreversibly transform to rutile upon heating (Banfield, Veblen et al. 1991; Kobata, 

Kusakabe et al. 1991; Zhang and Banfield 1998; Ovenstone 2001; Barnard, Zapol et al. 

2005). The stability criterion has been found to be highly dependent on the particle size 

and temperature. It is found that the synthesis of nanocrystalline TiO2 consistently 

resulted in anatase nanoparticles, which transformed to rutile upon reaching certain 

particle size. This implies that transition energetics are closely related to particle size and 

that anatase is the more stable form at the nanoscale (Barnard, Zapol et al. 2005). 

 

I.1.2 Manufacture of nano-TiO2 

Nanosized titania is usually manufactured either by the “dry” process or by the “wet” 

process. In the dry process, which is also referred to as the “chloride” process vapor 

phase oxidation of TiCl4 is carried out to produce titania (Akhtar, Yun et al. 1991; 

Kobata, Kusakabe et al. 1991; Pratsinis 1998-a; Pratsinis and Spicer 1998-b; Stark and 

Pratsinis 2002). About three million tons of TiO2 is produced annually via this process 

(Pratsinis 1998-a). The temperatures in the dry process range from 973 to 1873 K. It is 

generally carried out in a flame reactor. The reaction involved can be represented as, 

! 

TiCl
4
(g) +O

2
(g)" TiO

2
(s)+ 2Cl

2
(g)       (I.1) 

In the commercial process, water vapor is present in the flame reactor from the 

combustion of hydrocarbon gas for the flame and it plays a vital role in controlling the 

crystallinity and the particle size of the produced powders (Jang 1997). The temperature 

of the flame reactor is also an important parameter in controlling the particle size. A 
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typical titania synthesis flame is shown in Figure I.1 (Stark and Pratsinis 2002). It has 

been reported that smaller particles can be obtained by running the flame reactor at higher 

temperatures (Jang and Jeong 1995). 
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Figure I.1 Typical titania dry synthesis flame. 
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 During the thermal annealing phase of the flame synthesis of titania, particles 

collide with each other leading to sintering of the formed particles. If the sintering time is 

greater than the time interval between consecutive collisions then larger particles are 

formed, otherwise large agglomerates are generated (Lehtinen and Zachariah 2002). It is 

important to understand the mechanism of particle sintering and the rate at which it 

occurs in order to successfully predict the size and phase distribution of the resultant 

powders. 

There are two main routes for the wet syntheses (Cheng, Ma et al. 1995; Wu, 

Long et al. 1999; Yang, Mei et al. 2000; Yang, Mei et al. 2001; Yang, Mei et al. 2001; 

Yang, Mei et al. 2002; Yin, Li et al. 2002) of nano-TiO2, namely hydrolyzation of 

titanium alkoxides and hydrolysis of titanium tetrachloride or titanium trichloride (Sun, 

Gao et al. 2003; Sun, Gao et al. 2003). This is generally a sol-gel process carried out at 

high temperature and pressure. The size and phase of the particles formed is greatly 

influenced by the solvent and the stabilizing agent used (Trung, Cho et al. 2003). The 

solvent used in the wet syntheses is generally hydrothermal water and the particle phase 

and size are relatively harder to control when compared with the dry process. Also, the 

dry process is solvent free and produces fewer by-products. 

 

I.2 Overview of Dissertation 

In this dissertation, we report the studies of TiO2 nanoparticles carried out using 

molecular dynamics simulations. We begin by introducing the molecular dynamics 

simulation technique in Chapter II. Then in Chapters III and IV, we apply this 

methodology first to individual TiO2 nanoparticles and then to a system of two like-



 10 

phased nanoparticles undergoing sintering. The phenomenon of melting point depression 

is also studied using molecular dynamics technique. We find that the initial stages of 

sintering are very rapid and occur within the first ~50ps of the simulation. The relative 

orientation of the particles and the dipole-dipole interaction between the particles play a 

very important role in the sintering process. 

 Since, as noted earlier, one method of producing TiO2 involves hydrothermal 

synthesis, we perform simulations of anatase and rutile nanoparticles in ambient and 

hydrothermal aqueous environments, and examine the structure of water in the vicinity of 

the nanoparticles. These simulations are reported in Chapter V. Then, in Chapter VI, we 

study phase transformations that take place when two or more TiO2 nanoparticles with 

different structures come in contact during sintering using molecular dynamics 

simulations. We find that generally no phase transformations are observed at 

temperatures lower than the melting points. At temperatures in the vicinity of the melting 

points, nanoparticles we find that the nanoparticles adopt the structure that is the more 

stable of the nanoparticles. Finally, in Chapter VII we summarize our findings and 

discuss the prospects for future work. 
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CHAPTER II 

 

SIMULATION METHODOLOGY 

 

II.1 Background 

Molecular dynamics simulation is one of a number of techniques falling under the road 

title of molecular modeling[Westmoreland, 2002 #164]. Molecular dynamics involves the 

numerical solution of Newton’s equations of motion on an atomistic or molecular scale to 

obtain information about the systems time-dependent properties. In its early days, the 

method of molecular dynamics gained popularity in the field of materials science. But 

since the 1970s, molecular dynamics has also been successfully used in chemistry, 

biochemistry, biophysics and many engineering disciplines. For example, in 

biochemistry, molecular dynamics serves as an important tool for determining protein 

structure and refining it. In physics, molecular dynamics is used to study atomic-level 

phenomenon such as thin film growth, which cannot be observed directly. It is also used 

to examine the physical properties of nanostructured hard and soft materials, often before 

they have been synthesized. 

 The extent of the success of the molecular dynamics technique is subject to the 

availability of computational power. The size of the simulation system and the time of 

simulation should be selected such that the calculation is completed within a reasonable 

time period. The timestep of the simulation should be chosen small enough to avoid any 

numerical errors associated with integrating the equations of motion, and the number of 

timesteps, that is, the total simulation time, should be chosen large enough to capture the 
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phenomenon begin modeled. The simulated system is sometimes replicated in one or 

more of the three coordinate directions in order to model an infinite medium. This is 

referred to as periodic boundary condition. When periodic boundary conditions are 

applied, care should be taken to choose a large enough simulation box size to avoid 

interaction between a species in the simulation box and its image in the neighboring box. 

 

II.2 Newton’s equations of motion 

For every molecule 

! 

i  considered, Cartesian coordinates 

! 

r 
i
 and momenta 

! 

p 
i
 are 

computed over time and can then be used to calculate various thermodynamic and 

transport data by applying statistical mechanics methods. 

 In molecular dynamics simulations we assume that the molecules move according 

to the Newton’s equations of motion, given by 

! 

dr 
i

dt
=

p 
i

m
i

          (II.1) 

! 

dp 
i

dt
= F 

i
          (II.2) 

where 

! 

m
i
 and 

! 

F 
i
 are the mass and the force experienced by the molecule 

! 

i , respectively. 

The force can also be expressed as 

! 

F 
i
= "

#U

#r 
i

          (II.3) 

! 

U  represents the potential energy and is given by the sum of all intra and intermolecular 

interactions. The interaction energy between molecules is usually defined semi-

empirically by forcefields also known as interaction potentials. The forcefields are 

modeled by using data from experiments and other ab initio methods. 
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I.2.1 Forcefield for TiO2 

In this work, we need to model the interactions between Ti and O ions. When choosing a 

model to describe atomic interactions, we should consider the attractiveness of 

conceptual and computational simplicity. At the same time, it is vital that the potential 

model is reliable in terms of its transferability across various polymorphic phases of the 

material under consideration. An interatomic potential that not only reproduces the 

crystallographic structures of the polymorphs, but also various physical properties across 

a range of conditions is generally preferred for atomistic simulations. A survey of the 

recent literature shows that several forcefields have been published for TiO2 (Catlow and 

James 1982; Sawatari, Iguchi et al. 1982; Catlow, Freeman et al. 1985; Mostoller and 

Wang 1985; Post and Burnham 1986; Matsui and Akaogi 1991; Kim, Enomoto et al. 

1996; Oliver, Watson et al. 1997; Roux and Glasser 1997; Swamy and Gale 2000) 

Collins and coworkers (Collins and Smith 1996-b) have carried out a detailed in-depth 

assessment of nine forcefields for TiO2. Their report concludes that the forcefield 

developed by Matsui and Akaogi (Matsui and Akaogi 1991) is the most suitable of the 

available forcefields for use in classical molecular dynamics simulations of bulk titania. 

The Matsui-Akaogi forcefield has been shown to give results comparable to a more 

complex and computationally demanding variable charge forcefield (Swamy and Gale 

2000) for TiO2. The Matsui-Akaogi forcefield (Matsui and Akaogi 1991) also predicts 

within acceptable limits the lattice energies, elastic constants, dielectric constant of rutile 

and the relative surface energies of rutile (100), (110) and (001) surfaces. It has been 

reported that the structures of TiO2 polymorphs and their relative bulk stabilities 

predicted by the Matsui-Akaogi forcefield are within experimental limits when compared 
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with the limited experimental data (Collins, Smith et al. 1996-a; Collins and Smith 1996-

b; Collins, Smith et al. 1997). Clearly, surface effects are extremely important when 

studying nanoparticles. Bandura and Kubicki (Bandura and Kubicki 2003) have verified 

the suitability of using Matsui-Akaogi forcefield to study rutile surfaces, using various 

quantum mechanical methods. Hence, the Matsui-Akaogi forcefield has been used to 

model TiO2 nanoparticles in this work. In this forcefield, the interactions between the Ti 

and O ions can be represented as 

! 

U
ij
(r) = A

ij
exp "

r

#
ij

$ 

% 
& & 

' 

( 
) ) "

C
ij

r
6

+
q
i
q
j

r
       (II.5) 

where 

! 

U
ij
 is the interaction energy between sites i and j, r is the distance between them 

and the parameters 

! 

A
ij
,"

ij
 and 

! 

C
ij
 are listed in Table II.1. The Matsui-Akaogi forcefield 

(Matsui and Akaogi 1991) represents the ions as rigid spheres with partial ionic charges, 

q’s, of +2.196 and -1.098 for titanium and oxygen, respectively. 
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Table II.2 Matsui-Akaogi forcefield parameters 
Ion Q A B C 

Ti +2.196 1.1823 0.077 22.5 

O -1.098 1.6339 0.117 54.0 
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 All the molecular dynamics simulations reported in this research work have been 

carried out using the Daresbury Laboratory molecular dynamics code, DL_POLY version 

2.13 (Smith 1987; Smith and Forester 1996). DL_POLY uses Verlet’s leapfrog algorithm 

(Allen and Tildesley 1997) in conjunction with multiple timestep method, to integrate 

Newton’s laws of motion over time. The details about the simulations are described in the 

subsequent chapters. 

The following aspects of TiO2 nanoparticles have been studied in this work from 

atomistic point of view using molecular dynamics simulations as an analysis tool: 

 (a) Nanoparticle sintering (Chapters III and IV) 

 (b) Water adsorption on nanoparticle surface (Chapter V) 

 (c) Phase transformations during nanoparticle sintering (Chapter VI). 

 

 



 17 

CHAPTER III 

 

SINTERING OF TiO2 NANOPARTICLES 

 

III.1 Introduction 

Sintering has been defined (German 1996) as “a thermal treatment for bonding particles 

into a coherent, predominantly solid structure via mass transport events that often occur 

at the atomic scale”. The process of sintering has been around for thousands of years 

(German 1996). Even today sintering is a primary operation in the production processes 

of most ceramics, for example: refractories, bricks, abrasives, porcelain and various other 

construction materials. When particles are heated together at relatively high temperatures, 

they typically sinter to bond together. These high temperatures generally range from one 

half the melting point to just below the melting point of the solid under consideration. It 

should be noted that the melting point of small particles can be considerably lower than 

bulk owing to “melting point depression”, which is addressed in greater detail in the next 

chapter. Sintering lowers the surface energy by reducing the surface area via formations 

of new bonds. The bonds are formed by various mechanisms occurring at the atomic 

level.  In ceramics, sintering is accompanied by an increase in compact density as the 

particles attract each other and self-compress to eliminate pores. This compaction or 

densification is sometimes linked to the beginning of phase transformation (Kumar, 

Keizer et al. 1992; Yang, Yang et al. 1998; Boskovic, Kosanovic et al. 2001). Sintering 

particles tend to possess an inherent driving force for mass flow and this driving force 
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increases as the particle size decreases. The sintering stress is higher for smaller particles 

due to larger surface area and the atomic mobility increases with temperature.  

One characteristic of sintering has been that the sintering theory has always been 

far behind sintering practice (German 1996). Theories trying to explain the fundamentals 

of sintering phenomena first emerged in the late 1940s. Most of these theories are 

developed for larger particles and their applicability to smaller particles in the nanometer 

range is doubtful. Recently, due to the abundant use of submicron particles, questions 

regarding the nature of their growth kinetics and morphology have been of great concern 

(Zachariah, Carrier et al. 1996; Zachariah and Carrier 1999). It has been shown that 

nanoparticles cannot be treated as continuum elastic bodies, which is one of the major 

assumptions made in majority of the sintering theories. The fact that the nanoparticles 

comprise of individual atoms is extremely important (Preining 1998). Therefore, the 

process of nanoparticle sintering is an ideal candidate to be studied from atomic point of 

view using tools like molecular dynamics simulations.  

 There are believed to be six different mechanisms (Zeng, Zajac et al. 1998) 

contributing toward the sintering of larger particles, namely, (1) surface diffusion, (2) 

lattice diffusion from surface, (3) vapor transport, (4) grain boundary diffusion, (5) lattice 

diffusion from grain boundary and (6) lattice diffusion through dislocations. However, in 

smaller particles the sintering mechanism is radically different due to the presence of 

high surface curvature and the atomic forces becoming more significant. In the case of 

copper and gold nanoparticles (Zeng, Zajac et al. 1998), only two classical mechanisms 

are responsible for mass transport during the initial stages of sintering are surface 

diffusion and grain boundary diffusion. The other mechanisms that play a major role in 
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the early sintering stages of metal nanoparticle sintering are (a) mechanical rotation, (b) 

plastic deformation due to dislocation generation and transmission, and (c) amorphisation 

of sub-critical grains (Zeng, Zajac et al. 1998). 

In this chapter, the results obtained from molecular dynamics simulations of the 

initial stages of TiO2 nanoparticle sintering are reported. As mentioned in Chapter I, TiO2 

nanoparticles are manufactured in flame reactors where inter-particle collisions lead to 

particle sintering. The final particle size and phase distribution dictate the overall 

properties of the TiO2 powder, for example, its photocatalytic activity. Hence, a careful 

study of the sintering mechanism is needed to predict the final particle size and phase 

distribution with considerable accuracy. The motivation behind this work is to achieve a 

better understanding of the phenomenology and specifics of the sintering process of TiO2 

nanoparticles with the help of molecular dynamics simulations, by employing the Matsui-

Akaogi forcefield (See section II.2 for details).  

