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CHAPTER I 

 

 

BACKGROUND AND SIGNIFICANCE 

 

 

Innate and adaptive immunity 

 The mammalian immune system is a composite that the innate and adaptive 

immune responses work together to protect the host from invading pathogens. The innate 

immune system is the first-line defense, and depends on humoral and cellular 

components including the complement system, neutrophils, macrophages, dendritic cells 

(DCs), mast cells, basophils, eosinophils, and natural killer (NK) cells. The innate 

immune system responds non-specifically to conserved molecular patterns present on 

pathogens and eliminates them through contact or phagocytocis. As the initial line of 

defense against pathogens, the innate immune response is immediate upon exposure to 

foreign pathogens. In addition to their direct role in elimination of pathogens, some of the 

cells involved in innate immunity also act as antigen presenting cells (APCs) that present 

specific antigens to T cells of the adaptive immune system. The adaptive immune system 

is maintained through the cooperation of humoral and cellular components as well. 

Specific antibodies against invading pathogens are produced by B cells, while direct 

killing of pathogens expressing specific antigens is mediated by cytotoxic CD8 T cells. 

CD4 T cells orchestrate the immune response of the adaptive immune system through 

secretion of various cytokines. The hallmark of the adaptive immune response is the 

pathogen- and antigen-specific response and the immunological memory characterized by 
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a delayed weaker primary response and more rapid and robust secondary response (1).  

 

Natural killer T (iNKT) cells 

NKT cells are a unique subset of T lineage cells co-expressing T cell receptors 

(TCRs) and NK lineage receptors. Although these cells express TCRs and share common 

developmental pathways with T cells, many functional characteristics of these cells 

categorize them as a component of the innate immune system. Most NKT cells express a 

semi-invariant TCR, Vα14-Jα18/Vβ8,Vβ7, or Vβ2 in mouse (2-4), and Vα24-

Jα18/Vβ11 in human (5, 6). Consequently, these cells have a limited ligand repertoire, 

and they are referred to as invariant NKT cells (iNKT cells) or Type I NKT cells. The 

remaining NKT cells express non-invariant T cell receptors, and have different ligand 

specificities (7-11). These cells are referred as Type II NKT cells (12). Both types of NKT 

cells are specific for glycolipid antigens presented by the major histocompatibility 

(MHC) class I-related protein CD1d, in contrast with conventional T cells that recognize 

peptides presented by MHC class I or class II proteins. Although there is growing 

evidence for an important immune function of Type II NKT cells (13-16), the focus of 

this thesis work is on iNKT cells.  

 

The phenotype of iNKT cells 

The phenotype of iNKT cells shows interesting features. Several receptors 

commonly found on NK cells are also expressed on iNKT cells, most notably the C-type 

lectin NK1.1 (Nkrp1c or CD161) expressed in mouse strains such as C57BL/6. 

Engagement of this activation receptor has been shown to bias iNKT cells towards IFN-γ 

secretion (17). A significant subset of iNKT cells also expresses NKG2D (18, 19). 
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NKG2D is a highly conserved C-type lectin-like membrane glycoprotein expressed on 

most NK cells and on certain T cell subsets. NKG2D acts as an activation receptor for 

enhancing cytolytic activity and cytokine secretion, and it has been implicated in T and 

NK cell responses against viruses and tumors as well as autoimmunity (20-24). In 

addition, some iNKT cells, particularly thymic iNKT cells, express various Ly49 

receptors, most of which are inhibitory receptors (25). iNKT cells also express CD94, a 

component of the inhibitory receptor CD94/NKG2A or the activating receptor 

CD94/NKG2C (25). Approximately 60% of iNKT cells also express CD4, which 

enhances TCR signaling in T cells (26-28), and there has been some evidence for distinct 

functions of CD4+ and CD4- iNKT cells (29). Also, in comparison to conventional T cells, 

the expression level of TCR on iNKT cells is lower, and iNKT cells exhibit an activated 

phenotype with high expression level of CD69 and CD44, and low level of CD62L (30, 

31).  

 

iNKT cell responses are restricted by CD1d molecules 

Reactivity of the semi-invariant TCR of iNKT cells is restricted by CD1d 

molecules. The mouse CD1d molecule is encoded by two genes, CD1d1 and CD1d2, on 

chromosome 3 (32-35). They exhibit close homology with the human CD1d gene found 

on chromosome 1 along with other CD1 family genes, CD1a, b, c, and e (36-40). CD1d 

molecules consist of a heterodimer of a glycosylated heavy chain and β2-microglobulin 

(41). While related to MHC molecules, CD1d is structurally quite distinct with a binding 

pocket well-adapted to bind microbial and endogenous glycolipid antigens (42-44). CD1d 

is constitutively expressed on APCs such as DCs, macrophages, and B cells that mediate 

activation of iNKT cells in the periphery, and it is particularly abundant on marginal zone 
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B cells in the spleen (45-47). CD1d is also conspicuously present on cortical thymocytes, 

and it is required for development of iNKT cells during the selection process. In addition, 

high levels of CD1d are found on Kupffer cells, liver sinusoidal endothelial cells, and 

hepatocytes of liver where the frequency of iNKT cells reaches 30-50% of total T cells in 

mice (48). CD1d is expressed in the intestine (49) and is also upregulated on microglial 

cells during inflammation in the brain (50).  

 

Glycolipid antigens for iNKT cells 

All iNKT cells react with the glycolipid α-galactosylceramide (α-GalCer) 

presented by CD1d. This was the first iNKT cell ligand described, and was originally 

isolated from Agelas mauritianus, a marine sponge (51). α-GalCer is a glycosphingolipid, 

an uncommon antigen for T cells that usually recognize peptides, and its discovery lent 

strong support for the glycolipid reactivity of iNKT cells (52). Although the physiologic 

relevance of α-GalCer was doubted early on as the α-anomeric form of glycolipids is 

largely absent in mammals, this molecule was crucial in studying iNKT cells. α-GalCer 

bound on CD1d elicits extremely strong interaction with murine iNKT cell receptor with 

a Kd in the neighborhood of 100 nM (53, 54). The interaction is somewhat weaker with 

human iNKT cell receptor, but remains robust. Such conservation of antigen specificity 

of iNKT cells is also observed in rats and primates as well (Figure 1A).  

More recently, it has become apparent that several microbial glycolipids can act 

as ligands for iNKT cells. In particular, iNKT cells react with the α-anomeric 

glycosphingolipid derived from the cell wall of Sphingomonas bacteria, a Gram-negative, 

LPS-negative α-proteobacterium ubiquitously present in marine and soil environment 

(55-57). These glycosphingolipids are strong stimulators of iNKT cells and seem to be 
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important in the host defense against Sphingomonas. Interestingly, Agelas mauritianus is 

colonized by Sphingomonas, and it is possible that α-GalCer may actually derive from 

this bacterium (58). Also, α-galactosyl-diacylglycerols from the spirochete Borrelia 

burgdorferi (59), the etiologic agent of Lyme disease that also lacks LPS, has been shown 

to activate iNKT cells and plays an important role in the clearance of infection (Figure 

1B).  

In addition to relevant roles of microbial iNKT cell ligands during infection, 

much attention has been given to identification of endogenous ligands, which were 

postulated to mediate autoreactivity of human iNKT cells exhibit to CD1d-expressing 

cells both in mice and in humans (60-62). It has been shown that activation of iNKT cells 

by certain toll-like receptor (TLR) ligands requires autoreactivity towards CD1d (63, 64). 

Autoreactivity is also thought to mediate iNKT cell development in the thymus during 

positive and negative selection of iNKT cells as well as their subsequent maturation in 

the periphery (65-67). Recent findings have demonstrated that the glycosphingolipid 

isoglobotrihexosylceramide (iGb3) can activate a majority of mouse and human iNKT 

cells, and Hexb deficient mice lacking lysosomal enzymatic activity to degrade a 

precursor lipid to iGb3 also lacked iNKT cells (68-70). However, CD1d tetramer loaded 

with iGb3 is unable to stain iNKT cells probably due to weak binding of this molecule to 

CD1d. Indeed, it appears a 100-fold higher concentration of iGb3 is required to stimulate 

comparable levels of activation of iNKT cells than α-GalCer. A recent detection of iGb3 

in thymus has further lent support for the physiological relevance of this molecule (71), 

although its detection in the peripheral tissues such as spleen and liver remains to be 

demonstrated. A contradictory report also demonstrated that the deficiency in iGb3 

synthase, a putative enzyme essential for iGb3 production, did not affect iNKT cell 
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ontogeny and function (72). Nevertheless, it is possible that an alternate synthesis 

pathway to iGb3 exists in vivo (Figure 1C).  

 

iNKT cell response to glycolipid antigens  

Although a subset of the T cell lineage, iNKT cells seem to play a pivotal 

function in bridging innate and adaptive immunity. As the identity of physiological ligand 

has remained elusive, the function of these cells has been studied employing α-GalCer 

and its derivatives. While iNKT cells are capable of cytotoxic activity through expression 

of perforins and granzymes as well as membrane bound tumor necrosis factor (TNF) 

family including Fas ligand, their primary immune response seems to involve cytokine 

secretion (73-76). The hallmark of iNKT cell activation is rapid secretion of a variety of 

cytokines such as interferon (IFN)-γ, interleukin (IL)-4, IL-2, IL-5, IL-10, IL-13, IL-21, 

granulocyte-macrophage colony stimulating factor (GM-CSF), TNF-α, and TNF-β 

immediately following TCR engagement. Among these cytokines are T helper (Th) 1 

cytokines such as IFN-γ that drives cellular immunity against viruses and other 

intracellular pathogens as well as cancer, and Th2 cytokines such as IL-4 drives humoral 

immunity to upregulate antibody production against extracellular organisms. This is in 

direct contrast with naïve conventional T cells that require prolonged primary stimulation 

prior to secretion of cytokines, which are also biased to either Th1 or Th2 cytokines, 

unlike iNKT cells that can secrete Th1 and Th2 cytokines simultaneously. iNKT cells 

initiate IFN-γ and IL-4 transcription during thymic development and abundant mRNA 

transcripts are detectable in naïve iNKT cells allowing rapid production of these 

cytokines (77). These cytokines secreted by activated iNKT cells amplify the immune 

response initiated by iNKT cells through transactivation of other immune cell types, 

 6



including DCs, NK cells, B cells, conventional T cells, and macrophages (78, 79). iNKT 

cells also upregulate CD40 ligand upon activation and crosslink CD40 on DCs inducing 

upregulation of CD40 and CD80/CD86, and secretion of IL-12 by DCs, which results in 

potentiation of the immune response that begins from DCs (80, 81). Maturation of DCs 

also reciprocally affects iNKT cell activation and cytokine production (82-86).  

 While iNKT cells can produce explosive amounts of Th1 and Th2 cytokines, the 

balance between Th1 vs. Th2 cytokines can be variable according to the glycolipid 

antigen employed to stimulate iNKT cells. α-GalCer shows equally potent secretion of 

Th1 and Th2 cytokines (79). The C-glycoside analogue of α-GalCer, α-C-GalCer 

exhibits Th1 bias (79, 87). However, glycolipids with shorter or less saturated lipid chains 

such as OCH exhibit a Th2 bias in cytokine production (79, 88-90). The mechanism by 

which different glycolipids induce variable cytokine secretion is unclear. One hypothesis 

is that the duration and strength of T cell receptor engagement by different glycolipids 

might explain differences in cytokine production (91), but TCR on and off rates 

determined by plasmon resonance or crystal structures of CD1d have shown minor 

differences among various glycolipids (43). Alternatively, it is possible that glycolipid 

trafficking and uptake might depend on lipid solubility and differences in lipid solubility 

owing to modifications of lipid chains that might result in increased or decreased uptake 

by APCs such as DCs that in turn secrete the Th1-inducing cytokine IL-12 (43, 92). Also, 

differences in tissue distribution of glycolipids might result in variable cytokine 

production as tissues may offer different cytokine milieu in which iNKT cells are 

activated.  
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iNKT cell response to α-GalCer 

During the primary response of naïve conventional peptide-reactive T cells, a 

strong antigenic stimulation in conjunction with adequate costimulation is followed by a 

prolonged period of maturation of these naïve cells into mature effector cells, which can 

take several days. After clearance of the particular antigen, a population of memory T 

cells with the same antigen specificity emerges to mount a more rapid and effective 

resolution of the secondary challenge (1). 

The response of lipid-reactive iNKT cells is quite distinct from that of 

conventional T cells. A detailed analysis of the in vivo response of murine iNKT cells to 

α-GalCer has been reported by our laboratory and others. The response of iNKT cells has 

been assessed using the CD1d-tetramer loaded with α-GalCer (93, 94), which specifically 

binds to the invariant TCR of iNKT cells. With appropriate fluorochromes linked to the 

tetramer, iNKT cells can be identified by flow cytometry. Consistent with the activated 

phenotype exhibited by naïve iNKT cells, these cells downregulate their TCR and NK1.1 

immediately following the primary α-GalCer challenge (95-97), which renders these cells 

undetectable to staining by CD1d tetramer loaded with α-GalCer. As early as 24 hours 

after injection their TCR is re-expressed, but NK1.1 remains downregulated for several 

months. During this time, iNKT cells undergo an extensive in vivo expansion reaching 

maximal levels by day 3 with 10- to 15-fold increase in cellularity in spleen. In vivo 

expansion of iNKT cells is also observed in other organs such as lymph nodes, peripheral 

blood, liver and bone marrow, but no expansion is observed in thymus. Following the 

peak response, iNKT cells gradually decrease in number to levels slightly lower than 

before α-GalCer treatment.  

 The secondary response by iNKT cells following rechallenge with α-GalCer is 
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characterized by a hyporesponsive phenotype (25, 98, 99). For at least 1 month after the 

initial challenge, iNKT cells show significantly suppressed capacity to proliferate and 

secrete cytokines in response to rechallenge with α-GalCer. This decrease in cytokine 

production is associated with inability of iNKT cells to transactivate DC, B cells and NK 

cells. The hyporesponsive phenotype of iNKT cells induced by the initial α-GalCer 

challenge was shown to be cell autonomous indicating that these iNKT cells are in an 

anergic state. These anergic iNKT cells are unable to show anti-tumor activities in B16 

melanoma metastasis model, and thus α-GalCer-induced anergy may limit the utility of 

iNKT cell-based therapies. 

 

iNKT cells and cancer 

iNKT cells may function in immune surveillance against cancer even in the 

absence of exogenous stimulation of iNKT cells by α-GalCer (100). In patients with 

many forms of cancer, such as myelodysplastic syndromes, iNKT cell function was found 

to be severely compromised. Also, studies of a fibrosarcoma carcinogenesis model 

induced by methylcholanthrene (MCA), a chemical carcinogen, revealed the protective 

effects of iNKT cells against cancer. This protection was found to be mediated by IL-12 

and cytolytic activity of iNKT cells. A subsequent study has shown that the NKT-NK axis 

of activation was also critical for suppression of MCA-induced carcinogenesis (101). 

However, this tumor model is the only example providing evidence for physiological 

tumor surveillance by iNKT cells in the absence of exogenous stimulation of these cells.  

α-GalCer was first identified while screening for the molecule responsible for 

anti-tumor activity against B16 melanoma in marine sponge, and as such, the role of 

iNKT cells in protection against cancer has been carefully studied. Results have shown 
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promising anti-tumor effects in various types of metastatic malignancy by α-GalCer and 

its analogs as well as DC pulsed with α-GalCer (102). 

More importantly, a number of clinical studies on iNKT cell-based therapy 

employing α-GalCer or α-GalCer-pulsed DC are underway (103-107). A phase I study of 

α-GalCer carried out in the Netherlands has shown no significant dose-limiting side 

effects or toxicity, and α-GalCer was well tolerated by patients (106). However, no 

significant anti-tumor effect with clinical improvement was observed with this initial 

study. Because α-GalCer-pulsed DC exhibit more potent effects against B16 melanoma 

metastasis (108, 109), Nakayama and colleagues carried out a phase I clinical trial using 

α-GalCer-pulsed DC on advanced non-small cell lung cancer patients and have seen 

some clinical improvements (105). Nicol and colleagues have also reported some success 

during phase I clinical trial of α-GalCer-pulsed DC involving patients with metastatic 

malignancy (110).  

 

iNKT cells and autoimmunity 

Potent immunomodulatory function of iNKT cells has been exploited to impart 

protection against a number of autoimmune disorders including type I diabetes, 

experimental autoimmune encephalomyelitis (EAE), rheumatoid arthritis, systemic lupus 

erythematosus, and inflammatory bowel disease (111-125). Successful protection or 

amelioration against certain autoimmune disease models, in particular, Type I diabetes, 

EAE, and rheumatoid arthritis, have been observed employing α-GalCer and its 

derivatives to impart Th2 bias as pathogenic cells have been indicated to be Th1 biased 

cells destroying the tissue of interest. However, treatment efficacy depended on the dose, 

route and timing of administration as well as the number of injections and the strain of 
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mice used in the particular study. Such results reflect the complexity of iNKT cell 

functions in the modulation of the immune system. The delicate balance between Th1 and 

Th2 cytokines seems to be crucially regulated by iNKT cells, and further understanding 

of their normal functions as well as their responses to pharmacologic ligands is necessary 

to fully cultivate their therapeutic potential in treatment of autoimmune diseases.  

  

iNKT cells and infection 

 Most of the known iNKT cell antigens have the α-anomeric form that is not 

found in mammals. Few exceptions include β-GalCer and iGb3 with relatively weak 

activity compared to α-anomeric ligands. It has therefore been speculated that these cells 

might have originally arisen in defense against foreign microbes. Because iNKT cells 

have the capacity to rapidly produce cytokines that can enhance immune responses by 

DCs, NK cells, and conventional T and B cells, these cells were thought to bridge and 

amplify the host immune response during early phases of the immune response. A whole 

body of literature now exists revealing the importance of these immunomodulatory cells 

during infection with bacteria, viruses, fungi and parasites (126). The role of iNKT cells 

during infection was assessed by using Jα18 deficient mice that specifically lack iNKT 

cells, or CD1d deficient mice that lack iNKT cells as well as non-invariant CD1d 

restricted T cells, or neutralizing antibody against CD1d. As iNKT cells function 

primarily as immunomodulators, outcome of infection was in some cases ameliorated in 

the absence of iNKT cell function. Moreover, iNKT cell contribution to host defense was 

sometimes variable according to the bacterial strain, route of administration, and strain of 

mice used.  For instance, intranasal infection with the D4 strain of Pseudomonas 

aeruginosa exacerbated infection in CD1d deficient mice (127), whereas intratracheal 
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infection of PAO1 strain of Pseudomonas aeruginosa showed no significant difference in 

the severity of disease in Jα18 deficient mice (128). Interestingly, bacteria that are known 

to express microbial glycolipid antigens for iNKT cells, Sphingomonas and Borrelia 

burgdorferi, have been found to depend on iNKT cell function for efficient clearance (55, 

56, 59, 129, 130). More examples of the role for iNKT cells during bacterial infection are 

summarized in Table 1. 

