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CHAPTER I 

 

INTRODUCTION 

 

Tumor Microenvironment 

Tumor cells actively interact with each other and the surrounding 

interstitial tissue through cell-to-cell contacts and by both releasing and 

responding to soluble factors present in the tumor microenvironment. This 

interaction results in the generation of a population of non-malignant cells, 

collectively known as the “tumor stroma”, that are uniquely primed to support 

growth and metastasis of the malignant population (Goldoni and Iozzo, 2008; 

Whiteside, 2008). This “tumor-educated” stroma thus exhibits a unique 

phenotype that promotes the growth, invasion and metastasis of the malignant 

population (Joyce and Pollard, 2009; Pollard, 2008). 

In recent years increasing attention has been focused on the role of the 

host inflammatory cells in the stroma (Balkwill et al., 2005). The first connection 

between inflammation and cancer was made in 1863 by Rudolf Virchow, who 

noted the presence of leukocytes in neoplastic tissues (Virchow, 1963). Decades 

of extensive in vitro and in vivo studies have led to a better understanding of the 

importance of inflammatory cells in tumor formation and progression, and have 

highlighted the significance of Virchow’s discovery. Both lymphocytes and 

leukocytes have been shown to contribute to tumor inflammation. Myeloid cells 

however, are the major component of the inflammatory infiltrate frequently seen 
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in primary tumors (Balkwill and Coussens, 2004; Balkwill and Mantovani, 2001; 

Murdoch et al., 2008).  

Myeloid/macrophage cells play a key role in the immune response by 

presenting antigens to lymphocytes to start the recognition and immune inductive 

processes or by releasing regulatory molecules to stimulate lymphocyte functions 

(Mosser and Edwards, 2008). As a component of the innate immune response, 

myeloid cells activate dendritic cells and natural killer (NK) cells that can initiate 

an anti-tumor response. Consistent with this role, in some mouse experimental 

models, syngeneic macrophages from tumor bearing mice inhibited more 

melanoma growth in nude mice than control macrophages (Adelman et al., 

1983). However, often in both mouse models and in patients, the myeloid 

population can instead drive tumor progression by promoting neovascularization, 

metastasis, and immunosuppression (Balkwill and Coussens, 2004; Murdoch et 

al., 2008; Pollard, 2008).  This is achieved through various myeloid 

subpopulations, including tumor associated macrophages (TAM, M1/M2 

subtypes), myeloid derived suppressor cells (MDSC), Tie2 expressing 

monocytes (TEM), vascular leukocytes and dendritic cells (Figure 1). Identifying 

signals that contribute to the generation of these protumorigenic myeloid 

populations and their link to cancer progression has been the subject of many 

studies. Based on in vitro studies it has been hypothesized that a complex 

network of pro-inflammatory mediators is probably involved (Balkwill, 2004a; 

Coussens and Werb, 2002). Tumor cells depend on these cytokines for both 

proliferation and reprogramming cells present in the tumor  
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Figure 1. Schematic of interactions between tumor and bone marrow 
derived myeloid subtypes. Recruitment of diverse bone marrow-derived cell 
populations to the tumor microenvironment and their effects on tumor 
progression. Tumor and stromal cells mobilize various subpopulations of tumor 
promoting bone marrow-derived cells to the peripheral blood through secretion of 
cytokines and chemokines. Diverse chemoattractant factors promote the 
recruitment and infiltration of these cells to the tumor microenvironment where 
they suppress the antitumor immunity or promote tumor angiogenesis and 
vasculogenesis. In addition cytokines produced in the tumor microenvironment 
can give rise to macrophages with distinct physiologies. This population includes 
tumor associated macrophages-M1 (TAM/M1) and TAM/M2, Tie2 expressing 
monocytes (TEMs), myeloid derived suppressor cells (MDSCs) and 
myeloid/endothelial biphenotypic vascular leukocytes.  
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microenvironment toward a protumorigenic phenotype. The Nuclear factor-κB 

(NF-κB) pathway has emerged as a key regulator of the release of these pro-

inflammatory cytokines, and is an important mediator of tumor proliferation and 

survival (Balkwill and Coussens, 2004).  It has been proposed that NF-κB 

activates signaling pathways in both cancer cells and tumor-associated 

inflammatory cells, and regulates the pro-inflammatory mediator TNF-α and other 

pro-inflammatory cytokines, thus promoting malignancy (Pikarsky et al., 2004). 

In the following section, we will provide an overview of the signaling 

molecules, cytokines and growth factors, which modulate the recruitment and 

differentiation of inflammatory cells. Furthermore, we will discuss the role of TNF-

α, an interesting example of one of the cytokines present in tumor 

microenvironment that allows tumor invasion of the host inflammatory response, 

to promote its survival and progression. 

 

Myeloid Cell Recruitment and Programming  

Circulating blood monocytes are recruited to the tumor by a range of 

growth factors and chemokines, often produced by the tumors themselves 

(Murdoch et al., 2004).  Other inflammatory cells, such as B lymphocytes, have 

been implicated in producing trophic factors that promote macrophage 

recruitment (de Visser et al., 2005). Following recruitment, it is widely accepted 

that the tumor/myeloid cell crosstalk drive recruited myeloid cells towards a 

tumor-promoting phenotype(s) (Balkwill et al., 2005; Pollard, 2004). 

Understanding the mechanisms by which pro-tumorigenic, myeloid 

 4



immunophenotypes are generated either in circulation or within the tumor milieu 

can be used to develop novel anti-tumor therapy. Hence, this area of study is at 

the forefront of cancer research.  While a number of factors have been identified 

that recruit myeloid cells to tumor sites (Schmid and Varner, 2007), much less is 

known about tumor-derived signals that modulate the generation of unique 

myeloid subtypes during cancer growth.  

Multiple reports have shown that tumor-derived factors contribute to bone 

marrow-derived myeloid recruitment and differentiation. A number of monocytes, 

chemoattractants and cytokines initiate recruitment of these cells to the tumor. 

Once recruited, additional tumor-derived factors, differentiate myeloid cells into 

tumor promoting cells.  These tumor-associated myeloid derived cells promote 

cancer progression through several mechanisms, including promoting 

angiogenesis, inducing tumor growth and enhancing tumor cell migration and 

invasion. Several studies have demonstrated the association between increased 

tumor vascularity and macrophage infiltration in several human cancers (Conejo-

Garcia et al., 2005; Li et al., 2009).  Macrophage infiltration has been shown to 

correlate with vessel density in endometrial, ovarian, breast and central nervous 

system malignancies. Other unique myeloid populations, such as TEMs and 

MDSCs, are thought to be present in the circulation and are recruited to the 

tumor site (Bray et al., 1993; De Palma et al., 2005; Serafini et al., 2006).  

Multiple studies have described a role for TNF-α in modulating the 

interactions between tumor cells and macrophages that result, in both increased 

invasive capacity of malignant cells, and the switch of macrophages to a tumor 
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promoting phenotype (Li et al., 2009; Pollard, 2004). TNF-α is not normally 

detected in the plasma or serum of healthy individuals but has been detected in 

the malignant and/or stromal cells in human ovarian, breast, prostate, bladder, 

and colorectal cancer, often in association with IL-1, IL-6 and macrophage colony 

stimulating factor (Bozcuk et al., 2004; Burke et al., 1996; Ferrajoli et al., 2002; 

Michalaki et al., 2004; Naylor et al., 1993; Pfitzenmaier et al., 2003). In epithelial 

ovarian cancer, TNF-α mRNA is found in epithelial tumor islands and is positively 

correlated with tumor grade (Naylor et al., 1993). There is substantial evidence 

that TNF-α is involved in the promotion and progression of cancer by regulating 

pathways that lead to cell proliferation, survival and angiogenesis (Balkwill, 

2006).  High doses of TNF-α can cause hemorrhagic necrosis through the 

destruction of tumor blood vessel and the generation of T-cell anti-tumor 

immunity (Balkwill, 2009). However, when chronically produced this cytokine may 

act as an endogenous tumor promoter, contributing to the tissue remodeling and 

stromal development that is necessary for tumor growth and progression. An 

example of this is TNF-α’s role in the generation of vascular leukocytes.  

Vascular leukocytes are a subpopulation of tumor-associated myeloid 

cells that express both endothelial and myeloid markers (Rehman et al., 2003; 

Romagnani et al., 2005; Sharpe et al., 2006). Although rare in the peripheral 

blood, vascular leukocytes are primarily associated with tumors where they 

enhance tumor growth and angiogenesis and decrease tumor necrosis. These 

myeloid/endothelial biphenotypic populations result from the endothelial 
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differentiation of myeloid progenitors, a process regulated by low levels of TNF-α 

expression in tumor cells. 

In the following sections our focus will turn to TNF-α as one of the 

proinflammatory cytokines present in tumor environment. The role of this tumor-

derived cytokine, which can destroy blood vessels and induced cell death at high 

concentration but can also induce angiogenic factors and tumor survival, will be 

discussed in the context of tumor biology.    

 

Tumor Necrosis Factor-Alpha 

 

The discovery of TNF-α  

TNF-α was discovered in 1892 when William Coley’s mixed bacterial toxin 

treatment cured a patient with sarcoma (Coley, 1991). Coley noted that when 

cancer patients developed certain bacterial infections, the tumors become 

necrotic. In the hope of finding a cure for cancer, Coley began to inject cancer 

patients with supernatants derived from various bacterial cultures. These cultured 

supernatants, called “Coley’s toxins”, induced hemorrhagic necrosis in tumors 

but also had undesirable side effects. This observation led to the conclusion that 

there is a factor derived from bacterial toxin that causes tumor necrosis, 

henceforth known as “tumor necrosis factor”. Later on, it was discovered that 

tumor necrosis factor is found in the serum of infected endotoxin-treated animals 

and also caused tumor regression. In 1975, Carswell et al. reported that the 

active component of Coley’s toxin was a lipopolysaccharide (endotoxin) 
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component of the bacterial cell wall. It was concluded that the necrotic factor was 

made by host cells in response to endotoxin and was not directly derived from 

bacteria. They identified macrophages as the source of tumor necrosis factor 

(Carswell et al., 1975).   

 

TNF-α signal transduction  

The TNF-α super family is a group of cytokines with important functions in 

immunity, inflammation, differentiation, control of cell proliferation and apoptosis. 

TNF family members exert their biological effects through the TNF (TNFR) 

superfamily of cell surface receptors that share a stretch of ~ 80 amino acids 

within their cytoplasmic region and the death domain (DD) that is critical for 

recruiting the death machinery. TNF-α is the founding member of the 19 different 

proteins that have so far been identified within this family. TNF-α is a 26 kDa type 

II transmembrane protein with an intracellular amino terminus. It can be cleaved 

by TNF-α-converting enzyme (TACE) into a 17 kDa soluble cytokine that is 

released into the extracellular space (McGowan et al., 2008) (Figure 2).  

TNF-α signals through two receptors: TNF receptor type 1 (TNFR-1), which is 

found in most cells in the body, and TNF receptor type 2 (TNFR-2), which is 

mainly expressed on hematopoietic cells (Grell, 1995). TNF-α can activate 

pathways leading to three different cellular responses: cell survival and 

proliferation, transcription of pro-inflammatory genes, and cell death (Waters et 

al., 2013b).  
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Figure 2. Schematic representation of membrane TNF-α cleavage by TACE 
into soluble TNF-α. TNF-α is produced as a 26 kDa membrane-associated 
protein, which is cleaved and released as a soluble 17 kDa protein by specific 
metalloproteinases, such as TNF-α-converting enzyme (TACE). TACE the major 
convertase for precursor TNF-α, processes the 78-kd homotrimeric membrane 
bound TNF-α to generate the 51-kd homotrimeric soluble TNF-α.  
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Both TNF receptors are capable of binding intracellular adaptor proteins 

that activate complex intracellular signaling processes and mediate the 

pleiotropic effects of TNF-α. Downstream signaling targets of TNFR-1 are 

activation of pro-survival/differentiation pathways (NF-κB or MAPK) or activation 

of apoptotic pathways (caspases-8,2,1).  TNFR-2 lacks the death domain but can 

affect NF-κB and JNK signaling (Baud and Karin, 2001). In vitro studies suggest 

that TNF-α preferentially binds to the ubiquitously expressed TNFR-1 whereas 

mTNF-α is the primary activating ligand for TNFR-2, expressed mostly in 

endothelial and hematopoietic cells (including myeloid cells)(Grell, 1995). 

Upon activation, TNFR-1 undergoes a conformational change in its 

cytoplasmic portion allowing it to interact with the death domain (DD) region of 

receptor interacting protein (RIP)-1, TNFR-associated death domain (TRADD), 

and TNFR-associated factor (TRAF)-2 and -5. They in turn recruit the cellular 

inhibitor of apoptosis (cIAP) forming the complex I. cIAP inhibits caspase-3 

activation and allows ubiquitinylation of RIP-1. Next, transforming growth factor-

β-activated kinase (TAK)-1/TAK-1 binding protein (TAB)-2/TAB-3 forms a 

complex that binds to ubiquitin residues on RIP-1 and activates NF-κB. 

Deubiquitinylation of RIP-1 by the enzyme cylindromatosis (CYLD), favors the 

transformation of complex I to complex II binding to the internalized death-

inducing-signaling-complex (DISC, formed by FAS-associated protein with death 

domain (FADD) and procaspase-8 (Pro-C8)) and RIP-3 (Complex II) that can 

trigger cell death through apoptosis (Micheau and Tschopp, 2003). RIP-1 

activates caspase-8 (C8) which cleaves RIP-1 and RIP-3 and induces apoptosis 
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via intrinsic (release of cytochrome C from mitochondrial) or extrinsic pathways 

resulting in caspase-3 activation. Preservation of RIP-1 kinase activity and 

autophosphorylation between RIP-1 with RIP-3 leads to the formation of 

necrosome. Necrosome induces reactive oxygen species (ROS) production via 

activation of NOX-1 at the cellular membrane or exerts direct effects in the 

mitochondria (Figure 3). The signaling pathways initiated by TNFR-2, which may 

be the preferential receptor for transmembrane TNF-α, are less characterized 

compared to those of TNF-R1. However, TNFR-2 shares some pathways similar 

to TNF-R1. In some cell types, TNFR-2 can initiate phosphorylation of IKK 

leading to nuclear translocation of NF-κB through a pathway similar to TNFR-1. 

