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I. INTRODUCTION 

The mammalian immune system has two main components: innate and adaptive. The 

innate immune system is composed of cells such as neutrophils, dendritic cells, natural 

killer (NK) cells, and macrophages.   These cells respond to broad categories of 

molecules such as double-stranded RNA and lipopolysaccharides via pathogen-associated 

molecular pattern (PAMP) receptors such as the Toll-like receptors (Medzhitov et al., 

1997; Rock et al., 1998, 1998), or the absence of MHC (major histocompatibility 

complex) class I on host cells (Santoli et al., 1978).  The adaptive component of the 

immune system allows for pathogen-specific responses based on the recognition of a 

specific molecule (Diener and Paetkau, 1972).  Some infectious challenges can be 

resolved by the innate system before the antigen level reaches a threshold that leads to the 

activation of the adaptive immune system.      

When the adaptive immune system is activated signals from the innate immune 

system are integrated by the cells of the adaptive immune system and are used to inform 

the development of an immune response tailored to the specific threat.  The adaptive 

immune system aids in pathogen clearance directly by mechanisms such as antibody 

production by B cells (Bjorneboe et al., 1947; Fagraeus, 1947; Harris et al., 1945) and the 

recognition and destruction of virus-infected cells by cytolytic (CD8
+
)  T cells (Berke and 

Amos, 1973; Lindahl and Wilson, 1977; Lohmann-Matthes and Fischer, 1973).   

Indirectly, cytokines produced by cells of the adaptive immune system serve to direct the 

responses of cells both in the adaptive and innate compartments of the immune system 

(Abbas et al., 1996; Dennert, 1974; Snapper and Paul, 1987). 

 Cells of the adaptive immune system detect their cognate antigen via an antigen 

receptor complex. These receptors include one or more constant subunits along with a  

heterodimer of variable chains, consisting of a heavy chain and light chain in the B cell 
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receptor (BCR) (Nemazee, 2000; Schatz et al., 1992).  In T cells the most often occurring 

subunits are the alpha and beta chains, although there is a proportionally smaller 

population defined by having a T cell receptor (TCR) composed of a gamma chain and a 

delta chain (Bluestone and Matis, 1989; Chien et al., 1987; Davis and Bjorkman, 1988).  

These receptor components are encoded by genes consisting of multiple gene segments 

that must be recombined to form a functioning receptor subunit (Alt et al., 1984, 1986; 

Schatz et al., 1992).  This rearrangement is primarily carried out by the enzymes RAG1 

and RAG2 along with multiple ligases and DNA repair enzymes (Schatz et al., 1989).  

Humans and mice deficient in enzymes required for receptor rearrangement cannot form 

B or T cells and are severely immune-compromised (Schuler et al., 1986), demonstrating 

the centrality of the antigen receptor to the adaptive immune response.  The joining of 

gene fragments to make a functional protein is random but always includes one V 

(variable) segment, one D (diversity) segment, and one J (joining) subunit (Alt et al., 

1986; Honjo et al., 1981; Schatz et al., 1992).  The junctions between the segments are 

composed of a variable number of nucleotides from each segment (Pollok et al., 1984; 

Schatz et al., 1992).  This variability increases the number of unique receptors that can be 

generated, but also creates the potential to create non-functioning genes by creating shifts 

in the reading frame (Pollok et al., 1984; Schatz et al., 1992).  The combinations of the V, 

D, and J transcriptional cassettes, along with their quasi-random joining allows for the 

generation of an almost infinite number of unique antigen receptors.  This means that a 

given pathogen, introducing multiple antigens, will only activate a fraction of the antigen 

receptors in the host repertoire.  This diversity of receptor specificity gives rise to the 

adaptive immune system’s ability to treat one antigen differently from another, and thus 

be adaptive.   
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T cell ontogeny: Thymic development 

T cells are a leukocyte population that matures from hematopoietic stem cells in 

the thymus.  Unlike the B cell receptor, the T cell receptor can only recognize its cognate 

antigen in the context of an MHC.  Due to the random generation of TCRα and TCRβ 

chains, it is likely that many generated TCRs will not be able to interact with or 

‘recognize’ host MHC molecules (Alt et al., 1986; Pollok et al., 1984).  This random 

generation also entails that many TCRs generated will recognize epitopes belonging to 

the host in the context of MHCs (Alt et al., 1986; Kappler et al., 1987; Klein et al., 2009).  

The development of T cells in the thymus, termed thymic education, serves to minimize 

the impact of non-reactive and auto-reactive clones.   

Immature cells begin as CD4
-
, CD8

-
 thymocytes lacking a T cell receptor (Ikuta 

et al., 1992; Shortman and Wu, 1996).  During the course of development these double-

negative thymocytes rearrange the TCRβ gene to form a functioning beta chain of the T 

cell receptor.  A functioning TCRβ molecule will form a complex with CD3 molecules, 

the invariant TCRζ chain, and an invariant pre-TCRα chain.  Signaling through this pre-T 

cell receptor leads to clonal expansion, expression of the co-receptors CD4 and CD8, and 

initiation of TCRα rearrangement (Starr et al., 2003).  Double-positive (CD4
+
,CD8

+
) 

thymocyte survival is dependent first on assembling a functional TCRα chain that will 

form an MHC-restricted dimer with the expressed TCRβ chain.  The TCRα 

rearrangement is started with the J fragments at the 5’ end of the locus and proceeds to 

the 3’ end.  This allows multiple recombinations of the TCRα gene to occur, with the 

rearrangements only ceasing after the successful generation of an MHC-recognizing TCR 

or upon cell death.  The proliferation after pre-TCR signaling along with the multiple 

attempts at rearranging the TCRα gene allowes each cell to maximize the possibility of a 

successful TCRβ rearrangement leading to the generation of at least one functional TCR 

(Petrie et al., 1993).   



4 
 

The generation of a functioning TCR is required for T cell survival, but it is not 

sufficient.  Further developmental checkpoints must be passed before thymic education is 

complete. Signaling from a functional TCRα/β dimer-containing receptor interacting with 

an MHC-peptide (pMHC) complex protects against apoptosis in a process termed 

positive selection (Borgulya et al., 1992; Jameson et al., 1995; Starr et al., 2003).  Cells 

failing to achieve positive selection eventually undergo death by neglect.  Cells that have 

undergone positive selection repress the expression of RAG1/2 (Brändle et al., 1992), and 

restrict themselves to either CD4 or CD8 expression, depending on which class of MHC 

the TCR recognized (Hogquist et al., 1993; Jameson et al., 1995; MacDonald et al., 1988; 

Starr et al., 2003).  This cessation of recombination means that the vast majority of T 

cells generated will express only one TCR, and thus have a single specificity.  The single 

antigen-specificity of each TCR has important ramifications on the development of 

prophylactic immune responses that will be discussed later in this work.   While the 

ability to recognize an MHC is required for survival and further development, more 

screening must be carried out in the thymus. 

The random generation of TCRs means that some TCRs will react strongly to 

self-antigens in the context of MHCs.  In order to prevent auto-immunity, T cells are also 

screened for reactivity for self-antigens.  Cells with TCRs that bind with high affinity to 

self-pMHC complexes are either deleted from the repertoire in a process termed negative 

selection (Guidos et al., 1990; Kappler et al., 1987; Sha et al., 1988) or are induced into 

becoming natural T regulatory cells (Kawahata et al., 2002; Liston et al., 2008).  The 

deletion of auto-reactive clones is accomplished by an active process involving the 

induction of apoptotic pathways (Guidos et al., 1990; Schönrich et al., 1993; Sha et al., 

1988).  Both positive and negative selection require an interaction between the antigen 

receptor and self-antigens in the context of MHC.  As this became evident, it was 

hypothesized that the difference between TCR signaling in positive selection and 
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negative selection was due to the affinity of a TCR for a pMHC expressed in the thymus 

(Ashton-Rickardt et al., 1994; Sebzda et al., 1994).  Alternatively, it was hypothesized 

that peptides displayed within the thymus were different than those encountered 

elsewhere (Moran and Hogquist, 2012), although further research found that this was not 

likely (Hogquist et al., 1997; Lo et al., 2009; Marrack et al., 1993; Moran and Hogquist, 

2012).   One powerful tool used to test the affinity hypothesis was the use of mice 

expressing transgenic TCRs.    

 

Thymic development: Insights from transgenic TCR models  

The number of different TCRs being generated and tested in the thymus raises 

significant problems in investigating how a TCR’s interaction with self-antigen-MHC 

complexes regulates its survival and development.  To circumvent this, successfully 

recombined Tcra and Tcrb genes were inserted into a host genome.  This allows for the 

majority of T cells to express the same TCR.   These transgenic TCR models have been 

used to investigate the role of TCR signaling in T cell development (von Boehmer, 1990; 

Jameson et al., 1995; Starr et al., 2003).  Transgenic systems have been used to 

investigate the effects of antigen concentration and affinity on thymic development.  

Commonly, the transgenic TCR’s antigen and MHC specificity is known, allowing for 

the stimulation of the receptor by its cognate antigen.  The use of peptide-specific TCR 

transgenic mice has been a powerful tool in understanding TCR signaling in positive and 

negative selection.   

  Studies using an MHC class I-restricted transgenic TCR provided key initial 

insights into role of concentration in thymic selection.  The addition of a low 

concentration of cognate antigen to thymocytes from a TCR transgenic mouse was found 

to induce positive selection, whereas a higher concentration induced negative selection 



6 
 

(Ashton-Rickardt et al., 1994; Sebzda et al., 1994).  Furthermore, changing residues of 

the antigen peptide that contact the TCR was found to alter the response of thymocytes 

(Evavold et al., 1993; Nicholson et al., 1995).   Interestingly, it was also found that some 

agonist could promote positive selection across a range of concentrations, but were 

unable to trigger negative selection (Kraj et al., 2001; Sebzda et al., 1996).  Taken 

together, these results suggested that affinity of a ligand for a TCR, as well as the 

concentration, was important for determining the response of thymocytes to antigen.       

 The known antigen specificity of transgenic TCRs allowed for investigation into 

the effects of a TCR’s affinity for its cognate pMHC specifically via the use of altered 

peptide ligands (APL).  The alteration of one or more residues of a TCR’s cognate 

peptide to increase or decrease its binding affinity for the TCR has been shown to 

produce profound effects on the development of transgenic TCR-expressing T cells (Hsu 

et al., 1995; Sebzda et al., 1994).  The effect of these altered peptide ligands depends on 

several variables such as the location of expression within the thymus, the concentration 

of ligand used (Alam et al., 1996; Sebzda et al., 1994), and which population of thymic 

cells presents the antigen (Aschenbrenner et al., 2007), but a few key principles can be 

simply articulated.  Introduction of a high-affinity peptide into the thymic environment 

leads to an increase in negative selection of TCR transgenic cells in many cases, but 

exceptions have been reported (Ashton-Rickardt et al., 1994; Kraj et al., 2001; Moran and 

Hogquist, 2012; Spain et al., 1994).  Conversely, low affinity ‘antagonist’ peptides has 

been demonstrated to promote the positive selection of thymocytes (Alam et al., 1996; 

Hogquist et al., 1994, 1997; Hu et al., 1997).  The interplay between antigen density and 

antigen affinity also has significant impact, as a low affinity antigen may be positively 

selecting at high concentrations, but not at lower concentrations (Liu et al., 1998a).   

Further work showed that the time a thymocyte spent in contact with a thymic 

antigen presenting cell (APC) had a strong predictive value as to whether it would 
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undergo positive or negative selection (Williams et al., 1999). The duration of            

APC-T cell interaction also was found to be a determining factor in whether a presented 

antigen induced activation or tolerance (Katzman et al., 2010)  Combined with the 

observations about the effects of ligand concentration and affinity, this suggest a model in 

which the strength of and number of pMHC-TCR interactions determines binding time, 

and therefore cell survival and function upon antigen recognition in the periphery.  .  

Interestingly, recent work has demonstrated that the signaling strength of TCRs after 

exposure to self-pHMC during thymic education correlates with its strength of signaling 

upon exposure to its cognate exogenous antigen (Mandl et al., 2013).  This suggests that 

positive selection can also serve to promote the survival of cells which will respond most 

vigorously to pathogens (Mandl et al., 2013).          

To summarize: A TCR bound with high affinity to a pMHC signals through 

pathways that are not engaged by the lower affinity interactions leading to positive 

selection (Morris and Allen, 2012).  T cell survival is dictated by the ability of a TCR to 

react to MHC/self-peptide complexes at a much lower signaling intensity than is seen in 

T cells responding to their cognate exogenous antigen (Ashton-Rickardt et al., 1994; Starr 

et al., 2003).  To pass through thymic education with the potential to become an effector 

T cell, a TCR’s affinity for self-pMHC must fall within certain tolerances. 

   

Thymic development: MHC specificity and coreceptor selection 

As previously discussed, a key requirement of thymic education is the recognition 

of self-peptides in the context of an MHC molecule.  There are two predominant types of 

MHC, MHC class I and MHC class II (Benacerraf, 1988; Braciale et al., 1987).  Each 

MHC type samples peptides derived from different cellular processes although there are 

mechanisms that allow for cross-presentation (Joffre et al., 2012; Rock et al., 2010).  
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MHC class I molecules are expressed on most cell types and primarily present peptides 

derived from proteins created by the MHC class I-bearing cell (Apcher et al., 2012; 

Procko and Gaudet, 2009; Vigneron and Van den Eynde, 2012).  Production of proteins 

due to viral infection or mutation will create non-self-antigens detectable by T cells.  

MHC class II molecules are displayed on antigen presenting cells of the immune system 

such as macrophages, dendritic cells, and B cells.  These molecules typically display 

peptides derived from proteins taken up from the local environment, such as those found 

on a phagoctyosed bacterium (Goldszmid and Sher, 2010; Ramachandra et al., 2009).  

Further studies would determine that a TCR’s specificity goes beyond the class of MHC 

it recognizes.   

The use of a transgenic TCR with a known MHC requirement allowed for the 

investigation of the role of MHC expression in T cell development(von Boehmer, 1990).  

One key experiment involved placing thymocytes expressing a TCR reactive to antigen in 

the context of one MHC II allele into cultures of cell expressing other MHC class II 

alleles.  This experiment demonstrated that recognition of the host MHC by a TCR was 

required for positive selection and development past the CD4
+
,
 
CD8

+
 double-positive 

stage (Berg et al., 1990).  Furthermore, the use of an MHC class I restricted transgenic 

TCR in CD8-deficient animals was found to lead to deficiencies in T cell development 

(von Boehmer, 1990; Jameson et al., 1995; Killeen et al., 1992; Schönrich et al., 1993). 

MHC molecules are recognized by the coreceptors CD4 and CD8.  As discussed 

later, these surface molecules play an important role in the initiation of TCR signaling.  

The expression of CD4 or CD8 is on a T cell’s surface is determined by the class of MHC 

recognized by its TCR.   Double positive thyomcytes that recognize peptide in the 

context of MHC class I develop into CD8
+
 single positive T cells.  These cells, also 

known as CTLs (cytotoxic T lymphocytes), primarily serve to induce cell death in cells 

displaying  non-self antigen on their surface MHC class I (Hogquist et al., 1993).  By 
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surveying peptides produced within a given cell CTLs provide protection against viruses 

(Long and Jacobson, 1989; Morrison et al., 1986; Zinkernagel and Doherty, 1979) and 

also form an important part of the immune system’s response to cancer (Garcia-Lora et 

al., 2003; Seliger et al., 2006).                             

Thymocytes recognizing peptide in the context of MHC class II molecules 

develop into CD4
+
 single positive cells (Klein et al., 2009; Kraj et al., 2001; MacDonald 

et al., 1988; Starr et al., 2003).  CD4
+
 T cells (T helper cells) are integral to the ability of 

the adaptive immune system to deploy pathogen-appropriate responses.  T helper cells 

serve to process signals present at the time of their activation and respond by initiating 

one of several programs of cytokine production that serves to drive the immune system’s 

response to a given pathogen type (Abbas et al., 1996).  At the completion of thymic 

education, a T cell is an MHC class-restricted naïve cell capable of responding to its 

cognate antigen. 

 

NKT cells: Lipid reactive T cells 

While most T cells react only with peptide antigens presented by MHC 

molecules, an important exception does exist. A small subset of thymus-derived 

lymphocytes recognize lipid antigens in the context of the CD1d molecule in mice, or any 

of the CD1 family in humans (Brossay et al., 1998; Kawano et al., 1998; Tsuji, 2006).  

These cells are termed natural killer T cells (NKT cells) due to the presence of NK cell 

surface markers alongside a TCR in many subsets.   The largest NKT cell subset is 

characterized by a semi-invariant αβ TCR and is termed iNKT (invariant NKT) cells.  

Other populations of NKT cells have diverse αβ or γδ TCRs,  but all are CD1-restricted 

(Godfrey et al., 2004; Van Kaer, 2007; Van Kaer and Joyce, 2005).  As with αβ T cells, 

NKT cells undergo positive and negative selection (D’Cruz et al., 2010; Hu et al., 2011).  
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NKT cells can be activated by bacterial-derived glycolipids and are important 

early responders to many pathogens such as Mycobacterium tuberculosis, various species 

of Leishmania, and other pathogenic microorganisms (Brigl et al., 2003; Cohen et al., 

2009; Ishikawa et al., 2000; Moody et al., 2004; Wiethe et al., 2008).  Activation of NKT 

cells via exogenous lipids such as α-GalCer can modulate immune responses to tumors 

(Kawano et al., 1997, 1998; Motohashi et al., 2011; Vivier et al., 2012) or serve to 

enhance vaccines (Cerundolo et al., 2009; Joyce et al., 2011; Padte et al., 2011).  While 

NKT cell cells are a relatively small population of lymphocytes (Van Kaer, 2007), they 

occupy an important niche between innate and adaptive immunity  and can provide an 

early release of cytokines that contributes to shaping a developing immune response 

(Ishikawa et al., 2000; Stanley et al., 2008).               

         

T helper subsets: General 

   In order to respond to different types of pathogens, CD4
+
 T cells are able to 

differentiate into several different effector types after being activated through their TCR.  

Each effector type (also called lineage or subset) produces a set of hallmark cytokines, 

while inhibiting the transcription of genes associated with other effector sets (Grogan et 

al., 2001).  Each subset also expresses different patterns of chemokine receptors 

(Breitfeld et al., 2000; Campbell et al., 2003; Kim, 2005; Schaerli et al., 2000), meaning 

that different subsets will migrate to a site in response to different stimuli.  The effector 

programming that a T helper cell adopts is, in large part, determined by the local cytokine 

milieu at the time of activation.  Cytokine signaling drives the expression of lineage-

specific transcription factors sometimes referred to as master regulators (Kanhere et al., 

2012; Nakayama and Yamashita, 2008; Vahedi et al., 2013).  The combined signals from 

the TCR and cytokine receptors, along with the activity of the master regulators, drive the 

lineage-specific cytokine expression which characterizes the T helper subsets (Corn et al., 
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2005; Kaplan et al., 1996a; Nakayama and Yamashita, 2010; Rooney et al., 1994; Zhang 

and Boothby, 2006; Zhu and Paul, 2010).  