The driving force for the sintering of two TiO2 nanoparticles is the decrease in the free 

energy due to a reduction in the surface area (Lehtinen and Zachariah 2001). Solid-state 

diffusion within the particle, which is due to the stress gradients generated by non-

sphericity, is believed to be the controlling mechanism (Friedlander and Wu 1994). The 

resultant larger particle or agglomerate will have lower potential energy, and due to 

conservation of energy in an isolated system, a higher temperature (Lehtinen and 

Zachariah 2002). The temperature rise can also be explained by the formation of new 

chemical bonds between the particles after collision (Gay and Berne 1986; Lehtinen and 

Zachariah 2002). Since TiO2 nanoparticles coalesce by virtue of solid-state diffusion, 

which is extremely sensitive to temperature (Lehtinen and Zachariah 2001), one can 
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expect that temperature will play a critical role in the process of nanoparticle sintering. 

Earlier studies on silica nanoparticle sintering showed almost instantaneous coalescence 

at higher temperatures (Koch and Friedlander 1990) and fractal-like agglomerate 

formation at lower temperatures (Lehtinen and Zachariah 2002). It was also found that 

the heat release due to particle coalescence may reduce the coalescence time by as much 

as a few orders of magnitude in the case of silicon nanoparticles.   

There have been many models attempting to explain the dynamics of coalescence 

of particles. Koch and Friedlander (Koch and Friedlander 1990; Lehtinen, Windeler et al. 

1996) assumed that the rate of coalescence was directly related to the excess surface area 

of colliding particles. This simple linear decay law for the agglomerate surface area 

(Friedlander and Wu 1994), when combined with the aerosol general dynamics equation 

(Akhtar, Yun et al. 1991), has produced several successful models for particle size 

prediction. These models break down when the particle size goes down to a few 

nanometers. It was suggested that the high internal pressure of smaller particles could be 

responsible for the inapplicability of the models to smaller particles. For example, the 

pressure inside a 10 nm TiO2 particle is reported to be around 2000 atmospheres (Ding 

and Liu 1997; Ehrman, Friedlander et al. 1998) and it increases with decreasing size. 

Such high internal pressures affect the diffusion coefficients, which in turn affect the 

rates of particle sintering (Ehrman, Friedlander et al. 1998; Schweigert, Lehtinen et al. 

2002). Thus, atomistic studies of nanoparticles can shed light on the fundamental 

mechanisms of nanoparticle sintering, thereby providing valuable insights and guidance 

to experimental work (Zhu and Averback 1995; Zeng, Zajac et al. 1998). To date, very 

few simulation studies have actually probed the sintering of metal-oxide nanoparticles. 
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Zhu and Averback (Zhu and Averback 1995; Zhu and Averback 1996-a; Zhu and 

Averback 1996-b) carried out molecular dynamics simulations of sintering copper 

nanoparticles and nanocylinders, while Raut and coworkers (Raut, Bhagat et al. 1998) 

reported studies of sintering aluminum nanoparticles. Similar studies of sintering nickel 

particles have been carried out by Heinisch (Heinisch 1996). A few other simulation 

studies have examined ceramic sintering systems such as silicon clusters, silicon nitride 

and simple two-dimensional Lennard-Jones systems (Tsuruta, Omeltchenko et al. 1996; 

Zachariah, Carrier et al. 1996). All of these studies report a rise in temperature upon 

nanoparticle sintering. Zhu and Averback (Zhu and Averback 1996-a) concluded that 

copper nanoparticle sintering occurred via plastic deformation, while Raut et.al. (Raut, 

Bhagat et al. 1998) proved that aluminum nanoparticles do not sinter via plastic 

deformation. On the other hand, Heinisch (Heinisch 1996) and Tsuruta et.al. (Tsuruta, 

Omeltchenko et al. 1996) showed that sintering is driven by surface diffusion. Although it 

is possible that different systems, i.e., metals and ceramics, may have different dominant 

mechanisms of mass transport, the exact mechanism of nanoparticle sintering is still 

debatable. Further, the dependence of the sintering mechanism on particle size has not 

been rigorously investigated. Since the kinetics of particle sintering are related to grain 

growth kinetics, it is important to study the effect of particle size on sintering. 

In the work presented here, the initial stages of TiO2 sintering and the effect of 

size, crystallographic orientation and temperature on the sintering process are 

investigated. As anatase and rutile polymorphs of TiO2 have the largest number of 

industrial applications, we have considered only 3 nm and 4 nm anatase and rutile in the 

simulations reported here. Each system contains two nanoparticles of the same phase. 
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Multiphase nanoparticle sintering is addressed in Chapter V. The effect of orientation on 

the sintering process is investigated by rotating one of particles in the system, while 

keeping the other unchanged. The relative mobilities of ions in the neck and core regions 

of the sintering nanoparticles are also reported. 

 

III.2 Simulation Details 

 

III.2.1 Forcefield Selection 

The Matsui-Akaogi forcefield (Matsui and Akaogi 1991) has been selected to describe 

the interactions between Ti and O ions. The details and advantages of this forcefield over 

the other reported forcefields for TiO2 have been listed in section I.2. The forcefield 

parameters are listed in Table II.2. The Daresbury laboratory molecular dynamics 

simulation code, DL_POLY version 2.13 (Smith 1987; Smith and Forester 1996), has 

been used to perform all the simulations on a parallel architecture (see section II.2). 

 

III.2.2 Simulation Method 

To generate the nanoparticles, a sphere of the desired diameter is cut out of a larger 

lattice, which is constructed using the lattice parameters (Abrahams and Bernstein 1971; 

Bokhimi, Morales et al. 2001) for anatase and rutile. These lattice parameters are listed in 

Table I.1. Excess titanium ions or oxygen ions are removed from the surface to obtain 

charge balance and ensure neutrality. The 3 nm particles of anatase and rutile particles 

thus obtained, contain 417 and 491 TiO2 units, respectively. Initially, molecular dynamics 

simulation in canonical ensemble is performed to obtain a nanoparticle at the desired 
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temperature. In canonical ensemble, the number of atoms in the system (N), volume of 

the system (V) and the system temperature (T) are held constant. Hence, molecular 

dynamics simulations in the canonical ensemble are also commonly referred to as NVT 

simulations. Figure III.1 shows snapshots of a 3 nm rutile nanoparticle before and after 

equilibration to the desired temperature of 1473 K. Then, to generate the initial 

configuration for the sintering simulation of same phase nanoparticles, the sphere is 

replicated and translated along the X-axis, so that the distance between the surfaces of the 

replicas is 1 nm. Sintering simulations are carried out in micro-canonical ensemble using 

0.5fs timestep and no periodic boundary conditions are applied to ensure simulation of 

isolated nanoparicles. In microcanonical ensemble, the number of atoms in the system 

(N), volume of the system (V) and the total system energy (E) are held constant, 

simultaneously. Hence, these molecular dynamics simulations are also called NVE 

simulations. This is the best way to mimic the low-pressure conditions prevailing in the 

flame reactors of the chloride process. The cutoff is chosen such that all the ions in the 

system are included in force and energy calculations. Simulations were carried out for a 

total time of about 0.5 to 1ns. This time is extremely small to study the entire process of 

TiO2 nanoparticle sintering but is long enough to study the important initial stages of 

sintering. Furthermore the potential energy reaches a plateau by this time indicating that 

the system is entering a quasi-steady state. Kobata et. al. (Kobata, Kusakabe et al. 1991) 

suggest that the characteristic sintering time for 3 nm TiO2 sintering at 1473 K is about 

12 µs, which is too long for a molecular dynamics simulation. In this work, various 

simulations with different starting temperatures, namely 573 K, 973 K and 1473 K, are 

carried out for 1ns each to investigate the dependence of temperature, as in the flame 



 24 

synthesis process there are different regions in the flame, representing different 

temperature zones, and the simulations are repeated for 3 nm and 4 nm particle because 

in the synthesis process particles of different sizes sinter and the effect of size is bound to 

be significant to the overall sintering process. 
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 (a) 

 
 (b) 

Figure III.1 Snapshots of 3 nm rutile nanoparticle (a) Before equilibration and (b) After 
equilibration at 1473 K. Note the different orientations in (a) and (b). 
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III.3 Results and Discussion 

 

III.3.1 Characterization of TiO2 nanoparticles 

Simulated X-ray diffraction patterns of equilibrated 3 nm TiO2 particles where 

determined. These are shown in Figure III.2. Anatase (101) peaks are observed at 25.5°. 

The peak height tends to decrease with increase in temperature. This suggests that as the 

temperature is increased the crystallinity is lost due to higher kinetic energy of the ions. 

There are two dominant peaks at 27.5° and 55° in the rutile particle X-ray patterns, 

namely, rutile (110) and (220), respectively. A similar decrease in the height of (220) 

peaks with temperature is observed indicating loss of crystallinity with temperature rise. 

The procedure of obtaining simulated X-ray diffraction patterns is explained in Appendix 

A. 

 The coordination number of Ti ions along the radius of the nanoparticle is shown 

in Figure III.3. The coordination number of Ti ions equals six in the core of the particle 

but as we move towards the surface of the nanoparticle it drops to four. This indicates 

that the ions rearrange themselves in the outer ~4 Å making it amorphous. The outer 

layer where the Ti-coordination is less than six is henceforth referred to as the “rough 

surface” or the “amorphous surface” layer. 

 Table III.1 shows the percentages of Ti coordination numbers for 3 nm anatase 

and rutile nanoparticles at 573 K, 973 K and 1473 K. The percentage of 3, 4, 5 and 7 

coordinated Ti ions increases with increasing temperature for both anatase and rutile 

particles quantifying the loss of crystallinity. As all the Ti ions with coordination number 

not equal to six are in the amorphous surface layer, the table indicates that about 35% to 
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45% of the total Ti ions in the nanoparticle are in the surface layer. The table also shows 

that the percentage of 6-coordinated Ti ions is always greater in rutile than anatase at any 

given temperature, indicating that rutile particles have a smaller amorphous surface layer 

compared to anatase. This can also be seen by careful examination of Figure III.3. 
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Figure III.2 Simulated XRD patterns of 3 nm TiO2 nanoparticles at 573 K, 973 K 
and 1473 K. 
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Table III.1 Percentages of Ti ion coordination number at various temperatures for 3 nm 
anatase and rutile particles. 
Coordination 

Number 

Anatase 

 (573 K) 

Anatase 

 (973 K) 

Anatase 

 (1473 K) 

Rutile 

 (573 K) 

Rutile 

 (973 K) 

Rutile 

 (1473 K) 

3 0.01 0.02 0.08 0.01 0.01 0.07 

4 10.09 11.62 12.13 8.88 9.44 10.37 

5 27.41 27.86 31.23 25.36 26.78 27.28 

6 61.60 59.57 55.09 65.48 63.40 61.83 

7 0.89 0.93 1.46 0.27 0.37 0.45 
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   Figure III.3 Ti coordination number along the radius of 3 nm anatase and rutile 
particles. 
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III.3.2 Sintering Simulations 

Figure III.4 shows snapshots of a typical sintering simulation. The simulation involves 

two 3 nm anatase nanoparticles with a starting temperature of 573 K. The simulation 

begins as shown in Figure III.4 (a) where the identical nanoparticles are separated by 1 

nm, or, in other words, the center-to-center distance between the 3 nm anatase 

nanoparticles is about 4 nm. It is observed, as in Figure III.4 (b), that the nanoparticles 

are mutually attracted towards each other. It should be noted that no external force is 

applied on any of the nanoparticles throughout the simulation. There is visual evidence of 

surface distortion, or increase in surface roughness, as the particles come into close 

proximity. The collision takes place in about 20-25ps without any rebounding or 

fracturing. This is depicted in Figure III.4 (c). A neck formation follows the collision, 

which quickly grows to a diameter of about 1.6 nm. A gradual broadening of the neck is 

observed in the period that follows to reach a final agglomerated state indicated in Figure 

III.4 (d) with a neck diameter of about 1.75 nm. The simulation is continued for a total 

time of about 0.5ns and complete fusion of the two anatase nanoparticles is not observed 

over the course of simulation, although we expect the formation of a larger spherical 

nanoparticle if the simulations were permitted to run for a very long time. Simulated X-

ray diffraction patterns (see Appendix A) suggested that there is no phase transformation 

during the entire simulation. 
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    Figure III.4 Snapshots of a typical sintering simulation 
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 Figures III.5 and III.6 show the temperature and configurational energy profiles 

with various initial temperatures for 3 nm anatase sintering and 3 nm rutile sintering, 

respectively. In all the cases, a drop in the configurational energy occurs when the two 

nanoparticles touch each other for the first time, and is caused by the new low potential 

energy pairs created when ions from each nanoparticle come in proximity of each other. 

It is observed that there is a rapid increase in temperature immediately after the 

nanoparticles come in contact with each other. As the nanoparticles form a neck, their 

cumulative surface area decreases, thereby decreasing their overall potential energy. 

Since, the total energy of an isolated adiabatic system must be conserved, the kinetic 

energy goes up accordingly increasing the temperature of the system. The temperature 

rise is about 60 K for 3 nm particle sintering of rutile and anatase. Similar profiles for 4 

nm sintering are shown in Figure III.7. For these simulations, the temperature rise is 

observed to be of the order of 35K. Thus, the temperature rise upon neck formation 

seems to be decreasing with particle size. This is consistent with the temperature being 

given by the average kinetic energy per particle; hence, for larger particles a given 

decrease in total potential energy (compensated by an equal increase in total kinetic 

energy) translates to a smaller increase in temperature. The temperature rise is however 

found to be independent of the starting temperature of the simulation. This is expected as 

in all the simulations with identical particle sizes, the decrease in surface area is similar; 

thereby the amount of potential energy to be converted to kinetic energy upon 

agglomeration is almost the same. These figures also indicate that sintering of TiO2 

nanoparticles takes place in two steps. The first step is very rapid and involves the 

formation of the neck region, which leads to the sudden drop in the overall 



 34 

configurational energy of the system, and the second step includes all the rearrangements 

that follow. The second step is very slow (few microseconds) and cannot be studied over 

the course of our molecular dynamics simulations. 
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Figure III.5 Temperature and configurational energy variation with time for 3 nm anatase 
sintering with initial temperatures of (a) 573 K, (b) 973 K and (c) 1473 K 
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Figure III.6 Temperature and configurational energy variation with time for 3 nm rutile 
sintering with initial temperatures of (a) 573 K, (b) 973 K and (c) 1473 K 
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Figure III.7 Temperature and configurational energy variation with time for 4 nm 
sintering with initial temperatures of (a) 573 K (anatase), (b) 573 K (rutile) and (c) 973 K 
(rutile) 
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III.3.3 Shrinkage, Neck Diameter and Number of Ions in the Neck Region 

In earlier studies (Raut, Bhagat et al. 1998), shrinkage was defined as ΔL/L0 where L0 is 

the distance between the centers of mass of the sintering nanoparticles and ΔL  is the 

change in this distance with time. We modify this definition to, 
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d
1

+ d
2

2

" 

# 
$ 

% 

& 
' ( dCOM

d
1

+ d
2

2

" 

# 
$ 

% 

& 
' 

         (III.1) 

where d1 and d2 are the diameters of the sintering nanoparticles and dCOM is the distance 

between their centers of mass at any instance. Shrinkage is a quantitative measure of the 

extent of intermingling or interpenetration of the sintering particles. As per equation 

(III.1), shrinkage is negative when particles are not touching each other, zero when they 

touch each other for the first time and positive when the start intermingling. Thus, the 

new definition of shrinkage indicates the beginning of neck formation with a sign change. 