Distinct TNFR-2 signal transduction pathways have also been described (Wajant 

et al., 2003; Waters et al., 2013a). Specifically TNFR-2 can activate 

endothelial/epithelial tyrosine kinase (Etk), a member of the Bruton’s tyrosine 

kinase (Btk) non-receptor tyrosine kinase family implicated in cell adhesion, 

migration, proliferation, and survival (Pan et al., 2002). It has also been observed 

that TNFR-2 can potentiate the apoptotic response to TNF-α (Declercq et al., 

1998; Haridas et al., 1998; Vandenabeele et al., 1995). This phenomenon has 

been explained by the “ligand-passing” model which suggests that TNFR-2 

merely serves as a membrane-bound high-affinity trap of TNF-α that delivers the 

ligand to TNFR-1 (Weiss et al., 1997).  
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Figure 3. A schematic overview of TNFR-1 activation and downstream 
signaling events.  Following TNF receptor activation by TNF-α, TNFR 
undergoes a conformational modification of its cytoplasmic portion allowing the 
interaction with receptor interacting protein (RIP)-1 with the death domain (DD), 
TNFR-associated death domain (TRADD), and TNFR-associated factor (TRAF). 
They in turn recruit the cellular inhibitor of apoptosis (cIAP) forming the complex 
I. cIAP inhibits caspase-3 activation and allows ubiquitylation of RIP-1. Next, 
transforming growth factor-β-activated kinase (TAK)-1/TAK-1 binding protein 
(TAB)-2/TAB-3 form a complex that binds to ubiquitin residues on RIP-1 and 
activates nuclear factor-κB (NFκB). This may occur via a p38 mitogen-activated-
protein-kinase-(p38-MAPK-) dependent pathway. Deubiquitylation of RIP-1 by 
the enzyme cylindromatosis (CYLD) favors the transformation of complex I to 
complex II binding to the internalized death-inducing-signaling-complex (DISC, 
formed by FAS-associated protein with death domain (FADD) and procaspase-8 
(Pro-C8)) and RIP-3 (Complex II). If energy is only partially insufficient, receptor 
interacting protein-1 (RIP-1) activates caspase-8 (C8) signaling for classical 
apoptosis. In this setting, caspase-8 cleaves RIP-1 and RIP-3 preserving signal 
for apoptosis; however, if caspase activity declines or prohibited 
autophosphorylation between RIP-1 with RIP-3 result in formation of the 
necrosome. Necrosome induces reactive oxygen species (ROS) production via 
activation of NOX 1 at the cellular membrane or direct effects in the 
mitochondria.  
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Biological activities of soluble TNF-α  

Soluble TNF-α (sTNF-α) was originally described as a circulating factor 

that can induce hemorrhagic necrosis of tumors. Subsequently sTNF-α was 

found to mediate widespread systemic effects. It is well known for its role as a 

major proinflammatory mediator responsible for activating the immune system 

after an infection. Bacterial pathogens and many other stimuli induce TNF-α 

production through Toll-like receptors (TLRs) and NFĸ-B signaling (Locksley et 

al., 2001; Tracey et al., 2008). Following the activation of a complex biological 

cascade involving chemokines, cytokines and endothelial adhesions, TNF-α 

along with other proinflammatory factors recruits and activates neutrophils, 

macrophages and lymphocytes at the  sites of damage and infection (Sethi et al., 

2008). 

It is crucial that TNF-α is produced in the right place, at the right time and 

in the appropriate context. Unregulated production of TNF-α can cause chronic 

inflammation, septic shock and autoimmune diseases such as Crohn's disease 

(van Deventer, 1999), psoriasis (Mease et al., 2000), severe chronic asthma 

(Berry et al., 2006) and psoriatic arthritis (Tracey et al., 2008).  

 

Biological activities of membrane TNF-α 

The role of membrane TNF-α is less understood. Upon its discovery, it 

was thought that only the soluble form of TNF-α is biologically active. However, 

subsequent studies found that the membrane form of TNF-α also possessed 

biological activities (Perez et al., 1990; Xin et al., 2006; Yang Lin, 2007). 
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Membrane TNF-activated TNFR on target cells exerts various biological 

functions that contribute to the physiological as well as pathological responses in 

health and diseases. In endothelial cells, mTNF-α induces production of pro-

coagulant agents, adhesion molecules and pro-inflammatory cytokines. Human 

umbilical vein endothelial cells (HUVECs) co-cultured with transmembrane TNF-

α-expressing Chinese hamster ovary (CHO) cells expressed tissue factors with 

synergistic actions of both TNFR-1 and -2 in an adhesion molecule (E-

selectin/ICAM-1)-dependent manner (Grell et al., 1995; Schmid et al., 1995). 

Membrane TNF-α is an important mediator for crosstalk between NK cells and 

dendritic cells (DC) (Xu et al., 2007). In mouse, proliferation and cytotoxic activity 

of NK cells were enhanced by membrane TNF-α on DCs through NK cell-surface 

TNFR-2. Expression of membrane TNF-α on adipocytes resulted in inhibition of 

differentiation by selectively activating TNFR-1 (Xu et al., 2007). In addition, 

patients with HIV infection and acute respiratory distress syndrome have 

functional and cytotoxic membrane TNF-α expression in the alveolar 

macrophages (Agostini et al., 1995; Armstrong et al., 2000), which is believed to 

be a mechanism for TNF-α-mediated lung injury.  
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TNF-α in Cancer 

 

TNF-α as a cancer inhibitor/promoter 

The mechanisms by which TNF-α exerts antitumor effects have been 

studied extensively. TNF-α inhibits tumor-induced vascularization by damaging 

the tumor-associated vasculature. It blocks blood flow and causes ischaemia of 

the tumor cells (Watanabe et al., 1988a). TNF-α also induces antitumor 

inflammatory responses through activation of NK cells and CD8 T cells (Prevost-

Blondel et al., 2000). Furthermore, TNF-α can have a direct effect on tumor cells 

by increasing lysozymal enzymes and hydroxyl radicals, and inducing 

cytochrome c release from the mitochondria and apoptosis (Watanabe et al., 

1988b) (Figure 4a). Although high doses of TNF-α have antitumor activity, there 

is growing data to suggest that endogenous TNF-α acts as a tumor promoter.  

The first published data that linked TNF-α to cancer reported that 

treatment with TNF-α induced production of more TNF-α in breast cancer cell 

lines (Spriggs et al., 1987).  Following this discovery, multiple studies have 

demonstrated that TNF-α is not only produced by inflammatory cells within the 

tumor, but many human cancer cells constitutively produce small amounts of 

TNF-α as well, and that TNF-α has a significant pro-tumerigenic role (Beissert et 

al., 1989; Naylor et al., 1990; Naylor et al., 1993; Szlosarek et al., 2006). Both in 

vivo mouse model studies and data from cancer patients suggest a significant 

role for TNF-α in tumor promotion. In mouse models, deletion or inhibition of 

TNF-α reduces the incidence of cancer and even induces resistance to 
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chemically induced carcinogenesis of the skin (Arnott et al., 2004; Moore et al., 

1999). Furthermore, in a mouse model of liver cancer induced by spontaneous 

cholangitis, inhibition of stromal cell TNF-α production decreased the incidence of 

liver tumors (Pikarsky et al., 2004).  

Direct evidence for the involvement of TNF-α in cancer comes from 

observations that TNF-α knockout mice on 4 different genetic backgrounds were 

10-fold more resistant to chemical carcinogenesis of the skin (Arnott et al., 2002; 

Arnott et al., 2004; Scott et al., 2003). Mice deficient in TNFR-1 and TNFR-2 also 

were resistance to skin cancers (Arnott et al., 2004) and TNFR-1-/- mice showed 

reduced liver tumorigenesis and liver metastasis (Kitakata et al., 2002). In 

addition, knockdown of TNF-α in ovarian cancer cell lines led to diminished 

growth and vascular density (Kulbe et al., 2007).  

Tumor cells expressing low (picogram) quantities of sTNF-α induce tumor 

growth in mouse models by recruiting myeloid cells and educating them to 

demonstrate a tumor-promoting phenotype (Li et al., 2009; Pollard, 2004). 

Absence of TNF-α signaling in TNF-α receptor deficient mice (TNFR-KO) results 

in abolishment of TNF-α-induced tumor growth and overall reduction of tumor 

associated myeloid cells. Subsequent studies did not show a decrease in the rate 

of proliferation or apoptosis in these TNF-α-expressing tumor cells (Kulbe et al., 

2007; Li et al., 2009). Endogenous TNF-α production by cancer cells positively 

correlates with increased expression of cytokines and chemokines such as 

CXCL12, CCL8, VEGF, matrix metalloproteinases (MMPs) as well as TNF-α 

itself, leading to neovascularisation, angiogenesis and metastasis (Balkwill, 
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2004b; Nabors et al., 2003).  TNF-α production via the NF- ĸB pathway in tumor 

cells is also central to the induction of cell survival and proliferation of malignant 

cells (Pikarsky et al., 2004) (Figure 4b).  

Once the protumorigenic properties of TNF-α were discovered, targeting 

TNF-α activity seemed to be a promising step toward tumor therapy. Several 

Phase I/II clinical trials have been undertaken with TNF-α antagonists in cancer 

patients (Brown et al., 2008; Harrison et al., 2007; Madhusudan et al., 2004). In 

these clinical trials, TNF-α antagonist treatment resulted in a period of disease 

stabilization in 20% of patients with advanced cancer.  Based on a few other 

trials however, anti-TNF-α therapy has been found to potentially promote skin 

cancer (Mercer et al., 2012) and lymphoma (Keystone et al., 2004) and even 

increase thrombotic events (Lee et al., 2009). Collectively, these data 

demonstrate the complex contradictory role of TNF-α and its large spectrum of 

activities, including both antitumorigenic and protumorigenic functions.  
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Figure 4. Schematic diagram showing the antitumorigenic/protumorigenic
effects of TNF-α. (a) TNF-α causes hemorrhagic necrosis in vivo through the 
destruction of tumor vasculature. It also promotes tumor lysis by activating
tumor immune responses and can lead to direct tumour lysis via hydroxyl 
radicals and lysosomal enzymes. TNF-α can act synergistically with

 

 anti-

 a variety of 

d myeloid cells towards a protumorigenic phenotype (i.e. 
ascular leukocytes). 

 

 

 

 

 

other cytokines to activate anti-tumor immune response by T-cells. 
(b) TNF-α can induce cancer by inducing tumor proliferation and tumor 
metastasis through remodeling of the extracellular matrix (ECM) as well as 
driving tumor associate
v
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Summary, Statement of the Problem and Goal of the Study 

Myeloid cells, a heterogeneous population of bone marrow-derived cells, 

play a critical role during growth and metastasis of malignant tumors. The tumor 

promoting property of myeloid cells is induced by the production of proangiogenic 

and immunosuppressive factors at the tumor site. It is widely believed that the 

generation of the pro-tumorigenic phenotype of myeloid cells results from cross-

talk between myeloid cells and tumor cells. TNF-α has been identified as an 

important tumor-derived factor that educates tumor associated myeloid cells 

towards a protumorigenic subtype, and orchestrates the interplay between 

malignant cells and myeloid cells, which have been linked to tumor growth and 

metastasis.  

TNF-α has been shown to promote both the death and survival of tumor 

cells under different circumstances. TNF-α has also been identified as a key 

regulator of the immune and inflammatory responses to cancer. Whether TNF-α 

primarily acts in a cell autonomous manner to promote cell survival and growth or 

through paracrine interactions with the tumor stroma is unclear. 

The majority of studies that focus on the role of TNF-α in cancer biology 

have been mainly in the context of soluble TNF-α. As described in previous 

sections, TNF-α is initially expressed as a membrane bound protein with various 

biological functions. However, our knowledge of membrane TNF-α’s role in 

modulating tumor inflammatory cells and its effect on tumor growth is limited.  

There have been very few studies that suggest membrane TNF-α has a 

role in tumor biology. Monocytes primed with cytokines demonstrated increased 
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apoptosis of tumor cell lines as well as primary acute myeloid leukaemia blasts 

through a mechanism dependent on transmembrane TNF-α (Williams et al., 

2000). Monocytes (effector cells) that express either sTNF-α or only the mTNF-α 

and incubated with TNF-α-sensitive tumor cells (target cells), resulted in target 

cell death, albeit through different mechanisms, as assessed by a target cell 

cytokine profile (Yang Lin, 2007). In a study by Perez et al., myeloid-derived 

mTNF-α was demonstrated to possess an ability to kill sTNF-α resistant liver 

cancer cells by inducing apoptosis (Perez et al., 1990). 

These reports suggest that mTNF-α and sTNF-α have distinct effects on 

tumor biology which may explain the contradictory nature of current findings on 

the role of TNF-α in tumor growth and promotion. This underscores the 

importance of delineating the roles of TNF-α isoforms in tumor progression. 

The goal of this study is to understand the cellular and molecular 

differences between mTNF-α- and sTNF-α-expressing tumor cells and their roles 

in modulating host derived myeloid cells and their functions. Our proposed 

project may aid in understanding the mechanisms of mTNF-α and sTNF-α 

regulation, which could give insights into the prognosis in cancer patients and 

provide a key therapeutic approach in cancer treatment. The next chapter will 

include an in-depth discussion of the effects of tumor derived membrane and 

soluble TNF-α on tumor growth and inflammation. In chapter III, the molecular 

mechanisms that distinguish membrane TNF-α from the soluble form will be 

evaluated.  
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CHAPTER II 

 

MEMBRANE VERSUS SOLUBLE TNF-ΑLPHA ISOFORMS EXERT 
OPPOSING EFFECTS ON TUMOR GROWTH AND SURVIVAL OF TUMOR 

ASSOCIATED MYELOID CELLS 
 

 
Introduction 

 TNF-α is a major inflammatory cytokine expressed within the tumor 

microenvironment. TNF-α is not normally detected in the serum of healthy 

individuals, but elevated levels have been detected in patients with prostate, 

pancreatic, renal cell, hematopoietic and metastatic breast cancers (Balkwill, 

2006; Bozcuk et al., 2004; Ferrajoli et al., 2002; Michalaki et al., 2004; 

Pfitzenmaier et al., 2003; Yoshida et al., 2002). The role of TNF-α in cancer 

progression is conflicting.  Multiple studies have demonstrated a pro-tumorigenic 

role of TNF-α in vivo, in part by inhibiting necrosis and by stimulating a 

proangiogenic myeloid phenotype (Balkwill et al., 2005; Li et al., 2009). Despite 

the growing body of evidence showing that TNF-α can function as a tumor 

promoter, there remain conflicting findings.  Several case reports describe a 

temporal relationship between development of skin malignancies and lymphoma 

and the use of TNF-α inhibitors (Brown et al., 2002; Chakravarty et al., 2005).  

Moreover, the use of infliximab, which prevents binding of TNF-α to its receptors, 

does not improve clinical outcome in renal cell carcinoma (Larkin et al., 2010). 

Collectively, these data demonstrate the complexity of TNF-α in cancer 

pathogenesis.  
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The majority of studies to date focus on the 17-kDa soluble moiety of TNF-

α, which is released after proteolytic cleavage of the 26-kDa type II 

transmembrane isoform by TNF-α-converting enzyme (TACE; ADAM-17) 

(Kriegler et al., 1988). The role of membrane form of TNF-α and its expression 

pattern in different tissue is poorly understood.  Cardiac-restricted expression of 

membrane versus soluble TNF-α isoform has been shown to have adverse effect 

in cardiac remodeling (Dibbs et al., 2003; Diwan et al., 2004). Expression of 

sTNF-α in cardiomyocytes can cause dilation of left ventricle in mice whereas the 

mTNF-α results in a concentric hypertrophic cardiac phenotype. Increased 

mTNF-α expression on T-cells is shown to modulate monocytes IL10 production 

(Parry et al., 1997). In spite of these findings, the role of mTNF-α in tumor biology 

is unknown (Diwan et al., 2004). Thus far it is not known whether tumors can 

express both isoforms.  In addition there is little understanding of the difference in 

the mechanism of action of sTNF-α versus mTNF-α in regulating tumor behavior 

or impact on the tumor inflammatory stroma.  

The goal of this chapter is to assess if the conflicting data regarding the 

association of TNF-α with tumor progression is due to distinct effects of tumor 

expression of membrane vs. soluble isoforms. In this chapter, we will show that 

different TNF-α isoforms have distinct effect on tumor phenotype. Whereas 

sTNF-α expression promotes tumor growth, mTNF-α-expressing tumors exhibit 

reduced growth and are largely devoid of myeloid cells.  Furthermore, human 

non-small cell lung cancer (NSCLC) tissues exhibit differential expression of 

membrane versus soluble TNF-α and patients with lung tumors predicted by the 
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molecular signature that have higher mTNF-α show a survival rate when 

compared to patients with tumors with higher soluble form of TNF-α expression 

(Ardestani et al., 2013).  