The two best studied effector programs are the T helper 1 (Th1) and T helper 2 (Th2) 

responses (Mosmann et al., 1986) (Fig. 1.1).   Th1 cells express the master regulator T-

bet and produce IFN-γ.  IFN-γ is a type II interferon which activates macrophages to 

promote the clearance of intracellular pathogens such as Listeria monocytogenes (Hsieh 

et al., 1993) and Mycobacterium tuberculosis (Barnes et al., 1993; Cooper et al., 1993; 

Orme et al., 1993).  IFN-γ also triggers B cells to class switch to the IgG2a isotype.  The 

constant regions of IgG2a antibodies interact with receptors on phagocytes leading to 

increased uptake of antigens bound to the variable region of the antibody (Bolland, 2005; 

Cohen-Solal et al., 2004; Kimberly et al., 1989; Nimmerjahn et al., 2005).  This antibody-

mediated phagocytosis mechanism is termed opsonization (Mudd et al., 1929; Noguchi, 

1907), and further enhances the effectiveness of phagocytes in a Th1 response (Cohen et 

al., 2011; Oishi et al., 2013; Schlageter and Kozel, 1990).    By inducing the production 

of IgG2a and activating macrophages, the IFN-γ produced by Th1 effectors guides the 

immune response of cells from both the innate and adaptive arms of the immune to clear 

pathogens.    
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Figure 1.1.  Th1 and Th2 development following antigen stimulation. After activation 

via the T cell receptor, cytokines in the local environment steer commitment to one of 

several mutually exclusive effector lineages.  Shown above are two best studied effector 

programs: Th1 and Th2.     
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The importance of the Th1 response and IFN-γ in human health can be seen in 

patients lacking a functional IFN-γ receptor.  These patients are highly susceptible to 

mycobacterial infections and other intracellular bacteria (Arend et al., 2001; Dorman et 

al., 2004; Jouanguy et al., 1996; Pierre-Audigier et al., 1997; Roesler et al., 1999; Vinh et 

al., 2009).  Th1 effectors have also been found to play a major role in the pathology of 

autoimmune diseases such as type I diabetes (Haskins and Cooke, 2011; Katz et al., 

1995; Öling et al., 2012; Trembleau et al., 1995).  The Th1 subset is therefore a very 

important but potentially very destructive lineage.         

The Th2 effector program (Fig. 1.1) is characterized by expression of the master 

regulator GATA3 (Pai et al., 2004; Ranganath et al., 1998; Zhang et al., 1997a; Zheng 

and Flavell, 1997) and production of IL-3, IL-4, and IL-13 (Abbas et al., 1996; Heinzel, 

1989).  Th2 effectors direct immune responses against helminthic parasites (Finkelman et 

al., 2004; Panzer et al., 2012; Svetic et al., 1993).  The humoral aspect of a Th2 response 

is characterized by the class switching of B cells to IgG1 and IgE (Liu et al., 2003; 

Matsumoto et al., 2013; Snapper and Paul, 1987), while the cell mediated effects stem 

from the recruitment of eosinophils and mast cells to the site of inflammation (Hagan et 

al., 1985; Hepworth et al., 2012; Masure et al., 2013; Shintoku et al., 2013).  IL-4 

produced by Th2s also provides anti-apoptotic and proliferative signals to B cells 

(Howard and Paul, 1983; Liao et al., 2011a; Swain and Dutton, 1985), and many other 

cell types (Crosby and Waters, 2010; Hallett et al., 2012). The IgE produced under Th2 

conditions binds and cross-links Fc receptors on the surface of mast cells, which triggers 

release of histamines and cytokines (Ishizaka et al., 1972; König and Ishizaka, 1974; 

König et al., 1974).  Protection from helminthes has been important throughout 

evolutionary history of mammals (Ilic et al., 2012; Maizels et al., 2009; Pillai and Bix, 

2011; Pulendran and Artis, 2012), but in the developed world, the Th2 response is most 
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commonly seen in atopic diseases such as allergic asthma (Holgate, 2012; Romagnani, 

1994; Wambre et al., 2012).                     

Beyond Th1 and Th2 effector programs, several other CD4
+
 T cell subsets have 

been identified.  As with Th1 and Th2 lineages, each of the other T helper types regulates 

distinct processes in the immune system.  The Th17 subset produces IL-17, which serves 

to recruit neutrophils to clear extracellular bacterial and fungal infections (Drewniak et 

al., 2013; Hernández-Santos et al., 2012; Higgins et al., 2006; Puel et al., 2011).  

Development from a naïve CD4
+
 T cell to a Th17 effector is mediated by TGF-β and IL-6 

signaling and the master regulator RORγt (Harrington et al., 2006; Ivanov et al., 2006; 

Weaver et al., 2006).  Th17 polarization is opposed by signaling from IL-4, IL-12, IL-2, 

and IFN-γ (Zhu and Paul, 2010).  The Th17 effector program also has an etiologic role in 

the autoimmune diseases multiple sclerosis (Maddur et al., 2012; Saresella et al., 2013; 

Wang et al., 2013), psoriasis (Cauli and Mathieu, 2012; Chiu et al., 2012), and 

rheumatoid arthritis (Komatsu and Takayanagi, 2012; Maddur et al., 2012; Miossec and 

Kolls, 2012).  Th17 cells demonstrate some flexibility in cytokine expression, as fully 

differentiated cells can be made to produce IFN-γ under physiological conditions while 

maintaining production of IL-17 (Basu et al., 2013; Lexberg et al., 2010; Mukasa et al., 

2010).          

The T follicular helper subset (TFH) secretes IL-21(Schaerli et al., 2000) and 

specializes in the formation and maintenance of germinal centers (Breitfeld et al., 2000; 

Kim et al., 2001; Schaerli et al., 2000).   Development along the TFH program in humans 

requires IL-12 signaling (Schmitt et al., 2009),  the expression of Bcl6 and the repression 

of Blimp-1 (Johnston et al., 2009; Yu et al., 2009).  In mice, Bcl6 expression, along with 

IL-21, IL-6, and STAT3 signaling drive TFH development (Nurieva et al., 2008).  In both 

humans and mice the inducible costimulator ICOS is required for effective TFH 

polarization (Bauquet et al., 2008; Breitfeld et al., 2000).  TFH effectors can express the 
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master regulators and cytokines associated with one of the other effector subsets: i.e. in a 

Th1 dominated response, TFH cells can express T-bet and produce Ifng (Crotty, 2011; 

Johnston et al., 2009), whereas in a Th2 response they would express GATA3 and 

produce Th2 cytokines (King and Mohrs, 2009; Reinhardt et al., 2009; Yusuf et al., 

2010).  While TFH cells play an important role in generating effective humoral responses 

against antigens, they are also implicated in autoimmune disorders, especially in those 

characterized by autoreactive antibodies such as systemic lupus erythematosus (SLE) and 

rheumatoid arthritis (King et al., 2008; Vinuesa et al., 2005). 

Functionally distinct from the T helper lineages are the CD4
+
 regulatory T cells 

(Tregs).  Tregs are divided into two categories based on how the regulatory function was 

acquired.  Tregs which develop from the recognition of self-antigens in the thymus are 

termed thymic Tregs (tTreg) or natural Tregs (nTregs) (Aschenbrenner et al., 2007; 

Kawahata et al., 2002; Olivares-Villagómez et al., 1998).  T cells acquiring regulatory 

function after exiting the thymus are termed induced Tregs (iTregs) (Apostolou et al., 

2002; Josefowicz et al., 2012).  Regulatory T cells have the ability to suppress the 

effector responses of other T cells, both by the secretion of IL-10 and TGF-β, and by 

contact dependent inhibitory mechanisms (Kumar et al., 1997).  The transcription factor 

Foxp3 is the master regulator of the Treg program (Fontenot et al., 2003), and in cases 

where  humans or mice lack functional Foxp3, widespread autoimmunity develops 

(Bennett et al., 2001; Josefowicz et al., 2012; Wildin et al., 2001).  The ability to generate 

and maintain a functional population of regulatory T cells has repeatedly been shown to 

be vital for the prevention of autoimmunity.    
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T cell activation: TCR signaling 

 CD4
+
 T cells exit the thymus capable of adopting any one of several effector or 

regulatory functions.  In this naïve state, the cells do not produce cytokines or provide 

help to other cells of the immune system.  For a helper T cell to transition from naïve to 

an effector, it must experience its cognate antigen in the context of an antigen presenting 

cell’s expressed MHC class II.  TCR signaling regulates proliferation, survival, and the 

effector function of a T cell (Lanzavecchia et al., 1999).  To carry this out, the receptor 

complex is able to invoke multiple signaling pathways and exert control over a host of 

genes.       

 The α and β chains of the T cell receptor lack signaling components, and instead 

rely on other components of the receptor complex for signal transduction.  The signaling 

components of the TCR are the invariant CD3 proteins and the TCRζ chain (sometimes 

called CD3ζ). The CD3 complex is composed of multiple subunits: CD3δ, CD3ε, and 

CD3γ. These three subunits form into two heterodimers, and, together with a TCRζ 

homodimer form the signaling component of the TCR (Guy and Vignali, 2009; Shores 

and Love, 1997; Zehn et al., 2012).   Each invariant chain of the TCR contains one or 

more ITAM (immunoreceptor tyrosine-based activation motif) domains.  The ITAMs 

become phosphorylated during the course of TCR stimulation, and this phosphorylation 

allows for the recruitment and activation of multiple downstream effector proteins and 

adaptors during TCR stimulation (Guy and Vignali, 2009; Humphrey et al., 2005; 

Salmond et al., 2009; Au-Yeung et al., 2009; Zhang et al., 1998b).          

After the αβ dimer binds to its cognate antigen in the context of MHC, either the 

CD4
 
or the CD8 coreceptor binds to the MHC molecule, drawing its cytoplasmic domain 

into closer proximity to ITAMS of the CD3 and TCRζ complex (Leitenberg et al., 1998; 

Veillette et al., 1988, 1989).  Associated with the cytoplasmic tail of the coreceptor (CD4 
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or CD8) is the Src family kinase Lck. Together with the Src family kinase  Fyn, Lck then 

phosphorylates the ITAMs of the CD3  and TCRζ dimers (Guy and Vignali, 2009; 

Palacios and Weiss, 2004). The phosphorylation of TCRζ allows for the recruitment and 

phosphorylation of the Syk-family tyrosine kinase ZAP-70 (Salmond et al., 2009; Au-

Yeung et al., 2009).  Phosphorylated ZAP-70 interacts with phospholipase Cγ1 (PLCγ1), 

which is activated by the Tec kinase Itk (Berg et al., 2005; Liu et al., 1998b; Park et al., 

1991; Reynolds et al., 2002; Shan and Wange, 1999; Smith-Garvin et al., 2009).  PLCγ1 

cleaves the membrane phospholipid PI(4,5)P2  to produce inositol 1,4,5 triphosphate (IP3) 

and diacylglycerol (DAG) (Choi et al., 2007; Patterson et al., 2005).  Each of these 

molecules activates a separate set of signaling pathways.    

IP3 binds to receptors on the endoplasmic reticulum which triggers a release of 

calcium into the cytoplasm (Berridge, 2009; Berridge and Patel, 1968; Prentki et al., 

1985; Streb et al., 1983, 1984; Williamson et al., 1985).  This Ca
++

 ion flux leads to the 

activation of the phosphatase calcineurin, which dephosphorylates members of the NFAT 

(nuclear factor of activated T cells) family of transcription factors (Loh et al., 1996; Luo 

et al., 1996; Park et al., 1995). Once dephosphorylated, these transcription factors migrate 

to the nucleus and transactivate multiple target genes (Hogan et al., 2003; Kiani et al., 

2001; Macian, 2005; Rooney et al., 1994).  NFAT signaling is required for the function 

of several T helper subsets (Agarwal et al., 2000; Kiani et al., 2001; Porter and Clipstone, 

2002; Rooney et al., 1994), and is required for the proliferation of activated effector 

CD4
+
 T cells and the production of IL-2 (Jain et al., 1993; McCaffrey et al., 1993; Novak 

et al., 1990; Shaw et al., 1988).     

 The DAG produced by PLCγ1 binds to and activates a member of the protein 

kinase C (PKC) family of kinases, PKCθ (Altman and Villalba, 2002, 2003; Baier et al., 

1993).  The activation of PKCθ leads to the activation of members of the NF-κB family 

of transcription factors (Altman and Villalba, 2002; Coudronniere et al., 2000).  The   
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NF-κB family of transcription factors is involved in the regulation of many genes in 

lymphocytes and can be activated by multiple receptors including the TCR (Baldwin, 

2012; Karin and Ben-Neriah, 2000; Oh and Ghosh, 2013; Ruan and Chen, 2012; 

Vallabhapurapu and Karin, 2009; Visekruna et al., 2012).  These transcription factors are 

characterized by an N-terminal Rel homology domain (RHD) required for dimerization 

and site-specific DNA binding, and each dimer has either a transactivating or 

transrepressing domain at the C- terminus (Hoffmann et al., 2006; Vallabhapurapu and 

Karin, 2009).  The NF-κB family members NF-κB1 (p50/p105) and NF-κB2 (p52/p100) 

are found in an inactive precursor state (p105 and p100) and are processed by the 

proteasome into their active forms (p50 and p52) (Blank et al., 1991; Fan and Maniatis, 

1991; Mercurio et al., 1992; Neri et al., 1991; Sen and Baltimore, 1986).  A second set of 

NF-κB transcription factors is composed of RelA (p65) (Baeuerle and Baltimore, 1989; 

Urban and Baeuerle, 1991), RelB (Ryseck et al., 1992), and c-Rel (Brownell et al., 1987; 

Kieran et al., 1990; Sica et al., 1992).  NF-κB transcription factors function as either 

homodimers or heterodimers (Oeckinghaus and Ghosh, 2009; Rattner et al., 1991; Urban 

et al., 1991).  These proteins are kept inactive via interactions with inhibitory factors 

termed IκBs (inhibitors of  NF-κB), which prevent nuclear translocation of dimerized 

NF-κBs (Baeuerle and Baltimore, 1988; Davis et al., 1991; Ganchi et al., 1992; Inoue et 

al., 1992; Vallabhapurapu and Karin, 2009).  During activation, IKK (IκB kinase) 

complexes phosphorlate IκBs, leading to the release and nuclear localization of NF-κB 

dimers (Rothwarf et al., 1998; Zandi et al., 1997, 1998). 

  In the case of signaling from the TCR, PKCθ is able to phosphorylate the CARD 

(caspase recruitment domain) domain protein Carma1 (Blonska and Lin, 2009, 2011; Lin 

and Wang, 2004; Matsumoto et al., 2005; Sommer et al., 2005; Wang et al., 2004).  The 

phosphorylation of Carma1 allows for its binding to Bcl10 and Malt1 at the plasma 

membrane (Cheng et al., 2011; Hara et al., 2004; Shinohara et al., 2007; Wang et al., 
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2004).  This protein complex, sometimes called the CBM complex, is essential for the 

ubiquitination of IKKγ (also known as NEMO) (Li et al., 2001; Poyet et al., 2000; 

Yamaoka et al., 1998).  The ubiquitination of NEMO and PKCθ-mediated 

phosphorylation activates the IKK complex (Blonska and Lin, 2011; Lee et al., 1998; 

Ling et al., 1998).  Activated IKK complexes phosphorylate IκB proteins, leading to their 

disassociation from NF-κB dimers, allowing the NF-κB dimers to translocate to the 

nucleus and regulate the transcription of multiple genes (Ganchi et al., 1992; Zandi et al., 

1998).   

 The TCR signals through multiple pathways, each of which controls multiple 

genes.  Signaling through the TCR provides signals that are necessary for T cell survival, 

proliferation, and differentiation.  Stimulation of the TCR alone will not, however allow 

for a functional immune response.  Another set of signaling pathways must be activated 

to achieve T cell activation.          

 

T cell activation: Costimulators and co-repressors  

 Early studies in TCR signaling found that stimulation of the TCR was insufficient 

to induce proliferation (Green et al., 1994; Jenkins and Schwartz, 1987; Quill and 

Schwartz, 1987; Smith et al., 1997).  It was found that when T cells were stimulated 

solely via the TCR, clonal anergy or cell death would occur (Bartik et al., 1994; Boise et 

al., 1995; Koulova et al., 1991; Linsley et al., 1990; Watts, 2010). This led to the 

hypothesis that a second signal was needed to successfully activate lymphocytes 

(Bretscher and Cohn, 1970; Jenkins and Schwartz, 1987; Lafferty and Woolnough, 1977; 

Quill and Schwartz, 1987).  The requirement for a second signal  provides some 

safeguard against inappropriate immune responses such as autoimmunity as well as 
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modulating and enhancing signaling through the TCR (Boise et al., 1995; Chambers, 

2001; Lafferty and Gill, 1993; Lenschow et al., 1996).    

The second, or costimulatory, signal is typically generated by membrane bound 

receptors on the T cell interacting with ligands on antigen presenting cells. The 

membrane-bound costimulator CD28 is the main source of this second signal during T 

cell activation (Boise et al., 1995; June et al., 1987; Lesslauer et al., 1986).  CD28 is a 

homo-dimeric Ig-superfamily member protein that binds to B7 molecules expressed on 

antigen presenting cells (Koulova et al., 1991; Linsley et al., 1990, 1991).  Upon the 

interaction of CD28 with B7, the YMNM motif of the intracellular domain of CD28 is 

tyrosine phosphorylated via Lck and Fyn (Bjørgo and Taskén, 2010; Lenschow et al., 

1996; Raab et al., 1995; Rudd et al., 2009; Salmond et al., 2009).  PI3K and Grb2 then 

bind to CD28 via SH3 domain interactions (Okkenhaug and Rottapel, 1998).   

PI3K produces PIP3, which binds to PDK1 via the pleckstrin homology (PH) 

domain (Bayascas, 2011).  PDK1 phosphorylates Akt on T308, resulting in partial 

activation (Fayard et al., 2011; Parry et al., 1997; Rudd et al., 2009).   Signaling from 

CD28 via Akt leads to mammalian target of rapamycin (mTOR)-aided translation (Wu et 

al., 2005), activation of cyclin-dependent kinases (Appleman et al., 2000; Boonen et al., 

1999; Rowell et al., 2005), and the inhibition of FAS-induced apoptotic signaling (Jones 

et al., 2002).    

 The activation induced binding of Grb2 to CD28 facilitates the recruitment of 

guanine exchange factors (GEFs) such as Vav1 and SOS (Son of Sevenless) (Buday et 

al., 1994; Gogishvili et al., 2008; Schneider and Rudd, 2008; Schneider et al., 1995) to 

CD28.  These GEFs activate small GTPases such as Rac1 and p21
ras

.  These GTPases 

activate the JNK and MAPK kinase cascades, leading to the activation of AP-1 
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transcription factors and the transcription of genes such as IL-2 (Izquierdo et al., 1993; 

Schneider and Rudd, 2008; Schneider et al., 1995; Su et al., 1994).        

  The overall effect of CD28 signaling is to promote survival and proliferation 

during T cell activation (Boise et al., 1995; Linsley et al., 1991; Noel et al., 1996a; Rudd 

et al., 2009).  This is accomplished via up-regulating the expression of Bcl-XL (Boise et 

al., 1995; Wu et al., 2005), increasing the production of IL-2 (Chen et al., 1998; Jenkins 

et al., 1991; June et al., 1987; Linsley et al., 1991), promoting the activity of cyclin-

dependent kinases (Appleman et al., 2000; Boonen et al., 1999; Rowell et al., 2005), and 

the alteration of cell energetics to accommodate increased energy requirements of 

activation (Frauwirth et al., 2002; Jacobs et al., 2008; Marko et al., 2010).  The signaling 

pathways engaged by CD28 synergize with those initiated by the TCR to enable a 

functional T cell response by promoting clonal expansion and preventing apoptosis.      

 A second important costimulatory molecule in the B7 receptor family is inducible 

co-stimulatory molecule (ICOS) (Hutloff et al., 1999; Rudd and Schneider, 2003; 

Yoshinaga et al., 1999).  As its name suggests, ICOS is only faintly expressed in naïve T 

cells, but its expression is induced during TCR/CD28-mediate activation (McAdam et al., 

2000; Simpson et al., 2010).  ICOS is activated by ligation with B7RP-1, which is 

expressed on antigen presenting cells (Yoshinaga et al., 1999).  Stimulation via ICOS 

promotes survival and proliferations, but does not induce IL-2 (Hutloff et al., 1999).  

ICOS signaling can promote development along several different T lineages, and is 

especially important in the development of TFH cells, with ICOS deficiency resulting in 

impaired germinal center formation and an absence of TFH memory cells (Crotty, 2011; 

Simpson et al., 2010).  Signaling through ICOS provides pro-survival and proliferative 

signals through pathways downstream of AKT (Rudd and Schneider, 2003; Simpson et 

al., 2010) and also modulates the effector responses of multiple T lineages by increasing 

cytokine secretion or providing tolerogenic signals (Bauquet et al., 2008; Gao et al., 



22 
 

2012; Simpson et al., 2010).  By of regulating and increasing T helper responses, 

promoting cell survival, and promoting the TFH lineage, ICOS serves as a key co-

stimulatory molecule in CD4
+
 T cell activation and development.     

