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CHAPTER I

INTRODUCTION

Secure multi-party computation (SMC) [1], which is also referred to as Secure Function

Evaluation (SFE) [2], focuses on solving the problem of how two or multiple parties can

jointly compute a function over their inputs without revealing their own private input. A

famous instance of the secure computation is the millionaires problem [3]. In this situation,

two millionaires want to know who is richer while keep the other from knowing their own

worth. In this thesis, we introduce a strategy to simplify the implementation of secure

computation protocols based on the increasingly popular garbled circuits technique. This

chapter elaborates on the motivation and provides a high-level overview of the solution.

I.1 Motivation

Technically, secure multi-party computation problem focuses on ”how to compute any

probabilistic function on any input, in a distributed network where each participant holds

one of the inputs, ensuring independence of the inputs, correctness of the computation, and

that no more information is revealed to a participant in the computation than can be inferred

from that participants input and output” [4].

A garbled circuit [5] (GC) is one of main approaches for solving SMC problem. Infor-

mally, GCs transform arbitrary functions into secure functions by representing the function

as a logic binary circuit which has the desired computation functionality. GCs have been

operationalized through various numerous implementations, each of which are engineered

to share the features that (1) build a computation framework, realized in an engine that exe-

cutes secure protocols, and (2) enable developers to design custom protocols by transform-
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ing the functionality into a logic circuit representation. At the same time, each framework

has its unique way of representing the logic circuit in operational code.

The logic circuit that represents certain computational functionality is determined by

the functionality only, which is independent of the secure computation framework. How-

ever, when implementing the circuit functionality in code, the transformation from circuits

to codes is specific to particular programming language and the construction of the frame-

work. This becomes a problem when we want to execute the same GC across a variety

of frameworks. More specifically, this problem arises because we need to write different

codes for the same circuit to satisfy the implementation requirements of disparate frame-

works. This problem is escalating in concern an increasing number of implementation

are being introduced , such that simple existing GC code may not be sufficient for future

compilation and (2) writing circuit codes is hard and debugging the code is complicated,

considering that the developers may have to use a language they do not even know, or de-

velopers have to spend a lot of time in learning how the framework is built and execute the

secure protocols.

This thesis is motivated by the need for a framework-independent approach to GC spec-

ification. Instead of writing codes for each framework, we propose designing and imple-

menting a generic circuit representation in a manner that (1) is tailored to GCs and has

a comprehensive vocabulary that it is capable of representing everything associated with

a logic circuit, such as circuit components and wires, (2) is feasible for transformations

from GCs into codes that work in frameworks to execute computation functionality GCs

represent, and (3) has the flexibility to be extended and customized so that its generic rep-

resentation meets the future requirements.
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Figure I.1: An architectural diagram of the system. DSML is the first step to specify
GC model design rules and configure the development environment. GC models can be
designed in this environment and models can be put into an database as a library. GC
models are transformed into working codes with given interpreters.

I.2 Goal

In this thesis, we design a generic approach to represent GCs in a domain specific

modeling language (DSML) [6] way. In doing so, the GC model will be transferable to

automatically generated code that is amenable to the corresponding secure computation

frameworks. The procedure of the system is demonstrated in Figure I.1. The generic

specification of GCs, namely DSML, automatically generates a development environment,

which could be graphical or textual. Such an environment can enable developers to design

their own custom-defined GC models. Meanwhile, we can also provide a circuit library

for reference and reuse during the development. During the transformation process, inter-

preters accept data from GC models and automatically generates corresponding working

codes.
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Given the feasibility and convenience of implementation, we use the Generic Modeling

Environment (GME) [7] as the tool for circuit DSML-based circuit design. We build a

circuit library which covers circuits with a wide range of computational functionality and

show that: (1) our generic approach is capable of representing most commonly used circuits

in secure computation and (2) users may take advantage of the library to design their own

custom-defined circuit.

We also choose a GC implementation, FastGC, and implement its interpreter to demon-

strate the capability of our circuit DSML in automatically generating codes. We test the

generated codes by comparing and replacing with their target codes to verify the correct-

ness of the interpreter.
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CHAPTER II

PRELIMINARIES

This chapter specifically discusses significant concepts used in our approaches. We

first present a quick overview of GCs, which is followed by a review of its recent im-

plementations. Then we introduce the notion of a domain specific language (DSML), a

special-purpose language which is applied to GCs specifications here.

II.1 Garbled Circuits

GCs were introduced as a solution to the two-party secure computation problem [5].

These were based on the assumption that function would be securely computed under a

semi-honest model 1 [9]. Yao’s construction presents a constant-round 2 protocol which

is independent of the number of inputs or the size of the circuit for secure computation

of any function in the semi-honest model [10]. This technique is based on modeling the

functionality as a logic circuit composed of binary gates and encrypting the result tables.

Figure II.1 shows an example of a logic circuit that computes the hamming distance

of two l-bit binary integers and outputs a result of k-bit binary integer. The hamming

distance between two binary integers is the number of positions at which the corresponding

digit from two integers are different. In this circuit design, there are L XOR gates in a

parallel fashion. Each XOR gate receives a digit from both of the integers participating in

computation at the same corresponding position. The XOR gate can compare whether the

1In a semi-honest model, each participant is assumed to execute the protocol properly with the exception
that it keeps a record of all its intermediate computations and derives other parties private inputs from the
record [8].