Figure III.8 show the variations in shrinkage during the course of sintering of 3 and 4 nm 

particles. Shrinkage increases as the particles are attracted to each other and then reaches 

a pseudo-steady state. It is believed that the result of sintering will be a larger spherical 

particle, i.e., shrinkage will finally reach unity but the time required to observe this is too 

long to simulate using molecular dynamics given currently available computational 

resources. It can be concluded from the figures that, shrinkage has no dependence on the 

starting temperature of the simulation but decreases as the particle size is increased. This 

suggests that the smaller the sintering particles, the greater is the interpenetration. 
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Figure III.8 Shrinkage for (a) 3 nm anatase, (b) 3 nm rutile and (c) 4 nm particles. The 
indicated temperatures are the starting temperatures. 
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 The shrinkage increases with the starting temperature in the case of 3 nm anatase 

sintering. But no such temperature dependence is observed for 3 nm rutile sintering. It is 

shown later in Chapter IV that 3 nm anatase particles have a lower melting point than 3 

nm rutile, thus at 1473 K the 3 nm anatase particles are close to their melting temperature 

leading to greater ionic mobility than their rutile counterparts leading to greater 

interpenetration and therefore, higher value for shrinkage.  

Another important measurable quantity is the diameter of the neck region. All the 

ions lying within 3 Å of the orthogonal plane bisecting the line joining the centers of 

mass of the equally sized sintering particles are considered to be in the neck region. The 

diameter of this neck region increases with starting temperature of simulation for 3 nm 

anatase nanoparticles, ranging from 17 Å for the starting temperature of 573 K to 22 Å 

for the starting temperature of 1473 K. In the case of rutile simulations, no such 

relationship between neck diameter and temperature is observed in the 3 nm case but 

limited results from the 4 nm simulations suggest that neck diameter does increase with 

temperature. The neck diameter at the end of the first stage of 3 nm rutile sintering is 

about 20 Å irrespective of the starting temperature. This value is expected to be higher 

near the melting point of the nanoparticles under consideration. It can also be noted from 

Figure III.9 that 3 nm simulations take about 30-35ps to reach the pseudo-steady state 

neck diameter while 4 nm simulations show times greater than 50ps. This suggests that as 

the nanoparticle size increases the it takes longer to for the particles to achieve the 

pseudo-steady state. 

Similarly, the number of ions in the neck regions seems to increase with 

temperature for 3 nm anatase particles while there is no obvious dependence on 
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temperature in the case of rutile particles as shown in Figure III.10. Simulated X-ray 

diffraction patterns (see Appendix A) were determined for the agglomerates at the end of 

the simulations. These patterns indicated that no phase change had occurred in any of the 

simulations. The neck region is also examined separately for phase change. These 

examinations indicate that the neck region between two anatase nanoparticles becomes 

amorphous while the neck region between two rutile nanoparticles remains rutile. 
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Figure III.9 Neck Diameter for (a) 3 nm anatase, (b) 3 nm rutile and (c) 4 nm particles. 
The indicated temperatures are the starting temperatures. 
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Figure III.10 Number of ions in the neck region vs time for sintering anatase and rutile 
nanoparticles with different starting temperatures indicated in parentheses. 
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III.3.4 Dependence on Particle Orientation 

It is believed that crystallographic orientation also plays a vital role in the sintering of 

crystalline particles.  This dependence would be greatly enhanced for nanosized particles. 

To study this effect, the duplicated particle in the 3 nm anatase simulation system was 

rotated about the Z-axis through various angles, namely, 20°, 45°, 90° and 180°, before 

starting the simulation. The simulations were repeated at 573 K. The particles attract each 

other initially and move towards each other along the X-axis. Such rotations of one 

particle about the Z-axis will ensure different crystallographic orientations along the X-

axis each time and thus enable us to study the dependence on crystallographic orientation. 

Simulations were carried out for the 3 nm anatase particles for 0.5ns at these different 

initial orientations. Neck formation occurred almost at the same time in all the cases 

except when the rotation was 180°. In this case, the particles repelled and moved away 

from each other, and never collided over the period of the simulation. This proves that 

orientation of the nanoparticles is extremely important in the process of sintering. This is 

further corroborated quantitatively by Figure III.11, which shows the shrinkage, neck 

diameter and the number of ions in the neck region for simulations performed at these 

various orientations. The orientation of 90° produced maximum interpenetration, 

indicated by the highest shrinkage, largest neck diameter and highest number of ions in 

the neck region, suggesting that this initial configuration may be most favorable for 

sintering. It is also observed from Figure III.12 that the configurational energy of the 

system decreases sharply for the 90° orientation resulting in greater temperature rise at 

this orientation as compared to the other orientations. Similar densification observed 

experimentally using X-ray diffraction of larger titania particles by Kumar and coworkers 
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(Kumar, Keizer et al. 1992) was attributed to the anatase-rutile transformation, but no 

such phase transformation was detected over the course of the simulation based on the 

simulated X-ray diffraction patterns. No comments can be made concerning the 

possibility of such phase transformation over longer periods of time, which are not 

possible using molecular dynamics simulations. Thus, except for the 90° case, the results 

appear to be compatible with the idea that the surfaces of the particles are nanoscopically 

rough and so the rotation of particles does not affect their interaction with each other. 

However, the 90° case proves that crystallographic orientation is an important factor to 

consider when studying nanoparticle sintering. 
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Figure III.11 (a) Shrinkage, (b) Neck diameter and (c) Number of ions in the neck region 
for 3 nm anatase sintering simulations at various crystallographic orientations 
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Figure III.12 (a) Temperature and (b) Configurational energy profiles of 3 nm anatase 
sintering at various orientations 
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III.3.5 Dipole-dipole Interaction 

To examine the dependence of particle orientation on the sintering phenomenon, the 

dipole-dipole interaction between the two interacting nanoparticles before they 

intermingle could be of great significance. The dipole moment of an individual 

nanoparticle can be calculated as (Jackson 1975), 
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where 
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µ 
1
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 are the individual dipole moments of the interacting nanoparticles, 
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and 
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2
 are the position vectors of the centers of mass of the particles, and 
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vector along 
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r 
1
" r 

2
. In general, the dipole-dipole interaction between particles will be the 

dominant contribution to the overall long-range nanoparticle-nanoparticle interaction. 

 Figure III.13 shows that as the angle of rotation increases the initial dipole-dipole 

interaction becomes more repulsive and for 180° it is repulsive enough to prevent the 

particles from touching each other throughout the simulation. Also, the slightly repulsive 

configuration at 90° orientation could explain why rotation and reorientation of particles 

is observed prior to neck formation. The relationship between the initial dipole-dipole 

interaction and the angle of rotation is almost a linear one, with the nature of interaction 

changing from attractive to repulsive at about 90°. At 90°, the initial dipole-dipole 

interaction is almost zero, suggesting that the inter-particle dynamics at this configuration 
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are independent of individual particle dipoles and coulombic interactions between the 

surface ions dominate. Temporal evolution of dipole-dipole interactions showed that 

these interactions gradually continue to become more attractive with time until shrinkage 

became zero. It may be possible to model TiO2 nanoparticles as nanoscopic spheres with 

fluctuating dipole moments, interacting via equation III.3, before they collide. Thus, the 

inter-particle dipole-dipole interaction is very critical in the sintering dynamics of 

nanoparticles at lower temperatures. This may not be the case for nanoparticles larger 

than 5 nm as observed by Ogata and coworkers (Ogata, Iyetomi et al. 2000), who suggest 

from their 6 nm anatase and rutile particle simulations that surface charge effects dictate 

the course of nanoparticle sintering. Here it should be noted that Ogata and coworkers 

used a variable-charge potential for their simulations in contrast to the rigid-ion-partial-

charge Matsui-Akaogi potential used in this work. 
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III.3.6 Relative Displacements of Ions in the Neck and Core Regions 

In order to gain further insight into the sintering mechanism, the relative ionic mobilities 

in the neck and core region are calculated. All nanoparticles in the simulations, have a 

crystalline core and an amorphous surface. In anatase and rutile lattice, the coordination 

number of titanium ion is six. Figure III.3 shows the variation of the co-ordination 

number of titanium ion in 3 nm anatase particle along the radius of the nanoparticle. The 

external region where the coordination number starts going below six can be considered 

as amorphous. Simulation results show that the thickness of this amorphous region, 

which is about the order of 4 Å, is independent of size and temperature. Thus, ions within 

a distance less than 60% of the radius of the particle from the center of mass of the 

particle are considered to be in the core region of the particle. All the ions within 3 Å of 

the orthogonal plane bisecting the line connecting centers of mass of the two sintering 

nanoparticles are considered to be in the neck region. Zhu and Averback (Zhu and 

Averback 1995) defined relative atomic displacement for a system comprising of single 

species as, 
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where 

! 

r
i
t( )  is the position vector of the ith atom at time 

! 

t  and 

! 

n' is the number of 

neighbors of the ith atom. The first term under the square-root sign is the individual 

atomic displacement and the second term is relative displacement of the center of mass. 

Following the same lines, the relative displacement of the ith ion from time t to t’ in our 

system can be calculated as, 
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where 

! 

r
i
t( )  is the position vector of the ith atom at time 

! 

t , 

! 

m
Ti

 and 

! 

m
O
 represent the ionic 

masses of Ti and O ions. These are 47.9000 and 15.9994 a.m.u., respectively. The 

relative ionic mobility can then be calculated from the relative ionic displacement as 

follows, 

! 

µ
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t"#

$r
2

2dt
         (III.6) 

where the numerator is the relative mean-square displacement in time t and d is the 

dimensionality of the system, which in this case is three. 

 Figures III.14 and III.15 compare the core and neck region mobilities for sintering 

anatase and rutile 3 nm particles, respectively. The initial peak in the core mobility 

suggests fast motion of the ions on first contact between sintering particles. It should also 

be noted that the relative ionic mobility in the neck region remains more than that in the 

core region throughout all simulations by about one order of magnitude. Similarly, Raut 

and coworkers (Raut, Bhagat et al. 1998) reported that relative mobility of aluminum 

atoms in the neck region was about two orders of magnitude greater than that in the core 

region for sintering aluminum particles. The relative mobility in the neck and core 

regions does not show any significant dependence on phase but are observed to be 

increasing with initial temperature of the particles, as expected. The relative ionic 

mobility of ions in the neck region is a representation of surface diffusion. 
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Figure III.14 Relative mobilities of Ti ions in the core and neck regions for a 3 nm 
anatase sintering simulation with initial temperatures of 573 K, 973 K and 1473 K 
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Figure III.15 Relative mobilities of Ti ions in the core and neck regions for a 3 nm rutile 
sintering simulation with initial temperatures of 573 K, 973 K and 1473 K 
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III.4 Conclusions 

A number of interesting details about the sintering characteristics of TiO2 nanoparticle 

systems have been elucidated. The study demonstrates that the sintering of anatase and 

rutile nanoparticles is very rapid and occurs in a few picoseconds. The initial stage of the 

sintering process involves neck formation, upon first contact, followed by gradual 

particle interpenetration and broadening of the neck region. The surface energy is 

converted to kinetic energy thereby increasing the temperature. The temperature rise 

upon sintering is found to be independent of the initial temperature of the sintering 

particles but dependent on the particle size. It is about 65K for 3 nm particles, while it 

drops down to 35K for 4 nm particles. Thus, the temperature rise for micron-sized 

particles will be negligible and hence, can be neglected from models for the sintering 

mechanism of micron-sized particles. Higher initial temperatures promote greater 

intermingling of anatase particles leading to larger neck sizes and higher shrinkage. No 

such dependence is observed for rutile particles under the temperatures considered. The 

relative orientation of sintering nanoparticles has a strong influence on the shrinkage and 

the neck sizes, suggesting that the contributions from surface diffusion can be altered by 

variation of initial orientation. It is also found that increasing the particle size slows down 

the sintering kinetics. The neck diameter at a given initial temperature was found to be 

larger for 4 nm particle as compared to that of 3 nm particles.  

The sintering simulations at lower temperatures indicate that the dipole-dipole 

interactions between nanoparticles play a very important role. It may be possible to 

model titania nanoparticles as spheres with fluctuating dipole moments that undergo 

collision before the onset of sintering.  
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 Two-particle systems are useful for studying the isolated sintering process, but 

systems with larger number of particles with periodic boundary conditions could be 

employed in future to study many-particle sintering. Further efforts are directed toward 

correlating the various observations and developing scaling laws for sintering at the 

nanoscales that can be applied to phenomenological models of particle sintering. These 

are discussed in Chapter IV. 
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CHAPTER IV 

 

SINTERING OF TiO2 NANOPARTICLES: COMPARISON WITH 

PHENOMENOLOGICAL MODELS 

 

IV.1 Introduction 

As the importance of understanding the sintering phenomenon is clear from Chapters I 

and III, many attempts at developing phenomenological models to describe sintering of 

particles have been made since the 1940s (German 1996). There have been different 

models developed for ceramics that describe the sintering process of equal sized particles 

utilizing the neck growth rate as a scaling parameter (Coblenz, Dynys et al. 1980). Most 

of them are valid for the early stages of sintering and are often used in numerical 

solutions (Kobata, Kusakabe et al. 1991; Kruis, Kusters et al. 1993; Kraft and Riedel 

2004). The applicability of most of models to nanosized particles is debatable. Many of 

these models do not distinguish between amorphous and crystalline particles or polar and 

non-polar particles. It is apparent that the interactions between two amorphous particles 

will be different than two crystalline particles, and hence, there is a need to model them 

differently. It is evident that, as the particle size decreases, the percentage of atoms or 

ions on the surface of the particle increases. In other words, surface effects become more 

and more significant with decrease in particle size. As it can be argued from Figure III.3 

and Table III.1, the 3 nm TiO2 nanoparticles have an amorphous surface layer about 4 to 

5 Å thick with about 35 to 45% of ions residing in this layer. Thus, the fact that these 

particles are partly amorphous and partly crystalline will play a vital role in modeling 
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their sintering. It has also been hypothesized that the extremely high internal pressure of 

smaller particles is responsible for the inapplicability of the sintering models to these 

particles. For example, the pressure inside a 10 nm TiO2 nanoparticle is reported to be 

~2000 atmospheres and it further increases with decrease in particle size (Ding and Liu 

1997; Ehrman, Friedlander et al. 1998). Such high internal pressure has a direct impact 

on the diffusivity of the atoms or ions in the particle, which in turn affects kinetics the 

sintering mechanism. Thus, it is believed that there exists a need to incorporate the fact 

that these particles are comprised of individual atoms or ions into the model 

development. The sintering phenomenon has been studied from the atomic point of view 

using molecular dynamics simulations in Chapter III. The insights obtained from the 

molecular dynamics simulations can be used to evaluate and improve the general 

phenomenological models to extend their applicability to nanosized particle sintering.  