 In the same family as ICOS and CD28 but possessing significantly different 

functionality is cytotoxic T lymphocyte antigen 4 (CTLA-4).  Like ICOS, CTLA-4 is 

upregulated after T cell activation (Alegre et al., 1996; Freeman et al., 1992; Sansom, 

2000).  However, CTLA-4 signaling is antagonistic towards signals from TCR/CD3 and 

CD28 (Noel et al., 1996b; Walunas et al., 1994, 1996).  While the exact mechanisms of 

signal-dampening by CTLA-4 are unclear, and several mechanisms have been proposed 

(Bour-Jordan et al., 2011; Noel et al., 1996b; Rudd and Schneider, 2003; Rudd et al., 

2009).  There is evidence to support competition for PI3K, dephosphorylation of CD3 

and CD28 complexes via PP2a, and disruption of cytoskeletal architecture at the immune 

synapse as likely mechanisms of CTLA-4 function (Bour-Jordan et al., 2011; Greenwald 

et al., 2002; Rudd and Schneider, 2003; Rudd et al., 2009; Scalapino and Daikh, 2008).       

While the mechanisms underpinning CTLA-4’s function remain unclear, the 

importance of its function has been demonstrated in a knockout mouse model.  Mice 

deficient in CTLA-4 suffer from severe lymphoproliferative disorders as well as 

autoimmunity and fall fatally ill at a young age (Krummel and Allison, 1995; Tivol et al., 

1995; Waterhouse et al., 1995).  CTLA-4 plays a crucial role in tolerance and immune 

regulation by raising the signaling threshold of the TCR complex and CD28.  Without 

this dampening effect, lower levels of TCR/CD28 stimulation would be sufficient to 

drive strong immune responses.      
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Differentiation of naïve CD4
+
 cells into effector subsets: Cytokine signaling 

While the T cell receptor complex and costimulators are required for activation, a 

substantial portion of the signaling input that controls differentiation and survival after 

stimulation comes from cytokines.  Cytokines bind to membrane-bound receptors on their 

target cell.  The cytokine receptor is then able to initiate signaling through multiple 

pathways, and can influence proliferation (Liao et al., 2011a; Yoo et al., 2002), survival, 

and acquisition of effector function (Bradley et al., 1995; Hsieh et al., 1993; Liao et al., 

2011b; Manetti et al., 1993).  Cytokine receptors are dimeric membrane spanning 

proteins that are expressed in many immune and non-immune cell types.   

One pathway common among many  cytokine receptors is the JAK-STAT 

pathway (Shuai and Liu, 2003).  The cytoplasmic tails of cytokine receptors are 

associated with tyrosine kinases called Janus kinases (JAKs) (Murray, 2007; Watling et 

al., 1993; Wilks et al., 1991).   Upon receptor-ligand interaction, JAKs phosphorylate 

tyrosines on the cytoplasmic domains of the receptor subunits(Beadling et al., 1994; Silva 

et al., 1994; Silvennoinen et al., 1993).  These phosphotyrosines allow STAT molecules 

to bind to the receptor via SH2 domains and undergo tyrosine phosphorylation (Jacobson 

et al., 1995; Shuai et al., 1993; Silva et al., 1994).  This phosphorylation allows for STAT 

molecules to form homo- and hetero-dimers, translocate to the nucleus, bind specific 

DNA elements, and facilitate transcription of target genes (Jacobson et al., 1995; Li et al., 

1996; Murray, 2007; Shuai et al., 1994).  While the activation of STAT proteins is an 

important function, JAKs are also involved in other signal transduction pathways such as 

the PI3K/AKT pathway (Sharfe et al., 1995).  The importance of JAK3 in particular can 

be seen in humans or mice lacking a functional gene produce.  The absence of functional 

JAK3 results in severe combined immune deficiency (SCID) due to defective signal 

transduction from IL-2 and IL-7 (Macchi et al., 1995; Russell et al., 1995).        
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One set of genes upregulated by STATs are the master regulator transcription 

factors (Afkarian et al., 2002; Kurata et al., 1999; Onodera et al., 2010).  The early 

activation of STAT proteins has been shown to be an important first step in the initiation 

of effector programming.  The combined actions of the master regulator transcription 

factors and signaling through the TCR and cytokine receptors enhances the transcription 

of genes associated with one subset and represses genes from other effector programs. 

 

Cytokine signaling: Th1 development 

Development into a Th1 effector (Fig. 1.2B) is dependent upon signaling from IL-

12 via its receptor (Carl et al., 1993; Jacobson et al., 1995; Manetti et al., 1993; Presky et 

al., 1996). Interestingly, expression of the IL-12rβ subunit is induced by  signaling from 

CD28, IFN-γ and IL-2 during T cell activation, and can be blocked by IL-4 signaling 

(Afkarian et al., 2002; Elloso and Scott, 2001; Rogge et al., 1997; Szabo et al., 1995, 

1997; Wu et al., 1997) The IL-12 receptor is capable of signaling both in a STAT-

dependent and STAT-independent manner (Lund et al., 2004) (Fig. 1.3).  Upon IL-12 

binding, JAK2 and TYK2 associated with IL-12 receptor phosphorylates tyrosines on the 

cytoplasmic tail of the IL-12rβ chain, allowing for the recruitment and activation of 

STAT4 (Bacon et al., 1995a, 1995b; Jacobson et al., 1995).  Phosphorylated STAT4 

dimerizes, translocates to the nucleus, and drives the transcription of Ifng (Morinobu et 

al., 2002; Nishikomori et al., 2002; Zhang and Boothby, 2006). STAT4 also enhances 

and maintains the expression of T-bet (White et al., 2001).  While many effects of IL-12 

signaling are mediated by STAT4, there are other pathways invoked by the IL-12 

receptor (Fig. 1.3). 
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Figure 1.2  Master regulators and STATs drive T helper polarization.  Shown are the 

STATs and master regulators downstream of polarizing cytokine for Th1 and Th2 

development (A).  The interplay of different signaling pathways is shown for Th1(B) and 

Th2 (C) development.    
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Figure 1.3 IL-12 signaling by STAT4-dependent and independent mechanisms.      

IL-12 binding to its receptor induces Ifng expression via STAT4-dependent and                 

STAT4-independent mechanisms.  Gene names are in italics.   
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The IL-12 receptor also signals through p38 MAPK (Lu et al., 1999; Rincón et al., 

1998) and the PI3K/Akt pathway (Rao et al., 2010; Yoo et al., 2002).  Akt phosphorylates 

the forkhead transcription factor FOXO1.  This phosphorylation inactivates FOXO1 and 

leads to its translocation to the cytoplasm (Brunet et al., 1999; Guo et al., 1999; Rena et 

al., 1999).   The inactivation of FOXO1 leads to an increased expression of T-bet (Rao et 

al., 2012) as well as possibly enhancing the transcription of Ifng (Ouyang et al., 2012).  

T-bet, as well as being required for Ifng transcription (Szabo et al., 2000, 2002) also 

inhibits the transcription of the Th2 master regulator GATA3 (Usui et al., 2006), 

preserving Th1 lineage commitment and function (Ferber et al., 1999).  These  STAT4- 

independent signals also account for proliferative effects of IL-12 (Morinobu et al., 2002)   

Other cytokine important for developing Th1 cells include IL-2 and IFN-γ.  IFN-γ 

signaling via its membrane-bound receptor activates STAT1.  Active STAT1 drives the 

expression of T-bet, which is essential for IFN-γ production and IL-12rβ expression 

(Afkarian et al., 2002; Szabo et al., 2000).  IL-2, aside from its proliferative and anti-

apoptotic effects (Bödeker et al., 1980; Ma et al., 2006), has also been shown to be 

essential for efficient transcription of Ifng via activation of STAT5 (Shi et al., 2008).  

Development along the Th1 lineage is opposed by Th2 conditions, and exposure to IL-4 

can prevent the transduction of Th1 polarizing signals via repression of Il12rβ 

transcription (Afkarian et al., 2002; Ferber et al., 1999; Szabo et al., 1995). 

 

Cytokine signaling: Th2 development 

Th2 polarization (Fig. 1.2C) is driven by IL-4 signaling through the IL-4 receptor 

(IL-4R).  The IL-4 receptor signals through multiple pathways to regulate gene 

expression in CD4
+
 T cells.  Activation of STAT6 by IL-4 receptor-associated JAKs is 

one of the primary pathways by which IL-4 can exert transcriptional control (Hou et al., 
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1994; Kaplan et al., 1996a; Kuperman et al., 1998).  STAT6 up-regulates the expression 

of the Th2 master regulator GATA3 (Kaplan et al., 1996a; Kurata et al., 1999; Onodera et 

al., 2010; Ranganath et al., 1998; Zheng and Flavell, 1997).  GATA3 and STAT6 then 

enhance the transcription of Th2 cytokines (Kaplan et al., 1996a; Ranganath et al., 1998; 

Zheng and Flavell, 1997).  GATA3 also represses the expression of T-bet, the IL-12 

receptor, and interferon gamma (Ferber et al., 1999; Nakayama and Yamashita, 2008; 

Ouyang et al., 1998; Usui et al., 2003).   

Unlike the IL-12 receptor, the IL-4 receptor is expressed before TCR stimulation 

(Kupper et al., 1987; Lowenthal et al., 1988), allowing IL-4 signaling to preempt other 

effector programs.  Foundational work found that a mouse strain-specific susceptibility to 

Leishmania infection was due to a surge in IL-4 production in the first 16 hours post 

infection (Launois et al., 1995).  This initial IL-4 inhibited the signaling of IL-12 and the 

development of a Th1 response (Aseffa et al., 2002; Carl et al., 1993; Himmelrich et al., 

2000).  In human health, it has been hypothesized that Treg and Th2 responses to 

helminthic pathogens could inhibit a prophylactic immune response against 

Mycobacterium tuberculosis as these pathogens have a relatively high rate of co-infection 

but require different opposed immune responses for clearance (Elias et al., 2006; Ezenwa 

et al., 2010; Rafi et al., 2012; Resende Co et al., 2007).  The dominance of the Th2 

response over the more essential Th1 response may sometimes pose a significant 

challenge in the clearance of certain pathogens in the context of a helminth infection.   

 

T cell activation and differentiation 

While cytokine signaling plays a central role in directing T helper fate decisions, 

variables in TCR stimulation and costimulation can significantly impact the adoption of 

an effector program.  While the TCR and costimulatory molecules signal mainly through 
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subset-independent factors, subtle differences in the relative strength of these signals can 

skew a CD4
+
 T cell towards development into one subset or another.  One demonstration 

of this phenomenon is found in studies using altered peptide ligands.  Depending on the 

exact peptide, altered peptide ligands can induce anergy or lead to different effector 

programs being adopted under the same stimulation conditions (Constant and Bottomly, 

1997; Nicholson et al., 1995; Windhagen et al., 1995).  Specifically, altered ligands that 

demonstrated increased affinity for the TCR generated a much higher proportion of IFN-γ 

producing cells than lower affinity ligands (Kumar et al., 1995; Murray et al., 1989; 

Windhagen et al., 1995)  The use of lower affinity altered ligands has been shown to lead 

to lower levels of tyrosine phosphorylation on TCRζ and ZAP-70, as well as a different 

pattern of activation-induced calcium flux (Boutin et al., 1997).  The sustained increase 

of cytosolic calcium  induced by the agonist peptide allowed for development along the 

Th1 lineage, while the brief calcium concentration increase brought on by the low-

affinity altered peptide ligand was sufficient for Th2, but not Th1, development (Boutin 

et al., 1997).  This demonstrates that the affinity of an antigen for the TCR can alter the 

pathways by which the TCR complex signals, and thus, can skew cells towards one 

effector program over another.     

The binding of any ligand to a receptor is controlled not only by the affinity of the 

receptor, but also the concentration of the ligand relative to the receptor.  Just as altering 

the affinity peptide-TCR binding can modulate the strength of TCR signaling, so too can 

altering the concentration of antigen (Constant and Bottomly, 1997; Parish and Liew, 

1972).  The effects of antigen concentration on T helper cell differentiation are in part 

dictated by the type of antigen used (Constant and Bottomly, 1997).  Soluble protein 

antigens have been shown to exhibit different properties than attenuated or killed 

parasites such as Trichuris muris (Bancroft et al., 1994) or Leishmania major (Bretscher 

et al., 1992).  Parasites generally evoke a Th1 response when administered in a low dose 
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and a Th2 response when given in a high dose.  Conversely, a low dose of protein antigen 

will typically cause a Th2 response, whereas a higher dose will create a Th1 response 

(Constant and Bottomly, 1997).  A very high dose of protein antigen will however 

generate a Th2 response (Hosken et al., 1995).   This discrepancy may be due to the fact 

that post-translational modifications of peptides derived from bacteria or other pathogens 

can greatly increase APC uptake and antigen display (Sallusto et al., 1995). Therefore, 

higher doses of a whole pathogen may lead to overstimulation and death of Th1, but not 

Th2 effectors (Ramsdell et al., 1994; Zhang et al., 1997b).  The fact that higher 

concentrations of soluble protein antigens evoke a Th2 response may also be due in part 

to the greater resistance of Th2 cells to activation-induced cell death (Constant and 

Bottomly, 1997; Zhang et al., 1997b). 

                       

Epigenetics and transcription in cytokine genes 

Every nucleated somatic cell contains its entire genome.  For cells that have 

begun to differentiate, this entails that large portions of the genome contain genes no 

longer relevant to the cells function or development.  Conversely, genes that were 

unnecessary in progenitor stages may become necessary as the cell progressively makes 

fate decisions.  Much as a bookstore will have the books most in demand at the front of 

the store and less popular items pushed to the back, so too are genes necessary for a cells 

function kept accessible to transcriptional machinery while genes associated with other 

cell fates are rendered  inaccessible.       

DNA in the eukaryotic nucleus is in the form of chromatin (Levene, 1903).  At its 

most basic, chromatin is a double-stranded DNA molecule wound around histone 

octomers.  Between 145  and 147 nucleotides are wrapped around each histone in a           

super-helical turn followed by up to eighty base pairs of DNA until the next histone 
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octomer (Crick, 1976; Fuller, 1971; Luger and Richmond, 1998; Luger et al., 2012).  

Chromatin is classified in two broad categories: euchromatin and heterochromatin (Jost et 

al., 2012; Mazzio and Soliman, 2012).  While the terms “heterochromatin” and 

“euchromatin” originates in early histological studies (Heitz, 1928; Jost et al., 2012; 

Levene, 1903), later studies have allowed for a definition based on molecular structure.  

Electron microscopy revealed that euchromatin is a linear array of nucleosomes without 

significant secondary structure or compaction of the linker DNA, and this state is often 

compared to “beads on string” (Jost et al., 2012; Mazzio and Soliman, 2012; Olins and 

Olins, 1974; Oudet et al., 1975; Woodcock and Dimitrov, 2001).  Euchromatic DNA can 

be readily accessed by transcription factors and ribosomes. The heterochromatin state 

consist of nucleosomes compacted together in higher order structures reducing the 

amount of space taken up by the bound DNA (Bednar et al., 1998; Jost et al., 2012; 

Woodcock and Dimitrov, 2001).  Generation of heterochromatin often involves the use of 

linker histones, which bridge between nucleosomes, to form and maintain a compacted 

structure (Bednar et al., 1998; Hamiche et al., 1996; Martins et al., 2012; Routh et al., 

2008; Whitlock and Simpson, 1976).  Aside from saving space, this compaction also 

serves as a layer of transcriptional repression (Lelli et al., 2012; Martins et al., 2012; 

Mazzio and Soliman, 2012).  This level of transcriptional regulation, mediated by the 

organization of DNA within the nucleus, is part of the field of epigenetics.     

Epigenetics refers to heritable modifications in the nature or structure of 

chromatin at a given locus (Mazzio and Soliman, 2012).  This does not involve changing 

the sequence of DNA, but rather changing the degree by which it can be accessed by 

transcriptional machinery.  Epigenetic changes can include chromatin remodeling, the 

changes in the conformation of the gene, and changes in the position of a gene within the 

nucleus.  The regulation of these conditions is an important determinant of the 

transcriptional activity of a given gene.   
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 The process of altering or removing nucleosomes to alter transcriptional 

accessibility is known as chromatin remodeling (Fry and Peterson, 2001; Mazzio and 

Soliman, 2012; Peterson, 2002).  Chromatin remodeling is carried out primarily by two 

classes of enzymes.  The first group modifies histone tails by the covalent attachment of 

methyl, phosphoryl, or acetyl groups (Allfrey et al., 1964; Cao et al., 2002; Langan, 

1969; Nislow et al., 1997; Nohara et al., 1968; Roguev et al., 2001). The effects of 

histone modifications on the transcriptional activity of a locus depend on which group or 

groups have been added and which residue of the histone is subject to modification 

(Mazzio and Soliman, 2012).  The acetylation of histones on lysine residues is a 

transcriptionally permissive modification (Fields et al., 2002; Hassan et al., 2002), and 

the effects of histone tail methylation vary depending on the residue and the number of 

methyl groups added.  Tri-methylation of histone 3 at lysine 4 (3me-H3K4) is found at 

histones of active promoters, and this modification is able to associate with TFIID and 

thus enhance transcription (Lauberth et al., 2013; Varier et al., 2010; Vermeulen et al., 

2007).  Conversely, tri-methylation of histone 3 at lysine 27 (3me-H3K27) is a strongly 

repressive mark able to recruit repressive transcription factors (Cao et al., 2002; Cavalli 

and Paro, 1998; Sewalt et al., 2002; Su et al., 2003).  The acquisition of histone 

modifications on nucleosomes associated with cytokine genes is a lineage specific event 

that occurs during T cell differentiation (Ansel et al., 2003; Fields et al., 2002).   

A second class of chromatin remodeling enzymes consists of ATPases that 

execute the modification of DNA-histone interactions.  This remodeling process can 

involve loosening the wrapping of DNA around a histone core, repositioning of a 

nucleosome by sliding it to an adjacent section of DNA, or eviction of a nucleosome from 

the DNA strand entirely (Gutiérrez et al., 2007; Hargreaves and Crabtree, 2011; Peterson 

and Workman, 2000; Steger and Workman, 1996; Yodh, 2013). Nucleosome 

repositioning preceding transcription can be demonstrated by the appearance of DNAse 
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hypersensitivity sites (HSS) and new micrococcal nuclease digestion product in cytokine 

genes being switched on during polarization (Takemoto et al., 2000; Zhang and Boothby, 

2006).  The appearance of these sites was shown to be due to the repositioning of 

nucleosomes at the inducible HSSs to allow for greater access by transcription factors 

and also to the DNAse enzyme (Almer et al., 1986; Narlikar et al., 2002; Peterson, 2002). 

Nucleosome repositioning is accomplished by multi-protein complexes typically 

containing a central ATPase, as well as multiple accessory proteins (Hargreaves and 

Crabtree, 2011). Chromatin remodeling complexes can exert both activating and 

repressing influences on transcription via compacting or opening up chromatin.  Several 

families of chromatin remodeling complexes have been reported (Fazzio and Rando, 

2012; Hota et al., 2013; Peterson and Workman, 2000; Yodh, 2013).  One family 

important in the regulation of Ifng transcription in T cells is the Swi/Snf family of 

chromatin remodeling complexes (Zhang and Boothby, 2006).  This chromatin 

remodeling complex can bind  directly to DNA (Wang et al., 1998), or to acetylated 

histone tails (Chandrasekaran and Thompson, 2007; Horn and Peterson, 2001; Singh et 

al., 2007).  The Swi/Snf complex is required to transcribe some genes, but also is crucial 

in the silencing of other genes such as CD4 (Chi et al., 2002).  In terms of cytokine gene 

regulation, Swi/Snf is typically associated with creating chromatin conditions favorable 

to transcription.  