2A constant-round protocol means that the secure functions computation can be completed in a constant
number of rounds.
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Figure II.1: An illustration of the logic circuit for the hamming distance which is composed
by a number of XOR gates and a Counter. XOR gates compare each bit pair from two
integers which are at the same position. The Counter counts the number of positions where
the corresponding bit from the two integers are different.

two digits are the same and output 1 if they are different. The Counter counts the number

of 1s’ from the XOR output and return the final result.

In this technique, the computation function must be converted into a logic circuit. Our

work in this thesis focuses on representing the logic circuit in a generic way, so that circuit

codes working in secure frameworks can be automatically generated with the correspond-

ing interpreters, which facilitates the conversion process.

II.2 Garbled Circuit Implementations

GCs show great practical significance with recent implementation of generic secure

computation frameworks that build on this technique. Examples include (1) Fairplay [11]

which is a secure two-party computation system that applies GCs for constructing secure

computation protocols, (2) FastGC [12] which shows that generic protocols for secure com-

putation can scale to handle large circuits or input sizes and be competitive with special-

purpose protocols, and (3) ABY [13] which allows pre-computation of almost all cryp-

tographic operations. ABY works like a virtual machine that abstracts the underlying se-

6



cure computation protocols and provides efficient conversions between secure computation

schemes.

Other than the above implementations aimed at implementing a platform for secure

computation, there are some projects that work on the facilitation of functionality imple-

mentation so that GCs can be easily transformed into code that executes on these secure

platforms. Rastogi and colleagues [14] introduced Wysteria, a high-level programming

language for writing secure multiparty computations. ObliVM program [15] provides an

user-friendly programming framework, a source language in which programs written will

be compiled into concise circuits. In this thesis, we present our approaches in facilitating

the implementation by domain model design and interpretation.

II.3 Domain Specific Modeling Language

Domain specific modeling languages (DSMLs) are a methodology for designing and

developing systems in software engineering. A DSML refers to a modeling language that

offers notations and concepts that can be directly manipulated by a domain expert to trans-

form a solution into a model [6, 16]. The abstract syntax of a DSML is usually defined by a

meta-model which describes the concepts of the language, the relationships between them,

and the structuring rules that constraint the model elements and their combinations in order

to respect the domain rules [17].

A DSML is a special-purpose language designed to solve a particular range of problems

[18]. Widely-known examples include HTML which represents the layout of Web pages

and SQL which queries and updates databases. It simplifies a large problem so that a

programmer can identify a language that efficiently expresses that class of problems. In

this way, we connect the vocabulary in the language with the final environment in which

the problem is solved.
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DSMLs make people focus just on the unique functionality, the differences between

the various features, free from wasting time and effort in re-implementing similar func-

tionality. Typically, a DSML has the following advantages [19]: (1) DSML is better suited

for requirements engineering because users with the domain expertise can better under-

stand the models, (2) They have restricted semantic scope, such that we only define what

we need and thus control the complexity, and (3) They increase domain specific reuse of

components, which improves the quality of systems.

II.3.1 Advantages of DSML On GC Specification

We prefer a DSML to an electronic design automation (EDA) 3 tools [20] which are

usually used in integrated circuit design in industry because (1) these tools typically focus

on industries generating integrated and printed circuit boards, not on logic circuit design,

and (2) the number of components and connections in a GC is not fixed. For instance,

in Figure II.1 as instance, there are a number of L XOR gates whereas L is a variable,

which means that EDA tools can not specify a GC by listing each and every subcircuit and

wire. We specify the circuit for automatically generating codes while EDA tools are used

to design and analyze circuits.

Furthermore, we apply DSMLs for GC specification under the following considera-

tions:

1. They provide the flexibility to specify the components and connections in the cir-

cuit even though their number is variable. They are capable and comprehensive for

representing the GCs commonly invoked in secure computation.

2. They control the scalability of garble circuit specification. We can keep our language

and tool compact, minimizing unnecessary modules irrelevant to GCs.

3Electronic design automation is a category of software tools for designing electronic systems.
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3. They provide better extendability for further requirements in the future. Our generic

circuit language is oriented to a multiple of secure computation frameworks, each of

which may have own unique requirements.

II.4 Summary

This chapter provided a technical introduction to GCs, its current implementations, and

applications. We illustrated the concept of a GC with an example and provided justification

for designing domain specific modeling languages for their representation.
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CHAPTER III

DSML DESIGN APPROACHES

In this chapter, we introduce our approaches for designing a GC modeling language. We

begin with the design including the goals, assumptions and patterns. Next, we elaborate

a GC vocabulary and how we specify the complicated connections in a GC. This chapter

concludes with a discussion of transformations from GCs models to working code and how

such code can be automatically generated.

III.1 Design Goal

Building on the motivations in Chapter II, the process of GC design can be simplified if

we design a generic approach to represent the circuit for code generation. The design goals

are listed as follows.

1. A generic way to represent the logic circuit including its attributes (e.g., circuit name,

degrees of input/output, and number of components), sub-circuit, and the wires in the

circuit.

2. An extensible and comprehensive vocabulary to cover all depicted aspects of a cir-

cuit.

