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CHAPTER I

INTRODUCTION

Since the advent of topology, many numerical topological invariants have been found to

be computable with drastically different methods. For example, the winding number of a

curve in a plane around the origin can be computed by various counting algorithms, or by

evaluating, after equating the plane with the set of complex numbers, the integral 1
2πi

∫
df/f ;

the Euler characteristic of a surface can also be computed by counting on the combinatoric

structure, counting of singularities of a vector field, and integrating the Gaussian curvature

over the entire surface. These examples hint at the deep interplay between topology and

analysis.

Since the 19th century, a series of theorems have been discovered to demonstrate such

an interplay, such as the Riemann-Roch theorem, the Chern-Gauss-Bonnet theorem and

the Hirzebruch signature theorem, cumulating in the 1960’s to the celebrated Atiyah-Singer

index theorem, which generalizes all previous theorems by stating that, for an elliptic pseudo-

differential operatorD on a compact manifoldM , its Fredholm index — a numerical invariant

associated to dimensions of solution spaces of certain differential equations — is indeed

topological, and can be computed in terms of the coefficients of D.

In the first proof they published ([2, 3]), Atiyah and Singer made extensive use of the

newly-developed topological K-theory, a kind of cohomological theory that has proved to be

the right tool to study various index problems. Later on, Atiyah([1]) and Kasparov([14]) dis-

covered that the K-homology K0(M), the dual theory to the topological K-theory, classifies

all elliptic pseudo-differential operators on M up to homotopy, and assigning index consti-

tutes a natural map µ : K0(M) → Z. Further attempts at generalizing the Atiyah-Singer

index theorem led Alain Connes to develop the theory of noncommutative geometry.

One of the most prolific ideas in modern mathematics is that one can study the structure

of a space by investigating all functions on the space compatible with the structure. Its

incarnation in the area of topology is the commutative Gelfand-Naimark theorem: every

commutative C*-algebra (i.e. a commutative closed subalgebra of all bounded linear opera-

tors from a Hilbert space to itself that is closed under taking adjoints) can be represented as

C0(X), the algebra of all complex-valued continuous functions on a locally compact, Haus-

dorff space X that vanish at infinity, and consequently, studying locally compact Hausdorff

topological spaces is equivalent to studying commutative C*-algebras.

By analogy, a noncommutative C*-algebra can be considered the algebra of all continu-

ous “functions” on a “noncommutative topological space”. This is not merely an artificial
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generalization, as it allows one to study various pathological (e.g. non-Hausdorff) spaces

that refuse conventional treatments; for instance, the quotient space of the unit circle by an

irrational rotation can be studied via a noncommutative C*-algebra, namely the irrational

rotation algebra([7]). This new perspective also incorporates harmonic analysis of any lo-

cally compact non-abelian group G by examining the “noncommutative space” underlying

the reduced group C*-algebra C∗r (G), which in the case when G is discrete, is defined to

be the norm closure of the group algebra C[G], viewed as an algebra of operators over the

Hilbert space L2(G) defined using the Haar measure.

One may also study algebraic topology on noncommutative spaces. In particular, the

topological K-theory extends immediately to the operator K-theory of C*-algebras, and

they agree in the case of commutative spaces. Operator K-theory is a powerful tool for

distinguishing C*-algebras. For instance, it is the main ingredient in the so-called dimension

group which Elliott employed to give a complete classification of approximately finite dimen-

sional (AF) C*-algebras ([9]). And by the work of Pimsner, Voiculescu and Cuntz ([20, 8]),

one can use K-theory to answer (positively) the question whether the reduced free group

C*-algebras C∗r (Fn) are non-isomorphic for different n’s, a feat yet to be accomplished for

the free group von Neumann algebras in the study of noncommutative measure theory.

The ideas of noncommutative geometry relate to the index theorem in the following way:

Suppose we are given a family of pseudo-differential operators parametrized by a compact,

Hausdorff space X, then we should acquire an index in K∗(X), the K-theory of X (in the

classical setting, X = {point} and thus K0(X) ∼= Z, giving us the usual Fredholm index).

Now instead suppose the pseudo-differential operator carries some intrinsic symmetry: the

underlying manifold is acted upon properly and co-compactly by a group G and the operator

is equivariant with regard to the action. Then we can think of the operator as a family of

operators parametrized by the (usually noncommutative) space given by the reduced group

C*-algebra C∗r (G), and obtain an index map µ : KG
∗ (M)→ K∗(C

∗
r (G)) from the equivariant

K-homology of M to the operator K-theory of C∗r (G). This is usually called the higher

index as it provides more refined information about the operator.

This simple generalization has profound implications. These can be seen in two directions:

On the one hand, when G is non-abelian, K∗(C
∗
r (G)) is often very hard to calculate, as

it concerns the representation theory of G, while KG
∗ (M) is readily computable via, for

instance, Mayer-Vietoris sequences, and thus the index map µ supplies one with a tool to

probe the former. Of course this method recovers the entire K∗(C
∗
r (G)) at once only if µ

is surjective. On the other hand, several analytic properties can a priori only be read off

from the index in K∗(C
∗
r (G)); for example, a spin manifold carries a Riemannian structure

with everywhere positive scalar curvature only if the index of the Dirac operator D is 0 (the
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identity) in K∗(C
∗
r (G)), and therefore comparing it with the non-trivial topological invariant

[D] ∈ KG
∗ (M), one concludes that the injectivity of the index map would creat a topological

obstruction for M to carry any Riemannian structure with positive scalar curvature.

Of course, one can hope for µ to be bijective only if the topology ofM carries no other data

than those coming from G. A natural choice would be taking M to be the universal proper

G-space EG, i.e. a space that classifies all proper actions of G. EG is only defined up to

homotopy, and may well not be a manifold, but there is no technical difficulty in defining its

G-equivariant K-homology; however, one needs a remedy for the possibility that EG may not

be co-compact with respect to the G-action, and thus one replaces KG
∗ (EG) with KG

∗ (EG),

its equivariant K-homology with G-co-compact supports([14]). In 1982, Baum and Connes

([4]) put out (essentially) the conjecture that the index map µ : KG
∗ (EG) → K∗(C

∗
r (G)) is

an isomorphism.

The statement is for each individual group, and the index map µ is also known as the

assembly map. Morally, it says the analytic information of G given by the right-hand side of

the arrow is entirely captured by its geometric information given by the left-hand side. This

insightful conjecture, if true, would take quite a number of famous conjectures as corollaries.

For instance, for a discrete group Γ, the injectivity of µ would imply the Novikov conjecture

in surgery theory, while its surjectivity would imply the Kadison-Kaplansky conjecture on

idempotents in C∗r (G).

Until this day, many classes of groups have been proved to satisfy the conjecture. These

include a-T-menable groups ([12]), Gromov hyperbolic groups ([18, 16]), one-relator groups

([5]), fundamental groups of Haken 3-manifolds ([19, 21]), etc. The simplest groups for

which the conjecture is not known are the integral special linear groups SL(n,Z) for n >

2. The study of this conjecture has been and continues to be a major driving force in

noncommutative geometry, and inspired a great deal of novel ideas and tools.

A natural question along this line is: Can one prove the Novikov conjecture for a discrete

group Γ that acts isometrically and properly on a simply-connected, non-positively-curved

Hilbert manifold M (the infinite-dimensional counterpart of a Riemannian manifold)? Here

the properness of an action can only be defined metrically: For any bounded subset X of M ,

all but finitely many elements in Γ moves X to a subset disjoint from X.

The flexibility of infinite-dimensional manifolds allows one to include many examples,

such as the finite-dimensional cases, the Hilbert space, and the following, which is more or

less our main motivating example:

Example I.1. when a group Γ acts as volume-form-preserving diffeomorphisms on a com-

pact orientable n-dimensional manifold N with a given volume form ω ([10]). Then the space

of all Riemannian metrics on N having ω as their volume form carries a natural Rieman-
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nian inner product structure, and taking completion with regard to it gives rise to a Hilbert

manifold consisting of the so-called L2-Riemannian metrics on N , which can be seen as the

space of L2-sections on an SL(n,R)/SO(n)-fiber bundle over N . Now as SL(n,R)/SO(n)

is a simply-connected, non-positively-curved Riemannian manifold, the Hilbert manifold we

obtain inherits these properties, regardless of the geometry of N , and Γ acts on this Hilbert

manifold by permuting these Riemannian metrics. The study of the Novikov conjecture for

diffeomorphism group was pioneered by Connes [6].

The main result in this paper is the following:

Theorem I.2. Let Γ be a discrete torsion-free group that admits an isometric, metrically

proper action on a complete, simply-connected non-positively curved Hilbert manifold M

that has a completely geodesic finite-dimensional submanifolds whose union is dense in M .

Assume that the action is null-homotopic. Then Γ satisfies the rational analytic Novikov

conjecture, i.e. the rational assembly map

µ : K∗(BΓ)⊗Q→ K∗(C
∗
r (Γ))⊗Q

is injective.

The work of Higson and Kasparov [12] on a-T-menable groups shows that if the under-

lying Hilbert manifold is flat, i.e. simply a Hilbert space, then the group actually satisfies

the stronger Baum-Connes conjecture. Yet the non-flat case is all the more difficult, as

even in the finite-dimensional case, which already includes examples like SL(n,Z), it is not

known how to prove the surjectivity part of the Baum-Connes conjecture. Moreover, certain

constructions used in their paper, innovative as they were, are specific to the structure of

Hilbert spaces, and are not known to be generalizable to encompass the case of non-positively

curved Hilbert manifolds. Therefore, in order the prove the Novikov conjecture for groups

acting isometrically and metrically properly on non-positively curved Hilbert manifolds, it

is necessary for us to develop new techniques that apply to the more general structure of

these Hilbert manifolds.
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CHAPTER II

PRELIMINARIES

II.1 C∗-algebras

Given a complex Hilbert space H, we form B(H), the set of all bounded linear operators

from H to itself. This is an algebra: a vector space (over C) together with a multiplication

(T1, T2) 7→ T1T2 given by composition of operators. It is easy to check that the multiplication

is associative and bilinear as a binary operation. There is one more crucial operation, the

“adjoint” operation, also called the “star” operation, taking T ∈ B(H) to its adjoint T ∗, the

unique operator that satisfies

< Tξ, η >=< ξ, T ∗η >, ∀ξ, η ∈ H

This unary operation is said to be a conjugate linear involution:

(T1 + T2)∗ = T ∗1 + T ∗2 (II.1)

(λT )∗ = λT ∗ (II.2)

T ∗∗ = T (II.3)

(T1T2)∗ = T ∗2 T
∗
1 (II.4)

On the other hand, it is a Banach space under the operator norm

‖T‖ := sup
ξ∈H, ‖ξ‖=1

‖Tξ‖

The topology it determines is called the norm topology, with regard to which all those

operations are continuous. Besides the basic axioms of a Banach space, a version of the

triangle inequality for multiplication holds and can be easily checked:

‖T1T2‖ ≤ ‖T1‖‖T2‖ (II.5)

The relation between the norm and the adjoint operation, however, is more subtle. One can

easily see that the star operation is an isometry, that is

‖T ∗‖ = ‖T‖
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But there is a more essential equality, called the C∗-identity:

‖T ∗T‖ = ‖T‖2 (II.6)

This can be proved by noticing that the left-hand side is equal to

sup
‖ξ‖=‖η‖=1

< T ∗Tξ, η >= sup
‖ξ‖=‖η‖=1

< Tξ, Tη >

which is equal to the right-hand side.

Definition II.1.1. A concrete C∗-algebra A is a norm-closed ∗-subalgebra of B(H), that

is, a linear subspace closed under the norm topology, and also closed under multiplication

and the star operation.

