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Introduction

A graph is a tuple G = (V,E), where V is a set and E is a set of unordered

pairs of distinct members of V [1]. In symbols, if e ∈ E, then e = (v, w) for

some v, w ∈ V such that v 6= w. Many well-studied problems in graph theory

are NP-complete. Researchers believe that an algorithm to solve one of these

problems, or more precisely, an algorithm whose running time is polynomial

as a function of the input, is likely to be very difficult if not impossible to

find. There has been a great deal of research in developing algorithms to

solve NP-complete problems in restricted classes of graphs, where finding a

polynomial time solution could be more likely. This thesis introduces classes

C and K, to be defined in sections three and four, and studies some NP-

complete problems on these classes.

NP-Complete Problems

A clique C is a subset of V , the vertices of a graph G = (V,E), such that

if v, w ∈ C, then v and w are adjacent. An independent set I is a subset

of V such that if v, w ∈ I, then v and w are not adjacent. The maximum

clique problem consists of finding the maximum clique of a graph, and the

maximum independent set problem is the problem of finding the maximum

independent set of a graph. We denote the size of a maximum clique and the

size of a maximum independent set of G, respectively, with ω(G) and α(G).
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If each vertex v of a graph is associated with a weight w(v), one can

define the weight of an independent set as the summation of the weight of its

vertices. The problem of finding an independent set with maximum weight

is the maximum weighted independent set problem.

The clique cover problem consists of finding a minimum partition of the

vertices of a graph into cliques. We denote the size of such partition with

θ(G).

The coloring problem consists of finding a minimum partition of the ver-

tices of a graph into independent sets. We denote the size of that partition

with χ(G).

If G = (V,E) is a graph, its complement is a graph G = (V,E), where

E = {(x, y) | x, y ∈ V and (x, y) /∈ E}. Solving the maximum clique problem

in G is equivalent to solving the maximum independent set problem in G,

and solving the coloring problem in G is equivalent to solving the clique cover

problem in G.

Chordal graphs

Studying the coloring problem in general graphs might naturally lead to

the idea of chordal graphs, a class of graphs with well-known results. This

section introduces chordal graphs in that context. Moreover, all graph classes

in this paper will be introduced after identifying a property that can help to

solve some NP-complete problem.
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Greedy Coloring

As defined in the introduction, the coloring problem consists of finding

a minimum partition of the vertices of a graph into independent sets. Since

partitions can be represented as functions, there is an equivalent formulation

of the problem in terms of functions. A coloring c of a graph G = (V,E) is a

function from V to the set of positive integers. A coloring is proper if adjacent

vertices of G are assigned different numbers (also referred to as colors). The

coloring problem consists of finding a coloring with the minimum numbers

of colors.

Remark If C is a clique of G, then |C| ≤ χ(G).

The following greedy algorithm finds a proper coloring of any graph.

Color the vertices one by one so that the color of each vertex is the

smallest positive integer not used by its colored neighbors.

Remark If we greedily color a vertex v, c(v) uses a color in [1, δ(v) + 1].

Consider a vertex v whose neighborhood is a clique. N [v] is a clique of

size δ(v) + 1, so δ(v) + 1 ≤ χ(G). It follows that if we greedily color v,

c(v) ≤ χ(G). We can use this fact to reduce the problem of coloring G to

the problem of coloring G− v.

Remark If G is a subgraph of H, then χ(G) ≤ χ(H).
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Remark Let c be a proper coloring of a graph G. If for every vertex v of

G, c(v) ≤ χ(G), then c is an optimum coloring.

Definition A simplicial vertex is a one whose neighborhood is a clique.

Let v be a simplicial vertex. We will show that the problem of coloring

G can be reduced to the problem of coloring G − v. Let c be an optimum

coloring of G − v. We color each vertex w different from v with color c(w).

We know that c(w) ≤ χ(G − v) ≤ χ(G). Next, we greedily color v. Since

N [v] is a clique, c(v) ≤ χ(G). The resulting coloring of G is optimum.

If we have a graph G in which the coloring problem can be successively

reduced to the coloring problem in smaller graphs up to a trivial graph,

then we can optimally color G by just greedily coloring simplicial vertices of

induced subgraphs of G.

