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CHAPTER I 

 

INTRODUCTION 

 

Importance of Decoding 

 According to stage theories of reading acquisition, decoding skill, or the ability to apply 

letter-sound relationships to words, is critically important in learning to read (Chall, 1983; Ehri, 

1991; Frith, 1985; Gough & Hillinger, 1980; Mason, 1980; Perfetti, 1992). Certainly this is the 

core assumption underlying the self-teaching hypothesis in which children’s practice of 

translating written text into phonological units acts as a self-teaching mechanism whereby 

orthographic representations (e.g., knowledge structures comprised of a word’s letter pattern, 

pronunciation, and/or meaning) are established and subsequent fluent word recognition 

flourishes (Share, 1995). In one study establishing the importance of decoding to later reading, 

Jorm, Share, Maclean, and Matthews (1984) found that two groups of first year students who 

were matched on sight word knowledge but differed on decoding ability had significantly 

different progress in reading over the next two years. Students who had superior decoding skill 

faired better. Although it has been noted that the utility of decoding wanes somewhat over time 

as individuals develop more efficient methods of word recognition (Brown & Deavers, 1999; 

Reitsma, 1983; Treiman, Goswami, & Bruck, 1990), experienced readers who have mostly 

abandoned this reading strategy for familiar words still resort to it when faced with reading 

unfamiliar words (Brown & Deavers; Ehri; Ehri & Wilce, 1985).  

 Approaches to decoding are not uniform, however. There is evidence that children make 

use of two kinds of decoding strategies: letter-by-letter recoding and recoding by analogy, or 
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recognizing and applying orthographic units larger than a single letter (Ehri, 1991, 1998; 

Goswami, 1986, 1998; Ziegler & Goswami, 2005). Successful letter-by-letter recoding requires 

knowing grapheme-phoneme correspondences (GPCs; or letter-sound relationships), retrieving 

those relationships for each grapheme from long-term memory, blending all the GPCs, and 

correctly producing a word. Successful recoding by analogy requires recognizing the 

correspondence between the orthography of the current word and that of similar words stored in 

memory, having the stored words well-represented in the lexicon, retrieving the stored words, 

and using an analogy in which the sounds associated with the common orthographic components 

are applied to the current word. Both strategies suggest that decoding is affected by both person 

(e.g., GPC knowledge) and word (e.g., number of similar words) characteristics. In the following 

sections, prior research on both types of effects is discussed. 

 

Prior Research 

 

Person effects 

 GPC knowledge is an undisputed prerequisite to successful decoding (Ehri, 1998; Share, 

1995, 1999). If children do not know grapheme-phoneme relationships, applying those 

relationships in order to read unfamiliar words would be impossible. Treiman et al. (1990) 

investigated the role of GPC knowledge in a study of pseudoword reading accuracy. Tests of 

pseudoword reading are the ―purest‖ measure of decoding skill as pseudowords must be decoded 

by application of GPCs rather than recognized by sight (Gough & Tunmer, 1986, p. 7). Treiman 

et al. showed significantly high correlations between GPC knowledge and pseudoword reading 

for first grade children. Moreover, the authors found that the correlation was somewhat higher 
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(.73) among low-frequency pseudowords than high-frequency pseudowords (.61), where 

frequency was defined in terms of the rime unit (or the first vowel and any subsequent letters in a 

one-syllable word). This finding lends support to the hypothesis that accurate decoding depends 

partially on both person and word characteristics.  

 The current investigation extends Treiman et al.’s (1990) work by considering the effect 

of GPC knowledge as specific to each word and each student. Treiman et al. found that children 

who knew more GPCs were predicted to decode more words than children who knew less GPCs. 

The authors used the total number of known GPCs to predict the total number of correctly 

decoded words. In this study, we asked a finer-grained question: How does a child’s knowledge 

(versus lack of knowledge) of the GPCs within a word affect whether that child will correctly 

decode that particular word? Details about how GPC knowledge was coded to be person- and 

word-specific in the current study can be found in the description of the research questions.  

 Consider four relations between word-specific GPC knowledge and decoding accuracy. 

First, a student knows all the GPCs within a word and decodes the word accurately. Likewise, a 

student does not know all the GPCs within a word and does not decode the word accurately. 

These first two situations are intuitive. Another possibility is that a student knows all the GPCs 

within a word but decodes the word inaccurately. Or, it could be the case that a student does not 

know all the GPCs within a word yet decodes the word accurately. These latter two cases require 

exploration of factors beyond GPC knowledge that affect decoding. The first model in this study 

simply determines the influence of word-specific GPC knowledge on decoding accuracy while 

allowing random variation to exist among both students and words. After establishing the 

influence of word-specific GPC knowledge, additional variables were entered into a model to 
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further explain variability in decoding accuracy. It is to those other potential explanatory factors 

that I now turn.  

 In addition to GPC knowledge, phonemic awareness is necessary for decoding (Juel, 

Griffith, & Gough, 1986). Phonemic awareness is the ability to hear, identify, and manipulate 

sound units in words (National Institute for Literacy). Byrne and Fielding-Barnsley (1991) 

demonstrated a unique contribution of phonemic awareness to decoding in an experiment where 

phonemic awareness instruction was provided to preschool children. The same result emerged in 

the 1-year follow-up (Byrne & Fielding-Barnsley, 1993). This relationship between phonemic 

awareness and decoding is most clear in Kindergarten and grade 1 as the relationship generally 

declines over time (Byrne, Fielding-Barnsley, Ashley, & Larsen, 1997). Because phonemic 

awareness has been established as a co-requisite to GPC knowledge in reading acquisition by 

compelling prior research (Byrne & Fielding-Barnsley, 1991; Bradley & Bryant, 1983; Ehri & 

Sweet, 1991; Hatcher, Hulme, & Ellis, 1994), phonemic awareness will be used in the current 

investigation as a potential contributor of decoding skill in young children. As an extension to 

the phonemic awareness literature, the model in the current study allows the influence of 

phonemic awareness to interact with word characteristics which may provide insight into the 

types of words (i.e., words with a complex vowel) for which decoding is most affected by 

phonemic awareness skill. 

 Although phonemic awareness and GPC knowledge are co-requisites for decoding, these 

two factors are insufficient to ensure adequate decoding ability (Byrne & Fielding-Barnsley; 

1991; Byrne et al., 1997). One other potential factor may be naming speed. Hogaboam and 

Perfetti (1978) have shown that poor readers are slower at naming nonwords than good readers 

even when accuracy is the same between groups. Slower nonword naming may be due to a 
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slower cognitive process called rapid automatized naming (Perfetti, 1986). Prior research would 

suggest that children exhibiting the double-deficit of poor phonological awareness and slow 

naming speed may be most at risk of experiencing reading difficulties (Wolf & Bowers, 1999, 

2000). Bowers, Sunseth, and Golden (1999) hypothesized and found evidence that slower letter 

naming interferes with the full processing of letters in a word, thereby negatively affecting 

decoding skill. The statistical contribution of this ability to quickly retrieve phonological 

information from memory has been shown by Compton (2003) and Manis, Doi, and Bhadha 

(2000). Manis et al. found that letter naming speed accounted for more variance than digit 

naming speed, so the effect of the former is examined in the current study.  

 Findings from Compton (2000) provide evidence that the skills discussed in the previous 

paragraphs all contribute significantly to decoding skill when considered simultaneously. The 

author found that phonemic awareness, letter-sound knowledge, and rapid naming speed at the 

beginning of grade 1 significantly predicted decoding at the end of grade 1. The author also 

included a measure of advanced graphophoneme knowledge (knowledge of phonemes that make 

up various grapheme clusters), which is encompassed in the test of GPC knowledge used in the 

current study. Compton’s four predictors accounted for 63% of the variance in decoding skill.  

 Given the evidence that working memory plays a role in acquiring new phonological 

information (Baddeley, 1986; Baddeley, Gathercole, & Papagno, 1998; Hulme & Mackenzie, 

1992), perhaps a portion of the unexplained variance in decoding reported by Compton (2000) 

might be accounted for by working memory. Through confirmatory factor analysis, Kail and 

Hall (2001) found that working memory was significantly related to decoding skill while short-

term memory was not and that the effect of working memory held even when the authors 

included phonological awareness in the model. Furthermore, Conners, Atwell, Rosenquist, and 
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Sligh (2001) found evidence that phonological working memory was the most reliable difference 

between good and poor decoders compared to age, IQ, phonemic awareness, and a general 

language composite. Abu-Rabia, Share, and Mansour (2003) also found significant differences in 

working memory when comparing students with reading disability to age-matched and reading-

matched controls, which indicates that poor working memory is not simply an artifact of poor 

reading skill. Because of the prior research on working memory and the fact that decoding 

(especially of a pseudoword) is not an automatic event but one in which individuals must make 

concerted effort to connect letters to sounds (Stanovich, 1991), the current study includes a 

measure of working memory to potentially explain individual differences in decoding accuracy. 

In the current investigation, phonemic awareness, rapid naming speed, and working memory are 

entered as predictors in a model along with the previously entered word-specific GPC knowledge 

(including graphophoneme knowledge) to explain variability in decoding accuracy. Word-level 

influences on decoding are also considered. 

Word effects 

 The relation between word type and performance in decoding has been the topic of much 

research. Most studies on this topic measure naming latency, or the amount of time required to 

decode a word. In one such study, Fredericksen and Kroll (1976) found that words and nonwords 

containing secondary vowels (e.g., ai and ou) took longer to read than primary vowels (e.g., a 

and o). In other words, reading complex graphemes takes longer to read than simple graphemes 

even when the number of phonemes, or the sounds, a person must produce is the same. Marinus 

and de Jong (2008) also reported a difference in latency favoring primary vowels, although in 

their study this was only true for students with dyslexia. Shifting from latency to accuracy, 

Olson, Forsberg, Wise, and Rack (1994) found that children made more errors when attempting 
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to read words with consonant clusters than single consonants. Snowling (1981) noted that the 

complex consonant deficit was particularly noticeable for children with dyslexia when compared 

to children with typical reading skills. Finally, Siegel and Faux (1989) found that children with 

reading disabilities had more trouble with both vowels and consonant clusters than their 

normally-achieving peers. Though past research has demonstrated the difficulty of complex 

vowels and consonants compared to their single counterparts, in the current study we compare 

the effect of grapheme complexity for vowels and consonants by systematically varying vowel 

complexity and consonant complexity in a list of pseudowords and then using a dummy variable 

to directly compare the difference between the two in our sample of at-risk readers. Knowing the 

types of words that are most difficult to decode could potentially lead to improved instructional 

practices. 