One of the most studied repressive epigenetic modifications in the regulation of 

cytokine genes is the methylation of cytosine DNA bases in CpG dinucleotides.  CpG 

methylation can serve to recruit methyl-CpG-binding domain proteins (MBD proteins) 

(Defossez and Stancheva, 2011; Dhasarathy and Wade, 2008; Hung and Shen, 2003).  

MBD family members can then bind the NuRD complex to enact further repressive 

modifications such as increased nucleosome density and deacetylation of histone tails 

(Allen et al., 2013; Li et al., 2010; Saito and Ishikawa, 2002; Zhang et al., 1999).   CpG 
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methylation within the recognition sites for certain transcription factors can also inhibit 

transcription factor binding and transactivation (Jones and Chen, 2006; Sunahori et al., 

2009).  CpG methylation of regulatory regions of DNA is able to silence transcription by 

both direct and indirect mechanisms. 

    Methylation of CpG dinucleotides begins with the recruitment and activity of a 

de novo methyltransferase.  Two enzymes fill this role in mammalian cells, DNMT3a and 

DNMT3b (Deaton and Bird, 2011; Robertson et al., 1999).  In T cells, de novo 

methylation is carried out mainly by DNMT3a (Gamper et al., 2009).  Activation via the 

TCR greatly increases both the activity and absolute concentration of DNMT3a in the 

responding cell (Gamper et al., 2009).  The de novo methylation is carried out on one 

strand of the target sequence, but this allows the activity of the symmetry enforcing 

DNMT, DNMT1 (Bacolla et al., 1999; Bird and Wolffe, 1999; Pradhan et al., 1999).  

DNMT1 establishes symmetrical methylation during the initial methylation and is 

required to maintain the heritability of CpG methylation in actively cycling cells.    

The differentiation-dependent CPG methylation of a cytokine gene was first 

reported in the proximal Ifng promoter in Th2, but not Th1, cells (Fitzpatrick et al., 1998, 

1999; Melvin et al., 1995; Winders et al., 2004; Young et al., 1994).  The importance of 

DNA methylation in the silencing of cytokines from other effector lineages has been 

illustrated by transgenic mouse models defective in DNMT3a or DNMT1.  CD4
+
 T cells 

deficient in DNMT3a are unable to silence cytokine genes from other lineages, resulting 

in Th1 cells producing IL-4 or Th2 cells producing IFN-γ (Gamper et al., 2009; Thomas 

et al., 2012).  Methylation patterns in Th2 cells deficient for DNMT3a are very similar to 

the hypomethylated state found in naïve cells (Thomas et al., 2012).  Similarly, naïve 

cells deficient in DNMT1 produce exponentially more Ifng transcript than DNMT1-

sufficient cells upon ex vivo stimulation (Lee et al., 2001).  These experiments 
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demonstrate that the ability to repress cytokines from opposed lineages requires the 

ability to sustainably methylate cytokine genes.   

 

Regulation of the transcription of Ifng and Th2 cytokine genes in primary 

effectors: The Ifng gene 

                  For interferon gamma to be produced, STAT4 and T-bet signaling are 

insufficient.  Signaling pathways originating from the T cell receptor also are required for 

cytokine production.  The NFAT family of calcium-flux activated transcription factors 

has been shown to be essential for Th1 development and the production of IFN-γ, and the 

binding of NFAT1 isoforms to the Ifng promoter has been demonstrated via ChIP 

(Chromatin immunoprecipitation)  (Avni et al., 2002; Luo et al., 1996; Rooney et al., 

1994).  NF-κB signaling from the TCR is also required for Th1 differentiation and 

function.  Use of a dominant negative IκB protein (IκBαΔN)  showed T cell-intrinsic 

defects in IFN-γ production, as well as decreases in T-bet expression and STAT4 

activation (Corn et al., 2003).  Likewise, cells from mice deficient in the NF-κB subunit 

RelB had marked decreases in the ability to become functioning Th1 effectors, with 

defects in T-bet (Corn et al., 2005).    

A common element in many promoters, including the Ifng promoter, is the cAMP 

response element (CRE) which serves as a binding site for CREB/ATF transcription 

factors (Montminy et al., 1986).   CREB/ATF factors bind DNA as either homodimers or 

heterodimers, and can serve to activate or repress transcription of target genes (Cha-

Molstad et al., 2004; Wen et al., 2010).  Among the CREB/ATF factors which regulate 

Ifng transcription is CREB1.  Canonically, CREB1 is activated by PKA (protein kinase 

A), which has been shown to have a repressive effect on IFN-γ production (Shin et al., 

1998), but PKA-independent mechanisms of CREB phosphorylation have been 
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described, and two downstream effectors of the IL-12 receptor, p38 MAPK and Akt, have 

been shown to activate CREB (Johannessen et al., 2004; Pugazhenthi et al., 1999, 2000; 

Shankar et al., 2010).  Studies in mice or Jurkat cells produced conflicting results on the 

role of CREB1 in Ifng transcription (Cippitelli et al., 1995; Penix et al., 1996; Zhang et 

al., 1998a).  Work carried out in human CD4
+
 T cells responding to mycobacterial 

antigens showed CREB1 phosphorylation in cells actively producing IFN-γ (Liu et al., 

2010; Pasquinelli et al., 2009; Samten et al., 2005), and phospo-CREB1 has been shown 

to bind the Ifng promoter of human Th1cells in response to Mycobacterium tuberculosis 

(Samten et al., 2008).  This evidence supports a model in which CREB1 phosphorylation 

is carried out in a PKA-independent manner in Th1 effectors and can serve to 

transactivate the Ifng promoter in humans.               

Signaling from the TCR and CD28 also allows for the expression of the beta 

chain of the IL-12 receptor (IL-12rβ) (Wu et al., 1997).  The expression of a functional 

IL-12 receptor in turn allows for the activation of STAT4 (Jacobson et al., 1995; Manetti 

et al., 1993; Morinobu et al., 2002; Nishikomori et al., 2002) as well as the other effects 

of IL-12 receptor signaling discussed earlier. 

A naïve CD4+ T cell stimulated by its TCR under Th1 conditions does not 

immediately begin to produce IFN-γ.  A period of polarization is required to become a 

functioning effector cell (Lanzavecchia et al., 1999).  During this time multiple signaling 

networks and their downstream effectors act upon the Ifng promoter to prepare for 

transcription.  Signals from the TCR and co-receptors provide the initial burst of T-bet 

expression, as well as a transient peak of Ifng transcription (Ariga et al., 2007).  Early in 

the process of differentiation,  histone acetylation and other transcriptionally-permissive 

histone modifications occur at the Ifng promoter (Avni et al., 2002; Fields et al., 2002).  

These permissive Th1-specific histone modifications require the actions of T-bet and 

STAT4 for initiation and maintenance (Fields et al., 2002). 
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One effect of signaling through the aforementioned transcription factors is the 

chromatin remodeling of the Ifng promoter. During Th1 polarization, the Swi/Snf central 

ATPase Brg1 is recruited to the Ifng promoter (Zhang and Boothby, 2006), and it is 

known that both NFAT and STAT4 are essential for this remodeling to occur at the Ifng 

promoter in CD4
+
 T cells (Zhang and Boothby, 2006).  It may be that this remodeling is 

required for T-bet binding to the Ifng promoter.  Regulation of the activity of the Ifng 

promoter is accomplished by the synthesis of signals from the TCR and the cytokine 

receptors through the actions of multiple downstream pathways.  There is however 

another layer of control for the transcription of Ifng.                         

The interferon gamma gene is not controlled solely by the promoter.   Numerous 

elements flanking the coding regions also exert control over the transcription of Ifng.  

These conserved non-coding sequences (CNSs) serve to regulate the expression of Ifng.  

During Th1 polarization epigenetic changes can be observed at many of these elements, 

and several CNS regions have been found to bind to both subset-dependent and subset-

independent transcription factors (Hatton et al., 2006; Schoenborn et al., 2007).  Several 

of these elements also regulate Ifng transcription in a cell type-specific manner (Collins et 

al., 2012).    

Activation and repression of the Ifng gene both result from multiple signaling 

pathways initiated by the TCR, membrane-bound costimulatory receptors, and cytokine 

receptors.  These pathways trigger epigenetic changes at the promoter and multiple distal 

regulatory sites in order to promote gene expression or repression.                  

During the course of Th2 polarization, the Ifng gene is silenced by a variety of 

direct and indirect mechanisms.  Indirect silencing mechanisms include the repression of 

the IL-12 receptor and T-bet mediated by STAT6 and GATA3 (Ferber et al., 1999; 

Hosoya et al., 2010; Ouyang et al., 1998).   One of the best studied direct mechanisms for 
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silencing Ifng transcription is CpG methylation of the proximal Ifng promoter (Fitzpatrick 

et al., 1998, 1999; Melvin et al., 1995; Winders et al., 2004; Young et al., 1994).  As 

discussed previously, methylation of the Ifng promoter allows for repression by multiple 

mechanisms.    

Importantly, CpG methylation is able to directly inhibit the activity of the Ifng 

promoter, likely by inhibiting the binding of transcription factors required to transactivate 

the Ifng gene (cite).  Most notably, methylation of a single CpG dinucleotide located 53 

base pairs upstream from the transcription start site (C-53) was able to completely silence 

transcription from an Ifng-promoter construct (Jones and Chen, 2006).  The -53 CpG 

dinucleotide sits in the middle of a CREB/ATF binding site, and transcription factors 

unable to bind the methylated promoter were identified as CREB/ATF family members 

(Jones and Chen, 2006).  This demonstrates that promoter methylation is capable of 

regulating transcription in the absence bound inhibitory transcription factors.               

                   

Regulation of the transcription of Ifng and Th2 cytokine genes in primary 

effectors: The Th2 cytokine locus 

The regulation of the Th2 cytokine locus differs from what is seen at the Ifng gene 

in many key details.  The mechanisms controlling the production of IL-3, IL-4, IL-5, and 

IL-13 are a fertile area of research which will only be touched upon briefly here.  As 

opposed to Th1 development, Th2 polarization involves the activation of several cytokine 

genes within the Th2 cyokine locus (Ansel et al., 2006; Fields et al., 2004).  IL-3, IL-4, 

IL-5, and IL-13 each have their own regulatory regions including promoters, but also are 

under the control of a locus control region (LCR) located at the 3’ end of the RAD50 

gene (Lee and Rao, 2004; Lee et al., 2003).  This provides a central control for execution 

of the Th2 effector program.     



39 
 

A second difference between Ifng and the Th2 cytokine locus is that the Il4 

promoter, the  region of the LCR, and regions between the Il4 and Il13 genes are 

methylated in naïve T helper cells (Ansel et al., 2006; Lee et al., 2002).   During Th2 

polarization, this methylation is lost, possibly as a consequence of cell division without 

enforcement of symmetry (Ansel et al., 2006; Kim et al., 2007; Lee et al., 2002).  The 

regulation of Th2 cytokine genes therefore has differences far beyond the requirements 

for lineage-specific transcription factors.    

 

T cell memory  

 One key feature of the adaptive immune system is the ability to ‘remember’ 

antigens by allowing a small number of responding B and T cells to survive past the point 

of pathogen clearance and antigen withdraw.  In the post-effector state, activated T cell 

clone populations contract, and surviving cells reach a semi-quiescent state.  The onset of 

the memory phenotype appears to occur soon after antigen withdraw, although the exact 

time required for an active cell to become a true memory cell remains unknown  (Dooms 

and Abbas, 2006; Hu et al., 2001; Swain, 1994)  

 Memory T cells quickly reacquire an active phenotype upon re-exposure to 

antigen, and begin expanding and producing cytokines days before antigen responsive 

naïve cells (Croft et al., 1994).  These memory cells allow the immune system to respond 

rapidly to subsequent exposures to a given antigen and provide prophylaxis against repeat 

infections with the same pathogen.  The initial response taken by CD4
+
 memory cells 

upon restimulation is to produce the cytokines associated with the effector subset from 

which it is derived, demonstrating that some commitment to a given cell fate is 

maintained in memory cells (Cerottini and MacDonald, 1989; London et al., 1999, 2000).  
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The formation and behavior of memory population is central to the development of 

vaccines and to the general function of the adaptive immune system (Kaech et al., 2002).      

Two models are used to explain the development of memory cells from an antigen 

stimulated population of T cells (Fig. 1.4).  The first model, called the linear 

differentiation model (Fig. 1.4A) has a memory population arising from fully 

differentiated effector cells.  The partial differentiation model (Fig. 1.4B)  has two 

populations developing during the course of polarization (Wu et al., 2002).  The first is an 

effector population which dies off during clonal contraction following antigen clearance.  

The second population does not have as robust effector function, but maintains the 

epigenetic programing of the effector population.  Cells of this partially-differentiated 

population survive to form a memory population.       

For CTL memory cells, the evidence supports a model of development from 

partially-differentiated precursor cells.   Division of CD8
+
 T cells upon interaction with 

an APC expressing cognate antigen is reported to occur asymmetrically, with the 

proximal daughter cell expressing higher levels of CD8 and effector cytokines (Chang et 

al., 2007).  The distal daughter cells were smaller and exhibited expression of surface 

markers associated with CD8
+
 memory cells (Chang et al., 2007).   This asymmetric 

division of activated CD8
+
 T cells also differentially partitions the T-box transcription 

factors eomesodermin and T-bet between the daughter cells.  T-bet protein is primarily 

partitioned in the proximal, effector-like daughter cell, while eomesodermin is localized 

to the distal, memory-like daughter cell (Chang et al., 2011).  The eomesodermin
Hi

 

daughter cells produce less  IFN-γ than the T-bet
Hi

 daughter cells, but survive much 

better in the long term, and can give rise to a memory population (Banerjee et al., 2010; 

Intlekofer et al., 2005).  Subsequent divisions enhance the effect of this partitioning, and 

the relative amounts of eomesodermin and T-bet have been shown to have a predictive 
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value as to which daughter cells will survive as memory cells (Banerjee et al., 2010; 

Intlekofer et al., 2005; Rao et al., 2010).      

In the case of CD4
+
 T cells, the source of memory cells may depend on the 

effector type.   For Th2-derived memory cells, the linear differentiation model is 

supported by experimental evidence.  IL-4 producing Th2 effectors generated in vitro and 

transferred to recipient mice  have been shown to give rise to a long-lived post-effector 

population in vivo, demonstrating that Th2 cells progress from an effector state to a 

memory state (Adeeku et al., 2008; Löhning et al., 2008).  The source of Th1 memory 

has been a point of contention, with some data supporting the direct model (Swain, 1994) 

and other data supporting a model of partial differentiation similar to that found in CTL 

memory (Ahmed and Gray, 1996; Kaech et al., 2002; Moulton and Farber, 2006).  In 

particular, Th1 cells expressing less Ly6c and T-bet have been found to persist longer and 

respond better to secondary antigen exposure (Marshall et al., 2011).  The similarities 

between findings in Th1 cells and CD8
+
 cells suggests that partial differentiation may be 

a result of IFN-γ production (Stockinger et al., 2006).      
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Figure 1.4 Alternative models of T cell memory.  Shown are the linear (A) and partial 

differentiation (B) models of T cell memory formation.     
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Regulation of cytokine genes in the memory phase 

Memory cells are able to rapidly produce cytokines a secondary exposure to 

antigen.  Whether this is due to differences in the regulation of cytokine genes or the 

maintenance of a ‘primed’ chromatin state has been the subject of study.   In the case of 

CD8
+
 cells, studies on the regulation of the Ifng promoter have revealed a degree of 

dynamism of CpG methylation.  A naïve CTL has an Ifng promoter that is predominantly 

CpG methylated and is unable to produce IFN-γ (Fitzpatrick et al., 1998).  During the 

course of cell divisions undertaken after activation, methylation of the Ifng promoter is 

lost from the population and the ability to produce IFN-γ is acquired (Fitzpatrick et al., 

1998, 1999).  Importantly, DNA methylation of the Ifng promoter is re-established in 

CD8
+
 memory populations, but rapidly lost upon restimulation (Kersh et al., 2006).  This 

loss of CpG methylation, occurring in about five hours, correlates with the renewed 

production of IFN-γ (Kersh et al., 2006).  This suggests that methylation of the Ifng may 

not be the stable repressor that it is commonly portrayed as being.            

For memory cells derived from Th2 effectors, the transcriptional readiness of the 

Th2 cytokine locus is actively maintained (Yamashita et al., 2006), even in the absence of 

cytokine signaling (Yamashita et al., 2004). The expression of GATA3 at high levels is 

also actively maintained in Th2 memory cells.  The transcription factor MLL has been 

shown to be essential for the maintenance of GATA3 expression and permissive histone 

modifications on the Th2 cytokine locus (Yamashita et al., 2006).  Reduction of MLL 

expression in CD4
+
 cells has also been demonstrated to impair the formation of Th2 

memory, but not effector, populations (Yamashita et al., 2006).  These data demonstrates 

that MLL is at least indirectly responsible for the maintenance of Th2 lineage 

commitment, and suggest a continued requirement for the expression of GATA3.       
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Regulation of cytokine genes in the memory phase: Flexibility 

While commitment to express IL-4 was maintained in the memory phase, these 

Th2-derived memory cells could also produce significant amounts of IFN-γ 

simultaneously with IL-4 when restimulated under Th1-polarizing conditions (Adeeku et 

al., 2008; Krawczyk et al., 2007; Löhning et al., 2008).   Further research in mouse 

models identified IL-12 signaling, T-bet expression, and signaling from type-I interferons 

as essential to the flexible production of IFN-γ, and reported IFN-γ producing cells as 

still expressing GATA3 (Hegazy et al., 2010).  Work in human cells has shown that    

IFN-α/β can inhibit GATA3 expression and thus abrogate IL-4 production in Th2 effector 

cells (Huber et al., 2010). This suggests that there is either a difference in this regard 

between mice and humans or between memory and effector cells.     

The ability of Th2-derived memory cells to produce a cytokine inimical to Th2 

function such as IFN-γ raises many questions.  It is currently unknown if the methyl-CpG 

mediated repression of the Ifng promoter formed in Th2 differentiation is maintained in 

Th2 memory cells.  Several possible models explaining the reported flexibility of IFN-γ 

production can be put forth.  In the first, the repressive DNA methylation of the Ifng 

promoter is established in polarization, but lost sometime between antigen withdraw and 

restimulation.  The second is that the repression of the Ifng promoter is maintained in 

memory phase but overcome by Th1 signaling, as it has been demonstrated that 

exogenous T-bet can transactivate a fully methylated Ifng promoter (Tong et al., 2005).  

The third model is that DNA methylation is maintained in memory cells, but lost upon 

restimulation under Th1 conditions.  Identification of the correct model is crucial to 

furthering our understanding of the molecular underpinnings of flexibility in memory 

cells and the stability of CpG methylation in T helper cells.   
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A second unknown is whether STAT4 is required for the expression of Ifng by 

Th2-derived memory cells.  While IL-12 has been identified as essential for flexibility 

(Adeeku et al., 2008; Hegazy et al., 2010), it remains unclear if STAT4 is involved in 

flexibility.  IL-12 signals through multiple pathways, many of which can impact Ifng 

transcription without STAT4 (Rao et al., 2010, 2012; Yoo et al., 2002).  The absence of 

STAT4 activation would imply a mechanism of Ifng transcription vastly different from 

that seen in naïve cells acquiring Th1 effector function.  Finally, it remains to be seen 

whether either T-bet or STAT4 has any bearing on the initiation or maintenance of the 

DNA methylation at the Ifng promoter. 

The extra adaptability that flexible cytokine expression brings to the CD4
+
 

component of the adaptive immune system is still poorly understood in terms of both 

mechanism and significance.  The uniqueness of this reprograming of differentiated 

somatic cells without recourse to the highly artificial methods used to create induced 

stem cells (Adachi and Schöler, 2012; Takahashi et al., 2007) or to trans-differentiate 

committed cells into a new lineage (Sundrud et al., 2003; Zhou et al., 2008) makes 

understanding the mechanisms underlying plasticity of cytokine expression important.  