 

iNKT cell activation by microbes 

 Activation of conventional T cells requires recognition by the TCR of specific 

peptide antigen derived from microbial proteins. Activation of iNKT cells by microbes is 

unique in that even in the absence of direct recognition of cognate glycolipid antigen 

derived from microbes by the TCR, iNKT cells have been shown to be involved in the 

clearance of diverse species of microbes. This non-specific activation of iNKT cells, 

putting them in the category of the innate immune system, can be explained by two 

modes iNKT cell activation, the direct mechanism and the indirect mechanism.  

The direct mechanism of iNKT cell activation relies on the presence of microbial 

glycolipid antigen that is presented by CD1d molecules on APC and directly engages the 

semi-invariant TCR (Figure 2A). Early studies have shown that 

glycophosphatidylinositol anchor purified from Plasmodium and Trypanosoma species 

(131), lipophosphoglycan extract from Leishmania donovani (132), and phosphatidyl 

inositol tetramannosides enriched from Mycobacterium can activate a minor subset of 

iNKT cells (133), although some of these results remain controversial. Subsequently, 

variants of glycosphingolipids in Sphingomonas capsulata (55, 130, 134) and galactosyl 

diacylglycerol antigens from Borrelia burgdorferi (59) have been found to strongly 
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activate most iNKT cells.  

However, the vast majority of pathogens are not considered to express microbial 

antigens specific for iNKT cells. These pathogens activate iNKT cells through an indirect 

mechanism of activation that does not rely on specific recognition of microbial glycolipid 

antigens and instead is mediated by activation of DCs by pathogen-associated molecular 

patterns (PAMPs), which in turn leads to non-specific activation of iNKT cells (Figure 

2B). In response to LPS from Salmonella typhimurium, TLR signaling in DCs induces 

IL-12 secretion, which in conjunction with CD1d presentation of hypothetical 

endogenous ligand activates iNKT cells (55, 63). However, variations on this theme of 

iNKT cell activation have been noted. For instance, iNKT cell activation by DCs 

sensitized with Schistosoma mansoni eggs has been shown to dependent on endogenous 

antigen alone (135). In the case of Escherichia coli LPS, release of proinflammatory 

cytokines such as IL-12 and IL-18 by DCs is sufficient for iNKT cell activation, and 

autoreactive TCR engagement by endogenous ligand is not required (136).  

 

T cell anergy 

Anergy is defined as a tolerance mechanism involving the intrinsic functional 

inactivation of lymphocytes in response to antigen encounter (137). Anergy is often 

evoked, either in vivo or ex vivo, by the unbalanced stimulation of lymphocytes through 

antigen receptors, in the absence of co-stimulatory signals, by chronic antigen stimulation, 

or by stimulation with weak agonist antigens in the presence of full co-stimulation (137). 

The precise molecular and biochemical events responsible for the development and 

maintenance of the anergic state remain to be fully characterized, and might differ for the 

particular tolerance model studied (138). Studies with multiple anergy models have 
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demonstrated a critical role for the mobilization of intracellular free Ca2+ (139), resulting 

in activation of the Ca2+-sensitive protein phosphatase calcineurin and the nuclear factor 

of activated T cells (NFAT) (140). NFAT (most notably NFAT1), activated in the absence 

of its transcriptional partner AP-1 (Fos/Jun), then enters the nucleus and induces the 

transcription of a variety of anergy-associated genes, including the early growth response 

gene 2 (Egr2) and Egr3 (141), the E3 ubiquitin ligases GRAIL, Cbl-b, and Itch (142, 143), 

and diacylglycerol kinases (DGK)-α and -ζ (144-146). Egr2 and Egr3 are transcription 

factors that are thought to be important for the induction of anergic factors, possibly 

including several of the E3 ubiquitin ligases (141). The anergy-associated ubiquitin 

ligases are thought to promote the monoubiquitination of a variety of receptors and 

signaling components (147, 148). It has been suggested that these events, together with 

the termination of diacylglycerol-dependent signaling mediated by activated DGKs, lead 

to uncoupling of the TCR from downstream signaling events, most notably Ras activation. 

As a consequence of these abnormalities in proximal signal transduction, defective IL-2 

gene transcription is a common characteristic of T cell anergy (137). In many cases, the 

anergic phenotype can be reversed by withdrawal of the anergy-inducing stimulus, by 

exposure to signals (e.g., ionomycin plus phorbol myristate acetate) that bypass proximal 

TCR signaling events and/or by exposure to exogenous IL-2 (137).  

 

Purpose of this thesis work 

Past studies in our laboratory have found that, unlike conventional T cells that 

exhibit memory responses, iNKT cells undergo a long period of anergy following a single 

injection of α-GalCer, a potent synthetic ligand for iNKT cells. This result might have 

biological significance in that the primary response of iNKT cells is already extremely 
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strong with an explosive secretion of various cytokines and extensive transactivation of 

other immune cells. Furthermore, iNKT cells mount non-specific responses to multiple 

pathogens. Repeated responses of iNKT cells at high magnitude might do more harm 

than good as the tissue damage during infection is often a result of the excessive immune 

responses. In this light, limiting the subsequent activity of iNKT cells following the initial 

activation might be beneficial.   

Recently, with identification of various microbial glycolipid antigens for iNKT 

cells, there is growing evidence that iNKT cells have important functions during host 

defense against pathogenic microbes in addition to their crucial roles in autoimmunity 

and tumor surveillance. In fact, iNKT cells have been found to play an important role 

during immune responses against pathogenic bacteria, viruses, fungi and parasites; and 

this iNKT cell activity during infection may be the original function for this relatively 

small subset of T cells when viewed from an evolutionary perspective. It has been found 

that these cells with a limited TCR repertoire can mount a response to a wide array of 

pathogens in the presence of specific microbial glycolipid antigens for iNKT cells, or 

even in the absence of a cognate antigen indirectly through combination of 

proinflammatory cytokines from APC in conjunction with presentation of endogenous 

autoantigens. Although the role of iNKT cells in defense against invading pathogens has 

been well documented, the impact of pathogens on iNKT cells remains incompletely 

understood.  

In this context, I tested the hypothesis that bacteria induce long-term 

hyporesponsiveness of iNKT cells. This hypothesis was tested in two integrated Specific 

Aims. In Aim 1, I tried to determine whether bacteria induce long-term phenotypic 

changes in iNKT cells accompanied by induction of a hyporesponsive state, and how this 
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relates to iNKT cell function in disease models. The results from this aim are reported in 

Chapter II. In Aim 2, the mechanism of iNKT cell hyporesponsiveness induced by 

bacteria was explored, and the results are reported in Chapter III. 

 

Significance of this thesis work 

Since identification of iNKT cells, their immunomodulatory functions have 

attracted significant attention throughout the scientific community for their therapeutic 

potential. In the past several years, significant advances were made in the field of iNKT 

cell biology aided by development of important tools to study iNKT cells including CD1d 

deficient mice, generated in our own laboratory and others, CD1d tetramers, and other 

reagents, providing novel insights into the importance of this relatively small subset of T 

cells that have key immunomodulatory functions during various immune responses. A 

wide variety of glycolipid antigens for invariant TCRs of iNKT cells have been identified 

and the response of iNKT cells to these antigens has been carefully tested and 

documented. The therapeutic potential of iNKT cells has been explored and expansive 

amounts of research have been performed to delineate the role of iNKT cells against 

various types of cancer, autoimmune disorders, and infection. Recently, several clinical 

trials have been initiated, using α-GalCer or α-GalCer-pulsed DCs to treat cancer. During 

these clinical trials, it has become apparent that iNKT cell number and function has wide 

individual variability in humans, which likely is contributed by genetic factors as well as 

environmental factors. In this thesis work, I present evidence that infection by pathogenic 

bacteria, which is a regular occurrence in the human population, and more so in cancer 

patients or patients with autoimmune disorders who are often immunocompromised due 

to the disease itself or due to the treatment, impacts iNKT cell function with long-term 
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effects on therapeutic activity of these cells. This result might in part explain some of the 

difficulties encountered during clinical application of iNKT cell-based immunotherapy 

and an may provide insight into the design of clinical protocols to optimize efficacy of 

treatment.  
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Table 1. The role of NKT cells in host defense against bacterial infection. The table 
summarizes results from an extensive collection of articles on the role of NKT cells 
during bacterial infection. Various strains of bacteria were introduced into mice of the 
indicated strain, with NKT cells deficient or neutralized by disruption of CD1d or Ja18, 
or injection of blocking antibody against CD1d. CFU: colony forming unit.  
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Figure 1. Glycolipid ligands for iNKT cells. (A) Synthetic glycolipid ligands for iNKT 
cells. α-GalCer is the synthetic derivative of a potent iNKT cell antigen purified from a 
marine sponge. OCH is a variant of α-GalCer with a shortened sphingosine chain. α-C-
GalCer is a C-glycoside analogue of α-GalCer. (B) Microbial glycolipid ligands for 
iNKT cells. α-GlcA-Cer and α-GalA-Cer are microbial glycolipid ligands present in 
Sphingomonas capsulata. BbGL-IIc is a microbial glycolipid ligand in Borrelia 
Burgdorferi. (C) Endogenous glycolipid ligand for iNKT cells. 
Isoglobotrihexosylceramide (iGb3) is an endogenous glycolipid antigen that appears to 
mediate autoreactivity of iNKT cells in the absence of an exogenous ligand.  
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Figure 2. Activation of iNKT cells by microbes. (A) Direct activation of iNKT cells by 
microbial glycolipid ligands. Certain microbes such as Sphingomonas capsulata or 
Borrelia burgdorferi express microbial glycolipid ligands that can be presented by CD1d 
on APC and engage with TCR of iNKT cells. (B) Indirect activation of iNKT cells by 
microbial products. Salmonella LPS activates DCs which present the endogenous ligand 
and secrete IL-12 to activate iNKT cells to secrete IFN-γ. Activation of iNKT cells and 
the resultant secretion of IFN-γ by E. coli LPS is solely dependent on cytokine secretion 
by DCs such as IL-12 or IL-18. S. mansoni eggs sensitize DCs to present an endogenous 
ligand to iNKT cells, and this activation results in IL-4 secretion by iNKT cells. 
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CHAPTER II 

 

 

INDUCTION OF INKT CELL HYPORESPONSIVENESS BY 

MULTIPLE BACTERIA 

 

 

Abstract 

 

Invariant natural killer T (iNKT) cells are innate-like lymphocytes that recognize 

glycolipid antigens in the context of the MHC class I-like antigen-presenting molecule 

CD1d. Our laboratory has previously demonstrated that in vivo activation of iNKT cells 

with the glycolipid α-galactosylceramide (α-GalCer) in mice results in the acquisition of 

a hyporesponsive or anergic phenotype by these cells. Because iNKT cells can become 

activated in the context of infectious agents, we have evaluated whether iNKT cell 

activation by microorganisms can influence subsequent responses of these cells to 

glycolipid antigen stimulation. We found that murine iNKT cells activated in vivo by 

multiple bacterial microorganisms became unresponsive to subsequent activation with α-

GalCer. This hyporesponsive phenotype of iNKT cells was associated with changes in 

the surface phenotype of these cells, reduced severity of Concanavalin A-induced 

hepatitis, and alterations in the therapeutic activities of α-GalCer. These findings have 

important implications for the development of iNKT cell-based therapies.
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Introduction 

 

Conventional T cells respond to invading pathogens through recognition of 

specific antigenic peptides derived from the pathogens and presented by MHC Class I or 

Class II molecules on APCs. Conventional T cells are able to amount a response to a 

wide range of non-self peptides through a diverse TCR repertoire achieved through 

somatic recombination and the positive and negative selection process during 

development in the thymus. The primary response of naïve conventional T cells towards 

pathogen-derived peptides is characterized by a delayed and moderate response, which 

requires time to generate mature effector cells to adequately control infection. Once the 

pathogen is cleared however, a population of memory T cells emerges that can rapidly 

and effectively resolve subsequent infection by the same pathogen. Conventional T cells 

therefore exhibit classic features of the adaptive immune system (1). 

Unlike conventional T cells, iNKT cells have a severely restricted TCR 

repertoire. These cells express a semi-invariant T cell receptor, Vα14-Jα18/Vβ8,Vβ7, or 

Vβ2 in mouse (2-4), and Vα24-Jα18/Vβ11 in human (5, 6). Interestingly, the TCRs of 

iNKT cells are reactive to glycolipid ligands. The most well-documented glycolipid 

ligand for iNKT cells is α-GalCer, a potent synthetic derivative of a marine sponge 

product that elicits a strong response by iNKT cells.  

The iNKT cell response was originally studied using antibodies against TCRβ 

and NK1.1 to identify iNKT cells. In vivo administration of anti-CD3, IL-12, or α-

GalCer in mice resulted in rapid disappearance of these cells in all organs except thymus 

and bone marrow (163). It was initially proposed that in vivo administration of iNKT cell 

antigens resulted in activation-induced cell death of iNKT cells. However, apoptotic 
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disappearance of iNKT cells following activation was unable to explain extensive 

proliferation of iNKT cells observed in vitro (164, 165). This original hypothesis was 

revised when CD1d tetramers that can specifically stain for the semi-invariant TCR of 

iNKT cells became available (95-97). It was determined that the apparent loss of iNKT 

cells during early phases of iNKT cell responses to antigens was due to profound 

downregulation of NK1.1 and the TCR by iNKT cells rendering these cells undetectable 

by conventional methods of identification using anti-TCRβ and anti-NK1.1 antibodies. 

Additional studies revealed that this TCR downregulation was transient and the cells 

could be detected as early as 24 hours following initial activation using CD1d tetramer 

staining once TCR levels returned to normal levels even though NK1.1 downregulation 

was sustained and persisted even 6 months after initial activation (95-97). 

During the primary response naïve iNKT cells have been shown to undergo 

extensive in vivo expansion following α-GalCer treatment (95, 96). Maximal expansion 

was observed around 3 days after the treatment reaching 10 to 15 fold increase in the 

number of iNKT cells in spleen. Once iNKT cell numbers reached their peak, they 

gradually declined to untreated levels by 10-14 days and continued to decline over the 

period of several months. In summary, during the primary response of iNKT cells to in 

vivo α-GalCer stimulation, iNKT cells undergo transient downregulation of TCR 

followed by rapid clonal expansion and homeostatic contraction accompanied by 

downregulation of NK1.1.  

 Adaptive immunity is characterized by initially latent and weaker primary 

responses, and rapid and explosive memory responses, and T cells are an integral part of 

the adaptive immune system critical for clearance of foreign pathogens (1). Although 

iNKT cells are a subset of T cells, these cells do not show memory responses during the 
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recall response to α-GalCer, and instead exhibit an anergic response characterized by 

absence of clonal expansion and cytokine production. Studies from our laboratory and 

others provided a detailed documentation of the secondary response shown by iNKT cells 

following rechallenge with α-GalCer in mice previously treated with α-GalCer (25, 98, 

99). When splenocytes were rechallenged ex vivo following different time points after a 

single dose of α-GalCer, iNKT cells no longer exhibited extensive proliferation and 

cytokine production in response to α-GalCer normally observed in naïve animals. This 

blockade in iNKT cell response was prolonged and was observed for at least 1 month. 

Among various cytokines normally produced by iNKT cells, blockade in IFN-γ was more 

pronounced than IL-4. Loss of cytokine secretion during secondary challenge was also 

accompanied by absence of transactivation of DC, B and NK cells. This suppressed 

iNKT cell activity during the recall response was associated with loss of anti-tumor 

activities of these cells in the B16 melanoma metastasis model, but interestingly the 

protective effect for EAE was retained. As a result, this anergic phenotype of iNKT cells 

induced by α-GalCer has been implied as a limiting factor for therapeutic application of 

iNKT cell-based therapies using α-GalCer and its analogues. 

The role of iNKT cells during immune defense against microbial pathogens is 

well documented. Since Brenner and colleagues have postulated a model of physiological 

iNKT cell activation during infection dependent on autoreactive CD1d presented 

endogenous ligand and IL-12 during Salmonella typhimurium infection (63), it has 

become apparent that even with a limited repertoire of the semi-invariant T cell receptor, 

iNKT cells are able to be activated and respond to a broad spectrum of pathogens. 

Additionally, several specific microbial lipid antigens that bind to CD1d and activate 

iNKT cells have been identified in Sphingomonas capsulata (55, 130, 134) and Borrelia 
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burgdorferi (59). 

During the primary response of iNKT cells to S. typhimurium, which is now 

thought to activate iNKT cells through toll-like receptor (TLR) ligands such as LPS and 

flagellin, a similar disappearance of iNKT cells around 3 to 5 days after infection was 

observed when these cells were identified based on the surface expression of TCRβ and 

NK1.1 as was also observed with α-GalCer (166-168). Consistent with the α-GalCer 

studies, iNKT cells remained detectable during those time periods when studied with α-

GalCer-loaded CD1d tetramer, and the initial result of iNKT cell disappearance was 

attributed to profound downregulation of NK1.1 (96). As results from studies with α-

GalCer have shown that NK1.1 downregulation by iNKT cells coincided with long-term 

periods of suppressed iNKT cell function following initial activation by α-GalCer (25, 98, 

99), bacteria may also induce iNKT cell hyporesponsiveness. Based on these previous 

studies, we hypothesized that iNKT cells can be activated by multiple bacterial organisms, 

and we evaluated a large panel of bacteria for their impact on the phenotype, functions, 

and therapeutic activities of iNKT cells. 
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Results 

 

Mouse iNKT cells become activated in vivo by diverse bacterial species. 