 Zachariah and Carrier (Zachariah and Carrier 1999) have reported positive results 

upon applying phenomenological models to sintering of silica nanoparticles and 

comparing them to results obtained via molecular dynamics simulations. It should be 

noted that silica is amorphous and no charged species where present in their molecular 

dynamics study. Applicability of these phenomenological models to anatase and rutile 

nanoparticles is studied in this chapter.  

 Surface diffusion and grain boundary diffusion are the most significant mass 

transport processes for smaller particles due to their high surface curvature as reported for 

gold and copper nanoparticles by Zeng and coworkers (Zeng, Zajac et al. 1998). The 

process of diffusion is extremely sensitive to temperature and physical state of matter. 

The diffusion rates in a liquid can be many orders of magnitude higher than those in a 
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solid. In the flame reactors where TiO2 nanoparticles are manufactured, the sintering 

nanoparticles are found to be in an adiabatic environment as they are present a low 

pressure dilute gaseous phase. Infrequent collisions with gaseous molecules ensure that 

the total energy of the sintering particles remains constant and is not dissipated. A 

decrease in surface energy during sintering in an adiabatic environment increases the 

kinetic energy and hence the temperature. If the pressure is low and the collisions with 

the gaseous solvent molecules are infrequent, then this temperature will keep rising with 

every subsequent particle-particle collision and could consequently cause melting. Hence, 

accurate knowledge of melting points of nanoparticles is required prior to the modeling 

of the sintering process. The melting point or particles has been reported to decrease with 

increase in the percentage of surface atoms, which happens with decreasing particle size. 

This is referred to as “melting point depression”. For example, the melting point of gold 

nanoparticles drops sharply as the particle diameter goes below 5 nm as indicated in 

Figure IV.1 (Buffat and Borel 1976). 
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Figure IV.1 Melting point depression observed for gold particles. 
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IV.2 Melting point of TiO2 nanoparticles 

 

IV.2.1 Simulation Details 

A series of molecular dynamics simulations to determine the melting points of anatase 

and rutile nanoparticles were performed using DL_POLY, version 2.13 (Smith 1987; 

Smith and Forester 1996). The Matsui-Akaogi forcefield (Matsui and Akaogi 1991) has 

been selected to describe the interactions between Ti and O ions. The details and 

advantages of this forcefield over the other reported forcefields for TiO2 have been listed 

in Section I.2. The forcefield parameters are listed in Table I.2. Anatase and rutile 

nanoparticles with 2.5, 3, 3.5, 4 and 5 nm diameter are considered. For each sized 

nanoparticle, an NVT simulation was performed for 0.5ns with a time step of 0.5fs after 

which the temperature was incremented by 100 K. This procedure was repeated until the 

temperature was well above the reported bulk melting point of TiO2. No periodic 

boundary conditions were used in order to simulate isolated nanoparticles and the cut-off 

used was large enough to include all the ions in the energy and force calculations. The 

leap-frog algorithm is used in conjunction with the multiple-step method to integrate the 

Newton’s equation of motion using DL_POLY. 
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IV.2.2 Simulated X-ray Diffraction 

The most prominent X-ray diffraction peaks in anatase and rutile are (101) located at 

25.5° and (110) located at 27.5°, respectively. Simulated X-ray diffraction patterns are 

calculated from the Cartesian coordinates of the ions in the nanoparticles at each 

temperature. It is observed that the above-mentioned prominent peaks become shorter 

and broader indicating loss of crystallinity. The temperature at which these peaks are lost 

is where the nanoparticle has completely melted. The resultant particle is in liquid state. 

The X-ray diffraction patterns for 2.5 nm, 3 nm, 3.5 nm and 4 nm anatase and rutile 

particles are shown in Figures IV.3, IV.4, IV.5 and IV.6, respectively. 
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Figure IV.2 X-ray diffraction patterns of 2.5 nm (a) anatase and (b) rutile nanoparticles 
with increasing temperature. 
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Figure IV.3 X-ray diffraction patterns of 3.0 nm (a) anatase and (b) rutile nanoparticles 
with increasing temperature. 



 64 

-1 10
5

-5 10
4

0

5 10
4

1 10
5

1.5 10
5

20 30 40 50 60

1673K
1873K
1973K

2!

3.5nm anatase

(a)
101

-1 10
5

-5 10
4

0

5 10
4

1 10
5

1.5 10
5

20 30 40 50 60

1873K
2473K
2573K

2!

3.5nm rutile

(b)

110

220

 

Figure IV.4 X-ray diffraction patterns of 3.5 nm (a) anatase and (b) rutile nanoparticles 
with increasing temperature. 
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Figure IV.5 X-ray diffraction patterns of 4.0 nm (a) anatase and (b) rutile nanoparticles 
with increasing temperature. 
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IV.2.3 Pair Correlation Function 

The Ti-Ti pair correlation function can also be used as an indication of melting 

phenomenon. The equilibrium distance between a Ti ion and its nearest neighbor Ti ion is 

~3.05 Å in an anatase crystal. The loss of crystallinity is indicated by the decrease in the 

height of the peak at ~3.05 Å. In a molten particle the position of this peak shifts to a 

higher distance, as Ti ions at higher temperature have greater kinetic energy. Figures 

IV.6, IV.7, IV.8 and IV.9 show Ti-Ti pair correlation functions at various temperatures 

for 2.5 nm, 3.0 nm, 3.5 nm and 4.0 nm anatase and rutile nanoparticles. 
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Figure IV.6 g (Ti-Ti) for 2.5 nm (a) anatase and (b) rutile nanoparticles with increasing 
temperature. 
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Figure IV.7 g (Ti-Ti) for 3.0 nm (a) anatase and (b) rutile nanoparticles with increasing 
temperature. 
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Figure IV.8 g (Ti-Ti) for 3.5 nm (a) anatase and (b) rutile nanoparticles with increasing 
temperature. 
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Figure IV.9 g (Ti-Ti) for 4.0 nm (a) anatase and (b) rutile nanoparticles with increasing 
temperature. 
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IV.2.4 Diffusivity 

Diffusivity is another physical quantity used to detect phase transformation. Solids 

generally have diffusivities of the order of 10-12 m2/s or lower, while liquid diffusivities 

are about 10-9 m2/s (Bird, Stewart et al. 2002). As particle size decreases, percentage of 

surface atoms/ions increases and thus, surface diffusivity is very important for 

nanoparticles. It has been shown in Chapter II that TiO2 nanoparticles with diameters 

ranging from 2.5 nm to 5 nm have a 4-5 Å thick amorphous liquid-like outer surface 

layer. Since about 35% to 45% of the total ions reside in this layer for the nanoparticles 

considered here (particle diameter between 2.5 nm and 5 nm), the overall diffusivity of 

the solid nanoparticles is expected to be slightly higher than bulk solid diffusivity. 

 The diffusivity of Ti and O ions in various nanoparticles considered at different 

temperatures is calculated using the equation (Frenkel and Smit 2002), 

! 

D = lim
t"#

r
2

2dt
          (IV.1) 

where 

! 

r
2  is the mean square displacement of the atoms in time t and d (=3) is the 

dimensionality of the system. The values of ionic diffusivities are of the order of 10-11 

m2/s at lower temperatures and increase to 10-9 m2/s at higher temperatures indicating that 

melting has occurred. The Ti and O ionic diffusivities calculated utilizing the trajectories 

obtained from the molecular dynamics simulations are shown in Figure IV.10. 
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Figure IV.10 Ionic diffusivities of Ti and O ions in (a) 2.5 nm, (b) 3.0 nm, (c) 3.5 nm and 
(d) 4.0 nm anatase and rutile nanoparticles over various temperatures. 
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IV.2.5 Lindemann Index 

The Lindemann index, 

! 

" , is extremely useful in identifying solid to liquid phase 

transformation (Egorov, Brodskaya et al. 2002; Egorov, Brodskaya et al. 2003; Egorov, 

Brodskaya et al. 2006). It has been used in the past to study melting of various metallic 

and non-metallic clusters (Lee, Lee et al. 2001; Lee, Nieminen et al. 2001; Zhou, Karplus 

et al. 2002; Alavi and Thompson 2006), isolated homopolymers (Zhou, Karplus et al. 

1997), heteropolymers (Zhou and Karplus 1997) and proteins (Zhou, Vitkup et al. 1999). 

It is a distance fluctuation criterion for melting as shown in equation (IV.2), 

! 

" =
2

N(N #1)

r
ij

2

t
# r

ij
t

2

r
ij

t
j= i+1

N

$
i=1

N#1

$        (IV.2) 

where 

! 

r
ij
 is the separation between atoms i and j, and 

! 

t
 indicates a time average. 

 The Lindemann index was first introduced in 1910 by F. A. Lindemann (Zhou, 

Karplus et al. 2002). The atoms in solids undergo small amplitude variations or 

fluctuations about their equilibrium lattice positions, which are accumulated in the 

Lindemann index. Hence, it increases with temperature for a solid and has been found to 

reach a critical value at the melting temperature beyond which it cannot increase without 

damaging or destroying the lattice, thereby causing melting. This critical value generally 

lies in the range of 0.1 to 0.15 for simple solids, and has been found to be independent of 

the type of substance, the nature of the interaction potential and the crystal structure. At 

the melting point, the lattice atoms gain some translational freedom and the Lindemann 

factor is enhanced by as much as a factor of 3. 

 An average value of the Lindemann index was calculated at each simulation 

temperature for various particle sized under consideration. The variation of the 
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Lindemann indices with temperature of different sized anatase and rutile nanoparticles 

are shown in Figure IV.11 
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Figure IV.11 Lindemann Incides for (a) 2.5 nm, (b) 3.0 nm, (c) 3.5 nm and (d) 4.0 nm 
anatase and rutile nanoparticles 
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 The melting points of 2.5, 3, 3.5, 4 and 5 nm anatase and rutile nanoparticles 

obtained from analyzing the X-ray diffraction patterns, pair correlation functions, ionic 

diffusivities and the Lindemann indices are represented in Figure IV.12. The melting 

point of nanoparticles can also be estimated using the Buffat and Borel (Buffat and Borel 

1976) empirical formula, 

! 

T
mp

= T
m
1"

4

L#
s
d
p

$
s
"$

l

#
s

#
l
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' 
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       (IV.3) 

where 

! 

T
mp

 is the melting point of the nanoparticle, 

! 

T
m
 is the bulk melting temperature in 

K, L is the latent heat of melting in J/kg, 

! 

d
p
 is the particle diameter in m, 

! 

"
s
,"

l
 are the 

solid and liquid densities in kg/m3 and 

! 

"
s
,"

l
 are the solid and liquid surface tensions in 

J/m2. The equation (IV.3) can be solved for anatase and rutile using the following values, 

! 

L
anatase

=91.25 kJ/mol (Li and Ishigaki 2002) 

! 

L
rutile

=66.9 kJ/mol (Li and Ishigaki 2002) 

! 

T
m
=2143 K (Li and Ishigaki 2002) 

! 

"
anatase

=3893 Kg/m3 (Li and Ishigaki 2002) 

! 

"
rutile

=4249 kg/m3 (Li and Ishigaki 2002) 

! 

"
l
=3249 kg/m3 (Dingwell 1991) 

! 

"
anatase

=0.51 J/m2 (lowest energy anatase surface) (Barnard, Zapol et al. 2005) 

! 

"
rutile

=1.25 J/m2 (lowest energy rutile surface) (Barnard, Zapol et al. 2005) 

! 

"
l
=0.38 J/m2 (Ikemiya, Umemoto et al. 1993; Li and Ishigaki 2002) 

The melting points obtained from the empirical formula are shown in Figure IV.12. The 

melting point of nanoparticles calculated from simulations show the correct trend, i.e., 
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they increase with increasing particle size seem to be tending towards an asymptotic 

behavior for larger particles. The melting points obtained via simulations for 2.5 nm 

anatase and rutile nanoparticles are comparable to those predicted by the Buffat and 

Borel empirical formula (Buffat and Borel 1976). For all larger nanoparticles, simulations 

are found to over predict the melting points when compared to the empirical formula. 
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Figure IV.12 Melting point of anatase and rutile nanoparticle calculated using Buffat-
Borel (BB) model and molecular dynamics (MD) simulations. 
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IV.3 Model Development 

Consider a system comprising of two identical spherical nanoparticles, each with N TiO2 

units. During the process of sintering, a neck is formed between the spheres, which grows 

with time. A larger spherical particle is assumed to be final result. It is believed that total 

energy of the system (E) can be divided into contributions from the bulk (

! 

E
bulk

) and the 

surface (

! 

E
surface

) as (Lehtinen and Zachariah 2002), 

! 

E = E
bulk

+ E
surface

E
bulk

= 2N["
b
(0K) + c

v
T
p
]

E
surface

=#
sv
a

        (IV.4) 

where a is the total surface area of the coalescing nanoparticles, 

! 

"
sv

 is the solid-vapor 

surface tension, 

! 

"
b
(0K)  is the binding energy at absolute zero temperature, 

! 

c
v
 is the 

constant volume heat capacity and 

! 

T
p
 is the temperature of the particle. As the collisions 

with the dilute gas in the flame reactor are very infrequent, the dissipation of energy 

through such collisions will be negligible and can be neglected. The loss of energy via 

radiation is also found to be insignificant when compared with contributions from the 

bulk and surface. Thus, any changes in the total energy of the system can be represented 

as, 

! 

dE

dt
= 2N

d

dt
c
v
T
p( ) +

d

dt
"

sv
a( )         (IV.5) 

Since, N is the number of TiO2 units, it does not vary with time. As there is no energy 

loss to the surrounding, the system is adiabatic and the total energy of the system will 

remain constant. Hence, 

! 

dE

dt
= 0 = 2N

d

dt
c
v
T
p( ) +

d

dt
"

sv
a( )       (IV.6) 



 77 

! 

c
v
 and 

! 

"
sv

 do not vary appreciably for solids over wide range of temperatures and 

therefore, can be assumed to be constant. With this assumption we can rewrite equation 

(IV.6) as, 

! 

dT
p

dt
= "

#
sv

2Nc
v

da

dt
         (IV.7) 

Koch and Friedlander (Koch and Friedlander 1990) postulated that for the reduction in 

area of sintering particles can be approximated as a linear rate, which can be 

mathematically expressed as, 

! 

da

dt
= "

1

#
f

a " a
sph( )          (IV.8) 

where 

! 

"
f
 is the characteristic sintering time and 

! 

a
sph

 is the surface area of the spherical 

particle, which is assumed to be the final outcome of the sintering process. As the 

temperatures observed in the sintering simulations never exceeded the melting points, 

solid-state diffusion can be assumed. The characteristic time for sintering via solid-state 

diffusion is given as (German 1996), 

! 