Likewise, an understanding of the significance of plastic cytokine expression in T helper 

cells will allow us to better grasp the nature of an adaptive immune response from 

initiation to memory to recall.  This work aims to identify mechanisms and requirements 

for the flexible expression of Ifng by memory cells derived from fully differentiated Th2 

effectors.   Understanding the mechanisms underlying this natural reprograming will add 

new depth to our understanding of cell fate commitment, gene regulation, and the 

function of T helper memory.                          
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II. HEMIMETHYLATION OF THE Ifng PROMOTER IN TH2 EFFECTOR 

CELLS 

Strand-biased acquisition of Ifng promoter methylation in Th2 effector cells 

The flexibility of cytokine expression demonstrated by Th2-derived memory cells 

acquiring the ability to produce IFN-γ (Adeeku et al., 2008; Löhning et al., 2008) raised 

several questions central to the understanding of lineage commitment in the post-effector 

phase.  The first of these which we addressed was whether the inhibitory CpG 

methylation of the Ifng promoter reported in effector Th2 cells (Jones and Chen, 2006; 

Melvin et al., 1995; Yano et al., 2003; Young et al., 1994) was maintained in the memory 

phase.  At the outset, we formulated two hypothetical models.  In the first model, 

methylation remained, but the repressive effects were overcome during the course of the 

recall response.  This model was supported by the observation that expression of T-bet 

could transactivate a methylated Ifng promoter (Tong et al., 2005).  The second model 

was that, in the time between the initial response and the recall response, methylation of 

the Ifng promoter was lost.  In CD8
+
 cells, loss of Ifng promoter methylation has been 

reported (Kersh et al., 2006), but no studies had  investigated Ifng promoter methylation 

in CD4
+
 memory cells.  Also supporting this model was research showing that the global 

DNA methylation in memory cells was decreased, as was the expression of DNA 

methyltransferases (Li et al., 2012).  To investigate this, we turned to bisulfite DNA 

modification followed by strand-specific PCRs (Fig. 2.1A) as a means to detect and 

quantify CpG methylation.                 

We began by analyzing DNA from naïve CD4
+
 T cells, Th1 effectors (13 days 

post stimulation), and Th2 effectors for methylation of the Ifng promoter (Fig. 2.1B).   

Naïve CD4
+
 and Th1 effector cells showed little methylation of either strand of DNA 

upstream from the transcription start site (Fig. 2.2), whereas high methylation densities 
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were found at two dinucleotides in exon 1, independent of T cell differentiation, as 

expected (Deaton et al., 2011; Maunakea et al., 2010).  In effector Th2 cells (Fig. 2.2), we 

found increased methylation of the coding strand of the Ifng promoter, with a majority of 

samples exhibiting modification of the -53 CpG whose modification was reported to 

abrogate promoter activity (Jones and Chen, 2006).  Surprisingly, however, the 

noncoding strand was reproducibly and significantly less methylated in Th2 effector cells 

relative to the coding strand (Fig. 2.3), particularly at the -53 CpG (Fig. 2.3D). In light of 

this unexpected result, we tested samples including DNA from a mouse brain and 3T3 

cells, both of which would be expected to have symmetrical hypermethylation of the Ifng 

promoter, along with thymocytes, which are reported to have symmetrical 

hypomethylation.  Brain and 3T3 cell DNA demonstrated a high density of methylation 

symmetrically across the surveyed region and in particular at the crucial -53 CpG.   

Thymocytes, like naïve CD4 T cells, exhibited little CpG methylation (Table 2.1). The 

frequency of non-coding strand DNA methylation in Th2 cells was too low simply to 

represent a lack of modification on one chromosome, e.g., from mono-allelism (Bix and 

Locksley, 1998).  Separate analyses (Table 2.1 and later results) exclude a strand bias in 

the detection method as the basis for the observation. Accordingly, we infer from these 

data that Ifng promoters were hemimethylated in these Th2 effector cells. 
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Figure 2.1. Bisulfite modification for the detection of CpG methylation.  A. 

Schematic of bisulfite sequencing work-flow.   Isolated DNA is reacted with sodium 

bisulfite, resulting in all unmethylated cytosine bases being converted to uracils.  The C 

to U base mutation results in the two DNA strands no longer being reverse complements 

to each other.  This in turn allows for PCR analysis of each strand individually.    B.  Map 

of the Ifng promoter region assayed by bisulfite sequencing.  CpG dinucleotide positions 

are given relative to the transcription start site (TSS).    
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.   

 

Figure 2.2.  Methylation of the Ifng promoter is lineage-specific.  The results of 

bisulfite sequencing  analysis of  DNA from naïve CD4
+
 (A), Th1, and Th2 (B) effectors 

demonstrate lineage specific methylation.  Each  row of the above plots represents one 

sequenced clone, with filled dots representing a methyl-CpG.  Results are representative 

of two (A) or three (B) biological replicates.   
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Figure 2.3. Asymmetric methylation of the Ifng promoter in Th2 effectors.  A.  

Schematic of the Ifng promoter. B. Quantification of the methylation of all CpG 

dinucelotides upstream of the TSS, CpGs -205 to -170, and -53 to -32 across two (naïve) 

or three (Th1 and Th2) biologically independent replicates.  Methylation frequencies are 

compared for Th1, Th2, and naïve cells for the coding (upper left) and non-coding strands 

(upper right).  C.  Methylation of the coding strand is significantly higher than the non-

coding strand in Th2 effectors (lower left).   D.  Methylation of the -53CpG is highly 

strand and lineage specific.  Shown are means ±S.E.M. *p<0.05, ** p<0.01, ***p<0.001.  

D. C. 
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Table 2.1.   CpG methylation in naïve CD4
+
 T cells, thymus, brain, and NIH 3T3 

cells 

 

A. 

  CpG position
a
 

Sample Strand -205 -190 -170 -53 -45 -34 16 

Naïve CD4 

 
Coding 11.4 (3.6)

b 
11.4 (3.6) 14.4 (3.6) 17.4 (3.9) 14.4 (3.6) 14.4 (3.6) 59.8 (6.1) 

 

Non-coding 17 (3.6) 10.8 (1.6) 6.25 (2.3) 17 (3.4) 15.3 (2) 15.3 (2) 90.9 (3.6) 

Thymus 

 

Coding 0 0 0 0 0 0 72.2 (3.5) 

 

Non-coding 0 0 0 0 0 0 71.3 (3.5) 

Brain 

 
Coding 100 86.6 (2) 86.6 (2) 100 100 100 100 

 

Non-coding 95 (2.7) 76.7 (3) 100 95 (2.7) 100 91.7 (3.3) 83.3 (4.9) 

NIH 3T3 

Coding 78.9 (3.2) 63.1 (3.8) 52.6 (1.8) 63.1 (0.9) 63.1 (0.9) 52.6 (3.5) 68.4 (2.8) 

 

Non-coding 62.5 (4.2) 36.3 (6.1) 43.8 (3.0) 56.3 (3.0) 50 (0.0) 50 (0.0) 87.5 (4.2) 

 

B.   

Sample Strand Total
c 

-205-170 -53-34 

Naïve CD4 
Coding 0.9 (0.25)

d 
0.4 (0.18) 0.52 (0.2) 

Non-coding 0.7 (0.34) 0.25 (0.14) 0.45 (0.22) 

Thymus 
Coding 0.11 (0.07) 0 (0) 0.11 (0.07) 

Non-coding 0 (0) 0 (0) 0 (0) 

Brain 
Coding 5.7 (0.12) 2.7 (0.12) 3 (0) 

Non-coding 5.6 (0.16) 2.6 (0.15) 2.9 (0.06) 

3T3 
Coding 3.8 (0.45) 2.1 (0.27) 1.8 (0.31) 

Non-coding 2.9 (0.53) 1.4 (0.26) 1.5 (0.35) 

 

a:  position is presented as the distance in bases from the transcription start site  

b:  data are presented as the mean (± SEM) percentage of samples methylated at a given 

position.   

c: Cluster of CpG dinucleotides being assayed.   

d. Mean (± SEM) number of methyl-CpGs per clone in a given cluster.  
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Hemimethylation occurs naturally during the course of DNA replication (Bhutani 

et al., 2011; Ehrlich and Wang, 1981; Tatematsu et al., 2000), and we wished to verify 

that the hemimethylation we were detecting was not due to DNA synthesis and cell 

division.  Therefore, we measured the amount of DNA synthesis at the time of DNA 

extraction via BrdU uptake and cell division activity via CFSE partitioning (Fig. 2.4).  

We detected little to no cell division or BrdU incorporation at the time of DNA 

extraction, and so we conclude that the hemimethylation of the Ifng promoter is not due 

to DNA replication, but rather is a unique feature of gene transcriptional regulation in 

Th2 cells.   
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Figure 2.4.  Th2 effectors have exited cell cycle at the time of DNA methylation 

analysis.   Th2 cultures were analyzed for CFSE partitioning (B) and BrdU uptake (C).  

(A) Schematic showing the partitioning of CFSE over the course of multiple cell cycles.  

(B) CFSE labeling occurred either at the time of stimulation (day 2 samples) or on day 11 

(day 13 samples).  After 48 hours the CFSE staining profiles of the samples were 

compared.  (C). Th2 cultures either 2 or 13 days after initial stimulation were pulsed with 

BrdU for four hours and then stained to determine BrdU incorporation into DNA.  Cells 

grown continuously in the presence of BrdU serve as a positive control for BrdU staining, 

while cells left untreated serve as a negative control.    
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SnaBI digestion is sensitive to hemimethylation 

Previous studies have used the methylation sensitive restriction enzyme SnaBI to 

detect CpG methylation at the Ifng promoter (Melvin et al., 1995; Winders et al., 2004; 

Young et al., 1994).  The -53 CpG is within a SnaBI cleavage site, meaning that 

methylation at this dinucleotide would prevent SnaBI from digesting DNA.  While this 

has been verified with symmetrically methylated DNA, the effects of hemimethylation 

are unknown.  If SnaBI is hemimethylation sensitive, then an enzymatic digest would not 

be able to discriminate between symmetric and asymmetric methylation.  This would 

explain in part why the strand-specific methylation we describe has not been previously 

reported.  To determine if SnaBI digestion is inhibited by hemimethylation, we used 

probes consisting of the region of the Ifng promoter encompassing the proximal three 

CpG dinucleotides (C-53, C-45, C-34) (Fig. 2.6A, Table 5.1).  Probes were either 

unmethylated or methylated at C-53 on the coding strand.  These probes were digested 

with SnaBI, and the extent of cleavage was assayed via autoradiograph.   We found that 

while SnaBI is able to cut the unmethylated probe, the methylation of C-53 on the coding 

strand significantly inhibits digestion (Fig. 2.5).  This finding suggests that any assays of 

DNA methylation in the Ifng promoter using SnaBI would be unable to distinguish 

between symmetrical and asymmetric methylation and possibly explains why 

hemimethylation of the Ifng has not been previously reported.       
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Figure 2.5. SnaBI digestion is inhibited by hemimethylation at C-53. Unmethylated 

(center lane) or C-53 probes (right lane) (Fig. 2.6A, Table 5.1) were labeled with 
32

P and 

then digested to completion with SnaBI.  The reactions were resolved via electrophoresis 

on a 20% acrylamide gel and visualized via autoradiography.  Undigested, radiolabeled 

probe (left lane) was included as a negative control for digestion. 
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Asymmetrical methylation impacts transcription factor binding to the Ifng 

promoter 

The -53 CpG dinucleotide is situated in a CREB/ATF binding site (Jones and 

Chen, 2006) and adjacent to a known T-bet binding site (Tong et al., 2005).  Previous 

work had demonstrated that the binding of members of the CREB/ATF family of 

transcription factors could be inhibited by symmetric DNA methylation (Jones and Chen, 

2006; Sunahori et al., 2009), but little was known about the effects of hemimethylation 

on transcriptional regulation.  Therefore, we investigated whether hemimethylation could 

impact the ability of transcription factors to bind the Ifng promoter.  

To determine the effects of coding-strand specific methylation of the Ifng 

promoter on the formation of protein-DNA complexes, we performed electrophoretic 

mobility shift assays (EMSA) using the hemimethylated and non-methylated probes 

based on the Ifng promoter as described above, along with a probe having all three 

proximal CpGs methylated on the coding strand (Fig. 2.6A, Table 5.1).  Hemimethylation 

of the -53 CpG or of all three CpG dinucleotides in the probe impaired the formation of 

the slower migrating complex (Figure 2.6B, filled arrow).  To determine the effects of 

hemimethylation on the relative affinity of the slower migrating complex, we turned to a 

competition assay using labeled unmethylated probe (Fig. 2.7).  Competition assays using 

unlabeled competitor DNA and labeled unmethylated probed confirmed that the mobility 

shift bands represented sequence-specific binding.  Moreover, 10-fold more 

hemimethylated cold competitor (relative to unmethylated probe) was needed to attenuate 

probe binding to the slower complex (Fig. 2.7).  Quantification of the results of three 

such experiments combined with regression modeling verifies that hemimethylation 

intereferes with th binding of proteins to the Ifng promoter (Fig. 2.8).   
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Figure 2.6: Inhibition of protein-DNA interaction by hemimethylation.   A.  Probes 

based on the Ifng promoter were generated with no methylation (top), methylation at the  

-53 C nucleotide of the coding strand, or with methylation of the -53, -45, and -34 C 

nucleotides of the coding strand.  B) Electrophoretic mobility shift assay (EMSA) using 

nuclear extract from primary Th1 cells shows two bands (upper and lower arrowheads) 

with the unmethylated probe, and altered complex formation with the hemimethylated 

probes.   

 

  



58 
 

 

 

 

 

 

 

 

Figure 2.7. Effects of hemimethylation on protein-binding affinity.  Competition 

assays were carried out with radiolabeled unmethylated probe, and either an equimolar, 

10-fold excess, or 100-fold excess of competitor.  Results are representative of three 

experiments.  
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Figure 2.8.  Calculation of relative affinities of unmethylated and C-53 

hemimethylated (1xMe) probe.  Results from three independent experiments were 

quantified, and regression equations were used to extrapolate the concentration which 

would yield complete inhibition ([I]max).   
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In order to identify the slower migrating complex, we then employed antibody 

blocking/supershift assays using antibodies against CREB1, ATF2, and c-Jun (Fig.  2.9).   

Only the CREB1 antibody affected the formation and position of the slower migrating 

complex, from which we inferred that the hemimethylation-sensitive transcription factor 

was CREB1.  
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Figure 2.9. Identification of the slower migrating band as a CREB1 containing 

complex.  Electrophoretic super-shift assays were carried out using normal IgG, anti-c-

Jun, anti-CREB1, and anti-ATF2.   
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CREB1 and the Ifng promoter 

 After identifying CREB1 as a transcription factor capable of binding 

unmethylated, but not hemimethylated probes derived from the Ifng promoter, we then 

set out to determine the functional significance of CREB1 in the regulation of IFN-γ 

production.  If the recruitment of CREB1 to the Ifng promoter is regulated by 

hemimethylation, we would expect it to be present at the Ifng promoter in Th1 but not 

Th2.  To test this hypothesis, we preformed chromatin immunoprecipitations (ChIPs, see 

Fig. 5.1 for workflow) with an anti-CREB1 antibody and an anti-acetyl histone H3 

antibody as a control for precipitation (Fig. 2.10).  We were able to detect CREB1 

occupancy at the Ifng promoter in Th1 cells, but not Th2 cells, demonstrating a lineage 

specific recruitment of CREB1.   

As CREB1 is recruited to the Ifng promoter in a Th1-specific,  methylation-

sensitive manner, we then wished to determine what effects CREB1 exerted on promoter 

activity.  To this end, we nucleofected primary Th1 cells with a minimal Ifng promoter 

reporter luciferase construct alongside either a CREB1 expression vector or an empty 

vector control (Fig. 2.11).  We found a striking increase in reporter activity in CREB1 

nucleofected samples relative to empty vector controls, demonstrating that CREB1 is 

capable of transactivating a minimal Ifng promoter.  One signaling pathway known to 

activate CREB/ATF family members is the cAMP responsive protein kinase-A (PKA).  

Interestingly, activation of PKA via dibutyrl-cAMP (db-cAMP) has been shown to inhibit 

the production of IFN-γ (Bartik et al., 1994; Shin et al., 1998).  We therefore set out to 

test what effects exogenous expression of CREB1 would have in cells treated with       

db-cAMP.  We found that db-cAMP was unable to repress reporter activity in CREB1 

nucleofected samples (Fig. 2.12).  This result suggests that the repressive effects of PKA 

activity are mediated by other transcription factors than CREB1, although more work is 



63 
 

needed to determine the relationship between CREB1 and PKA signaling in the 

regulation of IFN-γ production.   
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Figure 2.10. CREB1 is recruited to the Ifng promoter in Th1, but not Th2 cells.  

ChIPs for CREB1 and Ac-H3(K9) were carried out on chromatin from primary Th1 and 

Th2 effectors.  Results are shown as a representative image (A.), and were quantified via 

phosphor imaging to determine the precipitated DNA as a percent of input (B).  Results 

are from three independent experiments.  **p<0.01   
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Figure 2.11. CREB1 can transactivate a minimal Ifng promoter.  Primary Th1 cells 

were nucleofected with a minimal Ifng promoter-luciferase construct and pSport6 or pSport6-

CREB1, luciferase activities were normalized to GFP expression. Shown are mean (± SEM) data 

from three independent experiments. (* p ≤ 0.05)  
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Figure 2.12: Dibutyrl-cAMP driven inhibition of Ifng promoter activity is blocked 

by exogenous CREB1 expression.  Th1 effectors were nucleofected as in Fig. 2.11, and 

then treated with 5μM db-cAMP for four hours.  Luciferase activity was then measured 

and normalized to GFP expression.  The resting samples were reproduced from Fig. 2.11. 

Results shown are from three independent experiments.  (*** p<0.001)         
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Conclusions 

 In this chapter we have described a novel and functional epigenetic modification 

of the Ifng promoter that is reproducibly found in Th2, but not Th1, effectors.   We have 

shown that the DNA methylation of the Ifng promoter occurs preferentially on the coding 

strand as naïve cells develop towards a Th2 effector fate.  We have also shown that this 

asymmetric methylation is sufficient to inhibit the binding of transcription factors.  We 

have identified CREB1 as a hemimethylation-sensitive transactivator of the Ifng promoter 

that is present at the promoter in Th1, but not Th2 cells.  Furthermore, while we have 

reproduced  reported data in which the PKA-agonist db-cAMP decreased transcription 

from  an Ifng promoter-based construct (Shin et al., 1998), we have also  shown that 

exogenous expression of CREB1 blocks the inhibitory action of db-cAMP.   From this, 

we infer that activation of CREB1 during Th1 responses is accomplished by              

PKA-independent mechanisms.   
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III. REGULATION OF IFN-γ PRODUCTION IN Th2 MEMORY CELLS 

Absence of promoter methylation in Th2-derived memory cells 

 Given our findings of asymmetric methylation at the Ifng promoter in Th2 

effectors, we then wished to determine if the methylation status of the Ifng promoter in 

memory Th2 cells.   Th2-derived memory cells were generated as per our previous work 

(Adeeku et al., 2008), and  the process is summarized in Figure 3.1.   DNA was extracted 

from cells at the time of transfer (Th2 effector samples) and upon recovery 4-8 weeks 

after transfer into either athymic (BALB/c nude) or wildtype BALB/c recipients.  As 

expected, cells transferred into both recipient types underwent homeostatic expansion 

(Fig. 3.2) and acquired the ability to produce IFN-γ after restimulation and growth under 

Th1 conditions (Figure 3.3).   

 Strand-specific analysis of DNA methylation in DNA recovered from purified 

memory cells showed a decrease in CpG methylation across the coding strand of Ifng 

promoter (Fig. 3.4 and 3.5), and little change in the methylation density of the non-coding 

strand.   Most strikingly, coding strand methylation of the crucial -53CpG was almost 

entirely absent in all analyzed sequences (Fig. 3.5B).  Given that cells have divided post-

transfer as previously discussed, we have developed a model in which the 

hemimethylation in Th2 effectors is diluted out over the course of multiple cell divisions, 

allowing for a passive, promoter specific mechanism of demethylation (Fig. 3.6).       
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Figure 3.1. Generation of memory cells from IL-4 producing Th2 effectors.  