  Prior studies have shown that iNKT cells can become activated in response to 

various infectious agents, either through direct recognition of microbial glycolipid 

antigen, or indirectly through cytokines secreted by DCs in conjunction with endogenous 

antigens expressed by activated DCs (126). We tested the capacity of a wide variety of 

bacteria, including the gram-positive organisms Listeria monocytogenes and 

Staphylococcus aureus, and the gram-negative organisms Escherichia coli, Salmonella 

typhimurium, and Sphingomonas capsulata to activate iNKT cells and to modulate the 

functions of these cells. As we were primarily interested in the long-term effects of 

bacterial microorganisms on iNKT cell functions, the choice of bacteria was not limited 

to known pathogens that depend on iNKT cells for their clearance. Apart from L. 

monocytogenes and S. capsulata, bacteria were heat-killed prior to challenge. Activation 

of iNKT cells was assessed by their prevalence and numbers and by their surface 

phenotype, such as expression of CD69, an early activation marker, and NK1.1, which 

becomes downregulated on activated iNKT cells (95, 96) and remains expressed at low 

levels on iNKT cells rendered anergic in α-GalCer-treated animals (25). Analyses were 

performed 24 hrs after i.v. injection of bacteria. Naïve mice and mice injected with 5 μg 

α-GalCer were used as controls.  

 Consistent with prior studies (95-97), 24 hrs after α-GalCer injection, TCR 

downregulation rendered iNKT cells undetectable by tetramer staining (Figure 3). Minor 

decreases in iNKT cell numbers were observed in the spleens of mice injected with L. 

monocytogenes and S. aureus, and in livers of mice injected with L. monocytogenes, S. 
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aureus, S. capsulata and S. typhimurium. Differences in iNKT cell numbers in the liver 

reached statistical significance only after L. monocytogenes and S. capsulata injections. 

 Each of the bacterial organisms tested induced upregulation of CD69 on iNKT 

cells, suggesting activation of these cells. However, the extent of CD69 upregulation was 

variable, reflecting potential differences in the degree or kinetics of iNKT cell activation 

induced by distinct organisms. NK1.1 downregulation by spleen iNKT cells was 

observed for heat-killed S. aureus, S. typhimurium, and live L. monocytogenes, but was 

less evident for heat-killed E. coli and live S. capsulata. The changes observed in hepatic 

iNKT cells mirrored changes in splenic iNKT cells, except for downregulation of NK1.1, 

which was only evident for S. aureus and S. typhimurium (Figure 3).  

 Next, we examined the prevalence, cell number and surface phenotype of iNKT 

cells 3 weeks after injection of α-GalCer or bacteria. Consistent with prior studies (25), 

α-GalCer injection resulted in a modest decrease in the frequency of iNKT cells in the 

spleen and liver accompanied by sustained NK1.1 downregulation in spleen (Figure 4). 

Similar changes were observed in mice that received heat-killed E. coli, S. aureus or S. 

typhimurium. Notably, inoculation of live L. monocytogenes resulted in a substantial loss 

of iNKT cells and sustained downregulation of NK1.1. By contrast, S. capsulata did not 

induce sustained changes in the surface phenotype of iNKT cells. 

 In summary, all bacteria tested were able to induce early activation of iNKT cells, 

but the changes in surface phenotype of these cells induced by different bacteria were 

distinct, and were different from the phenotype of iNKT cells induced by α-GalCer. 

 

Impact of bacteria-induced iNKT cell activation in vivo on the response of splenocytes to 
subsequent α-GalCer stimulation ex vivo 
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 Prior studies have demonstrated that α-GalCer treatment of mice results in long-

term suppression of subsequent iNKT cell responses to α-GalCer ex vivo and in vivo (25, 

99, 169). Several of the bacteria tested activated and induced phenotypic alterations in 

iNKT cells that were characteristic of anergic iNKT cells induced in response to α-

GalCer treatment (Figure 3, 4). Therefore, we treated mice with heat-killed or live 

bacteria and 3 weeks later we measured responses of splenocytes from these animals to 

stimulation with α-GalCer. Consistent with prior studies (25, 99, 169), splenocytes from 

α-GalCer-injected mice showed dampened proliferation and cytokine production as 

compared with naïve splenocytes (Figure 5). Interestingly, splenocytes from mice 

injected with heat-killed E. coli, S. aureus or S. typhimurium, or with live L. 

monocytogenes also showed significant defects in proliferation and cytokine production 

in response to subsequent ex vivo stimulation of iNKT cells with α-GalCer (Figure 5). 

For most of these bacteria there was a trend for a more profound defect in IL-4 than IFN-

γ production by hyporesponsive iNKT cells, whereas iNKT cells rendered anergic by α-

GalCer had a more profound defect in IFN-γ than IL-4 production (Figure 3 and (25)). In 

sharp contrast to the effect on iNKT cell responses, bacteria did not alter conventional T 

cell function (Figure 6 and 18A). Collectively, our findings suggest that bacteria can 

impair iNKT cell functions in vivo. 

 

Kinetics of iNKT cell responses in mice treated with heat-killed E. coli or live L. 
monocytogenes 

We selected two organisms, heat-killed E. coli and live L. monocytogenes, which 

showed the strongest effects on iNKT cell responses, to perform a detailed 

characterization of the kinetics of iNKT cell responses. We measured iNKT cell numbers, 
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expansion, surface phenotype and functions at different time points after treatment.  

 After treatment with heat-killed E. coli there was a modest decrease in total 

numbers of splenic iNKT cells over time (Figure 7A, B), but this did not reach statistical 

significance. The frequency of liver iNKT cells on the other hand dropped between 3 and 

4 weeks, which was due to an influx of conventional T cells into the liver (data not 

shown), but the prevalence of iNKT cells returned to relatively normal levels around 6 

weeks. NK1.1 surface levels became downregulated in the spleen and liver around 2-3 

weeks, returned to normal levels in the liver by week 6, but remained suppressed in the 

spleen until week 6 (Figure 8). Analysis of iNKT cell responses revealed suppressed 

capacity of splenocytes to proliferate and produce IFN-γ and IL-4 upon in vitro 

stimulation with α-GalCer at 3 and 4 weeks after treatment with heat-killed E. coli 

(Figure 9A). In contrast with α-GalCer-injected controls, the blockade in IL-4 production 

induced by E. coli appeared to be more profound than that for IFN-γ production. Despite 

sustained NK1.1 downregulation on iNKT cells, splenocytes generated relatively normal 

responses to E. coli by week 6. To assess effects on iNKT cell proliferation and cytokine 

production more directly, we performed carboxyfluorescein succinimidyl ester (CFSE) 

dilution and intracellular staining experiments. Results demonstrated reduced capacity of 

iNKT cells from E. coli-treated animals to proliferate (Figure 9B) and to produce 

cytokines (Figure 9C) in response to α-GalCer stimulation ex vivo.  

 In contrast to heat-killed E. coli and α-GalCer, treatment of mice with live L. 

monocytogenes resulted in a dramatic reduction in iNKT cell frequency and numbers in 

both spleen and liver (Figure 10A, B). By week 4, numbers of iNKT cells had recovered 

in the liver but not spleen. The NK1.1 expression pattern following infection with L. 

monocytogenes closely mimicked that seen after α-GalCer treatment (Figure 11). NK1.1 
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downregulation was evident by day 1 and persisted until week 4. These alterations in 

iNKT cell numbers were accompanied by profound changes in the response of 

splenocytes to α-GalCer stimulation (Figure 12A). In addition, intracellular staining 

revealed reduced capacity of iNKT cells from L. monocytogenes-infected animals to 

produce cytokines in response to α-GalCer stimulation ex vivo (Figure 12B). 

 

Bacteria induce long-term iNKT cell hyporesponsiveness in vivo 

 To determine whether bacteria can modulate iNKT cell responses in vivo, we 

injected mice with heat-killed E. coli, S. aureus or S. typhimurium, or with live L. 

monocytogenes and treated these animals at different time points thereafter with α-

GalCer to observe iNKT cell expansion in vivo. Consistent with prior results (25, 98), α-

GalCer injection (1 μg/mouse, i.p.) into naïve mice induced dramatic iNKT cell 

expansion, whereas iNKT cells failed to expand in mice treated 3 weeks earlier with a 

single dose of α-GalCer (Figure 13A-H). In mice treated with each of the bacteria tested, 

α-GalCer failed to induce substantial iNKT cell expansion. This inhibition of iNKT cell 

expansion persisted for at least 3 weeks for heat-killed S. aureus (Figure 13E, F) and S. 

typhimurium (Figure 13G, H), and 4 weeks for heat-killed E. coli (Figure 13A, B) and 

live L. monocytogenes (Figure 13C, D). Additional data revealed that these iNKT cells 

were defective in inducing CD86 expression on B cells and DCs, as well as CD69 

expression and IFN-γ production by NK cells (Figure 14). These findings indicate that 

bacteria can induce iNKT cell hyporesponsiveness in vivo. 

 To investigate whether heat-killing of bacteria influences their capacity to induce 

iNKT cell hyporesponsiveness, we compared the impact of heat-killed vs. live E. coli or 

L. monocytogenes on iNKT cell responses. Results showed that both heat-killed and live 

 30



bacteria induced iNKT cell hyporesponsiveness (Figure 15). 

 

Impact of bacteria-induced iNKT cell hyporesponsiveness on ConA-induced hepatitis 

 To determine whether bacteria can influence iNKT cell-mediated effector 

functions in a disease setting, we evaluated iNKT cell function in a model of hepatitis 

induced by Concanavalin A (ConA). ConA-induced hepatitis is a well-characterized 

mouse model for human autoimmune hepatitis that is dependent on iNKT cell function 

(170). Consistent with prior studies (170), CD1d-deficient mice, compared with wild-

type mice, showed significantly reduced liver damage following ConA injection (Figure 

16A). Likewise, mice treated with heat-killed E. coli or S. aureus, or with live L. 

monocytogenes, as compared with naïve mice, experienced significantly less liver 

damage, as assessed by serum alanine aminotransferase (ALT) levels (Figure 16B, C). 

Interestingly, bacteria conferred better protection from ConA-induced liver injury than α-

GalCer (Figure 16C). 

 

Impact of E. coli-induced iNKT cell hyporesponsiveness on the therapeutic activities of 
α-GalCer 

The immunomodulatory properties of iNKT cells have been exploited for the 

development of immunotherapy for cancer and for preventing autoimmunity (36, 171, 

172). We therefore tested whether exposure to bacteria can influence the therapeutic 

activities of α-GalCer, using a model for lung metastasis induced by B16 melanoma cells 

and the EAE model of multiple sclerosis. Mice were treated with heat-killed E. coli or 

live L. monocytogenes and three weeks later these animals were injected with B16 cells 

for induction of tumor metastases or treated with myelin oligodendrocyte glycoprotein 
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(MOG)35-55 peptide in complete Freund’s adjuvant (CFA) for induction of EAE. Mice 

were then treated with a series of vehicle or α-GalCer injections. Results showed that, 

even in the absence of α-GalCer treatment, tumor burden in E. coli-treated animals, but 

not L. monocytogenes-treated animals, was substantially lower when compared with the 

tumor burden in naïve animals (Figure 17). This may be due to primed innate immune 

responses in E. coli-treated animals. However, α-GalCer was unable to enhance the 

clearance of B16 tumors from E. coli-treated mice, and instead slightly enhanced tumor 

burden in these animals (although differences were not statistically significant). Likewise 

α-GalCer was unable to promote tumor clearance in mice treated with L. monocytogenes. 

In contrast, however, iNKT cells in E. coli-treated animals retained their capacity to 

prevent the development of EAE (Figure 18A). A prior report similarly demonstrated the 

capability of α-GalCer-experienced iNKT cells to suppress EAE (25). This ability of 

hyporesponsive iNKT cells to provide protection against EAE might be due to increased 

secretion of IL-10 by DC in E. coli- or α-GalCer-treated animals compensating for the 

hyporesponsive iNKT cells (Figure 18B). 
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Discussion 

 

 Immune responses mediated by peptide-reactive, MHC-restricted T cells are 

characterized by a period of T cell activation, followed by proliferation and 

differentiation, elaboration of effector functions, a decline phase in which the pool of 

antigen-specific T cells contracts, and the development of immunological memory. In 

sharp contrast, little is known regarding the immune response mediated by glycolipid-

reactive, CD1d-restricted iNKT cells. We and others have shown that treatment of mice 

with the potent iNKT cell agonist α-GalCer results in the rapid activation and 

proliferation of these cells, followed by homeostatic contraction of the iNKT cell 

population and acquisition of an anergic phenotype (25, 95, 99). Here, we have 

demonstrated that iNKT cells activated in response to multiple bacterial microorganisms 

acquire a similar hyporesponsive phenotype, which can significantly impact subsequent 

iNKT cell-mediated immune responses and the efficacy of iNKT cell-based 

immunotherapy.  

 We tested the impact of bacteria on the phenotype and functional responses of 

iNKT cells. While each of the bacteria tested, as evidenced by CD69 induction and 

NK1.1 downregulation (Figure 3 and data not shown), was able to activate iNKT cells, 

we observed long-term effects on iNKT cell function for E. coli, S. aureus, S. 

typhimurium and L. monocytogenes (Figure 5), but not S. capsulata (Figure 5), E. faecalis 

(data not shown) and S. pyogenes (data not shown). Whether bacteria were heat-killed or 

live did not impact the outcome on iNKT cell responses (Figure 15).  

 Each of the bacterial organisms investigated in this study likely has multiple 

mechanisms to induce the production of pro-inflammatory cytokines by APC and, thus, 
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to activate iNKT cells. As such, induction of iNKT cell hyporesponsiveness might be 

influenced by a variety of factors, including the mechanism and extent of iNKT cell 

activation. In this regard, we noticed that the capacity of bacteria to induce iNKT cell 

hyporesponsiveness correlated with sustained NK1.1 downregulation in the spleen 

(Figure 4A) and with transient iNKT cell depletion in the liver (Figure 4B), both of which 

are also observed after α-GalCer treatment (25, 98). In the case of L. monocytogenes, we 

also observed transient iNKT cell depletion in the spleen (Figure 10A, B), which likely 

reflects strong iNKT cell activation. A similar but more sustained depletion of iNKT cells 

has been observed in mice following an acute infection with lymphocytic 

choriomeningitis virus (LCMV) (173).  

 iNKT cell hyporesponsiveness induced by bacteria exhibited a number of 

similarities with iNKT cell anergy induced by α-GalCer (25). First, as already discussed, 

iNKT cell hyporesponsiveness correlated with sustained NK1.1 downregulation by 

splenic iNKT cells (Figure 4A). Second, iNKT cell hyporesponsiveness correlated with a 

transient decrease in liver iNKT cell numbers (Figure 4, 7A, B, 10A, B). Third, iNKT 

cell hyporesponsiveness was maintained for at least 4 weeks (Figure 5, 9, 12). These 

similarities between bacteria- and α-GalCer-induced iNKT cell hyporesponsiveness 

suggest similar mechanisms.  

 iNKT cell activation can have a number of detrimental effects in mice, including 

the induction of liver injury (174), abortions (175), and exacerbation of atherosclerosis 

(176) and allergic reactions (177). As such, it is likely that bacteria-induced iNKT cell 

hyporesponsiveness serves to avoid such deleterious outcomes of iNKT cell activation. In 

addition to inducing iNKT cell hyporesponsiveness, some pathogens, such as L. 

monocytogenes (the present study) and LCMV (173), induce significant iNKT cell 
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apoptosis, which likely represents an additional mechanism to avoid the deleterious 

effects of sustained iNKT cell activation. Our finding that treatment of mice with E. coli, 

S. aureus, or L. monocytogenes suppressed ConA-induced hepatitis (Figure 16) supports 

this hypothesis. 

 In humans, it has been well-documented that iNKT cell numbers and functions 

differ widely among individuals (178, 179). Our finding that many bacteria can induce 

iNKT cell hyporesponsiveness, together with the observation that certain pathogens can 

induce short-term (e.g., L. monocytogenes; this study) or long-term (e.g., LCMV (173)) 

depletion of the iNKT cell population, provides a potential explanation for this 

observation. A role for microbial pathogens in the variability of human iNKT cell 

numbers and functions is also consistent with the finding that iNKT cell numbers in 

humans are suppressed during certain chronic infections, including infections with HIV 

(164) and Mycobacterium tuberculosis (179). 

 iNKT cells are promising targets for immunotherapy of a variety of diseases, 

including cancer and autoimmunity (171, 172, 180, 181). Our studies revealed that 

bacteria-induced iNKT cell hyporesponsiveness impacts the efficacy of iNKT cell-based 

immunotherapies. We demonstrated that heat-killed E. coli and live L. monocytogenes 

abrogated the capacity of α-GalCer to protect mice against the development of B16 

tumors, but we did not observe any effects of E. coli on the capacity of α-GalCer to 

protect mice against the induction of EAE (Figure 18A). These effects of bacteria on the 

therapeutic activities of α-GalCer are very similar to those mediated by α-GalCer-

induced iNKT cell anergy (25). Although the precise mechanisms remain unclear, IFN-γ 

and iNKT-cell mediated transactivation of DCs and NK cells likely play important roles 

in the therapeutic effects of α-GalCer against B16 tumor cells (182), whereas IL-4, IL-10 
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and IFN-γ all have been implicated in the therapeutic efficacy of α-GalCer against EAE 

(116, 117, 119). Our finding that α-GalCer-activated, hyporesponsive iNKT cells are 

defective in transactivating DCs and NK cells (Figure 14) provides a potential 

explanation for loss of the beneficial effect of iNKT cells against B16 metastases. In the 

case of EAE, it is possible that the levels of cytokines produced by hyporesponsive iNKT 

cells are sufficient to promote the tolerogenic activities of these cells and prevent EAE 

disease. Indeed, we found that DCs from mice treated with α-GalCer three weeks after 

initial challenge with α-GalCer or heat-killed E. coli exhibited a profound increase in IL-

10 secretion in response to in vitro stimulation with LPS or CpG (Figure 18B). 

 In conclusion, multiple bacteria have been shown to induce phenotypic and 

functional changes in iNKT cells rendering these cells hyporesponsive during the 

secondary response. These changes impacted the physiological function of iNKT cells in 

ConA-induced hepatitis model and also affected the therapeutic activities of these cells. 