 Another word feature that influences decoding is frequency. According to the activation 

model of decoding (McClelland & Rumelhart, 1981), words that share features with other words 

are more easily decoded than words that have fewer shared features. Bowey (1990) and Booth 

and Perfetti (2002) have determined that a common word feature English-speaking children are 

sensitive to is the rime unit, or the final vowel-consonant cluster in a single-syllable word. In two 

studies, Calhoon and Leslie (2002) and Leslie and Calhoon (1995) investigated the effects of 

rime-neighborhood size and word frequency on word and nonword reading across grades 1-3. 

Rime-neighborhood size is the number of one-syllable words containing the same rime unit. In 

general, the authors found that both rime-neighborhood size and word frequency affected reading 

in the early elementary years. They also found an interaction of rime-neighborhood size and 

word frequency such that children attempting to read low-frequency words were more affected 

by rime-neighborhood size than when they were attempting high-frequency words. Carlisle and 
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Katz (2006) found similar results, although their investigation was focused on word families, or 

all the morphemic variations of a word (e.g., sit, sat, sitting), instead of rime neighbors. Because 

the above investigations did not account for both person and word variance, results may be 

biased in that standard errors for covariates may have been too small (Janssen, Schepers, & 

Peres, 2004). Thus, we examined the effects of rime-neighborhood size, average rime-neighbor 

frequency, the interaction of size and frequency, and grapheme complexity while accounting for 

all necessary sources of variance to determine the relative contribution of each to decoding 

accuracy. Because pseudowords have no frequency of their own, average rime-neighbor 

frequency was used as a proxy for word frequency because it represents the average frequency of 

a word that contains the same rime unit as the pseudoword itself. 

 

Rationale for Current Investigation 

 The purpose of this investigation was to extend the literature on decoding by bringing 

together two lines of research, namely person and word factors that affect decoding, using a 

crossed random-effects model. There are two points of rationale for conducting the study. First, 

although prior research has documented factors that affect decoding, results are somewhat 

disjointed because not all factors have been explored together in one model. As a solution, we 

combined factors found to be significant in prior research into one model so that relative 

contributions could be established. Furthermore, a crossed random-effects model allows for the 

investigation of person-by-word covariates in addition to person-specific and word-specific 

covariates. This type of model was recently used by Kim, Petscher, Foorman, and Zhou (2010) 

to assess the effects of letter-name knowledge (person-by-item covariate) on the probability of 

knowing letter sounds while accounting for variance across letters and persons. Also, Piasta and 
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Wagner (2010) recently utilized a crossed random-effects model to assess the effects of person 

characteristics, letter characteristics, and instruction on letter-name acquisition. 

 The second point of rationale is that most research to the present has utilized aggregated 

data either across persons or across words. The problem with aggregated data is loss of 

information. Loss of word information occurs when person-level analyses are conducted while 

loss of person information occurs when word-level analyses are conducted. For instance, Manis 

et al. (2000) found that letter naming speed affected accuracy of decoding. However, that 

analysis was based on the total accuracy score, which does not provide specific information 

about the pseudowords that were being decoded. Information such as how the effect of letter 

naming speed may differ depending on which words are being decoded was lost in the aggregate 

analysis. Similarly, Calhoon and Leslie (2002) found that the frequency of a rime in a 

pseudoword affected how accurately the pseudowords were decoded. The effect of rime 

frequency for each word was aggregated across individuals, and further investigation of those 

individuals was not conducted nor was the variability amongst them taken into account. Because 

decoding is an activity that involves both the person doing the decoding and the word being 

decoded, an analysis that takes both effects into account has the potential to be more informative 

than focusing on either effect separately.  

 A crossed random-effects model allows person covariates, word covariates, and person-

by-word interactions to be investigated simultaneously while also accounting for variance in the 

responses that is due to the persons and the words. Potential problems arise when random 

variance due to persons and words exist in the outcome but both sources are not included in the 

model. Baayen, Davidson, and Bates (2008) have demonstrated that inflated variance 

components and deflated standard errors result when item or person variance is not taken into 
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account. Other model comparison papers have provided similar warnings (Luo & Kwok, 2009; 

Moerbeek, 2004; Rabash & Browne, 2007), although they have not dealt specifically with 

person-by-item data. Random effects have associated error terms that account for the 

unlikelihood that a set of covariates perfectly explain the variance of the outcome between units 

(Janssen et al., 2004). Treating people as random effects is well-established in the hierarchical 

linear modeling (HLM) literature for it is reasonable to assume that no combination of person 

covariates will be able to explain all the variance in the outcome between people. The same 

argument can be invoked for test items such as words; it is not likely that a set of word predictors 

can explain all the variance in the outcome that exists between the words. Therefore, modeling 

random person and item effects simultaneously provides unbiased estimates of both, whereas 

conducting analyses at either the person- or item-level may produce biased results due to ignored 

dependencies in the data. The analysis for the current study (a crossed random-effects model) 

allows a detailed and accurate investigation of the factors that affect decoding because the unit of 

analysis is the intersection of each person and each word, and inter-word variance and inter-

person variance are taken into account (Janssen et al.).  

 Four research questions are asked in accordance with the aim of the proposed study: the 

first involves a person-by-word covariate, the second involves a person-by-word covariate plus 

person covariates, the third involves a person-by-word covariate plus word covariates, and the 

fourth involves a person-by-word covariate along with person and word covariates plus 

interaction terms between persons and words. The following questions were answered using 

crossed random-effects models: 

1. What is the effect of word-specific GPC knowledge on decoding accuracy? Students 

attempted 20 pseudowords on the Targeted Nonword Test (TNT). This dependent 



   

 11  

variable was assigned a value of 1 for a correct answer and 0 for an incorrect answer. 

Students were also given a separate test of GPC knowledge. The GPCK variable was 

specific to each student attempting each word on the TNT. If the student knew all the 

GPCs within a pseudoword, GPCK equaled 1. Otherwise, GPCK equaled 0 to signify that 

a student did not know all the GPCs within the pseudoword. Our hypothesis was that 

there would be a significant difference in the predicted probability of correct decoding 

between knowing and not knowing word-specific GPCs, with the former case having the 

higher probability. 

2. What is the relative importance of naming speed, phonemic awareness, and working 

memory in accounting for person variance in decoding accuracy after controlling for 

word-specific GPC knowledge? How much variance do these factors account for? In 

accordance with the prior research discussed in the introduction, we hypothesized that all 

student factors entered in the model would have significant influence on decoding 

accuracy. 

3. What is the relative importance of average rime-neighborhood frequency, rime-

neighborhood size, an interaction of neighborhood frequency and size, and grapheme 

(vowel versus consonant) complexity in accounting for word variance in decoding 

accuracy after controlling for word-specific GPC knowledge? How much variance do 

these factors account for? Each pseudoword contained either a complex consonant cluster 

or a complex vowel cluster, so one dummy variable was created in which pseudowords 

with a complex vowel cluster were assigned a value of 1 and a value of 0 was assigned to 

pseudowords with a complex consonant cluster. We expected to find a significant 

interaction between rime size and rime frequency, which has also been found in previous 
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total-score analyses. Furthermore, we expected that pseudowords with complex vowels 

would be significantly more difficult to decode than pseudowords with complex 

consonants, as suggested by trends in past research. 

4. Are there significant person-by-word interactions? First, we consider an interaction term 

between working memory and rime frequency. Our hypothesis is that students with 

poorer working memory might perform worse on pseudowords with infrequent rimes 

than frequent rimes, while students with better working memory might perform similarly 

in both cases. Poorer performance on words with the infrequent rimes could be due to the 

more likely letter-by-letter decoding which we think may be more taxing on working 

memory than decoding by analogy (Siegel & Faux, 1989). Second, we consider an 

interaction between phonemic awareness and grapheme (vowel versus consonant) 

complexity. Prior research has suggested that children with poor phonological skills have 

more difficulty with complex vowel clusters than complex consonant clusters (Marinus & 

de Jong, 2008; Siegel & Faux). Knowing which types of words struggling readers have 

the most difficulty with may provide information about how word-reading instruction 

could be targeted more effectively to benefit struggling readers.  
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CHAPTER II 

 

METHOD 

 

Participants and Procedures 

 Participants in the study were part of a larger study investigating the efficacy of 

supplemental reading tutoring for first grade students who were at risk for later reading 

difficulties. In the larger study, 287 students from 56 classrooms and 15 schools were consented 

and screened. The screening battery included measures of accuracy of decoding and word 

reading, efficiency of decoding and word reading, and rapid naming speed. A factor score was 

created from the screening battery and the lowest 250 students based on factor score were chosen 

for further testing. Of the given measures, only the Backward Digit Recall subtest of the 

Working Memory Test Battery (Pickering & Gathercole, 2001) was relevant to the current study. 

Students who completed all pretests (N = 215) were randomly assigned to one of four groups. 

Three of the groups were intervention groups in which students were provided supplemental 

reading instruction, while the control group did not receive any instruction beyond their 

classroom reading instruction. We did not expect that working memory at the end of the year 

would be differentially affected by group membership, but we did test group equivalence of 

working memory at the beginning of the year to ensure the groups began the year with equivalent 

scores. Indeed, group equivalence was established with an ANOVA, F(3, 219) = 0.33, p = .80.  

 Because decoding accuracy is the outcome and GPC knowledge is included as a 

covariate, it is worth mentioning that the supplemental reading instruction incorporated practice 

of GPCs and decoding. It is likely that the regular classroom reading instruction also 



   

 14  

incorporated these activities as the district’s academic standards state that children in first grade 

should be using GPCs to decode words (Tennessee/Metro Nashville Public Schools, n.d.). One 

additional note is that treatment was not considered in the current set of analyses because we are 

concerned with how children’s skills affect decoding regardless of how they acquired those 

skills. 