Example II.1.2. B(H) itself is an example of a concrete C∗-algebra. Its subset consisting of

all the finite-rank (i.e. finite-dimensional image) operators is clearly a ∗-subalgebra; thus by

the norm-continuity of the three basic operations, taking norm-closure of this subset would

give us a concrete C∗-algebra, denoted by K(H), whose elements are called the compact

operators. This is also a closed ideal of B(H): ∀T ∈ B(H) and K ∈ K(H), we have

KT ∈ K(H) and TK ∈ K(H). In the case where H is finite-dimensional, both B(H) and

K(H) are equal to Mn(C), where n is the dimension of H.

Notice that the three basic operations restrict to a concrete C∗-algebra A, and the above

equalities and inequalities, being merely quantifier-free formulas over elements of B(H), are

still satisfied in A. This observation leads to the following:

Definition II.1.3. An abstract C∗-algebra is a complex normed algebra which is complete

under the norm topology, has another unary operation called adjoint, and satisfies the axioms

(II.1) - (II.6) above. A is called unital if it has a multiplicative identity I.

Remark II.1.4. If we drop condition (II.6), we obtain the more general notion of a Banach

∗-algebra, and if we further drop the adjoint operation, we obtain the notion of a Banach

algebra.

Remark II.1.5. It is worthwile to notice that conditions (II.3), (II.5) and (II.6) are sufficient

to force the adjoint operation to be an isometry. Indeed,

‖T‖2 = ‖T ∗T‖ ≤ ‖T ∗‖‖T‖

implies ‖T ∗‖ ≥ ‖T‖ and the fact that adjoint is an involution gives the opposite inequality.
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Remark II.1.6. Every non-unital C∗-algebra can be embedded into a unital one.

Although one loses the underlying Hilbert space, some common notions in B(H) are

carried over to this abstract setting: an operator T ∈ A is called

1. self-adjoint if T ∗ = T ,

2. normal if T ∗T = TT ∗,

3. an idempotent if T 2 = T ,

4. a projection if T = T ∗ = T 2,

5. invertible if ∃T ′ such that T ′T = TT ′ = I,

6. unitary if T ∗T = TT ∗ = I,

7. isometry if T ∗T = I,

8. partial isometry if TT ∗T = T .

(5)-(7) only make sense when A is unital.

The flexibility of the abstract definition leads to a natural definition of morphisms between

abstract C∗-algebras.

Definition II.1.7. 1. A ∗-homomorphism Φ : A → B is a continuous linear map that

preserves multiplication and adjoint.

2. The kernel of Φ is the ideal Ker(Φ) := {T ∈ A : Φ(T ) = 0}.

3. Φ is an isometric ∗-isomorphism if it is bijective and preserves norm.

4. A representation of A is a ∗-homomorphismρ : A → B(H) for some Hilbert space H.

In a short moment we will see that we can drop the continuity and isometry requirement

in the definitions of ∗-homomorphisms and ∗-isomorphisms. But first, we need to introduce

an important example.

Example II.1.8. Let X be a compact Hausdorff space. The collection C(X) of all con-

tinuous complex-valued functions on X is an abstract unital C∗-algebra with norm being

the supremum norm ‖f‖ := supx∈X ‖f(x)‖, the multiplication and adjoint being pointwise

multiplication and conjugation.
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Example II.1.9. More generally, for a locally compact1 Hausdorff topological space X, the

collection Cb(X) of all bounded continuous complex-valued functions on X is an abstract

unital C∗-algebra with the same definition of norm, multiplication and adjoint. It has a non-

closed ∗-subalgebra and ideal Cc(X) consisting of all continuous complex-valued functions

with compact support, i.e. zero outside a compact subset of X. Its closure C0(X) is a non-

unital abstract C∗-algebra, also a closed ideal of Cb(X). (In the compact case these algebras

are all equal to C(X))

Example II.1.10. If X is equipped with a metric d, Cb(X) has another C∗-subalgebra

Cu(X) made up of all bounded uniformly continuous complex-valued functions on X. It is

unital as it contains I ∈ Cb(X).

Unlike the algebras B(H) and K(H), th C∗-algebras in these examples are commutative,

that is

T1T2 = T2T1

for all T1 and T2 in these algebras. A far-reaching theorem by Gelfand shows all commutative

C∗-algebras can be obtained in this way.

Theorem II.1.11. For every unital commutative C∗-algebra A, there is an isomorphism

Γ : A → C(Spec(A)), where Spec(A) is the space of nontrivial multiplicative bounded linear

functionals from A to C, and Γ takes a to (â : Spec(A)→ C,Φ 7→ Φ(a)) ∈ C(Spec(A)).

One consequence of this theorem is that, since the norm in C0(X) is determined by its

algebraic structure via

‖f‖ = sup{‖λ‖ : f − λ is not invertible}

thus so is the norm in any commutative C∗-algebra, and moreover, the norm in any C∗-

algebra, because ‖T‖2 = ‖T ∗T‖, the normal operator T ∗T generates a commutative algebra,

and invertibility is inherited by C∗-subalgebras. Using this, one can also show that every ∗-
homomorphism is non-expanding and thus continuous, and every ∗-isomorphism is isometric.

Another natrual question to ask is whether every abstract C∗-algebra can be realized

as a concrete one, or more precisely, whether there exists a concrete C∗-algebra that is

∗-isomorphic to the given abstract C∗-algebra.

Example II.1.12. The commutative C∗-algebras in example II.1.8, II.1.9 and II.1.10 can

all be realized as concrete C∗-algebras. Indeed, if we take a regular Borel measure µ on X

1The function spaces we are going to define may not be very interesting if X is not locally compact.
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and form the Hilbert space L2(X,µ), then each bounded continuous function f ∈ Cb(X)

determines an “multiplication” operator Mf ∈ B(H) such that Mf (ξ) = f · ξ. It is evident

that the map f →Mf is an injective ∗-homomorphism, that is, an embedding of C∗-algebras

(in this case also called a faithful representation). Therefore Cb(X), C0(X) and Cu(X) are

isomorphic to some concrete C∗-algebras in B(H).

By theorem II.1.11, every commutative C∗-algebra is concrete. More generally, Gelfand

and Neumark proved that the abstract and concrete definitions are in fact equivalent:

Theorem II.1.13. Every abstract C∗-algebra is ∗-isomorphic to a concrete C∗-algebra.

II.2 Clifford algebras and grading

Let H be a (possibly finite dimensional) real Hilbert space, and HC be its complexification.

The k-th exterior power of HC, denoted ΛkHC, is defined to be the quotient of
⊗kHC by

equating ξ1 ⊗ · · · ⊗ ξk with sgn(σ) ξσ(1) ⊗ · · · ⊗ ξσ(k) for any k-permutation σ, with the

equivalence class denoted as ξ1 ∧ · · · ∧ ξk. We also equate the 0-th exterior power with C.

The antisymmetric Fock space of HC is then defined to be the Hilbert space

Λ∗HC :=
∞⊕
k=0

ΛkHC.

Notice that this is finite dimensional when H is, since ΛkHC vanishes when k > dim(H).

Λ∗HC is generated by the pure tensors ξ1 ∧ · · · ∧ ξk with arbitrary k, with k being called the

degree of this pure tensor.

For each real vector ν ∈ H, we may define its creation operator C(ν) : Λ∗HC → Λ∗HC

such that

C(ν)(ξ1 ∧ · · · ∧ ξk) := ν ∧ ξ1 ∧ · · · ∧ ξk

It raises the grading of a pure operator by 1, and in particular, maps 1 ∈ Λ0HC to ξ. Also

‖C(ν)‖ ≤ ‖ν‖, and its adjoint is the annihilation operator C∗(ν), whose effect on a pure

tensor can be easily checked:

C∗(ν)(ξ1 ∧ · · · ∧ ξk) :=
k∑
i=1

(−1)k−1 < ν, ξi > ξ1 ∧ · · · ∧ ξi−1 ∧ ξi+1 ∧ · · · ∧ ξk

Again, checking on pure tensors, one finds the following relations between these two operators

C(ν)C(ν ′) + C(ν ′)C(ν) = 0

9



C∗(ν)C∗(ν ′) + C∗(ν ′)C∗(ν) = 0

C(ν)C∗(ν ′) + C∗(ν ′)C(ν) = C∗(ν)C(ν ′) + C(ν ′)C∗(ν) = 2(ν, ν ′)

for any ν, ν ′ ∈ H. Therefore, if we define an adjoint operator

ν̂ := C(ν) + C∗(ν)

for each ν ∈ H, then we have the following relation

ν̂ν̂ ′ + ν̂ ′ν̂ = 2 < ν, ν ′ > (II.7)

for any ν, ν ′ ∈ H. In particular,

ν̂2 = ‖ν‖2 (II.8)

a scalar multiplication.

Definition II.2.1. The (complex) Clifford algebra ClC(H) ofH is the subalgebra of B(Λ∗HC)

generated by {ν̂ : ν ∈ H}.

Given an orthonormal basis {να : α ∈ A} of H, then (II.7) implies that any product of

ν̂α’s can be simplified to ± ˆνα1 ˆνα2 · · · ˆναk
, unique up to permutation, and thus all linear com-

binations of such simplified products form an algebra, which by definition is dense in ClC(H).

An important feature that makes Clifford algebras so useful in the study of geometry

is that any isometry V : H → H′ induces a ∗-homomorphism V̂ : ClC(H) → ClC(H′) such

that V̂ (ν̂) = V̂ ν. In fact, the construction of Clifford algebras and such ∗-homomorphisms

between them gives a functor from the category of Hilbert spaces and isometries to that of

C∗-algebras. In particular, a unitary operator U : H → H induces a ∗-automorphism of

ClC(H).

The ∗-automorphism of ClC(H) induced by the inversion α : H → H, ν 7→ −ν deserves

special interest, as it suggests a more general structure.

Definition II.2.2. Let A be a C∗-algebra. A grading on A is given by an involutive ∗-
automorphism of A.

Alternatively, since an involution always split A into two eigenspaces, corresponding

respectively to the eigenvalues +1 and -1, we may say a grading on A is a splitting A =

A0 ⊕A1 such that

A0 · A0 ⊂ A0, A0 · A1 ⊂ A1, A1 · A1 ⊂ A0
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where Ai corresponds to the eigenvalue (−1)i, and the multiplicative relations come from

the fact that the splitting from an involutive ∗-automorphism has to be compatible with

multiplication in A.

A0 is called the even degree part and A1 the odd degree part. In the case of the Clifford

algebras where the involution comes from α : ν 7→ −ν, the even (respectively, odd) degree

part is generated by linear combinations of simplified products ± ˆνα1 ˆνα2 · · · ˆναk
with k even

(respectively, odd). In particular, the generators ν̂ are all of odd degree.

On graded C∗-algebras, we can carry out the following important constructions: For

pure-degree elements a, a′ ∈ A, the graded commutator is defined as

[a, a′] := aa′ − (−1)deg(a) deg(a′)a′a

For example, the Clifford relation (II.7) can be simplified as

[ν̂, ν̂ ′] = 2 < ν, ν ′ > . (II.9)

II.3 Group actions and universal spaces

We would like to study actions of discrete groups on topological spaces, as the interplay be-

tween the two reveals structures of the group and often produces very interesting phenomena.

Let Γ be a discrete group and α : Γ×X → X be its isometric action on X.

Definition II.3.1. A group action Γ y X is called effective if no element of Γ acts trivially

(i.e. γ · x = x, ∀x ∈ X), and free if it does not fix any point, or equivalently, the stabilizer

group of each point is trivial.

The idea is to disallow degeneracy and force the action to be ’spread out’. Another

related notion expressing a similar idea, but with topology of X involved and behavior of

finite groups ignored, is the following:

Definition II.3.2. Let X be a locally compact topological space with an action by a discrete

group Γ. Then the action is called (topologically) proper if for every compact subset Y ⊂ X,

{γ ∈ Γ | γ · Y ∩ Y 6= ∅} is finite.