3. A framework-dependent interpreter that is compatible with a GC meta-model.

III.2 Design Assumptions

Before designing a GC meta-model, we must introduce the basic definition of a GC,

and its features and what a GC model is designed for.
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First, a garbled circuit is a type of binary logic circuit that is composed by AND, OR,

XOR gates and wires only. A GC model can have other GCs as sub-circuits, which makes

the defined circuit reuseable and enables the composition of complex circuits.

Second, a GC language should allow for the specification of the initialization of com-

ponents, wires connecting each components, and the definition of input and output.

Third, a GC is modeled and transformed to meet certain computation functionality. It is

a special type of logic circuits in which connections between components can be established

and expressed in certain rules in most cases. In other words, connecting each pair of ports

one by one is not a requirement for GC representation. Most garbled circuit can be concise

and organized if well-designed after determining what are the sub-circuits and wires.

Finally, a GC meta-model is designed for the automatic generation of codes in secure

frameworks. Thus, we always keep in mind that the design of a meta-model should be

strongly associated with code generation, so that transformation from models to code is

readily implementable.

III.3 Design Pattern

In this thesis, we apply the software engineering principle of a Composite Pattern in

the GC meta-model design. ”A pattern is said to be a composite pattern, if it can be best

explained as the composition of further atomic or composite patterns” [21]. More specifi-

cally, the composite pattern is a partitioning design pattern which treats a group of objects

in the same way as a single instance of an object.

The selection of Composite pattern is based on the aforementioned design assumptions.

A GC model can be composed by other GCs, which is the essence of a Composite pattern.
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Moreover, a Composite Pattern provides a clear view of the whole-part relationship 1 at the

GC level.

III.4 Metamodel Vocabulary2

This section describes an elaboration of the vocabulary in the GC domain language.

Each terminology in the vocabulary represents either an entity in GC or takes the task of

code generations.

• Logic Gates: AND, OR, and XOR gates. These are all for logic and binary specifica-

tion.

• Input: This defines the input ports of the custom-defined circuit.

• Output: This defines the output ports of the custom-defined circuit

• GC: This CompositeCircuit represents the custom-defined circuit under design.

• Circuit Reference: This CircuitRef is the reference of CompositeCircuit. A refer-

ence in meta-model design is similar to a pointer in a programming language. It

is introduced under the considerations that: 1) with a reference, the GC model that

serves as a subcircuit is responsible only for declaring that it is used in the whole

circuit, independent of initialization, connection and specification of fixed value, and

2) it ensures the Custom-defined GC model has a low degree of coupling because

each functionality is undertaken by a corresponding type of CircuitRef, which is also

beneficial for automatic code generation. According to the functionality, CircuitRef

has the following subclasses:

1A whole-part relationship represents the composition relationship that one object is composed by one or
more components

2The module names in DSML are italicized.
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– Initialization: The InitialRef module is designed for the initialization and

building of a subcircuit.

– Wires with fixed value: The FixedWireRef module is designed for specifying

a fixed value for certain wires.

– Circuits in connection: The ConnectionRef module is designed for represent-

ing the connections between subcircuits and defining the input and output.

• Wire: The Wire represents a connection in the circuit. It defines how two com-

ponents connect with each other. It is an abstract class and has the InternalWire

and the DefineInOutPut. InternalWire specifies the connections between subcircuits.

DefineInOutPut is responsible for defining the input and output ports of the custom-

defined circuit.

III.5 Connections in GC

The specification of connections in a GC is the key in defining a circuit language. In

our circuit language, subcircuits that participate in the connections are represented by the

ConnectionRef. We also have Input and Output for representing input and output ports.

Building on the aforementioned design assumptions for a GC that certain rules may apply

to make GC more concise and easy to express, we mainly focus on the following two

connection scenarios:

• A connection pattern is applied in a group of circuit pairs. Technically, circuit pairs

with the same connection pattern can be viewed as an aggregate. Figure III.1a shows

the example of how L pair of the XOR and OR gates connect. Each output of OR

gate connect to the first port of the corresponding XOR input.

• A circuit with a larger number of ports is connected to a group of circuits with a

smaller number of ports. In this case, we need to split the larger circuit so that each
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(a) Scenarios 1

(b) Scenarios 2

Figure III.1: Scenario 1: The same connection pattern applied to multiple circuit pairs.
Scenario 2: A splitting of large circuit to connect it with a group of small circuits.

piece can connect to each smaller circuit. Figure III.1b shows an example of how we

connect XOR gates with the counter in the Hamming distance circuit. The counter is

split into L pieces so that each port connects with the output of XOR gate.

Thus, we have two sub-classes of ConnectionRef for each scenario.

• ReplicateRef is derived from ConnectionRef and it represents a group of subcircuits

that participate in the same connection pattern.

• SingleRef is derived from ConnectionRef and it represents a single subcircuit. Un-

like ReplicateRef, its ports can be split and the component can be separated into

smaller pieces so that the SingleRef may connect to a group of circuits.
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III.6 Transformations from Models to Codes

As stated earlier, the circuit language is designed for automatically generating codes.

Our meta-model is strongly associated with code generations. Typically, circuit code has

the following parts.

III.6.1 Declaration of GC

We use the term declaration to mean the basic information of a GC including the name

of the circuit class, the arguments that may use, and the constructor function. The Com-

positeCircuit module itself, is responsible for this declaration part. The CompositeCircuit

is composed of the following parts.

• Variable: The arguments that can be defined in the GC class.