"
f

=
3kT

p
N

64#$
sv
D(T

p
)

         (IV.9) 

where k is the Boltzmann’s constant and 

! 

D(T
p
)  is the diffusion coefficient at temperature 

! 

T
p
. Substituting equation (IV.9) in equation (IV.8) we get, 

! 

da

dt
= "

64#$
sv
D(T

p
)

3kT
p
N

a " a
sph( )         (IV.10) 

Equation (IV.7) and (IV.10) can be solved simultaneously using an ODE (ordinary 

differential equation) solver in order to predict the temperature profile of sintering 

particles. It should be noted that the equation (IV.10) is very non-linear and extremely 
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sensitive to temperature. The sensitivity comes from the exponential dependence of the 

diffusion coefficient on temperature: 

! 

D " Aexp #
B

T
p

$ 

% 
& & 

' 

( 
) )          (IV.11) 

where A and B are non-negative constants. The results obtained by solving (IV.7) and 

(IV.10) for 3 nm anatase (N=417) and 3 nm rutile (N=491) with starting temperatures of 

573 K, 973 K and 1473 K are shown in Figure IV.13. As the model does not distinguish 

between anatase and rutile polymorphs of TiO2, the solutions will be solely dependent on 

the number of TiO2 units in the nanoparticles (N). Anatase has fewer TiO2 units than 

rutile for the same particle size, due to its lower density. As the temperature varies 

inversely with the number of TiO2 units, anatase will always have a larger temperature  

compared to rutile. This is observed in the model solution plotted in Figure IV.13. 

According to the model solution, the temperature increases gradually during sintering 

until a steady-state is achieved at longer times. The time taken to approach this steady-

state increases dramatically as the systems initial temperature is increased. It is of the 

order of milliseconds when the starting temperature is 573 K, a few microseconds when 

the starting temperature is 973 K and few hundred nanoseconds when the initial 

temperature is 1473 K. In each of the above cases, the overall temperature rise is about 80 

to 100 K. A temperature rise of about 65K was observed in the molecular dynamics 

simulations of 3 nm particles to reach a pseudo-steady state in few picoseconds. Thus 

both, the predicted temperature rise and the predicted time required to achieve it, are 

over-predicted by the model. It should be noted that if the simulation was run for very 

long period of time a slight increase in temperature is anticipated. Even if the simulation 

temperature becomes comparable to the model solution, the time required to achieve that 
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temperature is highly over predicted. The discrepancy between simulation and model 

solution may be due to an incorrect assumption made during model development. It has 

been assumed that the surface area reduction follows a linear rate law as suggested by 

Koch and Friedlander. The assumption predicts the overall trend correctly but breaks 

down when applied to timescales of the order of 100-103 picoseconds, which are the 

timescale relevant for the molecular dynamics simulations. It has been shown that Koch 

and Friedlander (Koch and Friedlander 1990) linear rate law for surface reduction 

successfully predicts the temperature variations of sintering silica particles by Zachariah 

and Carrier (Zachariah and Carrier 1999). It should be noted that the TiO2 nanoparticle 

considered in the simulations reported in Chapter II contain charged species and are 

crystalline, unlike the uncharged and amorphous silica nanoparticles considered by 

Zachariah and Carrier. Hence, with the goal of better predicting the temperature profiles 

of sintering TiO2 nanoparticles, the area reduction can be calculated directly using the 

trajectories obtained from the molecular dynamics simulations unlike the empirical 

predictions made using Koch and Friedlander. 
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Figure IV.13 Model solution for 3 nm anatase and rutile nanoparticles at (a) 573 K, (b) 
973 K, and (c) 1473 K. 
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IV.3.1 Surface Area Calculation 

Various methods to calculate the solvent accessible surface area of nanoparticles and 

proteins have been reported in the literature (Gavezzotti 1985; Meyer 1988; Perrot, 

Cheng et al. 1992; Legrand and Merz 1993). Most of these methods are computationally 

very demanding. The surface area needs to be calculated at each timestep of the 

simulation to determine da/dt. Following the Meyer method, the nanoparticle system is 

embedded in a rectangular mesh and each mesh point is examined one by one. If the 

mesh point under consideration is within the Van der Waal’s radii of any of the ions in 

the nanoparticle, then that point is counted towards volume calculation. Van der Waal’s 

radii for Ti and O ions are 2.5 Å and 1.54 Å, respectively (Bondi 1964). The mesh points, 

which do not lie within the nanoparticle volume are then examined for proximity to 

nanoparticle surface. The area and volume calculated at numerous time intervals during 

the simulation is shown in Figure IV.14. The figure shows that as soon as the particles 

touch each other, the total area goes down dramatically. Once the neck diameter has 

reached certain critical value, the decrease in surface area is very gradual. This behavior 

is very different from that predicted by the Koch and Friedlander (Friedlander and Wu 

1994) linear rate assumption. It has been shown in Chapter II that these nanoparticles 

have an outer amorphous layer of about ~4 Å in width, while the core is crystalline. The 

width of this amorphous surface layer is independent of temperature. The self-diffusion 

within this amorphous layer is fast and liquid-like. This may explain the accelerated 

initial reduction in surface area. As the shrinkage reaches a certain threshold value, the 

crystalline cores of the particle come in contact with each other in the neck region. 

Beyond this point, the diffusion mostly occurs along the grain boundaries, which is slow 
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and solid-like. This could account for the slow decline in surface area after about 25ps of 

the start of the simulation. 
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Figure IV.14 Surface area and Total volume of 3 nm anatase and rutile nanoparticles 
undergoing sintering at various starting temperatures calculated using the Meyer method. 
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IV.3.2 Model Predictions 

Using the surface area calculated by the Meyer method, the rate of change in surface 

area, da/dt, is computed and inserted into equation (IV.7) to solve for variation particle 

temperature with time. The heat capacity at constant volume, 

! 

c
v
, can be calculated 

directly from molecular simulation data using equation (IV.12), 

! 

c
v

=
dE

conf

dT
N ,V

          (IV.12) 

and the diffusivity, D, can be determined using equation (IV.1). The temperature profiles 

obtained by using 

! 

"
sv

 as a fitting parameter are reported in Figures IV.15 and IV.16 for 3 

nm anatase and rutile nanoparticle sintering with various starting temperatures ranging 

from 573 K to 2173 K. It is found that the fitted values of 

! 

"
sv

 vary between 0.2 and 

1.7J/m2. As the particle size decreases, the percentage of total atoms on the surface 

increases along with increase in surface curvature, thereby increasing the surface tension. 

Hence, the surface tension is expected to be higher for smaller particles when compared 

to the bulk. Also, it has been shown that as the temperature increases, the surface of the 

particles becomes more agitated and liquid-like, decreasing the surface tension and 

pushing it towards the liquid surface tension value (

! 

"
l
=0.38J/m2 (Ikemiya, Umemoto et 

al. 1993; Li and Ishigaki 2002)). This trend is observed in the fitted surface tension 

values for 3 nm TiO2 particle sintering. The fitted parameter has values close to the bulk 

solid surface tension at lower temperatures and as the temperature is increased towards 

the melting point of the particles, the fitted parameter approaches liquid surface tension 

values. This is graphically represented in Figure IV.17. Thus the overall trend in 

! 

"
sv

 is 

consistent with the picture - higher at lower temperatures and tending to the bulk liquid 
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value at higher temperatures. At this point, neither the peak in the fitted surface tension at 

about 1000 K for rutile and anatase, nor the shallow minimum at about 1200 K for 

anatase and at about 1800 K for rutile can be readily explained. The problem with 

inferring 

! 

"
sv

 from agreement with single simulation runs is that the variance in 

! 

"
sv

 is 

unknown. Computing the variance would require multiple simulations, which are 

currently beyond our computational capacity. It is interesting to note that the fitted 

surface tension are the correct order of magnitude, comparable to the reported (Ikemiya, 

Umemoto et al. 1993; Barnard, Zapol et al. 2005) surface tension for bulk TiO2 (see 

figure IV.17). This gives credibility to the use of the Meyer method to determine da/dt to 

be used in the model and thus, confirms the inapplicability of the Koch and Friedlander 

rate law to TiO2 nanoparticle sintering. 
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Figure IV.15 Temperature profiles obtained from molecular dynamics simulations (MD) 
and the model solutions of 3 nm anatase sintering with the starting temperatures of (a) 
573 K, (b) 973 K, (c) 1173 K and (d) 1473 K. 
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Figure IV.16 Temperature profiles obtained from molecular dynamics simulations (MD) 
and the model solutions of 3 nm rutile sintering with the starting temperatures of (a) 573 
K, (b) 973 K, (c) 1173 K and (d) 1473 K. 
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Figure IV.17 Fitted surface tension at various initial temperatures (3 nm anatase and 
rutile sintering). 
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IV.4 Conclusions 

The melting points of anatase and rutile nanoparticle calculated using molecular 

dynamics simulations exhibit the expected trend, showing considerable decrease in 

melting point as the particle size decreases. The calculations from simulations were very 

close to predictions made using the empirical formula developed by Buffat and Borel 

(Buffat and Borel 1976) at the particle size of 2.5 nm. For all other particle sizes (3-4 

nm), simulations predict higher values of melting temperature than that obtained from 

Buffat and Borel. The melting point of anatase is found to be lower than rutile at all sizes 

consistent with the Buffat and Borel correlation. 

The surface area of sintering 3 nm anatase and rutile nanoparticles is directly 

measured using the Meyer method to calculate da/dt. The fact that this measurement, 

when used in conjunction with the sintering model, gives better results than the Koch and 

Friedlander (Koch and Friedlander 1990) assumption of linear rate of surface area 

reduction suggests the Koch and Friedlander assumption may not be valid at the 

timescales and length scales under consideration. It has been shown (Lehtinen and 

Zachariah 2001) that the exclusion of heat release resulting from coalescence can lead to 

the break down of the Koch and Friedlander type coalescence model. The results 

obtained here corroborate this finding. The fact that anatase and rutile nanoparticles are 

crystalline and contain charged species seems to play an important role in the deviation of 

the simple Koch and Friedlander model for TiO2 nanoparticles. Also, the increased 

curvature of smaller particles needs to be considered for successful modeling of 

nanoparticle sintering. For example, Xing and Rosner (Xing and Rosner 1999) have 

produced results comparable to experiments by using a curvature-dependent solid state 



 90 

diffusion coefficient in their sintering model. By using the surface tension as the only 

fitted parameter to minimize the error, the sintering model predicts temperature rise 

during sintering within acceptable limits. The fitted surface tension values follow the 

correct trends with increase in temperature and were of comparable order of magnitude to 

those reported for bulk TiO2. 
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CHAPTER V 

 

WATER ADSORPTION ON TiO2 NANOPARTICLE SURFACE 

 

V.1 Introduction 

Nanoparticle-water interfaces are common occurrences in nature and in industrial 

environments. In the interfacial region, water properties and the structure of the 

nanoparticle both deviate from the characteristic bulk phases (Stumm 1992). This 

deviation of molecular behavior at the interface has been the impetus to various 

investigations directed at studying the solid-water interface. TiO2 nanoparticles are 

insoluble in water and found various photocatalytic and photovoltaic applications in the 

aqueous form as slurry or colloids (Ohtani, Okugawa et al. 1987; Augugliaro, Loddo et 

al. 1995). Molecular dynamics has proven to be an essential technique for the 

investigation of the fundamentals of adsorption at the atomic level. Most of these studies 

done using molecular dynamics have been directed towards studying water structure at 

planar surfaces (Cummings, Predota et al. 2002; Predota, Bandura et al. 2004; Predota, 

Zhang et al. 2004; Zhang, Fenter et al. 2004). Very few simulation attempts to examine 

water (or other liquid) adsorption at the surface of nanoparticles (Qin and Fichthorn 

2003; Ju 2005) are found in the literature. As shown for TiO2 nanoparticles in the 

preceding chapters, all nanoparticles generally have an extremely rough surface. Due to 

the rough surface, these nanoparticles cannot be considered to be perfectly spherical and 

the study of water adsorption at their surfaces thereby becomes more complex. In this 

chapter, the research work performed to study water orientation and structure at the 
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surface of anatase and rutile nanoparticle is described. The motivation behind this work is 

to understand the behavior of water molecules near the surface of TiO2 nanoparticles and 

the variation of their thermodynamic, structural and transport properties with nanoparticle 

size and environmental conditions. As rutile and anatase are more important polymorphs 

of TiO2, due to their large number of applications, brookite is not being considered in the 

study. 
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V.2 Simulation Details 

 

V.2.1 Forcefield Selection 

The Matsui-Akaogi forcefield (Matsui and Akaogi 1991) has been selected to describe 

the interactions between Ti and O ions. The details and advantages of this forcefield over 

the other reported forcefields for TiO2 have been listed in Chapter II. The forcefield 

parameters are listed in Table II.2. The Daresbury laboratory molecular dynamics 

simulation code, DL_POLY version 2.13 (Smith 1987; Smith and Forester 1996), has 

been used to perform all the simulations on a parallel architecture. 

 The SPC/E (Berendsen, Grigera et al. 1987) potential is used to model water 

molecules around the TiO2 nanoparticles. It is a three-site model with one negatively 

(

! 

q
OW

=-0.8476) and two positively (

! 

q
HW

=+0.4238) charged sites representing the O and H 

atoms in the water molecule, respectively. It can be written as 
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where 

! 

r
ij
 is the distance between i and j, and the other parameters are listed in Table V.1. 

The O-H distance in each water molecule is constrained to 1 Å and the H-O-H angle in 

each molecule is maintained at 109.47° by constraining the H-H distance to 1.633 Å. 

DL_POLY uses the SHAKE algorithm (Allen and Tildesley 1997; Frenkel and Smit 

2002) to maintain these constrained bonds at the above-mentioned equilibrium values. To 

model the interactions between the water molecules and the Ti and O ions in the 

nanoparticles we have used the ab initio derived interaction parameters reported by 

Bandura and Kubicki (Bandura and Kubicki 2003), which suggests that there is not 



 94 

interaction between ions and the water hydrogen atoms except for the electrostatic 

interactions. The interaction potentials describing the non-coulombic O-OW interactions, 

are considered to be the same as OW-OW interactions (see Table V.1). The Ti-OW non-

coulombic interactions are represented in a Buckingham form as follows, 

! 

U(r
ij
) = A

ij
exp "

r
ij

#
ij

$ 

% 
& & 
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( 
) ) "

C
ij

r
ij
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        (V.2) 

where 

! 

r
ij
 is the distance between i and j in  Å, 

! 

A
ij
=28593.02

! 

kcal

mol
, 

! 

"
ij
=0.265 Å and 

! 

C
ij
=148.00

! 

kcal

molÅ6
. 
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    Table V.1 SPC/E interaction parameters 
i-j 

! 

"
ij
 (kcal/mole) 

! 