Later we will discuss an analogous notion for (possibly non-locally compact) metric

spaces. Intuitively, for a proper action, group elements that are ’far away’ from the identity

need to move points in X by a great distance. In particular, it is easy to see that the sta-

bilizer group for each x ∈ X must be finite, although this alone is not sufficient to ensure

metric properness, as the following example shows.
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Example II.3.3. An irrational rotation is a transformation of S1 = {e2πit | t ∈ R} given

by multiplication by e2πis with s irrational. It is easy to see that the action is free, i.e. all

stabilizer groups are trivial. But it is not proper since each orbit is dense in S1.

Proper actions have some nice properties that eliminates pathologies. For instance, the

quotient space M/Γ is Hausdorff.

Of great importance in the study of group actions are a kind of topological objects that

classifies a class of actions up to homotopy.

Definition II.3.4. Let Γ be a group, and let C be a category of topological spaces with

Γ-actions and homotopy classes of equivariant maps between them. Then an object X in C
is universal if for any object Y in C, there is a unique morphism from Y to X; in other words,

there are always equivariant maps Y → X and any two such maps are equivariant homotopic.

The universal object for the category of all free actions is denoted EΓ, and for the

category of all proper actions, EΓ.

Note that these objects are only determined up to equivariant homotopy. Thus there are

many different possible models for them. Here we introduce one way of constructing such

models.

Recall that for a topological space X, the cone CX over X is the quotient of X × [0, 1]

obtained by regarding all points in X × 0 as one point. We write a typical point in CX

as tx. The infinite join X ∗X ∗ · · · is the set of sequence (t1x1, t2x2, · · · ) such that tk = 0

for almost all k and
∑
tk = 1. It is given the weakest topology such that all the projection

maps

(t1x1, t2x2, · · · ) 7→ ti

(t1x1, t2x2, · · · ) 7→ xi for ti 6= 0

are continuous. If X carries a Γ-action, then Γ may act on X ∗X ∗ · · · diagonally by

γ · (t1x1, t2x2, · · · ) = (t1(γ · x1), t2(γ · x2), · · · )

When X is discrete, this space may also be given a CW-structure such that one k-cell is

attached to each k-tuple of elements in X.

We may take

EΓ = Γ ∗ Γ ∗ · · ·

12



EΓ = X ∗X ∗ · · ·

where X is the disjoint union of all homogeneous spaces Γ/G for G a finite subgroup of Γ.

In both cases, Γ acts diagonally on all copies.

II.4 The crossed product construction

The crossed product construction for C∗-algebras is a useful tool for studying unitary group

actions on C∗-algebras. Let us start by making precise the notion of a group action on a

C∗-algebra.

Definition II.4.1. Let Γ be a discrete group. A C∗-dynamical system (A ,Γ, α) consists of

a C∗-algebra A together with a homomorphism α : Γ→ Aut(A). We will denote by αγ the

automorphism α(γ) for γ ∈ Γ and say the group Γ acts2 on A by α.

Given a C∗-dynamical system, a covariant representation is a pair (ρ, U) where ρ is a ∗-
representation of A on a Hilbert space H and γ 7→ Uγ is a unitary representation of Γ on H
such that

Uγρ(a)U∗γ = ρ(αγ(a)) ∀a ∈ A, γ ∈ Γ.

Example II.4.2. Let X be a locally compact Hausdorff topological space and let Γ y X

by homeomorphisms. Then this action induces a C∗-dynamical system (C0(X),Γ, α) where

αγ(f)(x) := f(γ−1 · x), ∀f ∈ C0(X), γ ∈ Γ and x ∈ X.

There is also a covariant representation (m,U) on L2(X) by:

mf (ξ)(x) := f(x)ξ(x), ∀f ∈ C0(X), ξ ∈ L2(X) and x ∈ X;

Uγ(ξ)(x) := ξ(γ−1 · x), ∀γ ∈ Γ, ξ ∈ L2(X) and x ∈ X.

Definition II.4.3. Let (A ,Γ, α) be a C∗-dynamical system. The algebraic crossed product

algebra Aoα,alg Γ consists of all finite sums f =
∑

γ∈Γ aγγ where aγ ∈ A. Multiplication is

determined by the formal rules γaγ−1 = αγ(a) and γ∗ = γ−1. We shall often write Aoalg Γ

for Aoα,alg Γ when the group action is understood.

Thus if g =
∑

λ∈Γ Bλλ is another finite sum in Aoalg Γ, then

fg =
∑
γ∈Γ

∑
λ∈Γ

(aγγ · Bλλ) =
∑
γ∈Γ

∑
λ∈Γ

aγ(γBλγ−1)γλ

2Here we are using left action, but the right action case is completely analogous: simply replace Γ with
Γ op, the group with reversed multiplication.
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=
∑
γ∈Γ

∑
λ∈Γ

aγαγ(Bλ)γλ
β:=γλ

====
∑
β∈Γ

(∑
γ∈Γ

aγαγ(Bγ−1λ)

)
β.

Also since

(aγ)∗ = γ∗a∗ = γ−1a∗γγ−1 = α−1
γ (a∗)γ−1,

then

f ∗ =
∑
γ∈Γ

αγ(a
∗
γ−1)γ.

The algebra A oalg Γ encodes the C∗-dynamical system(A ,Γ, α). Furthermore, it is

immediate that a covariant representation (ρ, U) corresponds to a ∗-representation ρ̃ of

Aoalg Γ, and vice versa. More explicitly, ρ̃ is defined by

ρ̃(f) =
∑
γ∈Γ

ρ(aγ)Uγ.

There is a kind of covariant representations of particular interest to us. Let ρ be a ∗-
representation of A on H. Then we form the “twisted tensor product“ of this representation

with the left regular representation of Γ, which is a covariant representation (ρ̃, L) of (A ,Γ, α)

on LΓ⊗H such that:

ρ̃(a) · (δγ ⊗ ξ) := δγ ⊗ (ρ(α−1
γ (a)) · ξ)

Lλ · (δγ ⊗ ξ) := δλγ ⊗ ξ

where a ∈ A, ξ ∈ H, γ, λ ∈ Γ, and δγ is the characteristic function of the singleton {γ}. We

also denote the corresponding ∗-representation of Aoalg Γ on LΓ⊗H by ρ̃, and by a slight

abuse of language, call it the left regular representation of Aoalg Γ with regard to ρ. Hence

ρ̃(
∑
λ∈Γ

aλλ) · (δγ ⊗ ξ) =
∑
λ∈Γ

ρ̃(aλ) · (δλγ ⊗ ξ)

=
∑
λ∈Γ

δλγ ⊗ (ρ(α−1
λγ (aλ)) · ξ)

=
∑
λ∈Γ

δλγ ⊗
(
ρ
(
(λγ)−1aλ(λγ)

)
· ξ
)
.

This may be compared with the rules of multiplication in Aoalg Γ. It is also evident that

if ρ : A → B(H) is faithful, then so is ρ̃ : Aoalg Γ→ B(LΓ⊗H).

Now ρ̃ induces a C∗-norm

‖f‖r = ‖ρ̃(f)‖

on A oalg Γ. Yet as seen in the construction of the group C∗-algebras, another standard
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practice is taking the maximal C∗-norm

‖f‖ = sup
ρ
‖φ(f)‖

where ρ runs over all ∗-representations of Aoalg Γ. It is well defined because there is at least

one ∗-representation (the left regular representation) and the supremum is bounded above

by
∑

γ∈Γ ‖aγ‖. This maximal norm is induced by the universal representation of Aoalg Γ.

Definition II.4.4. Let ρ : A → B(H) be a faithful representation of A. Then the reduced

crossed product Aoα,r Γ is the norm closure of ρ̃(Aoα,alg Γ) in B(LΓ⊗H), and the (unre-

duced) crossed product, denoted by Aoα Γ, is the norm closure of the image of the universal

representation of Aoα,alg Γ.

Equivalently, we may say Aoα,r Γ and Aoα Γ are completions of Aoα,alg Γ with respect

to the norms ‖ · ‖r and ‖ · ‖, respectively. We shall often drop the homomorphism α in the

notation, if it causes no confusion.

Example II.4.5. If we take A = C and α to be the trivial homomorphism, then Aoα,r Γ

and Aoα Γ are nothing but the reduced and full group C∗-algebras, respectively.

II.5 KK-theory

Kasparov’s equivariant KK-theory (cf. [14, 15]) associates to a locally compact and σ-

compact group Γ and two separable Γ-C∗-algebras A and B (meaning that Γ acts on them)

the abelian group KKΓ(A,B). The group KKΓ(A,B) contains, among other things, ele-

ments [ϕ] induced from equivariant ∗-homomorphisms ϕ : A → B. It is contravariant in A

and covariant in B, both with respect to equivariant ∗-homomorphisms. It is equivariant-

homotopy-invariant, stably invariant, preserves equivariant split exact sequences, and satis-

fies Bott periodicity :

KKΓ(A,B) ∼= KKΓ(Σ2A,B) ∼= KKΓ(ΣA,ΣB) ∼= KKΓ(A,Σ2B)

where ΣiA stands for C0(Ri, A) with i ∈ N and Γ acting trivially on R. These properties

ensure that a short exact sequence 0→ J → E → A of C∗-algebras and ∗-homomorphisms

induces six-term exact sequences in both variables. When one of the two variables is C,

equivariant KK-theory recovers equivariant K-theory: KKΓ(C, B) ∼= KΓ
0 (B) and equivari-

ant K-homology: KKΓ(A,C) ∼= K0
Γ(B).
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The most powerful feature of equivariant KK-theory is the Kasparov product, which

assigns a group homomorphism

KKΓ(A,B)⊗Z KK
Γ(B,C)→ KKΓ(A,C)

for any three separable Γ-C∗-algebras A, B, and C. The Kasparov product of two elements

x ∈ KKΓ(A,B) and y ∈ KKΓ(B,C) is often denoted by x ⊗B y. The Kasparov product

is associative and taking Kasparov product with an element [ϕ] induced from an equivari-

ant ∗-homomorphisms ϕ coincides with the functorial properties of equivariant KK-theory.

In categorical language, this can be summarized as saying that KKΓ(−,−) constitutes a

bifunctor from the category of separable Γ-C∗-algebras and ∗-homomorphism to the addi-

tive category KKΓ of separable Γ-C∗-algebras and equivariant KK-group elements, with

the Kasparov product as its composition of morphisms. When the acting group Γ is the

trivial group, we simply write KK(A,B) for KKΓ(A,B) and drop the word “equivariant”

everywhere. There is a forgetful functor from KKΓ to KK.

When Γ is a countable discrete group and its action on B is trivial, it is immediate from

the definition that there is a natural isomorphism KKΓ(A,B) ∼= KK(AoΓ, B) where AoΓ

is the maximal crossed product. In particular, if A = C0(X) for a locally compact second

countable space X and Γ acts freely and properly on X, then since C0(X) o Γ is stably iso-

morphic to C0(X/Γ), we have a natural isomorphism KKΓ(C0(X), B) ∼= KK(C0(X/Γ), B).

Also, when Γ is a countable discrete group and A = C0(Γ, D) with an action of Γ by trans-

lation on the domain Γ, there is a natural isomorphism KKΓ(C0(Γ, D), B)
∼=−→ KK(D,B)

given by first applying the forgetful functor and then composing with the embedding D ∼=
C({1Γ}, D) ↪→ C0(Γ, D).

In this paper, we will focus on the case when the first variable A in KKΓ(A,B) is

commutative and view the theory as a homological theory on the spectrum of A. In fact,

we will need a variant of it that may be thought of as homology with Γ-compact support.

Recall that a subset of a topological space X, on which Γ acts, is called Γ-compact if it is

contained in {g · x : g ∈ Γ, x ∈ K} for some compact subset K in X.