• InDegree: The number of input ports in a GC.

• OutDegree: The number of output ports in a GC.

• ComponentNumber: The number of subcircuit or logic gates in a GC.

• CircuitClassName: The name of a GC.

III.6.2 Initialization of Sub-circuit

The initialization of a sub-circuit is achieved through the InitialRef, which is based on

the following attributes.

• CircuitIndex: specifies the identification of a sub-circuit in a GC by which we can

have access to it.
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• CircuitArgument: the arguments that may be required in the initialization of sub-

circuits.

III.6.3 Wires

The Wire in a GC meta-model represents the connections in a GC and is invoked to

generate codes that define the input/output, as well as the connections between sub-circuits.

• Define input/output is represented by the DefineInOutPut which connect Input/Out-

put with the ConnectionRef.

• Wire connecting subcircuits is represented by the InternalWire that connects the

ConnectionRef with the ConnectionRef.

The Wire is specified by two attributes: 1) SourcePortIndex, the designation of ports on

the source component, and 2) DestinationPortIndex, the designation of connected ports on

the destination component. By associating ports from the source with the destination, we

connect the circuit pair.

III.6.4 Fixed Value For Wire

FixedWireRef specifies fixed value for certain wires with the following attributes:

• CircuitIndex specifies the index of designated circuits.

• PortIndex specifies the index of wires on the circuit.

• FixedValue: The designated fixed value.
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III.7 Summary

This chapter provided a GC specification approach under consideration for design goals

and assumptions. The meta-model vocabulary covers a comprehensive set of concepts

for GCs. Each scenario for GC connections are handled dealt with, which ensures a GC

meta-model’s capability in specifications. Each module in the meta-model has a clear path

working code to model interpretations.
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CHAPTER IV

DSML IMPLEMENTATION ON GME PLATFORM

In this chapter, we discuss the implementation of a DSML approach discussed in the

Generic Modeling Environment (GME) platform. This chapter begins with an introduction

of GME and its advantages. Next, implementation details of DSML are demonstrated along

with a step-by-step guide to building a custom-define GC model. Finally, a library of GC

models that covers an array of computational functionality is also provided to build new

GC models.

IV.1 GME: DSML Development Environment

As mentioned earlier, GME serves as the development environment for the GC DSML.

GME is a configurable tool-set that supports the easy creation of domain-specific model-

ing. The configuration is accomplished through meta-models, which specify the modeling

paradigm (modeling language) of the application domain [7]. It is a tool-set that combines

DSML specification, model design, and model interpretation. Specifically, the generic

modeling environment itself is used to build the meta-models which specify the modeling

language. The modeling language automatically generates the target domain-specific envi-

ronment for building domain models, which are subsequently stored in a model database.

The models work with an interpreter to automatically generate the applications and har-

monize the input with different analysis tools. Figure IV.1 depicts how the development

environment.
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Figure IV.1: The process for building the development environment.

IV.2 Advantages of GME

We apply GME in this project as the DSML design tool for several reasons:

1. GME provides comprehensive support for various concepts for building large-scale

and complex models. It enables the design of a hierarchy, multiple aspects, sets,

references, and explicit constraints [7]. This ensures a GC can be represented in a

DSML design.

2. GME is a graphical modeling environment which is relatively convenient for visual

design, unlike other command-based interfaces1. Furthermore, it is an integrated

environment which includes meta-model design, models building, and model inter-

pretation. This means that work communicated in this thesis can be achieved through

one integrated platform.

3. GME is extensible, such that writing an interpreter is relatively simple. This is be-

cause a more complex interface is layered on top of the COM interfaces, which en-

sures an easy-to-use extensible C++ API [22]. This API enables direct access to

every module and attribute in the model.

4. GME has a built-in constraint manager which enforces all domain constraints during

model building [7]. In this GC case, we can ensure the correctness in building the

models and prevent improper wrong wires by setting constraints.

5. GME supports meta-model composition, which is a capability for reusing and com-

1A command-based interface is a user interface that directly interact with users by typing commands.
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bining existing modeling languages and language concepts [23]. Models in the li-

brary thus can be reused in building mew models.

IV.3 GC Metamodel on GME

The implementation of GC metamodel on the GME platform is shown in Figure IV.2.

This is an implementation of the circuit language discussed in Chapter II. From the design

pattern view, the GarbledCircuit is composed by the LogicalGate and the GarbledCircuit

itself, which means that a GC model is composed of logic gates and may have other GC

models as sub-circuits.

IV.4 Build Your Own GC Domain Models2

The domain-specific environment automatically generated by a GC meta-model pro-

vides users with a comprehensive and flexible user interface to design a custom-define GC

model with only five steps. We continue with the Hamming distance circuit whose corre-

sponding code in FastGC is in class HAMMING 2L K, as example. We demonstrate the

steps to build a GC model to show the differences of implementing GCs as code between

by building the model and by writing the code.

The circuit class HAMMING 2L K computes the number of positions over digit from

two L-bit integers are different and output a K-bit integer. It is composed by L number of

XOR gates and a counter with 2L input ports and K output ports.

First, we declare the basic information for HAMMING 2L K as described above. We

drag a GarbledCircuit module from the user interface and set its attributes. Figure IV.3a

shows the attributes set for the GC model HAMMING 2L K. It accepts a variable L which

is the number of XOR gates and K which is the output length. As for degrees, it has 2L

2In order to differentiate, GC model names will be small caps.