 After tutoring ceased in the spring, students were given several tests including the 

Assessment of Grapheme-Phoneme Correspondence Knowledge (AGPCK; Kearns, 2006), the 

Rapid Letter Naming subtest of the Comprehensive Test of Phonological Processing (Wagner, 

Torgesen, & Rashotte, 1999), the Sound Matching subtest of the Comprehensive Test of 

Phonological Processing (Wagner et al.), and the experimenter-created TNT. Data analysis was 

conducted on the data of 196 students who were not missing scores on any relevant variables. Of 

the 196 students, the gender composition was nearly equal between females (47.96%) and males 

(52.04%). The majority (65.59%) of the sample, with available information (n = 186), was 

receiving a free or reduced price lunch. Although the racial make-up of the sample was varied 

(40.82% African American, 38.78% Caucasian, 9.18% Hispanic, 7.65% Biracial, 1.53% 

Kurdish, 1.02% Asian, and 1.02% Other), none of the students were classified as English-

language learners. Finally, there were 20 students (10.75%) with a special education label and 15 

(8.06%) who were repeating first grade. 

 Students were enrolled in 15 schools, 13 of which were eligible for Title I funds. School 

Title I eligibility is based upon the criteria that at least 35% of students in that school reside in 

low-income homes and are qualified for a free or reduced price lunch. Further, although 9 of the 

15 schools met Adequate Yearly Progress (ATP) for the 2009-2010 academic year according to 

the standards of the No Child Left Behind Act (2002), 4 schools were given the Target label 
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(failed to meet at least one benchmark) and 2 were given the School Improvement label (failed to 

meet the same benchmark for at least two consecutive years). The majority of teachers of the 

participating students were Caucasian (83.93%) females (89.83%) who had been teaching an 

average of 15.69 years. Most teachers reported that their age was between 40-49 years old and 

reported taking more than 12 credit hours of college coursework in reading. 

 

Measures 

 

Decoding 

 Accurate decoding was assessed with the Targeted Nonword Test (TNT). The TNT is a 

20-item experimenter-created measure designed to explore the relation between decoding 

accuracy and other factors, not to measure individual differences in decoding skill. In this way, 

the pseudowords on the TNT were targeted because they were created to answer specific 

research questions. See the Appendix for the pseudowords that comprise the TNT. Pseudowords 

were used instead of real words because students’ unfamiliarity with pseudowords ensures that 

children attempt to read the words by using decoding skills rather than by using memory, or 

reading by sight (Gough & Tunmer, 1986). All pseudowords were comprised of four letters and 

three phonemes. Frederickson and Kroll (1976) showed that word length affects reading 

accuracy, and we wanted to control for that effect. In addition, we eliminated potential pattern 

effects by using only the CVC (consonant-cluster vowel-cluster consonant-cluster) grapheme 

pattern; Calhoon and Leslie (2002) also followed this format.  

 Words on the TNT varied systematically in two ways. The first source of planned 

variability was rime frequency, defined in terms of the rime-neighborhood size (Treiman et al., 
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1990; Ziegler, Stone, & Jacobs, 1997). Half the pseudowords contained frequent rimes (more 

than 2 rime neighbors) while half contained infrequent rimes (2 or less rime neighbors). Rime 

size as opposed to rime frequency was used to create the test items because the former has been 

shown to be more influential when examined simultaneously (Carlisle & Katz, 2006). 

Furthermore, we decided to only consider the grade K-3 word corpus because it is likely grade 1 

children are exposed to those words in texts more than any other grade-level text. The average 

rime-neighborhood size for the frequent pseudowords was 8.90 (range 3-16) while it was 0.90 

(range 0-2) for the infrequent pseudowords. The average rime-neighbor frequency for frequent 

pseudowords was 117.54 and was 20.90 for infrequent ones. (More information on rime size and 

rime complexity can be found in the Rime Frequency subsection.) 

 The other source of systematic variation was grapheme cluster complexity. Complexity 

was defined as two letters composing one phoneme (e.g., digraphs). Half the pseudowords 

contained a complex vowel grapheme cluster (e.g., ea) and a simple consonant grapheme (e.g., n) 

and half contained a complex consonant grapheme cluster (e.g., th) and a simple vowel 

grapheme (e.g., e). Marinus and de Jong (2008) showed a tendency for dyslexic children to make 

more errors and take longer in pronouncing vowel digraphs than consonant clusters. One 

limitation of the Marinus and de Jong study was that the position of the vowel cluster always 

followed the consonant cluster, which confounds cluster type with cluster position. In the 

measure, the cluster order was reversed to shed more light on the complexity versus position 

issue. Fredericksen and Kroll (1976) also showed a grapheme complexity effect although their 

outcome of interest was naming latency as opposed to accuracy.  

 The frequency and complexity dimensions create four cells into which the pseudowords 

were categorized: frequent rimes with complex vowel clusters, frequent rimes with complex 
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consonant clusters, infrequent rimes with complex vowel clusters, and infrequent rimes with 

complex consonant clusters. The Appendix contains the pseudowords in their respective cells. 

All words began with a single consonant, and stop and continuous consonants were 

counterbalanced across the four cells. Liquid sounds such as /l/, /r/, /w/, and /y/ were not used as 

initial phonemes because these sounds are more difficult for young children to produce than 

other phoneme types (Preisser, Hodson, & Paden, 1988). All words were consistent (or regular) 

in that none of the rime units had real words with illegal pronunciations.  

 Interrater reliability was established by asking someone other than the original test 

administrator to rescore each item on the TNT by listening to tape recordings of the tests. The 

interrater reliability, based on 20% of the tests, was 92.28% for total test score and ranged from 

77.50-100.00% for each individual item. All items except one had a reliability exceeding 

87.00%. The Kruder-Richardson 20 internal consistency coefficient for the measure was 79.65%. 

Though the items on the TNT were all created to assess decoding accuracy, we did not expect an 

especially high internal consistency because each pseudoword required potentially different 

knowledge (e.g., word-specific GPCs) for giving a correct response. Validity of this measure has 

not been established. Students were given 1 of 4 randomly ordered stimuli sheets. 

Phonemic awareness 

  Phonemic awareness was assessed with the Sound Matching subtest of the 

Comprehensive Test of Phonological Processing (Wagner et al., 1999). In this assessment, 

children are provided four pictures, one of the stimulus and one each of the 3 response options. 

The test administrator reads aloud all stimuli and response options, while simultaneously 

pointing to the corresponding pictures of each. The administrator asks the child to indicate which 

of three response options begins or ends with the same phoneme as the stimulus. Test developers 
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reported a Cronbach’s alpha of .93 for this 20-item subtest for 5- and 6-year olds in the 

normative sample. Using item response theory, test developers determined that the Sound 

Matching subtest had content validity. They also reported that the subtest’s correlations with 

word and nonword reading were .58 and .49, respectively. These moderate correlations would be 

expected as phonemic awareness is somewhat but not perfectly related to word reading and 

decoding. In sum, the validity of the subtest was deemed sufficient (Wagner et al.). 

Rapid naming 

  Rapid naming was assessed with the Rapid Letter Naming subtest of the Comprehensive 

Test of Phonological Processing (Wagner et al., 1999). For this assessment, children are 

presented with a sheet of paper containing randomly ordered exposures of the letters a, c, k, n, s, 

and t. Letters are presented in 4 rows of 9 letters each for a total of 36 letters. Students are asked 

to say the names of the letters as quickly as possible. The test administrator records the time it 

takes the student to name all 36 letters. Students complete the process twice on two randomly 

ordered stimulus sheets. The final score is the number of seconds taken to read both lists. 

Cronbach’s alpha in the normative sample was .89 and .89 for 5- and 6-year-olds, respectively. 

Evidence supporting concurrent validity of this subtest consists of significant correlations with 

measures of word reading accuracy (.47-.52) and rate (.44) as well as overall reading (.59). The 

predictive validity of the subtest was established by high, significant correlations with later word 

reading (.53-.61), decoding (.65), and overall reading (.49) (Wagner et al.). 

Rime frequency 

  There were two indices of rime frequency, rime-neighborhood size and average rime-

neighborhood frequency. The rime-neighborhood size of each pseudoword was determined using 

the Educator’s Word Frequency Guide (Zeno, Ivens, Millard, & Duvvuri, 1995). This database 
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of words was created from texts used in schools including textbooks, literary works, and popular 

fiction and nonfiction writings. It contains frequency count information for words by grade. 

Rime-neighborhood size in the current study was the number of monosyllabic, monomorphemic 

words that appeared at least once in 1,000,000 words in texts from grades K-3. Rimes were 

chosen such that all neighbors (if any) shared a common pronunciation. 

 The average rime-neighbor frequency was also calculated from numbers contained in the 

Educator’s Word Frequency Guide (Zeno et al., 1995). As defined by Zeno et al., the frequency 

of a word represented how often a word appeared in 1,000,000 words of text and was weighted 

with the word’s dispersion across different subject areas. The average rime-neighbor frequency 

was calculated by summing the frequency of each neighbor (as defined by rime-neighborhood 

size) across grade K-3 texts and dividing the total by the rime-neighborhood size. This measure 

provides information about the average frequency of a rime neighbor.  

Word-specific GPC knowledge 

  Word-specific GPC knowledge (GPCK) was calculated from the Assessment of 

Grapheme-Phoneme Correspondence Knowledge (Kearns, 2006), which is a 48-item test 

designed to assess knowledge of the correspondence between graphemes and phonemes. For this 

assessment, students are presented with a sheet of paper comprised of 48 printed graphemes. A 

test administrator asks, ―What sound does this letter make?‖ If a grapheme has more than one 

possible sound associated with it (e.g., a), the test administrator says, ―Ok. This letter can make 

another sound too. What else can it say?‖ One point is recorded for each correct answer. This test 

is administered individually, and the maximum point total is 62. Reliability and validity of this 

measure have not been established.  
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 GPCK scores are specific to each student and each pseudoword given on the TNT. Scores 

of 1 were given when a student knew all the GPCs associated with a pseudoword, or 0 otherwise. 

For example, the pseudoword sheb contains three phonemes: /sh/, /e/, and /b/. If the student 

knew the GPC for sh and b but not for e, GPCK was assigned a value of 0 for that student on that 

pseudoword. GPCK equaled 1 only when the student knew all the sounds in the pseudoword. 