These findings argue that infections and vaccination might limit the utility of α-GalCer 

therapy. In order to apply our findings to the development of novel strategies targeting 

iNKT-cell based therapies, it is crucial to gain mechanistic understanding of iNKT cell 

hyporesponsiveness induced by bacteria. In the next chapter, we tried to provide insight 

into the mechanism by which bacteria induce and maintain the hyporesponsive phenotype 

of iNKT cells.   
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Materials and Methods 

 

Mice. Female C57BL/6 (B6) mice were purchased from the Jackson Laboratory. All 

animal studies were approved by the Institutional Animal Care and Use Committee of 

Vanderbilt University (Nashville, TN). 

 

Reagents. α-GalCer (KRN7000) was kindly provided from Kirin Brewery Co., Ltd. 

(Gunma, Japan) and was reconstituted in PBS containing 0.5% polysorbate-20 (Sigma-

Aldrich). CD1d monomers were obtained from the National Institutes of Health. 

Fluorescently labeled tetrameric CD1d molecules loaded with α-GalCer (CD1d 

tetramers) were prepared as described previously (183). Anti–TCR-β–fluorescein 

isothiocyanate (FITC) and -allophycocyanin, anti-NK1.1-phycoerythrin (PE) and -

allophycocyanin, anti-B220-peridinin chlorophyll protein (PerCP), anti-CD3–PerCP, 

anti-CD80-PE, anti-CD86-PE, anti–IL-4–allophycocyanin, anti–IFN-γ–FITC, anti-

CD69–FITC, anti-CD11c–allophycocyanin, and streptavidin–PE–cyanide dye 5 were 

obtained from BD Biosciences-Pharmingen, complete and incomplete Freund’s adjuvant 

from BD Biosciences-Pharmingen, CFSE from Invitrogen Corp., Salmonella LPS from 

Sigma, and CpG from Invivogen.  

 

Treatment of mice with heat-killed or live bacteria. E. faecalis (ATCC 29212), E. coli 

(ATCC 25922), S. aureus (ATCC 25923), and S. pyogenes (ATCC 19615) were obtained 

from Dr. Yi-Wei Tang (Vanderbilt Medical Center), S. typhimurium (χ4550) was 

obtained from Dr. Roy Curtiss (Arizona State University, Tempe, AZ), and L. 

monocytogenes was obtained from Dr. Hao Shen (University of Pennsylvania School of 
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Medicine, Philadelphia, PA). Each of these organisms was grown on Brain Heart 

Infusion agar (BD Difco) plates and individual colonies were cultured overnight in Brain 

Heart Infusion broth, diluted in fresh broth and grown for 8 hr at 37oC to stationary phase, 

washed and resuspended in PBS. S. capsulata (ATCC 14666) was obtained from the 

ATCC and grown in Mueller-Hinton broth, washed and diluted in PBS buffer. Heat-

killed bacteria were prepared by 2 hr exposure to 75oC except for S. typhimurium, which 

was incubated in boiling water for 45 min. Heat-killed bacteria were subsequently stored 

at -80oC. Heat-killed bacteria (0.75-1×109 CFU in 200 μl PBS) were intravenously 

injected into mice. Live bacteria were administered intravenously in 200 μl PBS, at a 

dose of 5×104 colony forming unit (CFU) for L. monocytogenes, 1-2 × 108 CFU for S. 

capsulata, or 5×105 CFU for E. coli. Mice were sacrificed and analyzed at various time 

points after injection.  

 

Flow cytometry. Single-cell suspensions of the spleen and liver were prepared and stained 

with fluorescently-labeled mAbs as described previously (79). In all experiments, dead 

cells were excluded from the analysis by electronic gating. The iNKT cell population was 

identified as B220-TCR-β+tetramer+ cells. For intracellular cytokine staining, cells were 

permeabilized with Cytofix/Cytoperm reagents (BD Biosciences-Pharmingen) according 

to the manufacturer’s protocol. For staining of DCs, Fc receptors were first blocked by 

addition of anti-CD16/32 antibodies (BD Biosciences-Pharmingen) and DCs were 

identified on the basis of high CD11c expression. Flow cytometry was performed using a 

FACSCalibur instrument with CellQuest software (BD Immunocytometry Systems) and 

the acquired data were analyzed using FlowJo software (Tree Star Inc.). 
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Measurement of in vivo and in vitro responses to α-GalCer. For evaluation of in vivo 

iNKT cell responses to α-GalCer, mice were injected i.p. with 1 μg α-GalCer in 200 μl 

PBS containing 0.025% polysorbate-20 (vehicle). At different time points, splenocytes 

and liver mononuclear cells were stained with fluorescently labeled mAbs and analyzed 

by flow cytometry. For evaluation of in vitro iNKT cell responses, splenocytes were 

plated in U-bottomed 96-well plates at 2 × 105 cells per well in RPMI medium containing 

10% FCS (R-10) in the presence of titrated doses of α-GalCer or vehicle. For 

proliferation assays, 1 μCi of [3H]thymidine (MP Biomedicals, Inc.) was added to the 

wells after 60 hrs of culture, and cells were cultured for an additional 12 hrs. Cells were 

then harvested, and uptake of radioactivity was measured in β-counter. For measurement 

of cytokine secretion in vitro, supernatants were harvested after 60 hrs of culture, and 

cytokine levels were measured by ELISA.  

 

ELISA. A standard sandwich ELISA was performed to measure mouse IFN-γ, IL-4, IL-

10, IL-12 and IL-2. IFN-γ– and IL-4–paired antibodies were obtained from R&D 

Systems Inc., and IL-10, IL-12 and IL-2–paired antibodies were obtained from BD 

Biosciences-Pharmingen. Cytokine standards were obtained from BD Biosciences-

Pharmingen. For detection, streptavidin-HRP conjugate (Zymed Laboratories Inc.) was 

used, and the color was developed with the substrate 3,3′,5,5′-tetramethylbenzidine (Dako 

Corp.) in the presence of H2O2. 

 

CFSE dilution analysis. Total splenocytes or enriched iNKT cells were labeled with 1 

μM CFSE for 15 min at 37°C in PBS containing 5% FCS, and washed twice with R-10 

medium. Labeled splenocytes (2 × 105 cells per well) were then stimulated with α-
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GalCer (100 ng/ml) with or without addition of IL-2 (10 ng/ml) in the culture media. 

Cells were washed 3 times with R-10 medium and cultured for an additional 96 hrs in R-

10 medium without α-GalCer. At the end of the culture, cells were harvested, stained 

with PE-labeled CD1d tetramer and anti-B220–PerCP, and analyzed by flow cytometry. 

Dead cells were excluded from the analysis by electronic gating. CFSE dilution analysis 

was performed on B220–tetramer+ iNKT cells. 

 

Assessment of ConA-induced hepatitis. ConA (350 μg in 200 μl PBS) was injected 

intravenously into mice. Mice were sacrificed 24 hrs later and serum was collected and 

analyzed for alanine aminotransferase (ALT) levels using Prochem-V (Drew Scientific) 

according to the manufacturer’s protocol.  

 

Determination of lung metastases of B16 melanoma. B6 mice were injected i.v. with 3 × 

105 syngeneic B16 melanoma cells suspended in PBS. Mice were treated with α-GalCer 

(5 μg per injection) or vehicle at 0, 4, and 8 days. Fifteen days after challenge, mice were 

sacrificed, lungs were removed, and the number of metastatic nodules was counted as 

described (184). 

 

Induction and evaluation of EAE. Mice were immunized s.c. with 200 μg of MOG35-55 

peptide (Bio-Synthesis, Inc.) emulsified in CFA (BD Biosciences) on day 0 and in 

incomplete Freund’s adjuvant (IFA) on day 7, as described (116). Mice also received 250 

ng of pertussis toxin (Invitrogen Corp.) i.p. on days 0 and 2. Mice were treated with 5 μg 

of α-GalCer or vehicle on days 0, 4, and 7 by i.p. injection. Clinical symptoms were 

monitored daily after the first immunization. The clinical score was graded as follows: 0, 

 40



no disease; 1, tail limpness; 2, hind-limb weakness; 3, hind-limb paralysis; 4, forelimb 

weakness; 5, quadriplegia; and 6, moribund. Mice were sacrificed at grade 6. 

 

Statistical analysis. Statistical significance between two groups was determined by 

application of an unpaired 2-tailed Mann-Whitney U test. A P value less than 0.05 was 

considered significant. Statistical significance between multiple groups was determined 

by application of ANOVA followed by Bonferroni post-hoc test for samples determined 

to approximate normal distribution by Kolmogorov-Smirnov normality test with Dallal-

Wilkinson-Lilliefor p value. When samples were determined not to approximate normal 

distribution, Kruskal-Wallis followed by Dunns post-hoc test was used instead. A P value 

less than 0.05 was considered significant for the multiple comparison tests as well.  
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Figure 3. Multiple bacterial microorganisms activate murine iNKT cells. (A) and (B) The 
in vivo response of mice to treatment with heat-killed or live bacteria at day 1 in spleen 
(A) or liver (B). Mice were injected with α-GalCer (5 μg/mouse, i.p.) or with the 
indicated heat-killed or live bacteria (i.v.), sacrificed at day 1, and spleen or liver 
mononuclear cells were prepared and stained with anti-TCRβ-FITC, anti-CD69-FITC, 
anti-NK1.1-PE, anti-B220-PerCP, and CD1d-tetramer-APC and analyzed by flow 
cytometry. Numbers indicate the percentage of TCRβ+tetramer+ cells among B220- cells, 
or the percentage of NK1.1- cells among iNKT cells. The shaded area represents the 
staining of naïve iNKT cells and the solid line represents the staining of iNKT cells from 
mice treated with α-GalCer or bacteria. Representative plots from 4-8 mice per group are 
shown.  
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Figure 4. Some bacterial microorganisms induce sustained changes in the prevalence and 
surface phenotype of iNKT cells. (A) and (B) The in vivo response of mice to treatment 
with heat-killed or live bacteria at week 3 in spleen (A) or liver (B). Mice were injected 
with α-GalCer (5 μg/mouse, i.p.) or with the indicated heat-killed or live bacteria (i.v.), 
sacrificed at week 3, and spleen or liver mononuclear cells were prepared and stained 
with anti-TCRβ-FITC, anti-CD69-FITC, anti-NK1.1-PE, anti-B220-PerCP, and CD1d-
tetramer-APC and analyzed by flow cytometry. Numbers indicate the percentage of 
TCRβ+tetramer+ cells among B220- cells, or the percentage of NK1.1- cells among iNKT 
cells. The shaded area represents the staining of naïve iNKT cells and the solid line 
represents the staining of iNKT cells from mice treated with α-GalCer or bacteria. 
Representative plots from 4-8 mice per group are shown. 
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Figure 5. Some bacterial microorganisms induce suppressed response of splenocytes to 
α-GalCer rechallenge. Mice were injected with α-GalCer (5 μg/mouse, i.p.) or the 
indicated bacteria, sacrificed 3 weeks later, and splenocytes (2 × 105 per well) were 
cultured with graded doses of α-GalCer. After 3 days, proliferation was assessed by 
[3H]thymidine incorporation and culture supernatants were evaluated for IL-4 and IFN-γ 
levels by ELISA. Proliferation and cytokine results represent the mean ± SEM of 6-11 
mice per group, pooled from 3 experiments. *, p<0.05 as compared with naïve 
splenocytes cultured with the same dose of α-GalCer.  
 

 

 

 

 

 

 

 44



 

 

 

 

 

 

 

 

 

Figure 6. The memory response of conventional T cells following L. monocytogenes 
infection. Mice were infected with 5×104 CFU of L. monocytogenes, sacrificed 3 weeks 
later, and splenocytes (2 × 105 per well) were cultured with graded doses of heat-killed L. 
monocytogenes. After 3 days, proliferation was assessed by [3H]thymidine incorporation 
and culture supernatants were evaluated for IL-2 by ELISA. Proliferation and cytokine 
results represent the mean ± SEM of 4 mice. *, p<0.05 as compared with naïve 
splenocytes cultured with the same dose of heat-killed L. monocytogenes. 
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Figure 7. In vivo dynamics of the iNKT cell population in response to heat-killed E. coli. 
(A) Mice were injected with α-GalCer (5 μg/mouse, i.p.) or heat-killed E. coli, sacrificed 
at the indicated time points, and spleen and liver mononuclear cells were prepared and 
stained for the identification of iNKT cells with anti-TCRβ-FITC, anti-NK1.1 PE, anti-
B220-PerCP, and tetramer-APC. The percentage of TCRβ+tetramer+ cells among B220- 
cells is shown. Representative plots from 5-10 mice per group are shown. (B) Graphical 
representation of the total spleen iNKT cell counts and the percentage of liver iNKT cells 
at the indicated time points, for a total of 5-10 mice per group, pooled from 2 separate 
experiments. *, p<0.05 as compared with naïve animals.  
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Figure 8. In vivo dynamics of NK1.1 expression by iNKT cells in response to heat-killed 
E. coli. Mice were injected with α-GalCer (5 μg/mouse, i.p.) or heat-killed E. coli, 
sacrificed at the indicated time points, and spleen and liver mononuclear cells were 
prepared and stained for the identification of iNKT cells with anti-TCRβ-FITC, anti-
NK1.1-PE, anti-B220-PerCP, and tetramer-APC. The percentage of NK1.1- cells among 
iNKT cells is shown. The shaded area represents the NK1.1 staining of naïve iNKT cells, 
and the solid line represents the staining of iNKT cells from mice treated with α-GalCer 
or bacteria. Representative plots from 4-10 mice per group are shown. 
 

 

 

 

 

 

 

 47



 
 
 
 
 
 
Figure 9. Heat-killed E. coli induces hyporesponsiveness of iNKT cells to α-GalCer 
rechallenge ex vivo. (A) α-GalCer recall response of mice at the indicated time points 
after treatment with heat-killed E. coli. Mice were injected with α-GalCer or heat-killed 
E. coli, sacrificed 3, 4, or 6 weeks later, and splenocytes (2 × 105 per well) were cultured 
with graded doses of α-GalCer. After 3 days, proliferation was assessed by 
[3H]thymidine incorporation and culture supernatants were evaluated for IL-4 and IFN-　 
levels by ELISA. Proliferation and cytokine results represent the mean ± SEM of 6-9 
mice, pooled from 2 experiments. *, p<0.05 as compared with naïve splenocytes cultured 
with the same dose of α-GalCer. (B) Proliferative defect in iNKT cells from mice treated 
with heat-killed E. coli. Spleen cells from naive mice or from mice injected 4 or 6 weeks 
earlier with α-GalCer or heat-killed E. coli were labeled with CFSE. Cells (2 × 105 per 
well) were then cultured with α-GalCer (100 ng/ml) for 24 hrs, then washed and cultured 
for an additional 96 hrs without α-GalCer. At the end of the culture period cells were 
harvested, stained with anti-TCRβ-PE, anti-B220-PerCP, and tetramer-APC, and 
analyzed by flow cytometry. Numbers indicate the percentage of the TCRβ+tetramer+ 
cells among B220- cells. CFSE dilution was analyzed on B220-TCRβ+tetramer+ cells. The 
data shown are representative of 3 separate experiments with 2 mice per group. (C) iNKT 
cell cytokine production. Spleen cells were prepared at the indicated time point and 2 × 
105 cells were cultured for 6 hrs in plain medium (alone) or 100 ng/ml α-GalCer (αGC) 
in the presence of GolgiPlug. Cells were then harvested and surface-stained with 
tetramer-PE and anti-B220-PerCP, followed by intracellular staining with anti-IFN-γ-
FITC and anti-IL-4-APC. Data are shown for B220-tetramer+ cells. Numbers indicate the 
percentage of cells within each quadrant. Results shown are representative of 4 
independent experiments.  
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Figure 10. In vivo dynamics of the iNKT cell population in response to L. 
monocytogenes infection. (A) Mice were injected with α-GalCer (5μg/mouse, i.p.) or 
infected with L. monocytogenes, sacrificed at the indicated time points, and spleen and 
liver mononuclear cells were prepared and stained with anti-TCRβ-FITC, anti-NK1.1 PE, 
anti-B220-PerCP, and tetramer-APC. Numbers indicate the percentage of 
TCRβ+tetramer+ cells among B220- cells. Representative plots from 4-7 mice per group 
are shown. (B) Graphical representation of the total spleen iNKT cell counts and the 
percentage of liver iNKT cells at the indicated time points, for a total of 4-7 mice per 
group, pooled from 2 separate experiments. *, p<0.05 as compared with naïve animals. 
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Figure 11. In vivo dynamics of NK1.1 expression by iNKT cells in response to live L. 
monocytogenes. Mice were injected with α-GalCer (5 μg/mouse, i.p.), live L. 
monocytogenes, sacrificed at the indicated time points, and spleen and liver mononuclear 
cells were prepared and stained for the identification of iNKT cells with anti-TCRβ-
FITC, anti-NK1.1-PE, anti-B220-PerCP, and tetramer-APC. The percentage of NK1.1- 

cells among iNKT cells is shown. The shaded area represents the NK1.1 staining of naïve 
iNKT cells, and the solid line represents the staining of iNKT cells from mice treated 
with α-GalCer or bacteria. Representative plots from 4-10 mice per group are shown. 
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Figure 12. Live L. monocytogenes infection induces hyporesponsiveness of iNKT cells 
to α-GalCer rechallenge ex vivo. (A) The in vitro α-GalCer recall response of mice at the 
indicated time points after infection. Mice were infected with L. monocytogenes, 
sacrificed 3 days or 1, 2, or 4 weeks later, and splenocytes (2 × 105 per well) were 
cultured with graded doses of α-GalCer. After 3 days, proliferation was assessed by 
[3H]thymidine incorporation and culture supernatants were evaluated for IL-4 and IFN-γ 
levels by ELISA. Proliferation and cytokine results represent the mean ± SEM of 4-8 
mice pooled from 2 separate experiments. *, p<0.05 as compared with naïve splenocytes 
cultured with the same dose of α-GalCer. (B) iNKT cell cytokine production. Spleen 
cells were prepared at the indicated time point and 2 × 105 cells were cultured for 6 hrs in 
plain medium (alone) or 100 ng/ml α-GalCer (αGC) in the presence of GolgiPlug. Cells 
were then harvested and surface-stained with tetramer-PE and anti-B220-PerCP, followed 
by intracellular staining with anti-IFN-γ-FITC and anti-IL-4-APC. Data are shown for 
B220-tetramer+ cells. Numbers indicate the percentage of cells within each quadrant. 
Results shown are representative of 2 independent experiments.  
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Figure 13. Bacteria can induce iNKT cell hyporesponsiveness to α-GalCer rechallenge in 

vivo. (A), (C), (E) and (G) At the indicated time points after injection with heat-killed E. 