20



Figure IV.2: A class diagram of a GC model that presents each module in the model.
Circuit is the first class object and is the parent class of LogicalGate and GarbledCircuit.
LogicalGate defines the three gates in a logic circuit, and has three subclasses AND, OR,
and XOR. GarbledCircuit represents the GC model. It contains: 1) the sub-circuits used,
which are represented by LogicalGate and GarbledCircuit, 2) CircuitRef and its subclass,
which includes InitialtorRef, FixedWireRef and ConnectionRef, which perform the tasks
of sub-circuit initialization, setting fixed values for wires and connections in GC model,
respectively, and 3) Wire and its subclass, DefineInOutput, which defines the input and
output, and InternalWire which specifies the connections between sub-circuits.
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(a) GC Declaration (b) XOR Initialization

(c) Define Input (d) Specify Connection

Figure IV.3: (a) GC model HAMMING 2L K accepts arguments L and K and has 2L
input ports and K output ports. In the model, there are L XOR gates and one counter.
(b) initialization of L paralleling XOR gates which are aligned from index 0 to index L-1.
(c)how input is defined by the connection Input module with ReplicateRef of the XOR
gates. The last part of L ports on Input module is split into L pieces to connect with L XOR
gates. (d) attribute set for connecting Input and XOR gates.
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input and K output ports, respectively.

Second, we declare and initialize the subcircuits used in a GC model by dragging its

instance into a GC model. Initialization is accomplished by setting its InitaltorRef. For

designation of multiple indexes, we use a vector format of start:step:number. For instance,

0:1:L means a HAMMING 2L K of L indices starting at 0 and increasing by 1. Figure

IV.3b shows how to set up L XOR gates which is aligned from index 0 to L-1.

Third, we make connections between the sub-circuits, input and output. Figure IV.3c

shows the connection between the last L ports of Input with each first port of L concurrent

XOR gates. Figure IV.3d shows the attributes set for DefineInOutput to specify such an

connection.

Finally, we specify the fixed value for a specific port (wire). In this Hamming distance

case, there are no wires with fixed value. However, the counter used in the Hamming

distance computation is a good example of why a fixed value can be useful. Specifically,

suppose we have L XOR gates, but the counter only accepts an N, where N is larger than

L, bit input. In this case, we set value of the remaining (N-L) ports as 0.

IV.5 Circuit Library

We built a GC domain model database which contains GC models with a variety of

computation functionality, such as addition, comparison. We built this database to test the

capability of the GC meta-models in implementing the most commonly-used GCs. It also

serves as a library which enables users to design their own custom-defined GCs directly

based on models in the library. The circuit library is built in a bottom-up hierarchical

structure. Technically, the GC is composed of three basic gates: AND, OR, and XOR.

Complex circuits are usually composed by relatively simple circuits. In this bottom-up

hierarchy, circuits in the higher level are composed of circuits in the lower levels. The
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details about the GC library can be found in Appendix A.

IV.6 Summary

In conclusion, GME offers a comprehensive ability to implement GC DSML. It also

enables the integration of model design and interpretation, which supports our work from

beginning to end. Our GC meta-model is capable of supporting common-used GC specifi-

cation with flexibility and extensibility.
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CHAPTER V

FASTGC INTERPRETER

This chapter presents our GC model interpreter implementation. We first introduce

FastGC, a recent implementation of GC protocols. We provide justification for choosing

this framework and what it is necessary to generate its working codes. In order to do

this, we take a deeper look at the structures of FastGC codes and how each interface is

implemented by showing code templates. Then we introduce the architectural design of

our interpreter which can be classified into: 1) a GC model receiver which accepts data

from models, 2) FastGC code generation which outputs code in the form of code templates

and parameters, and 3) model interpretation which adapts model data for code generations.

V.1 GC Implementation: FastGC

FastGC [12] is short for Fast Secure Computation Using Garbled Circuits which is a

secure two-party computation model that enables two parties to evaluate a function coop-

eratively without revealing to either party anything beyond the output. It has many feature

that make this a popular tool for GC implementation. First, it is relatively new in compari-

son to other implementations. Second, it is efficient in speed and memory. Third, GC code

in FastGC has a clear structure and interfaces to be implemented. Fourth, FastGC provides

GC code and samples which cover a wide range of computational functionality that enables

design and testing.

The GC code in FastGC is organized under the Composite design pattern, which is

the same design pattern applied in our meta-models. The abstract class Circuit1 serves as

1The class names in FastGC will be underlined.
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the Component2 in the pattern. It is the abstraction for all the GC classes which declare

the wires and subcircuits and define the interfaces. Both wires and subcircuits in FastGC

are stored in a single array, which means each subcircuit or wire is accessed by its in-

dex in the array, which works as the identification. The Circuit class has two subclasses,

CompositeCircuit class and SimpleCircuit 2 1 class. SimpleCircuit 2 1 is the parent class

that represents all types of basic gates, namely, AND, OR, and XOR gates. It plays the

Leaf 3 role in the pattern. CompositeCircuit is the parent class for all the GCs that repre-

sent certain computation functionality. It is the Composite 4 part in the design pattern. It is

the superclass from which the GC code is derived. CompositeCircuit defines the interfaces

the GC code needs to implement.