Pseudowords on the TNT were comprised of 26 different graphemes and their 27 corresponding 

phonemes. The grapheme oo had two corresponding phonemes, /oo/ and /uu/, that were legal in 

the present sample of pseudowords. 

Working memory 

 Working memory was assessed with the Backward Digit Recall subtest of the Working 

Memory Test Battery (Pickering & Gathercole, 2001). In this assessment, children are orally 

presented a list of digits. After the test administrator dictates the list of digits, children are asked 

to repeat the list of digits in reverse order. Children are given practice items (with feedback as 

necessary) to ensuring their understanding of the task. Initially, the lists contain only two digits. 

As the test progresses, the number of digits increases by one up to a maximum span of seven. 

Each span has six trials. The test is terminated if children make three or more errors in any one 

span. Correct answers are awarded one point and the total score is the number of correct answers. 

The testing manual reports a test-retest reliability of .53 for a normative sample of 5- and 6-year 

olds. Validity was established with correlations > .60 for other measures of central executive 

measures. A confirmatory factor analysis further confirmed the validity of the subtest (Pickering 

& Gathercole, 2001).  
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Data Analysis 

 Van den Noortgate, De Boeck, and Meulders (2003) proposed a method of assessing 

item-by-student data using a crossed random-effects model. In item response theory (IRT) 

terminology, this model is equivalent to a Rasch model with a random item parameter. In this 

model both items and persons are treated as random parameters, which permits the partition and 

explanation of variance in the outcome in terms of person and item factors. This means that the 

probability of a person answering an item correctly is assumed to be concomitantly dependent 

upon item and person characteristics. Research cited in the introduction suggests this is a 

sensible assumption for decoding data, and we formally test that assumption by calculating the 

proportion of variance in the outcome that is due to persons and words in the Base model. A 

likelihood ratio test comparing models with and without person and word random effects serves 

as further evidence for their inclusion/exclusion. 

 Although using IRT within a multilevel framework is not novel, treating items as random 

is somewhat unique. Most multilevel IRT models consider items as fixed effects (Adams, 

Wilson, & Wu, 1997; Fox, 2005; Maier, 2001; Van den Noortgate & Paek, 2004). This is 

primarily because IRT is most often used for scale construction in which the characteristics of 

specific items is of great interest. These types of models are classified as measurement models 

because the aim of the model is to describe individuals’ performance on specific test items. 

Alternatively, explanatory models are used when researchers are less interested in the specific 

items (and/or specific persons) and more interested in item (or person) features and how those 

features can explain variability among item responses (De Boeck & Wilson, 2004). In 

explanatory models, person and items can be considered random effects simultaneously such that 
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the model includes both a person- and item-specific residual to account for dependencies in the 

responses.  

 Treating words as random factors allows the variability around the decoding of words to 

be explained in terms of word characteristics (De Boeck, 2008; Janssen et al., 2004). Because of 

the nature of the research questions addressed in this paper (i.e., word covariates and person-by-

word covariates), such a model is necessary. Furthermore, Baayen et al. (2008) advocate for 

random person and random item effects specifically when dealing with linguistic material. Their 

argument is based on the assumption that words and sentences used in assessment situations are 

only samples of the total population of words and sentences. If results of linguistic tests are 

expected to generalize beyond the immediate context of the words contained on the tests, then 

words ought to be treated as random variables even if the sample of words was not drawn 

randomly from a population of words (see Briggs & Wilson, 2007; Clark, 1973). Because we are 

interested in using word, person, and word-by-person covariates to explain variability in 

decoding accuracy and because we are interested in generalizing our results to words and people 

beyond those included in the current study, the most appropriate analysis is an explanatory 

model with random effects of both persons and words (a.k.a. a crossed random-effects model).  

 In a crossed random-effects model, responses (i.e., unit of analysis) are considered cross-

classified in nature because they originate from the intersection of each student responding to 

each word in the same set of pseudowords (Baayen et al., 2008). Had each student responded to a 

different set of pseudowords, then a response would be nested within a person who would be 

nested within a set of pseudowords. Instead, our response data were considered cross-classified 

because our lower-level units (i.e., words) belong to upper-level units (i.e., persons and words) 

that are not nested within each other (Rabash & Browne, 2007; Raudenbush & Bryk, 2002). In 



   

 23  

addition to the responses being crossed by persons and items, persons were also nested in 

classrooms that are nested in schools. This nesting means a student was a member of only one 

classroom, and that classroom was a member of only one school. Clustering at those levels were 

taken into account by adding random effects for each. Figure 1 illustrates the 4-level data 

structure in graphical form. 

 

Level-1 (Responses)       R1   R2   R3   R4   R5   R6   R7    R8...R3920 

 

 

 

 

 

 

Level-2 (Person & Word)           J1    J2... J196                      W1    W2... W20   

 

 

Level-3 (Classroom)            C1...     C56 

 

       

 Level-4 (School)    S1 (... S15) 

                    Person Side   Word Side 

Figure 1. Graphical display of 4-level data structure 

 

 The first step in analyzing our data was to estimate a Base model in which no covariates 

were included in the model. The purpose of this initial model was to partition variance into the 

respective levels of influence on the outcome. This information was useful because it allowed us 

to calculate the proportion of variance in the outcome that existed at each level (i.e., the 
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intraclass correlation [ICC]). To determine which Base model was most appropriate for the data, 

five models were estimated and compared. The first possible Base model (Full Base model) 

included all potential sources of variance (i.e., word, person, classroom, and school). Then for 

the sake of parsimony, four reduced models were estimated: one in which the parameter for 

random word variance was omitted (Base without word), one in which the parameter for random 

person variance was omitted (Base without person), one in which the parameter for random 

school variance was omitted (Base without school), one in which the parameter for random 

classroom variance was omitted (Base without classroom). Comparing the Full Base model to 

the reduced models allowed us to determine whether each level of variance was necessary for 

accurately describing the data. Equation 1 displays the Full Base model. 

  

Level-1 (Responsesjkmi)           jkmijkmiLogit 0)(       (1) 

Level-2 (Personjkm & Wordi)   ijkmkmjkmi rr 0201000   , jkmr01 ~ N(0, 2

01r ) & ir02 ~ N(0, 2

02r ) 

Level-3 (Classroomkm)            kmmkm u 00000  , ukm ~ N(0, 2

u ) 

Level-4 (Schoolm)            mm   0000000 , m ~ N(0, 2

 ), 

 

where πjkmi is the probability of a correct response from person j in classroom k in school m on 

word i, λ0jkmi is the intercept and represents the logit of the probability of a correct response from 

an average person (r01jkm = 0) in an average classroom (ukm = 0) in an average school (εm = 0) 

decoding a word of average difficulty (r02i = 0). At Level-2, jkmi0  is reformulated into the mean 

logit of the probability of getting a correct response in classroom k in school m ( km00 ), plus a 

student-specific residual ( jkmr01 ) and a word-specific residual ( ir02 ) on a word of average 
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difficulty. At Level-3, km00 is reformulated as the mean logit of the probability of a correct 

response in school m ( m000 ) plus a classroom-specific residual ( kmu ) on a word of average 

difficulty. Finally at Level-4, the school-average logit of the probability ( m000 ) is reformulated 

into a grand-mean logit of the probability ( 0000 ) plus a school-specific residual ( m ) on a word 

of average difficulty. The magnitude of variance at for each random component was recorded for 

later reduction-in-variance calculations. The leveled equations make the structure of the data 

clear, but this set of equations can be simplified into a single equation by way of substitution. 

See Equation 2 for the combined model that includes an intercept, a set of person-related random 

effects, and a word random effect. 

 

   imkmjkmjkmi rurLogit 0201000)(           (2) 

 

 ICCs can be calculated from the combined model represented in Equation 2. Raudenbush 

and Bryk (2002) describe how to calculate the ICC in models for binary data that use the logit 

link, where the residuals ( jkmi ) are assumed to follow the logistic distribution (0, 
3

2
). More 

specifically, Cho and Rabe-Hesketh (in press) describe how to calculate ICCs for item and 

person models, where person variance is conditional on item difficulties and item variance is 

conditional on person abilities. Because this is a cross-classified model, the ICCs must be 

interpreted slightly differently than in nested models because the person ICC is conditional on 

word difficulties and the word ICC is conditional on the person abilities. For example, the person 

ICC represents the proportion of variance in decoding accuracy that is due to between-person 

differences conditional on word difficulties. The ICC is useful for determining the magnitude of 
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influence exerted by each source of variance. Assuming each source of variance is necessary for 

best describing the data, Equation 3a shows the ICC calculation for person variance; Equation 3b 

is for classroom variance; Equation 3c is for school variance; Equation 3d is for word variance.  
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 In addition to the Base model, we proposed three models to address the four research 

questions. Table 1 lists each research question with its associated model number and covariates.  

 

 

 

 

 

 

 



   

 27  

 

Table 1 

Research Questions with Associated Model Number and Covariates 

Research Question 

Model 

Number Covariates 

1. What is the effect of word-specific GPC knowledge 

on decoding accuracy?  

1 Person-by-word: GPCK 

2. What is the relative importance of phonemic 

awareness, naming speed, and working memory in 

predicting decoding accuracy after controlling for 

GPC knowledge? How much person variance do 

these factors account for? 

2 Person-by-word: GPCK 

Person: PA, RN, WM 

3. What is the relative importance of average rime-

neighbor frequency, rime-neighborhood size, 

interaction of frequency and size, and grapheme 

(vowel versus consonant) complexity in predicting 

decoding accuracy after controlling for GPC 

knowledge? How much word variance do these 

factors account for?  

2 Person-by-word: GPCK 

Word: R_FREQ, R_SIZE, FREQ*SIZE, VC 

4. Are there interactions between the person and word 

characteristics?  

3 Person-by-word: GPCK 

Person: PA, RN, WM 

Word: R_FREQ, R_SIZE, FREQ*SIZE, VC 

 Interaction: WM*(S/F), PA*VC 

  

 

 

 In addressing the research questions, we first estimated a model including only word-

specific GPC knowledge (Model 1) to address research question 1. Model 1 is described in 

Equation 4. 