 

Materials and Methods 

Mice and cell lines. Wild-type C57Bl/6 (WT) mice were purchased from Jackson 

Laboratory. Homozygous mutants for TNFR-1 and R-2 knockout (TNFR-DKO) on 

a C57Bl/6 background were a generous gift from Dr. D. Polk. Lewis Lung 

Carcinoma (LLC), B16F10 melanoma, and RAW 264.7 cells were purchased 

from American Type Culture Collection (ATCC) and maintained in DMEM 

supplemented with glucose (4.5 g/l) along with penicillin (10 U/L), streptomycin 

(10 μg/ml), plasmocin (25 μg/ml), amphotericin-B (2.5 μg/ml). H520, HCC95, 

SW900, H157, HCC15, and A549 were provided by Dr. P. P. Massion and were 

maintained in RPMI 1640 medium (Gibco). A549 cells were maintained in Ham's 

F-12K medium (Gibco). All cell lines were supplied with 10% (v/v) fetal bovine 

serum and incubated at 37°C in 5% CO2.  

Constructs and retroviral transductions. Secretable TNF-α was generated by 

replacing amino acids -76 to -1 containing the cytoplasmic signal-anchor for type 

II membrane protein and a short extracellular region with a sequence coding for 

the IL-2 signal peptide (IL2sp, amino acids -20 to -1) that directs the transport of 

TNF-α to the outer cellular space and produces a solely secretable form of 17-

kDa TNF-α.  This was done by amplifying mouse wild-type TNF-α cDNA using 

forward primers flanked by BamH1-IL2sp. The amplified fragment was isolated 
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and purified by gel electrophoresis. The restriction sites at each end allowed 

ligation of the IL2sp-TNF-α fragment into the BamH1-EcoR1 site of LZRS-IRES-

Neo retroviral vector, conferring neomycin resistance. The mTNFΔ1-9, K11E 

sequence encoding a mutant transmembrane TNF-α molecule with a deletion at 

the cleavage site between presequnce and mature membrane TNF-α 

(BCCM/LMBP plasmid collection, Ghent University) was also cloned into LZRS.  

This mutation prevents cleavage of the 26-kDa membrane TNF-α into secretory 

TNF-α isoform. An empty LZRS vector was used as a control vector. 

Surface expression of TNF-α. Cells were detached from tissue culture plate 

and incubated with anti-TNF-α antibody (1 μl/2.5 x 104 cells, Southern Biotech) 

for 30 minutes on ice without permeabilization. PE conjugated secondary 

antibody (0.125 μg/106 cells/100 μl) was added for 30 min on ice. Surface 

expression of TNF-α was measured using flow cytometry. Data are presented as 

percent of viable cells. 

In Vivo murine tumor model.  Control, IL2spTNF-α, and mTNF-α cell lines (106 

cells in 100 µl of PBS) were implanted subcutaneously into WT, TNFR-DKO or 

TNFR-DKO-BMT mice. Mice were sacrificed 15 days post-implantation, tumors 

were excised and the volume was calculated by multiplying tumor length by width 

by height. 

BrdU assay. The BrdU ELISA was performed according to the manufacturer's 

instructions. Briefly, 1000 cells/well were seeded in triplicate in a 96-well plate.  

Cells were allowed to attach for 8 hours. BrdU label was added to each well and 

incubated for an additional 24 hours.  Absorbance was analyzed at 450-540 nm. 
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Cell viability assay. Cell viability was measured by seeding 5000 cells/well in a 

96-well plate for 48 hours. Cells were labeled with 100 μl of PBS containing 0.5 

mg/mL of 3-[4,5-dimethylthiazol-2-yl] 2,5,-diphenyltetrazolium bromide (MTT) 

(Sigma). After 2 hours of incubation at 37°C, cells were lysed with 0.1 ml DMSO. 

Photometric measurement was carried out at 540 nm. 

Leukocyte quantification in tumors. Tumor tissues were finely minced and 

incubated in 5 mL dissociation solution (RPMI medium supplemented with 5% 

FBS, and 1 mg/mL of Collagenase type IV (Worthington)) for 30 min at 37°C. To 

obtain a single-cell suspension, cells were passed through 70-μm nylon cell 

strainer (Becton Dickinson, NJ). Cells were washed with FACS buffer (PBS, 2 

mM EDTA, 0.5% BSA) and incubated for 5 min in RBC lysis buffer solution (155 

mM NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA). Cells were washed twice in FACS 

buffer and incubated with anti-CD3 (Biolegend), -Ly6G (BD Pharminogen), -F480 

(eBioscience) and -CD11b+ (BD Pharminogen). After two washes, labeled cells 

were resuspended in vital dye 7-AAD (BD Pharminogen) and subjected to flow 

cytometry on LSRFortessa flow cytometer (Becton, Dickinson and Company, 

Franklin Lakes, NJ) and analyzed by using FlowJo software (TreeStar, Ashland, 

OR).  

Myeloid cell-trafficking to tumor.  Control vector or mTNF-α-expressing tumor 

cells were injected subcutaneously into wild-type mice. After 12 days, freshly 

isolated myeloid cells were labeled with 5(6)-Carboxyfluorescein N-

hydroxysuccinimidyl ester (CFSE) fluorescent tracking dyes and injected into 

retro-orbital space (5 × 106 cells/animal). Eighteen hours later, tumors were 
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harvested and single-cell suspensions were made. CFSE labeled cells were 

detected using flow cytometry.  

Caspase 3/7 activity. Freshly isolated CD11b+ (105 /96-well) were cocultured 

with fixed control, control+recTNF-α (100 U/mL), and mTNF-α B16F10 cells at 

CD11b+/tumor cells ratio of 1:10 for 5 hours. Apoptosis was quantified in the 

form of caspase-3/7 activation using the Apo-One fluorometric assay system 

from Promega Corporation (Madison, WI) according to the manufacturer's 

protocol. 

Measurement of intracellular ROS. The oxidant-sensing probe CM-H2DCFDA 

(Invitrogen) was used to detect intracellular reactive oxygen species (ROS).   

Freshly isolated CD11b+ cells were loaded with 10 μM CM-H2DCFDA, and 

cocultured with fixed B16F10 control, control+100 U/ml of recombinant TNF-α, 

mTNF-α or mTNF-α+2 mM N-acetyl-cysteine (NAC) for 8 hours. Fluorescence 

was determined using a luminescence spectrophotometer (Spectra max, 

Molecular Devices) with an excitation wavelength of 429 nm and emission 

wavelength of 517 nm.  

Migration assay. Three-μm-pore-size transwells (Costar Corp) were coated with 

fibronectin for 30 min and blocked with 2% (w/v) BSA for 1 hour at room 

temperature. CD11b+ cells isolated from the bone marrow of wild-type mice 

(EasySep, StemCell Technologies) were placed in the upper chambers (105 

cells/well).  Tumor-conditioned media (600 µl/well) from each tumor cell line 

(2x106 cells, 48 hours, 37°C, 5% CO2) were added to the lower chamber.  After 

7 hours of incubation, filters were fixed in 10% formalin and stained in 0.5% 
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crystal violet-0.2M Boric Acid for 30 minutes at room temperature. Migrated cell 

were counted under a high power (40x) lens. 

ROS imaging using confocal microscopy. RAW 264.7 cells were plated 

overnight at a density of 106.  Next day cells were incubated with fixed B16F10 

control, control+100 U/ml of recombinant TNF-α, mTNF-α or mTNF-α+2 mM N-

acetyl-cysteine (NAC). After 8 hours of incubation, cells were washed with PBS 

and loaded with 10 μM solution of CM-H2DCFDA for 20 minutes at 37°C. After 

PBS wash, the remaining attached RAW 264.7 cells were fixed in 1% 

paraformaldehyde and mounted. Cellular fluorescence was monitored at 480/30 

nm (excitation) and 535/40 nm (emission). 

TNF-α cytotoxicity assay. Overnight cultured CD11b+ cells or RAW 264.7 cells 

(2.5x104/100 µL/well, target) were cocultured with Paraformaldehyde-fixed 

(Zhang et al., 2008) control, control+100 U/ml of recombinant TNF-α, mTNF-α or 

mTNF-α+2 mM N-acetyl-cysteine (effector) at target:effector ratio of 1:10 and 

incubated for 48 hours. Cells were labeled with 100 μl of PBS containing 0.5 

mg/mL of MTT for 2 hours at 37°C then lysed with 0.1 ml DMSO and photometric 

measurement was carried out at 540 nm. 

P65/Caspase-3/Bax/Bcl-2 immunoblot analysis. RAW 264.7 cells were plated 

at a density of 106 cells overnight (37°C, 5% CO2).  Fixed control, control + 

recTNF-α (100 U/mL), and mTNF-α B16F10 cells were co-cultured with RAW 

264.7 at T/E ratio of 1:10.  Cells were incubated at 37°C in 5% CO2 for 10 

minutes (p65), 30 minutes (caspase-3), and 6/24 hours (Bax/Bcl-2). After each 

incubation period, RAW 264.7 cells were collected and the whole cell lysate was 
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evaluated for total phospho-NF-κB-p65, total NFκB-p65, caspase-3 (Cell 

Signaling Technology) and Bax/Bcl2 (eBioscience) by Western blot analysis. 

TNF-α ELISA and immunoblotting.  The expression of secretory levels of TNF-

α in human lung caner cell lines was measured in cell cultured supernatant of 

106 cells incubated for 24 hours, using ELISA kit (R&D Systems). 

Transmembrane TNF-α on cell surface of transduced LLC tumor cells was 

analyzed by isolating the membrane fraction protein and subjecting to western 

blot. Cells were lysed in 500 μl of membrane buffer [250 mM Sucrose, 20 mM 

HEPES (7.4), 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1mM DTT, 

PI Cocktail (III)]. Cells were scraped immediately and placed in 1.5 ml eppendorf 

tube. The lysate was passed through a 25 G needle 10 times and incubated on 

ice for 20 minutes. Lysate was spun at 10000 G for 10 min. The supernatant was 

spun in an ultracentrifuge at 100,000 G for 1 hour. The pellet was resuspended in 

50 μl of RIPA buffer [3M NaCl, 1M Tris, 0.5M EDTA, 10% SDS, 1% NP40 

substitute]. 

Immunohistochemistry/fluorescence and morphometry. Paraffin-embedded 

tumor tissues were used for determination of Ki67 (Novocastra), platelet 

endothelial cell adhesion molecule-1 (PECAM-1; clone 557355, Pharmingen), 

CD3 (Santa Cruz), B220b (Pharmingen), ER-HR3 (Santa Cruz), F4/80 

(eBioscience). For immunofluorescence analysis, nuclei were counterstained 

using 4',6-diamidino-2-phenylindole (DAPI; Sigma). The images were visualized 

using a Ziess Axioplan 2 microscope (Carl Ziess MicroImaging). Images were 

photographed with a CoolSNAP Hq CCD camera (Photometrics). For confocal 
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analysis, the LSM510 (Zeiss) microscope was used to capture 1 μm optical slices 

(z stack); the images were analyzed with Metamorph v5.0 (Universal Imaging 

Corp.). Morphometry was performed by obtaining 5 digital images at defined 

magnification taken at random from each section. For morphometric evaluation 

care was taken to exclude regions of necrosis within each field.  

Tissue microarray. The paraffin-embedded tissues were sampled from archived 

conventional tissue blocks. The tissue microarrays were constructed with a 

Beecher instruments tissue arrayer by sampling the three representative areas 

(0.6 mm) of tumor from the original blocks of tumor and transferring them into a 

new array block. TNF-α immunoreactivity was evaluated semiquantitatively 

based on the intensity of staining. It was scored as 1+ (low-moderate), and 2+ 

(intense). Samples with no staining or very weak staining were considered 

negative, and samples with moderate to intense staining were considered 

positive. 

Survival analysis. A cohort published by Shedden et al. was analyzed for 

disease-free survival (Shedden et al., 2008).  The data set included gene-

expression profiles for 442 lung adenocarcinomas with high-quality gene-

expression data, pathological data and clinical information. The association 

between gene expression and the survival was examined using the Cox 

proportional hazard model. Kaplan-Meier curves were generated to visualize the 

survival pattern by dichotomizing the gene-expression. The subgroup analysis of 

mTNF-α and TACE was done by dividing the cohort into 4 groups of high TNF-α 

with high/low TACE or low TNF-α with high/low TACE. Log-rank overall tests 
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were performed for the 4 groups. All statistical analyses were performed using R 

(www.r-project.org). 

Statistical analysis.  The statistical significance between experimental and 

control groups was determined by Student's t-test or ANOVA followed by Tukey’s 

post-test using Prism software (Graphpad, San Diego, CA). A P-value of <0.05 

was considered statistically significant. 

 

Results 

 

Membrane TNF-α isoform reduces tumor growth 

The effects of different TNF-α isoforms on malignant tumor phenotypes 

were investigated using murine Lewis Lung Carcinoma (LLC) sublines 

expressing either sTNF-α (LZRS-IRES-IL2spTNF-α) or mTNF-α (LZRS-IRES-

mTNFΔ1-9) by retroviral transduction (Figure 5A). Cells transduced with empty 

vector (LZRS-IRES-Neo) were used as control. Untransduced LLC cells 

exhibited undetectable levels of TNF-α expression as determined by ELISA.  The 

relative expression of sTNF-α and cell surface expression of TNF-α by 

transduced cells were confirmed by ELISA and flow cytometry respectively. 

sTNF-α expression was detected in IL2spTNF-α-expressing cells at 5 ng/ml. 

Surface expression of TNF-α was not detected in control and IL2spTNF-α tumor 

cells (mean fluorescent intensity of 150 and 202 respectively). In contrast, mTNF-

α-expressing LLC cells displayed 7.1- and 5.3-fold increase in surface TNF-α as 

compared with control and IL2spTNF-α, respectively (Figure 5B).  
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Figure 5. Generation of membrane and soluble TNF-α-expressing cells.  
(A) Schematic representation of TNF-α mutant which has the region coding for 
the TNF-α transmembrane domain (TMD) replaced with region coding for 
interleukin-2 (IL-2) signal peptide to generate soluble TNF-α (sTNF-α) and TNF-α  
lacking TACE cleavage site (Δ1-9, K11E) to generate membrane TNF-α (mTNF-
α). (B) Expression of transmembrane TNF-α on the surface of LLC tumor cells 
transduced with empty vector (control), IL2spTNF-α or mTNF-α vectors was 
analyzed by flow cytometery. 
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To evaluate whether overexpressing various TNF-α isoforms affected 

growth or survival of tumor cells, in vitro proliferation and viability was assessed 

using the BrdU incorporation and MTT assay, respectively. Both IL2spTNF-α- 

and mTNF-α-expressing cells exhibited similar in vitro growth rates compared 

with control LLC lines (P>0.05; Figure 6A). IL2spTNF-α and mTNF-α LLC cell 

lines tested for viability also displayed similar levels of survival rate compared to 

control (P>0.05; Figure 6B). 

To gain additional evidence that the membrane isoform did not reduce 

survival or viability and that these observations were not cell specific,  B16F10-

melanoma cell lines were transduced with retroviral constructs, containing 

mTNF-α or an empty construct as control cells. Similar to LLC lines, the 

proliferation rate (P>0.05) and viability (P>0.05) were not affected in mTNF-α-

expressing B16F10 cells compared to control cells (Figure 7A and B). These 

findings are consistent with earlier studies in which it was shown that 

overexpressing the wild-type TNF-α in both LLC and B16F10 melanoma does not 

alter in vitro growth (Li et al., 2009). 