"
ij
 ( Å) 

OW-OW 0.15539 3.5532 

OW-HW 0.000  

HW-HW 0.000  
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V.2.2 Simulation Method 

Constant temperature and constant pressure molecular dynamics simulations where 

carried out using DL_POLY version 2.13. DL_POLY uses Verlet’s leapfrog algorithm in 

conjunction with multiple timestep method to integrate Newton’s laws of motion over 

time. Each simulation considers a simulation box, which has periodic boundaries in the x, 

y and z-directions. The size of the box was chosen such that the interaction between the 

particle and its own image in the neighboring box is negligible. TiO2 nanoparticles are 

manufactured either by the dry process or the wet process. The solvent involved in the 

wet process is generally hydrothermal water (Cheng, Ma et al. 1995; Wu, Long et al. 

1999; Yang, Mei et al. 2000; Ovenstone 2001; Yang, Mei et al. 2001; Yang, Mei et al. 

2001; Yang, Mei et al. 2002; Yin, Li et al. 2002). Hence, the temperature of 523 K and 

pressure of 50 Kbar are chosen for simulating hydrothermal conditions (HT). For the 

simulations at room temperature and pressure (ambient), the values of 300 K and 1 bar 

are used. In order to generate the initial configuration file, the vacuum equilibrated 

nanoparticles obtained at the end of the vacuum simulations described in Chapter II are 

enclosed in a box and then the box is then filled with SPC/E water molecules using a 

utility provided with DL_POLY. The simulations are repeated for rutile and anatase 

nanoparticles of 2.5, 3.0 and 4.0 nm diameters at both HT and ambient conditions. For all 

simulations a timestep of 0.5fs is used and statistical data is collected every 2000 

timesteps. After an equilibration period of 250ps, data production runs of 750ps are 

conducted for all the simulations. The simulation of 4.0 nm rutile nanoparticle involves a 

system of 22869 atoms, while the simulation of 2.5 nm anatase nanoparticle is the 

smallest system under consideration containing 5499 atoms. The Ewald summation 
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method (Allen and Tildesley 1997; Frenkel and Smit 2002) is utilized for long-range 

corrections of electrostatic interactions. 
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V.3 Results and Discussion 

Figure V.1 gives a snapshot of a 3 nm rutile nanoparticle surrounded by water molecules. 

The simulation box contains 491 TiO2 units, each containing one Ti and two O ions, and 

2756 water molecules, each containing one O and two H atoms. 

 

V.3.1 X-ray Diffraction Patterns 

Figures V.2 and V.3 compare the simulated x-ray diffraction patterns of 2.5 and 3.0 nm 

anatase and rutile nanoparticles in vacuum, under hydrothermal conditions (HT) and at 

room temperature and pressure (ambient). The simulated X-ray diffraction patterns (see 

Appendix A) suggest that the nanoparticles do not undergo any phase transformations 

when immersed in water at HT or ambient conditions. The rutile (110) X-ray diffraction 

peak, observed at 

! 

2"=27.5°, is taller for the particles immersed in water than those in 

vacuum. Also, the height of rutile (220) peak (

! 

2"=55°) is higher for particle at ambient 

conditions than that particle in hydrothermal environment, which is in turn higher than 

that for particle in vacuum. Similarly, for anatase nanoparticles the higher order peaks 

become taller and narrower. This suggests that when TiO2 nanoparticles are immersed in 

water they undergo some degree of structural change. The nanoparticles in water at 

ambient conditions are more crystalline than those in water at HT, which are more 

crystalline than those in vacuum.  

 

V.3.2 Coordination Number Distributions 

Tables V.2 through V.5 show the percentage distributions of co-ordination numbers of Ti 

ions in 2.5 nm and 3.0 nm anatase and rutile particles under various conditions. The 
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percentages of 3, 4 and 7 coordinated Ti ions are relatively small in all cases. It can be 

observed that about 3 to 5% of Ti ions, which were 5-coordinated in vacuum, become 6-

coordinated when immersed in water. It should be noted that the coordination between Ti 

ions and the O atoms in the water molecules is not considered while calculating these 

coordination numbers for the Ti ions, in order to make them comparable to the vacuum 

calculations. As the coordination number of Ti ions in bulk anatase and rutile is six, these 

tables corroborate our previous conclusion that the nanoparticles are more crystalline in 

water than in vacuum. Calcite nanoparticles show greater crystallinity in water than in 

vacuum (Kerisit, Cooke et al. 2005).  Zhang and co-workers (Zhang, Gilbert et al. 2003) 

have also reported similar conclusions for ZnS nanoparticles in the same size range. 
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Figure V.1 Snapshot of 3 nm rutile nanoparticle in hydrothermal water (Cyan-Ti ion and 
Yellow-O ion; Red-Water oxygen; White-Water hydrogen) 
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Figure V.2 Simulated X-ray diffraction patterns of 2.5 nm (a) anatase and (b) rutile 
nanoparticles in vacuum, in hydrothermal water and in water at ambient conditions. 
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Figure V.3 Simulated X-ray diffraction patterns of 3.0 nm (a) anatase and (b) rutile 
nanoparticles in vacuum, in hydrothermal water and in water at ambient conditions. 
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Table V.2 Coordination number distributions of 2.5 nm anatase nanoparticle in vacuum 
and in water at hydrothermal and ambient conditions. 

Co-ordination # % in vacuum % at HT % at ambient conditions 

3 0.00 0.06 0.00 

4 11.67 11.90 11.60 

5 30.35 28.76 28.29 

6 57.59 58.52 58.94 

7 0.39 0.78 1.16 

 

 

 

Table V.3 Coordination number distributions of 2.5 nm rutile nanoparticle in vacuum and 
in water at hydrothermal and ambient conditions. 

Co-ordination # % in vacuum % at HT % at ambient conditions 

3 0.01 1.48 1.75 

4 11.06 12.73 11.51 

5 31.81 25.21 26.93 

6 56.75 60.17 59.79 

7 0.38 0.41 0.02 
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Table V.4 Coordination number distributions of 3.0 nm anatase nanoparticle in vacuum 
and in water at hydrothermal and ambient conditions. 

Co-ordination # % in vacuum % at HT % at ambient conditions 

3 0.01 0.09 0.24 

4 10.09 11.44 10.94 

5 27.41 21.78 21.32 

6 61.60 66.02 66.90 

7 0.89 0.68 0.60 

 

 
 
Table V.5 Coordination number distributions of 3.0 nm rutile nanoparticle in vacuum and 
in water at hydrothermal and ambient conditions.  

Co-ordination # % in vacuum % at HT % at ambient conditions 

3 0.01 0.21 0.20 

4 8.88 9.47 9.65 

5 25.36 23.00 22.86 

6 65.48 67.24 67.18 

7 0.27 0.08 0.11 
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V.3.3 Density profiles 

Figure V.4 shows the density profile of water at HT around the nanoparticle, with respect 

to the center of mass of the particle. There is no significant increase in water density 

around the particles suggesting that the particles are not strongly hydrophilic. The 

broadness of the density peak is due the fact that the surface of the nanoparticle is very 

rough. The rough nanoparticle surface also explains the apparent penetration of water 

molecule into the nanoparticle. Due to the rough nature of the nanoparticle surface, the 

density profile determined with respect to the center of mass of the nanoparticle cannot 

be compared to the water density profile near a planar surface. In fact, these profiles 

cannot be compared with each other with confidence as the surface roughness of the 

nanoparticles varies from particle to particle. 

 In order to better understand the arrangement of water molecules near the 

nanoparticle surface and to overcome the problem of surface roughness, we determine the 

water density with respect to the surface ions. Figure V.5 shows the number of water 

oxygens when calculated from the outermost Ti ions on the nanoparticle surface. Two 

distinct peaks of water oxygens are observed at 2.1 Å and 3.9 Å respectively. For all sizes 

of nanoparticles considered, the first peak for rutile is taller than the first peak for anatase 

and the second peak for anatase is taller than the second peak for rutile, in both ambient 

and hydrothermal conditions. Also, the peaks at ambient conditions are taller and 

narrower for the same size and phase of nanoparticles, suggesting stronger adsorption and 

better ordering as compared to the hydrothermal conditions. 

 Similarly, Figure V.6 shows the number of water hydrogens calculated from the 

outermost O ions on the nanoparticle surface. In the water hydrogen-surface O profiles, 
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two significant peaks are observed at 1.8 Å and 3.1 Å from the surface O ions. Again, the 

first peak is taller for rutile and second peak is taller for anatase particles of the same size. 

Since the relative positions of the surface Ti and O ions vary considerably across the 

rough nanoparticle surface, we cannot directly superimpose the oxygen and hydrogen 

profiles. In order to achieve this, we had to determine the water distribution profile from 

the nanoparticle surface without biasing between the surface Ti and O ions. Hence, we 

determined the three nearest surface ions (denoted as A, B and C) from each water 

molecule, and then calculated the minimum distance between the water molecules and 

the triangle defined by these three ions, referred to subsequently as the triangle ABC. 

Using these distances we plot the water distribution profiles shown in Figure V.7. The 

ordering of water molecules is prominent only in the first 6 Å from the nanoparticle 

surface, beyond which the oscillations quickly damp out. In all simulations, independent 

of size, phase and environmental conditions, three distinct water oxygen peaks are 

observed around the nanoparticles at 2.1 Å, 2.7 Å and 4.3 Å, respectively. It is also found 

that there are three hydrogen peaks are at 1.7 Å, 2.8 Å and ~5 Å. It may seem like there 

are three hydration shells surrounding the nanoparticles. But it is highly improbable for 

the first two oxygen peaks to be separated by a distance of only 0.6 Å. Hence, there are 

two hydration shells surrounding the TiO2 nanoparticles and the water molecules within 

this first hydration shell interact in two different ways with the nanoparticle surface 

depending upon the local environment, that is, depending upon whether it is relative close 

to a Ti ion or an O ion from the nanoparticle surface. Just by examining the heights of the 

water O-surface peaks, the orientational preference is inverted when conditions are 

changed from hydrothermal to ambient. The water molecules in the second hydration 
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shell are far enough from the nanoparticle to indicate any such multiple orientational 

preferences.  

In order to differentiate between the two orientations in the first hydration shell, 

we have defined different regions on the water distribution profile from the surface. All 

water molecules with oxygen atoms within the first minima (~2.5 Å) are considered to be 

in region 1, all those between the first and the second minima (~3.2 Å) are said to be in 

region 2. All water molecules with oxygen atoms between 3.2 Å and 5.7 Å from the 

surface, that is, in the second hydration shell, are referred to in region 3. 
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Figure V.4 Density profiles of water molecules around 3 nm and 4 nm anatase and rutile 
nanoparticles at hydrothermal conditions. 
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Figure V.5 Density profile of water oxygens from the surface Ti ions at hydrothermal and 
ambient conditions 
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Figure V.6 Density profile of water hydrogens from the surface O ions at hydrothermal 
and ambient conditions 
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Figure V.7 Density profiles of water H and water O from the nanoparticle surface 
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V.3.4 Water Coverage 

Water coverage has been defined as, 

! 

coverage =
Number of water molecules in the first hydration shell

Nanoparticle surface area
   (V.3) 

The solvent accessible surface area of the nanoparticles is calculated for all the 

simulations using the method proposed by Meyer (Meyer 1988). This method is chosen 

because it is simpler and computationally less intense and yet manages to give results 

comparable to more complex methods reported in the literature (Gavezzotti 1985; Perrot, 

Cheng et al. 1992; Legrand and Merz 1993). The details about calculating the surface 

area of the nanoparticle using the Meyer method have been reported in Chapter IV. By 

counting the number of water molecules within the first hydration shell, we can calculate 

the number of water molecules physically adsorbed on the nanoparticle surface. Knowing 

the solvent accessible surface area of the nanoparticles the water coverage is determined 

and plotted for various nanoparticle diameters in Figure V.8. The water coverage 

increases with increase in particle size for rutile and anatase nanoparticles and is always 

higher for rutile than anatase suggesting that rutile nanoparticles are slightly more 

hydrophilic than anatase nanoparticles at all particle sizes and environmental conditions. 

As the particle size increases, the percentage of Ti ions that are 6-coordinated also 

increases. Thus the larger particles have a higher percentage of crystallinity than the 

smaller ones. Also, the curvature of the surface decreases considerably with increase in 

particle size, tending more and more towards planar surfaces. The coverage is found 

comparable in magnitude to that of a rutile (110) surface under ambient conditions 

reported by Predota and coworkers (Predota, Bandura et al. 2004). 
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Figure V.8 Water coverage with changing particle diameter at hydrothermal and ambient 
conditions. 
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V.3.5 Water Residence Time 

In order to investigate the strength of water adsorption at the metal oxide nanoparticle 

surface, we calculated the time correlation function for the water molecules within the 

first hydration layer from the nanoparticle surface. The residence time correlation 

function is defined as (Impey, Madden et al. 1983), 

! 

R t( ) =
1

N
0

"
i
0( )"i

t( )
i=1

Nt

#         (V.4) 

where 

! 

N
0
,N

t
 are the number of water molecules within the first hydration layer from the 

surface at t=0 and t=t; and 

! 

"
i
t( )  is so defined that it equals 0 if the ith water molecule is 

not in the first hydration shell at time t and it equals 1 if the ith water molecule is in the 

first hydration shell at time t. The residence time correlation functions are plotted against 

simulation time in Figure V.9. It is clear that the particle size or phase does not affect the 

time correlation function significantly but the environmental conditions play a vital role 

in determining the strength of water adsorption. The residence time can be determined by 

integrating 

! 

R t( ) , 

! 

" = R t( )
0

#

$           (V.5) 

The approximate value of the residence time is obtained by fitting the time correlation 

function to an exponential function. 

! 

R t( ) " exp #
t
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& 
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) 
*          (V.6) 

The residence time of water molecules at the surface of TiO2 nanoparticles is found to be 

~500ps at ambient conditions and ~50ps under hydrothermal conditions. Thus, water 
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molecules stay at the surface about 10 times longer at ambient conditions than at HT and 

so they are strongly adsorbed on the surface at room temperature and pressure. 
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Figure V.9 Time correlation functions of anatase and rutile nanoparticles at ambient and 
hydrothermal conditions. 
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V.3.6 Water Orientation Distributions 

The orientation of a water molecule at an interface has frequently been discussed by 

considering four vectors bound to the water molecule (Jedlovszky, Vincze et al. 2002). 

These vectors are the dipole vector (

! 

r dp ), the normal vector (

! 

r 
n
), the vector joining the 

two hydrogen atoms of the water molecule (

! 

r 
HH

) and the vector from the oxygen atom 

towards any one of the two hydrogen atoms in the water molecule (

! 

r 
OH

). For a planar 

surface the orientation is characterized by the angles between these four vectors and the 

vector perpendicular to the planar surface, and are denoted by the Greek letters 

! 

" , 

! 

" , 

! 

"  

and 

! 