V.2 GC Code In FastGC

The generation of FastGC code is achieved by the implementation of interfaces in class

CompositeCircuit with the data from a GC model. FastGC code generation also involves a

constructor function and a class layout. Each interface is implemented with a fixed format

to mitigate the complexity of interpreter implementation.

V.2.1 Constructor Function

Constructor. The constructor function specifies the degree of input and output of the

circuit. It also specifies the number of subcircuits within the circuit. This information

is supplied by GC model attributes. The following code sample in Figure V.1 shows the

constructor function of a Hamming distance circuit. The initialization of class member is

by the super constructor.

2In a Composite pattern, a Component corresponds to the abstraction for all components, including com-
posite objects.

3In a Composite pattern, a Leaf represents leaf objects in the composition.
4In a Composite pattern, a Composite represents a composite Component. It can have subclasses which

have different implementation of interfaces from the parent class.
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Figure V.1: The constructor function of Hamming distance circuit.

Figure V.2: The implementation of the build function.

V.2.2 Interfaces To Be Implemented

Build is the function that defines almost everything needed for a custom-defined circuit,

including its subcircuits, its connections inside, how input and output are specified and if

there are wires with a fixed value. The Build functions is implemented as in Figure V.2.

The first function, createInputWires, declares an array of wires which has a length of

the circuit in-degree. It does not initialize the input ports. It is implemented in the parent

class, namely Circuit. However, other functions in build() should be implemented in GC

27



code:

• createSubCircuits. This function specifies the initialization of subcircuits in GC,

including the circuit name and its parameters and how they are aligned in the vector,

namely, their indexes. The codes in Figure V.3 corresponds to the template of sub-

circuit initialization. Notice that it only needs parameters of circuitId, circuitName,

and argument list to generate an initialization code 5.

Figure V.3: The initialization of the subcircuits in the FastGC code.

This code template covers the initialization cases for any kinds of sub-circuits except

AND gate and OR gate. The initialization of these two is a little bit different from

the template showed above, as shown in the following code in Figure V.4.

Figure V.4: The initialization of the And gate and the Or gate in the FastGC code.

• connectWires. This function defines the connections in the custom-defined circuit

which can be categorized into two types: 1 )how input ports are defined, and 2) how

sub-circuits are connected with each other. The following code depicts the parame-

ters necessary to generate such code in Figure V.5 and in Figure V.6.

5Parameters in code templates are italicized with red font.
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• defineOutputWires. This functions defines the output ports. It selects output ports

from certain sub-circuits as the output ports for the whole custom-defined circuit. As

shown below in Figure V.7, its code template is similar to the one how we define

input.

Figure V.5: The definition of the input in FastGC code.

Figure V.6: The definition of the connections between the subcircuits in FastGC code.

• fixInternalWires. In a custom-defined circuit, to achieve a computation goal, we

may simply want some ports or wires not to be involved in connections. The values

of such wires are thus not influenced by connections and could have a fixed value.

The code template is shown in Figure V.8.
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Figure V.7: The definition of the output in FastGC code.

Figure V.8: The specification of fixed value in FastGC code.

V.2.3 For Loop

As discussed in the meta-model design earlier, a range of circuits may have the same

circuit type and arguments in the initialization part, or may apply the same connection rule.

In FastGC code, we use a for loop to specify such information for the GC. The following

code in Figure V.9 illustrates how the loop is specified.

V.3 Interpreter Interface

The interpreter is composed of two parts. First, the CodeWriter corresponds to the

classes of code templates discussed. Second, the CodeGenerate accepts data from a GC

model and transforms the models into CodeWriter objects.
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Figure V.9: The for loop code template.

V.3.1 CodeWriter

CodeWriter is an namespace in which each type of class generates its corresponding

Java code sentences based on parameters and code templates. We design classes for each

and every template that discussed above. Figure V.10 shows the UML of these classes and

their hierarchy. Each type of Statement class is derived from the pure class Statement which

has a abstract function toString which outputs the code that the class object represents.

For each subclass derived from class Statement, it can be implemented by: (1) a pa-

rameter list which is necessary to output the code, (2) a constructor function which accepts

parameters during the model transformation, and (3) an implementation of the function

toString, which is based on its respective code template.

Appendix B shows a concrete example of how we declare the class InitialtorStatement

and how we implement the function toString. Other Statement subclasses can be imple-

mented in the same way.

V.3.2 CodeGenerate

In Figure V.11, this is CodeGenerator namespace designed according to the meta-model

so that it can accept the data from a GC model directly. Figure V.11 shows the UML graph
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Figure V.10: CodeWriter: a namespace for classes of code templates. In this class dia-
gram, the class Statement is the abstract class for all the code template classes that have an
abstract function toString. The toString function generates the codes stored by each class
object. Each code template has subclasses including i) InitialtorStatement, ii) Connec-
tionStatement, iii) FixedWireStatement, and iv) ForLoopStatement. The GateStatement
is specifically designed for AND and OR gate initialization. The GarbledClassFunction
stores the basic information for model and implements the constructor function.
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Figure V.11: CodeGenerator: an namespace for storing the data from GC models and
transforming models into CodeWriter classes. In this class diagram, CodeGenerator is the
abstract class which defines the interfaces and class member for subclasses. It has a State-
ment member which stores the transformation result. setStatement function executes the
transformation an printStatement outputs the generated codes. CodeGenerator has sub-
classes including i) Initialtor, ii) FixedWire, iii) Connection, and iv) GarbledClass, each of
which corresponds to a module in GC meta-model.

of CodeGenerator classes. The CodeGenerator has attributes, structure and pattern that are

similar to a GC meta-model. Each CodeGenrate sub-class is associated with a module in

the meta-model which directly generate codes.