LLC cell lines expressing soluble (IL2spTNF-α) or membrane (mTNF-α) 

isoforms were implanted subcutaneously into the flank of wild-type C57Bl/6 mice 

(WT). The same number of cells transduced with empty vector was implanted as 

a control.  After 14 days, LLC tumors expressing IL2spTNF-α were ~7 fold 

(1214±122 mm3) larger compared to control tumors (124.4±92 mm3; n=5, 

P<0.0005; Figure 8A).  By contrast, tumors expressing mTNF-α exhibited 65% 

reduction in tumor volume (105.8±29.3 mm3) compared to control tumor  
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Figure 6. Expression of mTNF-α/sTNF-α does not affect proliferation and 
viability in LLC cells. (A and B) Proliferation rate and the viability of transduced 
tumor cells were determined by BrdU and MTT labeling assays respectively. All 
cell lines showed no significant difference in proliferation or viability. Data is 
representative of three independent experiments expressed as the mean±SEM. 
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Figure 7. Expression of mTNF-α does not affect proliferation and viability in 
B16F10 melanoma cells. (A and B) In vitro proliferation (A) and the viability (B) 
of B16F10 cells transduced with control or mTNF-α vectors were determined by 
BrdU and MTT labeling assays, respectively. All cell lines showed no significant 
difference in proliferation (P=0.42) and viability (P=0.16). Data is representative 
of three independent experiments expressed as the mean±SEM. 
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(294.1±35.9 mm3) (n=12, P<0.0005; Figure 8B). Similar growth reduction was 

observed with mTNF-α-expressing B16F10 tumors cell line when compared with 

matched controls (n=7, P<0.05; Figure 8C).  In addition, tumor weight 

measurement followed similar pattern to tumor volume as presented in Figure 

8D-F. These data suggested that different TNF-α isoforms have opposing effects 

on tumor size. 

 

Expression of mTNF-α does not affect tumor proliferation or vascularity  

To evaluated tumor vascular density and tumor cell proliferation rate, 

histological sections from control, IL2spTNF-α and mTNF-α LLC tumor were 

immunostained with platelet/endothelial cell adhesion molecule-1 (PECAM-1) 

antibody to evaluate microvessel density, and anti-Ki67 to assess tumor cell 

proliferation (Figure 9A). Histomorphometry of PECAM-1-positive areas showed 

no difference in vascular density amongst the tumors expressing different TNF-α 

isoforms versus control (P>0.05; Figure 9B). Furthermore, IL2spTNF-α- and 

mTNF-α-expressing LLC tumors showed no significant difference in 

immunoreactivity with the Ki-67 antibody compared to control tumors (P>0.05; 

Figure 9C).  

Vascular density and cell proliferation analyses were also performed 

between B16F10 melanoma-derived tumors expressing mTNF-α versus control 

(Figure 10A). Similar to LLC tumors, no significant difference was observed in 

microvessel density and in vitro proliferation between the control and mTNF-α-

expressing melanoma tumors (P>0.05; Figure 10B and C). 
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Figure 8. Membrane TNF-α-expressing tumor cells demonstrate delayed 
tumor growth. (A-C) In vivo growth of tumor cells transduced with control vector 
was compared to LLC lines expressing IL2spTNF-α (A), or mTNF-α (B), and 
B16F10 expressing mTNF-α (C), by subcutaneous implantation in WT C57Bl/6 
mice for 14 days. Tumor weight of (D) LLC control vector/IL2spTNF-α, (E) LLC 
control vector/mTNF-α and (F) B16F10 control/mTNF-α implanted in WT bl/6 
mice. Photomicrograph of each tumor is shown with each experimental group. 
Each point represents an individual animal and the horizontal bar is the median. 
P<0.05, P<0.005,P<0.0005, Student’s t-test.  
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Figure 9. Expression of mTNF-α does not affect tumor proliferation or 
vascularity in vivo. (A) Representative sections of LLC tumors transduced with 
control, IL2spTNF-α and mTNF-α constructs were analyzed by 
immunohistochemistry for PECAM-1 or Ki-67 staining to define vascularity or 
proliferation, respectively. (B and C) Percentage of PECAM-1-positive (B) or Ki- 
67-positive area (C) in control, IL2spTNF-α and mTNF-α in LLC tumors was 
quantitated. There was no significant difference between the cohorts for either 
PECAM-1-positive or Ki-67-positive cells (P>0.05), 1-way ANOVA with Tukey’s 
post-test. 
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Figure 10. Expression of mTNF-α does not affect proliferation and 
vascularity in B16F10 melanoma tumors. (A) Representative sections of 
control, IL2spTNF-α and mTNF-α LLC tumors were analyzed by 
immunohistochemistry for PECAM-1 or Ki-67 staining to define vascularity or 
proliferation, respectively. (B and C) Number of PECAM-1-positive (B) or Ki-67-
positive (C) cells in control, IL2spTNF-α and mTNF-α in LLC tumors were 
quantitated. There was no significant difference between the cohorts for either 
PECAM-1-positive (P=0.37) or Ki-67-positive (P=0.17) cells. 
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Membrane TNF-α-expressing tumors are devoid of tumor associated 
myeloid cells 
 
It is often assumed that TNF-α-mediated tumor promotion is secondary to TNF-α-

mediated inflammation. To determine whether mTNF-α-expressing tumors had 

altered composition of inflammatory cells, we quantified LLC tumor-associated T-

cells (anti-CD3), B-cells (anti-B220b), neutrophils (anti-Ly6G) and myeloid-

monocytic lineage (anti-ER-HR3, CD11b, F4/80) using immunohistochemistry 

staining and flow cytometric analysis of single-cell suspension of tumors. Both 

immunostaining and flow cytometric analysis showed no significant difference in 

T-cell content among control, IL2sp TNF-α and mTNF-α-expressing tumor cells 

(Figure 11A-C). Anti-B220b staining revealed only rare, infiltrating B-cells for all 

tumor groups (data not shown). Flow cytometric analysis of anti-Ly6G showed no 

significant difference in neutrophils population within control and mTNF-α-

expressing tumors (P>0.05; Figure 12). 

Interestingly when tumor-associated myeloid cell population was 

evaluated a significant difference was observed in mTNF-α-expressing tumors 

compared to control and IL2spTNF-α tumors.  Histological staining of mTNF-α-

expressing LLC tumors for ER-HR3, a myeloid marker reactive to ~70% of 

circulating monocytes and a subset of mature tissue macrophages (de Jong et 

al., 1994), had fewer number of infiltrated ERHR3+ cells (0.04±0.02%) versus 

control (6.4±0.37%) or IL2sp-TNF-α tumors (16±1.03%) (P>0.005; Figure 13A 

and B).  
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Figure 11. Tumor derived mTNF-α does not affect T-cell content in tumor. 
(A) Representative sections of control, IL2spTNF-α and mTNF-α-transfected LLC 
tumor cells were analyzed by immunohistochemistry for CD3-positive T-cell 
staining. (B) Number of CD3-positive cells in control, IL2spTNF-α and mTNF-α in 
LLC tumors was quantitated. There was no significant difference between the 
cohorts for CD3-positive cells. (C) Representative flow cytometric analysis of 
CD3-positive T-cells in LLC tumor cell suspension. Dot plots show CD3/7-AAD 
population in control (left) and mTNF-α (right) tumors. 
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Figure 12. Tumor derived mTNF-α does not affect neutrophil content in 
tumor. Quantification of flow cytometeric analysis of Ly6G-positive neutrophils in 
LLC tumor cell suspension. 
 

 

Figure 13. Membrane TNF-α-expressing tumors are devoid of ER-HR3-
positive myeloid cells. (A) ER-HR3 staining of LLC tumor cells, expressing 
various TNF-α isoforms. Control (left), IL2spTNF-α (middle), and mTNF-α (right) 
LLC tumor sections from wild-type bl/6 were stained with ER-HR3 myeloid 
markers (green). (B) Percentage of ER-HR3-positive cells in LLC tumors 
transduced with control or different of TNF-α isoforms was quantitated. There 
was a significant decrease in the number of ER-HR3-positive cells in LLC tumors 
expressing mTNF-α isoform compared to control tumors. 
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Further evaluation of single-cell suspension of tumors showed significantly lower 

number of CD11b+ myeloid cells (52.17±6.1%; P>0.005) and F4/80 

macrophages (3.75±2.4%; P>0.005) in mTNF-α-expressing tumors as compared 

to control (Figure 14A-D). Anti-F4/80 staining of tumor sections further confirmed 

the significant reduction of F4/80-positive macrophages in mTNF-α expressing 

tumors (Figure 14E and F). 

To test whether the tumor inhibitory effects of mTNF-α required the 

presence of TNF-α receptors, tumor growth was assessed in TNF-α receptors 

deficient mice (TNFR-1 and TNFR-2 double knockout, TNFR-DKO).  Mice were 

implanted with LLC cell line expressing various TNF-α isoforms. LLC lines 

expressing mTNF-α isoform did not generate significantly smaller tumors 

(110.5±17.6 mm3) when compared with their paired control tumors (161.7±29.6 

mm3, n=5) (P>0.05; Figure 15A). In addition, implantation of mTNF-α-expressing 

LLC tumor cells in TNFR-DKO mice restored the ER-HR3+ myeloid population in 

mTNF-α-expressing tumors (0.91±0.16% ER-HR positive area/total area in 

mTNF-α vs. 0.67%±0.16% in control; P>0.05; Figure 15B). Similar results were 

observed in B16F10 line (data not shown).  

 

 

 

 

 

 

 42



 

 

 

 

 

Figure 14. Membrane TNF-α-expressing tumors are devoid of CD11b- and 
F4/80-positive myeloid cells. (A and C) Representative flow cytometric 
analysis of CD11b- and F4/80-postitive population in LLC tumor cell suspension. 
Dot plots show CD11b/7-AAD (A) and F4/80/7-AAD (C) from one representative 
animal for each group. (B and D) Percentage of CD11b- and F4/80-positive cells 
were quantitated in control and mTNF-α tumor cell suspensions. (E) 
Representative sections of control and mTNF-α-transfected LLC tumors were 
analyzed by immunohistochemistry for F4/80+ macrophages. (F) Number of 
F4/80-postivie cells in control and mTNF-α in LLC tumors was quantitated. Data 
are presented as mean±SEM, **P<0.005, ***P<0.0005; Student’s t-test. 
 

 

 

 

 43



 

 

 

Figure 15. Tumor inhibitory effect of mTNF-α requires the presence of TNF-
α receptors. (A) Control and mTNF-α-expressing LLC tumor cells were 
implanted subcutaneously in TNFR-DKO mice for 14 days. The average±SEM 
are shown for each group (n=5 animals). (B) Morphometric quantification of ER-
HR3 staining of control or mTNF-α-expressing LLC tumor, from TNFR-DKO mice. 
Student’s t-test. 
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Restoration of myeloid cell population in mTNF-α-expressing LLC tumors 

in TNFR-DKO host prompted us to further evaluate the requirement of TNFR 

signaling in inflammatory cells (i.e bone marrow-derived cells). Therefore, tumor 

growth was assessed in WT mice receiving bone marrow (BM) transplants from 

TNFR-DKO mice (referred to as BMT-TNFR-DKO mice). Similar to experiments 

in TNFR-DKO host, LLC line expressing mTNF-α isoform, implanted into BMT-

TNFR-DKO, did not generate smaller tumors in mice engrafted with TNFR-

deficient BM (497.2±137.6 mm3) as compared with control tumors (387.9±95.94 

mm3) (P>0.05; Figure 16A). Furthermore, tumor associated myeloid cell 

populations were quantified in BMT-TNFR-DKO mice. The overall percentage of 

myeloid populations in mTNF-α-expressing LLC tumors (7.8±0.4%) was similar to 

control tumors (7.5±1.4%) (P>0.05; Figure 16B and C). These data suggested 

that tumor derived mTNF-α significantly reduced myeloid population within the 

tumor microenvironment. Since this effect was abrogated in WT mice 

transplanted with TNF-α receptor deficient BM, it could be concluded that intact 

TNF-α signaling through its receptor in bone marrow derived cells was required 

for this effect, and that this effect was not mediated by secondary factors from 

the tumor cells.  

 
Membrane TNF-α-derived soluble factors do not affect CD11b+ myeloid cell 
migration/recruitment  

 
One possible explanation for the reduction of myeloid cells observed in 

mTNF-α-expressing tumors was that such tumors exhibited reduced expression 

of necessary signals for myeloid recruitment. Using a modified Boyden chamber 
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Figure 16. Tumor-inhibitory effects of mTNF-α requires signaling between 
TNF-α and its cognate receptors.  (A) Control and mTNF-α-expressing LLC 
tumor cells were implanted subcutaneously in WT bl/6 mice received bone 
marrow (BM) transplant from TNF-α receptors1/2 knockout donor (BMT-TNFR-
DKO mice) for 14 days. The mean is shown for each group (n=6 animals). (B) 
Representative ER-HR3 immunofluorescence staining from control and mTNF-α-
transduced tumors. (C) Percentage of ER-HR3-positive cells in control and 
mTNF-α-expressing LLC tumors from WT mice with BMT from TNFR-DRKO 
donor was quantitated. There was no significant difference between the cohorts 
for ER-HR3-positive cells (n=3). Data are presented as mean±SEM, Student’s t-
test. 
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assay, the ability of conditioned media (CM) from LLC and B16F10 melanoma 

cell lines expressing various forms of TNF-α to promote migration (i.e. 

recruitment) of primary murine CD11b+ myeloid cells was evaluated. CM from 

mTNF-α did not inhibit migration of CD11b+ as compared to control-CM in both 

LLC and B16F10 melanoma line (Figure 17A and C). An increase in CD11b+ 

myeloid cells migration was observed in CM derived from both IL2spTNF-α-

expressing LLC (~1.5-fold; Figure 17B) and B16F10 line (~4-fold; Figure 17D). 

This may be attributed to the presence of TNF-α itself, which is known to induce 

chemotactic response (de Jong et al., 1996; Torrente et al., 2003). These results 

suggested that the relative paucity of myeloid cells in mTNF-α-expressing tumors 

was likely not due to reduced expression of key cytokines, necessary for myeloid 

extravasation and migration into the tumor.  

Next, the ability of control and mTNF-α-expressing LLC tumors to 

effectively recruit myeloid cell in vivo by adoptive transfer of CFSE labeled 

CD11b+ into tumor bearing mice was evaluated. After 18 hours post injection 

CFSE-positive myeloid cells were quantified in each tumor type by flow analysis 

of single-cell suspension of tumor digests.  The overall number of CFSE-positive 

cells in mTNF-α-expressing LLC tumors (58±21) was similar to control tumors 

(68±12.57) (P>0.05; Figure 18A and B). These data demonstrate that reduced 

myeloid cells in mTNF-α-expressing tumors was not due to impaired recruitment 

of circulating cells.  
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Figure 17. Soluble factors derived from mTNF-α do not affect the rate of 
CD11b+ myeloid cell migration compared to control. (A and B) Transwell 
migration assay of primary CD11b+ cells treated with conditioned media derived 
from LLC tumor cells transduced with control/mTNF-α (A) or cotnrol/IL2spTNF-α 
(B) constructs. (C and D) Transwell migration assay of primary CD11b+ cells 
treated with conditioned media derived from B16F10 tumor cells transduced with 
control/mTNF-α (C) or cotnrol/IL2spTNF-α (D) constructs. Data presents the 
mean±SEM. 
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Figure 18. Reduced myeloid cells in mTNF-α-expressing tumors is not due 
to impaired recruitment of circulating cells. (A) Representative flow 
cytometric analysis of CFSE-positive cells presented in LLC tumor suspension 
expressing either control (left) or mTNF-α (right) isoform. (B) Quantification of 
CFSE-positive cells detected in a given number of tumor suspension (n=3 for 
each tumor type). Data are presented as mean±SEM, P>0.05. 
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Membrane TNF-α induces cell death through apoptosis-independent 
pathway 
 

To investigated if the distinct TNF-α isoforms exerted cytotoxic effects on 

myeloid cells, freshly isolated CD11b+ cells (target) were mixed with 1% 

paraformaldehyde-fixed B16F10 melanoma cells (effector) expressing empty 

vector with or without 100 U/ml recombinant murine TNF-α,  (FxB16cont or 

FxB16cont+rTNF-α) or fixed mTNF-α-expressing B16F10 cells (FxB16mTNF) at an 

effector:target ratio of 10:1. As measured by the MTT assay (Figure 19A), 

FxB16mTNF resulted in more than 60±29% cytotoxicity of CD11b+ myeloid cells 

after 48 hours of incubation, as compared to CD11b+ cells incubated with 

FxB16cont (P<0.005). CD11b+ in the presence of FxB16cont+rTNF-α showed less 

than 1% cytotoxicity in compared to control. The activation of apoptotic pathway 

as the mechanism of mTNF-α-induced myeloid cell death by determining the 

caspase-3/7 enzymatic activity in CD11b+ cells was assessed. Compared to 

control, CD11b+ myeloid cells cocultured with FxB16cont+rTNF-α or FxB16mTNF 

did not show any significant increase in the level of caspase 3/7 activity (P>0.05, 

Figure 19B).  