 

Level-1 (Responsesjkmi)           jkmijkmijkmijkmi GPCKLogit 10)(               (4) 

Level-2 (Personjkm & Wordi)  ijkmkmjkmi rr 0201000   , jkmr01 ~ N(0, 2

01r ) & ir02 ~ N(0, 2

02r ) 

    ijkmkmjkmi rr 1211101   , jkmr11 ~ N(0, 2

11r ) & ir12 ~ N(0, 2

12r ) 

Level-3 (Classroomkm)           kmmkm u 00000   

Level-4 (Schoolm)            mm   0000000  
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  where  
km10  is the increment/decrement to the logit of the probability of an  

    average person in an average classroom in an average school  

    getting a correct response on an average word when all the GPCs  

    are known in the word compared to when the GPCs are not known 

   0000  is the logit of the probability of an average person in an average  

    classroom in an average school getting a correct response on an  

    average word when all the GPCs are not known in the word 

 

 At level-2, km10  is reformulated into the mean difference in logits of the probability 

between knowing and not knowing word-specific GPCs in classroom k in school m plus a 

person-specific (r11jkm) and a word-specific residual (r12i). The covariance between the intercept 

and GPCK slope variance terms is estimated for both persons (σr01*11
2
) and words (σr02*12

2
) to 

account for the possible relations between them. The variance, covariance structures for persons 

and words, respectively, are: 
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  Model 1 provides information about the effect of word-specific GPC knowledge on 

decoding accuracy. From this model, we can calculate the probability of accurate decoding when 

all the GPCs within words are known and when all the word-specific GPCs are not known. 
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These estimates are theoretically appealing as GPC knowledge is assumed to be a prerequisite 

for decoding (Byrne & Fielding-Barnsley, 1991; Ehri, 1998; Share, 1995, 1999), but this 

relationship has yet to be addressed at the word-level. 

 We next added predictors to Model 1 to determine which person and word factors 

affected the outcome above and beyond word-specific GPC knowledge (Model 2). See Equation 

5 for Model 2. 

 

Level-1 (Responsesjkmi)           jkmijkmijkmijkmi GPCKLogit 10)(            (5) 

Level-2 (Personjkm & Wordi)   

 

ijkmi

iiiijjjkmjkmi

rrVC

SIZEFREQSIZERFREQRWMRNPA

020170

605040302010000 *__








 

    ijkmkmjkmi rr 1211101    

Level-3 (Classroomkm)            kmmkm u 00000   

Level-4 (Schoolm)            mm   0000000  

   

  where 10  is the average fixed effect of PA 

   20  is the average fixed effect of RN  

   30  is the average fixed effect of WM  

   40  is the average fixed effect of R_FREQ  

   50  is the average fixed effect of R_SIZE 

   60  is the average fixed effect of the interaction between FREQ & SIZE 
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70  is the average fixed effect of vowel vs. consonant complexity (VC) 

 

 Model 2 estimated the person effects of phonemic awareness, rapid naming, and working 

memory on a student’s probability of correctly pronouncing a pseudoword, controlling for word-

specific GPC knowledge. It also estimated the effects of average rime-neighborhood frequency, 

rime-neighborhood size, the interaction of frequency and size, and grapheme complexity on 

students’ decoding accuracy, again controlling for word-specific GPC knowledge. VCi was a 

dummy variable which equaled 1 if the pseudoword contained a complex vowel grapheme and 0 

if it contained a complex consonant grapheme. Results were examined by first determining the 

relative importance of each covariate by looking at the z-value associated with coefficients 1 , 

2 , 3 , 4 , 5 , 6 , and 7 . Then, we calculated the proportion of person variance accounted for 

by the three person predictors above and beyond what was explained by word-specific GPC 

knowledge. Reduction in variance was calculated by (r01jkmMODEL1 - r01jkmMODEL2)/ r01jkmMODEL1. 

Similarly, we calculated the proportion of word variance accounted for by the four word 

predictors. Reduction in variance was calculated by (r02iMODEL1 - r02iMODEL2)/ r02iMODEL1.  Model 2 

included the main effects of person and word covariates and thus it served as a reference model 

to which the interaction model (Model 3) was compared.  

 As the final step in our data analysis, we estimated a model (Model 3) to test two person-

by-word interactions. One interaction was between working memory and rime frequency and the 

other was between phonemic awareness and (vowel versus consonant) grapheme complexity (see 

Equation 6). The generic variable (S/F) appears in Equation 6 because the interaction term was 

created from the index of frequency (rime-neighborhood size or average rime-neighbor 

frequency) that accounted for the most word variance as determined by Model 2. The 
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significance of the interactions was determined by the p-value associated with the coefficients 

2  and 3  in Equation 6. 

 

Level-1 (Responsesjkmi)        (6) 

ijkmijkmjkmijkmijkmijkmi VCPAFSWMGPCKLogit *)/(*)( 3210            

Level-2 (Personjkm & Wordi)   

ijkmi
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    ijkmkmjkmi rr 1110101    

Level-3 (Classroomkm)            kmmkm u 00000   

Level-4 (Schoolm)            mm   0000000  

 

 All models were fit using the lmer function in the R package lme4 (Bates & Maechler, 

2009). Lmer employs Laplace approximation, a marginal maximum likelihood approach in 

which item parameters are estimated first and then person parameters are estimated based on the 

estimated item parameters. Laplace approximation is computationally efficient as it 

approximates the integrand as opposed to the integral. Although approximating the integrand 

tends to underestimate variance when responses are binary in nature and sample sizes are small 

(Joe, 2008), a simulation study by Cho and Rabe-Hesketh (in press) showed that accuracy was 

compromised in the case of 100 persons and 10 items but was not compromised in the case of 

100 persons and 50 items; both with similar ICCs as expected in the current study. The current 

study had double the persons and items as the problematic case in the Cho and Rabe-Hesketh 

study. Neither standard errors nor p-values for random effects are produced by the lmer function 
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because lmer uses likelihood methods which do not make the necessary symmetric parameter- 

distribution assumptions that are necessary for accurately calculating standard errors and p-

values (Bates; 2006, May 19 & July 15). Finally, all continuous person and word variables were 

standardized before they were entered into the models. 
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CHAPTER III 

 

RESULTS  

 

Descriptive Statistics 

 Frequency indices were calculated for each pseudoword contained in the TNT 

assessment. The correlation between average rime-neighbor frequency and rime-neighborhood 

size was .39. Table 2 contains descriptive statistics for the frequency indices of the pseudowords. 

Means, medians, and standard deviations in the table indicate both of the frequency variables 

have skewed distributions; however, this does not pose a problem because models with binary 

outcomes make no distributional assumptions about independent variables (Tabachnick & Fidell, 

2007). Descriptive statistics of the assessment scores are provided in Table 3. Correlations 

among the student assessment scores are in Table 4. 

 

Table 2 

Description of the Frequency Indices of Pseudowords on TNT (N = 20)        

 Mean Median SD Min. Max. 

Average rime-neighbor frequency 69.22 34.20 100.52 0.00 406.59 

      

Rime neighborhood size 4.90 2.50 5.06 0.00 16.00 
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Table 3 

Description of Student Sample (N = 196)  

 Mean Median SD Min. Max. 

GPC total 23.17 23 2.14 12 27 

      

Phonemic awareness 14.05 16 4.98 1 20 

      

Rapid naming 58.07 55 17.10 31 130 

      

TNT total 9.16 9 4.25 0 19 

      

Working memory 5.64 6 4.14 0 16 

 

 

 

 

 

 
Table 4 

Correlations Among Student Assessment Scores (N = 196)  

 1 2 3 4 5 

1. GPC total —     

      

2. Phonemic awareness .31 —    

      

3. Rapid Naming -.11 -.18 —   

      

4. TNT total .52 .36 -.23 —  

      

5. Working memory .22 .33 -.24 .23 — 

Note. Correlations ≥ |.18| are significant at the α = .05 level. 

 

 

 

Base Model Results 

 Before building models to answer each of the research questions, we estimated five 

potential Base models that included no covariates. For the sake of parsimony, the Full Base 

model that included all potential sources of variance was compared to four reduced models, one 

for each omitted random parameter: word, person, classroom, and school. Table 5 contains 

model fit indices for all five models and the relevant model comparison tests. Although the 

likelihood ratio test is typically used to compare nested models that share common random 

variance components, accurate results can be obtained when comparing models that differ in 
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numbers of random effects by halving the p-value produced by the LR test (Molenberghs & 

Verbeke, 2004; Wilson & De Boeck, 2004). 

 

Table 5 

Model Fit Indices and Relevant Comparisons Among Base Models (N = 196)  

  Model Fit Indices Model Comparison 

Model 

Number of 

parameters Deviance AIC BIC 

Referent 

Model 

χ
2 
Test of 

Equivalence 

       

Full Base 5 4587 4597 4628 n/a n/a 

       

Base w/o word 4 5069 5077 5102 Full Base 481.81, p < .01 

       

Base w/o person 4 4731 4739 4764 Full Base 144.56, p < .01 

       

Base w/o school 4 4593 4601 4626 Full Base 5.95, p < .05 

       

Base w/o classroom 4 4593 4601 4626 Full Base 6.35, p < .05 

 

 

 

 In all cases, the likelihood ratio tests indicated the reduced Base models fit significantly 

worse than the Full Base model. Because the Full Base model fit the data better than the reduced 

Base models, all random effects were retained in the remaining models. Estimates of the fixed 

and random effects for the Full Base model are in Table 6. We used Equations 3a-3d to calculate 

the ICCs for each source of variance. The ICCs for persons, classrooms, and schools, conditional 

on word difficulty, were 14.36%, 4.54%, and 7.05%, respectively. The proportion of variance 

between words was 20.03%, conditional on student ability. 
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Table 6 

Results from Full Base Model  (N = 196)    

Fixed Effect     

Variable Coefficient SE z p 

Intercept, ω000 -0.31 0.27 -1.14 0.25 

     

Random Effects    

Source Variance SD   

Person (intercept), σ
2
r01 0.64 0.80   

Classroom (intercept), σ
2
u 0.20 0.45   

School (intercept), σ
2
τ 0.31 0.56   

Word (intercept), σ
2
r02 0.82 0.91     

Note. Coefficients are in log-odds units. Level-1 variance assumed to be π
2
/3. 