Definition II.5.1. Given a countable discrete group Γ, a Hausdorff space X with a Γ-action,

a Γ-C∗-algebra B, and i ∈ N, we write KKΓ
i (X,B) for the inductive limit of the equivariant

KK-groups KKΓ(C0(Z), C0(Ri, A), where Z ranges over Γ-invariant and Γ-compact subsets

ofX and A ranges over Γ-invariant separable C∗-subalgebras of B, both directed by inclusion.

We write KΓ
i (X) for KKΓ

i (X,C) and call it the Γ-equivariant K-homology of X with

Γ-compact supports.

It is clear from Bott periodicity that there is a natural isomorphism KKΓ
i (X,B) ∼=
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KKΓ
i+2(X,B). Thus we can view the index i as an element of Z/2Z. Also note that this

construction is covariant both in X with respect to continuous maps and in B with respect to

equivariant ∗-homomorphisms. Partially generalizing the functoriality in the second variable,

the Kasparov product gives us a natural product KKΓ
i (X,B)⊗ZKK

Γ(B,C)→ KKΓ
i (X,C)

for any separable Γ-C∗-algebras B and C (the separability condition can be dropped by

extending the definition of KKΓ(B,C) through taking limits).

In the non-equivariant case, we may think of KKi(−, B) as an extraordinary homology

theory in the sense of Eilenberg-Steenrod. In particular, there is a Chern character which is

an isomorphism

ch: KKi(X,B)⊗Q
∼=→
⊕
j∈Z/2Z

Kj(X)⊗Z Ki−j(B)⊗Q .

The reduced Baum-Connes assembly map for a countable discrete group Γ and a Γ-C∗-

algebra B is a group homomorphism

µ : KKΓ
i (EΓ, B)→ Ki(B or Γ) .

It is natural in B with respect to Γ-equivariant ∗-homomorphisms or more generally with

respect to taking Kasparov products, in the sense that any element δ ∈ KKΓ(B,C) induces

a commuting diagram

KKΓ
i (EΓ, B)

µ //

δ
��

Ki(B or Γ)

δorΓ

��
KKΓ

i (EΓ, C)
µ // Ki(C or Γ)

(II.10)

for an induced group homomorphism δ or Γ.

The case when B = C is of special interest. The rational strong Novikov conjecture

asserts that the composition

KΓ
i (EΓ)→ KΓ

i (EΓ)
µ→ Ki(C

∗
r Γ)

is injective after tensoring each term by Q. It implies the classical Novikov conjecture.

On the other hand, it has proven extremely useful to have the flexibility of a general

Γ-algebra B in the picture, largely due to the following key observation, which is based on

a five lemma argument.

Theorem II.5.2 (cf. [11, Theorem 13.1]). For any countable discrete group Γ, and a Γ-C∗-

algebra B, if B is a proper Γ-X-C∗-algebra for some locally compact Hausdorff space X,
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then the reduced Baum-Connes assembly map

µ : KKΓ
i (EΓ, B)→ Ki(B or Γ) .

is a bijection.

II.6 Non-positively curved Hilbert manifolds

We give a summary of the basic theory of Hilbert manifolds, following [17]. A Hilbert

manifold is an infinite-dimensional analogue of Riemannian manifold, with the neighborhood

of a point in the manifold modelled after a Hilbert space instead of an Euclidean space.

Fortunately, most of the core constructions in classical Riemannian geometry carries over to

the infinite-dimensional case, albeit with some impasses and caveats here and there.

Definition II.6.1. A topological manifold modelled after a Hilbert space H is a separable,

metrizable space which is locally homeomorphic to H.

Definition II.6.2. A differentiable atlas on a topological manifold M modelled after a

Hilbert space H is a family of charts (φα,Mα)α∈A such that {Mα}α∈A is an open covering of

M , and for any α ∈ A, φα : Mα → Uα is a homeomorphism onto an open subset Uα of H and

for any two charts indexed by α and β in A, the transition map φα ◦ φ−1
β : : φβ(Mα ∩Mβ)→

φα(Mα ∩Mβ) is a diffeomorphism, i.e., it is a homeomorphism such that both itself and its

inverse are differentiable for any number of times.

Two differentiable atlases are said to be equivalent if their union is also a differentiable

atlas. And finally, a differentiable Hilbert manifold is a topological Hilbert manifold together

with a chosen equivalence class of differentiable atlases.

Definition II.6.3. Let B be a Banach space and M a differentiable manifold modelled after

a Hilbert spaceH. Then a differentiable B-vector bundle over M is given by (P,M, π), where

P is a topological space and π a surjective continuous map such that π−1(x) is a Banach space

isomorphic to B and there is an atlas of bundle charts, that is, a family of charts (φα,Mα)α∈A

such that {Mα}α∈A is an open covering of M , and for any α ∈ A, φα : π−1(Mα) → Uα × B
is a homeomorphism, where Uα is an open subset of H, and for any two charts indexed by

α and β in A, the transition map φα ◦ φ−1
β : φβ(π−1(Mα ∩Mβ)) → φα(π−1(Mα ∩Mβ)) is a

diffeomorphism.

The definition of differentiable maps, tangent bundles, derivatives, vector fields are com-

pletely analogous to the finite dimensional case. But the definition of covariant derivatives

requires some additional structure on the Hilbert manifold.
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Definition II.6.4. Let M be a differentiable Hilbert manifold. Assume that for every chart

(φα,Mα) of an atlas of M there is given a differentiable map

Γα : φα 7→ Γ(φα) ∈ L(H,H,H∗;R) = L(H,H;H)

called a Christoffel symbol, with the following property: If (φβ,Mβ) is a second chart, then

Γα|φα(Mα ∩Mβ) and Γβ|φβ(Mα ∩Mβ) are related by

D(φβ ◦ φ−1
α )Γα(φα) = D2(φβ ◦ φ−1

α ) + Γβ(φβ) ◦ (D(φβ ◦ φ−1
α )×D(φβ ◦ φ−1

α ))

Given a family Christoffel symbols on M we define a covariant derivation

(X, Y ) 7→ 5XY

by taking for the principal part 5XY (φα) of 5XY with respect to a chart (φα,Mα) the

expression

5XY (φα) = DY (φα) ·X(φα) + Γ(φα)(X(φα), Y (α))

When M is endowed with an atlas for which we have Christoffel symbols we also say M

possesses a covariant derivation.

Definition II.6.5. Let 5 be a given covariant derivation on M . The curvature tensor is

defined by the following formula on a local chart (φα,Mα):

(X, Y, Z) 7→ R(φα)(X, Y )Z

= DΓ(φα) X(Y, Z)−DΓ(φα) Y (X,Z)

+ Γ(φα)(X,Γ(φa)(X,Z))− Γ(φα)(Y,Γ(φα)(X, Y ))

Once we have a covariant derivative, geodesics and exponential maps are again defined

in the same manner as in the finite dimensional case. To define Hilbert-Riemannian metrics,

we consider Sym2H, the Banach space of symmetric bilinear maps from H×H into R. Such

a bilinear map g is called a positive definite quadratic form on H if there exists ε > 0 such

that

g(X,X) ≥ ε < X,X >

where < •, • > is the inner product on the Hilbert space H.

Definition II.6.6. LetM be a differentiable Hilbert manifold. A Hilbert-Riemannian metric

on M is a section of the bundle SymTM with positive definite quadratic forms as values. A

Hilbert-Riemannian manifold is M together with the metric g.
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Hilbert-Riemannian metrics always exist for a given Hilbert manifold, thanks to the

existence of partitions of unity subordinate to any given atlas. And any such metric uniquely

determines a covariant derivation 5, called the Levi-Civita derivation, with the defining

relation

2 < 5XY, Z >

= X < Y,Z > +Y < Z,X > −Z < X, Y >

+ < Z, [X, Y ] > + < Y, [Z,X] > − < X, [Y, Z] >

for all vector fields X, Y, Z.

Definition II.6.7. Let (M, g) be a Hilbert-Riemannian manifold, and let (X, Y, Z) 7→
R(X, Y )Z be the curvature tensor of the Levi-Civita derivation. Then for any x ∈ M

and any two linearly independent tangent vector −→v ,−→v ′ ∈ TxM , the sectional curvature for

the 2-dimensional linear subspace V spanned by −→v and −→v ′ is defined to be

K(V ) :=
< R(X, Y )Y,X >

< X,X >< Y, Y > − < X, Y >2

Intuitively, the sectional curvature measures how large the infinitesmal area spanned

by −→v and −→v ′ in M is compared to such an area in a Hilbert space. When the sectional

curvatures are all non-positive, the manifold locally resembles a hyperbolic space in that

all the geodesic triangles are thin, and if in addition, the manifold is complete and simply

connected, then such a property holds on the global scale. In particular, any two points

is connected by a unique geodesic. This is the idea behind the Hadamard theorem, whose

proof can be found in [17].

Proposition II.6.8. (Hadamard theorem) Let M be a complete, simply-connected (Hilbert)

manifold with non-positive sectional curvatures. Then for any x ∈M , the exponential map

expx : TxM →M

is a diffeomorphism and metric-expanding.
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CHAPTER III

A NONCOMMUTATIVE C∗-ALGEBRA ASSOCIATED TO A NON-POSITIVELY

CURVED HILBERT MANIFOLD

The main strategy of the proof is inspired by the Dirac-dual-Dirac approach, which has

been very successful in the study of the strong Novikov conjecture and the Baum-Connes

conjecture, in particular, in the proof of the strong Novikov conjecture for groups acting

isometrically and properly on a non-positively curved Riemannian manifold. This approach

can be outlined as follows: Assuming for simplicity that Γ acts on M freely, one makes use

of two deep results in different areas:

1. Cartan-Hadamard theorem, which states that a complete, connected, simply-connected,

and non-positively curved Riemannian manifold is diffeomorphic to Rn, and

2. Bott periodicity, which states Rn has the same K-theory as a point (up to a dimension

shift).

Thus one can make a connection between the K-theory of the highly noncommutative space

given by C∗r (Γ) and the K-theory of the commutative space M/Γ, the latter readily checked

to be isomorphic, via the assembly map with coefficient algebra C0(M), to the KK-group

KKΓ
∗ (EΓ, C0(M)), which, by a strong form of Bott periodicity, is isomorphic to RKΓ

∗ (EΓ)

(again up to a dimension shift), hence we end up with the following commutative diagram:

KΓ
∗ (EΓ)

µ //

∼=
��

K∗(C
∗
r (Γ))

��
KKΓ

∗ (EΓ, C0(M))
µ

∼=
// K∗(C

∗
r (Γ, C0(M)))

and it is immediate that the map on the top is injective.

A major difficulty with adapting this proof by Kasparov is that now the manifold M ,

being infinite-dimensional, is not locally compact, and thus falls out of the scope of the

Gelfand-Naimark theorem, and has C0(M) = 0, rendering the traditional approach useless.

However, using ideas from noncommutative geometry, we can develop a novel construction

of a C*-algebra A(M), which encodes the geometric data of M and can largely replace the

role C0(M) plays in the finite-dimensional case. In the case when M is flat, our construction

yields the same algebra as the one appearing in Higson and Kasparov [12], but unlike their
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construction, ours gives a more intrinsic description without evoking the affine structure of

a Hilbert space.

Now we would like to generalize the construction to a non-positively curved Hilbert

manifold, still denoted by M . We are going to construct an appropriate C∗-algebra A(M)

which should play an analogous role as the one in the finite-dimensional case in terms of

K-theoretic calculations.

III.1 Sections of the Clifford bundle

One may hope the construction to be completely analogous to the finite dimensional case.