The CodeGenerator class has a Statement object as its member which stores the GC

codes its module represents. The function setStatement supports the transformation from a

model to a statement.

In order to generate the whole file of a GC code, we engineered the class GCJava to

contain members of all possible CodeGenerator variations. Each CodeGenerator subclass

member is generated by reading data from a corresponding module. These members gen-
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erates codes to implement corresponding interfaces. The GC code file is then generated by

sorting these functions and codes in the conventional order in FastGC.

Besides these two namespaces, we also have two subsidiary classes, Component and

Range. The Component class represents the component connected by wires. The Single-

Component is the component that can be split into smaller pieces, corresponding to Sin-

gleRef, The Input and Output in the meta-model. The MultipleComponent can designate a

range of components with the same connection pattern, corresponding to ReplicateRef.

Figure V.12: Component represents subcircuits and input/output that participate in a con-
nection. It has two classes SingleComponent and MultipleComponent. In comparison to
metamodel design, SingleComponent is designed for SplitRef in the meta-models that may
split its ports into smaller pieces, while MultipleComponent is designed for ReplicateRef
that they can replicate itself for a group. The Input and Output derives from SingleCompo-
nent because they can be split to connect with subcircuits.

Range class represents the index of circuits and ports. SingleRange denotes a single

index only, while MultipleRange can represent a range of indexes. Range is an accessory

class for getting the index for both circuit and port. It also participates in generating the

Forloop statement.
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V.3.3 Comments in Codes

For modules which directly participate in code generations, (e.g., InitialRef, Wire,

FixedWireRef, CompositeCircuit), we incorporate an description attribute that allow users

to add descriptions during the development of GC models. The intent of the description

content is to remind the model designer of the functionality of each module. Moreover, the

content for the description will be automatically transformed into comments in the codes

generated, which should improve the readability of automatically generated code.

V.3.4 circuitID Alias

We also improve the readability of codes automatically generated by introducing an

alias for subcircuit. Typically, in code for the framework, sub-circuits are aligned in vector-

style container that is accessed by its index. This may make it confusing for engineers

because they may have difficulty in associating an index with the corresponding a sub-

circuit index points to. This problem may occur when the engineer wants to access certain

type of sub-circuit, but may not be aware of its index in the vector, or when an engineer

sees that the sub-circuit is accessed by its index, but does not know what this subcircuit

correspond to.

Figure V.13: The circuitID alias for a single subcircuit.

The concept of an alias should mitigate this problem by giving a common name that is

easy for recognition. With a circuitID alias, we replace the index of the sub-circuit with a
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Figure V.14: The circuitID alias for multiple subcircuits.

special name designated by the engineer. The code template in Figure V.13 and in Figure

V.14 provides examples of this concept.

V.4 Summary

In conclusion, we reviewed how code in FastGC is organized and composed. Focused

on interfaces the required for implementation and the corresponding code, we demonstrate

how each part of the FastGC interpreter design takes part into code generations.
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CHAPTER VI

DISCUSSION AND CONCLUSION

In this thesis, we (1) showed that a generic representation of garbled circuit by DSML

is feasible, (2) implemented a garbled circuit meta-model on GME platform, and (3) imple-

mented a FastGC interpreter to work with GC models to automatically generate working

codes in FastGC framework.

VI.1 Future Work

While this thesis demonstrates that meta-modeling can be applied in GC model de-

velopment and transformation, there are several limitations that we wish to highlight as

opportunities for future research.

First, DSML is a generic approach which efficiently describes the unique functionality

of GCs and of specification and transformation to working code. While we incorporated it

into the GME modeling platform, this is only one possible environment. A domain-specific

modeling language can be a visual diagramming language created by the Generic Eclipse

Modeling System [24], a programmatic abstraction created by Eclipse Modeling Frame-

work [25], or even a textual language. As such, the GC meta-model can be implemented

on other platforms, particularly considering OS-independent tools given that GME works

only on Windows.

We only implemented the FastGC framework to demonstrate the potential for integra-

tion of models and interpreters in the automatic GC code generation.. More interpreters

can be implemented to make the GC meta-model proposed more pragmatic. On the other

hand, we did not consider that the proposed GC language would be capable of representing
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all types of GCs for all of frameworks. However, we always emphasize the significance of

extendability during the whole procedure of development. Potential specification require-

ment from new GC implementations will also expand the vocabulary of circuit language,

and enhance the comprehensiveness in circuit specification.
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Appendix A

Circuit Library

The three logic gates are stored in Level 1 which is the lowest level and are showed in

Table A.1. Table A.2 shows the GCs in the second level, which is built on three logical

gates only. Table A.3 shows the GCs in the third level. Table A.4 shows the GCs in the

forth level.
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Circuit Functionality & Description

XOR 2 1
Functionality: XOR gate: compare two bit, outputs 1 when inputs are dif-
ferent, otherwise output 0.

Description: This is the basic gate in circuit with 2 ports as input and 1 port
as output.