Schematic of memory cell generation.  Splenocytes expressing the transgenic DO11.10 

receptor and the 4get bicistronic IL-4 reporter allele are raised under Th2 conditions for 

four days.  The cells are then sorted for CD4
+
, DO11.10

+
, GFP

+
 cells.  These are 

expanded for a week, and then transferred into a recipient (DO11.10 negative) mouse.  

After 6-8 weeks, recipient mice are harvested, and memory cells are identified via the 

DO11.10 TCR.  Inset: Flow cytometric plot for GFP in expressed in Th1 (solid) and Th2 

(outline) effectors.  
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Figure 3.2: Homeostatic expansion in BALB/c and BALB/c Nude recipients.  A.  

Schematic of CFSE partitioning as a means to track division history in a cell population.  

Th2 cells were labeled with CFDA-SE and transferred into recipient mice.  Shown are the 

CFSE staining profiles of donor-derived cells recovered from wildtype (shaded) and 

Nude (outline) recipients twelve days post-transfer.  Results are representative of two 

independent experiments.   
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Figure 3.3.  IFN-γ production in Th2-derived memory cells.  Th2-derived memory 

cells were restimulated for 36 hours with peptide+APCs at the time of recovery (initial) 

and after one week of restimulation under Th1 or Th2 conditions, and the concentration 

of IFN-γ in the supernatant was measured.  Results are shown as picograms of IFN-γ 

produced per 1,000 donor-derived (DO11.10 TCR
+
 CD4

+
) cells, and are representative of 

four independent experiments consistent with previous studies (Adeeku et al., 2008; 

Löhning et al., 2008).  
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Figure 3.4. Absence of coding strand methylation in memory Th2 cells.  Shown are 

representative sequences of bisulfite modified DNA as in Figure 2.2.  Results are from 

four independent experiments.   
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Figure 3.5.  Quantification of methylation of the Ifng promoter in Th2-derived 

memory cells.  A. . Quantification of the methylation of all CpG dinucelotides upstream 

of the TSS, CpGs -205-170, and -53-34.  Shown are the mean of four independent 

experiments (±SEM). B.  The mean (±SEM) frequency of methylation at the -53CpG 

dinucleotide in Th2 memory cells is shown, with effector data from Fig. 2.2 shown for 

comparison     *p<0.05, ** p<0.01, ***p<0.001. 
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Figure 3.6. A model of cell division dependent passive demethylation. Shown is a 

model of demethylation in which hemimethylation is diluted out over the course of 

successive cell divisions.  
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Requirement for STAT4 in flexible production of IFN-γ 

The development of Th1 effector cells from naïve CD4
+
 T cell precursors is 

highly dependent on IL-12-induced STAT4 and, in most settings, on T-bet (Jacobson et 

al., 1995; Szabo et al., 2000, 2002). IL-12 is required for the facultative induction of  

IFN-γ production by memory Th2 cells after recall stimulation in vitro and in vivo 

(Adeeku et al., 2008; Hegazy et al., 2010; Löhning et al., 2008).  However, the IL-12 

receptor elicits multiple intracellular signals (Fig. 1.3) (Rao et al., 2012; Yoo et al., 

2002), and which of these pathways are essential for the plasticity of gene expression is 

not known.    

To investigate whether STAT4 is required for the production of IFN-γ by Th2-

derived memory cells we generated memory cells from STAT4 deficient or T-bet 

deficient Th2 effectors and compared the amount of IFN-γ produced upon initial 

restimulation with antigen, along with that produced after one week of expansion under 

Th1 or Th2 recall conditions.  After one week of Th1 culture, neither STAT4-deficient 

nor T-bet deficient Th2 memory cells secreted as much IFN-γ upon restimulation with 

peptide antigen and APC as the matched wildtype control.  However, the amount of    

IFN-γ detected in the supernatants of the transcription factor deficient cells still was 

above the background of the assay (Fig. 3.7).  Comparison of the relative amounts of 

IFN-γ produced in each experiment revealed that cultures of T-bet deficient or      

STAT4-deficient memory cells consistently produced about 30% of the IFN-γ secreted 

by the matched wildtype control (Fig. 3.8).   This finding was consistent between cells 

recovered from both athymic nude mice and from wildtype recipients (Figure 3.8).  

Intracellular cytokine staining showed that upon recovery, all three genotypes maintain 

commitment to produce IL-4 upon recall stimulation (Fig. 3.9A), but approximately 31% 

of wildtype donor-derived cells have become IFN-γ
+
, IL-4

+
 double producers after 1 

week of Th1, but not Th2 recall culture (Fig. 3.9B).  Furthermore, no IFN-γ production 
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could be detected via ICCS in T-bet or STAT4-deficient Th2 memory cells, even after 1 

week of Th1 culture (Fig. 3.9B).  These findings demonstrate that STAT4 is required for 

the flexible expression of the Ifng gene and confirm previous reports that T-bet is also 

required (Hegazy et al., 2010).
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Figure 3.7. IFN-γ secretion is impaired in T-bet or STAT4 deficient Th2-derived 

memory cells.  The mean (±SEM) amount of IFN-γ (in pg) secreted by 1,000 cells in 36 

hours is shown at the time of harvest (initial), and after one week of Th1 or Th2 recall 

conditions.  Shown are the averages for at least 6 independent experiments.   
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Figure 3.8.  IFN-γ production of T-bet or STAT4-deficient Th2 memory cells 

relative to wildtype Th2 memory cells.  The amount of IFN-γ produced by Th2 

memory cells after one week of Th1-recall culture was calculated as a ration of mutant to 

wildtype.  Shown are the average ratios (±SEM) for cells recovered from nude recipients 

(left panel, four independent experiments), wildtype recipients (center panel, four 

independent experiments), or all recipients (right panel, 8 independent experiments).       

* p < 0.05, ** p < 0.01, *** p < 0.001.      

  



79 
 

 

 

Figure 3.9.  Intracellular cytokine staining of T-bet-deficient, STAT4-deficient, and 

wildtype Th2-derived memory cells.   Intracellular staining for cytokines was carried 

out at the time of harvest (Panel A) or after one week of Th1 or Th2 recall stimulation 

(B.)  FACS plots shown are gated for CD4
+
, DO11.10 TCR

+
 cells. 
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Stat4-deficient cells have normal T-bet induction and homeostatic expansion 

We then investigated potential mechanisms by which STAT4 could facilitate 

flexible IFN-γ production in memory Th2 cells undergoing a Th1 recall response.  

Previous studies have shown that STAT4 is required for the production of IFN-γ in a 

primary response by CD4
+
 T cells (Jacobson et al., 1995; Kaplan et al., 1996b; Zhang and 

Boothby, 2006).  Beyond this direct transactivation some studies have also shown that 

STAT4 is required for the maintenance of T-bet expression (Schulz et al., 2009; White et 

al., 2001), suggesting that any requirement for STAT4 may be due to its role in 

maintaining T-bet expression.  To test this, we carried out FACS staining for T-bet on 

Th1 effectors, and Th2 effectors under Th1 and Th2 recall responses from both wildtype 

and STAT4-deficinet backgrounds.  While we were able to reproduce the reported results 

that STAT4-deficiency results in an inability to maintain T-bet expression in effector Th1 

cells (White et al., 2001) (Fig. 3.10A, top panel), we found that at least half of donor-

derived cells expressed T-bet at a level comparable to Th1 effectors when cultured for 

one week under Th1 conditions (Fig. 3.10 ).  We therefore concluded that the 

requirement of STAT4 in the production of IFN-γ by memory Th2 cells is not due to an 

ability to regulate T-bet expression.    

Finally, since we are proposing a model in which homeostatic expansion dilutes 

out repressive CpG methylation, it is possible that the requirements for STAT4 and/or   

T-bet could arise from reduced cell division activity after transfer, resulting in a higher 

degree of methylation being retained.   Accordingly, we tested if the rates of division 

were slower for Tbx21 -/- or Stat4 -/- Th2 cells in recipient mice.  In vivo CFSE 

partitioning assays showed that there was no defect in rates of division for DO11.10 Th2 

cells that were T-bet- or STAT4-deficient cells compared to controls that were wildtype 

with respect to the transcription factors (Figure 3.10B).  To assay for possible defects 

longer after transfer, recipients of wildtype, Tbx21 -/-, or Stat4 -/- Th2 effectors were 
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pulsed with BrdU prior to harvest, and the incorporation of BrdU into genomic DNA was 

measured.  We found that the transferred cells had almost completely exited cell cycle 

and that the low rates of DNA synthesis were similar for all genotypes (Fig. 3.10C).  

Therefore, alterations in the number or frequency of cell divisions post transfer could not 

account for differences in plastic Ifng expression between wildtype and T-bet-deficient or 

STAT4-deficient samples. 
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Figure 3.10. T-bet induction and homeostatic expansion in STAT4-deficient Th2 

memory cells.   (A) T-bet expression was measured via FACS in WT and Stat4-/- Th1 

effector (top panel), recovered Th2 memory cells after one week of Th1 recall stimulation 

(middle panel), and recovered Th2 memory cells after one week of restimulation under 

Th2 conditions (bottom panel).  (B) Th2 effector cells from Wildtype, Tbx21-/-, and 

Stat4-/- DO11.10 mice were labeled with CFDA-SE and transferred into BALB/c nude 

recipients.  After two weeks, donor derived cells were analyzed for CFSE partitioning.  

The initial level of CFSE staining (dark outline) are shown for each cell type. (C) In vivo 

BrdU incorporation into Th2 effector cells from Wildtype, Tbx21-/-, and Stat4-/- 

DO11.10 mice five weeks post-transfer.  Recipient animals were injected with BrdU prior 

to harvest, and BrdU incorporation in donor derived cells was determined via FACS with 

an anti-BrdU antibody.    All events shown are gated on CD4
+
, DO11.10 TCR

+
 viable 

cells.   
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Alterations in CpG methylation in Tbx21-/- and Stat4 -/- Th2 effector and memory 

cells 

 Another possible mechanism that would account for the need for both STAT4 and 

T-bet in plastic Ifng expression would be that in the absence of these transcription factors, 

conditions in the effector phase of the T cell response would not allow for flexible 

cytokine production in the memory phase.  This could be in part due to increased 

maintenance of CpG methylation or from other epigenetic mechanisms.  To test this, 

DNA was extracted from Tbx21-/- and Stat4-/- effector Th2 cells after 11-12 days of Th2 

culture and CpG methylation of the Ifng promoter was analyzed as before (Figs. 2.3, 3.5).  

We found that there was little change in the methylation densities on the coding strands 

of T-bet or STAT4 deficient Th2 effectors (Fig. 3.11A).  Surprisingly, the non-coding 

strands of the transcription factor Th2 cells demonstrated a significantly higher degree of 

methylation across the assayed region of Ifng promoter (Fig.  311A).   As opposed to the 

wildtype effectors, Tbx21-/- and Stat4-/- Th2 effectors displayed symmetric CpG 

methylation of the Ifng promoter (Fig. 3.11B).    

 According to the model of cell-division driven passive demethylation we 

proposed, this symmetric methylation would be better maintained into the memory phase.  

To test this, we carried out methylation analysis of DNA from Tbx21-/- and Stat4-/- Th2 

memory cells.  As predicted by our model, we find that CpG methylation of both strands 

has been maintained, especially at the crucial -53CpG (Fig. 3.12).   This maintenance of 

repressive DNA methylation likely forms one of the several barriers to Ifng expression in 

T-bet or STAT4-deficient memory cells.         
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Figure 3.11. Symmetry of methylation in Tbx21-/- and Stat4-/- Th2 effector cells.   

Mean (±SEM) meCpG dinucleotides per clone are shown for Tbx21-/-, and Stat4-/- Th2 

effector cells as in previous figures. WT Th2 effector results from Fig. 2.3 are shown for 

comparison.  Clones from three independent experiments were analyzed for both coding 

and non-coding strands. (A) Comparison of symmetry of methylation in which the 

frequency of methylation on coding and non-coding strands from each sample are 

compared.  (B) Comparison of frequencies of methylation between WT, Tbx21-/-, and 

Stat4-/-.  (* p<0.05, ** p<0.01, *** p<0.001).    
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Figure 3.12.  Alterations in DNA methylation in Tbx21l-/- or Stat4 -/-  Th2 memory 

cells.  (A)  Mean (±SEM) meCpG dinucleotides per clone are shown for Tbx21-/-, and   

Stat4-/- Th2 effector cells as in previous figures. WT Th2 memory cell results from Fig. 

3.5 are shown for comparison. Clones from three independent experiments were analyzed 

for both coding and non-coding strands.  (B) The frequency of methylation at the -53CpG 

dinucleotide in memory Th2 cells is shown for coding and non-coding strands.  Results 

are from three independent experiments.  * p<0.05, ** p<0.01, *** p<0.001. 
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Figure 3.13. Symmetrical methylation inhibits passive demethylation.  Shown is a 

model of methylation status over the course of two cell divisions as per Fig. 3.6.   In the 

case of symmetrical methylation, dilution of CpG methylation would not occur. 
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Exogenous expression of T-bet in Tbx21-/- Th2 effector and Th2 memory cells 

 Having observed that deficiency of T-bet or STAT4 leads to an epigenetic 

environment antagonistic towards Ifng expression, we then wished to determine if 

restoring the expression of T-bet in polarized Th2 cells would allow for the production of 

IFN-γ by Th2-derived memory cells.   Previous studies have shown that ectopic 

expression of T-bet in fully polarized Th2 cells can lead to substantial IFN-γ production 

(Szabo et al., 2000, 2002) and that over-expression of T-bet can transactivate a fully 

methylated Ifng promoter (Tong et al., 2005).   A parallel study in human CD4
+
 T cells 

found that many Th2 cells would, under Th1 conditions, switch on their IFNG gene.  A 

subset of Th2 cells that could not be switched to IFN-γ producers was found, and  this 

subset was unable to upregulate T-bet under Th1 conditions (Messi et al., 2002).  Further 

studies showed that human CD4
+
 T cells lose the ability to express IFNG after several 

cycles of polarization, even when T-bet expression is driven by a retroviral vector 

(Sundrud et al., 2003).  However, no studies have touched on the effects of forcing T-bet 

expression in Tbx21 deficient Th2-derived memory cells.    

 To rescue T-bet expression in T-bet deficient Th2 effectors we used retroviral 

transduction with an MSCV-based retrovector with Thy1.1 as a bicistronic reporter 

(MSCV-IRES-Thy1.1 or MiT) carrying T-bet cDNA (MiT-T-bet).  After one cycle of 

Th2 differentiation, effector cells were restimulated and transduced with MiT-T-bet or an 

MiT vector lacking T-bet cDNA (MiT empty vector), and cultured under Th1 and Th2 

conditions for another week.  After a subsequent restimulation with APCs and antigen, 

intracellular staining for IL-4 and IFN-γ  revealed that T-bet expression forced IFN-γ 

expression in Tbx21 -/- Th2 cells (Figure 3.14)  This is consistent with previous work 

carried out in Th2 effector cells  (Szabo et al., 2000, 2002; Tong et al., 2005).  Thus we 

were able to reproduce previous results on the effects of exogenous T-bet expression in 

committed Th2 cells.  
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In parallel with the intracellular staining, MIT-T-bet transduced cells kept under 

Th2 conditions were transferred to recipient mice.  After three weeks, mice were 

harvested and cells were restimulated under Th1 and Th2 conditions (as per Fig. 3.3) 

followed by restimulation with antigen and APCs and intracellular staining (Fig.3.15).   

We found that donor-derived cells expressing Thy1.1 on their surface also were typically 

able to produce IFN-γ.  In contrast, non-transduced Thy1.1
-
 cells did not stain for IFN-γ, 

but did have a high frequency of   IL-4 positive cells.  Interestingly, culture under Th2 or 

neutral conditions did decrease the proportion of IFN-γ
+
 cells, suggesting that the forced 

expression of T-bet still benefits from IL-12 signaling found under Th1 conditions.  We 

therefore conclude that the expression of T-bet at a sufficient level can overcome the 

block to IFN-γ production seen in Tbx21-/- Th2-derived memory cells.  Based on these 

findings, we propose that multiple barriers to Ifng transcription are enacted during Th2 

differentiation, and that these barriers are reversed in wildtype Th2 cells as they become 

memory cells.                 
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Figure 3.14.  T-bet transduced Tbx21-/-  Th2 effectors produce IFN-γ.  Tbx21-/- 4get 

DO11.10 cells were cultured under Th2 conditions.  After four days,  GFP
+
 cells were 

collected and restimulated via antigen and APCs.  Two days after restimulation cells were 

underwent retroviral transduction with viruses derived from MiT-T-bet or an empty 

vector control.  Two days post-transduction cells were restimulated under Th1 or Th2 

conditions and cultured for one week.  ICCS was then carried out.  Events shown were 

gated on the viable (as determined by forward and side scatter) CD4
+ 

cells.  Data are 

representative of two experiments.   
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Figure 3.15. Production of IFN-γ by memory cells derived from T-bet transduced 

Tbx21-/- Th2 effector cells.  Tbx21-/- were transduced as in Fig. 3.14, and then 

restimulated under Th2 conditions.  After one week of culture, Th2 cells were transferred 

to nude mice.  Cells were recovered after four weeks and cultured under Th1, Th2, or 

neutral conditions for one week.  ICCS was then carried out.  Events shown are gated as 

per Fig. 3.14.  Results are representative of two independent experiments.
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Conclusions 

 We have found that the CpG methylation of the Ifng promoter established during 

Th2 effector development is not maintained into the memory phase in wildtype cells.  We 

have also demonstrated that STAT4 is required for the flexible production of IFN-γ.  

Furthermore we have provided evidence that the requirement for STAT4 is not due to a 

failure to induce T-bet during Th1 recall, and that neither T-bet nor STAT4 alter the rate 

of homeostatic cell division occurring after the effector phase.  Intriguingly, we have 

found that Th2 effectors deficient in STAT4 or T-bet have symmetrically methylated Ifng 

promoters, and that this methylation is retained in memory cells deficient for either 

transcription factor.  Taken together, these results suggest that T-bet and STAT4 serve to 

inhibit symmetrical methylation of the Ifng promoter, resulting in a hemimethylated state.  

Promoter hemimethylation is sufficient to inhibit CREB1 binding, but is not maintained 

through divisions occurring after the end of the effector phase.  The absence of repressive 

methylation alongside the induction of T-bet and activation of STAT4 in a Th1-biased 

recall response then allows for the flexible production of IFN-γ.   

In our work, we have also confirmed previous reports that STAT4 is required to 

maintain T-bet expression in effector Th1 cells, and that forced expression of T-bet can 

cause IFN-γ production, even from a fully committed Th2 cell. We have expanded this 

observation to show that forced T-bet expression in Th2-derived memory cells will also 

result in indiscriminate IFN-γ production.  
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IV. Discussion and future directions 

The capacity of Th2-derived memory cells to produce significant amounts of IFN-

γ when carrying out a recall response under Th1 conditions is an example of natural cell 

reprogramming.  Previous studies into lineage plasticity in CD4
+
 T cells demonstrated 

that IL-12, type I interferons, and T-bet are all required for transcription of Ifng by 

memory Th2 cells (Adeeku et al., 2008; Hegazy et al., 2010; Löhning et al., 2008), but 

little was understood about the molecular mechanisms that underlie this flexible cytokine 

expression.  Foundational work revealed that the Ifng promoter undergoes repressive 

CpG methylation (Fitzpatrick et al., 1998, 1999; Melvin et al., 1995; Winders et al., 

2004; Young et al., 1994), but it was unknown whether inhibitory DNA methylation is 

maintained in Th2-derived memory cells.  At the outset of this study, it was also unclear 

whether STAT4, crucial for IFN-γ expression in Th1 effectors (Jacobson et al., 1995; 

Morinobu et al., 2002; Zhang and Boothby, 2006), was required for flexible IFN-γ 

production.   In this work, we explored molecular mechanisms underlying cytokine 

production plasticity.  In undertaking this investigation, we have discovered a novel and 

functional epigenetic state of the Ifng promoter and further defined the transcription 

factor requirements for flexible expression of IFN-γ.     