However, the complexity of the infinite dimensionality displays itself when we try to define

A(M). If one naively attempt to define the algebra exactly as before — the closure of the

algebra consisting of all continuous sections of the Clifford bundle ClCM that vanish outside

of a compact set, one could see that, because M is not locally compact anywhere — there

is no non-empty open set with compact closure — any continuous section vanishing outside

of a compact set must be globally zero, and hence the entire algebra becomes trivial. This

demands us to relax our condition when picking the suitable sections to form an algebra; yet

not so much that the algebra fails to be Γ-proper or the K-theory of the algebra collapses.

Recall that to any Riemannian vector bundle E over X one may associate the (complex)

Clifford bundle ClCE over X and the graded ∗-algebra of continuous sections C(X,ClCE),

where the multiplication and the ∗-operation are defined pointwise as

(σ · σ′)(x) := σ(x) · σ′(x) ∈ ClCEx , (σ∗)(x) := (σ(x))∗ ∈ ClCEx

for any x ∈ X and σ, σ′ ∈ C(X,ClCE), and any σ is even (respectively, odd) if it is even

(respectively, odd) at any point. One also gets a graded subalgebra Cb(X,ClCE) which is a

C∗-algebra when one restricts to bounded continuous sections, where the norm is given by

the sup norm:

‖σ‖ := sup{‖σ(x)‖ClCEx : x ∈ X} ,

where at each point x, the norm ‖− ‖ClCEx is the canonical C∗-norm on the Clifford algebra

ClCEx.

We are interested in certain subalgebras of Cb (M,ClCTM).

Definition III.1.1. Define C00,met (M,ClCTM) to be the graded ∗-subalgebra of Cb (M,ClCTM)

consisting of sections that vanish outside of a bounded set in M , i.e.,

{σ ∈ Cb (M,ClCTM) : ∃K ⊂M bounded s.t. σ(x) = 0, ∀x ∈M \K} .
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Let C0,met (M,ClCTM) be the closure of C00,met (M,ClCTM) under the norm topology, which

is then a graded C∗-subalgebra of Cb (M,ClCTM).

Remark III.1.2. One may also directly characterize C0,met (M,ClCTM) as containing those

sections such that for any ε > 0, there exists a bounded set K ⊂M such that ‖σ(x)‖ClCTxM <

ε for any x ∈M \K.

Remark III.1.3. Notice that there is a canonical central embedding

Cb(M) ↪→ Z(Cb (M,ClCTM))

given by the scalar sections over M . It is obviously equivariant with regard to α : Γ y M

and maps the subalgebra

C0,met(M) := {f ∈ Cb(M)| ∃K ⊂M bounded s.t. f(x) = 0, ∀x ∈M \K}

into the center of C0,met (M,ClCTM). Thus we will consider Cb(M) as a sub-C∗-algebra of

Cb (M,ClCTM) via this embedding, when there is no danger of confusion.

Example III.1.4. Let M = V be a (real) Hilbert space. Then under the canonical iden-

tification of TV with the trivial bundle V × V , we have (graded) canonical isomorphisms

Cb (V,ClCTV ) ∼= Cb(V,ClCV ) and C0,met (V,ClCTV ) ∼= C0,met(V,ClCV ), where C0,met(V,ClCV )

is generated by boundedly supported functions in Cb(V,ClCV ).

Example III.1.5. When M is finite-dimensional, it is locally compact and bounded sets

are precisely precompact subsets of M . Thus C0,met (M,ClCTM) is equal to C0 (M,ClCTM),

the C∗-subalgebra of Cb (M,ClCTM) consisting of all sections such that for any ε > 0, there

exists a compact set K ⊂M such that ‖σ(x)‖ClCTxM < ε for any x ∈M \K.

Now given an isometry φ of M , we may construct a ∗-automorphism φ∗ of C (M,ClCTM)

defined by

(φ∗)(σ)(x) := ClC(Dxφ)−1
(
σ(φ−1(x))

)
(III.1)

for any x ∈ M and σ ∈ C (M,ClCTM). The automorphism clearly preserves the ∗-
subalgebras Cb (M,ClCTM), C00,met (M,ClCTM) and C0,met (M,ClCTM). The assignment

φ 7→ φ∗ give rise to group homomorphisms from the isometry group Isom(M) to the groups

of ∗-automorphisms of C (M,ClCTM), etc. We denote the resulting fixed-point subalgebras

with regard to φ∗ as C (M,ClCTM)φ, etc.
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Example III.1.6. Let M = R together with the Z2-action given by the reflection R around

the origin. Then we have graded isomorphisms

C0,met (R,ClCTR)R ∼= C0(R,ClCR)R

∼= {σ ∈ C0([0,∞),ClC(R)) : ClC(R)f(0) = f(0) ∈ ClC(R)}
∼= {σ ∈ C0([0,∞),ClC(R)) : f(0) ∈ C · 1ClC (R)}
∼= {σ ∈ C0([0,∞),C⊕ C) : f(0) ∈ C · (1, 1)}
∼= C0(R)

where the identification ClC(R) ∼= C⊕C is induced by mapping v ∈ R ⊂ ClC(R) to (v,−v),

with the grading on C⊕C given by swapping the two coordinates, and the last isomorphism

above is given by

f ∈ C0(R) 7→ ( x→ (f(x), f(−x)) ) ∈ {σ ∈ C0([0,∞),C⊕ C) : f(0) ∈ C · 1},

with the grading on C0(R) induced by the reflection R around the origin. Thus the grade-

zero part consists of all even functions, and the grade-one part consists of all odd functions.

This algebra will play an important role in our construction, and will be denoted as S.

Returning to the study of the Novikov conjecture, we have at hand a simply-connected,

complete Hilbert manifold M with non-positive sectional curvatures and an isometric action

by Γ. As in Example III.1.5, if M is 2n-dimensional for n < ∞, then C0,met (M,ClCTM)

is the same as C0 (M,ClCTM), the algebra generated by sections of compact supports, and

thus is isomorphic to C0(M,M2n(C)), which is suitable to serve as the coefficient algebra for

the Dirac-dual-Dirac method. On the other hand, unlike C0 (M,ClCTM), the larger algebra

C0,met (M,ClCTM) remains at least non-trivial when we pass to the infinite dimensional case.

Thus C0,met (M,ClCTM) appears to be a good candidate for the coefficient algebra in order

to apply the Dirac-dual-Dirac method.

However, C0,met (M,ClCTM) turns out to be too large for our purpose. Instead, it acts as

a playground in which the coefficient algebra we are going to use, A(M), will be assembled.

III.2 Bott homomorphisms

Roughly speaking, A(M) is defined as the smallest algebra generated by the images of the

so-called Bott homomorphisms, ∗-homomorphisms that induce a suitable version of the Bott

map on K-theory. Let us first explain how these homomorphisms are constructed for a

Hilbert manifold.
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Definition III.2.1. Let M be a nonpositively curved Hilbert manifold with a proper iso-

metric action α of Γ. For any point x0 ∈ M , we define the Clifford multiplier Cx0 to be

the (unbounded) continuous section of the Clifford bundle ClCTM that maps x ∈ M to

−exp−1
x (x0) ∈ TxM ⊂ ClCTxM .

Example III.2.2. When M = V is a (real) Hilbert space, Cx0(x) = x−x0, after we identify

M with its own tangent spaces TxM .

Proposition III.2.3. For any point x0 ∈ M , let βx0 be the map that sends f ∈ S to the

section

βx0(f) : x 7→ f(Cx0(x)), ∀x ∈M,

of the bundle ClCTM . Then βx0 is a graded ∗-homomorphism from S to C0,met (M,ClCTM).

Here the left-hand side is given by the functional calculus applied to the self-adjoint element

Cx0(x) ∈ ClCTxM and the function f ∈ S = C0(R).

Proof. For any f1, f2, f3 ∈ S, λ ∈ C and x ∈M , we have

(βx0(f1) · βx0(f2) + λ · βx0(f2)∗) (x)

= βx0(f1)(x) · βx0(f2)(x) + λ · βx0(f3)∗(x)

= f1(Cx0(x)) · f2(Cx0(x)) + λ · (f3(Cx0(x)))∗

= (f1f2 + λf3)(Cx0(x))

= βx0(f1f2 + λf3)(x)

and

‖βx0(f1)(x)‖ = ‖f1(Cx0(x))‖ ≤ ‖f1‖.

These, combined with the continuity of functional calculus, show that βx0 is a ∗-homomorphism

from S to Cb (M,ClCTM).

Note that for any x ∈M , Cx0(x) ∈ ClCTxM is an odd element, while

C2
x0

(x) = d(x0, x)2

is a nonnegative scalar, and in particular, an even element. Now when f ∈ S is even, we

may write f(t) = g(t2) for some g ∈ C0([0,∞)) and thus

βx0(f)(x) = g(C2
x0

(x))

is even for all x ∈ M . And when f is odd, we write f(t) = tg(t2) for some g ∈ C0([0,∞))
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and gets

βx0(f)(x) = Cx0(x) · g(C2
x0

(x))

is odd for all x ∈M . Therefore βx0 preserves grading.

Lastly, to show that the image of βx0 is contained in C0,met (M,ClCTM), we observe

that the compactly supported functions on R form a dense subalgebra of S, and claim that

βx0 maps these functions to boundedly supported sections of ClCTM . Indeed, if suppf is

contained in the closed R-ball around 0 ∈ R, then for any x ∈ M outside the closed R-ball

around x0, we have ‖Cx0(x)‖ = d(x, x0) > R, and thus βx0(f)(x) = f(Cx0(x)) = 0. It follows

that boundedly supported sections of ClCTM form a dense subset of the image of βx0 , and

thus βx0(S) ⊂ C0,met (M,ClCTM).

Definition III.2.4. For any point x0 ∈M , the graded ∗-homomorphism

βx0 : S → C0,met (M,ClCTM)

is called the Bott homomorphism centered at x0.

We discuss some important features of βx0 , the first of which we have already hinted at in

the proof of the last proposition. Let us denote the even part of S as Sev, which is comprised

of all even functions.

Proposition III.2.5. For any x0 ∈ M , βx0 maps Sev into the subalgebra Cb(M) in the

center of Cb (M,ClCTM) (see Remark III.1.3).

Proof. For any x ∈ M and f ∈ Sev, we can write f(t) = g(t2) for some g ∈ C0([0,∞)) and

thus

βx0(f)(x) = g
(
C2
x0

(x)
)

= g
(
d(x0, x)2

)
is a scalar.

Next we study the relation between Bott homomorphisms and isometries on M .

Lemma III.2.6. For any φ ∈ Isom(M) and any x0 ∈M , the following holds:

φ∗ ◦ βx0 = βφ(x0)

where φ∗ is the induced ∗-automorphism of C0,met (M,ClCTM) (c.f. (III.1)).
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Proof. For any f ∈ S and x ∈M , we have

φ∗ (βx0(f)) (x) = ClC
(
Dφ−1(x)φ

) (
βx0(f)(φ−1(x))

)
= ClC

(
Dφ−1(x)φ

) (
f
(
Cx0(φ

−1(x))
))

= f
(
ClC

(
Dφ−1(x)φ

) (
Cx0(φ

−1(x))
))

= f
((
Dφ−1(x)φ

) (
−exp−1

φ−1(x)(x0)
))

= f
(
−exp−1

x (φ(x0))
)

= f
(
Cφ(x0)(x)

)
= βφ(x0)(f)(x).

Here, we used that functional calculus commutes with automorphisms of C∗-algebras, and

that being an isometry, φ : M →M carries the geodesic line segment [φ−1(x), x0] to [x, φ(x0)].

Remark III.2.7. In fact, when we view Cx0 as an element of C (M,ClCTM) and use the

automorphism φ∗ of C (M,ClCTM) induced by φ, we have

φ∗ (Cx0) = Cφ(x0)

for any x0 ∈M .

Corollary III.2.8. If x0 is fixed by an isometry φ of M , then

βx0(S) ⊂ C0,met (M,ClCTM)φ ,

the fixed-point subalgebra with regard to φ∗.