Definition Let G be a graph with n vertices. A perfect elimination ordering

is a sequence of vertices v1, v2, ..., vn such that for every i ∈ [1, n], vi is a

simplicial vertex in the subgraph of G induced by vi, vi+1, ..., vn.

If a graph has a perfect elimination ordering, we can greedily color the

vertices in the ordering from right to left and obtain an optimum coloring.

Graphs with a perfect elimination ordering are called chordal graphs. The

name comes from the fact that a graph has a perfect elimination ordering if

and only if all its cycles of length four or greater have a chord [2]. A chord

is an edge between non-consecutive vertices of a cycle.

5



The running time of the greedy coloring algorithm is O(m+n), where m

is the number of edges and n is the number of vertices of the graph being

colored. Given a chordal graph, a perfect elimination ordering can be found

in O(m+n) time [3], so the coloring problem on chordal graphs can be solved

in O(m+ n) time.

Maximum Clique Problem

The algorithm of the previous subsection used to optimally color a chordal

graph can also be used to find its maximum clique. Consider the closed

neighborhood N [v] of a vertex v with color χ(G). N [v] must have a size of

at least χ(G), otherwise, the greedy algorithm would have chosen a smaller

color-number for v. Moreover, since χ(G) is an upper bound to the size of

any clique of G, N [v] at the point when v is simplicial is a maximum clique.

Maximum Independent Set Problem

As observed before, if a graph has a simplicial vertex, one can reduce the

coloring problem to the same problem in a smaller graph. This is also true

for the maximum independent set problem.

Let v be a simplicial vertex of a graph G = (V,E). Since N [v] is a

clique, an independent set of G can contain at most one vertex of N [v].

Consider a maximum independent set I of G. We can use N [v] to partition

I into two sets. We have I = (I ∩ N [v]) ∪ (I ∩ (V − N [v])). As noted,
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|I ∩N [v]| ≤ 1. Since I ∩ (V −N [v]) is a subset of an independent set, it is

also an independent set. Thus, |I ∩ (V −N [v])| ≤ α(G−N [v]). We can now

conclude |I| ≤ α(G−N [v]) + 1.

α(G−N [v]) + 1 is not only an upper bound to I, but as shown next, also

a lower bound. Consider a maximum independent set M of G−N [v]. Since

M does not contain v or any of its neighbors, M ∪{v} is an independent set

of size α(G−N [v]) + 1. The following theorem summarizes these results.

Theorem 1 If v is a simplicial vertex of a graph G, then α(G) = α(G −

N [v])+1. Morever, if M is a maximum independent set of G−N [v], M∪{v}

is an independent set of size α(G).

Theorem 1 shows that the following greedy algorithm finds a maximum

independent set of a chordal graph G.

Let I be an empty set. Consider the vertices of G one by one according

to a perfect elimination ordering, from left to right. Let v be the vertex in

consideration. If v has a neighbor in I, stop processing v. Otherwise, let v

be a member of I.

The maximum independent set problem on chordal graphs can be solved

in O(m+ n) time.

Clique Cover Problem

α(G) is a lower bound to θ(G). Thus, if a partition P of the vertices

of G into cliques has size θ(G), then P is a minimum clique cover. Slightly
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modifying the greedy algorithm in the previous subsection, which finds a

maximum independent set, allows us to find a minimum clique cover.

Let P be an empty partition. Consider the vertices of G one by one

according to a perfect elimination ordering, from left to right. Let v be the

vertex in consideration. If v is not a member of any block of P , let N [v] be

a block of P . When the algorithm terminates, P contains every vertex of G

and has size α(G).

Class C

Theorem 1 proves that the maximum independent set problem on a graph

G with a simplicial vertex v can be reduced to that problem on graph

G − N [v]. The maximum independent set problem can be solved greed-

ily on chordal graphs because all their induced subgraphs have a simplicial

vertex. It is noteworthy, however, that it is not necessary for every induced

subgraph to have a simplicial vertex. The algorithm still works if the sub-

graphs obtained by removing neighborhoods of simplicial vertices also have

a simplicial vertex (or no vertices).