coli (A), live L. monocytogenes (C), heat-killed S. aureus (E), or heat-killed S. 

typhimurium (G) mice were rechallenged in vivo with vehicle or α-GalCer (1 μg/mouse, 

i.p.). Mice were sacrificed 3 days later and spleen cells were stained with anti-TCRβ-

FITC, anti-B220-PerCP, and tetramer-APC, and analyzed by flow cytometry. Numbers 

indicate the percentage of TCRβ+tetramer+ cells among B220- cells for representative 

data from 5-7 mice per group in at least 2 separate experiments. (B), (D), (F) and (H) 

Graphical representation of the total spleen iNKT cells calculated from the experiments 

shown in (A), (C), (E), and (G) respectively. *, p<0.05 as compared with naive mice 

rechallenged with α-GalCer.  
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Figure 14. Hyporesponsive iNKT cells are defective in transactivating B cells, DCs and 
NK cells in vivo. Mice were injected with the indicated bacteria and rechallenged with α-
GalCer (1 μg/mouse, i.p) 3 weeks later. Mice were then sacrificed at the 24-hr time point 
and spleen mononuclear cells were stained with different combinations of anti-CD86-PE, 
anti-B220-PerCP, anti-CD11c-APC, anti-CD69 FITC, anti-NK1.1-APC, and anti-TCRβ-
PE. For IFN-γ staining on NK cells, mice were sacrificed 6 hrs following α-GalCer 
rechallenge and spleen mononuclear cells were cultured 2 hrs in the presence of 
GolgiPlug. Cells were then stained with anti-IFN-γ-FITC, anti-NK1.1-APC, and anti-
TCRβ-PE. Data shown are representative of 6 mice per group from 2 separate 
experiments. 
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Figure 15. Both heat-killed and live bacteria induce iNKT cell hyporesponsiveness. (A) 
Mice were injected with heat-killed or live E. coli or L. monocytogenes and, 3 weeks later, 
rechallenged in vivo with vehicle or α-GalCer (1 μg/mouse, i.p.). Mice were sacrificed 3 
days later and spleen cells were stained with anti-TCRβ-FITC, anti-B220-PerCP, and 
tetramer-APC, and analyzed by flow cytometry. Numbers indicate the percentage of 
TCRβ+tetramer+ cells among B220- cells from representative plots of 5-6 mice per group 
from 2 experiments. (B) Graphical representation of the total spleen iNKT cells 
calculated from the experiments shown in (A). *, p<0.05 as compared with naive mice 
rechallenged with α-GalCer.  
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Figure 16. Impact of bacteria-induced iNKT cell hyporesponsiveness on ConA-induced 
hepatitis. Wild-type or CD1d-deficient mice were injected with α-GalCer (A), live L. 
monocytogenes (B), or heat-killed E. coli or S. aureus (C), and, 3-4 weeks later, mice 
were challenged with PBS or ConA (350 μg/mouse in PBS). Mice were bled 24 hrs later 
and serum ALT levels were measured. Results represent the mean ± SEM of 8 mice 
per group in ConA-treated groups or 2 mice per group in PBS-treated groups. *, p<0.05 
as compared with naïve mice treated with ConA. 
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Figure 17. Impact of E. coli-induced iNKT cell hyporesponsiveness on the anti-tumor 
activities of α-GalCer against B16 tumor lung metastasis formation. B6 mice were left 
untreated or injected with bacteria and, 4 weeks later, mice were challenged i.v. with 3 × 
105 syngeneic B16 melanoma cells and treated with α-GalCer (5 μg/injection) or vehicle 
at 0, 4, and 8 days after tumor challenge. Mice were sacrificed after 15 days and the 
number of metastatic nodules in the lungs counted. Results shown are the average of 2 
experiments with 4 mice in each group per experiment. *, p<0.05; NS, not significant.  
 
 
 
 
 
 

 57



 
 

 
Figure 18. Impact of E. coli-induced iNKT cell hyporesponsiveness on the therapeutic 
activities of α-GalCer against EAE. (A) B6 mice were treated with heat-killed E. coli 
and, 3 weeks later, mice were immunized with MOG35-55 peptide for induction of EAE, 

treated with α-GalCer (5 μg/injection) or vehicle on days 0, 4, and 7, and followed for 
clinical signs of EAE. Results shown are one representative experiment of 2 with 5-6 
mice in each group. (B) Development of tolerogenic DCs following α-GalCer or heat-
killed E. coli treatment. Mice were injected with α-GalCer (5 μg/mouse, i.p.) or heat-
killed E. coli (indicated as 1°) and, 3 weeks later, rechallenged with vehicle or α-GalCer 
(5 μg/mouse, i.p.) (indicated as 2°). Mice were sacrificed 24 hrs following α-GalCer  
rechallenge and DCs were MACS-purified from spleens. Purified DCs were then cultured 
for 48 hours in the presence of vehicle, 10 μg/ml Salmonella LPS or 1 μΜ CpG ODN. 
Supernatants were analyzed for IL-12 and IL-10 by sandwich ELISA. Data shown 
represents mean ± SD from 3 wells per group. 
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CHAPTER III 

 

 

THE MECHANISM OF INKT CELL HYPORESPONSIVENESS 

INDUCED BY BACTERIA 

 

 

Abstract 

 

Invariant natural killer T (iNKT) cells are innate-like lymphocytes that recognize 

glycolipid antigens in the context of the MHC class I-like antigen-presenting molecule 

CD1d. Unlike conventional T cells, iNKT cells can be activated directly through 

recognition of a cognate antigen such as α-GalCer as well as indirectly through cytokine 

and/or endogenous lipid antigen presentation by DC during bacterial infection. We have 

previously shown that multiple bacterial organisms can induce iNKT cell 

hyporesponsiveness, and therefore we have investigated the mechanism by which 

bacteria induce this hyporesponsive phenotype in iNKT cells. We have found that murine 

iNKT cells activated in vivo by bacterial LPS or flagellin, became unresponsive to 

subsequent activation with α-GalCer suggesting TLR ligands as causative agents of 

bacteria-induced hyporesponsiveness. Furthermore, while a distinct mechanism of 

activation resulted in a requirement for IL-12 in bacteria- but not in α-GalCer-induced 

anergy, both share several common anergic phenotypes, implying similar underlying 

mechanisms of anergy. These findings provide insights into understanding iNKT cell 

function and may result in novel strategies for therapeutic application of iNKT cells. 
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Introduction 

 

T cell anergy is defined as an extended period of functional inactivation and 

hyporesponsiveness of T cells following an antigenic stimulation. Functional inactivation 

may refer to combinations of suppressed cell division, differentiation/maturation, and/or 

cytokine production. Most importantly, this hyporesponsive state should be cell 

autonomous and distinct from bystander tolerance mediated by other immunoregulatory 

cells. Also, the period of the hyporesponsive state should last at least 24 hours and is 

distinguished from an apoptotic process characterized by caspase activation (185, 186).  

T cell anergy falls into two main categories, clonal anergy and adaptive tolerance 

(137). Clonal anergy arises from incomplete T cell activation of previously activated T 

cells and usually is not associated with loss of effector functions. Adaptive tolerance, also 

termed in vivo anergy, often ensues from in vivo activation of naïve T cells in the 

absence of adequate costimulation or in the presence of strong coinhibition, for instance 

mediated by cytotoxic T lymphocyte antigen-4 (CTLA-4) (187).  

Several features distinguish these two distinct forms of T cell anergy. While a 

block in IL-2 production and therefore proliferation is observed in both forms of anergy, 

only adaptive tolerance typically results in blockade of all cytokines with the exception of 

IL-10. Clonal anergy often retains effector functions. Also, unlike clonal anergy, adaptive 

tolerance also requires persistent presence of antigenic stimulation in order to maintain 

the anergic phenotype. In addition, in most adaptive tolerance models, the proliferative 

block cannot be reversed by exogenous IL-2 due to defective IL-2 receptor signaling 

which seems to involve CTLA-4 signaling (188).  

 Previous reports on α-GalCer-induced iNKT cell anergy provided important 
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perspectives for understanding the mechanism of iNKT cell hyporesponsiveness induced 

by bacteria with a number of shared characteristics observed in conventional T cell 

anergy (98, 189). The hyporesponsive phenotype exhibited by iNKT cells following 

initial α-GalCer injection was cell autonomous, and was not indirectly dependent on the 

activity of regulatory T cells, tolerogenic dendritic cells, or other cell types. Also, α-

GalCer was able to induce anergy in thymectomized mice indicating peripheral rather 

than central tolerance mechanisms. With regard to roles for costimulation during anergy 

induction, α-GalCer pulsed B cells with low levels of costimulatory molecules but not α-

GalCer pulsed DCs induced iNKT cell anergy. Additionally, α-GalCer was shown to 

induce iNKT cell anergy in IL-4, IL-10, or IFN-γ deficient mice excluding involvement 

of these cytokines during induction of iNKT cell anergy. Also, the surface phenotype of 

iNKT cells during anergy induced by α-GalCer correlated with sustained downregulation 

of NK1.1, but no change in Ly49 receptor expression was observed. α-GalCer-induced 

anergy was also rescued by phorbol myristate acetate and ionomycin, and the 

proliferative defect of anergic iNKT cells was corrected by the administration of 

exogenous IL-2.  

Activation of iNKT cells by bacteria is however distinct from α-GalCer. As a 

potent specific antigen for semi-invariant TCR of iNKT cells, α-GalCer presented by 

CD1d on APCs activates iNKT cells by strong prolonged TCR engagement. In sharp 

contrast, despite extremely limited substrate specificity of their semi-invariant TCR, 

iNKT cells have been shown to be involved in the clearance of diverse species of 

microbes implying activation of iNKT cells in the absence of iNKT cell antigen. This is 

explained by two modes iNKT cell activation, the direct mechanism and the indirect 

mechanism. The direct mechanism of iNKT cell activation relies on the presence of 

 61



microbial glycolipid antigen that is presented by CD1d molecules on APC and directly 

engages the semi-invariant TCR. Glycosphingolipids in Sphingomonas capsulata (55, 

130, 134) and galactosyl diacylglycerol antigens from Borrelia burgdorferi (59) are good 

examples of microbial glycolipid antigens strongly activating most iNKT cells. The 

indirect mechanism of activation does not rely on specific recognition of microbial 

glycolipid antigens. This non-specific activation is mediated by activated DCs in 

response to microbial products, most notably TLR ligands. For instance, TLR signaling 

in response to LPS from S. typhimurium results in IL-12 secretion by DCs, which in 

conjunction with endogenous ligands activates (55, 63). In the case of E. coli LPS, 

release of proinflammatory cytokines such as IL-12 and IL-18 by DCs without 

presentation of autoreactive antigen is sufficient for iNKT cell activation (136).  

In this chapter, we have dissected the mechanism of bacteria-induced iNKT cell 

hyporesponsiveness, and we show that bacteria-induced and α-GalCer-induced iNKT cell 

anergy share a number of features, yet exhibit a number of striking differences as well. 

The findings from this research will provide novel insights into our understanding of 

iNKT cell biology and for developing improved iNKT cell-based therapies. 
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Results 

  

Role for TLR ligands in bacteria-induced iNKT cell hyporesponsiveness 

 Bacteria that lack cognate iNKT cell antigens can activate iNKT cells in a manner 

that depends on the activation of DCs by TLR ligands (63, 126, 190). We therefore 

investigated whether TLR ligands can induce iNKT cell hyporesponsiveness. Our results 

showed that LPS and flagellin from E. coli and Salmonella were able to induce 

hyporesponsiveness in iNKT cells (Figure 19A-C). Interestingly, while a single dose of 

flagellin was sufficient to induce hyporesponsiveness, a repeated injection of LPS was 

required implying flagellin as a more potent inducer of hyporesponsiveness. Ex vivo 

assay of splenocytes prepared from mice previously treated with LPS or flagellin also 

showed relatively less iNKT cell impairment by LPS than flagellin (Figure 19C). 

Furthermore, DH5α, a flagellin deficient strain of E. coli, while inducing relative 

hyporesponsiveness with respect to naïve animals, was much less efficient in the 

induction of iNKT cell hyporesponsiveness (Figure 20).  

 

Role for IL-12 in bacteria-induced iNKT cell hyporesponsiveness  

 Because IL-12 has been implicated as a critical cytokine in the capacity of 

bacteria and bacterial products to activate iNKT cells (63, 126, 190), and because both 

LPS and flagellin induce IL-12 production by APCs (191), we investigated the role of 

this cytokine in bacteria-induced iNKT cell hyporesponsiveness using IL-12-deficient 

mice. Consistent with previous studies indicating an important role for IL-12 in the 

reciprocal interactions of iNKT cells and DCs (80), splenocytes from IL-12-deficient 

mice showed a suppressed response to α-GalCer as compared with wild-type 
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splenocytes, regardless of prior in vivo treatment. Results (Figure 21A, B) showed that 

the capacity of heat-killed E. coli to induce iNKT cell hyporesponsiveness required IL-12 

expression, whereas induction of iNKT cell anergy mediated by α-GalCer was 

independent of IL-12 expression. Also, NK1.1 downregulation by iNKT cells 

consistently observed following bacteria treatment was absent in IL-12-deficient mice 

(Figure 22). Furthermore, we found an important role of IL-12 for iNKT cell 

hyporesponsiveness induced by LPS and flagellin (data not shown). These findings 

indicate a critical role of TLR ligands and IL-12 in the capacity of bacteria to induce 

iNKT cell hyporesponsiveness. 

 

Costimulatory molecules are not required for bacteria-induced iNKT cell 
hyporesponsiveness 

 For bacteria-induced iNKT cell hyporesponsiveness, a strong stimulation of iNKT 

cells during the early response to bacteria might be required to impart the subsequent 

hyporesponsive phenotype. As costimulation amplifies the T cell response to TCR 

engagement in general, we investigated the role for CD86 in bacteria-induced iNKT cell 

hyporesponsiveness. Results showed that E. coli treatment in CD86 deficient mice 

induced long-term iNKT cell hyporesponsiveness in vivo (Figure 23) indicating 

costimulation is dispensable for bacteria to induce iNKT cell hyporesponsiveness.  

   

Bacteria-induced iNKT cell hyporesponsiveness is thymus-independent 

 iNKT cell hyporesponsiveness induced by bacteria might involve central or 

peripheral tolerance mechanisms. We therefore tested whether iNKT cell 

hyporesponsiveness required an intact thymus. No differences were observed in the iNKT 
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cell response of euthymic vs. thymectomized animals pretreated with heat-killed E. coli, 

heat-killed S. aureus, or live L. monocytogenes (Figure 24). In addition, we observed a 

similar pattern of NK1.1 downregulation in bacteria-treated euthymic and athymic mice 

(Figure 25). Moreover, Ly49 upregulation observed in iNKT cells generated de novo 

during central tolerance was not observed following bacteria treatment (Figure 26). We 

therefore concluded that central tolerance mechanisms do not play a significant role in 

the induction of iNKT cell hyporesponsiveness by bacteria.  

 

Bacteria-induced iNKT cell hyporesponsiveness is predominantly cell autonomous 

  iNKT cell tolerance induced by bacteria might be intrinsic to these cells or 

mediated by extrinsic factors such as tolerogenic APC. We tested this issue for mice 

treated with heat-killed E. coli. We cultured splenic DCs, purified from naive or E. coli-

treated mice, with liver iNKT cells purified from naive or E. coli-treated animals, in the 

presence of α-GalCer. Results showed that iNKT cells derived from naive mice 

proliferated and secreted cytokines at normal or slightly reduced levels in the presence of 

DCs derived from all mice (Figure 27A). In sharp contrast, liver iNKT cells from mice 

treated with heat-killed E. coli showed dampened proliferation and cytokine secretion in 

response to DCs from both naive and E. coli-treated animals. To confirm these findings, 

we labeled splenic iNKT cells enriched from naïve or bacteria-treated animals with CFSE, 

cultured these cells in vitro with α-GalCer-loaded, splenic DCs enriched from naïve or 

bacteria-treated animals, and analyzed CFSE dilution among iNKT cells (Figure 27B). 

Results showed that iNKT cells enriched from naïve animals exhibited significant CFSE 

dilution, regardless of the source of DCs used for stimulation. Further, naïve DCs were 

unable to rescue hypoproliferation of iNKT cells purified from α-GalCer- or E. coli-

 65



treated mice. These findings suggested that DC alterations have only a minor impact on 

the development of iNKT cell unresponsiveness.  

 To confirm these findings, we enriched DCs from naïve mice, loaded these cells 

ex vivo with α-GalCer, and injected the cells into naïve or bacteria-treated animals for 

evaluation of iNKT cell expansion in the spleen. Results showed that naïve DCs loaded 

with α-GalCer were unable to rescue the hyporesponsive phenotype of splenic iNKT 

cells from bacteria-treated animals (Figure 28). These findings indicate that iNKT cell 

hyporesponsiveness induced by heat-killed E. coli and live L. monocytogenes is not due 

to alterations in DC function and is most likely intrinsic to these cells.  

  

PMA plus ionomycin, or α-GalCer and IL-2, can overcome bacteria-induced iNKT cell 
hyporesponsiveness 

 Next, we tested whether a combination of PMA and ionomycin, which bypasses 

proximal TCR signaling events, can overcome the hyporesponsive phenotype of iNKT 

cells induced by bacteria. Results showed that this treatment was able to overcome iNKT 

cell hyporesponsiveness induced by heat-killed E. coli and live L. monocytogenes (Figure 

29). However, in most experiments, rescue of iNKT cell function in bacteria-treated 

animals was not as complete as in α-GalCer-treated animals. 

 We also investigated the role of IL-2 in iNKT cell hyporesponsiveness. Correlated 

with decreased proliferation by splenocytes from mice previously treated with α-GalCer, 

E. coli, S. aureus or L. monocytogenes, IL-2 secretion was observed to be decreased 

(Figure 30A). Next we tested whether exogenous administration of IL-2, which can 

overcome the proliferative defect of iNKT cells rendered anergic in response to α-GalCer 

treatment (25, 98), can rescue iNKT cell proliferation in mice treated three weeks earlier 
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with heat-killed E. coli. We found that IL-2 was able to restore proliferative function of 

hyporesponsive iNKT cells (Figure 30B), suggesting similarities between α-GalCer and 

bacteria-induced iNKT cell hyporesponsiveness. 