Proof. For any f ∈ S, we have

(φ∗) (βx0(f)) = βφ(x0)(f) = βx0(f)

and thus βx0(f) ∈ C0,met (M,ClCTM)φ.

Lastly we show that although the definition of a Bott homomorphism depends on the

choice of the base point, this dependence is a rather mild one.

Lemma III.2.9. For any x0, x1 ∈M , we have Cx0 − Cx1 is a bounded function and

‖Cx0 − Cx1‖ ≤ d(x0, x1)
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Proof. Direct computation yields

‖Cx0(x)− Cx1(x)‖ = ‖ − exp−1
x (x0) + exp−1

x (x1)‖ ≤ d(x0, x1)

where the inequality comes from the fact that the exponential maps for non-positively curved

manifolds are metric-expanding, by Hadamard’s theorem.

For any f ∈ S, let us define its r-oscillation by

Ωrf := sup {|f(t)− f(t′)| : t, t′ ∈ R, |t− t′| ≤ r} . (III.2)

Then we have the following estimate.

Proposition III.2.10. For any x0, x1 ∈M and any f ∈ S, let r := d(x0, x1) Then

‖βx0(f)− βx1(f)‖ ≤ 2 Ωrf + r‖f‖.

Proof. Since C2
x0

is a non-negative scalar function, we have the non-negative scalar function

|Cx0| :=
√
C2
x0

that satisfies

|Cx0|(x) = ‖Cx0(x)‖

for any x ∈M and thus

|(|Cx0 | − |Cx1|) (x)| = |‖Cx0(x)‖ − ‖Cx1(x)‖|

≤ ‖Cx0(x)− Cx1(x)‖

= ‖Cx0 − Cx1‖ ≤ d(x0, x1) = r.

Now if f ∈ S is an even function, then it is of the form f(t) = g(t2) and since

βx0(f)(x) = g(C2
x0

(x)) = f (|Cx0|(x)) ,

we have

‖(βx0(f)− βx1(f))(x)‖ = |f (|Cx0|(x))− f (|Cx1|(x))| ≤ Ωrf.

Taking supreme yields ‖βx0(f)− βx1(f)‖ ≤ Ωrf .
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If f ∈ S is of the form f(s) = sg(s) for an even function g ∈ S, then

‖(βx0(f)− βx1(f))(x)‖

= ‖ g (|Cx0|(x)) · Cx0(x)− g (|Cx1|(x)) · Cx1(x) ‖

≤ | g (|Cx0|(x)) · |Cx0|(x)− g (|Cx1|(x)) · |Cx1|(x) |

+ max{g (|Cx0|(x)) , g (|Cx1|(x))} · ‖Cx0(x)− Cx1(x)‖

≤ Ωrf + r · ‖f‖.

Here the crucial observation is that Cx0(x) and Cx1(x) are vectors in TxM and we can use

planar geometry to get an estimate. Taking supreme yields the desired bound.

Since for every function on R, its canonical decomposition into a sum of an odd function

and an even function produces summand functions with no larger oscillations or norms, the

general estimate follows.

Corollary III.2.11. If a sequence {xn ∈M}n∈N converges to x0 ∈M , then for any f ∈ S,

we have

‖βx0(f)− βxn(f)‖ n→∞−→ 0.

Proof. This follows from the previous observation and the fact that any f ∈ C0(R) is uni-

formly continuous, and thus lim
r→0

Ωr(f) = 0.

III.3 The coefficient algebra A(M)

Now we are ready to define the desired coefficient algebra A(M). We fix a nonpositively

curved Hilbert manifold M . Consider the manifold R × M equipped with the product

Hilbert-Riemannian metric. Thus R ×M is also a nonpositively curved Hilbert manifold.

Note that Isom(M) embeds into Isom(R ×M) by acting on the second coordinate. This

action commutes with the reflection map around 0 on the first factor R, i.e., the involutive

isometry R on R×M given by

R(t, x) := (−t, x) (III.3)

for any t ∈ R and x ∈ M . Viewing R as an isometric action by Z2, we have thus obtained

an isometric action of R×M by Z2× Isom(M). For any x0 ∈M , since (0, x0) is fixed by R,

by Corollary III.2.8, the image of the Bott homomorphism

β(0,x0) : S → C0,met (R×M,ClCT (R×M))

is contained in the fixed-point algebra C0,met (R×M,ClCT (R×M))R.
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Definition III.3.1. Let M be a nonpositively curved Hilbert manifold. The algebra A(M)

is the C∗-subalgebra of C0,met (R×M,ClCT (R×M))R generated by

{β(0,x0)(f) : x0 ∈M, f ∈ S }.

We also define Aev(M) to be the C∗-subalgebra of A(M) generated by

{β(0,x0)(f) : x0 ∈M, f ∈ Sev }.

We discuss some basic properties of these algebras.

Proposition III.3.2. A(M) is separable.

Proof. By the separability of M and S, there are countable dense subsets X and F of M

and S, respectively. It follows then by Lemma III.2.11 that {β(0,x0)(f) | x0 ∈ X, f ∈ F} is

a dense subset of A(M).

Proposition III.3.3. For any isometry φ of M , the induced ∗-automorphism φ∗ of C0,met (R×M,ClCT (R×M))

given in (III.1) preserves A(M) and Aev(M).

Proof. This follows directly from Lemma III.2.6 and the fact that φ∗ commutes with R∗.

Next we investigate the center of A(M). We first observe that by Proposition III.2.5,

Aev(M) is contained in Cb(R×M) ∩ A(M), and is thus in the center of A(M). In fact, we

have the following proposition.

Proposition III.3.4. A(M) is an Isom(M)-Aev(M)-C∗-algebra.

Proof. Since we already know by Proposition III.3.3 that Aev(M) is an Isom(M)-invariant

sub-C∗-algebra of the center of A(M), it suffices to show that Aev(M) · A(M) is dense in

A(M). Indeed, this follows from the definition of A(M) and the fact that every f ∈ S can

be written as a product f = f1f2 where f1 ∈ Sev and f2 ∈ S.

To determine the spectrum of Aev(M), we notice that each pair (t, x) ∈ R×M induces a

character ev(t,x) : Cb(R×M)→ C by evaluation at (t, x), and this in turn induces a character

of Aev(M) by restriction, as it is a non-zero map: for example, for the non-negative even

function f(s) = (1 + |t| − |s|)+, we have ev(t,x)(β(0,x)(f)) = 1. In the following proposition,

we equip R≥0 ×M ⊂ R×M with the product topology.

Proposition III.3.5. The map ev : R≥0 ×M → Âev(M), (t, x) 7→ ev(t,x) is an Isom(M)-

equivariant continuous bijection, and restricts to a homeomorphism between {0}×M (∼= M)
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and its image. Moreover, the pull-back of the topology of Âev(M) onto R≥0×M is the weakest

topology that makes the functions

ρx0 : R≥0 ×M → R≥0 , (t, x) 7→ |t|2 + d(x, x0)2

continuous, for all x0 ∈M . This topology has a subbase consisting of “open half-shells1”

Sx0,(a,b) := ev
({

(t, x) ∈ R≥0 ×M : a < |t|2 + d(x, x0)2 < b
})

for all x0 ∈M and a, b ∈ R such that b > a.

Proof. The equivariance and continuity can be seen by realizing ev as a composition of

equivariant continuous maps

R≥0 ×M ↪→ R×M ↪→ β(R×M) ∼= Cb(R×M )̂ → (Aev(M)+)̂ = Âev(M)
+

,

where β(R×M) is the Stone-C̆ech compactification of R×M , Aev(M)+ is the unitalization

of Aev(M) while Âev(M)
+

is the one-point compactification of Âev(M), with the point at

infinity being the character mapping the unit to 1 and Aev(M) to 0 (and hence outside of

the image of the composition).

The injectivity follows from the fact that the family of functions

{β(0,x)(f) : x ∈M, f ∈ Sev}

separates points: for any different (t1, x1), (t2, x2) ∈ R≥0 × M , we can always find some

x0 ∈M such that t21 + d(x1, x0)2 6= t22 + d(x2, x0)2, which then guarantees that, for any a > 0

strictly between these two values, the function β(0,x0)(f) ∈ Aev(M) for f : s 7→ (
√
a − |s|)+

will take value 0 at one of the two points and attain a nonzero value at the other.

Next we prove the statement about the pull-back topology on R≥0×M , which we denote

by T . By the definition of Aev(M), we know that T is the weakest topology that makes the

functions (t, x) 7→ ev(t,x)(β(f)) continuous for every x0 ∈M and every even function f ∈ S.

Since any even function f in S can be written as f(t) = g(t2) for some g ∈ C0(R≥0) and vice

versa, we see that T is the weakest topology that makes the functions

(t, x) 7→ ev(t,x)(β(f)) = g(C2
(0,x0)(t, x)) = g(|t|2 + d(x, x0)2) = (g ◦ ρx0)(t, x)

continuous for every x0 ∈M and every function g ∈ C0(R≥0). Since the standard (Euclidean)

1These include open balls, which occur when a < 0 in the definition.
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topology on R≥0 is the weakest that makes any function g ∈ C0(R≥0) continuous, we see

that T is the weakest topology that makes ρx0 continuous for all x0 ∈ M . The claim about

the subbase follows from the well-known fact that the standard topology on R≥0 has a base

consisting of (relatively) open intervals.

In order to show the surjectivity of ev, we know from the local compactness of Âev(M)

that it suffices to show ev has dense image and is a proper map when we equip R≥0 ×M
with the topology T . The density of its image follows from the fact that any element in

Cb(R ×M)R, and thus any in Aev(M), that vanishes at each point in R≥0 ×M ⊂ R ×M
must be zero. On the other hand, we notice that for any x0 ∈M and any R > 0, the set

{(t, x) ∈ R≥0 ×M : t2 + d(x, x0)2 ≤ R2}

is compact with respect to T , because its image under ρx1 for any x1 ∈ M is compact.

Combining this with the statement about the subbase of T that we have proved above, we

see that R≥0 ×M is locally compact with regard to T . Thus the properness of ev follows

from that for any a ∈ Aev(M), the function (t, x) 7→ ev(t,x)(a) on R≥0 × M vanishes at

infinity (with regard to T ): indeed, since a ∈ C0,met(R ×M), for any ε > 0, we can find

some x0 ∈M and R > 0 such that |ev(t,x)(a)| < ε for any (t, x) outside the compact set

{(t, x) ∈ R≥0 ×M : t2 + d(x, x0)2 ≤ R2} .

Therefore ev is also surjective.

Lastly, to show the restriction of ev to {0} ×M is a homeomorphism onto its image, it

suffices to show that, for any x0 ∈M and R > 0, the open ball

{0} × {x ∈M : d(x, x0) < R }

is still open under the subspace topology on {0} ×M induced from T , because these open

balls form a basis of {0}×M . This is indeed true, as this open ball is precisely the intersection

of {0} ×M and the T -open set

Sx0,(−1,R2) := ev
({

(t, x) ∈ R≥0 ×M : |t|2 + d(x, x0)2 < R2
})

.

Therefore we have proved all the claims.

Corollary III.3.6. The map ev is a homeomorphism if and only if M is finite-dimensional.

Proof. IfM is infinite-dimensional, then the domain of ev is not locally compact but the range

is; thus they are not homeomorphic. On the other hand, if M is finite-dimensional, then since
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the functions ρx0 defined in Proposition III.3.5 separate points on R≥0 ×M , the pull-back

of the topology of Âev(M) onto R≥0×M agrees with the original, locally compact topology

of R≥0 ×M by the Stone-Weierstrass theorem, which means ev is a homeomorphism.