To assess the activation of apoptotic pathway in RAW 264.7 cells, the 

level of Bax/Bcl-2of and cleavage/activation of caspase-3 proteins in RAW 264.7 

was determined. The data suggested that the Bax/Bcl-2 ratio (Figure 20A) and 

active-caspase-3 (Figure 20B) proteins in RAW 264.7 cells treated with both 

soluble and membrane TNF-α had no significant changes when compared to 

control. Together these findings are indicative of another death pathway 

independent of apoptosis.  
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Figure 19. Membrane TNF-α induces cell death through apoptosis-
independent pathway. (A) Cytotoxic effect of sTNF-α and mTNF-α on CD11b+ 
cells measured by MTT assay. (B) Caspase-3/7 activity (relative fluorescence 
unit [RFU]) in CD11b+ cocultured with Paraformaldehyde-fixed control 
(FxB16cont), control+rTNF-α (FxB16cont+TNF-α), or mTNF-α (FxB16mTNF). Data 
is representative of three independent experiments expressed as the mean±SEM. 
P<0.05, 1-way ANOVA with Tukey’s post-test. 
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NF-κB is a critical factor in the determination of cell death versus survival 

and proliferation (Karin and Lin, 2002; Senftleben and Karin, 2002). In cases of 

failed NF-κB activation, TNF-α can induce either programmed cell death or 

necrosis through complex signal transduction cascades (Gupta, 2002). To 

evaluate whether soluble versus mTNF-α isoforms induced distinct cellular 

responses via regulation of NF-κB, we tested NF-κB activity in RAW 264.7 cells 

co-cultured with FxB16cont, FxB16cont+rTNF-α, or FxB16mTNF. As shown in Figure 

20C, the level of NF-κB p65 phosphorylation activity in RAW 264.7 cells 

stimulated with both FxB16cont+rTNF-α and FxB16mTNF was similar to FxB16cont, 

suggesting that mTNF-α isoform did not affect the activity of NF-κB p65 

compared to sTNF-α.  

 

Membrane TNF-α-induced cell death occurs through induction of ROS 

TNF-α can induce cell death by induction of intracellular reactive oxygen 

spices (ROS)(Corda et al., 2001; Deshpande et al., 2000).  To test the possibility 

that soluble versus membrane TNF-α isoforms induced distinct cellular 

responses via regulation of intracellular ROS, we evaluated ROS levels in 

CD11b+ myeloid cells incubated with different TNF-α isoform by measuring CM-

H2DCFDA fluoresce.  In CD11b+ cell incubated with FxB16cont+rTNF-α, the CM-

H2DCFDA fluorescence did not differ from control, whereas in cells with 

FxB16mTNF a 1.6-fold increase was observed after 8 hours of incubation (P<0.05; 

Figure 21A). Addition of N-acetyl-cysteine into cells cultured with FxB16mTNF  
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Figure 20. Kinetics of NFκB, caspase-3 and BAX/Bcl-2 activation in mTNF-α 
stimulated RAW 264.7. FxB16cont, FxB16cont+rTNF-α, or FxB16mTNF was 
added for indicated incubation period. RAW 264.7 cells were harvested and total 
cellular protein was analyzed for Bax/Bcl-2 ratio (A), activated caspase-3 (B), 
and total and phopho- NF-κB p65 (C). Immunoblot analysis showed no 
differences in Bax/Bcl-2 ratio or caspase-3 and NF-κB pathway activation with 
different TNF-α isoforms compared to control. 
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significantly decreased the intensity of CM-H2DCFDA fluorescence indicating 

decrease in the level of ROS (P>0.05). NAC treatment of FxB16mTNF treated  

CD11b+ reduced mTNF-α induced cytotoxicity (FxB16mTNF, 61.57±29.12% 

cytotoxicity; FxB16mTNF+NAC, 10.64±29.17% cytotoxicity; P<0.05; Figure 21B).   

In addition, ROS generation in individual RAW 264.7 by CM-H2DCFDA 

fluorescent staining assay was evaluated (Kim et al., 2005). The fluorescent 

intensity in RAW 264.7 co-cultured with FxB16cont+rTNF-α was similar to the 

basal level (4.6±3%). However in the presence of FxB16mTNF, we observed an 

induction of ROS intensity (82.5±15%) as detected by the presence of green 

fluorescence staining (Figure 22A and B). Treatment of RAW 264.7 cocultured 

with FxB16mTNF cells supplied with the ROS scavenger N-acetyl-cysteine 

(FxB16mTNF+NAC) diminished mTNF-α-induced accumulation of intracellular 

ROS in RAW 264.7(0.5±0.4%; Figure 22A and B) and led to abolition of mTNF-α 

induced cytotoxicity (FxB16mTNF, 34±9% cytotoxicity; FxB16mTNF+NAC, 0.1±7% 

proliferation; P<0.05; Figure 22C).   
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Figure 21. Membrane TNF-α-induced cell death occurs through induction of 
ROS. (A) Effects of various TNF-α isoforms on intracellular ROS generation in 
CD11b+ cells. Cells were labeled with ROS detection reagent, CM-H2DCFDA, 
and incubated with FxB16cont, FxB16cont+TNF-α, or FxB16mTNF, FxB16mTNF+N-
acetyl-cysteine (NAC, 2mM) and then ROS level was quantitatively analyzed. (B) 
Cytotoxic effect of mTNF-α on CD11b+ cells decreased in the presence of ROS 
scavenger NAC. Data is representative of three independent experiments 
expressed as the mean±SEM. P<0.05 and P<0.005, 1-way ANOVA with 
Tukey’s post-test. 
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Figure 22.  ROS level in mTNF-α treated RAW 264.7. 
(A) Fluorescent micrographs of RAW 264.7 (blue: DAPI nuclear staining) 
incubated for 8 hours with FxB16cont, FxB16cont+rTNF-α, or FxB16mTNF, 
FxB16mTNF+NAC (2mM) and subsequently treated with ROS detection reagent, 
CM-H2DCFDA (green). (B) Intensity of CM-H2DCFDA was quantitated. Increase 
in number of ROS generating cell was detected in RAW 264.7 cocultured with 
mTNF-α-expressing B16F10 cells which was reversed by addition of NAC. (C) 
Cytotoxic effect of mTNF-α on RAW 264.7. P<0.05, and P<0.0005, 1-way 
ANOVA with Tukey’s post-test. 
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Relative expression pattern of TNF-α/TACE correlates with survival 
probability in lung cancer patients 
 

In most studies, the role of TNF-α in cancer has only been investigated in 

murine models or in modified cell lines and to our knowledge the expression level 

of mTNF-α has not been evaluated in human tumors. To extend the relevance of 

these findings from the murine model to human cancer, 62 tissue cores available 

in a single human non-small cell lung carcinoma (NSCLC) tissue array containing 

squamous cell carcinoma, large cell carcinoma, and adenocarcinoma were 

examined.  

Using co-immunofluorescent staining analysis with anti-TNF-α and 

carcinoma-enriched membrane antigen (EMA) the distribution of both degree 

(high- or low-expressors) and localization (membrane, cytoplamic or both) of 

TNF-α staining were evaluated (Figure 23A). Forty of 62 individual tumors were 

positive for TNF-α expression. Among 40 tumors, expressing either high or low 

TNF-α, tumors presenting high levels of membrane-localized TNF-α, tumors 

presenting high cytoplasmic TNF-α (i.e. tumors with higher expression of sTNF-

α) or tumors with cytoplasmic and membrane-localized TNF-α were detected. 

Eighteen of the 40 tumors (45%) were high expresser with 27.8% cytoplasmic 

localization, 16.7% localized on the membrane and 55.5% were positive for both 

membrane and cytoplasmic TNF-α. Twenty two (65%) showed low expression of 

TNF-α with 18.3% cytoplasmic, 31.8% membrane and 50% with both membrane 

and cytoplasmic (Figure 23B).  These data are the first evidence for the 

existence of mTNF-α in human tumors and that its level varies significantly from 

patient to patient. Moreover, its level and localization varies significantly from 
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patient to patient, which is likely an important consideration in predicted 

therapeutic response to anti-TNF-α agents based on our pre-clinical 

observations.  

To provide further evidence that human tumors exhibit varying expression of 

TNF-α isoforms, the expression of sTNF-α was determined by ELISA of CM and 

the expression of mTNF-α was evaluated by immunoblot analysis of cell 

membrane fraction.  The analysis showed significant variation in the relative 

expression of membrane versus soluble TNF-α among different human lung 

cancer-derived cell lines (Figure 23C).  

The possible association of sTNF-α versus mTNF-α ratio with patient 

outcome was investigated (Shedden et al., 2008). It has been shown that there is 

a positive correlation between TACE surface expression and TNF-α cleavage. 

Upregulation of TACE protein has also been shown to be associated with a 

decline in mTNF-α level and increased soluble level and vice versa (Armstrong et 

al., 2006).  Using publicly accessible NSCLC microarray database (n=442 

patients), the gene expression data were divided into four groups. The first two 

groups featured low TNF-α gene expression and low or high TACE. The third and 

fourth groups demonstrated high TNF-α with either low or high TACE. Over all 

higher TACE level was significantly correlated to lower survival probability. 

Expression of high TNF-α/low TACE — representing tumors with high mTNF-

α:sTNF-α relative expression — was associated with longer survival than 

expression of high TNF-α/high TACE — representing tumors with low mTNF-

α:sTNF-α relative expression (log rank P=0.035; Figure 24). 
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Figure 23. Human NSCLC express various levels of membrane and soluble 
TNF-α. Analysis of TNF-α expression from 40 human non-small cell lung 
carcinoma (NSCLC) tissue array. Using co-immunofluorescent staining analysis 
the distribution of both degree (high- or low-expressors) and localization 
(membrane, cytoplamic or both) of TNF-α staining were evaluated. (A) Selected 
example of a membrane TNF-α expression (top) and a cytoplasmic TNF-α 
expression (bottom) in tumors using co-immunofluorescent staining analysis with 
anti-TNF-α (red) and carcinoma-enriched membrane antigen (EMA-green). (B) 
Graph displays the distribution of both degree and localization of TNF-α staining 
40 NSCLC patient samples. (C) Expression pattern of sTNF-α and mTNF-α in 
human NSCLC cell lines measured by ELISA and immunoblotting methods, 
respectively. Variation was observed in the ratio of mTNF-α to sTNF-α expressed 
by each cell line. 
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Figure 24. Relative expression pattern of TNF-α/TACE correlates with 
survival probability in lung cancer patients.  
Association between TNF-α and TACE co-expression pattern and survival 
probability in patients with NSCLC. Analysis of the publicly available data from 
the Shedden cohort was used to correlate TNF-α/TACE expression pattern with 
survival probability (n=442, log rank P=0.035). 
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Discussion 

Data from both experimental and human cancers have identified TNF-α as 

key cytokine modulating tumor progression, yet its effects are incompletely 

understood.  In murine models, deletion or inhibition of TNF-α reduces the 

incidence of cancer formation and even increases resistance to chemically 

induced carcinogenesis of the skin (Arnott et al., 2004; Moore et al., 1999). 

Consistent with this, there was a positive correlation between level of TNF-α 

expression and tumor grade in ovarian tumors (Naylor et al., 1993).  On the other 

hand, anti-tumorigenic properties of TNF-α are also well-documented. In a study 

by Boldrini et. al, assessment of TNF-α expression in 61 NSCLC samples 

demonstrated expression of TNF-α in 45.9% of cases and directly correlated with 

a better clinical outcome (Boldrini et al., 2000).  

Many soluble proteins such as TNF-α are originally expressed as a 

membrane-bound form and then processed to a secretory form through 

proteolytic cleavage. Some of these proteins such as Fas ligand, a member of 

TNF-α super family, have been described to have distinct biological effects on 

disease process as a membrane isoform when compared to the soluble isoform 

(LA et al., 2009). In this chapter we sought to better understand the role of 

different TNF-α isoforms in the modulation of tumor progression and to determine 

if some of the reported opposing effects can be attributed to distinct effects of 

these isoforms. 

Here, it was shown that subcutaneous implantation of mTNF-α expressing 

LLC and B16F10 cancer cell lines expressing uncleavable mTNF-α generates 
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significantly smaller tumors and this was not the result of impaired angiogenesis 

or reduced tumor cell proliferation but was driven by components of the host 

derived cells.  This idea was further strengthened by significant reduction of 

tumor associated myeloid cell content in mTNF-α-expressing tumors which were 

restored in tumor cells transplanted in TNFR-DKO mice. Numerous studies have 

shown critical roles for tumor-associated stromal cells, specifically, bone marrow-

derived myeloid cells, in tumor growth (De Palma et al., 2005; Shojaei et al., 

2008).  Upon activation by cancer cells, tumor-associated macrophages can 

release growth factors, cytokines and inflammatory mediators that may facilitate 

cancer cell invasion, migration, angiogenesis, tumor progression or metastasis 

(Condeelis and Pollard, 2006; Wang et al., 2005; White et al., 2001). 

Furthermore, systemic depletion (Zeisberger et al., 2006) or inhibition (Allavena 

et al., 2005) of tumor associated myeloid cells migration into the tumor has 

shown to significantly reduce tumor growth. In light of our findings, it would be of 

great interest to determine the precise role of myeloid cells in mTNF-α-mediated 

tumor growth. 

The presented data in this chapter revealed that tumor cell expression of 

the membrane isoform of TNF-α resulted in tumor associated myeloid cell death 

through increased ROS production.  It has been shown that TNF-α has the ability 

to induce necrotic cell death by utilizing death domain-containing adaptor 

proteins such as RIP1, TRADD and FADD upon TNFR activation. Once recruited 

to the TNFR death domain further downstream events lead to ROS generation 

and cell death (Festjens et al., 2006; Lin et al., 2004; Morgan et al., 2008). 
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Multiple pathways have been shown to lead to ROS generation upon TNFR 

activation (Corda et al., 2001; Vanden Berghe et al., 2007). Necrotic cell death 

induced by TNFR has been associated with generation of ROS derived from 

either mitochondrial or non-mitochondrial sources (Schwandner et al., 1998; 

Vanden Berghe et al., 2007). Mitochondrial complex I-mediated generation of 

ROS has been linked to direct activation by TNFR and ceramide mediated 

activation (Festjens et al., 2006; Morgan et al., 2008). In a study by Kim et al., 

TNFR was reported as an activator of Nox1 NADPH oxidase complex in a 

TRADD-and RIP1-dependent recruitment (Kim et al., 2009).  The presented 

findings suggest that the membrane form of TNF-α is very efficient at stimulating 

ROS generation and initiating necrotic cell death. This could be due to the ability 

of mTNF-α to recruit death domain-containing adaptor proteins more efficiently or 

mTNF-α activates a pathway that is more efficient in ROS generation. The 

mechanistic pathway(s) which leads to mTNF-α induced ROS generation 

requires further investigation.  

There has not been any study evaluating the relative expression of soluble 

and membrane TNF-α during tumor progression in human cancer, including 

analyses designed to determine if there is any correlation between the level of 

sTNF-α versus mTNF-α and the cancer outcome. Here, the in vivo tissue array 

staining and in vitro assessment of soluble and membrane TNF-α expression in 

human NSCLC cell lines showed that the ratio of soluble to membrane TNF-α 

varies among different tumor cell types. Furthermore, we verified this by 

immunofluorescence staining of tumor section for TNF-α. The fact that mTNF-α 
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is present in tumor and at different levels and subcellular localization may 

provides important clues to divergent outcomes seen in TNF-α positive tumor 

phenotype seen in different patients.  