 

Activating receptors are downregulated on hyporesponsive iNKT cells  

 Downregulation of NK1.1 has been shown to correlate with hyporesponsive 

phenotype of iNKT cells. We tested whether other activating receptors were also 

downregulated on hyporesponsive iNKT cells. We found that, in addition to NK1.1, 

NKG2D, an important activating receptor in NK cells and certain T cell subsets, was 

significantly reduced on α-GalCer- or bacteria-induced hyporesponsive iNKT cells 

(Figure 31). Interestingly, CD94, which is a component of both the activating receptor 

NKG2C/CD94 and the inhibitory receptor NKG2A/CD94, was also downregulated 

(Figure 31). These findings suggest activating receptor downregulation may contribute to 

the hyporesponsive phenotype of iNKT cells induced by bacteria. 

 

Nitric oxide is not required for bacteria-induced iNKT cell hyporesponsiveness 

  A previous report has suggested a role for nitric oxide produced by CD11b+Gr-

1+ myeloid cells in cancer-bearing animals in mediating iNKT cell hyporesponsiveness 

(192). We investigated whether similar mechanism might be active during bacterial 

infection to modulate iNKT cell function. Results showed that treatment with an iNOS 

inhibitor that interferes with nitric oxide production did not alter relative 

hyporesponsiveness of α-GalCer- or bacteria-pretreated animals compared to naïve 

animals (Figure 32). However, iNOS inhibitor treatment resulted in profound suppression 

of iNKT cell response in naïve animals suggesting that nitric oxide might be important 
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for the generation of effective iNKT cell responses.  

 

Programmed Death-1 (PD-1) is upregulated on hyporesponsive iNKT cells induced by α-
GalCer or bacteria 

 PD-1 has been implicated in T cell exhaustion or anergy during chronic infection 

(193-197). Prior studies have shown that PD-1 plays an important role in the induction of 

iNKT cell anergy by α-GalCer (Parekh et al, unpublished data). We investigated whether 

this molecule might also play a role in bacteria-induced iNKT cell hyporesponsiveness. 

Results have shown early upregulation of PD-1 on iNKT cells following bacteria 

treatment, although the levels were relatively lower than those seen after α-GalCer 

treatment (Figure 33A). Interestingly, this upregulation of PD-1 following E. coli 

treatment was absent in IL-12-deficient animals (Figure 33B), in which iNKT cell 

hyporesponsiveness is not induced by E. coli. These findings suggest a potential role for 

PD-1 in the induction of iNKT cell hyporesponsiveness by bacteria.  
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Discussion 

 

 In Chapter II, we tested the impact of bacteria on the phenotype and functional 

responses of iNKT cells and found that E. coli, S. aureus, S. typhimurium and L. 

monocytogenes, but not S. capsulata, E. faecalis and S. pyogenes, induced a 

hyporesponsive phenotype in iNKT cells characterized by downregulation of NK1.1 and 

functional unresponsiveness to subsequent challenge with α-GalCer which was used as 

surrogate antigen studying recall response. These divergent effects of distinct bacteria on 

iNKT cell function may be due, in part, to differences in the mechanisms by which iNKT 

cells become activated.  

 Although the precise mechanisms by which iNKT cells become activated in 

response to bacteria remain incompletely understood, two general mechanisms have been 

proposed (126, 190). Some bacteria, such as Sphingomonas and Borrelia species, contain 

glycolipids in their cell walls that can bind CD1d and directly activate iNKT cells. In this 

context, it was surprising that live S. capsulata, despite its capacity to active iNKT cells, 

failed to induce iNKT cell hyporesponsiveness, even when used at a sublethal dose. 

Bacteria that lack cognate iNKT cell antigens can activate iNKT cells by stimulating the 

production of pro-inflammatory cytokines by activating TLRs on APC (63, 126). In this 

regard, we found that the TLR4 agonist LPS and the TLR5 agonist flagellin (Figure 19A-

C, 20), but not the TLR9 agonist CpG, the TLR7 agonist imiquimod, the TLR2 agonist 

lipoteichoic acid, or the TLR3 agonist polyinosinic acid-polycytidylic acid (data not 

shown), induced iNKT cell hyporesponsiveness. Prior studies have indicated a key role of 

IL-12 for activation of iNKT cells by bacteria and bacterial LPS (55, 63, 126, 136). We 

confirmed that IL-12 plays an important role in activating iNKT cells in response to heat-
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killed E. coli (data not shown), and studies with IL-12-deficient mice revealed a critical 

role of this cytokine for inducing iNKT cell hyporesponsiveness to heat-killed E. coli 

(Figure 21A, B, 33B).  

 These findings suggest that the mechanism by which certain bacteria are able to 

induce hyporesponsiveness of iNKT cells but not others likely depend on the specific 

combination of pathogen-associated molecular patterns (PAMPs) or TLR ligands present 

in distinct bacteria. Indeed, we have identified likely causative molecules responsible for 

iNKT cell hyporesponsiveness in E. coli and S. typhimurium, namely LPS and flagellin, 

while ruling out molecules that do not induce iNKT cell hyporesponsiveness. Moreover, 

consistent with whole bacteria-induced iNKT cell hyporesponsiveness, we found that 

LPS and flagellin also depend on IL-12 to induce iNKT cell hyporesponsiveness, 

reinforcing the idea that specific PAMPs in bacteria are responsible for iNKT cell 

hyporesponsiveness. Therefore, a differential array of PAMPs in distinct bacteria may 

result in different effects of these bacteria on iNKT cells. 

 iNKT cell hyporesponsiveness induced by bacteria shares a number of key 

mechanistic similarities with α-GalCer-induced anergy (78). First, although NK1.1 has 

been shown to be dispensable in the induction and maintenance of anergy, iNKT cell 

hyporesponsiveness is correlated with sustained NK1.1 downregulation by splenic iNKT 

cells following bacterial injection as well as α-GalCer injection. Indeed, NK1.1 

downregulation was correlated with a hyporesponsive phenotype in experiments 

performed with thymectomized mice as well as IL-12-deficient mice. We also observed a 

similar downregulation of the activating NK cell receptor NKG2D and the CD94 subunit 

of the NKG2/CD94 family of NK cell receptors (Figure 31). These alterations in NK cell 

receptor expression might contribute to the hyporesponsive phenotype of iNKT cells. 
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Second, iNKT cell hyporesponsiveness was induced independently of a functional 

thymus (Figure 24), with absence of characteristic Ly49 expressing iNKT cells observed 

during central tolerance (Figure 26), implying peripheral rather than central tolerance 

mechanisms. Third, hyporesponsiveness was predominantly iNKT cell autonomous 

(Figure 27, 28). Fourth, iNKT cell hyporesponsiveness could be overcome by treatment 

of these cells with reagents (i.e., phorbol 12-myristate 13-acetate (PMA) + ionomycin) 

that can bypass early TCR signaling events (Figure 29). Fifth, hyporesponsive iNKT cells 

produced and secreted reduced levels of IL-2, and the proliferative capacity of these cells 

could be rescued by treatment with α-GalCer in the presence of IL-2 (Figure 30). Sixth, 

iNKT cell hyporesponsiveness was not rescued by iNOS inhibitor that prevents 

production of nitric oxide (Figure 32). Finally, iNKT cells upregulated PD-1 expression, 

a molecule that is responsible for certain forms of conventional T cell exhaustion or 

anergy, during early phases of iNKT cell activation both by bacteria and α-GalCer, and 

this upregulation was dependent on IL-12 for bacteria but not for α-GalCer (Figure 33). 

Collectively, these similarities between bacteria- and α-GalCer-induced iNKT cell 

hyporesponsiveness suggest similar mechanisms.  

 On the other hand, there was one striking difference in the capacity of bacteria 

and α-GalCer to induce iNKT cell hyporesponsiveness. E. coli-induced 

hyporesponsiveness of iNKT cells required IL-12 expression, but IL-12 was dispensable 

for α-GalCer-induced iNKT cell hyporesponsiveness (Figure 21A, B). Consistently, 

NK1.1 downregulation and PD-1 upregulation was absent in IL-12-deficient animals 

treated with bacteria but not α-GalCer (Figure 22, 33). Such difference may be attributed 

to distinct mechanisms of iNKT cell activation by α-GalCer and bacteria. Previous 

studies have indicated an important role for IL-12 in the reciprocal interactions of iNKT 
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cells and DCs (80), and accordingly splenocytes from IL-12-deficient mice showed a 

suppressed response to α-GalCer as compared with wild-type splenocytes. Regardless, as 

a potent ligand for the invariant TCR of iNKT cells, α-GalCer can activate these cells 

directly through TCR ligation and likely does not depend as heavily on IL-12 secretion 

by DC. On the other hand, a previous report showed that indirect activation of iNKT cells 

by E. coli LPS requires proinflammatory cytokine secretion such as IL-12 by DC while 

TCR ligation was dispensable. It should be noted that among various TLR ligands, LPS 

along with flagellin seems to be the causative agent for iNKT cell hyporesponsiveness by 

E. coli. 

 Interestingly, a recent study has shown that sulfatide, a ligand for a subset of 

CD1d-restricted NKT cells expressing diverse TCRs, can also induce hyporesponsiveness 

in iNKT cells (198). Unlike the anergy induced by α-GalCer, but similar to bacteria-

induced hyporesponsiveness, anergy induced in iNKT cells by sulfatide required IL-12 

expression (198). These findings suggest that multiple stimuli and pathways can result in 

iNKT cell hyporesponsiveness with overlapping but distinct mechanisms of induction 

and, possibly, maintenance. 

Anergy or hyporesponsiveness in conventional T cells is categorized as clonal 

anergy or adaptive tolerance (137). Clonal anergy ensues following incomplete T cell 

activation of previously activated T cells resulting in growth arrest but usually with intact 

effector function. Adaptive tolerance is induced by T cell stimulation in the absence of 

adequate costimulation, or in the presence of strong coinhibition such as CTLA-4. This 

form of anergy cannot be reversed by exogenous IL-2 in most cases due to defects in IL-

2R signaling (188), whereas clonal anergy is typically rescued by exogenous IL-2. From 

the observation that naïve iNKT cells show an intermediate activated T cell phenotype, as 
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exemplified by CD69 and CD44 expression (30, 31), and that TCR ligation may be weak 

or absent during initial activation by bacteria, bacteria-induced hyporesponsiveness 

exhibits features of clonal anergy. Furthermore, adaptive tolerance usually requires 

persistent presence of cognate antigen, which is unlikely to occur during bacteria-induced 

hyporesponsiveness. Indeed, there is no known microbial antigen for iNKT cell present in 

bacteria shown to induce iNKT cell hyporesponsiveness. However, prolonged 

presentation of endogenous ligand or persistence of TLR ligands responsible for iNKT 

cell hyporesponsiveness remains possible following bacterial infection. Indeed, reported 

upregulation of CD1d in the context of bacterial infection suggests such a possibility (156, 

199, 200). Recovery of proliferation with exogenous IL-2 is also more typical of clonal 

anergy. On the other hand, severely compromised effector function such as IFN-γ and IL-

4 production is often found with adaptive tolerance. Collectively, bacteria-induced 

hyporesponsiveness exhibits features of both categories of anergy and further 

investigation of the underlying molecular mechanisms is required to better understand 

this hyporesponsive phenotype induced by bacteria. 

In summary, the mechanism of iNKT cell hyporesponsiveness induced by 

bacteria shares several common features with α-GalCer-induced iNKT cell anergy. 

Further understanding of the mechanism will provide insight into the development of 

novel strategies to manipulate iNKT cells for therapeutic applications.  

 

 

 

 

 

 73



Materials and Methods 

 

Mice. Female C57BL/6 (B6) mice, thymectomized adult B6 mice, and IL-12p40-

deficient mice were purchased from the Jackson Laboratory. All animal studies were 

approved by the Institutional Animal Care and Use Committee of Vanderbilt University 

(Nashville, TN). 

 

Reagents. In addition to reagents described in Chapter II, mouse recombinant IL-2 was 

obtained from BD Biosciences-Pharmingen, PMA and ionomycin from MP Biomedicals, 

Inc., complete and incomplete Freund’s adjuvant from BD Biosciences-Pharmingen, NG-

monomethyl-L-arginine, lipoteichoic acid, E. coli LPS from Sigma, and imiquimod and 

Salmonella flagellin from Invivogen, and polyinosinic acid-polycytidylic acid from 

Amersham Pharmacia. E. coli flagellin was purified from cultures as described (201).  

 

Treatment of mice with heat-killed or live bacteria. Bacteria were grown and prepared as 

described in Chapter II.  

 

Flow cytometry. Flow cytometry was performed as described in Chapter II. 

 

Measurement of in vivo and in vitro responses to α-GalCer. Evaluation of in vivo and in 

vitro iNKT cell responses to α-GalCer were performed as described in Chapter II.  

 

ELISA. A standard sandwich ELISA was performed as described in Chapter II.  
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Isolation of splenic DCs. Spleens were cut into small pieces and digested with 0.2 mg/ml 

collagenase D (Roche Diagnostics Corp.) in FCS-free RPMI medium for 45 min. The 

digestion was terminated by addition of cold R-10 medium. Red blood cells were lysed 

using ACK lysing buffer (Lonza). DCs were enriched based on expression of the CD11c 

marker by magnetic sorting (Miltenyi Biotec) according to the manufacturer’s protocol. 

Purity of enriched cell populations was 80–85% for DCs (data not shown). Purified DCs 

were pulsed for 3 hrs with 200 ng/ml α-GalCer at 37oC. Cells were then washed 3 times 

in R-10 medium to remove excess α-GalCer and injected i.v. into B6 mice (2 × 105 DCs 

per mouse). Mice were sacrificed 3 days later for analysis of iNKT cell function. 

 

Enrichment of iNKT cells. For enrichment of liver iNKT cells, livers were perfused with 

cold PBS and then pressed through a 70-μm cell strainer. Cells were suspended in 40 ml 

RPMI medium in a 50-ml conical tube and allowed to stand on ice for 45 min. The 

supernatant was then centrifuged, resuspended in cold 40% Percoll (GE Healthcare), and 

underlaid with 60% Percoll. Cells were centrifuged at 1,500 g for 20 min at 4°C. 

Mononuclear cells at the interphase of the 40% and 60% Percoll solutions were collected 

and washed twice with R-10 medium. Two rounds of panning, 2 hrs each, were then 

carried out to remove plastic-adherent APCs. The frequency of liver iNKT cells was then 

analyzed by flow cytometry in order to normalize numbers of iNKT cells in the 

subsequent culture with isolated splenic DCs. For splenic iNKT cells, single-cell 

suspensions of splenocytes were prepared and iNKT cells were enriched based on 

negative selection of B220-, CD11c-, CD62L-, Gr-1-, and CD11b-expressing cells by 

magnetic sorting (Miltenyi Biotec) according to the manufacturer’s protocol. The 

enriched cells were then labeled with CFSE and cocultured with α-GalCer-loaded DCs 
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described above. 

 

CFSE dilution analysis. Total splenocytes or enriched iNKT cells were labeled with 1 

μM CFSE for 15 min at 37°C in PBS containing 5% FCS, and washed twice with R-10 

medium. Labeled splenocytes (2 × 105 cells per well) were then stimulated with α-

GalCer (100 ng/ml) with or without addition of IL-2 (10 ng/ml) in the culture media, or 

stimulated with purified α-GalCer-loaded DCs for 24 hrs in R-10 medium. Cells were 

washed 3 times with R-10 medium and cultured for an additional 96 hrs in R-10 medium 

without α-GalCer. At the end of the culture, cells were harvested, stained with PE-labeled 

CD1d tetramer and anti-B220–PerCP, and analyzed by flow cytometry. Dead cells were 

excluded from the analysis by electronic gating. CFSE dilution analysis was performed 

on B220–tetramer+ iNKT cells. 

 

Statistical analysis. Statistical analysis was performed as described in Chapter II.  