In Th2 effector cells, we made the novel observation that the Ifng promoter 

exhibits asymmetric methylation in committed Th2 effectors.  The coding strand DNA 

preferentially acquires significantly increased methylation relative to the low frequency 

of meCpG in naïve CD4+ T cells and on the non-coding strand.  Furthermore, we have 

demonstrated that hemimethylation of the Ifng promoter was sufficient to alter protein-

DNA interactions and inhibit CREB1 binding at a highly conserved sequence required for 

promoter activity.  Consistent with this data, forced expression of CREB1 was able to 

transactivate a minimal Ifng promoter.  Using chromatin immunoprecipitation, we 

demonstrated that CREB1 preferentially bound to the Ifng promoter in Th1, but not Th2 
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effector cells.  This was the first report of the presence and inhibitory function of 

hemimethylation in lymphoid cells.  In Th2-derived memory cells we found a striking 

loss of methylation on the coding strand with overall CpG methylation densities similar 

to naïve CD4
+
 cells.  As methylation of the Ifng has been shown to have a strong 

repressive effect, these findings led us to infer that the loss of CpG methylation 

contributes to the flexibility of IFN-γ production.  In investigating the transcription factor 

requirements for the facultative production of IFN-γ, we found that the IL-12-induced 

factor STAT4 is required along with T-bet.  Surprisingly, Th2 effector cells deficient in 

T-bet or STAT4 had largely symmetric methylation of the Ifng promoter and memory 

cells derived from these effectors maintained promoter methylation.   Taken together, 

these data suggest that changes in the frequency of CpG methylation at the Ifng promoter 

is one part of the molecular mechanism underlying the reprogramming of gene 

expression in Th2-derived memory cells during a recall response.     

 While we have shown that the loss of methylation at the Ifng promoter is likely to 

be one mechanism underlying flexible gene expression, we do not contend that it is the 

only repressive mechanism.  We have shown that about 30% of Ifng promoter alleles 

from Th2 cells are unmethylated, and yet we see no IFN-γ production from this 

population.  Furthermore, in memory cells prior to recall stimulation, the Ifng promoter is 

unmethylated, but it requires several days of recall culture under Th1 conditions before 

cells begin to produce IFN-γ.  We therefore propose that other barriers to flexible 

expression of the Ifng gene exist, and that among these are the ability to up-regulate T-bet 

and achieve signaling through the IL-12 receptor.  
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Cells are flexible, genes are plastic 

The ability of memory Th2 cells to produce IFN-γ in a Th1 recall response is a 

rare example of fully differentiated somatic cells undergoing reprogramming without 

genetic or pharmacological manipulation.  This behavior has been termed both 

“plasticity” (Ahmadzadeh and Farber, 2002; Krawczyk et al., 2007; Sundrud et al., 2003) 

and “flexibility”  (Adeeku et al., 2008; Messi et al., 2002) within the literature, and both 

of these terms convey the needed information: a mature somatic cell takes on new 

functions when face with a new stimulus.  Plasticity however, carries meanings beyond 

what is truly happening in memory Th2 cells in that it often refers to the loss of previous 

cellular characteristics (Brockes and Kumar, 2002; Zhou and Melton, 2008a, 2008b). 

While this difference in terminology may seem subtle, the differences between the two 

terms are very significant in terms of ontogeny and functionality.  Plasticity carries with 

it the implication, not just of reprogramming, but also of a loss of the original function 

(Cobaleda and Busslinger, 2008).  We use the term flexibility to describe a lineage 

committed cell acquiring new programming without abandoning previous programing.  

Comparisons of the behavior of memory Th2 cells with instances of truly plastic behavior 

highlight the differences in the terms. 

Phenotypic plasticity in mammalian cells is most often seen in cell developmental 

processes where cells transition from a pluripotent state such as hematopoietic stem cells 

to a less plastic, more differentiated cell type (Askenasy et al., 2006; Rovó and Gratwohl, 

2008; Williams and Klinken, 1999).  In the absence of experimental manipulation, this is 

typically an irreversible process (Briggs and King, 1952; Waddington, 1957; Weismann, 

1893) involving alterations in multiple signaling pathways and gene expression 

(Abraham et al., 2013; Hu et al., 2012; Takahashi, 2012; Weissman et al., 2001; Zhou 

and Melton, 2008).  These changes during the process of differentiation also involve 

substantial modifications in the chromatin structures of target genes (Hawkins et al., 
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2010; Hu et al., 2012; Meissner, 2010; Zardo et al., 2008).  The stability of these 

epigenetic modifications allows for transient activity of lineage-determining transcription 

factors to have a lasting impact on gene expression in the absence of continued stimulus 

(Fletcher et al., 2002; Niller et al., 2011; Paschos and Allday, 2010).  The brevity of the 

stimulus which leads to the epigenetic changes has led many to describe this mechanism 

as a “hit and run” (Fletcher et al., 2002; Niller et al., 2011).  The establishment of these 

epigenetic landscapes serves to continually reinforce a cell’s identity and provides a 

substantial obstacle to true plasticity in mature somatic cells (Boheler, 2009; Conrad Hal 

Waddington, 1957; Papp and Plath, 2011; Takahashi, 2012; Zhou and Melton, 2008).   

 

Phenotypic plasticity and cancer 

One regretfully common instance of a non-stem cell attaining plasticity is in the 

pathogenesis of cancer.  While cancer cells often retain some features of their original 

lineage such as surface molecules, the functionality of the cells has been lost in the 

transition to a neoplastic state.  A very striking example of plasticity underlies the process 

of cancer metastasis. During metastasis, epithelial-like tumor cells transition to a 

mesenchymal state to leave the primary tumor (Thiery, 2002; Thiery et al., 2009).  The 

epithelial to mesenchymal transition (ETM) in cancer is thought to occur stochastically as 

genetic aberrations in cancer cells lead to the loss of epithelial cell traits (Craene and 

Berx, 2013; Rangel et al., 2012; Thiery, 2002).  Unlike differentiation in non-cancerous 

cells, this transition can be reversed, allowing mesenchymal cancer cells to transition 

back to epithelium and establish new solid tumors (Craene and Berx, 2013; Marjanovic et 

al., 2013; Strauss et al., 2012).   

Stem cell populations share several other characteristics with cancer cells beyond 

phenotypic plasticity (Strauss et al., 2012).  One important cancer trait shared by stem 
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cells is a rapid cell cycle lacking checkpoints in the G1 phase (Boheler, 2009; Kapinas et 

al., 2013).  One reason for this shared trait may be the centrality of the c-Myc pathway to 

both cancer and embryonic stem cell programing (Kim et al., 2010; Takahashi et al., 

2007).  While central to many cell processes, c-Myc is a potent oncogene (Ischenko et al., 

2013; Kim et al., 2010; Poe et al., 2012), and murine recipients of stem cells generated by 

using transgenic Myc have an increased incidence of tumor formation (Okita et al., 

2007).  Both embryonic stem cells and cancer cells also show wide variations in 

epigenetic modifications across populations, suggesting a state of epigenetic instability 

(Humpherys et al., 2001; Marjanovic et al., 2013; Meshorer et al., 2006). The similarities 

between cancer cells and stem cells do, in part, arise from shared pathways and possibly 

similar epigenetic states.  

Induction of plasticity: Transdifferentiation and dedifferentiation 

While there is little evidence for healthy somatic cells to display plasticity in 

nature, much work has centered on experimental manipulations that reprogram 

differentiated cells (reviewed in Gurdon and Melton, 2008).  Early work in amphibians 

found that the transfer of a nucleus from a more developed cell to a enucleated oocyte 

would allow the fused oocyte to develop into an embryo, albeit at a relatively low 

frequency (Briggs and King, 1952; Gurdon, 1962; Gurdon et al., 1975).  From these 

experiments, it was learned that differentiated cells retain the necessary genetic 

information, but usually not the developmental potential of embryonic stem cell.  This 

incomplete plasticity is due in large part to epigenetic conditions established as a cell 

progresses towards a less pluripotent state.  Often referred to as “Waddington’s 

epigenetic landscape,” the chromatin modifications enacted upon differentiation serve to 

prevent lineage plasticity under normal conditions, and any reprogramming strategy must 

overcome this barrier (Davis and Eddy, 2013; Ladewig et al., 2013; Takahashi, 2012; 

Zhou and Melton, 2008). 
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One way to achieve phenotypic plasticity is to prevent other fates from being 

foreclosed upon.  A seminal example of plasticity of this variety is the loss of B cell 

identity in pro-B cells lacking the Pax5 gene (Nutt et al., 1999).   These Pax5-/- pro-B 

cells express some B cell lineage markers and undergo some rearrangement of the         

Ig-heavy chain locus, but their development does not progress to mature B cells  (Nutt et 

al., 1998).  After in vitro culture with cytokines other than IL-7, Pax5-/- cells lost 

characteristics of the B lineage and gained the phenotype and function of one of several 

other cell populations such as NK cells, Macrophages, and T cells (Cobaleda and 

Busslinger, 2008; Nutt et al., 1999).  When transferred into Rag-/- deficient mice, these 

Pax5-/- pro-B cells were able to generate a long-term T cell population (Rolink et al., 

1999).  This finding demonstrates that, in the absence of Pax5, pro-B cells maintain the 

plasticity and self-renewing capabilities of hematopoietic stem cells even after appearing 

to commit to the B cell fate. 

Alongside the removal of transcription factors which promote a distinct lineage, 

plasticity can also be induced by the exogenous expression of transcription factors linked 

to a cell population in a process termed transdifferentiation  (Cobaleda and Busslinger, 

2008).  Pancreatic exocrine cells have been reprogrammed into insulin-producing cells 

almost entirely identical to pancreatic β cells via the forced expression of three 

transcription factors that drive β cell development:  Mafa, Ngn3, and Pdx1  (Zhou et al., 

2008).  This method has been shown to directly reprogram cells to the endocrine cell fate 

without regression to a pluripotent progenitor state.  Likewise, the introduction of 

lineage-specifying transcription factors has been able to convert fibroblast to neurons 

(Vierbuchen et al., 2010) and cardiomyocytes (Ieda et al., 2010).  In all of these settings 

the gain of a new lineage-defined function is coupled to the loss of the characteristics of 

the original lineage.         
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Perhaps the most striking instance of induced plasticity is in the generation of 

pluripotent cells from somatic cells in a process termed dedifferentiation (Cobaleda and 

Busslinger, 2008).  These iPSs (induced pluripotent stem cells) were first created by 

retroviral introduction of the transcription factors Oct3/4, Sox2, Klf4, and c-Myc into a 

fibroblast (Takahashi and Yamanaka, 2006; Takahashi et al., 2007).  Later, the process 

was altered to exclude c-Myc to avoid tumor formation (Nakagawa et al., 2008; Okita et 

al., 2007).  Further experiments have used progenitor cells derived from iPS cells to 

correct genetic conditions in mouse models of sickle cell anemia (Hanna et al., 2007) and 

hemophilia (Xu et al., 2009).  The ability to dedifferentiate somatic cells and 

subsequently redifferentiate them along a desired line is a prime example of plasticity.  

 While Th2-derived memory cells do lose certain aspects of the Th2 gene-

expression program, they do not fully revert to a plastic state.  That the commitment to 

produce IL-4 is maintained even in a Th1 recall response (Adeeku et al., 2008; Hegazy et 

al., 2010; Krawczyk et al., 2007; Löhning et al., 2008) suggest not a complete loss of 

effector programming (as would be entailed by plasticity), but rather a modification of 

the existing effector program.  Therefore it is our contention that these cells are exhibit a 

functional and transcriptional flexibility rather than true plasticity.  That being said, a 

case can be made that the Ifng gene does exhibit plasticity, at least pertaining to CpG 

methylation, as DNA from memory Th2 cells has almost identical Ifng promoter 

methylation to that found in naïve CD4
+
 T cells.  In summary, genes associated with an 

effector program may be plastic, but the memory cells themselves adapt existing 

programing in response to stimuli during recall responses.   
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An extra layer of adaptability: Why might this reprograming exist? 

 The exact effector program a CD4
+
 T cell executes  upon recognizing its cognate 

antigen is mostly determined by signals other than the peptide antigen (Abbas et al., 

1996; Kaplan and Grusby, 1998).  This in turn entails that the effector program adopted is 

not so much dependent on the nature of the pathogen, but rather the local cytokine milieu 

at the time of TCR-pMHC engagement.  While the local cytokine milieu typically reflects 

the response needed to clear a given pathogen, there are exceptions.  In foundational 

immunologic research in mice, it was found that some mice strains readily cleared an 

infection of Leishmania major while other strains developed chronic infections  (Heinzel, 

1989; Liew, 1989; Scott et al., 1988).  Resolution of leishmaniasis requires IFN-γ 

secretion by Th1 effector cells  (Carl et al., 1993).  In susceptible mice, an initial burst of 

IL-4 in the local environment occurs at the time of exposure.  This in turn prevents Th1 

polarization and effective clearance of Leishmania (Aseffa et al., 2002; Himmelrich et al., 

1998; Launois et al., 1995).  Given that exposure to IL-4 during initial T cell activation 

can preclude the formation of a protective immune response, a mechanism by which Th2-

derived memory cells could acquire the capacity to produce IFN-γ provides an additional 

layer of adaptability in the T helper response.   

 In terms of human health, consideration of the developing world also can lead to 

an appreciation for the need for flexible IFN-γ production.  Infections by parasitic worms 

have been common throughout much of our evolutionary history and remain endemic 

developing regions of the world (Crump et al., 2012; Dold and Holland, 2011; Gryseels, 

2012; Neghina et al., 2012).  As discussed previously, helminthes drive robust Th2 

responses leading to the production of IL-4 (Abbas et al., 1996; Svetic et al., 1993).   

Many pathogens common in the developing world such as mycobacteria or plasmodia 

also require a Th1 response for effective control (Green et al., 2013; Orme et al., 1993), 

and the presence of IL-4 from a Th2 response to parasitic worms could theoretically 



100 
 

prevent the development of an appropriate Th1 response.  Studies have found significant 

rates of co-infection between pathogenic worms and intracellular parasites occurring in 

multiple countries (Abate et al., 2012; Borkow et al., 2001; Rafi et al., 2012; Tristão-Sá et 

al., 2002)  In some cases, parasitic worm infections have been found to exacerbate TB in 

human patients (Borkow et al., 2001; Elias et al., 2001, 2006; Potian et al., 2011; Resende 

Co et al., 2007; Stewart et al., 1999; Tristão-Sá et al., 2002) and decrease Th1 responses 

in cases of lepromatous leprosy (Diniz et al., 2010; Prost et al., 1979).  While there is 

strong correlative data spanning decades and multiple human populations, co-infection 

experiments using cotton rats as a model showed little to no effect of either nematode or 

helminth infection on the progression of tuberculosis (Hübner et al., 2012).  While these 

data appear contradictory, it may indicate that variables such as parasite load, order of 

infection, host species, and exact species of parasite have a bearing on the relationship 

between worm infection and the response to mycobacterium (Rafi et al., 2012).  The 

ability of a mycobacterium-reactive Th2-derived memory cell to produce IFN-γ during a 

recall response in the absence of Th2-skewing parasites could provide some measure of 

prophylaxis against reinfection.             
 

 Another reason why Th2 memory cells might have developed plastic Ifng 

expression is the difference in the magnitude between loss of IFN-γ signaling and the loss 

of IL-4 signaling.  Loss of IFN-γ signaling or production in humans results in many 

clinically significant and life threatening issues (Glosli et al., 2008; Vinh et al., 2009).  

The loss of IL-4 production by Th2 cells is less likely to cause significant medical issues 

aside from a higher predisposition to inflammation and difficulty clearing infections of 

parasitic worms and is less likely to affect long-term survival (Brewer et al., 1996; 

Hultgren et al., 1998; Jankovic et al., 1999; Kopf et al., 1993; Pearce et al., 1996; Tissi et 

al., 2009).  Therefore, having a mechanism for Th2 memory cells to acquire IFN-γ 

production capabilities could allow these cells to provide a response to acutely lethal 

pathogens.       
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 A final reason for flexibility might be found in the nature of antigen recognition.  

T cells recognize peptide antigens which could be derived from any number of 

exogenous sources.  A clone which recognizes a peptide that is highly conserved between 

different pathogens could experience stimulation under a variety of polarizing conditions.    

 

DNA methylation, cytokine expression, and memory 

 Early work in IFN-γ and IL-4 producing CD4
+
 T cell clones identified differential 

DNA methylation of the Ifng promoter as a possible mechanism for regulation of IFN-γ 

production (Melvin et al., 1995; White et al., 2006; Winders et al., 2004; Young et al., 

1994).  Expression of the primary de novo DNA methyltransferase in T cells: DNMT3a, 

is upregulated following stimulation via the TCR (Gamper et al., 2009) , and it has been 

shown to be vital in the prevention of inappropriate cytokine expression in T helper 

responses (Gamper et al., 2009; Thomas et al., 2012).   The symmetry enforcing 

methyltransferase DNMT1 has also been shown to be vital in repressing the expression of 

Th2 cytokines during a Th1 effector response (Lee et al., 2001; Makar and Wilson, 

2004).  These past studies have indicated that the DNA methylation of cytokine genes is a 

crucial feature of the transition from a naive CD4
+

 T cell to an effector.      

 Typically, CpG methylation is highly symmetrical, with CpGs on both the coding 

and non-coding strand having the same methylation frequency (Ehrlich and Wang, 1981).  

These symmetrically methylated dinucleotide pairs would, upon cell division, give rise to 

hemimethylated daughter strands.  In late S phase, DNMT1 is recruited to sites of 

hemimethylation where it then enforces symmetry (Bashtrykov et al., 2012; Tatematsu et 

al., 2000), allowing CpG methylation to be a heritable, and potentially permanent,  

repressive epigenetic modification (Bender et al., 1999; Deaton and Bird, 2011).   
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 The inhibitory effects of symmetrical CpG methylation on gene expression both 

directly in a site-specific manner (Jones and Chen, 2006; Sunahori et al., 2009) and 

indirectly via the recruitment of transcription factors with a methyl-binding domain (Bird 

and Wolffe, 1999; Dhasarathy and Wade, 2008; Hendrich and Bird, 1998)  have been 

studied in great detail, but little was known about the functionality of asymmetric 

methylation.  In DNA synthesis, hemimethylated daughter chromosomes are created, but 

the action of DNMT1 quickly reinforces symmetry (Tatematsu et al., 2000).            

Strand-biased asymmetric methylation has previously been described in cancer cells 

(Ehrlich and Lacey, 2013; Jain et al., 2011; Shao et al., 2009) but has not been reported in 

normal, non-cycling somatic cells prior to this work.        

While losses of DNA methylation have been reported in T cells (Kersh et al., 

2006; Lee et al., 2002; Makar and Wilson, 2004; Makar et al., 2003), direct evidence for 

DNA demthylases has only recently been published (Kangaspeska et al., 2008; Métivier 

et al., 2008).  Prior to these findings the existence of active DNA demethylases was 

suspected but unverified.  The exact mechanisms underlying DNA demethylation are still 

an active field of research, and are known to involve members of the ten-eleven 

translocation (TET) and AID/APOBEC enzyme families (Arioka et al., 2012; Bhutani et 

al., 2010; Guo et al., 2011; Ito et al., 2010; Tahiliani et al., 2009) as well as base excision 

repair glycosylases (Cortellino et al., 2011; Hashimoto et al., 2012a; He et al., 2011).  