  In order to generate sTNF-α, the membrane associated TNF-α is cleaved 

through proteolytic activity of TACE.  Although it has been suggested that other 

proteinases are capable of TNF-α cleavage it has been shown that TACE has the 

highest affinity for TNF-α ectodomain shedding among the other known substrate 

(Armstrong et al., 2006). Level of TACE present on the surface of the membrane 

has been inversely correlated with the level of membrane associated TNF-α and 

inhibition of TACE by MMP inhibitors has demonstrated a transient increase in 

mTNF-α surface expression (Armstrong et al., 2006; Solomon et al., 1997). 

These studies suggest that the regulation of TACE activity and subsequent 

alteration of the sTNF-α to mTNF-α ratio could have a great impact on tumor 

growth. The association between higher TACE and higher TNF-α gene 

expression in NSCLC and decreased survival further confirms the importance of 

different TNF-α isoforms availability on tumor regulation.   

As discussed in previous chapter antitumor therapy in clinical trial has 

been unsuccessful, suggesting that in order to take this forward, we need to 

identify those patients who are most likely to benefit from TNF-α antagonist 

treatment.  Perhaps determining the predominant form of TNF-α expressed by 

tumor in these patients would be beneficial for a more effective treatment with 

TNF-α inhibitors which can block both soluble and membrane isoforms.   
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 In summary, it was shown that TNF-α membrane versus soluble isoforms 

have opposing effects on cancer growth.  Expression of both forms of TNF-α in 

NSCLCs indicates that this finding is relevant to human malignancies and that 

isoform analysis should be applied to identify candidates for which anti-TNF-α 

agents are likely to be beneficial versus detrimental. 
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CHAPTER III 

 

MEMBRANE TNF-ALPHA-ACTIVATED PROGRAMMED NECROSIS IS 
MEDIATED BY CERAMIDE-INDUCED REACTIVE OXYGEN SPECIES 

 

Introduction 

Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine, that 

activates cell inflammation, proliferation, survival and cell death depending on 

autocrine/paracrine signals, and on the cellular context (Rangamani and Sirovich, 

2007; Wallach et al., 1999). The soluble homotrimeric form of TNF-α (sTNF-α) 

that is released from the cell surface activates multiple signal transduction 

pathways including NF-B survival pathway. In addition to activation of cell 

survival pathways, sTNF-α can induce cell death (Balkwill, 2009; Baud and Karin, 

2001). Activation of caspases and initiation of apoptosis has been described as 

the classic form of TNF-mediated cell death. Recent evidence suggests that 

sTNF-α can also trigger an alternative form of cell death that is distinct from 

apoptosis. This form of cell death is referred to as “programmed necrosis” and is 

dependent on the generation of reactive oxygen species (Morgan et al., 2008; 

Wu et al., 2012).  

So far, in the majority of studies TNF-α-mediated programmed necrosis 

have been attributed to the biological and mechanistic function of sTNF-α and its 

interaction with TNFR-1 in the presence of pharmacological or genetic inhibition 

of apoptosis (Arnott et al., 2004; Chan et al., 2003). TNF-α can also exist as a 

membrane-anchored protein. (Horiuchi et al., 2010; Perez et al., 1990). Like 

 66



sTNF-α, membrane TNF-α is biologically active and binds either of the two TNF-

receptors. The study presented in the previous chapter indicated that human lung 

NSCLC express both soluble and membrane isoforms. Using a murine lung 

cancer model it was shown that unlike sTNF-α, mTNF-α exhibits inhibitory effects 

on tumor growth and myeloid content. We demonstrated that mTNF-α efficiently 

induced myeloid cell death through induction of ROS-mediated necrosis in the 

absence of any apoptosis inhibitors. Currently nothing has been reported on how 

mTNF-α mediates programmed necrosis.  

Soluble TNF-α-induced programmed necrosis typically occurs where 

apoptosis is inhibited, and is mediated through a few defined pathways. In all 

cases, the serine/threonine kinase receptor interacting protein-1 (RIP-1) has 

been shown to play a central role in initiation of programmed necrosis (Li et al., 

2012; Moquin and Chan, 2010), mainly through nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase (NOX) or mitochondria (Fan et al., 

2002; Frey et al., 2002; Hordijk, 2006; Kim et al., 2007). Recent studies have 

also described a role for ceramide-mediated programmed necrosis. An increase 

in the level of intracellular ceramide has been linked to increased redox reaction 

within the cell (Garcia-Ruiz et al., 1997; Huwiler et al., 1999), suggesting the 

potential for crosstalk between ceramide, ROS, and TNF-α pathways in this 

process. In spite of these observations, the specific mechanism by which 

ceramide signaling leads to increased redox reactions is not fully understood. 

In this chapter we will determine the molecular pathway involved in mTNF-

α-mediated oxidative stress-induced cell death. Using inhibitors targeting 
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mitochondrial electron transport chain and NADPH oxidase we present evidence 

that mitochondrial-dependent oxidative stress is the major source of mTNF-

induced intracellular ROS generation, regulated by ceramide-activated protein 

kinase (CAPK) activity (Ardestani, under review).   

 

Materials and Methods 

Mice, cell lines and materials. Wild-type C57Bl/6 (WT) mice were purchased 

from Jackson Laboratory. Homozygous mutants for TNFR-1, TNFR-2, and 

TNFR-1/2 double knockout (TNFR-DKO) on a C57Bl/6 background were a 

generous gift from Dr. D. Polk. B16F10 melanoma, RAW264.7 and L929 cells 

were purchased from American Type Culture Collection (ATCC) and were 

maintained in DMEM with 10% (v/v) fetal bovine serum, heat inactive fetal bovine 

serum and MEM with 10% (v/v) horse serum, respectively. N-Acetyl-L-cysteine 

(NAC), 2-Thenoyltrifluoroacetone (TTFA), myxothiazol and 4-

(Dimethylamino)pyridine (DMAP) were purchased from Sigma-Aldrich and 

prepared fresh on the day of the experiment.  

Constructs. Membrane TNF-α-expressing cells were generated by cloning the 

mTNFΔ1-9, K11E sequence encoding a mutant transmembrane TNF-α protein 

with a deletion at the cleavage site between pre-sequence and mature 

membrane TNF-α (BCCM/LMBP plasmid collection, Ghent University) into the 

BamH1-EcoR1 site of LZRS-IRES-Neo retroviral vector, conferring neomycin 

resistance. This mutation prevents cleavage of the 26-kDa membrane TNF-α into 

secretory TNF-α isoform. An empty LZRS vector was used as a control vector. 
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Surface expression of TNF-α. Trypsinized cells were incubated with anti-TNF-α 

antibody (1 μl/2.5 x 104 cells, Southern Biotech) for 30 minutes on ice. PE 

conjugated secondary antibody (0.125 μg/106 cells/100 μl) was added for 30 

minutes on ice. Surface expression of TNF-α was measured using flow 

cytometry. 

TNF-α cytotoxicity assay. Overnight cultured RAW 264.7, L929 or freshly 

isolated bone marrow CD11b cells (EasySep, StemCell Technologies) 

(2.5x104/100 µL/well, target) were cocultured with Paraformaldehyde-fixed 

(Zhang et al., 2008) control, control+100 U/ml of recombinant TNF-α or mTNF-α 

(effector) at target:effector ratio of 1:10 and incubated for 48 hours. Cells were 

labeled with 100 μl of PBS containing 0.5 mg/mL of 3-[4,5-dimethylthiazol-2-yl] 

2,5,-diphenyltetrazolium bromide (MTT) (Sigma) for 2 hours at 37°C then lysed 

with 0.1 ml DMSO.  Photometric measurement was carried out at 540 nm. 

Percentage of cell death was calculated by using the following formula: Cell 

death (%) = (1 – ODsample/ODcontrol) x 100.   

Lactate dehydrogenase (LDH) assay. Early cell damage was determined using 

the LDH cytotoxicity detection kit (Promega, Madison, WI), which quantifies the 

LDH release from the cells into the culture medium. Cells were seeded in a 96-

well plates at a density of 2.5x104 cells/well overnight to promote adherence. 

Cells were cocultured with fixed B16F10 control or mTNF-α in the absence or 

presence of the indicated treatments for 24 hours. Supernatants from the 

cultures were collected and used in the LDH assay as instructed by the 

manufacturer. LDH activity was detected separately in the supernatant and cell 
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lysate. The percentage of LDH leakage was calculated as 100 x (LDH supernatant / 

(LDH supernatant + lysate)).  

Measurement of intracellular ROS. The oxidant-sensing probe CM-H2DCFDA 

(Invitrogen) was used to detect intracellular reactive oxygen species (ROS). An 

overnight culture of cells (2.5x104) were loaded with 10 μM CM-H2DCFDA for 30 

minutes and cocultured with 2.5x105 fixed B16F10 control or mTNF-α-expressing 

cell in the absence or presence of the indicated treatments for 6 hours. 

Fluorescence was determined using a luminescence spectrophotometer (Spectra 

max, Molecular Devices) with an excitation wavelength of 495 nm and emission 

wavelength of 525 nm.  

Immunoblot analysis. Target cells were plated at a density of 106 cells 

overnight (37°C, 5% CO2).  Cells then were treated with fixed control or mTNF-α-

expressing B16F10 at target cell/fixed tumor cell ratio of 1:10.  After 30 minutes 

incubation at 37°C, target cells were lysed with RIPA buffer [3 M NaCl, 1 M Tris, 

0.5 M EDTA, 10% SDS, 1% NP40 substitute and 1× Complete Protease Inhibitor 

Cocktail (Roche)]. Whole cell lysate was evaluated for caspase-3 cleavage (Cell 

Signaling Technology) and RIP-1 (BD biosciences) by Western blot analysis.  

Statistical analysis. The statistical significance between experimental and 

control groups was determined by Student's t-test or ANOVA followed by Tukey’s 

post-test using Prism software (Graphpad, San Diego, CA). A P-value of <0.05 

was considered statistically significant. 
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Results 

 

Membrane TNF-α is an inducer of cell death 

To investigate the ability of the membrane versus soluble TNF-α isoforms 

to induce cell death, RAW 264.7 cells, a line derived from murine leukemic 

monocytes/macrophage cells (target), were mixed with 1% paraformaldehyde-

fixed B16F10 melanoma cells (effector) expressing empty vector, ±100 U/ml 

rTNF-α (FxB16cont or FxB16cont+rTNF-α), or fixed mTNF-α-expressing B16F10 

cells (FxB16mTNF) at an target:effector ratio of 1:10. Paraformaldehyde-fixed 

tumor cells were used to eliminate the endogenous sTNF-α (Figure 25A). As 

measured by the MTT dye reduction assay, incubation with FxB16mTNF resulted 

in more than 70±12% cytotoxicity of RAW 264.7 myeloid cells after 48 hours of 

incubation, as compared to RAW 264.7 cells incubated with FxB16cont (Figure 

25B, P<0.05). In contrast FxB16cont+rTNF-α increased RAW 264.7 cell survival 

compared to control. 

To determine the molecular pathway leading to mTNF-α-induced cell 

death, we utilized the highly TNF-α-sensitive L929 fibrosarcoma cell line. As 

shown in Figure 25C, mTNF-α isoform resulted in more than 50% cell death 

compared to L929 cocultured with FXB16cont as determined by MTT reduction 

assay. Cellular toxicity causes membrane damage and results in the release of 

lactate dehydrogenase (LDH) from the cytoplasm and thus LDH in the media can 

also be used to measure cell death. To confirm the results obtained with MTT 

assay, we measured LDH release in L929 cell in the presence of control or 
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mTNF-α-expressing tumor cells.  The mTNF-α isoform increased the level of 

LDH leakage by 12% over control (Figure 25D).   

 

Membrane TNF-α-induced cell death was mediated through either TNFR-1 
or TNFR-2  

 
Membrane TNF-α signal transduction has been linked to a cooperative 

signaling between TNFR-1 and TNFR-2 (Chan et al., 2003; Lazdins et al., 1997). 

Next we sought to determine whether mTNF-α-mediated cell death was 

dependent on a specific TNF receptor. Primary CD11b myeloid cells were 

isolated from wild-type (WT), TNFR-1 knockout (TNFR-1KO), TNFR-2KO or 

TNFR-1 and TNFR-2 double knockout (TNFR-DKO) and cocultured with fixed 

control tumor cells with or without rTNF-α or fixed mTNF-α-expressing tumor 

cells for 48 hours. Cell cytotoxicity was determined by MTT assay. As shown in 

Figure 26, presence of either TNFR-1 or TNFR-2 resulted in increased levels of 

mTNF-α-induced cytotoxicity similar to WT-CD11b (~17% cell death in WT-

CD11b, ~20% in TNFR-1KO-CD11b and TNFR-2KO-CD11b). In contrast, control 

cells treated with rTNF-α improved cell survival in WT- and TNFR-1KO-CD11b 

and resulted only in ~4% cell death in TNFR-2KO-CD11b and ~5% cell death in 

TNFR-DKO-CD11b. Interestingly, mTNF-α-mediated cell cytotoxicity was 

reversed in TNFR-DKO-CD11b cells. These findings suggested that mTNF-α-

induced cell death can be mediated through both TNFR-1 and TNFR-2.   
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Figure 25. Membrane TNF-α isoform effectively induces cell death. (A) 
Schematic diagram of fixed B16F10 cells coculture with L929/RAW264.7. (B) 
RAW cells were cocultured with paraformaldehyde-fixed control (FxB16cont), 
control+rTNF-α (FxB16cont+TNF-α), or mTNFα (FxB16mTNF) for 24 hours. Cell 
death rate was measured by MTT assay. (C) MTT assay showing the cytotoxic 
effects of mTNF-α isoform on L929. (D) LDH assay measuring L929 cells %LDH 
leakage in the presence of control or mTNF-α-expressing fixed B16F10 tumor 
cells. Data show the percentage of LDH leakage into media to total LDH (media 
+ cells). Each sample was assayed in triplicate, with each experiment repeated at 
least 3 times independently. Data are expressed as average ± S.E. P<0.05 and 
P<0.005, 1-way ANOVA with Tukey’s post-test (B), students’s t-test (C and D). 
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Figure 26. Membrane TNF-α-induced cell death can be mediated through 
both TNFR-1 or TNFR-2. Freshly isolated CD11b myeloid cells from wild type 
mice (WT-CD11b), mice deficient in TNF receptor 1 (TNFR-1KO-CD11b), TNFR-
2KO-CD11b or both receptors (TNFR-DKO-CD11b). Cells were cocultured with 
paraformaldehyde-fixed control (FxB16cont), control in the presence of 100 U/ml 
recombinant TNF-α (FxB16cont+rTNF-α), or mTNF-α (FxB16mTNF) for 24 hours. 
Percentage of cell death was measured by MTT assay. Data present mean 
percentage (bars, mean ± S.E.) of three replicates from 3 independent 
experiments.  
 

 

 
 
 
 
 

 74



Membrane TNF-α exerts cell cytotoxicity by increasing intracellular ROS 
production 
 

Induction of cell death by sTNF-α occurs mainly through activation of 

caspases leading to apoptosis. To test whether the mTNF-α isoform exerts its 

cell toxicity in part by activating the caspase pathway, we determined the level of 

cleavage/activation of caspase-3 proteins in L929 cells treated with fixed control 

or mTNF-α-expressing tumor cells.  As presented in Figure 27A, treatment of 

L929 cells with FxB16mTNF did not result in an increased level of active-caspase-

3.  