 

 

 

 

 

 

 

 

 

 

 76



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. Role of bacterial TLR ligands in the induction of iNKT cell 
hyporesponsiveness. (A) Mice were injected with E. coli flagellin (20 μg) or LPS (3 
doses of 10 μg every 3 days), and 3 weeks later mice were rechallenged in vivo with 
vehicle or α-GalCer (1 μg/mouse, i.p.). Mice were then sacrificed 3 days later and spleen 
cells were stained with anti-TCRβ-FITC, anti-B220-PerCP, and tetramer-APC, and 
analyzed by flow cytometry. Numbers indicate the percentage of TCRβ+tetramer+ cells 
among B220- cells for representative data of 6-9 mice per group from 2 experiments. (B) 
Graphical representation of the total spleen iNKT cells calculated from the experiments 
shown in (A). *, p<0.05 as compared with naive mice rechallenged with α-GalCer. (C) 
The in vitro response of splenocytes to α-GalCer from mice treated 3 weeks earlier with 
α-GalCer, E. coli flagellin, or E. coli LPS. Mice were injected with α-GalCer or the 
indicated TLR ligands, sacrificed 3 weeks later, and splenocytes (2 × 105 per well) were 
cultured with graded doses of α-GalCer. After 3 days, proliferation was assessed by 
[3H]thymidine incorporation and culture supernatants were evaluated for IL-4 and IFN-γ 
levels by ELISA. Proliferation and cytokine results represent the mean ± SEM of 4 
mice. *, p<0.05 as compared with naive splenocytes.  
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Figure 20. Role of flagellin in the induction of iNKT cell hyporesponsiveness. Mice 
were injected with flagellin+ E. coli or flagellin- DH5α, and 3 weeks later mice were 
rechallenged in vivo with vehicle or α-GalCer (1 μg/mouse, i.p.). Mice were then 
sacrificed 3 days later and spleen cells were stained with anti-TCRβ-FITC, anti-B220-
PerCP, and tetramer-APC, and analyzed by flow cytometry. Numbers indicate the 
percentage of TCRβ+tetramer+ cells among B220- cells for representative data of 4-6 
mice per group from 2 experiments. 
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Figure 21. Role of IL-12 in the induction of iNKT cell hyporesponsiveness. (A) Wild 
type mice and IL-12p40-deficient mice were treated with α-GalCer or heat-killed E. coli. 
Three weeks later, mice were sacrificed and splenocytes (2 × 105 per well) were cultured 
with graded doses of α-GalCer, proliferation was assessed 3 days later by [3H]thymidine 
incorporation and culture supernatants were evaluated for IL-4 and IFN-γ levels by 
ELISA. Proliferation and cytokine results represent the mean ± SEM of 4-9 mice pooled 
from 2 separate experiments. *, p<0.05 as compared with naïve splenocytes cultured with 
the same dose of α-GalCer. Wild type mice pretreated with α-GalCer or heat-killed E. 
coli was compared with wild type naïve mice whereas IL-12p40-deficient mice pretreated 
with α-GalCer or heat-killed E. coli were compared with IL-12p40-deficient naïve mice. 
NS, not significant. (B) Spleen cells were prepared at the indicated time points and 2 × 
105 cells were cultured for 6 hrs in plain medium (alone) or 100 ng/ml α-GalCer (αGC) 
in the presence of GolgiPlug. Cells were then harvested and surface-stained with 
tetramer-PE and anti-B220-PerCP, followed by intracellular staining with anti-IFN-γ-
FITC and anti-IL-4-APC. Data are shown for B220-tetramer+ cells. Numbers indicate the 
percentage of cells within each quadrant. Data shown are representative of 3-4 mice per 
group. 
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Figure 22. Role of IL-12 in bacteria-induced iNKT cell activation. Wild type mice and 
IL-12p40-deficient mice were treated with α-GalCer or heat-killed E. coli and at day 1, 
mice were sacrificed and splenocytes were stained for the identification of iNKT cells 
with anti-TCRβ-FITC, anti-NK1.1-PE, anti-B220-PerCP, and tetramer-APC. The 
percentage of NK1.1- cells among iNKT cells is shown. Data shown are representative of 
4 mice per group. 
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 Figure 23. Costimulation is not required for the induction of iNKT cell 
hyporesponsiveness. Wild type mice and CD86-deficient mice were treated with heat-
killed E. coli and 3 weeks later, mice were rechallenged with vehicle or α-GalCer (1 
μg/mouse, i.p) in vivo. Mice were sacrificed 3 days later and splenocytes were stained for 
the identification of iNKT cells with anti-TCRβ-FITC, anti-B220-PerCP, and tetramer-
APC and analyzed by flow cytometry. Numbers indicate the percentage of 
TCRβ

 

+tetramer+ cells among B220- cells for representative data of 2 mice per group. 
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Figure 24. Bacteria-induced iNKT cell hyporesponsiveness is thymus-independent. 
Thymectomized and non-thymectomized B6 mice were treated with α-GalCer (5 
μg/mouse, i.p) or the indicated bacteria. Three weeks later, mice were rechallenged with 
vehicle or α-GalCer (1 μg/mouse, i.p) in vivo. Mice were sacrificed at day 3 and spleen 
cells were stained with anti-TCRβ-FITC, anti-B220-PerCP, and tetramer-APC, and 
analyzed by flow cytometry. Numbers indicate the percentage of TCRβ+tetramer+ cells 
among B220- cells for representative data of 2 mice per group. 
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Figure 25. Expression of NK1.1 in euthymic and athymic mice treated with bacteria. 
Euthymic and athymic B6 mice were treated with α-GalCer (5 μg/mouse, i.p.) or the 
indicated bacteria. Three weeks later, mice were sacrificed and spleen mononuclear cells 
were stained with anti-TCRβ-FITC, anti-NK1.1-PE, anti-B220-PerCP, and tetramer-APC 
and analyzed by flow cytometry. Histograms were gated on B220-TCRβ+tetramer+ cells. 
Numbers indicate the percentage of NK1.1- cells. Shaded area indicates NK1.1 staining 
on naïve animals. Data shown are representative of 2 mice per group. 
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Figure 26. Surface expression of Ly49 on iNKT cells and NK cells. (A) Surface 
expression of Ly49 on iNKT cells. Mice were treated with α-GalCer or heat-killed E. coli, 
and  spleen mononuclear cells were stained with anti-Ly49-FITC cocktail, anti-TCRβ-
PE, anti-B220-PerCP, and tetramer-APC. Histograms were gated on B220-

TCRβ+tetramer+. Numbers indicate the percentage of Ly49+ cells. Shaded areas indicate 
isotype controls for Ly49 histograms. (B) Surface expression of Ly49 on NK cells. Naïve 
mice were sacrificed and spleen mononuclear cells were stained with anti-Ly49-FITC 
cocktail, anti-TCRβ-PE, anti-B220-PerCP and anti-NK1.1-APC. Histograms were gated 
on B220-TCRβ-NK1.1+ cells. Numbers indicate the percentage of Ly49+ cells. Shaded 
area indicates the isotype control. Data are representative of 4-6 mice per group from 2 
separate experiments. 
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wells per group and representative of 2 independent experiments. (B) Mice were injected 
with α-GalCer or heat-killed E. coli and sacrificed at 3 weeks. DCs and iNKT cells were 
then MACS-purified as described in Methods. DCs (2 × 104 per well). were loaded with 
α-GalCer and cultured with splenic CFSE-labeled iNKT cells (1 × 105 per well). Cells 
were harvested 3 days later and stained with anti-B220-PerCP, tetramer-APC and 
analyzed by flow cytometry. Data shown are CFSE staining on iNKT cells. Numbers 
indicate the percentage of CFSE- iNKT cells. Three mice per group were pooled for the 
experiment. 

Figure 27. Bacteria-induced iNKT cell hypor
esponsiveness is predominantly iNKT cell aut
onomous.  (A) Mice were injected with α-
GalCer or heat-killed E. coli and sacrificed at 3 
weeks. DCs from the spleen and iNKT cells 
from the liver were then enriched as described in 
Methods. iNKT cells (1 × 105 per well) and DCs 
(5 × 104 per well) were then cultured in different 
combinations in the presence or absence of α-
GalCer. Proliferation was assessed by 
[3H]thymidine incorporation, and IFN-γ and IL-4 
levels in the supernatant were evaluated by 
ELISA. Data shown are the mean ± SD of 
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Figure 28. Bacteria-induced iNKT cell hyporesponsiveness is predominantly iNKT cell 
autonomous. Mice were left untreated or injected with heat-killed E. coli (A) or live L. 
monocytogenes (B). DCs were MACS-purified from naïve mice, pulsed with α-GalCer, 
washed and then injected i.v. (2 × 105 DCs per mouse) into naive mice, or mice treated 
three weeks earlier with the indicated bacteria. As a control, mice were also treated 
without DC (no DC). Mice were sacrificed 3 days later, splenocytes were stained with 
anti-TCRβ-FITC, anti-B220-PerCP, and tetramer-APC, and analyzed by flow cytometry. 
Numbers indicate the percentage of TCRβ+tetramer+ cells among B220- cells. Data shown 
are representative of 2 mice per group. 
 
 
 

 86



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29. Bacteria-induced iNKT cell hyporesponsiveness can be overcome by 
treatment with PMA plus ionomycin. Spleen cells were prepared from mice treated 4 
weeks earlier with α-GalCer or the indicated bacteria, cultured in vitro (2 × 105 per well) 
for 6 hrs in plain medium (alone), 100 ng/ml α-GalCer (αGC), or a combination of 10 
ng/ml PMA and 1 μM ionomycin (PMA + IONO), in the presence of GolgiPlug to allow 
intracellular accumulation of cytokines. Cells were then harvested and surface-stained 
with tetramer-PE and anti-B220-PerCP, followed by intracellular staining with anti-IFN-
γ-FITC and anti-IL-4-APC. Data are shown for B220-tetramer+ cells. Numbers indicate 
the percentage of cells within each quadrant. Data shown are representative of 3 
independent experiments with 2 mice in each group per experiment.  
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Figure 30. Bacteria-induced iNKT cell hyporesponsiveness correlates with reduced IL-2 
secretion and can be overcome by treatment with α-GalCer plus IL-2. (A) Spleen cells 
were prepared from mice treated 4 weeks earlier with α-GalCer or the indicated bacteria, 
cultured in vitro (2 × 105 per well) with graded doses of α-GalCer. After 3 days, 
proliferation was assessed by [3H]thymidine incorporation and culture supernatants were 
evaluated for IL-2 levels by ELISA. Results represent the mean ± SEM. *, p<0.05 as 
compared with naïve splenocytes cultured with the same dose of α-GalCer. (B) IL-2 
overcomes the proliferative defect of hyporesponsive iNKT cells in vitro. Spleen cells 
from naive mice or from mice injected 1 month earlier with α-GalCer or heat-killed E. 
coli were labeled with CFSE. Cells (2 × 105 per well) were then cultured with α-GalCer 
(100 ng/ml) for 24 hrs in the presence or absence of IL-2 (10 ng/ml). Cells were then 
washed and cultured for an additional 96 hrs without α-GalCer in the presence or absence 
IL-2. At the end of the culture period, cells were analyzed by flow cytometry. CFSE 
dilution was analyzed on B220-tetramer+ cells. Numbers indicate the percentage of CFSE- 
cells among B220-tetramer+ cells. Representative data from 2 independent experiments 
are shown. 
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Figure 31. Surface expression of NK1.1, NKG2D and CD94 on iNKT cells. Mice were 
treated with α-GalCer or heat-killed E. coli and  spleen mononuclear cells were stained 
with different combinations of anti-NK1.1, anti-NKG2D-biotin, anti-CD94-biotin, 
streptavidin-FITC, anti-TCRβ-PE, anti-B220-PerCP, and tetramer-APC. Histograms 
were gated on B220-TCRβ+tetramer+. Shaded areas indicate isotype controls for NKG2D, 
CD94 and Ly49 histograms, and NK1.1 expression on naïve iNKT cells for NK1.1 
histograms. Numbers indicate the percentage of NK1.1-, NG2D+, or CD94+ cells among 
iNKT cells. Data are representative of 5-6 mice per group from 2 independent 
experiments.   
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Figure 32. Nitric oxide does not contribute to the bacteria-induced hyporesponsive 
phenotype of iNKT cells. Spleen cells from naive mice or from mice injected 1 month 
earlier with α-GalCer, heat-killed E. coli, or live L. monocytogenes were cultured in vitro 
(2 × 105 per well) with graded doses of α-GalCer in the presence or absence of inducible 
nitric oxide synthase (iNOS) inhibitor, NG-monomethyl-L-arginine. After 3 days, 
proliferation was assessed by [3H]thymidine incorporation. Proliferation results represent 
the mean ± SEM.  
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Figure 33. Expression of PD-1 in mice treated with bacteria. (A) Mice were treated with 
α-GalCer (5 μg/mouse, i.p.) or the indicated bacteria and mice were sacrificed at day 1, 
and spleen mononuclear cells were stained with anti-TCRβ-FITC, anti-PD-1-PE, anti-
B220-PerCP, and tetramer-APC and analyzed by flow cytometry. Data shown are gated 
on B220-TCRβ+tetramer+ cells. The shaded area represents the PD-1 staining of naïve 
iNKT cells, and the solid line represents the staining of iNKT cells from mice treated 
with α-GalCer or bacteria. (B) Wild type or IL12-deficient mice were treated with α-
GalCer (5 μg/mouse, i.p.) or heat-killed E. coli and spleen mononuclear cells were 
stained as above for PD-1. The shaded area represents the PD-1 staining of naïve iNKT 
cells, dotted line α-GalCer, and the solid line heat-killed E. coli. Data shown are 
representative of 2-4 mice per group. 
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CHAPTER IV 

 

 

CONCLUSIONS AND PERSPECTIVES 

 

 

 Natural killer T (NKT) cells are unique T lymphocytes that co-express T cell 

receptors (TCRs) and natural killer (NK) cell markers (36, 171, 172, 202-204). Most 

NKT cells, referred to as invariant NKT (iNKT) cells, express a semi-invariant TCR 

consisting of a Vα14-Jα18 chain paired predominantly with a Vβ8.2 chain in mice (94). 

Unlike conventional T cells, which recognize peptides presented by MHC class I or class 

II proteins, iNKT cells are specific for glycolipid antigens presented by the MHC class I-

related protein CD1d. In response to TCR engagement, iNKT cells can rapidly produce a 

variety of cytokines and, hence, these cells can impart potent immunoregulatory 

properties. As such, iNKT cells can promote protective immune responses against 

infectious agents, suppress autoimmunity, promote natural tumor immunity and regulate 

allergic airway inflammation, atherosclerosis, colitis and contact hypersensitivity in mice. 

 The physiological antigens that are recognized by iNKT cells remain 

incompletely understood (205). All iNKT cells react with the glycosphingolipid α-

galactosylceramide (α-GalCer), which was originally isolated from a marine sponge. 

More recently, it has been demonstrated that iNKT cells can react with α-anomeric 

glycosphingolipids derived from the cell wall of gram-negative Sphingomonas bacteria 

(55, 56, 130) and with α-galactosyl-diacylglycerols from the spirochete Borrelia 

burgdorferi (56), the etiologic agent of Lyme disease. However, the endogenous ligands 
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for iNKT cells remain to be fully characterized (206). 

 The immunomodulatory properties of iNKT cells have been exploited for the 

development of immunotherapies (36, 171, 172, 204, 207). In most of these studies, 

derivatives of α-GalCer have been employed. α-GalCer potently activates iNKT cells to 

secrete a mixture of T helper (Th) 1 and Th2 cytokines. iNKT cells activated in this 

manner transactivate a variety of other cell types, including antigen presenting cells 

(APCs), NK cells and conventional T and B cells (78). The potent immunostimulatory 

activities of α-GalCer on APCs, in particular dendritic cells (DCs), have been exploited 

for the development of vaccine adjuvants. In addition, repeated injection of α-GalCer can 

prevent development of tumor metastases and Th1-dominant autoimmunity in mice (36, 

171, 172, 204, 207). 

 A thorough understanding of iNKT cell responses to various stimuli is important 

in order to develop effective iNKT cell-based adjuvants and immunotherapies for human 

disease. Prior studies have shown that a single injection of α-GalCer to mice results in 

rapid iNKT cell activation and cytokine production. This activation also results in 

transient downregulation of the invariant TCR and sustained downregulation of the NK 

cell marker NK1.1 on iNKT cells (95-97). In vivo-activated iNKT cells rapidly 

proliferate, leading to profound expansion of this cell population in multiple organs, 

which peaks around three days after α-GalCer treatment. This period of rapid iNKT cell 

expansion is followed by a contraction phase mediated by homeostatic mechanisms. 

Importantly, restimulation of these α-GalCer-experienced iNKT cells with α-GalCer 

results in a suppressed response because the iNKT cells acquire an anergic phenotype 

(25, 92, 98, 99). iNKT cell anergy induced in this manner is maintained for at least one 

month. Additional studies showed that iNKT cell anergy has a profound impact on iNKT 
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cell-mediated functions and the therapeutic properties of α-GalCer (25). 

 iNKT cell activation has been observed in the context of glycolipid antigens, 

cytokines, multiple microorganisms and inflammatory stimuli (36, 126, 171, 172, 208). 

In the case of certain microorganisms, such as Sphingomonas and Borrelia, iNKT cell 

activation involves specific, pathogen-derived glycolipid antigens. For many other 

microorganisms, however, there is no evidence for direct iNKT cell activation by 

microbial glycolipid antigens. Instead, many microorganisms might activate iNKT cells 

in a non-specific manner, by stimulating the production of pro-inflammatory cytokines by 

DCs that can activate iNKT cells by themselves, in concert with endogenous glycolipid 

antigens, or by inducing CD1d expression on APCs (55, 63, 190, 209). Whether iNKT 

cell activation by microorganisms influences subsequent responses of these cells to 

antigenic stimulation remains unclear.  

 

 In this dissertation, I report results demonstrating that bacteria have a profound 

impact on the functional status of iNKT cells with long-term effects on the therapeutic 

activities of these cells.  

 In chapter II, I tested the capacity of a wide variety of bacteria, including the 

gram-positive organisms L. monocytogenes and S. aureus, and the gram-negative 

organisms E. coli, S. typhimurium, and S. capsulata to activate iNKT cells and to 

modulate the functions of these cells. While activation of iNKT cells was observed 

immediately following infection by all the organisms, sustained long-term phenotypic 

changes characterized by NK1.1 downregulation, generally associated with iNKT cell 

hyporesponsiveness in studies with α-GalCer (25), were only observed with E. coli, S. 

aureus, S. typhimurium, and L. monocytogenes. Notably, L. monocytogenes induced 
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drastic loss of cellularity. Interestingly, S. capsulata did not induce sustained changes in 

the surface phenotype of iNKT cells. 

 In accordance with results from phenotypic analysis, ex vivo and in vivo 

assessment of iNKT cell function in mice previously infected E. coli, S. aureus, S. 

typhimurium, or L. monocytogenes but not other bacteria showed significant suppression 

of iNKT cell functions during recall response using α-GalCer as a surrogate secondary 

antigen. Specifically, when splenocytes from naïve and infected mice were cultured ex 

vivo in the presence of graded concentrations of α-GalCer, the iNKT cell response 

represented by proliferation, or IFN-γ and IL-4 secretion was defective in infected mice. 

Further, in vivo expansion of iNKT cells and transactivation of DC, B and NK cells 

normally observed following α-GalCer administration was also absent in bacteria 

infected mice. 

 iNKT cells are thought to be involved in various disease processes including 

autoimmune diseases and cancer. In particular, iNKT cells have been shown to play a 

detrimental role in ConA-induced hepatitis (170), a mouse model for human autoimmune 

hepatitis. As expected from hyporesponsiveness of iNKT cells, infected mice exhibited 

significantly reduced hepatitis as documented by decrease in ALT levels that correlates 

the extent of liver injury. The therapeutic activity of iNKT cells were also evaluated 

using B16 melanoma metastasis model and EAE, a mouse model for multiple sclerosis. 

Whereas loss of therapeutic efficacy of α-GalCer against melanoma metastasis was 

observed in infected mice, protective effect of α-GalCer in preventing EAE was retained. 

 In Chapter III, the mechanism of bacteria-induced iNKT cell hyporesponsiveness 

was explored guided by previous reports on α-GalCer-induced iNKT cell anergy. Known 

microbial glycolipid antigens specific for iNKT cells were absent in all the organisms 
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found to induce iNKT cell hyporesponsiveness in Chapter II. However, in the absence of 

cognate antigen, iNKT cells can be activated in a manner that depends on IL-12 secretion 

and endogenous ligand presentation by DCs activated by toll-like receptor (TLR) ligands 

(126). We therefore investigated whether TLR ligands can induce iNKT cell 

hyporesponsiveness. Our results showed that TLR4 and TLR7 ligands LPS and flagellin 

from E. coli and Salmonella were able to induce hyporesponsiveness in iNKT cells, but 

not with other TLR ligands. Further, IL-12 secretion by DCs induced by LPS and 

flagellin was required for the induction of iNKT cell hyporesponsiveness by bacteria.  