AND 2 1
Functionality: AND gate: outputs 1 when two input ports are both 1; oth-
erwise outputs 0.

Description: This is the basic AND gate of logical circuit with 2 ports as
input and 1 port as output.

OR 2 1
Functionality: outputs 0 when two input ports are both 0; otherwise it out-
puts 1.

Description: This is the basic OR gate of logical circuit with 2 ports as
input and 1 port as output.

Table A.1: GC Library Level 1
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Circuit Functionality & Description

EDT 4 1
Functionality: This computes the editing distance of two integers both with
two bits.

Description: This is composed by two XOR 2 1 and one OR 2 1, with four
ports as its input and one port as its output.

GT 3 1
Functionality: This compares the value of first two bit and use its last input
as indicator for greater than or less than.

Description: This is composed by three XOR 2 1 and one AND 2 1, with
three ports as its input and one port as its output.

MUX 3 1
Functionality: This is a multiplexer which selects one of its first two digital
input signals and forwards the selected input as output into a single line. The
thirds input port serves as indicator for the selection.

Description: This is composed by two XOR 2 1 and one AND 2 1, with
three ports as its input and one port as its output.

XOR 2L L
Functionality: This computes the exclusive disjunction of two integers both
with L bits.

Description: This is composed by a number of L paralleling XOR 2 1 with
2L ports as its input and L port as its output.

OR L 1
Functionality: This computes the logical disjunction of L bits.

Description: This is composed by a number of L-1 series OR 2 1 with L
ports as its input and 1 port as its output.

XOR L 1
Functionality: This computes the logical exclusive disjunction of L bits.

Description: This is composed by a number of L-1 series XOR 2 1 with L
ports as its input and 1 port as its output.

ADD 3 2
Functionality: This computes the add or subtract of the first two bits with
the third input port as indicator.

Description: This is composed by four XOR 2 1 and one AND 2 1 with 3
ports as its input and 2 port as its output.

Table A.2: GC Library Level 2
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Circuit Functionality & Description

EDT 2L 1
Functionality: This compares two integer with both L bit, output 0
when equal; otherwise outputs 1.

Description: This is composed by a number of L paralleling
XOR 2 1 and one OR L 1(L) with 2L ports as its input and 1 port
as its output.

ADD 2L L
Functionality: This computes the addition of two integers.

Description: This is composed by a number of L ADD 3 2, with
2L ports as its input and L port as its output.

SUB 2L L
Functionality: This computes the subtraction of two integers via
two-complement and addition.

Description: This is composed by a number of L ADD 3 2 and one
XOR 2L L, with 2L ports as its input and L port as its output.

ADD 2L LPLUS1
Functionality: This computes the addition of two integers with the
carry save.

Description: This is composed by a number of L ADD 3 2, with
2L ports as its input and L+1 port as its output.

GT 2L 1
Functionality: This compares the value of two integers both with L
bits.

Description: This is composed by a number of L GT 3 1, with 2L
ports as its input and 1 port as its output.

MUX 2LPLUS1 L
Functionality: This is a multiplexer which selects one of its two
input integers. The thirds input port serves as indicator for the selec-
tion.

Description: This is composed by a number of L MUX 3 1, with
2L+1 ports as its input and L port as its output.

Table A.3: GC Library Level 3
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Circuit Functionality & Description

MAX 2L L
Functionality: This returns max value of two input integers
both with L bits.

Description: This is composed by one GT 2L 1 and one
MUX 2Lplus1 L, with 2L ports as its input and L port as its
output.

MIN 2L L
Functionality: This returns min value of two input integers
both with L bits.

Description: This is composed by one GT 2L 1 and one
MUX 2Lplus1 L, with 2L ports as its input and L port as its
output.

ADD1 LPLUS1 L
Functionality: This adds the input integer with L bit by 1.

Description: This is composed by one ADD 2L Lplus1,
with L+1 ports as its input and L port as its output.

ADD1 LPLUS1 LPLUS1
Functionality: This adds the input integer with L bit by 1
with a carry saver.

Description: This is composed by one ADD 2L Lplus1,
with L+1 ports as its input and L+1 port as its output.

Table A.4: GC Library Level 4
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Appendix B

Class InitialtorStatement Implementation

Here, we use the class InitialtorStatement as an example, to illustrate the process of

initialization. We know that an initialization sentence of codes needs parameters which

includes circuitId, className, and arguments for sub-circuits. Thus the InitialtorStatement

can be declared as follows:

class InitialtorStatement: public Statement {

public:

//Constructor Function

InitialtorStatement(string index, vector<string> arg, string

cn);

//Output the code, n is the indent

virtual string toString(int n = 0);

private:

//indexId of the subcircuit

string index;

//arguments subcircuit required to initialize

vector<string> arguments;

//the type of subcircuit

string className;

};

And according to the code template of initialization, the toString function can be im-

plemented as follows:
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string InitialtorStatement:: toString(int n) {

string indent(n, ’\t’);

//code template: "subCircuits[circuitId]"

string output = indent+"subCircuits["+index;

//code template: "= new circuitName("

output += "] = new "+className+"(";

//the arguemnts list

int size = arguments.size();

for(int i=0; i<size; i++)

{

output += arguments[i];

if(size-1 != i)

output += ", ";

}

output += ");\n";

return output;

}
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