In the previous chapter we showed that mTNF-α-treated myeloid cells 

exhibit increased intracellular ROS and decreased cell survival. To demonstrate 

an association between intracellular ROS level and cell death in L929 

fibrosarcomas, cells incubated with different TNF-α isoforms were measured 

using CM-H2DCFDA (which quantitatively reacts with oxygen species to produce 

a highly fluorescent dye). L929 cells incubated with FxB16mTNF resulted in a 60% 

increase in CM-H2DCFDA fluorescence, indicating an increase in the level of 

ROS (P>0.05; Figure 27B). Furthermore, incubation of L929 cells with ROS 

scavenger N-acetyl-cysteine (NAC) reduced mTNF-α-mediated ROS level (130% 

of control in FxB16mTNF; 94% of control in FxB16mTNF+NAC; Figure 27C, P<0.5). 

This was followed by 4-fold decrease in LDH release in mTNF-α-treated L929 

cells supplied with NAC (P<0.05; Figure 27D).  
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Figure 27. Membrane TNF-α exerts cell cytotoxicity by increasing 
intracellular ROS production. (A), caspase-3 activity in L929 and RAW 264.7 
cells after incubation with paraformaldehyde-fixed control (FxB16cont) or mTNF-α 
(FxB16mTNF) for 30 minutes.  L929 cells were harvested and total cellular protein 
was analyzed for active caspase-3. (B) ROS production measured by CM-
H2CDFDA intensity in L929 cocultured with fixed control or mTNF-α-expressing 
B16F10. (C and D) Addition of N-acetyl cysteine (2 mM) reduced ROS level (C) 
and decreased LDH leakage into the media (D) in L929 cells. Data are 
represented as percent of CM-H2DCFDA intensity (C) or LDH in media/total LDH 
(D) to L929 cells cocultured with FxB16cont cells with or without NAC. Each 
sample was assayed in triplicate, with each experiment repeated at least 3 times 
independently. Data are expressed as average ± S.E. P<0.05. Students’s t-test.  
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Inhibition of mitochondrial respiratory chain decreased mTNF-α-mediated 
ROS generation 
 

Next we sought to determine the source of ROS in response to mTNF-α in 

L929 cells. There is report of nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase-1 (NOX1) and mitochondria as the two major source of TNF-α 

induced ROS production (Bedard and Krause, 2007; Liu et al., 2002). To do so, 

the NADPH-dependent oxidase and the mitochondrial respiratory chain complex 

II were blocked using DPI (2 μM) and TTFA (0.5 μM) respectively. The NADPH-

dependent oxidase inhibitor DPI did not inhibit the ROS production induced by 

mTNF-α (156.7±8.3% of control in FxB16mTNF and 155.4±14.4% in 

FxB16mTNF+DPI; P<0.05; Figure 28A) and further had no effect on the LDH 

leakage (270% of control in FxB16mTNF and 280% in FxB16mT+DPI; P<0.05; 

Figure 28B). However, addition of TTFA into L929 cells cocultured with mTNF-α-

expressing tumor cells, reduced CM-H2DCFDA oxidation (108% of control) and 

LDH release (10% of control, Figure 28B). These data suggested that 

mitochondria are the source of mTNF-induced ROS generation and cell death.  
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Figure 28. Inhibition of mitochondrial respiratory chain decreases mTNF-α-
mediated ROS generation. (A and B) L929 cell cocultured with mTNF-α-
expressing tumor cells in the absence or presence of NOX inhibitor-DPI (2 μM) 
and mitochondrial complex II inhibitor-TTFA (0.5 μM) for 24 hours. TTFA reduced 
ROS level, shown by reduction of CM-H2DCFDA intensity (A) and LDH leakage 
into media (B). Addition of NOX inhibitor-DPI had no effects on both ROS 
generation of LDH level. Data are represented as % of CM-H2DCFDA intensity 
(A) or LDH in media/total LDH (B) to L929 cells cocultured with control 
expressing tumor cells (FxB16cont) with or without DPI or TTFA. Each sample was 
assayed in triplicate, with each experiment repeated at least 3 times 
independently. Data are expressed as average ± S.E. P<0.05, 1-way ANOVA 
with Tukey’s post-test.  
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Membrane TNF-α-mediated ROS production involves ceramide pathway 

TNFR-mediated mitochondrial ROS generation can be induced through 

RIP-1 kinase activity or through a ceramide-dependent signaling pathway 

initiated by sphingomyelinases (SMases) activity (Figure 29).  To determine the 

specific pathway responsible for activation of mitochondrial ROS production we 

analyzed level of active RIP1 by evaluating its phosphorylation in L929 or RAW 

264.7 in the presence of FxB16cont or FxB16mTNF by immunoblot analysis. As 

shown in Figure 30A, treatment of both cell lines with fixed membrane expressing 

tumor cells, FxB16mTNF, did not increase the level of RIP-1 phosphorylation.  

There is evidence to support the role of ceramide as a second messenger 

of TNF-α activated cells involved in activation of programmed necrosis (Corda et 

al., 2001). Next we evaluated the role of ceramide signaling in TNF-α-induced 

ROS production and survival. Addition of DMAP (1 mM), a CAPK inhibitor, 

reduced mTNF-α-induced ROS by 60% (138±15.6% of control in FxB16mTNF; 

80±2.9% in FxB16mTNF+DMAP; Figure 30B). Percentage of LDH leakage was 

also reduced from 276% in mTNF-α-treated cells to 163% in mTNF-α-treated 

cells supplied with DMAP (P<0.005, Figure 30C). These findings suggested that 

mTNF-α-induced mitochondrial ROS generation requires protein kinase activity 

associated with ceramide. This was further confirmed in RAW 264.7 cell lines. 

Similar to L929 cells, inhibition of CAPK in mTNF-α treated Raw 264.7 cells 

reduced LDH leakage (Figure 30D).    
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Figure 29.  Schematic diagram of TNF-α-activated pathways leading to ROS 
generation. Binding of TNF-α to its receptor activates sphingomyelinases 
(SMase) which convert sphingomyelin (SM) to ceramide. Ceramide activates 
ceramide-activated protein kinase (CAPK) and induces mitochondrial reactive 
oxygen species (ROS) generation. Alternatively, TNFR activation leads to 
autophosphorylation between RIP-1 with RIP-3 result in formation of the 
necrosome. Necrosome induces ROS production via direct effects in the 
mitochondria.  
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Figure 30. Membrane TNF-α-mediated ROS production involves ceramide 
pathway. (A) Level of phospho-RIP1 in L929 or RAW 264.7 cells treated with 
fixed B16F10 control cells (FxB16cont) or B16F10 mTNF-α (FxB16mTNF) cells. 
After 30 min incubation, L929 cells were harvested and total cellular protein was 
analyzed for RIP-1. Inhibition of CAPK reduced mTNF-α-mediated ROS 
generation (B) and LDH release in L929 (C) and LDH release in RAW26.7 (D).  
Data are represented as % of CM-H2DCFDA intensity (B) or LDH in media/total 
LDH (C and D) to cells cocultured with control expressing tumor cells (FxB16cont) 
with or without DMAP. Each sample was assayed in triplicate, with each 
experiment repeated at least 3 times independently. Data are expressed as 
average ± S.E. Student t-test. P<0.05. 
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Discussion 

Previously necrotic cell death has been defined as a sudden, unregulated 

form of cell death which leads to inflammation and tissue damage. However, in 

recent years accumulating evidence suggests that not all form of necrotic cell 

death is accidental but can instead be a programmed event (Morgan et al., 2008; 

Wu et al., 2012). There have been several reports of TNF-α-induced 

programmed necrosis, mainly in the context of the soluble form of TNF-α. 

Importantly, induction of programmed necrosis by sTNF-α typically requires the 

presence of inhibitors of caspases (Robaye et al., 1991; Zhang et al., 2009).  

Here, we present for the first time that the lesser-known membrane form of TNF-

α has the ability to induce programmed necrosis through ROS generation, 

independent of caspase inhibitors. In this study we explored the mechanism of 

mTNF-α-mediated ROS generation and programmed necrosis.  

In our study treatment of mTNF-α-induced L929 cells with mitochondrial 

inhibitor complex II increased ROS reduction and improved survival, suggesting 

a role for mitochondrial complex II in mTNF-α-mediated programmed necrosis. 

The plasma membrane-associated NADPH oxidases (NOX) have been proposed 

as an alternate source of ROS production (Fan et al., 2002; Hordijk, 2006; 

Quinlan et al., 2012). In contrast to what we observed with mitochondrial 

inhibitor, inhibition of NOX failed to inhibit ROS generation and to increase cell 

viability. 

The involvement of the mitochondria in sTNF-α induced ROS production 

has been demonstrated in several studies (Meier et al., 1989; Shoji et al., 1995). 
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The mechanisms by which sTNF-α induces mitochondrial ROS are complex and 

not fully understood. Multiple pathways have been proposed in which activated 

TNFR increases the activity of metabolic enzymes such as glutamine synthase 

(GLUL), glutamate dehydrogenase 1 (GLUD1), and glycogen phosphorylase 

(PYGL) (Zhang et al., 2009).  These metabolic enzymes eventually stimulate the 

TCA cycle and oxidative phosphorylation, which leads to enhanced mitochondrial 

ROS production (Mates et al., 2009). In several studies, inhibition of 

mitochondrial electron transport, using specific inhibitors of mitochondrial 

complex I, II, or III have shown to reverse oxidative stress (Corda et al., 2001; 

Quinlan et al., 2012) .  

Although, RIP1/RIP3 kinases have been shown to orchestrate the 

programmed necrosis pathway activity of sTNF-α, new pathways, such as the 

ceramide pathway, has emerged as alternative mechanism for induction of 

programmed necrosis (Vandenabeele et al., 2010). An enhanced level of 

ceramide has been shown to contribute to depletion of ROS scavenger, 

glutathione (Mari et al., 2004) and increasing mitochondria susceptibility to GD3, 

a ceramide-derived ganglioside. GD3 traffics to the mitochondria and directly 

induces ROS production (Garcia-Ruiz et al., 2002; Garcia-Ruiz et al., 2000). In 

our study mTNF-α-induced ROS and cell death seems to be regulated through 

activity of ceramide since the inhibitor of CAPK, blocked mTNF-α-mediated ROS 

and cell death. Both membrane bound neutral sphingomyelinase (N-SMase) and 

the endosomal acid SMase (A-SMase) shown to be the target of TNFR signal 

transduction in ceramide formation pathway (Cutler and Mattson, 2001; Won and 
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Singh, 2006). TNF-α-induced activation of both A-SMase and N-SMase has been 

implicated in hepatocytes, endothelial (Corda et al., 2001), monocytes 

(Wiegmann et al., 1994) and pre-B cells (Adam et al., 1996).  Whether, mTNF-α 

targets N-SMase or A-SMase remains to be determined.  

Unlike soluble TNF-α which its signal transduction is mediated mainly 

through TNFR-1 (Morgan et al., 2008; Rodriguez-Berriguete et al., 2012), it is 

evident from our study that mTNF-α is efficient in activation of both TNFR-1 and 

TNFR-2. Members of the tumor necrosis factor receptor superfamily (TNFR-1, 

Fas,TRAIL) previously shown to be  capable of inducing cell death (Shen and 

Pervaiz, 2006). These receptors, including TNFR-1 contain a conserved DD in 

the intracellular region that is required for activation of caspases (Gupta, 2002; 

Rangamani and Sirovich, 2007). However induction of cell death by DD-lacking 

TNF receptor superfamily has also been reported.  For instance, TNFR-2 shown 

to trigger cell death in the rhabdomyosarcoma cell line KYM-1 (Grell et al., 1993) 

and the stimulation of CD30 induces cell death in T cell hybridomas (Lee et al., 

1996). It is not yet clear how TNF receptor superfamily members lacking a death 

domain (i.e. TNFR-2) execute their death inducing capability. This effect could be 

FADD-dependent (Depuydt et al., 2005) or could be mediated through 

cooperative activity with other receptors such as Fas/FasL (Teh et al., 2000).  

In conclusion we have demonstrated that mTNF-α can induce cell death 

independent of caspase inhibitors by increasing ROS. This occurs through RIP-

1-independent, ceramide-dependent activation of mitochondrial ROS.  Molecular 
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mechanism, leading to mTNF-α-induced ceramide formation and mitochondrial-

ROS generation, remains to be investigated. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER IV 

 

DISSCUSSIONS AND FUTURE DIRECTIONS 

 

Summary 

In this body of work, we showed that membrane and soluble TNF-α 

isoforms have diametrically opposing effects on both tumor growth and myeloid 

content.  Mouse lung and melanoma tumor lines expressing mTNF-α, generated 

smaller tumors devoid of monocytes versus respective control lines or lines 

expressing sTNF-α.  The lack of myeloid cells was due to a direct effect of 

mTNF-α on myeloid survival via induction of cell necrosis by increasing reactive 

oxygen species (ROS) (Figure 31). Next, a novel mechanism by which mTNF-α 

induces programmed cell death was identified (Chapter III). Using a cultured 

RAW 264.7 monocytic cell line and L929 fibroblasts, we found that mTNF-α 

increased ROS-mediated cytotoxicity independent of RIP-1, a serine/threonine 

kinase that serves as a main adaptor protein of sTNF-α induced programmed 

necrosis. Instead, mTNF-α induced ROS generation and cell death through the 

activity of the ceramide pathway as determined by the use of ceramide-activated 

protein kinase (CAPK) inhibitor which prohibited both ROS level and cell death. 

These findings demonstrate that there are significant differences in the 

role of various TNF-α isoforms in tumor progression and that the mTNF-α isoform 

is a more effective inducer of programmed necrosis. This is the first report 

identifying the mTNF-α isoform as a potent activator of programmed necrosis, 
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even in the absence of inhibitors of apoptosis, via ceramide-dependent 

mitochondrial ROS generation. The molecular mechanism by which the two 

different TNF-α isoforms exert distinct biological effects remains elusive. It is 

interesting that although sTNF-α and mTNF-α have similar structures and are 

able to interact with both TNF-α receptors, they exert opposing effects on tumor 

growth and cell survival. This raises questions on the plausible molecular 

mechanisms to account for these differences and how two different isoforms with 

similar structures can elicit such contrasting biological responses.  

In the following sections we will use published literature to establish a link 

between the signaling events leading to programmed necrosis, starting with 

TNFR stimulation which marks the programmed necrosis initiation followed by 

activation of the secondary messenger ceramide and the execution of 

programmed necrosis by increasing mitochondrial ROS.  We will discuss the 

mechanisms by which TNF receptor activation increases ceramide level and 

mitochondrial ROS generation and how different TNF-α isoforms may modulate 

this process differently.  Finally, we will discuss whether activation of 

mitochondrial ROS through ceramide is sufficient to initiate cell death or perhaps 

there are other pathways contributing to these events (Figure 31).  
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Figure 31. Schematic overview of tumor-derived soluble and membrane 
TNF-α effects on tumor associated myeloid cells. Soluble TNF-α expression 
by tumor cells results in survival of tumor associated myeloid cells. In contrast, 
membrane TNF-α increases programmed necrosis through increased ceramide-
mediated mitochondrial ROS generation.  
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Role of Ceramide in Programmed Necrotic Cell Death 

TNF receptor superfamily is well known for their ability to induce cell 

death. As discussed in chapter I, some of these receptors contain a cytosolic 

death domain which regulates cell death. Programmed necrosis stimulated by 

TFNR-1, Fas and TNF-related apoptosis-inducing ligand receptor-1 and -2 

(TRAIL-R1/2), usually require presence of apoptosis inhibitors or the absence of 

the caspase-8-activating adaptor, FADD.  Once programmed necrosis is initiated, 

multiple factors contribute to the final execution of cell death. One of the most 

studied regulators of necrosis is receptor interacting protein-1 (RIP-1). This 

pathway was discussed in chapter I. Another factor that induces TNF-α-mediated 

necrosis is ceramide, which in our study was identified as the mediator of mTNF-

α-induced mitochondrial ROS and programmed necrosis. Although the 

mechanism by which ceramide induced mitochondrial ROS was not determined, 

some of the necessary molecular events in ceramide-induced mitochondrial ROS 

have been characterized. Interestingly, most of these studies have been done in 

relation to the soluble form of TNF-α and its activation of TNFR-1 and therefore, 

our understanding of mTNF-α mediated ceramide activation and TNFR-2 activity 

is limited.  We hypothesize that the downstream events leading to ceramide-

mediated mitochondrial ROS and cell death are shared by both TNF-α isoforms 

albeit with different initial activation mechanism. In the following section, we will 

discuss the current knowledge of mechanisms by which ceramide contributes to 

programmed cell necrosis and how its activity is linked to TNF-α-mediated ROS 
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production. These pathways could serve as a model for membrane TNF-α-

activated programmed necrosis.   