As a consequence of Proposition III.3.5, the fibers of A(M) (as an Aev(M)-C∗-algebra)

can be indexed by R≥0 × M . Thus for each (t, x) ∈ R≥0 × M , we write A(M)(t,x) for

the fiber associated to the character ev(t,x) ∈ Âev(M). It is sometimes helpful to think of

A(M) ⊂ C0,met (R×M,ClCT (R×M))R as consisting of sections over R≥0 ×M , viewed as

a manifold with boundary, in the same spirit as in Example III.1.6.

Proposition III.3.7. For any x ∈M and t > 0, there are isomorphisms

A(M)(0,x)
∼= ClC(TxM) and A(M)(t,x)

∼= ClC(R⊕ TxM) .

Proof. The algebra Cb (R×M,ClCT (R×M))R is a Cb(R × M)R-C∗-algebra, and is thus

fibered over
(
Cb(R×M)R

)̂ ∼= (Cb(R≥0 ×M)
)̂ ∼= β(R≥0×M), the latter containing Âev(M)

as a subspace. Thus for any (t, x) ∈ R≥0×M ⊂ β(R≥0×M), the fiber
(
Cb (R×M,ClCT (R×M))R

)
(t,x)

is isomorphic to

C({(−t, x), (t, x)},ClCT (R×M))R ∼=

ClCT(t,x)(R×M) , t > 0

ClCT(0,x)(R×M)R , t = 0

where in the case where t = 0, ClCT(0,x)(R×M)R is the fixed-point subalgebra of ClCT(0,x)(R×
M) by the involution R∗ induced by reversing the R direction, and thus we have ClCT(0,x)(R×
M)R ∼= ClCTx(M). It remains to show that the inclusion mapA(M) ↪→ Cb (R×M,ClCT (R×M))R

induce surjections on each such fiber. This is indeed true: for any (t, x) ∈ R≥0×M , if t > 0,

then the fiber
(
Cb (R×M,ClCT (R×M))R

)
(t,x)

, which is isomorphic to ClCT(t,x)(R ×M),

is generated by the vectors in T(t,x)(R ×M) (viewed as elements in the Clifford algebra),

and it suffices to take all (s, v) ∈ T(t,x)(R ×M) with s = t as they span T(t,x)(R ×M), but

this vector (t, v) is precisely the value of C(0,expx(−v)) at (t, x); the case when t = 0 is similar

except that we need all (0, v) ∈ T(0,x)(R×M)R, which is again provided by C(0,expx(−v)).

Corollary III.3.8. When M is infinite-dimensional, then each fiber of A(M) is isomorphic

to the CAR algebra M2∞ and Aev(M) is equal to the center of A(M).

Proof. The first claim is a direct consequence of the fact that the complex Clifford algebra

of an infinite-dimensional separable Hilbert space is isomorphic to the CAR algebra, and the

second claim follows from that the CAR algebra is simple, and in particular, centerless.
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Corollary III.3.9. A(M) is a nuclear C∗-algebra.

Proof. This follows directly from the nuclearity of all the fibers.

Proposition III.3.10. When M is finite-dimensional, we have

A(M) = C0 (R×M,ClCT (R×M))R

as subalgebras of Cb (R×M,ClCT (R×M))R. More explicitly, if M has dimension 2n, then

A(M) ∼= C0(R×M,M2n)

and if M has dimension 2n+ 1, then

A(M) ∼= {f ∈ C0(R≥0 ×M,M2n+1) : f({0} ×M) ⊂M2n ⊕M2n } ,

where M2n ⊕M2n embeds into M2n+1 diagonally.

Proof. By Corollary III.3, we haveAev(M) = C0(R×M)R as subalgebras of Cb (R×M,ClCT (R×M))R.

Now both A(M) and C0 (R×M,ClCT (R×M))R are fibered over R≥0 ×M . By Proposi-

tion III.3.7, the algebras A(M) and C0(R ×M,M2n) agree on each fiber. Thus the first

claim follows.

For the second claim, we first see by the contractibility of (R ×M)/R that the bundle

T (R×M) can be R-equivariantly trivilized to (R×M)×(R⊕Rd), where d is the dimension of

M and R reverses both of the R-factors of (R×M)×(R⊕Rd) at the same time. It follows that

Cb (R×M,ClCT (R×M)) can be R-equivariantly trivialized to Cb(R ×M,ClCR⊗̂ClCRd).

Thus A(M) is isomorphic to

C0(R×M,ClCR⊗̂ClCRd)R

∼= {f ∈ C0(R≥0 ×M,ClCR⊗̂ClCRd) : f({0} ×M) ⊂ 1⊗̂ClCRd } .

Hence when d = 2n + 1, the result follows from the isomorphisms R2n+2) ∼= M2n+1 and

ClCR2n+1 ∼=M2n ⊕M2n . When d = 2n, we have, similarly,

A(M) ∼= {f ∈ C0(R≥0 ×M,M2n ⊕M2n) : f({0} ×M) ⊂M2n } ,

whereM2n embeds intoM2n ⊕M2n diagonally. The latter algebra is clearly isomorphic to

C0(R×M,M2n).

One of the key properties of A(M) is that any isometric, metrically proper action of M
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by a discrete group Γ induces by means of Proposition III.3.3 a proper action on A(M).

Here Aev(M) will play an important role, as we will show the action of Γ on the spectrum

of Aev(M) is proper.

Lemma III.3.11. Let X be a locally compact Hausdorff space, Γ a discrete group, and

α : Γ y X a continuous action. Let α∗ be the induced action on C0(X). Then this action is

(topologically) proper if and only if for any f ∈ C0(X),

lim
γ→∞
‖
(
(α∗)γ(f)

)
· f‖ → 0 ,

i.e., for any ε > 0, there is a finite subset F ⊂ Γ such that for any γ ∈ Γ \ F ,

‖
(
(α∗)γ(f)

)
· f‖ < ε.

Proof. If the action Γ y X is proper, then for any f ∈ Cc(X), there is a finite subset F ⊂ Γ

such that for any γ ∈ Γ \ F , ‖(α∗)γ(f) · f‖ = 0. The statement for a general f ∈ C0(X)

follows by approximation.

On the other hand, if every element of C0(X) satisfies the condition in the statement,

then for any compact subset K ⊂ X, picking a positive function f ∈ C0(X) such that

f(x) ≥ 1 for x ∈ K, we can find, according to the condition, a finite F ⊂ Γ such that for

any γ 6∈ F , ‖(α∗)γ(f) · f‖ < 1
2
, which implies that αγ(K) ∩K = ∅.

Proposition III.3.12. Let Γ be a discrete group and α : Γ → Isom(M) an isometric, met-

rically proper action on M . Then the induced action on A(M) (also denoted by α) given in

Proposition III.3.3 makes A(M) into a proper Γ-Aev(M)-C∗-algebra.

Proof. Observe that by definition, each a ∈ C00,met (R×M,ClCT (R×M)) is supported in a

bounded subset of M . Thus because of the metric properness of the action Γ yM , all but

finitely many elements γ of Γ satisfy (αγ(a)) · a = 0. Since C0,met (R×M,ClCT (R×M)) is

the closure of the previous algebra, each element b in it satisfies

lim
γ→∞
‖(αγ(b)) · b‖ = 0 .

The same is thus true for the Γ-invariant subalgebra Aev(M), which ensures the action of

Γ on the spectrum of Aev(M) is (topologically) proper by Lemma III.3.11, i.e. Aev(M)

is a commutative proper Γ-C∗-algebra. It follows that A(M) is a proper Γ-Aev(M)-C∗-

algebra.
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CHAPTER IV

THE NOVIKOV CONJECTURE FOR GROUPS ACTING ON NON-POSITIVELY

CURVED MANIFOLDS

In the last section we prove our main result, which will make use of the C∗-algebra we

have constructed.

IV.1 The K-theory of A(M)

The algebra A(M) is constructed to imitate the setting for the Bott periodicity, an iso-

morphism on K-theory induced by the Bott homomorphism in the finite dimensional case.

However, when M is infinite dimensional, proving the full periodicity (injectivity and sur-

jectivity of the Bott map) appears difficult. In particular, it is not clear how to carry out

the construction of the Dirac element, which is the inverse of the Bott map in KK-theory

and plays a crucial role in [12].

Here we use an approximation technique to show the Bott homomorphism induces an

injective map on K-theory.

Definition IV.1.1. Let N ⊂M be a subset. We define A(M,N) (respectively Aev(M,N))

to be the ∗-subalgebra of A(M) generated by

{β(0,x0)(f) : x0 ∈ N ⊂M, f ∈ S (respectively, Sev)}.

We list some immediate consequences of the definition.

Lemma IV.1.2. Let N1, N2, . . . be subsets of M .

1. A(M,M) = A(M).

2. If N1 ⊂ N2 then A(M,N1) ⊂ A(M,N2).

3. If N1 is the closure of N1, then A(M,N1) ⊂ A(M,N1).

4. If N1 ⊂ N2 ⊂ . . ., then A(M,
⋃∞
k=1Nk) is the direct limit of the sequence A(M,N1) ⊂

A(M,N2) ⊂ . . . of subalgebras.

Proof. The first and second claims are immediate from the definition. The third claim is a

consequence of Corollary III.2.11. The last claim follows from the second and the third.
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The construction of A(M,N) is particularly interesting when N is a complete geodesic

submanifold of M , that is, for any two points x0, x1, the (unique) geodesic in M that runs

through these two points lies entirely in N . In this case, N is again a complete Hilbert

manifold with non-positive sectional curvatures. We let TR×N(R ×M) be the pull-back of

the tangent bundle T (R×M) by the inclusion map R×N ↪→ R×M , and ClCTR×N(R×M) its

complex Clifford bundle. Consider the C∗-algebra Cb (R×N,ClCTR×N(R×M)) consisting

of all bounded continuous sections of ClCTR×N(R×M). Thus the inclusion map R×N ↪→
R×M defines by means of restriction a ∗-homomorphism

πM,N : Cb (R×M,ClCT (R×M))→ Cb (R×N,ClCTR×N(R×M))

while the inclusion of the tangent bundle T (R×N) into TR×N(R×M) induces an embedding

ιM,N : Cb (R×N,ClCT (R×N)) ↪→ Cb (R×N,ClCTR×N(R×M)) .

Lemma IV.1.3. Let N be a complete geodesic submanifold M . Then for any x0 ∈ N , we

have

πM,N ◦ βM(0,x0) = ιM,N ◦ βN(0,x0) ,

where βM(0,x0) is the Bott homomorphism into A(M,N) ⊂ A(M) and βN(0,x0) is the Bott ho-

momorphism into A(N). In particular,

πM,N(A(M,N)) = ιM,N(A(N)) .

Proof. We check that for any (t, x) ∈ R×N and any f ∈ S, we have, inside ClCT(t,x)(R×M),

πM,N ◦ βM(0,x0)(f)(t, x) = πM,N

(
f(CM

(0,x0)(t, x))
)

= f
(
CM

(0,x0)(t, x)
)

and

ιM,N ◦ βN(0,x0)(f)(t, x) = ιM,N

(
f(CN

(0,x0)(t, x))
)

= f
(
CN

(0,x0)(t, x)
)
.

They give the same element because the geodesic in M connecting (t0, x0, v0) to (t, x) coin-

cides with the geodesic in the submanifold N connecting the same two points.

For the next lemma, we observe that when M is a simply connected non-positively curved

Hilbert manifold, so is M ×M .

Lemma IV.1.4. If M is a finite-dimensional simply connected non-positively curved Hilbert

manifold, then for any x0 ∈ M , the Bott homomorphism β(0,x0) : S → A(M) induces an
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isomorphism on K-theory.