 

 

  

 Though the coefficients in the tables are in log-odds units, they were converted to 

probabilities in the text for ease of interpretation using the formula: 1/(1+exp[-γ0]). Results from 

the Full Base model revealed that the average predicted probability for an average person (r01jkm = 

0) in an average classroom (ukm = 0) in an average school (εm = 0) decoding a word of average 

difficulty (r02i = 0) was .42, 1/(1+exp[-{-0.31}]). However, variability around this average existed 

among persons and words (see σ2
r01 and σ2

r02 in Table 6). One way of describing the magnitude of 

variation of correct responses across persons and words is to compute the 95% plausible value 

range (Hoffman & Rovine, 2007; Raudenbush & Bryk, 2002). The 95% plausible value range for 

persons was .13 to .78 (1/[1+exp{-ω000 ± 1.96*√ σ
2
r01}]) for the predicted probability of getting 

an average word correct. For words, the range was .11 to .81 (1/[1+exp{-ω000 ± 1.96*√ σ
2
r02}]) 

for the predicted probability of an average person. The variability here highlights the advantage 

of using a person-and-word analysis to model the variation in responses across persons and 

words instead of choosing one to ignore in the case of aggregated analyses. In a person-analysis, 

for instance, correct responses are aggregated over items and each person is assigned a total 

score. What the Base model shows for these data is that the there is variability in responses 
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across words (σ
2
r02 in Table 6) that we can model and attempt to explain – information that would 

be lost in an aggregate, person analysis. 

 

Results for Research Questions 

 

Research question 1 

 The aim of research question 1 was to determine if the probability of correctly decoding a 

pseudoword was different depending on a person’s knowledge or lack of knowledge of all the 

GPCs in that word. Therefore, Model 1 contained the GPCK variable that was specific to each 

person and each word. Model 1 results are in Table 7. The z-statistic for the GPCK variable 

indicated that there was a significant (at the α = .05 level) difference in the probability of a 

correct response when word-specific GPCs were known versus not known. Because GPCK is a 

dichotomous variable, the intercept in the model represents the case in which word-specific 

GPCs were not known (e.g., when GPCK = 0). In that case, the average predicted probability of 

correct decoding was .35, 1/(1+exp[-{-0.64}]), for an average person and an average word. On 

the other hand, the predicted probability of correct decoding when word-specific GPCs were 

known was .46, 1/(1+exp[-{-0.64 + .48}]), for an average person and an average word. This 

effect of word-specific GPC knowledge varied substantially across students and words (see σ2
r11 

and σ
2
r12 in Table 7); the 95% plausible value range for the predicted difference of correctly 

decoding a word when a student knew versus did not know the GPCs ranged from 6.27% to 

80.64% (1/[1+exp{- λ1 ± 1.96*√ σ
2
r11}]) on an average word. In other words, some students were 

greatly affected by GPC knowledge, and it hardly mattered at all for others. The effect of GPC 

knowledge also varied by word as the predicted difference ranged from 39.91% to 79.63% 
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(1/[1+exp{- λ1 ± 1.96*√ σ
2

r12}]) for an average person. Findings suggest that although full 

knowledge of word-specific GPCs is an important predictor of accurate decoding, it is neither a 

necessary nor sufficient condition for every person to accurately decode every word; other 

factors are at work. 

 

Table 7 

Results from Model 1 (N = 196)   

Fixed Effect     

Variable Coefficient SE z p 

Intercept, ω000 -0.64 0.29 -2.21 .03 

GPCK, λ1 0.48 0.16 2.97 .00 

     

Random Effects    

Source Variance SD   

Person (intercept), σ
2

r01 1.11 1.05   

Person (GPCK), σ
2

r11 0.47 0.69   

Classroom (intercept), σ
2
u 0.20 0.45   

School (intercept), σ
2
τ 0.26 0.51   

Word (intercept), σ
2

r02 0.92 0.96     

Word (GPCK), σ
2

r12 0.20 0.45   

Note. Coefficients are in log-odds units.   

 

 

 

 The negative correlations between the variance components of the intercept and the 

GPCK slope for both persons and words (σr01*11
2
 = -.73 and σr02*12

2
 = -.45, respectively) also 

suggest there are factors affecting correct decoding other than word-specific GPC knowledge. 

On the person side, the negative correlation between the variability around the probability of a 

correct response and the variability around the effect of word-specific GPC knowledge on a 

correct response suggests that when there was much variability among students in getting a word 

correct, there was not much variability across students in the effect of GPC knowledge on that 

word. This means that the effect of word-specific GPC knowledge behaved as predicted in that if 

students knew the GPCs in a word, they were mostly predicted to decode it correctly and if 

students did not know the GPCs in a word, they were mostly predicted to decode it incorrectly. 
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Conversely, when there was not much variability around the probability of students getting a 

correct response for a word, there was great variability in the effect of word-specific GPC 

knowledge. What this latter case means is that if students mostly got a word correct or mostly got 

it incorrect, then the way GPC knowledge affected that correct response was inconsistent. In the 

mostly correct situation, students were getting the word right regardless of word-specific GPC 

knowledge. Similarly in the mostly incorrect situation, students were getting the word wrong 

regardless of word-specific GPC knowledge. Keep in mind that the situations described here 

pertain to performance on an average word. The same pattern of results held true for the word 

side as well. The additional person and word factors assessed in research questions 2 and 3 were 

entered to help explain what other than word-specific GPC knowledge is important for 

explaining variability accurate decoding.   

Research questions 2 and 3 

 The aim of research question 2 was to determine the relative importance of person and 

word factors in their contribution to decoding accuracy while controlling for a student’s 

knowledge of a word’s GPCs. Model 2 included word-specific GPC knowledge plus the 

following person variables: phonemic awareness, rapid naming, and working memory. To 

answer research question 3, word variables were also included in Model 2: average rime-

neighbor frequency, rime-neighborhood size, frequency*size, and grapheme (vowel versus 

consonant) complexity. Results are in Table 8. First, we discuss results pertaining to research 

question 2. Table 8 reveals that controlling for word-specific GPC knowledge, phonemic 

awareness (γ10 = 0.28, z = 3.69, p < .01) and rapid naming skill (γ20 = -0.17, z = -2.29, p < .05) 

were significant predictors of decoding accuracy, while working memory was not (γ30 = 0.03, z = 

0.33, p > .05).  
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 The null effect of working memory may be attributable to the short length of the words 

included in the sample. Because working memory has a limited capacity and is affected by the 

amount of information it must attend to (Siegel, 1994), we suspect working memory might play a 

role in decoding words that are longer than the 4-letter pseudowords included in the current 

study. In favor of this explanation, Abu-Rabia et al. (2003), who found an effect of working 

memory on decoding, measured decoding skill with an assessment that contained pseudowords 

up to five syllables long. On the other hand, Conners et al. (2001) found an effect of working 

memory on one-syllable words. The authors, however, did not consider any covariates other than 

age in the analysis, which means working memory may have served as a proxy for other related 

reading skills. Whether or not short words mask the effect of working memory, our finding of its 

null effect adds to the growing body of mixed conclusions regarding the relationship between 

working memory and reading difficulties (see review by Savage, Lavers, & Pillay, 2007). The 

effect of working memory notwithstanding, the other person factors functioned as expected.  

 As hypothesized, phonemic awareness and rapid naming had significant influence on 

decoding. Phonemic awareness was the most influential. Compton, DeFries, and Olson (2001) 

also found phonemic awareness to be more influential than rapid naming on measures of 

decoding accuracy. Controlling for word-specific GPC knowledge, a one standard deviation 

increase in phonemic awareness was associated with a 56.87% increase in the predicted 

probability of accurate decoding for an average word for a person with average skill in rapid 

naming and working memory. In our sample of at-risk readers, phonemic awareness was even 

more influential than word-specific GPC knowledge (z = 3.69 and z = 2.75, respectively), which 

is exactly what Byrne and Fielding-Barnsley (1993) found in their first grade sample of typical 

readers. Compton (2000), however, found the opposite pattern for GPC knowledge and 
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phonemic awareness. The discrepancy in findings may be due to the difference in phonemic 

awareness tasks (phoneme segmentation and blending versus phoneme identification) or the 

difference in predictive versus concurrent measurement. Still, by all accounts, both GPC 

knowledge and phonemic awareness are critical to early literacy development. Rapid naming 

also appears to be an influential factor, though not quite as robust (z = -2.29) as phonemic 

awareness. Controlling for all other variables, a one standard deviation increase in the speed of 

rapid letter naming was associated with a 45.66% increase in the predicted probability of the 

correct decoding of an average word.  

 As a block, the person variables accounted for 16.61% of the person variance compared 

to the model with only word-specific GPC knowledge (Model 1). Though phonemic awareness 

and rapid naming clearly affect decoding accuracy, the amount of unexplained variance indicates 

there may be additional person factors that affect decoding accuracy that were not accounted for 

in the model.  
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Table 8 

Results from Model 2 (N = 196)   

Fixed Effect 

Variable Coefficient SE z p 

Intercept, ω000 -0.09 0.31 -0.29 .77 

GPCK, λ1 0.44 0.16 2.75 .01 

Phonemic awareness, γ10  0.28 0.07 3.69 .00 

Rapid naming, γ20 -0.17 0.08 -2.29 .02 

Working memory, γ30 0.03 0.08 0.33 .74 

R_FREQ, γ40 0.76 0.21 3.52 .00 

R_SIZE, γ50 -0.10 0.17 -0.60 .55 

FREQ*SIZE, γ60 -0.48 0.22 -2.13 .03 

Grapheme complexity, γ70 -0.70 0.29 -2.38 .02 

     

Random Effects 

Source Variance SD   

Person (intercept), σ
2
r01 0.93 0.96   

Person (GPCK), σ
2
r11 0.45 0.67   

Classroom (intercept), σ
2
u 0.19 0.44   

School (intercept), σ
2
τ 0.14 0.37   

Word (intercept), σ
2
r02 0.77 0.88    

Word (GPCK), σ
2
r12 0.21 0.37   

Note. Coefficients are in log-odds units. R_FREQ = average rime-neighbor frequency. 
R_SIZE = rime-neighborhood size. 