Definition A graph G is in class C if it is the null graph (the graph without

vertices) or if G has a simplicial vertex v such that G−N [v] is also in class

C.
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The maximum independent set problem and the clique cover problem can

be solved in O(m+n) time with the same greedy algorithms that solve these

problems on chordal graphs, if the elimination scheme is given.

Recognition

A natural greedy algorithm to recognize if a graph is in class C succes-

sively removes neighborhoods of simplicial vertices of the graph until there

are no vertices left. If at some point there is a non-null graph without any

simplicial vertices, the algorithm terminates. It is possible to perform the

removal process until there are no vertices if the input graph is in class C, but

it is not obvious that the order in which the simplicial vertices are removed

affects whether all vertices are removed when the algorithm ends. The next

theorem proves that the order of removals is not important.

Theorem 2 Graphs in class C can be recognized greedily

Proof Let G be a graph in class C. Suppose the greedy algorithm does not

remove all vertices. We represent the removal process with an ordering of the

vertices of the graph. If a simplicial vertex of a subgraph of G is removed, the

vertex precedes all other vertices of the subgraph, and each of its neighbors

precedes all its non-neighbors. All vertices not removed by the algorithm are

placed at the end of the ordering. Let σ2 be the ordering of an execution of

the algorithm that did not remove all vertices. Since G is in class C, there

exists an ordering σ1 in which all vertices of G are removed.
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We call a vertex v of an ordering a remover, or an actively removed1

vertex, if the algorithm removed its neighborhood because the vertex is sim-

plicial. The vertices in N(v) are passively removed vertices. If w ∈ N(v), we

say v removed w, and that v is a remover of w.

Let H be the subgraph of G induced by the vertices which were not

removed in σ2. Let y be the first vertex of σ1 which is a member of H. By

construction, the neighbors of y in H succeed y in σ1.

σ1 : v1v2...y...vn−1...vn

σ2 : v′1v
′
2... y...v

′
n−1...v

′
n︸ ︷︷ ︸

Vertices of H

If y is actively removed in σ1, y is also actively removed in σ2, because

the neighbors of y that succeed it in σ2 are a subset of the neighborhood

removed from G by vertex y, and that neighborhood is a clique. Since y

is not actively removed in σ2 by definition, y is not actively removed in σ1.

Since every vertex in σ1 is removed, y must have been removed by some

vertex.

Let x be the remover of y in σ1. x is not actively removed in σ2, otherwise,

it would have removed y, but y is not a removed vertex. Since x precedes y

1Terminology suggested by Mark Ellingham
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in σ1, x /∈ H (y is the first vertex of σ1 which is in H). Thus, x precedes y

in σ2.

The expression below represents what we have proven so far. An asterisk

above a vertex v, as in
∗
v, means that v is a actively removed. A minus sign

above v, as in
−
v, means that v is passively removed.

σ1 : v1v2...
∗
x...
−
y...vn−1...vn

σ2 : v′1v
′
2...
−
x... y...v′n−1...v

′
n︸ ︷︷ ︸

Vertices of H

The idea for the rest of the proof is to show that we can continue this

process and prove the existence of an unbounded number of vertices.

Let r be the first vertex that is actively removed in σ1 such that r removes

a vertex s in σ1 and r also precedes s in σ2, where r is passively removed and

s is not (i.e., s is either actively removed or not removed). x is an example

of a vertex with that property.

σ1 : v1v2...
∗
r...
−
s...vn−1...vn

σ2 : v′1v
′
2...
−
r...s...v′n−1...v

′
n

Let q be the remover of r in σ2. q is not adjacent to s, otherwise s would

be a passively removed vertex in σ2. Just suppose r precedes q in σ1. It

follows that q is adjacent to s, because r is actively removed in σ1, and both
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q and s are its neighbors. Since we showed that q is not adjacent to s, r

does not precede q. If follows that q precedes r in σ1, and since r is actively

removed, q is not.