" , respectively. In order to account for the non-planar nature of the surface under 

consideration, these angles have been redefined as the angles between the four vectors 

bound to the water molecule (

! 

r dp,r n ,r HH ,r OH ), and the vector (

! 

r 
x
) originating from the 

oxygen atom in the water molecule and normal to the triangle ABC, formed by the three 

surface ions nearest to the water molecule under consideration. It should be noted that the 

vectors 

! 

r 
n
 and 

! 

r 
HH

 can be equally directed in two opposite directions unlike the vectors 

! 

r dp  and 

! 

r 
OH

, and there is no physical way of distinguishing between them. Hence, the 

angles 

! 

"  and 

! 

"  can only vary between 0° and 90°, while the angle 

! 

"  and 

! 

"  varies 

between 0° and 180°. In order to determine the orientational preference of the water 

molecules, the probability density functions of the cosines of the angles 

! 

" , 

! 

" , 

! 

"  and 

! 

"  

in the regions 1, 2 and 3 are determined. Note that cos 

! 

"  and cos 

! 

"  will lie between 0 

and 1, cos 

! 

"  and cos 

! 

"  will vary between -1 and 1. 
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Figure V.10 Probability density functions of angles 

! 

",#,$  and 

! 

"  for 3 nm rutile 
nanoparticle at hydrothermal conditions. 
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 Figure V.10 shows these probability density functions of angles 

! 

",#,$  and 

! 

"  for 

3 nm rutile in various regions at HT. As per the definitions of these regions (see section 

V.3.3), region 1 is the closest to the nanoparticle surface followed by region 2, which is 

then followed by region 3. It is found that all probability density functions show similar 

trends at all phase and sizes at HT.  

Region 1: 

 In this region the most preferred values of 

! 

" , 

! 

" , 

! 

" and 

! 

"  are 180°, 90°, 90° and 

127°, respectively. This indicates that the water molecules in this region are aligned in 

such a way that their dipole moment vector is almost parallel to the surface normal, with 

the oxygen being close to the surface and hydrogen atoms oriented away. The 

! 

r 
HH

 vector 

is also perpendicular to the surface normal confirming this arrangement. Thus, the region 

1 consists of water molecules that are interacting with the Ti ions on the nanoparticle 

surface. The schematic in Figure V.11 gives better interpretation of this orientation. 

Region 2: 

 In region 2, 

! 

" , 

! 

" and 

! 

"  are most likely to be 53°, 90° and 35°, respectively. The 

angle with the 

! 

r 
OH

 vector has high probabilities for two angles, namely, 0° and 109°. This 

indicates that the water molecules in region 2 have one of their 

! 

r 
OH

 vector aligned 

pointing towards the surface, parallel but opposite to the direction of the surface normal. 

The plane of the molecules is preferentially perpendicular to the surface. This is depicted 

as a schematic in Figure V.11. 
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Region 3: 

The probability density functions for all angles are almost flat in the region 3 inferring 

that there is no preferential orientation of the water molecules in this region, thereby 

indicating bulk-like behavior. 



 121 

 

 

 

 

 

Figure V.11 Schematic representation of preferred water orientations in Region 1 and 2. 
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 The probability density functions of angles 

! 

",#,$  and 

! 

"  for 3 nm rutile at 

ambient conditions are shown in Figure V.12. They indicate that at room temperature and 

pressure, the peaks are narrower and taller but their positions remain unchanged. This 

indicates that the orientations at ambient conditions are similar to HT in the various 

regions but the preference of these orientations over other possible ones is greatly 

enhanced. 
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Figure V.12 Probability density functions of angles 

! 

",#,$  and 

! 

"  for 3 nm rutile 
nanoparticle at ambient conditions. 
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V.3.7 Bivariate Plots 

Although the above mentioned probability distribution functions, give information about 

the preferential orientation of a single water molecule, their joint statistical distribution 

cannot be obtained from their individual distribution due to the fact that these angles are 

not mutually independent (Jedlovszky, Vincze et al. 2002). For example, angles 

! 

"  and 

! 

"  

can have some preferential values but we cannot say with certainty that these values 

appear simultaneously. Hence, in order to get independent molecular directions we define 

a new angle 

! 

" , as the angle between the vector 

! 

r 
n
 with the projection of the vector 

! 

r 
x
 in 

the plane containing the vectors 

! 

r 
n
 and 

! 

r 
HH

. The vectors 

! 

r dp , 

! 

r 
HH

 and 

! 

r 
n
 define the frame 

of reference. Uniform spatial distribution of water molecules in bulk water would lead to 

uniform distribution of the angle 

! 

"  and the cosine of the angle 

! 

" . Hence, joint 

probability distribution of 

! 

"  and cos

! 

"  would provide us information of molecular 

orientation with greater certainty (Jedlovszky, Vincze et al. 2002). These 

! 

P(cos",#)  

plots are referred to as bivariate joint distribution plots. The bivariate joint distributions in 

region 1, 2 and 3 for all considered simulations are calculated. The plots for 2.5 nm rutile, 

3.0 nm rutile, 3.0 nm anatase at ambient conditions, and 3.0 nm rutile at hydrothermal 

conditions are presented in Figures V.13, V.14, V.15 and V.16, respectively. Other plots 

are omitted for brevity. As all region 3 plots indicate uniform distributions, hence only 

one representative region 3 plot is included in Figure V.17. It should also be noted that 

the scale used for Figure V.17 is 10 times smaller than that used for other bivariate joint 

distribution plots reported here. 

 It is observed from Figure V.13 through V.16 that in region 1, the water 

molecules prefer a value of 

! 

"  to be 180° but no particular preference for 

! 

" . The plots of 
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region 2 shows that there is strong orientational preference for 

! 

"  and 

! 

"  to be ~53° and 

~90°, respectively in this region. This infers that water molecules are aligned with one of 

their hydrogen atoms pointed towards the surface with the 

! 

r 
OH

 perpendicular to the 

surface and the molecular normal being parallel to the surface. Thus, the water molecules 

in region 2 have stronger orientation preference than those in region 1. 

 Comparing Figures V.13 and V.14, it seems that the orientational distribution is 

not dependent on particle size. Similar conclusions can be drawn about the phase 

dependence of orientational distributions by comparing plots in Figures V.14 and V.15. 

Upon close examination of Figures V.14 and V.16, it can be found the orientational 

dependence in region 1 and 2 is enhanced when the environmental conditions are 

changed from hydrothermal to ambient. 
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 (a) 

 (b) 

Figure V.13 Bivariate plots for 2.5 nm rutile nanoparticle in water at ambient conditions: 
(a) Region 1, (b) Region 2. 
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 (a) 

 (b) 

Figure V.14 Bivariate plots for 3.0 nm rutile nanoparticle in water at ambient conditions: 
(a) Region 1, (b) Region 2. 
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 (a) 

 (b) 

Figure V.15 Bivariate plots for 3.0 nm anatase nanoparticle in water at ambient 
conditions: (a) Region 1, (b) Region 2. 
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 (a) 

 (b) 

Figure V.16 Bivariate plots for 3.0 nm rutile nanoparticle in water at hydrothermal 
conditions: (a) Region 1, (b) Region 2. 
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Figure V.17 Bivariate plots for 3.0 nm rutile nanoparticle in water at ambient conditions: 
Region 3. 
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V.4 Conclusions 

This research work investigated the adsorption of molecular water on the surfaces of 

anatase and rutile nanoparticles. It was found that the rutile nanoparticles were more 

hydrophilic than anatase nanoparticles of the same size, both at ambient conditions 

(T=300 K,P=1bar) and under hydrothermal conditions (T=523 K,P=50 Kbar). When 

nanoparticles are inserted in water, they undergo structural modification but no phase 

transformation occurs over the time scales accessible via molecular dynamics 

simulations. As a result of this modification, we do observe phase enhancement or greater 

crystallinity. This is indicated by a higher percentage of 6-coordinated Ti ions in the 

nanoparticle in water and taller/narrower peaks in the simulated X-ray diffraction pattern. 

The number of water molecules per unit surface area of the nanoparticles (coverage) 

increased with the size of the nanoparticles and with the percentage crystallinity of the 

particle. The coverage for rutile is always greater than anatase nanoparticle of the same 

size, corroborating our previous conclusion. Also, the water molecules are more strongly 

adsorbed on the nanoparticle surface at room temperature than under hydrothermal 

conditions. 

Two hydration layers were found to be present around the nanoparticles. The first 

hydration layer has water molecules with two distinctly different orientation preferences. 

No such orientational preference is observed in the second hydration layer. The 

interactions between the water molecules in the first hydration layer and the nanoparticle 

surface are dependent on the local environment of the water molecule under 

consideration, that is, its proximity to a Ti or O surface ion. The bivariate joint 

distribution plots also depict the probabilistic preferences of these two orientations. 
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CHAPTER VI 

 

PHASE TRANSFORMATIONS DURING TiO2 NANOPARTICLE SINTERING 

 

VI.1 Introduction 

Phase transformation in TiO2 has been extensively studied from both scientific and 

technological points of view (Kumar, Keizer et al. 1992; Cerrato, Marchese et al. 1993; 

Kumar 1995; Ahn, Park et al. 1998; Suresh, Biju et al. 1998; Nair, Nair et al. 1999; 

Gouma and Mills 2001; Lu, Zhang et al. 2003; Hu, Tsai et al. 2003-a; Borkar and 

Dharwadkar 2004; Kim, Kim et al. 2005; Machado and Santana 2005; Bakardjieva, 

Stengl et al. 2006). TiO2 occurs naturally in rutile, anatase and brookite crystal phases or 

polymorphs. Rutile is the only stable phase in the bulk form, and bulk brookite and 

anatase are metastable and transform irreversibly to rutile upon heating. But it has been 

argued often that the phase stability is different at the nanoscale. Anatase is the reported 

stable phase when the particle size is only few nanometers. Many attempts have been 

made to understand and control the anatase to rutile transition as these phases have 

extremely different physical properties in the nanometer range. For example, nanoanatase 

is more photocatalytically active than nanorutile (Wahi, Yu et al. 2005; Panpranot, 

Kontapakdee et al. 2006). Hence, it is necessary to maintain the anatase phase by 

preventing its transition to rutile in order to sustain high photocatalytic activity over long 

periods of time. 

 Numerous factors have been found to affect the anatase to rutile transition. Reidy 

and coworkers (Reidy, Holmes et al. 2006) have reported that dopants like Co, Mn and V 



 133 

assist the anatase-to-rutile transition, while dopants like Si, Zr and Al have the opposite 

effect and help maintain the anatase phase even at elevated temperatures. Similar 

reductions in the activation energy required for the anatase to rutile transition have been 

reported for various dopants by Borkar and Dharwadkar (Borkar and Dharwadkar 2004). 

The anatase to rutile transformation is reported to be enhanced with decrease in pH value 

(Suresh, Biju et al. 1998), which is believed to be due to the contributions from an 

intermediate brookite phase (Hu, Tsai et al. 2003-a; Hu, Tsai et al. 2003-b). Surface 

effects also decide the anatase to rutile critical diameter (Barnard, Saponjic et al. 2005). 

 Apart from the chemical environment, particle size has been suggested as one of 

the most significant factors to control the phase stability of TiO2 nanoparticles. It is 

believed that the main reason for transformation of anatase particles to rutile upon 

heating is the increase in particle size during to enhanced sintering at increased 

temperatures. Recently, Zhang and Banfield (Zhang and Banfield 2000) reported from 

their experimental analysis that anatase is most thermodynamically stable at size less than 

11 nm, brookite is most stable for crystal sizes between 11 and 35 nm, and rutile is most 

stable at sizes greater than 35 nm. Thus, brookite would directly transform to rutile while 

anatase may either transform directly to rutile or to brookite and then to rutile. Ranade 

and coworkers (Ranade, Navrotsky et al. 2002) calculated from their experiments the 

enthalpy relative to bulk rutile calculated at 298K, for rutile, anatase and brookite with 

varying surface areas (shown in Figure VI.1 (Ranade, Navrotsky et al. 2002; Navrotsky 

2003)). Their results also agree with conclusions drawn by Zhang and Banfield. Similar 

results are obtained by using molecular dynamics simulations at 300 K in vacuum by 

Naicker and coworkers (Naicker, Cummings et al. 2005) and are shown in Figure VI.2. 
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They reported a crossover of phase stability at ~2.5 nm at 300 K in vacuum. Barnard and 

coworkers (Barnard, Zapol et al. 2005) also provided evidence via their ab initio 

calculations that the crossover diameter is smaller for particles in vacuum than those in 

water, as shown in Figure VI.3. and the consideration of the appropriate surface 

passivation of nanocrystal surfaces is necessary to accurately predict the size dependence 

of the anatase-to-rutile phase transistion 
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Figure VI.1 Enthapies w.r.t bulk rutile of rutile, anatase and brookite with varying surface 
area. 
 
 
 

 

Figure VI.2 Energy of particles relative to bulk rutile as a function of surface area at 300 
K from molecular dynamics simulations. 
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Figure VI.3 Free energy as a function of number of TiO2 units for anatase and rutile in (a) 
vacuum and (b) water. 
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VI.2.1 Insight from Prior Simulations 

An analysis of molecular dynamics simulation results, similar to those conducted by 

Naicker et. al. can be performed using the data generated from the simulations discussed 

in Chapter IV at 573 K. The results obtained are depicted in Figure VI.4. A linear 

increase in potential energy with increase in surface area (decrease in particle size) is 

observed. Upon extrapolation, a crossover size of ~1.7 nm can be estimated. In other 

words, nanoparticles smaller than ~1.7 nm have anatase as their most stable phase at 573 

K in vacuum. Comparing these results to those obtained by Naicker et. al., it is evident 

that as the temperature is increased the crossover diameter for phase stability decreases. 

Thus, at higher temperatures even smaller particles will be stable as rutile.  

 Figure VI.5 shows the variation in potential energy of 3 nm nanoparticles as the 

temperature is increased. The temperatures considered are comparable to the 

temperatures prevailing in the flame reactor during manufacturing of TiO2 using the 

“chloride” process. It is observed that the gap between anatase and rutile increases with 

temperature thereby increasing the relative stability of rutile. 

 No phase transformations were observed in the simulations at higher temperatures 

of single particles as reported in Chapter IV. In Chapter III, sintering between like-phased 

nanoparticles were considered and no phase transformations were observed over the time 

scales considered. In this chapter, sintering between 3 nm particles of different phases is 

considered to examine possibility of phase transformation. 



 138 

 

 

 

 

 

12

14

16

18

20

22

24

26

28

2 10
4

3 10
4

4 10
4

5 10
4

6 10
4

Anatase
Rutile

P
o
te

n
ti

a
l 

E
n

er
g
y
 r

el
a
ti

v
e

 t
o
 b

u
lk

 r
u

ti
le

 (
k

ca
l/

m
o
l)

Surface area(m
2
/mol)  

Figure VI.4 Energy of particles relative to bulk rutile as a function of surface area at 1473 
K. 