 

  

 As for the word factors in research question 3, it appears that although words with more 

frequent rimes were decoded at a higher probability than words with less frequent rimes (γ40 = 

0.76, z = 3.52, p < .01) (also found by Treiman et al., 1990), that effect was moderated by rime-

neighborhood size (γ60 = -0.48, z = -2.13, p < .05). Figure 2 illustrates this interaction. This 

finding corroborates that of Calhoon and Leslie (2002) and Leslie and Calhoon (1995) that 

young children are affected by a word’s rime-neighborhood size when the word is found 

infrequently in text. Results from Model 2 also reveal words with complex vowel graphemes had 

a lower predicted probability of correct decoding than complex consonant graphemes (γ70 = -

0.70, z = -2.38, p < .05). Controlling the frequency of the word, when the word-specific GPCs 

were known, the predicted probability for an average person to correctly decode a word with a 
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complex vowel was .41 but was .59 for a word with a complex consonant. When word-specific 

GPCs were not known, the predicted probabilities were .31 and .48, respectively, for complex 

vowels and complex consonants. This finding is aligned with that of Treiman et al. that vowels 

are the most problematic type of grapheme in terms of decoding. The present finding is 

particularly interesting because knowledge of the word’s GPCs was controlled in the analysis. 

That means that although students knew the phonemes associated with the complex vowel and 

consonant graphemes, they still had more difficulty decoding words that contained the complex 

vowel grapheme than the complex consonant grapheme. Altogether, the four word covariates 

explained 16.50% of the word variance after accounting for word-specific GPC knowledge 

(Model 1). The proportion of unexplained word variance suggests that additional word factors 

should be included in future analyses. 
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Figure 2. Graph of interaction between average rime-neighbor frequency and rime-neighborhood 

size 
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 In general, findings from Model 2 corroborate findings from past studies that have used 

more traditional, total-score analyses in terms of person (Byrne & Fielding-Barnsley, 1991; 

Compton, 2000, 2003; Manis et al., 2000; Treiman et al., 1990) and word effects (Calhoon & 

Leslie, 2002; Leslie & Calhoon, 1995; Treiman et al.). The interaction of average rime-neighbor 

frequency and rime-neighborhood size extends the work of Calhoon and Leslie (2002) and Leslie 

and Calhoon (1995) by suggesting that it is not only the frequency of the word that matters but 

also the frequency of the word’s neighbors. Further research on the importance of average rime-

neighbor frequency in real word decoding may need to be conducted to determine if its effect is 

specific to pseudowords, which have no frequency of their own.  

 

Research question 4 

 Two person-by-word interactions were assessed under research question 4. The first 

interaction was between working memory and frequency of the rime unit. We assume that 

students are more likely to decode words in a grapheme-by-grapheme manner when the words 

contain infrequent rime units (Treiman et al., 1990). Conversely, students may be able to use 

some type of analogy strategy when decoding words with frequent rime units. Because the 

grapheme-by-grapheme decoding process may be more taxing on working memory than analogy 

decoding (Siegel & Faux, 1989), students with poorer working memory may have more 

difficulty with infrequent rimes than students with adequate working memory. Therefore, we 

hypothesized that the accuracy of decoding might be more discrepant between words with 

infrequent rimes than frequent rimes for students with poorer working memory than would be the 

case with students with better working memory.  

 We chose to use average rime-neighbor frequency as opposed to rime-neighborhood size 

to create the working memory by frequency interaction because the former was a significant 
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predictor of decoding accuracy in Model 2. Results for the interaction model are in Table 9. As 

the table shows, there was not a significant interaction of working memory and rime frequency 

(λ2 = 0.01, z = 0.26, p > .05). Similar to the speculation of the null effect of working memory in 

research question 3, the interaction of working memory and rime frequency may exist in 

lengthier words in which working memory is more heavily taxed.  

 The second interaction was between phonemic awareness and grapheme (vowel versus 

consonant) complexity. Past research has shown a trend for students with poorer phonological 

skills to have more difficulty with complex vowel graphemes than complex consonant 

graphemes (Marinus & de Jong, 2008). The interaction entered into Model 3 was evaluated in 

the presence of person and word random effects so that the variability of both was taken into 

account. Results in Table 9 confirm that there was indeed a significant interaction between 

phonemic awareness and grapheme complexity (λ3 = 0.17, z = 2.18, p < .05). Model 3 was re-

estimated without the non-significant Working Memory X Average Rime-Neighbor Frequency 

interaction so that a likelihood ratio test could provide secondary evidence that a model including 

the phonemic awareness by grapheme complexity interaction fit the data better than a model 

without it. Results of the likelihood ratio test comparing Model 2 and Model 3 with only the 

Phonemic Awareness X Grapheme Complexity interaction confirmed the necessity of the 

interaction, χ
2
 = 4.75, p < .05. Figure 3 depicts the interaction. 
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Table 9 

Results from Model 3 (N = 196)        

Fixed Effect     

Variable Coefficient SE z p 

Intercept, ω000 -0.08 0.31 -0.26 .79 

GPCK, λ1 0.44 0.16 2.77 .01 

Phonemic awareness, γ10  0.20 0.08 2.44 .01 

Rapid naming, γ20 -0.17 0.08 -2.29 .02 

Working memory, γ30 0.03 0.08 0.33 .74 

R_FREQ, γ40 0.77 0.22 3.58 .00 

R_SIZE, γ50 -0.11 0.17 -0.66 .51 

FREQ*SIZE, γ60 -0.49 0.22 -2.19 .03 

Grapheme complexity, γ70 -0.72 0.29 -2.43 .01 

Working memory*R_FREQ, λ2  0.01 0.04 0.26 .80 
Phonemic awareness* 

grapheme complexity, λ3 0.17 0.08 2.18 .03 

     

Random Effects    

Source Variance SD   

Person (intercept), σ
2
r01 0.92 0.98   

Person (GPCK), σ
2
r11 0.46 0.68   

Classroom (intercept), σ
2
u 0.19 0.44   

School (intercept), σ
2
τ 0.14 0.37   

Word (intercept), σ
2
r02 0.79 0.89    

Word (GPCK), σ
2
r12 0.20 0.45   

Note. Coefficients are in log-odds units. R_FREQ = average rime-neighbor frequency. 
R_SIZE = rime-neighborhood size.  
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Figure 3. Graph of interaction between phonemic awareness and grapheme complexity 

 

 

 

 The graph illustrates that (for an average word) students in general had a lower predicted 

probability of correctly decoding a word with a complex vowel than a word with a complex 

consonant, but that the difference between the two types of words was most prominent for 

students with lower phonemic awareness scores.  
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CHAPTER IV 

 

DISCUSSION 

 

General Conclusions 

 The aim of the current study was to extend the literature on decoding by bringing 

together two lines of research, namely person and word factors that affect decoding, using a 

crossed random-effects model. Results generally confirm what has been found in prior, total-

score analyses: Accurate decoding is influenced by both person and word characteristics. One 

advantage of examining both types of effects in the same statistical model is the ability to 

explore person-by-word covariates and interactions between person and word factors. GPC 

knowledge, for example, was treated as person-and-word specific so that the relation between a 

student’s knowledge of a word’s GPCs and the student’s correct decoding of that word could be 

examined. As expected, students who knew all the GPCs within a word had a higher predicted 

probability of decoding that word accurately compared to students who did not know all the 

word’s GPCs. This finding provides further support of the stage theories of reading development 

that insist GPC knowledge is crucial in learning to read (Chall, 1983; Ehri, 1991; Frith, 1985; 

Gough & Hillinger, 1980; Mason, 1980; Perfetti, 1992).  

 We found it interesting that the positive relation between GPC knowledge and decoding 

does not necessarily hold for every word. This means it is neither necessary nor sufficient for all 

the GPCs in a word to be known before accurate decoding takes place. Some students in our 

study knew all the GPCs within a word yet decoded it inaccurately and some students did not 

know all the GPCs within a word yet were able to decode it accurately. For instance, there were 
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33 cases in which students knew the phonemes associated with the graphemes v, ou, and n when 

given the AGCPK test but were unable to correctly decode the pseudoword voun on the TNT. On 

the other hand, there were 23 cases in which students did not know all the phonemes associated 

with graphemes in the pseudoword voun yet were still able to correctly decode the pseudoword. 

This finding provides evidence in favor of the psycholinguistic grain size theory that states 

children are able to use orthographic information of different sizes (e.g., single letters, pairs of 

letters, clusters of letters, etc.) when decoding unfamiliar words (Ziegler & Goswami, 2005). 

This finding also suggests that GPC knowledge need not be explicit to be useful. It is clear from 

the cases in which students were unable to produce the correct phoneme when shown a 

grapheme in isolation (on the AGPCK task) but were able to correctly produce the phoneme 

when it was embedded in a nonword (on the TNT task) that in some cases implicit GPC 

knowledge is sufficient to decode unfamiliar words. This is not to suggest that GPCs should not 

be taught explicitly but that the nature of the relation between GPC knowledge and accurate 

decoding may be more complex than our current, dichotomous measure of GPC knowledge 

allows us to fully explore. Perhaps a continuum of GPC quality (i.e., stability, impenetrability) 

would be a more appropriate measure (Perfetti, 1992).  

 When students were able to correctly decode a word despite not knowing all the GPCs 

within that word, it may be that they were using other word features (e.g., familiar rime unit) to 

aid their decoding. Based on a count of the raw data, when students did not know all the GPCs in 

words from larger neighborhoods (M = 8.90 neighbors) the proportion of an accurate decoding 

was .35. This proportion fell to .23 when the word was from a smaller neighborhood (M = 0.90 

neighbors). That means when students did not know the GPCs in a word, they were more likely 

to get the word correct if the word had an abundance of rime-neighbor information that the 
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student could use (implicitly or explicitly) to accurately decode the unknown word. Students 

were apparently able to use more than just rime information, though. More than half (45/72) of 

the cases in which students were able to decode small-neighborhood words despite not knowing 

the GPCs within the word was a result of students pronouncing the pseudoword goob as if they 

were pronouncing the real word good but then changing the ending sound. These students were 

not able to produce the /uu/ phoneme when shown the grapheme oo in the AGPCK task, but they 

were able to use the /uu/ phoneme to make an accurate pronunciation of goob (which could have 

been correctly pronounced with the /oo/ or /uu/ phoneme). This indicates that children are 

sensitive to more than just rime similarities in words and can use various pieces of orthographic 

information to decode new words. 