 

Ceramide as a signaling molecule  

Signaling through the sphingomyelin pathway and the generation of the 

second messenger ceramide is ubiquitous and evolutionarily conserved. Most 

mammalian cells appear capable of signaling through the sphingomyelin pathway 

(Kolesnick and Kronke, 1998). The sphingomyelin pathway has been implicated 

as a major signaling mechanism that modulated the action of a number of 

receptors such as Fas, CD28, CD95, IL-1β and progesterone, causing the 

activation of sphingomyelinases (SMases) (Kolesnick and Kronke, 1998). 

Activated SMases hydrolyze the phosphodiester bond of sphingomyelin to yield 

the second messenger ceramide and phosphorylcholine (Won and Singh, 2006).  

For some of these receptors, ceramide signals immediately after cellular 

activation and hence appears to fulfill the role of a classic second messenger, 

whereas in other instances, ceramide generation is a later response downstream 

of a complex set of interacting signals (Kolesnick and Kronke, 1998). 

 

Ceramide-mediated mitochondrial ROS and programmed necrosis 

Studies have shown that naturally occurring C16 ceramide or addition of 

exogenouse C2-ceramide causes an increase in ROS generation through 

mitochondria (Di Paola et al., 2000; Garcia-Ruiz et al., 1997). Ceramide may 

generate ROS from mitochondria as a consequence of cytochrome c release, an 
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electron carrier of the respiration chain between complexes II and III in 

mitochondria (Cai and Jones, 1998). This was further demonstrated by 

Ghafourifar et al. who showed that C2- and C6-ceramide induce release of 

cytochrome c from isolated mitochondria (Ghafourifar et al., 1999). This led to a 

decrease in mitochondrial oxygen consumption, mitochondrial inner 

transmembrane potential, Ca2
+ retention, and finally to mitochondrial dysfunction 

and ROS generation (Ghafourifar et al., 1999). Ceramide was also reported to 

disturb the respiratory chain through direct interaction (Gudz et al., 1997; 

Schulze-Osthoff et al., 1992) as C2- and C6-ceramide treatment induced large 

pores in phospholipid planar membranes (Siskind and Colombini, 2000). 

Dynamic changes in the ceramide content of mitochondrial membranes by 

vesicular transport or local production could possibly regulate mitochondrial 

integrity and ROS generation. 

 

TNFR-1-mediated ceramide generation 

TNFR-1-mediated ceramide signaling is regulated through independent 

activation of two distinct forms of sphingomyelinases (SMases), a membrane-

associated neutral SMase (N-SMase) and an acid SMase (A-SMase), found in 

caveolae and in the endosomal-lysosomal compartment (Liu and Anderson, 

1995; Wiegmann et al., 1994). N-SMase and A-SMase are activated 

independently by a distinct cytoplasmic domain of TNFR-1(Wiegmann et al., 

1994). The domain of TNFR-1 activating the A-SMase pathway corresponds to 

the death domain (DD) (Tartaglia et al., 1993; Wiegmann et al., 1994). This 
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region binds the cytoplasmic protein TRADD which serves as an adapter in 

recruitment of other proteins to the cytoplasmic TNF receptor complex (Hsu et 

al., 1996a; Shu et al., 1996). In contrast, N-SMase activation is mediated by 

neutral sphingomyelinase domain (NSD), which is adjacent to the death domain 

of TNF-R1 (Adam-Klages et al., 1996). The NSD binds FAN (factor associated 

with N-SMase activation) that mediates activation of N-SMase. Ceramide 

generated by N-SMase at the plasma membrane directs the activation of 

ceramide-activated protein kinase (CAPK) (Mathias et al., 1991).  

The described pathways would explain the ceramide-induced 

programmed necrosis in cells expressing DD-containing TNFR-1. However, in 

our study mTNF-α-mediated cell necrosis also occurred in TNFR-1 knockout 

cells, indicating the presence of another distinct pathway independent of the 

death domain region. In the following sections we will propose possible 

mechanisms by which DD-lacking TNFRs can induce cell death. Furthermore, we 

will discuss models by which different TNF-α isoforms can elicit different 

biological responses.  

 

Proposed Models Describing Differential Activity Between Soluble and 
Membrane TNF-α 

 

Receptor/ligand stability 
 

The variation in biological response to the soluble versus the membrane 

form of cytokine receptors activation has been observed in many TNF 

superfamily. The membrane form of molecules such as Fas ligand have been 
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shown to have an opposing role in modulating cell death when compared to their 

soluble form (Date et al., 2003). In a study by Hohlbaum and colleagues it was 

shown that in glaucoma, full-length FasL (i.e. membrane form) accelerates retinal 

ganglion cell death. By contrast, FasL-deficiency or administration of soluble 

FasL has a protective effect (Hohlbaum et al., 2000). TRAIL, which has important 

functions in inducing apoptosis, has been shown to have differential activation 

capacity toward TRAIL-R1 and R2 in a soluble form versus the membrane form 

(Wajant et al., 2001). 

The molecular mechanisms accounting for these differences, remains 

unknown. A model proposed by Grell links mTNF-α isoform differential signaling 

pattern to its ability to form a more stable interaction with TNFRs (Grell et al., 

1995). This model suggests that mTNF-α signaling depends on cell to cell 

contact which creates a juxtaposition of mTNF-α/TNFR, allowing formation of 

ligand-receptor complexes of greater stability with a different quality and quantity 

of the induced cellular response compared to sTNF-α. It is possible that the 

variation in ligand/receptor complex stability, and their half-life, may contribute to 

the different biological responses observed between different isoforms. This 

models remains to be validated.   

 

Differential receptor conformation changes induced by different isoforms 
 

TNF-R1 and TNF-R2 each contain four cysteine-rich repeats in their 

extracellular domains and form elongated shapes which interact with the lateral 

grooves of the trimeric ligand formed between each two of its three protomers 
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(Banner et al., 1993; Naismith and Sprang, 1998). Ligand-dependent 

trimerization of the receptors has been known as the key event for signal 

initiation. Ligand binding to the preformed TNFR complex induces conformational 

change and activates the receptor and then acquires signal competence (Wajant 

et al., 2003). Given the diverse events modulated by changes in the spatial 

proximity of cell surface receptors and the trimeric nature of TNF-α, it is possible 

that anchored mTNF-α encourages further modification or spatial arrangement of 

receptors  on adjacent cells which result in induction of different signaling 

pathway. This may lead to differential recruitment of TNFRs adaptor molecules. 

 

Inhibition of TNFR/TNF-α Endocytosis 

Receptor internalization is a widely used mechanism to modulate 

signaling. Binding of hormones and growth factors to their cognate receptors 

typically trigger internalization, leading to transient receptor clearance from the 

surface, followed by either recycling to the membrane or lasting clearance 

through degradation in lysosomes (Bonifacino and Traub, 2003).  Endocytosis 

also is an important mechanism to regulate TNF-α signaling. TNFR/TNF-α 

internalization and lysosomal degradation prohibits TNF signaling pathway and 

subsequent biological responses. Engagement of membrane TNF-α and 

formation of a stable complex may prevent cells from internalizing the TNFRs 

and this may serve as a stress signal which could ultimately induce a necrotic 

cell death. 

 

 94



Clustering of TNFRs and formation of lipid rafts 

The mechanism by which the membrane TNF-α isoform induces cell death 

through DD-lacking TNFR-2 remains unknown. As discussed earlier, the cell 

death inducing property of TNFR-2 has been related to its cooperative nature 

with TNFR-1, through common signal intermediates such as TRAF1 and TRAF2 

(Hsu et al., 1996b; Rothe et al., 1994). Therefore mTNF-α induced cell death 

observed in TNFR-1 knockout cell (chapter III) is indicative of the existence of an 

alternate mechanism that allows DD-lacking receptors to initiate a cell death 

signal.  

It is well known that most TNF receptor superfamily members are able to 

induce cell death; CD40 and CD30 are among these receptors. This is intriguing, 

given the fact that similar to TNFR-2, the cytoplasmic C terminus of CD30 and 40 

lack a death domain homology with the cytotoxic members of the TNFR 

superfamily, such as Fas, TNFR1, and TNF-related apoptosis-inducing ligand 

(TRAIL) receptors (Eliopoulos et al., 2000; Gulbins and Grassme, 2002).  

How these events regulate programmed cell necrosis through ceramide 

could be explained by the formation of lipid rafts.  A variety of receptors including 

CD30, CD40, CD95 and TNFR from the TFNR superfamily, have been shown to 

cluster upon stimulation (Gulbins and Grassme, 2002). Often these clusters are 

formed in cholesterol- and sphingolipid-rich domains of the cell membrane 

referred to as rafts.  Upon activation of these receptors, ASMase is recruited from 

intracellular compartments to the cell surface which results in the release of 

ceramide in rafts, the generation of signaling platforms and the clustering of 
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receptors. Furthermore, rafts often shown to consist of multiple receptor types. It 

is also possible that upon stimulation of TNF receptors by mTNF-α other 

members of TNFR superfamily is recruited into the lipid raft. This has been 

confirmed by showing the localization of TNFR-1 to the CD40 cluster and 

induction of cell death. This process is dependent on the activation of SMase and 

ceramide production (Grassme et al., 2002). Interestingly, disruption of TNFR1 

recruitment to the raft prevented TNF-α-induced cell death in Jurkat cells (Ko et 

al., 1999).  

The intermediates between receptor stimulations and recruitment of 

ASMase are unknown; involvement of factors such as G-protein Ras or Rac 

which have been shown to be activated by TNF receptor superfamily is 

suspected (Brenner et al., 1997). Collectively, these studies provide evidence 

that receptor clustering and rafts are the specific sites of ceramide generation, 

which appears essential in modulation of signaling for some TNF receptor 

superfamily members (Cremesti et al., 2002). It is possible that mTNF-α-

mediated ceramide production is regulated through formation of a cluster of 

receptors in these lipid rich rafts, multiple TNF receptor cluster formation, or 

formation of a receptor cluster with other TNFR superfamily members.  

 

Is mTNF-α-Activated Mitochondrial ROS Sufficient for Induction of 
Programmed Necrosis? 

 

In addition to their role as an inducer of cell death, reactive oxygen 

species are also produced during normal physiological events, and are important 
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in carrying various biological processes (Droge, 2002; Morel and Barouki, 1999; 

Sauer et al., 2001). Therefore, the intracellular levels of ROS are kept tightly 

regulated by numerous ROS defense systems. This raises the question of 

whether mitochondrial ROS generated by mTNF-α- induced ceramide is 

sufficient to disrupt the balance in the redox state of the cell and to initiate 

programmed necrosis or whether there any other factor(s) contributing to the final 

execution of cell death.      

 

Depletion of ROS scavengers  

ROS generation alone is not the source of oxidative stress, but cellular 

stress is ultimately driven by an imbalance in ROS production and detoxification. 

One way to disrupt the ROS homeostasis of the cells is to allow the accumulation 

of ROS by eliminating the scavangers present in the cell. This causes  the 

imbalance of free radicals and their scavengers, increasing the level of ROS and 

inducing DNA (Marnett, 2000), protein (Berlett and Stadtman, 1997) and lipid 

(Noguchi et al., 2002) damage. Interestingly, an enhanced level of ceramide has 

been shown to contribute to depletion of the ROS scavenger, glutathione (Mari et 

al., 2004) and increasing mitochondria susceptibility to GD3, a ceramide-derived 

ganglioside. GD3 trafficking to the mitochondria directly induces ROS production 

(Garcia-Ruiz et al., 2002; Garcia-Ruiz et al., 2000). It would be interesting to see 

whether the availability of antioxidant enzymes in mTNF-α-treated cells are 

affected. This could be evaluated by assessing the level of different scavengers 

in mTNF-α treated cells. 
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Sustained JNK activation 

A significant increase in ROS level is necessary to disturb the intracellular 

ROS balance and initiate programmed necrosis. It is plausible that in addition to 

direct mTNF-α-activation of mitochondria, activation of other ROS inducing 

pathways also contribute to this event. It has been well established that ROS 

plays a critical role in TNF-α-mediated c-Jun NH2-terminal kinase (JNK, known 

as stress-activated protein kinases) activation and TNF-α induced necrotic cell 

death. Elevated levels of ROS immediate prolonged JNK activation and TNF-α-

induced ROS, cause oxidation and inhibition of JNK-inactivating phosphatases 

by converting their catalytic cysteine to sulfenic acid. This results in sustained 

JNK activation; activated JNK further promotes ROS production from 

mitochondria, forming a positive feedback loop, enhancing necrosis (Shen and 

Pervaiz, 2006; Wu et al., 2012). It is possible that mTNF-α induced ROS and 

programmed cell necrosis is also mediated in part by further activation of JNK 

and related genes further increasing ROS levels (Figure 32).   
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Figure 32. Proposed mechanism of mTNF-α activated ceramide pathway 
and mitochondrial ROS generation. Membrane anchored TNF-α creates a 
more stable contact with TNFR1/2 with a longer half-life.  This allows the 
formation of higher-order receptor complexes (receptor clustering). These 
clusters of receptors are formed in lipid rafts abundant in sphingomyelin which 
are the precursor of ceramide. This activates ASM and triggers a translocation of 
the enzyme onto the sphinomyelin rich lipid rafts leading to an increase in 
intracellular ceramide level. Ceramide will decrease mitochondrial membrane 
integrity and reactive oxygen species (ROS) leakage which could increase DNA, 
protein, and organelle damage or further increase JNK activity and in return 
create a positive feedback and further increasing mitochondrial ROS.   
 

 

 

 99



Significance 

For many years interactions between tumor-infiltrating myeloid and tumor 

cells have been of great interest since they both promote and inhibit tumor 

formation, growth and progression. This study further highlights the importance of 

tumor derived cytokines and their contribution to malignant growth by modulating 

inflammatory cells in cancer.  

In chapter II it was shown that human NSCLC tumor cell express both 

soluble and membrane TNF-α at varying levels. Analysis of Human none-small-

cells lung carcinomas (NSCLCs) microarray database showed that TNF-α and 

TACE expression patterns favoring mTNF-α were predictive of improved lung 

cancer survival. These findings suggest that the bioavailability of each isoform 

may distinctly regulate tumor progression and analysis of TNF-α gene expression 

and the level of soluble and membrane TNF-α could potentially be used as a 

prognostic/therapeutic tool.  This study is the first to suggest that TNF-α isoform 

analysis should be applied to identify candidates for which anti-TNF-α agents are 

likely to be beneficial vs. detrimental. These finding further allows us to determine 

the utility of novel cancer treatments that inhibit TNF-α dependent tumor growth 

such as development of drugs that inhibit cleavage of membrane TNF-α as an 

alternate cancer treatment.   

Despite the large body of published studies on the role of this important 

cytokine in cancer, the molecular and physiological context, necessary for 

optimal targeting of TNF in malignant disease, is still not clear. This has posed a 

challenge in using many of the FDA approved anti-TNF in effective cancer 
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therapy.  Our work provides new insights on this paradox and on how we may 

rationally move TNF-α-targeted therapy forward. This information is of great 

interest as anti-TNF-α agents have recently been used in phase I/II clinical trials 

without significant benefit.  
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