 139 

 

 

 

 

 

25

30

35

40

45

50

1400 1500 1600 1700 1800 1900 2000 2100

Anatase

Rutile

Amorphous

P
o

te
n

ti
a

l 
E

n
er

g
y

 r
el

a
ti

v
e

to
 b

u
lk

 r
u

ti
le

 (
k

ca
l/

m
o

l)

Temperature(K)

3
n

m
 A

n
a
ta

se

m
el

ti
n

g
 p

o
in

t

 

Figure VI.5 Variation of energy w.r.t bulk rutile of 3 nm anatase, rutile and amorphous 
particles. 
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VI.2 Simulation Details 

 

VI.2.1 Forcefield Selection 

The Matsui-Akaogi forcefield (Matsui and Akaogi 1991) has been selected to describe 

the interactions between Ti and O ions. The details and advantages of this forcefield over 

the other reported forcefields for TiO2 have been listed in Chapter II. The forcefield 

parameters are listed in Table II.2. The Daresbury laboratory molecular dynamics 

simulation code, DL_POLY version 2.13 (Smith 1987; Smith and Forester 1996) has 

been used to perform all the simulations on a parallel architecture. 

 

VI.2.2 Methodology 

The simulation method used is exactly similar to that described in chapter III. The only 

difference is that the particles considered in the simulation are of different phases. The 

gap between the particles at the beginning of the simulation is 1 nm. All the Ti and O 

ions are considered for long-range force calculations. No periodic boundary conditions 

are used. The simulations are performed with constant volume and constant energy. The 

following combinations are considered: 

 (a) One 3 nm anatase + one 3 nm rutile starting at 1473 K, 

 (b) One 3 nm amorphous + one 3 nm rutile starting at 1473 K 

 (c) One 3 nm anatase + one 3 nm amorphous + one 3 nm rutile starting at 1473 K 

 (d) One 3 nm anatase + one 3 nm amorphous starting at 1473 K 

 (e) Various combinations at a lower temperature of 973 K 
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 Simulated X-ray diffraction patterns are used to detect any possible phase 

transformations occurring during the sintering process. All simulations are conducted for 

extended times of at least 10ns. 
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VI.3 Results and Discussion 

The temperature and potential energy of the various simulation systems are plotted 

against time in Figures VI.6 and VI.7, respectively. 

 

VI.3.1 Anatase + Rutile 

It is observed that the temperature increases initially to about 1600 K and then after about 

4.5ns there is another temperature jump by ~100 K. As the sintering process continues, a 

rutile front is observed to be moving into the anatase nanoparticle. A gradual anatase to 

rutile transformation is depicted in the simulation snapshots shown in Figure VI.9. The 

X-ray diffraction patterns at various time intervals also suggest that the rutile phase is 

becoming predominant as the sintering progresses. Thus, it is believed that if the 

simulations are continued for very long periods of time a single rutile particle will be 

obtained. 

 

VI.3.2 Rutile + Amorphous 

The amorphous nanoparticle required for this case is obtained by heating a 3 nm rutile 

particle to 3000 K and then cooling it back to 1473 K. Upon heating at 3000 K, complete 

melting occurs and the crystal structure is totally lost. Cooling back to 1473 K, gives an 

amorphous solid TiO2 nanoparticle. During the course of the sintering simulation, the 

temperature gradually rises to 1700 K in about 5ns and then remains constant. A 

corresponding decrease in potential energy to about -884kcal/mol is observed. The 

increase in height of the peaks in the X-ray diffraction patterns indicates that the 

amorphous particle, after necking with the rutile particle, gradually undergoes a slow 
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phase transformation to rutile. Again, the final phase at the end of 10ns is rutile. X-ray 

diffraction patterns and snapshots can be found in Figure VI.10 and VI.11, respectively. 

 

VI.3.3 Anatase + Amorphous + Rutile 

Three 3 nm TiO2 nanoparticles are placed at the vertices of an equilateral triangle to 

obtain the initial configuration required for this case. As the simulation proceeds, all 

particles neck with the other two particles in the system and the thickness of the neck 

gradually increases. The temperature of the system increases sharply and reaches a value 

above the melting point of anatase in about 2ns. Both the amorphous and the anatase 

particles have been found to undergo phase transformation to rutile. The final 

agglomerate obtained at the end of 10ns is rutile. From the snapshots in Figure VI.13, it 

can be observed that the final agglomerate contains two unequally sized grains of rutile. 

The transformation of the amorphous particle to rutile is faster than that of the anatase 

particle. X-ray diffraction patterns and simulation snapshots are shown in Figure VI.12. 
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VI.3.4 Anatase + Amorphous 

All simulations discussed thus far had a 3 nm rutile particle present in the system, with 

rutile being the most stable phase at high temperatures, the final agglomerate obtained in 

all the simulations has been rutile. In this simulation, no rutile phase is present at the 

system at the beginning. The particles attract each other, form a neck and gradual 

broadening of the neck occurs. The temperature of the system increases and stays at 

~1600 K for about 4ns and then increases again to close to the melting point of anatase. It 

is found from the simulated X-ray diffraction patterns (see Figure VI.14) that the 

agglomerate formed at the end of 8ns is crystalline (as seen in snapshots in Figure VI.15) 

and is neither anatase nor rutile. From the positioning of the X-ray diffraction peaks, the 

crystal phase is found to be brookite. Also, the temperature of the system does appear to 

be increasing even after 9ns. Thus, if run for longer periods of time another phase 

transformation may be observed but it is beyond the scope of the simulations reported 

here. To our knowledge, this is the first observed phase transformation from anatase to 

brookite via molecular dynamics simulations. 

 It should be noted that the O ions are not shown in all the simulation snapshots in 

Figures VI.9, VI.11, VI.13 and VI.15 for clarity. The rutile nanoparticle is colored 

orange, anatase is blue and amorphous particle is represented in green. 

  



 145 

VI.3.5 Lower Temperature Simulations 

All the above-mentioned sets of simulations were repeated at a lower starting temperature 

of 973 K. In all the lower temperature cases, the particles connected and formed necks. 

The system temperatures increased to about 1100 K but no phase transformation was 

observed over the timescales considered. The fact that the maximum system temperature 

is well below the melting point of 3 nm anatase is responsible for no observable phase 

transformation in simulations with lower starting temperatures. 
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Figure VI.6 Temperature versus time for various sintering simulations. 
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Figure VI.7 Energy profiles of various sintering simulations. 
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Figure VI.8 Simulated X-ray diffraction patterns of anatase + rutile nanoparticle sintering 
with starting temperature 1473 K. 
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Figure VI.9 Snapshots of 3 nm anatase + 3 nm rutile sintering simulation. 
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Figure VI.10 Simulated X-ray diffraction patterns of rutile + amorphous nanoparticle 
sintering with starting temperature 1473 K. 
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Figure VI.11 Snapshots of 3 nm rutile + 3 nm amorphous sintering simulation. 
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Figure VI.12 Simulated X-ray diffraction patterns of anatase + amorphous + rutile 
nanoparticle sintering with starting temperature 1473 K. 
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Figure VI.13 Snapshots of 3 nm anatase + 3 nm amorphous + 3 nm rutile sintering 
simulation. 
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Figure VI.14 Simulated X-ray diffraction patterns of anatase + amorphous nanoparticle 
sintering with starting temperature 1473 K. 
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Figure VI.15 Snapshots of 3 nm anatase + 3 nm amorphous sintering simulation with a 
starting temperature of 1473 K. 
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VI.4 Conclusions 

Phase stability of TiO2 nanoparticles is different from bulk TiO2. Anatase is the most 

stable form in the nanoform, while rutile is the most stable in the bulk. Factors like the 

chemical environment and the particle size have a huge influence on the phase stability 

criterion. Zhang and Banfield (Zhang and Banfield 1998) showed that particles smaller 

than 11 nm were stable as anatase. But it is found that this critical diameter is smaller in 

vacuum and becomes smaller with increase in temperature. In other words, rutile is the 

most stable phase in vacuum at higher temperatures. 

 Various sintering simulations with different phases were carried out with a 

starting temperature of 1473 K. All simulations showed a drop in potential energy and 

increase in system temperature. If one of the sintering particles is rutile, the final phase of 

the agglomerate formed is found to be rutile. For the anatase + amorphous simulation, the 

final phase at the end of 10ns was found to be brookite. It is believed that if this 

simulation is run for very long time periods, a brookite-to-rutile phase transformation 

may be observed. These appear to be the first observed phase transformations during 

nanoparticle sintering reported in the literature using molecular dynamics simulations. 

Although incomplete anatase to rutile transformations during fast sintering of 100nm 

particles have been experimentally observed (Bykov, Gusev et al. 1995). As reported by 

Rhee and coworkers in the case of Si3N4 particles (Rhee, Lee et al. 2000), the enhanced 

ionic mobility during sintering of nanoparticles plays an important role in the phase 

transitions. 

No such phase transformations were observed in the simulations carried out with 

a lower starting temperature over the timescales considered (10ns). The system 
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temperatures are remote from the melting point of 3 nm anatase unlike the simulations 

carried out with the starting temperatures of 1473 K. In fact, this proximity to melting 

point is believed to enhance the phase transformations. 
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CHAPTER VII 

 

SUMMARY AND FUTURE WORK 

 

VII.1 Summary 

In the research work reported here, various aspects of TiO2 nanoparticles, especially 

anatase and rutile nanoparticles, have been studied using molecular dynamics 

simulations. In Chapter III, the phenomenon of sintering of anatase and rutile 

nanoparticles is examined from atomic point of view. It is found that the initial stages of 

the sintering phenomena are very rapid and highly dependent on particle orientation. This 

research has been published in the Journal of Physical Chemistry B (Koparde and 

Cummings 2005). In Chapter IV, the applicability of phenomenological models 

developed in the past for micron-sized particle sintering to TiO2 nanoparticle sintering 

has been examined. The fact that about 35-45% of the total ions of the nanoparticles 

reside in the surface layer is found to be very vital and hence, a linear rate law cannot 

successfully model area reduction during nanoparticle sintering. The phenomenon of 

“melting point depression” is examined for TiO2 nanoparticles using molecular dynamics 

simulations to corroborate the argument that the ionic diffusion occurring during 

sintering is solid-state diffusion. The results shown in Chapter IV have been submitted to 

the Journal of Material Chemistry for publication. 

 In Chapter V, the orientational preference of water molecules on the surface of 

TiO2 nanoparticles was determined. The water molecules in the first hydration layer are 

found to have two preferred orientations. The probabilistic analysis of the water 
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orientations and their variations with particle size and phase has been compiled into a 

manuscript, which is being submitted to the Journal of Physical Chemistry B. In Chapter 

VI, the phase transformations occurring during the sintering of nanoparticles of different 

phases were studied using simulated X-ray diffraction patterns (see Appendix A). These 

are probably the first phase transformations at nanoscale, observed using molecular 

dynamics simulations. A manuscript with the results reported in Chapter VI is currently 

being prepared for Nanoletters. 

 

VII.2 Possible Directions for Future Work 

The results from Chapter III suggest that the stages before the advent of nanoparticle 

sintering can be modeled as a macroscopic phenomenon using spheres with fluctuating 

dipole moments as nanoparticles. More research can be focused in the future to examine 

this possibility. It has been shown in Chapter IV, that a considerable percentage of ions of 

the nanoparticles are on the surface. Hence, it may be a good idea to model the surface 

ions differently than those in the nanoparticle core. Ab initio methods could be combined 

with classical molecular dynamics methods to improve the quality of the interaction 

potentials. The Matsui-Akaogi forcefield (Matsui and Akaogi 1991) used in this research 

under-predicts the anatase-to-rutile critical diameter by a factor of ~4. The fact that the 

surface ions of the nanoparticle have the same charge as the ions in the core of the 

nanoparticle may be affecting the phase stability. Hence, a possible solution could be to 

direct more effects to develop an ab initio-derived variable-charge potential, which can 

be applied to the nanoparticles. As phase transformations have been observed in vacuum 

simulations of nano-TiO2, it may be possible to examine for such phase transformations 
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in aqueous environment in the future. As water is the medium for most photocatalytic 

applications of nano-TiO2 and photoactivity is extremely phase-dependent, these studies 

will prove to be of great importance. 

 Upon development of applicable forcefields, similar attempts of modeling 

nanoparticles in vacuum and aqueous environments; and studies of phase transformations 

at the nanoscale can be performed for other environmentally abundant metal-oxide 

nanoparticles such as manganese oxides, tin oxides and zirconium oxides. 
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APPENDIX A 

 

DETERMINATION OF SIMULATED X-RAY DIFFRACTION DATA 

 

X-ray diffraction is a technique used for determination of crystal structure. X-rays are 

generated by bombarding a metal target (generally copper) with high-energy electrons in 

vacuum. The bombardment excites the electrons in copper, which upon relaxation release 

photons forming the X-rays. These X-rays can then be directed on to the sample whose 

crystal structure is to be determined. Most of the X-rays pass through the sample, but 

some of them are diffracted either constructively or destructively resulting in a pattern, 

which can be used to calculate the lattice parameters of the crystal. The fact that the 

wavelength of X-rays is comparable to inter-atomic distances in a variety of crystals is 

the main reason for the success of this technique.  

 As the number of electrons and the size of the atomic orbitals vary from atom to 

atom, different atoms have different scattering efficiencies, which are quantified using 

the scattering factor, f, as follows (McQuarrie and Simon 1998), 

! 

f = 4" # r( )
sinkr

kr
r
2

dr
0

$

%         (A.1) 

where r is the distance from the center of the atom to the volume element, 

! 

" r( ) is the 

spherically symmetric electron number density, 

! 

k = 4" /#( )sin$ , where 

! 

"  is the 

scattering angle and 

! 

"  is the wavelength of X-ray radiation. Cromer and Mann (Cromer 

and Mann 1968) computed from numerical ab initio data the scattering factors for various 

neutral atoms and ions, and fitted it to the analytical form, 
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 In molecular dynamics simulations, the positions of every atom can be determined 

at every timestep. These can be reported to a file after a certain user-defined time 

interval. Using these atomic coordinates, the X-ray diffraction pattern can be determined 

by utilizing the Debye function (Debye 1915) for total scattering intensity as described by 

Gnutzmann and Vogel (Gnutzmann and Vogel 1990), 

! 

I
N
b( ) = f

n
b( ) fm b( )

sin 2"br
nm( )

2"br
nmm=1(m#n )

N

$
n=1

N

$       (A.3) 

where 

! 

f
n
b( )  and 

! 

f
m
b( )  are the atomic scattering factors of atoms n and m, respectively. 

They are calculated using the data generated by Cromer and Mann. 

! 

r
nm

 is the distance 

between the atoms n and m; 

! 

b = 2sin" /#  is the length vector in the reciprocal space; 

! 

"  is 

the wavelength and 

! 

"  is the Bragg angle. In the simulated X-ray diffraction patterns 

reported in this work, the value of 

! 

"  is taken as that of CuK

! 

"  radiation (1.5418 Å). The 

absolute value of I is not important but its relative variation with the scattering angle 

gives as the cumulative X-ray diffraction pattern of the N atoms. 
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