σ1 : v1v2...
−
q...
∗
r...
−
s...vn−1...vn

σ2 : v′1v
′
2...
∗
q...
−
r...s...v′n−1...v

′
n

We can use a similar argument to the one used to show the existence

of q to prove the existence of a vertex p that is actively removed in σ1 and

passively removed in σ2. Let p be the remover of q in σ1. p is not adjacent

to r, otherwise r would be a passively removed vertex in σ1. Just suppose

q precedes p in σ2. It follows that p is adjacent to r, because q is actively

removed in σ2, and both p and r are its neighbors. Since we showed that p

is not adjacent to r, q does not precede p. If follows that p precedes q in σ2,

and since q is a remover, p is not.

σ1 : v1v2...
∗
p...
−
q...
∗
r...
−
s...vn−1...vn

σ2 : v′1v
′
2...
−
p...
∗
q...
−
r...s...v′n−1...v

′
n

p has the same property that defined r, but p precedes r. We have a

contradiction which shows that ordering σ2 does not exist.
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Maximum Clique Problem is NP-complete

We will show that the maximum clique problem on general graphs can be

reduced to the maximum clique problem on class C in polynomial-time. Then

we will show that the maximum clique problem on class C is NP-complete.

Theorem 3 The maximum clique problem on general graphs is polynomial-

time reducible to the maximum clique problem on class C.

Proof Let G be a graph with vertices v1, v2, v3, ..., vn. If ω(G) ≤ 2, a maxi-

mum clique can be found in polynomial time. Otherwise, we form a graph H

which contains all the vertices and edges of G, but also contains a vertex v′i

for every vertex vi. The only neighbor of a vertex v′i in H is vi. The following

ordering certifies that H is a member of class C.

v′1, v1, v
′
2, v2, v

′
3, v3, ..., v

′
n, vn

We know that ω(H) ≥ 3, and no vertex of the form v′i is in a maximum

clique, because all such vertices are members of cliques that have size no

greater than two. It follows that a maximum clique of H is also a maximum

clique of G, and ω(H) = ω(G).

Theorem 4 The maximum clique problem on class C is NP-complete

Proof We want to show that given a graph in class C, the problem of an-

swering the following question Q (correctly) is NP-complete.
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Does the graph have a clique of size k or greater?

First, we show the problem is NP. For every k which makes the correct

answer ’yes’, there exists a clique of size k, and one can verify that the clique

is indeed one in polynomial-time. Next, we show that deciding Q is NP-hard.

It is NP-hard to decide whether a general graph has a clique of size k

or greater [5], and we will show that this problem is polynomial-time re-

ducible to deciding Q. To prove this, it suffices to show that the maximum

clique problem on general graphs can be reduced in polynomial-time to the

maximum clique problem on class C. This is enough because k has only n

possible values. Since we have already shown the existence of such reduction,

the maximum clique problem on class C is NP-complete.

Coloring Problem is NP-complete

We will show that the coloring problem on general graphs can be reduced

to the coloring problem on class C in polynomial-time. Then we will show

that the coloring problem on class C is NP-complete.

Theorem 5 The coloring problem on general graphs is polynomial-time re-

ducible to the coloring problem on class C.

Proof Let G be a graph with vertices v1, v2, v3, ..., vn. If χ(G) < 2, an

optimum coloring can be found in polynomial time. Otherwise, we construct

a graph H using the same procedure as in theorem 3.
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Now we show χ(G) = χ(H). Consider an optimum coloring of G. We

color the vertices in H of the form vi with the color of vertex vi in G. We

then greedily color every vertex of the form v′i. Since every vertex of the form

v′i has color one or two, and every vertex of the form vi has a color less than

or equal to χ(G), H can be colored with χ(G) colors.

Theorem 6 The coloring problem on class C is NP-complete

Proof Given a graph in class C, we want to show that answering the fol-

lowing question Q is NP-complete.

Does the graph have a coloring using k or fewer colors?

The problem is in NP because a coloring is a valid certificate. Next, we

need to prove that deciding Q is NP-hard, for which it suffices to show that

the coloring problem on general graphs can be reduced in polynomial-time to

the coloring problem on class C. Since we have already shown the existence

of such reduction, the coloring problem on class C is NP-complete.