Proof. By Proposition III.3.10, we have

A(M) = C0 (R×M,ClCT (R×M))R

as subalgebras of Cb (R×M,ClCT (R×M))R. Let d be the dimension of M . Note that the

exponential map expx0 : Rd → M , which is a diffeomorphism by the Hadamard theorem,

induces an isomorphism

C0 (R×M,ClCT (R×M))R ∼= C0

(
R× Rd,ClCT (R× Rd)

)R
= A(Rd)

that intertwines the Bott homomorphisms βM(0,x0) and βRd

(0,0). [13]

Lemma IV.1.5. For any two points x0, x1 ∈M , the Bott homomorphisms

β(0,x0), β(0,x1) : S → A(M)

are homotopic to each other.

Proof. Let (xs)s∈[0,1] be a path in M connecting x0 and x1 (e.g., the geodesic between the

two points). Then by Corollary III.2.11, the family
(
β(0,xs)

)
s∈[0,1]

constitutes a homotopy

between β(0,x0) and β(0,x1).

Recall that M is said to have a filtration of finite-dimensional complete geodesic subman-

ifolds if there are finite-dimensional complete geodesic submanifolds M1 ⊂ M2 ⊂ . . . such

that M =
∞⋃
k=1

Mk.

Proposition IV.1.6. Suppose that M has a filtration of finite-dimensional complete geodesic

submanifolds. Then for any x0 ∈M , the Bott homomorphism

β(0,x0) : S → A(M)

induces an injection on K-theory.

Proof. Let M1 ⊂ M2 ⊂ . . . be a sequence of finite-dimensional complete geodesic submani-

folds such that M =
∞⋃
k=1

Mk. By Lemma IV.1.5, the Bott homomorphism associated to any

two base points agree on K-theory. Hence we may assume without loss of generality that
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x0 ∈ TM1. By Lemma IV.1.2, we see that A(M) is the direct limit of the increasing se-

quence of subalgebras A(M,M1) ⊂ A(M,M2) ⊂ . . .. Since the image of β(0,x0) is contained

in A(M,Mk) for any k ∈ Z>0, by the continuity of the K-theory functor with regard to

direct limits, it suffices to show that

β(0,x0) : S → A(M,Mk)

induces an injection on K-theory for every k ∈ Z>0. To this end, we fix an arbitrary k ∈ Z>0

and consider the composition

πM,Mk
◦ β(0,x0) : S → Cb (R×Mk,ClCTR×Mk

(R×M))

as given in Lemma IV.1.3, where we know that its image falls in ιM,Mk
(A(Mk)) and that it is

equal to ιM,Mk
◦βMk

(0,x0) where ιM,Mk
is the embedding ofA(Mk) into Cb (R×Mk,ClCTR×Mk

(R×M))

and βMk

(0,x0) is the Bott homomorphism into A(Mk) based at (0, x0). By Lemma IV.1.4, we

know that the latter induces an isomorphism on K-theory. Hence the composition

πM,Mk
◦ β(0,x0) : S → ιM,N(A(N))

also induces an isomorphism on K-theory. It follows that β(0,x0) : S → A(M,Mk) induces an

injection on K-theory, which suffices as we argued above.

IV.2 The Bott element

Using the Bott homomorphism β(0,x0) we would like to construct a KK-element

[β] ∈ KKΓ(S,A(M))

Notice that β(0,x0) already defines an element in KK(S,A(M)). Moreover, if G < Γ fixes

x0, then β(0,x0) is G-equivariant, and thus defines an element in KKG(S,A(M)). Therefore,

in order to define an element in KKΓ(S,A(M)), one must get around the issue of the

non-equivariance of β(0,x0) with respect to the Γ-action.

Fortunately, the non-positively curved manifold M , like a Hilbert space, possess a kind

of dilation property such that for any function on M , we may always make it as flat as we

want, thus asymptotically it commutes with the action of Γ. To make the idea precise, we

are going to deform each Bott homomorphism to make an asymptotic morphism.

A key idea in this section is to use a deformation technique to simplify the calculation

of equivariant KK-groups involving the C∗-algebra of a complete simply connected nonpos-
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itively curved Hilbert manifold. To formalize this deformation technique, we introduce the

following C∗-algebra.

Definition IV.2.1. Let

σ : R+ y S

be the rescaling action given by

(s · f)(t) = f(s−1t)

for any s ∈ R+, f ∈ S, and t ∈ R. This action preserves the grading.

Proposition IV.2.2. For any f ∈ S, x0 ∈M and ϕ ∈ Isom(M), we have

lim
s→∞

∥∥β(0,x0)(σs(f))− γ · β(0,x0)(σs(f))
∥∥ = 0 .

Therefore the pointwise continuous family
{
β(0,x0) ◦ σs

}
s∈[1,∞)

constitutes an Isom(M)-equivariant

asymptotic morphism from S to A(M), where the action on S is trivial.

Proof. This follows from Lemma III.2.6, Proposition III.2.10, and the computation in the

proof of III.2.11.

Corollary IV.2.3. The family of ∗-homomorphisms
{
β(0,x0) ◦ σs

}
s∈[1,∞)

gives rise to an

element

[β] ∈ KKΓ
1 (C,A(M))

which recovers [β(0,x0)] ∈ KK1(C,A(M)) under the forgetful map

KKΓ
1 (C,A(M))→ KK1(C,A(M)).

Proof. This follows from Proposition IV.2.2 and [12, 7.4].

We would like to be able to calculate the group KKΓ
∗+1(EΓ,A(M)) and compare it with

KΓ
∗ (EΓ) using the homomorphism

KΓ
∗ (EΓ)→ KKΓ

∗+1(EΓ,A(M))

given by taking the Kasparov product with [β]. In the case β(0,x0) induces an isomorphism

K∗(C) → K∗+1(A(M)), a standard cutting-and-pasting argument using the Mayer-Vietoris

exact sequence and five lemma implies that the above homomorphism is bijective. However,

in Section IV.1, we are only able to show β(0,x0) induces an injection K∗(C)→ K∗+1(A(M)).
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Thus our calculation will have to be different. The key idea is to deform the action of Γ on

K∗+1(A(M)) to the trivial action.

To this end, let us discuss how the K-theory of A(M) behaves under the action by

Isom(M) given in Proposition III.3.3. We are particularly interested in those isometries of

M whose induced automorphism on A(M) is trivial on K-theory.

Let us endow Isom(M) with the topology of pointwise convergence, which is generated by

a local basis around the identity consisting of the sets

U(x1, . . . , xn;V1, . . . , Vn) := {ϕ ∈ Isom(M) : ϕ(xk) ∈ Vk, for k = 1, . . . , n}

where n is any natural number, x, . . . , xn ∈ M and each Vk is an open neighborhood of xk.

Equivalently, the topology is characterized by the requirement that a net {ϕi}i∈I converges

to the identity if and only if limi∈I ϕi(x) = x for any x ∈M .

Similarly, the group of ∗-automorphisms of A(M) is also given the topology of point-

wise (norm) convergence, so that a net {ϕi}i∈I converges to the identity if and only if

limi∈I ϕi(a) = a in norm for any a ∈ A(M). Note that it suffices to check the latter

condition for any a in a generating set of A(M), e.g., for all a of the form β(0,x0)(f) for

(0, x0) ∈ R×M and f ∈ S.

Lemma IV.2.4. When both Isom(M) and Aut(A(M)) carry the topology of pointwise con-

vergence, the canonical action Isom(M) → Aut(A(M)) given in Proposition III.3.3 is con-

tinuous.

Proof. It suffices to show that for any net {ϕi}i∈I in Isom(M) that converges to the identity,

the induced net {(ϕi)∗}i∈I in Aut(A(M)) also converges to the identity. Since A(M) is

generated by β(0,x0)(f) for (0, x0) ∈ R×M and f ∈ S, it suffices to check

lim
i∈I

(ϕi)∗(β(0,x0)(f)) = β(0,x0)(f)

for any (0, x0) ∈ R × M and f ∈ S. By Lemma III.2.6, the left-hand side is equal to

limi∈I β(0,ϕi(x0))(f), which by Lemma III.2.11 is equal to the right-hand side, as, by assump-

tion, limi∈I ϕi(x0) = x0.

Proposition IV.2.5. Let α : Γ → Isom(M) be an isometric action that is null-homotopic

in the sense that there is a family {αt : Γ → Isom(M)}t∈[0,1] of isometric actions which

is pointwise continuous with α1 = α and α0 being the trivial action. Then there is an

isomorphism

KKΓ
∗ (EΓ,A(M)) ∼= KK∗(BΓ,A(M))
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that makes the following diagram commute:

KΓ
∗ (EΓ)

[β]
��

∼= K∗(BΓ)

[β]

��
KKΓ

∗ (EΓ,A(M)) ∼= KK∗(BΓ,A(M))

Proof. By Lemma IV.2.4, the continuous family {αt : Γ → Isom(M)}t∈[0,1] of actions in-

duces a continuous family {αt : Γ → Aut(A(M))}t∈[0,1], and thus an action α[0,1] : Γ →
Aut(C([0, 1],A(M))) such that for any γ ∈ Γ, f ∈ C([0, 1],A(M)) and t ∈ [0, 1], we have

(α[0,1])γ(f)(t) = (αt)γ(f(t)). For t = 0, 1, consider the evaluation map evt : C([0, 1],A(M))→
A(M), which clearly intertwines the actions α[0,1] and αt. It is also clear that each evt is a ho-

motopy equivalence, without considering the group actions. Therefore a standard argument

using the five lemma gives us isomorphisms

KKΓ
∗ (EΓ,A(M)) ∼= KKΓ

∗ (EΓ, C([0, 1],A(M))) ∼= KKΓ
∗ (EΓ,A(M))

where the actions on A(M) on the two sides are α0 and α1, respectively. Since α0 is the

identity action, we have the isomorphism KKΓ
∗ (EΓ,A(M)) ∼= KK∗(BΓ,A(M)). Also notice

that there is a Bott homomorphism

β
[0,1]
(0,x0) : S → C([0, 1],A(M))

given by composing the usual Bott homomorphism with the inclusion ofA(M) into C([0, 1],A(M))

as constant functions. Since the evaluation maps clearly intertwines the Bott homomor-

phisms, we obtain the desired commuting diagram.

Proposition IV.2.6. Let α : Γ → Isom(M) be an isometric action that is null-homotopic.

Then the K-theory homomorphism given by taking Kasparov product with [β]

⊗C[β] : KΓ
∗ (EΓ)⊗Q→ KKΓ

∗+1(EΓ,A(M))⊗Q

is injective.

Proof. By the previous proposition, it suffices to show the homomorphism

⊗C[β] : K∗(BΓ)⊗Q→ KK∗+1(BΓ,A(M))⊗Q

is injective. But this follows from the naturality of the Chern character and Proposition

IV.1.6.
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IV.3 The main result

The following is our main result regarding the Novikov conjecture.

Theorem IV.3.1. Let Γ be a discrete torsion-free group that admits an isometric, metrically

proper action on a complete, simply-connected non-positively curved Hilbert manifold M

that has a completely geodesic finite-dimensional submanifolds whose union is dense in M .

Assume that the action is null-homotopic. Then Γ satisfies the rational analytic Novikov

conjecture, i.e. the rational assembly map

µ : K∗(BΓ)⊗Q→ K∗(C
∗
r (Γ))⊗Q

is injective.

Proof. As indicated before, the proof of the main theorem follows the dual Dirac method.

Let us look at the following commutative diagram:

K∗(BΓ)⊗Q µ //

⊗C[β]
��

K∗(C
∗
r (Γ))⊗Q

C∗r (Γ,⊗C[β])

��
KKΓ

∗+1(EΓ,A(M))⊗Q µ // K∗(C
∗
r (Γ,A(M)))⊗Q

(IV.1)

Since the algebra A(M) is Γ-proper, the horizontal map in the bottom is bijective by

[11]. On the other hand, in the last subsection we proved that the vertical map on the left is

also injective. By the commutativity of the diagram, the composition of the horizontal map

on the top and the vertical map on the right is also injective, which forces the horizontal

map on the top, i.e. the assembly map for S, to be injective.
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