 In addition to word-specific GPC knowledge, students who had higher phonemic 

awareness scores were more likely to decode pseudowords accurately than students with lower 

scores. Of all the student factors, phonemic awareness was the most influential. This is not 

surprising considering the convincing prior research that has dubbed GPC knowledge and 

phonemic awareness co-requisites of successful decoding (Byrne & Fielding-Barnsley, 1991; 

Bradley & Bryant, 1983; Ehri & Sweet, 1991; Hatcher et al., 1994). In fact, phonemic awareness 

appears to have an even greater influence on decoding accuracy than word-specific GPC 

knowledge. The supremacy of phonemic awareness over GPC knowledge was reported by Byrne 

and Fielding-Barnsley (1993) and Hatcher et al. (1994) as well.  

 In terms of person factors, there also appears to be a relation between rapid naming skill 

and accurate decoding above and beyond the relation between phonemic awareness and 

decoding. The unique contribution of rapid naming, along with a low correlation between 

phonemic awareness and rapid naming (-.18), lends support to the double-deficit hypothesis in 
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which Wolf and Bowers (1999, 2000) claim that phonological and rapid naming deficits make 

relatively independent contributions to reading difficulty. Although the person effects mentioned 

here certainly impact accurate decoding, the skills people bring to the decoding situation are only 

half the story; the types of words being decoded also matter. 

 According to word acquisition theories, the process of acquiring unfamiliar words is a 

word-by-word endeavor rather than a developmental stage of reading (Share, 1995; Perfetti, 

1992). Our results corroborate those theories by demonstrating that variability of accurate 

decoding exists across words and that word characteristics significantly affect decoding. One of 

those characteristics is shared rime information (McClelland & Rumelhart, 1981). We found that 

pseudowords containing frequently-encountered rime units (e.g., nish) were easier to decode than 

pseudowords with infrequently shared rimes (e.g., bosh). Although the main effect of rime-

neighborhood size was not a significant factor in decoding, there was an interaction between 

rime-neighborhood size and average rime-neighbor frequency indicating that children are 

affected by a word’s rime-neighborhood size when the word is found infrequently in text (Leslie 

and Calhoon, 1995; Calhoon & Leslie, 2002). In addition, words with complex consonant 

graphemes (e.g., jeth) were easier to decode than words with complex vowel graphemes (e.g., 

dail), which confirms the trend found by Marinus and de Jong (2008). Whereas prior research 

has shown that complex vowel and consonant graphemes are generally more difficult than their 

respective simple grapheme types (Marinus & de Jong; Olson et al., 1994), our comparison 

between the two complex types provides information about which type is the more difficult one 

to decode (i.e., word with complex vowel graphemes). In general, it appears that a word’s rime 

information may have a stronger impact on decoding than individual grapheme information. 
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Implications  

 Results from the current study have implications for reading instruction and research. 

Regarding instruction, our results suggest that students with poorer phonemic awareness have 

lower predicted probabilities of decoding words accurately regardless of their GPC knowledge. 

For example, there were fewer cases in which students with below average phonemic awareness 

decoded words correctly even when they knew the associated GPCs (29.06%) than cases in 

which students with above average phonemic awareness knew the GPCs and decoded correctly 

(42.72%). Siegel and Faux (1989) reported a similar phenomenon. In their study, students with a 

reading disability compared to students without a disability were less likely to correctly decode 

pseudowords that contained the same letters that were in real words that they could read. 

Therefore, students with poor phonemic awareness skills may need additional instruction in 

applying GPCs once the GPCs have been acquired (see Cunningham, 1990, for a similar 

argument with regard to phonemic awareness). This conclusion is in agreement with the 

recommendation by the National Reading Panel (National Institute for Literacy, n.d.) that best 

practice in early reading instruction should include the concurrent instruction of phonemic 

awareness and phonics (i.e., GPCs). Our conclusion is also in line with Hatcher et al. (1994) who 

found that training in phonology plus phonics was more effective for poor readers than training 

in either skill alone. Another possible explanation is that students with poorer phonemic 

awareness may require more time and practice to learn GPCs to a degree that the GPCs can be 

used when decoding unfamiliar words (Bransford & Schwartz, 1999). In this vein, Compton et 

al. (2005) found that students with reading disabilities who exhibited the greatest growth in 

treatment-aligned measures were the most likely to display gain in other areas of reading. This 

may suggest a certain level of mastery is required before growth in one reading skill can promote 
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growth in related reading skills, and that struggling readers should be provided more time to 

master GPCs before being asked to apply them when decoding new words. 

 We mentioned previously that although students are able to use rime-unit familiarity to 

help them decode unfamiliar words, there was also some evidence in our data to suggest that 

students are able to use other parts of the word as well. This appears particularly true for words 

containing low-frequency rimes. One potential instructional implication is to group words that 

have infrequent rime units with other words using a common feature other than the rime unit. For 

instance, the word seem has no rime neighbors in K-3 texts (Zeno et al., 1995), but there are 

several words beginning with see- that could be helpful to a student trying to decode seem: see, 

seed, seek, seen, seep, and sees. To confirm the conclusion drawn here, additional research is 

needed on the extent to which children can use onset (all consonants prior to a vowel in a single-

syllable word) plus vowel familiarity to help them decode new words. 

 The crossed random-effects model allowed us to ask questions regarding which types of 

words might be especially hard for which types of readers. In the current study, for example, the 

interaction between phonemic awareness and grapheme complexity suggests that the extra 

instruction recommended for students with poor phonemic awareness should specifically include 

practice in applying complex vowel GPCs when decoding new words. In our data, among the 

students with below average phonemic awareness, fewer read keab (12.82%) correctly than sath 

(58.21%) despite knowing the respective word-specific GPCs. Modeling the relationships 

between types of educational materials and types of students could help match students with the 

most appropriate instruction, a goal shared by researchers who assess person-level aptitude-by-

treatment interactions.  
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Another implication for future research is using the crossed random-effects model to test 

the self-teaching hypothesis (Jorm & Share, 1983; Share, 1995). According to the self-teaching 

hypothesis, individuals acquire orthographic representations of words through a phonological 

recoding self-teaching mechanism. Phonological recoding (a.k.a. decoding) is the process of 

translating a printed word to speech via access to the phonological loop. In the phonological 

loop, written symbols are associated with, or mapped onto, phonological information. Therefore, 

each time individuals are successful in decoding a word, they (implicitly) teach themselves 

word-specific and general orthographic knowledge. 

 In past studies of the self-teaching hypothesis, researchers have almost exclusively used 

total-score analyses to assess the relation between accurate decoding and word-specific 

orthographic learning. Generally, researchers record the percentage of targets that were correctly 

decoded by the participant during the training and the number of correct target choices the 

participant made on the orthographic choice task, and these two total scores are correlated. This 

correlation describes the relation between the percentage of targets that were correctly decoded 

and the percentage of correct choices in target spellings. The problem with the total-score 

correlation is that it is unable to properly address word-specific orthographic learning because it 

does not address the precise relationship between the accuracy of decoding a particular target and 

later choosing that target over its homophone or other visually similar choices. 

 To properly assess the effect of decoding accuracy on word-specific orthographic 

learning, a person-and-word analysis must be conducted. In a crossed random-effects model, 

decoding could be treated as a person-by-word covariate so that one could get a more detailed 

understanding of how a person’s accuracy in decoding a particular word during training predicts 

whether or not that person will identify that word’s correct spelling on an orthographic choice 
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task. This information would provide a critical test of the self-teaching mechanism by 

investigating the importance of accurate decoding in word-specific orthographic learning and 

which, if any, other person or word factors contribute to that orthographic learning.  

 

Limitations 

 Findings and conclusions from the present study should be interpreted in light of the 

study limitations. First, we relied exclusively on pseudowords to draw conclusions about 

decoding in general. The universal unfamiliarity of pseudowords is favorable for detecting true 

decoding skill that is not dependent on vocabulary knowledge or sight word recognition. Though 

decoding pseudowords is often used as a proxy to study how children decode unfamiliar words 

in general, there are limitations for doing so. Children have no prior knowledge of the 

pronunciation or meaning of pseudowords before they are asked to decode them. In cases of 

decoding unfamiliar real words, children are often familiar with the phonology and the meaning 

of a word even if they are not familiar with the word’s orthography (i.e., written form). As an 

example, children are able to say the word dog and understand the definition of dog long before 

they recognize that the letter pattern d-o-g represents the sound and meaning of a word they 

already know. This discrepancy between real and pseudowords means that there may be 

predictors of real word decoding that are deemed superfluous when predicting pseudoword 

decoding. For example, vocabulary knowledge might be expected to influence real word 

decoding but not pseudoword decoding. Nation and Snowling (1998), for instance, found that 

children with poor vocabulary knowledge were less accurate when reading exception words than 

students with more extensive vocabulary knowledge even when both groups were matched on 

phonological skill and nonword decoding accuracy. 
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 One solution for eliminating the real word-pseudoword discrepancy in examining 

decoding skill is to have children decode real words that are unfamiliar in written form but 

familiar in oral form. This could be accomplished by compiling a list of words that are both (a) 

likely to be in the oral vocabulary of the sample being assessed and (b) amenable to 

pseudohomophone spellings. For instance, the words boat, fish, and clock are familiar in sound 

and meaning to most all first grade students. To assess first graders’ decoding skills, one could 

present the students with the pseudohomophones bote, phish, and klok so that the written forms 

are unfamiliar, but the phonology and meaning of the words are familiar. 

 Another limitation was that working memory was assessed approximately seven months 

prior to the assessment of the other skills. This occurred because students were involved in a 

larger intervention project that had a set testing schedule. Though it would have been ideal to 

assess working memory closer to the time the other skills were measured, we have no reason to 

expect that students’ relative standing on working memory would have been different at the end 

of the year than at the beginning of the year. This means that although students’ working 

memory scores may have increased throughout the school year, their rank order was not 

expected to change. Therefore, we believe that the relation between end-of-year working 

memory and end-of-year decoding would be equivalent to what we found between beginning-of- 

year working memory and end-of-year decoding.  
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APPENDIX 

 

  

Complex 
vowel 
grapheme 

Complex 
consonant 
grapheme 

infrequent rime unit 

goob naff 

naif fidd 

feem bosh 

voun jeth 

keab tesh 

frequent rime unit 

teek dess 

soom guck 

pean nish 

dail vell 

mout sath 
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