Class K

If a graph G is in class C, we can find a maximum independent set and

an optimum coloring of G in polynomial time, as we have proven in previous

sections. It follows that if G is in class C, the maximum clique problem and

the clique cover problem can be solved in polynomial time.

Definition A graph G is in class K if G and G are members of class C.
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Split graphs are those which are chordal and co-chordal (which means

that their complements are chordal). Class K is a generalization of split

graphs. All four problems mentioned in relation to class C can be solved

on split graphs in polynomial time. A split graph has the property that its

vertices can be partitioned into two sets such that one is a clique and the

other one is an independent set (this property also defines split graphs) [4].

The property can be used to solve the maximum weighted independent set

problem in polynomial time, so it is natural to ask whether that problem can

be solved in class K. It turns out, however, that this problem is NP-complete.

Maximum Weighted Independent Set Problem is NP-complete

Theorem 7 The maximum weighted independent set problem on class K is

NP-complete.

Given a graph in class K with nonnegative integer vertex weights, we want

to show that answering the following question Q is NP-complete.

Does the graph have an independent set of weight w or greater?

The problem is in NP because an independent set of weight w or greater

is a valid certificate.

Deciding whether a graph has an independent set of weight w is NP-hard.

We will prove that this problem is polynomial-time reducible to deciding Q.

Given a graph G with weighted vertices, we construct a graph H which

contains all vertices and edges of G. Moreover, for every vertex vi, H contains
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vertices xi and yi. xi is adjacent only to vertex vi, while yi is adjacent to

every vertex of the form vj except vi, and every vertex of the form yj. The

construction of H is not complete, but we will consider an ordering of the

vertices of H that have been defined.

x1, x2, x3, ..., xn, v1, v2, v3, ..., vn, y1, y2, y3, ..., yn

Successively eliminating neighborhoods of simplicial vertices according to

the ordering above, from left to right, removes all the vertices. Note that

for the purposes of this proof we do not require that the passively removed

vertices immediately follow their removers.

x1 is a simplicial vertex which removes v1. Every vertex of the form xi

removes a vertex of the form vi. Vertices y1, y2, y3, ..., yn form a clique, so y1

removes all of them. This ordering would show that the partial graph is in

class C.

If we want to show that a graph is the complement of one in class C,

instead of removing neighborhoods of simplicial vertices, we remove non-

neighbors of vertices whose non-neighbors form an independent set. yn can-

not be removed, because xn and vn are among its non-neighbors, but xn and

vn are adjacent. This suggests what we need at least one additional vertex

so that the complement of H is in class C.
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Let z be a vertex of H. z is adjacent to every vertex of the form vi or

yi, but not adjacent to vertices of the form xi. The construction of H is now

complete.

The following ordering certifies that H is in class K. The only difference

with the ordering above is that the new ordering contains z as its last vertex.

x1, x2, x3, ..., xn, v1, v2, v3, ..., vn, y1, y2, y3, ..., yn, z

Processing and removing vertices from left to right show that H is in class

C, and processing and removing the vertices from right to left show that H

is in class C.

Next, we set a weight for each vertex of H. Every vertex of H which is

also in G has the same weight in H as in G. All other vertices of H have

weight zero.

Let αw(G) be the weight of a maximum weighted independent set J of H.

We will show that αw(H) ≤ αw(G). Let I be an independent set G which

contains all the vertices of J except those which are not in G. I and J have

the same weight because all vertices of J which are not in I have weight zero,

so if H contains an independent set of size w, so does G. Moreover, since G

is a subgraph of H, H contains an independent set of weight w whenever G

does, so deciding Q is NP-hard.
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Open Problems

The greedy algorithm to recognize graphs in class C can run in O(m · n)

time. Can a faster algorithm be designed?

How can graphs in class C or K be characterized? The construction in

theorems 3 and 7 show that they do not have a characterization based on

forbidden induced subgraphs, because every graph is an induced subgraph of

a graph in class K (and therefore in class C).

The limit of the ratio between the number of split graphs and chordal

graphs on n vertices is 1 [6]. What is the relationship between the number

of graphs in class K and C?
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