The process of active demethylation mediated by TET enzymes starts with the conversion 

of 5-methyl cytosine (5mC) into 5-hydroxymethyl cytosine (5hmC) (Bhutani et al., 2011; 

Guo et al., 2011; Ito et al., 2010) eventually leading to base excision repair enzymes 

swapping out the modified methyl-cytosine for an unmethylated cytosine (Bhutani et al., 

2011; He et al., 2011).  AID/APOBEC has been shown to deaminate me-C to thymidine, 

which is then replaced via DNA repair mechanisms (Cortellino et al., 2011; Hashimoto et 

al., 2012a).     
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The functional difference between hydroxymethyl cytosine and methyl cytosine 

extends beyond active demethylation by base pair excision.  The preferential 

demethylation of the paternal genome in zygotes has been found to be preceded by a 

conversion of methyl cytosine to hydroxymethy cytosine on paternal, but not maternal 

genetic information (Inoue and Zhang, 2011).  Furthermore, loss of 5hmc was found to 

be replication dependent, suggesting a passive demethylation process (Inoue and Zhang, 

2011) similar to the one we are proposing.   Evidence that 5hmC might favor passive 

demethylation via promoting asymmetry has also been reported.  Hydroxymethylated 

cytosine has been shown to inhibit DNMT1’s activity leading to an unmethylated 

daughter strand (Chen et al., 2012; Hashimoto et al., 2012b; Valinluck and Sowers, 

2007).  Therefore, the TET enzymes may be central both to some mechanisms of active 

and passive demethylation.    

Interestingly, recent work has shown that there is a global decrease in methylation 

in CD4
+
 memory cells, as well as expression of DNA methyltransferases (Hashimoto et 

al., 2013; Li et al., 2012).   The decrease both in methylation and the enzymatic 

machinery needed to maintain it across generations has implications for the plasticity of 

cytokine genes in T helper memory.  In short, less DNMT1 in the cell could translate to 

decreased maintenance of methylation during cell division, which could in turn hasten the 

passive loss of CpG methylation from cytokine genes. 

 

Future directions: flexible IFN-γ production and the antibody response 

While the production of IFN-γ by Th2-derrived memory cells is well established 

(Adeeku et al., 2008; Hegazy et al., 2010; Krawczyk et al., 2007; Löhning et al., 2008), 

the extent to which it can influence an actually immune response has never truly been 

investigated.  One major effect of the Th1 effector program is to guide B cells into class 
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switch recombination to the IgG2a antibody subtype (Brewer et al., 1996; Snapper and 

Paul, 1987).  Individuals lacking the ability to make IgG2 subtypes are significantly more 

susceptible to certain bacterial infections, especially in the respiratory tract (Jefferis and 

Kumararatne, 1990; Oxelius, 2008; Preud’homme and Hanson, 1990).  Research on the 

functional significance of IgG2a have revealed that it is the most efficient IgG subtype at 

opsonization in response to capsular antigens (Oishi et al., 2013; Schlageter and Kozel, 

1990).  It has also been shown to be the most effective subtype in conferring protection to 

lymphocytic choriomeningitis virus whereas IgG1 antibodies against the same epitopes 

failed to provide protection (Baldridge and Buchmeier, 1992).  The increased activity of 

IgG2a is thought to stem from its ability to bind its phagocytes-expressed Fc receptor, 

FcγRIV, with a 40-fold higher affinity than IgG1 can bind FcγRIII, its activating Fc 

receptor (Bolland, 2005; Nimmerjahn and Ravetch, 2006; Nimmerjahn et al., 2005).  This 

increased binding affinity to the Fc receptor allows IgG2a to effectively opsonize 

antigens at a lower concentration.   In order to test the physiological significance of IFN-γ 

productions, we have designed experiments to test the ability of a memory Th2 

population to induce an IgG2 response when given a recall challenge in vivo under     

Th1-skewing conditions.    

The experimental methodology (summarized in Fig. 4.1) was in short to 

immunize mice with KLH (keyhole limpet hemocyanin) coupled with nitrophenol (NP) 

as a hapten.  The initial immunization was carried out in the Th2-response promoting 

adjuvant alum (Grun and Maurer, 1989).  After two weeks the recipients were boosted 

with NP-KLH.  After two weeks, wildtype or Tbx21-/- GFP
+
 4get DO11.10 Th2 effectors 

were transferred into immunized mice, with some immunized mice not receiving Th2 

cells as a control.  After six weeks, mice were given a recall challenge of NP-Ovalbumin 

in complete Freund’s adjuvant (CFA).  The carrier switch to ovalbumin allows us to 

introduce an antigen to which the endogenous T cells will have had no exposure to while 
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providing the donor-derived DO11.10 cells with their cognate antigen.  We bled mice 

before the recall challenge, one week post-recall, and two weeks post recall.  Serum was 

analyzed for NP-specific IgG2a content and the effect of recall stimulation was calculated 

by subtracting the pre-recall value from the post-recall values.  In the pilot experiment, 

we did see in increase in NP-specific IgG2a in the recipients of WT Th2, but not T-bet 

deficient Th2 cells or in the immunized mice that did not receive Th2 effectors (Fig. 4.2).  

This preliminary result suggests that Th2 memory cells can influence B cells to class 

switch to IgG2a producers.  If this result is reproducible, it will be the first confirmation 

of the physiological relevance of flexible IFN-γ production.   
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Figure 4.1. Timelineof antibody class switching experiment.  Shown is a schematic for 

the experiment designed to test whether IFN-γ produced by Th2-derived memory cells 

can generate an IgG2a antibody response   
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Figure 4.2. Changes in NP-specific IgG2a one week after recall.  Serum samples 

acquired one week after recall stimulation and samples immediately prior to recall 

stimulation were analyzed via ELISA for NP-specific IgG2a.  Shown is the mean 

difference in IgG2a concentration as determined by subtracting the pre-recall OD450 

from the one week post recall OD450.  Error bars represent one standard deviation.  For 

recipients of WT or T-bet KO Th2 effectors, N=2.  The sample which did not receive Th2 

effectors is N=1.    
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Future directions: methylation Vs. hydroxymethylation 

A second exiting direction that this project could take is to determine if the 

methylation at the Ifng promoter is actually hydroxymethylation.  As discussed above, 

hydroxymethylation does not activate DNMT1, making it a likely candidate for a 

mechanism underlying hemimethylation.  An alternative hypothesis is that the 

recruitment of DNMT1 to the Ifng is blocked during Th2 polarization, resulting in a true 

hemimethylated state. 

 Along this vein, if hydroxylmethylation of the Ifng promoter is detected in Th2 

cells, two further questions suggest themselves: By what mechanism is 

hydroxymethylation established, and when is the methyl-cytosine (mC) converted to a 

hydroxymethly-cytosine (hmC)?   The resolution of the first question would likely center 

on the TET family of enzymes, as they have been shown to carry out this conversion in 

several systems.  Detection of TET proteins at the Ifng promoter in Th2 cells would 

suggest their involvement in establishing the asymmetrical methylation in Th2 effectors.   

The second question centers more on what stimuli would promote hydroxymethylation.  I 

have considered two models which would fit with our current understanding of T helper 

cell differentiation and the regulation of Ifng expression. 

 In the first model, enzymes to modify mC into hmC would be recruited to the Ifng 

promoter early in Th2 differentiation, and possibly at the same time as DNMT3a, 

meaning that there would be little time in which actual mC would be present at the Ifng 

promoter.  In the second model, enzymes catalyzing the mC to hmC conversion would 

arrive at the Ifng promoter as signaling from the TCR and the IL-4 receptor was lessened 

later in the Th2 response, meaning that hmC would only be detected at later timepoints. 

 A third possibility is that hydroxymethyl is directly added to CpGs at the Ifng 

promoter.  As no enzyme has been shown to catalyze this reaction, and evidence suggests 
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that DNMT3s would not be capable to carrying this reaction out (Chen et al., 2012), I 

find this to be the least likely of the explanations.   

 The determination of if, when, and how methyl-cytosines on the Ifng promoter are 

converted to hydroxymethy-cytosines would increase our understanding of the 

mechinisms facilitating the creation of a unstable epigenetic modification.   
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V. MATERIALS AND METHODS 

 

Mice BALB/c Il4-IRES-Gfp (“4get”), DO11.10 mice were bred with BALB/c Tbx21 

(T-bet) -/- (KO) or BALB/c Stat4 KO mice (Jackson labs). BALB/c-ByJ (Jackson labs) 

and athymic BALB/c nude (Foxn1/Foxn1) mice were used as recipients for transfer 

experiments. Recipients were 4-6 weeks old at the time of transfer.  Mice were 

maintained in micro-isolator cages at a Vanderbilt University facility in accordance with 

Institutional Animal Care and Use Committee guidelines and an approved protocol.       

 

Reagents Fluorophore-conjugated and purified mAb were obtained from BD 

Pharmingen (San Jose, CA) and purified recombinant cytokines from Leinco (St. Louis, 

MO) unless otherwise indicated. Purified 11B11 anti-IL-4 and recombinant huIL-2 were 

obtained from the Biological Response Modifiers Program (NCI, Frederick MD).  Anti-

T-bet-eFluor 660 was obtained from eBioscience (San Diego, CA).  Oligonucleotides 

were synthesized by Invitrogen (Grand Island, NY) unless otherwise stated.   

 

Cell culture and purification of GFP
+
 IL-4 producing effectors and adoptive 

transfers DO11.10 cells were activated with OVA323-339 peptide, and all cells 

were cultured, as described (Adeeku et al., 2008) with the following modifications.  For 

Th1 culture conditions, cells were plated at 7 x 10
6
 cells/ml and received 1 µg/ml OVA 

peptide, 5 ng/ml IL-12, and 3 µg/ml anti-IL-4 antibody 11B11.   For Th2 cell cultures, 

cells were plated at 3.5 x 10
6
 cells/ml and received 0.5 µg/ml OVA peptide, 7.5 ng/ml IL-

4, 3 µg/ml anti-IFN-γ antibody, and 2 µg/ml anti-IL-12 antibody.  Both Th1 and Th2 cell 

cultures were supplemented with IL-2 (50 units/ml 24 and 72 hours after Ag stimulation). 
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GFP
+
 Th2 effector cells were purified for transfer as described (Adeeku et al., 2008). 

After four days of culture in Th2 conditions, 4get, DO11.10 cells (Tbx21 -/-, Stat4 -/-, or 

transcriptionally WT) were stained with APC-conjugated anti-CD4 and PE-conjugated 

KJ1-26 (anti-DO11.10 TCR) antibodies and flow sorted on a FACS Aria (BD, Franklin 

Lakes, NJ) to purify (> 98.5%) viable DO11.10 KJ1-26
+ 

CD4
+
, GFP

+
 cells. Prior to 

transfer or DNA isolation for methyl-CpG analyses, these cells were cultured in Th2 

conditions for 9-10 d after re-stimulation with APCs (4:1 with T cells) and 0.25 µg/ml 

OVA323-339 (13-14 d total).    

 

Quantitation of cytokine production T helper cell cultures plated with APCs at a 

1:4 ratio, and single-cell suspensions of recipient spleens, were stimulated with 1 µg/ml 

OVA323-339. Cytokine concentrations in supernatant collected after 36 hr were quantified 

using a flow cytometric kit (Th1/Th2/Th17 cytokine bead array; BD Pharmingen). 

Intracellular cytokines were analyzed by stimulating cells 18 hr with OVA323-339 (1 

µg/ml) in the presence of APCs, followed by Golgi-Stop (BD) (2-3 hr), and staining in 

the presence of anti-CD16/32 (Fc Block, BD Pharmingen) as previously described 

(Adeeku et al., 2008).  Viable cells were selected based on forward and side scatter 

characteristics, and fluorescence signals representing intracellular cytokines were 

determined in cells positive for the DO11.10 TCR and CD4.  

 

Bisulfite analysis of DNA methylation DNA isolated from flow-purified naïve, 

effector (Th1, Th2, 13 d) and memory CD4 T cells, or from tissues, was digested with 

Bam H1 (New England Biolabs, Ipswich MA), bisulfite-modified using the Imprint 

bisulfite modifying kit (Sigma-Aldrich, St. Louis, MO), then used as template in 

quadruplicate PCR performed using primer pairs specific for each modified strand 
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sequence in the Ifng promoter (Table 5.1)  (Jones and Chen, 2006). The noncoding strand 

of the Ifng promoter was amplified with a single reaction, while the coding strand was 

amplified using a nested PCR. After pooling four tubes of separate amplification for each 

sample, specific PCR products were identified on agarose gels, extracted using the 

Qiaquick gel extraction kit (Qiagen, Valencia, CA), ligated with T-easy vector (Promega, 

Madison, WI), and then transformed into JM109 cells (Agilent, Santa Clara, CA).  For 

each of three independent biological replicate cell samples and for each strand, eight to 

ten clones derived from each reaction pool were sequenced and scored for the frequency 

of unmodified C residues in the CpG dinucleotides; the modification frequency for C 

residues outside of CpG dyads was verified as > 99% for all sample sets.   

 

EMSA      EMSAs were performed as reported (Jones and Chen, 2006; Lee et al., 2010) 

except that extracts of Th1 cells developing from primary mouse CD4
+
 T cells were used. 

Methylated upper strand oligonucleotides were synthesized by Invitrogen (Grand Island, 

NY). The upper strand oligonucleotides were designated as unmethylated, meC(-53) 

hemimethylated, and tri-hemimethylated (meC at -53, -45, and -34) (Table 5.1). Each 

was annealed to an unmethylated lower strand oligonucleotide after radiolabeling with γ-

[32P]-ATP (Perkin-Elmer, Waltham MA) and T4 polynucleotide kinase (New England 

Biolabs, Beverly MA). For competition assays, unlabeled competitor was added 

simultaneously with the labeled probe at molar ratios (competitor:probe) of 100, 10, and 

1:1.  Antibodies used for the super shift assays were CREB1 (sc-186), ATF2 (sc-187) and 

c-Jun (sc-45) (Santa Cruz Biotechnology, Santa Cruz, CA). 
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Table 5.1.  Sequences of oligonucleotides. 

 

Oligonucleotide Sequence  Purpose  

Bisulfite coding strand, Outer sense  GAA-ATT-TAT-ATT-ATA-AGG-GTA-AAA-AGG-GGG PCR primer 

Bisulfite coding strand, Outer anti-sense CAA-ACT-TTC-TAA-ACT-TTC-AAT-AAC-TAT-AC PCR primer 

Bisulfite coding strand, Inner sense  TAG-AGA-ATT-TTA-TAA-GAA-TGG-TAT-AGG-TGG-GTA-T PCR primer 

Bisulfite coding strand Inner anti-sense CCA-TAA-AAA-AAA-ACT-ACA-AAA-CCA-AAA-TAC-AAT-A PCR primer 

Bisulfite non-coding strand, Outer sense GTT-ATG-AGG-AAG-AGT-TGT-AAA-GTT-AAG-ATG-TAG PCR primer 

Bisulfite non-coding strand, Outer anti-sense CCC-AAC-CAC-AAA-CAA-AAA-CTC-CCT-ATA-CTA-TAC PCR primer 

Bisulfite non-coding strand, Inner sense  TAG-GAG-GAG-AAG-TTT-AGA-ATT-TTT-GTT-TTA-AGT-T PCR primer 

Bisulfite non-coding strand, Inner anti-sense ACA-ATT-TCC-AAC-CCC-CAC-CCC-AAA-TAA-TAT-AAA-A PCR primer 

Ifng promoter sense CGG-GGC-TGT-CTC-ATC-GTC PCR primer 

Ifng promoter anti-sense CTC-GGG-ATT-ACG-TAT-TTT-CAC-AA PCR primer 

Coding strand, Un GTG-AAA-ATA-CGT-AAT-CCC-GAG-GAG-CCT-TCG-A  EMSA probe 

Coding strand, 1XME GTG-AAA-ATA-(Me)CGT-AAT-CCC-GAG-GAG-CCT-TCG-A EMSA probe 

Coding strand, 3xME GTG-AAA-ATA-(Me)CGT-AAT-CC-(Me)C-GAG-GAG-CCT-T-(Me)CG-A EMSA probe 

Non-coding strand TCG-AAG-GCT-CCT-CGG-GAT-TAC-GTA-TTT-TCA-C EMSA probe 

 

Table 5.1. Sequences of oligonucleotides.  Shown are all PCR primers and EMSA 

probes used in this work.  Methylated cytosines are denoted as (Me)C.  

  



114 
 

Transient transfection and reporter assays  Nucleofection was carried 

out via the Amaxa T cell kit (Lonza, Basel, Switzerland) using a minimal Ifng promoter 

reporter P1P2-Luc (Soutto et al., 2002) along with pCMV-Sport6-CREB1 or  pCMV-

Sport6.  All results were normalized to GFP expression from the pMAX-GFP plasmid 

(Lonza) measured via flow cytometry. Luciferase activity was measured using the Dual-

glow luciferase assay system (Promega) according to manufacturer’s protocols.     

 

Chromatin Immune Precipitation assays Chromatin immunoprecipitation (ChIP) 

assays were performed essentially as described previously (Zhang and Boothby, 2006).  

In brief, 10x10
6

 cells were suspended in IMDM supplemented with 10% FBS.  

Formaldehyde was added to a total concentration of 1%, and crosslinking was carried out 

on ice for 20 minutes.  The crosslinking reaction was quenched by the addition of excess 

glycine, and the cells were washed in PBS.  Cells were then resuspended in lysis buffer 

(50mM Tris, 10mM EDTA, 1% SDS, pH8) and sonicated in a Bioruptor (Diagenode, 

Denville, NJ) to produce an average sheered DNA length of 400 bp. Immune 

precipitation was carried out on one million cell equivalents using 1ug anti-AcH3(K9) 

(Millipore, #DAM1813175), or CREB1 (Santa-Cruz, sc-186X), and the precipitates were 

analyzed by PCR using primers shown in Supplemental Table I.  Quantification of PCR 

products was carried out via southern blotting and phosphor imaging.    
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Figure 5.1.  Workflow for chromatin immunoprecipitation (ChIP) assay.  (A) 

Chromatin is isolated from formaldehyde cross-linked cells.  (B)  The chromatin is 

sonicated or otherwise sheared to approximately 400bp segments.  (C).  Antibodies 

against a transcription factor or modified histone and protein-A sepharose beads are used 

to precipitate a target protein and associated DNA.  (D) Protease digestion and ethanol 

precipitation leaves only purified DNA that was bound to the target protein.  Analysis via 

PCR can now begin. 
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Proliferation in vitro and in vivo  Proliferation studies using CFSE partitioning and 

BrdU incorporation were carried out as described (Lee et al., 2010).  For CFSE 

partitioning in vivo, Th2 cells were grown for five days, labeled with CFDA-SE 

(Invitrogen) (2.5µM, 15 min) following manufacturer instructions, and then transferred 

into BALB/c recipients. Fluorescence was measured on donor-derived cells recovered 12 

d after transfer with gating as described above. For CFSE partitioning assays in vitro, 

DO11.10 splenocytes were either labeled, Ag-stimulated, and cultured 2 d, or activated 

with Ag, cultured in Th2 conditions (11 d, with one interim Ag stimulation as for cells 

used in adoptive transfers), labeled with CFDA-SE as above, and then cultured 2 d in IL-

2 supplemented medium before analysis by flow cytometry. For assays of BrdU 

incorporation into donor cells in vivo, recipient mice were injected twice (72, 24 h before 

harvest; 3 mg i.p. per injection) with BrdU (Sigma Aldrich) in sterile saline. Cells 

harvested 12 d post-transfer were then processed as described (Lee et al., 2010) to detect 

Alexa-647 anti-BrdU (Invitrogen) in donor- (KJ1-26
+
) and recipient-derived CD4

+
 T 

cells by flow cytometry.  For in vitro assays, BrdU (1 µM) was added to Th2 cultures 

(days 2 and 13 after Ag activation) followed 4 h later by processing, direct 

immunofluorescent anti-BrdU staining, and flow cytometry of KJ1-26
+
 CD4

+
 cells.                

   

Retroviral transduction  Retroviral transduction was carried out using as previously 

described (Zhang and Boothby, 2006).  In brief, retrovirus-containing supernatants from 

ΦNX packaging cells transfected with MSCV-IRES-Thy1.1 (MiT), or MSCV-T-bet-

IRES-Thy1.1 (MIT-T-bet) were used to transduce established GFP
+
 DO11.10 Th2 cells 

two days after restimulation. Cells were then cultured under Th1 or Th2 conditions, 

followed by measurements of Ag-stimulated cytokine production or intracellular 

cytokines as above.    
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