 Consistent with mechanisms observed with α-GalCer-induced iNKT cell anergy 

(25), bacteria-induced iNKT cell hyporesponsiveness was thymus-independent, which 

was indicated by suppressed iNKT cell response in infected thymectomized mice. 

Bacteria-induced hyporesponsiveness was also predominantly cell autonomous ruling out 

extrinsic factors such as tolerogenic APC to be responsible for the hyporesponsive 

phenotype. Likewise, a combination of PMA and ionomycin, which bypasses proximal 

TCR signaling events, could overcome the hyporesponsive phenotype of iNKT cells 

induced by bacteria, and exogenous addition of IL-2 also rescued hypoproliferation of 

iNKT cells probably due to defective IL-2 secretion in bacteria-infected mice. 

 Downregulation of activating receptors, including NK1.1, NKG2D, and possibly 

NKG2C/CD94 was observed in mice treated with bacteria, which might contribute to 

iNKT cell hyporesponsiveness in these animals. Notably, PD-1 molecule currently 

implicated in T cell exhaustion or anergy during chronic infection (195, 197, 210), was 

upregulated on hyporesponsive iNKT cells, at least during early phases of iNKT cell 

activation by bacteria, providing insight into possible molecular mechanisms of bacteria-

induced hyporesponsiveness. Additionally, iNOS inhibitor, which rescues 
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hyporesponsive phenotype of iNKT cells in a cancer-bearing state (192), did not affect 

iNKT cell hyporesponsiveness. Absence of CD86 also did not affect iNKT cell 

hyporesponsiveness. 

 Collectively, results from Chapters II and III have shown that certain bacterial 

organisms can activate iNKT cells and render these cells functionally suppressed for a 

sustained time period, which was accompanied by sustained phenotypic changes 

indicative of anergic cells, and this hyporesponsiveness phenotype of iNKT cells was 

associated with decreased therapeutic activities.   

A simple classic model of host defense against invading pathogens begins with 

phagocytosis of pathogens by APCs such as DCs and macrophages that are activated by 

recognition of pathogen associated molecular patterns including but not limited to various 

TLR ligands expressed by microbes, which is termed the danger signal (211-213). These 

APCs present microbial peptide antigens to CD4 T cells in conjunction with 

costimulation through CD80/CD86, CD40, CD70 and other molecules upregulated by the 

presence of the danger signal. The naïve helper CD4 T cells then differentiate into Th1 or 

Th2 cells to provide cytokine help for the other arms of the adaptive immune system 

including CD8 T cells and B cells that respond specifically to microbial antigens 

presented by DCs, or augment functions of macrophages, neutrophils and other cells of 

the innate immune system. iNKT cells function as the amplifier during early phases of 

the immune response by rapidly producing Th1 and/or Th2 cytokines in response to 

either direct stimulation of their TCRs by microbial glycolipid antigens in the case of S. 

capsulata (55, 130, 134) or B. burgdorferi (59), or indirect stimulation by activated DCs 

that present endogenous antigens along with proinflammatory cytokines in response to 

TLR activating signals (55, 63, 136, 190, 209). The explosive secretion of Th1 and/or 
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Th2 cytokines by iNKT cells transactivates DCs reciprocally as well as NK cells, T cells 

and B cells thereby modulating the rapidity of immune response against invading 

microbes (78).  

 When the same pathogen invades, a similar response is exhibited by the immune 

system with one key difference. While the cells of the innate immune system recapitulate 

the initial response, T and B cells, the two arms of adaptive immunity, exhibit a typical 

memory response, characterized by rapid clonal expansion and differentiation of the 

pathogen-specific memory cells to mediate immediate effector function against the 

pathogen (1). This rapid and strong immune response usually clears the pathogen even 

before development of symptoms and signs of infection.  

 Although iNKT cells are a subset of T cells expressing receptors that are 

characteristic of the adaptive immune system, their primary function is to bridge the 

innate and adaptive immunity. As a result, it was unclear whether iNKT cells would 

exhibit the features of innate or adaptive immunity. Surprisingly, it was neither, as the 

primary response of iNKT cells towards α-GalCer or certain species of bacteria resulted 

in functional inactivation of these cells for an extended period of time (Figure 34). 

 The induction of iNKT cell anergy by a pharmacological dose of α-GalCer, a 

potent purified synthetic ligand for iNKT cells, could be rationalized by excessive 

stimulation of TCR of iNKT cells in the absence of the danger signal, which in 

conventional T cells often results in anergy as well. However, a similar induction of 

iNKT cell hyporesponsiveness by bacteria that activates iNKT cells only indirectly 

through DCs that present autoreactive antigen and cytokines in the absence of specific 

microbial antigen may be a physiologically important reflection of in vivo response of 

iNKT cells. iNKT cells have the capacity to secrete explosive levels of both Th1 and Th2 
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cytokines, and repeated activation and functional response of these cells may result in a 

state of cytokine storm which may sometimes do more harm than good as tissue damage 

that occurs during infection is attributed to the toxicity of invading pathogens as well as 

excessive immune response. An uncontrolled response of iNKT cells will ensue without a 

mechanism to limit the function of these cells particularly because, unlike conventional T 

cells with restricted specificity, iNKT cells can respond to a wide variety of pathogens 

non-specifically. This functional promiscuity is critical for iNKT cells to bridge the 

innate and adaptive immune system with a severely restricted TCR repertoire in response 

to diverse pathogens, but these same beneficial characteristics can also have a detrimental 

effect. Furthermore, iNKT cells also have important immunomodulatory roles in cancer, 

autoimmunity, atherosclerosis and various other disease processes, and uncontrolled 

response by iNKT cells may have an adverse impact on the host health.  

 However, among multiple bacteria tested, a select few induced iNKT cell 

hyporesponsiveness. The apparent lack of iNKT cell hyporesponsiveness observed with S. 

capsulata, E. faecalis, and S. pyogenes may simply be attributed to the dose of treated 

bacteria. As it may be possible that the entire compartment of iNKT cells must acquire 

the hyporesponsive phenotype in order to exhibit an overall functional deficit, we cannot 

rule out that individual iNKT cells that were activated during treatment with these 

bacteria acquired the hyporesponsive phenotype while the remainder of iNKT cell 

population compensated to show normal response. 

 Otherwise, the variability in the capacity of bacteria to induce iNKT cell 

hyporesponsiveness is an actual physiological phenomenon and likely reflects the 

differences in the expression profile of PAMPs or TLR ligands of the particular species 

of bacteria. We have tested a wide variety of TLR ligands and have shown that LPS and 
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flagellin isolated from E. coli or S. typhimurium can induce iNKT cell 

hyporesponsiveness, but not CpG, imiquimod, lipoteichoic acid, polyinosinic acid-

polycytidylic acid, indicating that the combination of PAMPs expressed on bacteria may 

determine their capacity to render iNKT cells hyporesponsive. 

 Interestingly, the induction of iNKT cell hyporesponsiveness by TLR ligands and 

whole bacteria required IL-12 secretion by DCs. It is certain that IL-12 is not the sole 

causative molecule for iNKT cell hyporesponsiveness as exogenous IL-12 administration 

does not induce iNKT cell hyporesponsiveness (data not shown). Further, other TLR 

ligands that were unable to induce hyporesponsiveness, in particular CpG, induce 

secretion of high levels of IL-12 by DCs (214). Other factors are therefore thought to be 

required in order to facilitate the induction of hyporesponsiveness. One example might be 

IL-18, another proinflammatory cytokine induced by LPS (136). An alternative 

mechanism that has not been explored thoroughly is that iNKT cells can be directly 

stimulated by TLR ligands. Prior reports of TLR-4 and TLR-9 expression by iNKT cells 

opens up this possibility (215, 216), although expression of TLR-4 has since been refuted 

(136) and TLR-9 seems to be dispensable in the induction of iNKT cell 

hyporesponsiveness (data not shown). The prominent candidate is TLR-5, and it is 

unknown whether this molecule has a direct role in iNKT cells. In addition to TLR 

ligands, some bacterial products may stimulate Type II NKT cells with diverse TCR 

repertoire. Sulfatide, one of the ligands specific for a subset of Type II NKT cells has 

been shown to induce iNKT cell anergy through indirect stimulation by DCs (198). 

Interestingly, this process was also dependent on IL-12. Involvement of DCs and IL-12 in 

the induction of iNKT cell anergy by sulfatide is reminiscent of bacteria-induced iNKT 

cell hyporesponsiveness. Also, downregulation of activating receptors, in particular 
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NKG2D, was observed in mice treated with bacteria. In humans, NKG2D ligands MICa 

and MICb have been shown to be upregulated in activated DCs in response to TLR 

ligands (217). Likewise, murine NKG2D ligands Rae-1 and H-60 might be upregulated in 

DC activated by bacterial products including TLR ligands. Therefore, downregulation of 

activating receptors might contribute to iNKT cell hyporesponsiveness in these animals.  

 The exact mechanism by which the hyporesponsive phenotype of iNKT cells is 

induced remains incompletely understood, but our current model of the bacteria- or α-

GalCer-induced iNKT cell hyporesponsiveness is summarized in Figure 35. It should be 

noted that further understanding of the signaling pathways and outcome of TLR signaling 

in DCs and potentially in iNKT cells may provide a profound insight. 

 Several features of bacteria- and α-GalCer-induced iNKT cell 

hyporesponsiveness are reminiscent of features of T cell anergy from which we can draw 

insights into the molecular mechanism. T cell anergy is broadly categorized into clonal 

anergy and adaptive tolerance with distinct features (137), but interestingly, iNKT cell 

anergy seems to exhibit features of both types of T cell anergy. The activated phenotype 

of naïve iNKT cells characterized by CD69 and CD44 expression, the hypothesized 

absence of persistent antigen unless continuous DCs present the endogenous ligand for an 

extended period, and rescue of hypoproliferation by IL-2 are characteristics of clonal 

anergy, while anergy induction in naïve iNKT cells and suppression of IFN-γ and IL-4 

production closely resemble adaptive tolerance. 

 It has long been known that calcium/calmodulin/calcineurin pathways are 

involved in the induction of clonal anergy as cyclosporine was able to block the induction 

(218). Specifically, it has recently been shown that NFAT1 activation is responsible for 

the induction of clonal anergy (142). On the other hand, during maintenance of clonal 
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anergy, activation of the calcium/calcineurin pathway in the cell is intact. The blockade 

instead appears to be in activation of the Ras/MAP kinase pathway and caused by 

constitutive activation of a GTP activating protein (GAP) (219, 220). Downstream ERK 

and JNK pathways are inhibited as a result of inactive Ras. The biochemical block in 

adaptive tolerance seems to be more proximal. It was shown in the staphylococcal 

enterotoxin B (SEB) model that adaptive tolerance inhibited activation-induced TCR zeta 

chain (p23) and ZAP-70 phosphorylation (221), and consequently intracellular calcium 

mobilization (222, 223). In cytochrome c double transgenic mice this effect was 

correlated with a block in phospholipase C-γ1 phosphorylation, required for the 

generation of the IP3 that mediates calcium release from intracellular stores (137). In 

contrast, activation of the Ras/MAP kinase pathway does not seem to be involved. 

Additionally, biochemical block in signal transduction through the IL-2 receptor is also 

found in adaptive tolerance preventing exogenous IL-2 from restoring the proliferative 

capacity.  

 These findings in T cell anergy provide important insights into iNKT cell 

hyporesponsiveness. It would be extremely interesting to see whether Ras/MAP kinase 

pathway or proximal tyrosine kinase phosphorylation/PLC-γ1 phosphorylation is affected 

in our model of bacteria- and α-GalCer-induced iNKT cell hyporesponsiveness. The 

possible involvement of NFAT1 would be also an interesting area of future research. In 

addition, we have preliminary findings suggesting the involvement of PD-1 in the 

induction of iNKT cell anergy. The molecular mechanism of T cell exhaustion during 

chronic infection mediated by PD-1 is unclear and further investigation into PD-1 signal 

transduction might be important. 

 Our results reporting iNKT cell hyporesponsiveness induced by bacteria have a 
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number of important implications for the therapeutic application of iNKT cell biology in 

disease models. It should be noted that infection by bacteria is a frequent occurrence in 

the human population, particularly in patients afflicted with various autoimmune diseases 

or cancer that are targets of iNKT-cell based therapies. In this setting, bacteria-induced 

hyporesponsiveness is extremely relevant. Indeed, during clinical trials, it has become 

apparent that iNKT cell prevalence and function in the human population is extremely 

variable (164, 178), which may be due to both genetic factors as well as environmental 

factors such as infection.  

 These findings may impose certain limitations on iNKT cell based therapies. In 

particular, significant progress has been made in utilizing α-GalCer or α-GalCer-pulsed 

DC for treatment of non-small cell lung cancer and various other metastatic malignancies 

(103-107). As efficacy of treatment will heavily depend on the function of iNKT cells, 

further investigation of the impact of infection on iNKT cell functions in human is 

warranted. If our murine studies indeed extend to human subjects, it may be critical to 

either modify treatment regimens to avoid use of α-GalCer therapy in patients previously 

exposed to anergy-inducing pathogens, or develop adjuvants that can break or overcome 

iNKT cell hyporesponsiveness.  

 In contrast, bacteria-induced hyporesponsiveness might actually benefit some 

patients suffering from diseases exacerbated by iNKT cell function such as human 

autoimmune hepatitis, atherosclerosis, and others. Indeed, as prior exposure to bacteria 

reduced disease severity during the ConA-induced hepatitis model, human autoimmune 

hepatitis might likewise be alleviated by infection. There has been growing scientific 

consensus that the exponential increase in the incidence of autoimmunity in developed 

countries may be a result of excessive hygiene and absence of beneficial infections that 
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may limit development of autoimmunity. While it may be absurd to deliberately infect 

people with pathogens to prevent autoimmune diseases, administration of certain 

microbial products such as flagellin with minimal toxicity that can induce iNKT cell 

hyporesponsiveness may prove useful in alleviating these diseases. 
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Figure 34. The primary and secondary responses of the innate immune system, the 
adaptive immune system, and iNKT cells. Innate immunity is characterized by an 
immediate response to the challenge. The primary and secondary responses are similar. 
Adaptive immunity is characterized by the latency during the primary response and a 
more rapid and stronger secondary response, which is termed a memory response. iNKT 
cells exhibit a rapid response during the primary response followed by 
hyporesponsiveness during the secondary response.  
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Figure 35. The model of α-GalCer- or bacteria-induced iNKT cell hyporesponsiveness. 
(A) α-GalCer is presented by CD1d expressed on APCs, which ligates the TCR of iNKT 
cells. In response iNKT cells produce IFN-γ and IL-4 which reciprocally activate APCs 
to secrete IL-12 that in turn further activates iNKT cells. Additionally, PD-L1/2 
expressed on APCs engage PD-1 upregulated on iNKT cells. (B) Bacterial products 
including TLR ligands, for example LPS or flagellin, signal through TLR on APCs, likely 
DCs activating these cells. Activated DCs produce IL-12 and present an endogenous 
glycolipid ligand to iNKT cells. Activation of iNKT cells results in IFN-γ secretion. 
Expression of PD-L1/2 and induced expression of Rae-1 or H-60 engage with PD-1 or 
NKG2D expressed on iNKT cells possibly providing additional signals important for the 
induction of iNKT cell hyporesponsiveness. (C) During rechallenge with α-GalCer, 
iNKT cells from mice previously activated with a primary challenge with α-GalCer or 
bacteria show defects in TCR signaling pathway as well as secretion of IL-2, although 
IL-2 receptor signaling pathway is intact. This results in a suppressed response of iNKT 
cells to the rechallenge with α-GalCer.  
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APPENDIX 

 

 

CELL-FATE MAPPING OF BONE MARROW STEM CELLS 

 

 

Abstract 

 

The hematopoietic stem cell (HSC) is defined as a self-renewing and multipotent 

cell that continuously repopulates the hematopoietic system throughout adult life.  

Among various tissue-derived stem cells, the HSC is one of the best characterized stem 

cells.  It is also the only stem cell that is clinically applied in the treatment of diseases 

such as breast cancer, leukemia, and congenital immunodeficiency.  At present, the 

scope of clinical application of these cells is largely limited to the hematopoietic system. 

However, recent developments in stem cell biology are opening up new possibilities. The 

prevailing concept has been that the self-renewal activity of HSCs maintains the HSC 

pool, and differentiation of HSCs provides a fresh supply of blood cells.  By contrast, 

recently described bone marrow-derived multipotent adult progenitor cells (MAPC), 

which retain pluripotency, including the ability to repopulate the hematopoietic system, 

challenge the established idea that tissue-specific HSCs are maintained only through self-

renewal activity.  Furthermore, it is now thought that HSCs may be able to 

transdifferentiate into other tissue types such as neural, cardiac, or skeletal muscle tissue, 

although this capacity to transdifferentiate remains controversial.  The use of adult stem 

cells has gained in popularity as the best means to bypass the ethical complication of 

 107



embryonic stem cell research. We hypothesized that HSCs derive from a precursor 

population, and can transdifferentiate into non-hematopoietic tissues as well as 

hematopoietic tissue in vivo. To test this hypothesis, I attempted to develop a transgenic 

mouse model that can be used for genetic tracing of the hematopoietic lineages. This 

mouse model system is designed to provide a definitive answer to the question of the 

origin of HSCs using an approach that mimics the natural in vivo system more closely 

than prior studies.  
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Background and Significance 

 

Stem cells 

Stem cells are a subset of cells in the body that maintain self-renewal activity and 

have the capacity to differentiate into multiple cell types.  Stem cells may be categorized 

into two different types. One is pluripotent stem cells that differentiate into all three germ 

layers of endoderm, ectoderm and mesoderm.  This cell type includes embryonic stem 

cells, embryonic germ cells, and multipotent adult progenitor cells (MAPC) (224). For 

instance, embryonic stem cells derived from the inner cell mass of the murine blastocyst 

in vitro have the ability to contribute to somatic and germline tissues when injected into 

the blastocyst of another mouse, which is exploited for generation of gene-targeted mice. 

Their use in humans is limited due to ethical, political and legal reasons. On the other 

hand, another type of stem cells is multipotent stem cells isolated from various tissues in 

fetal and adult animals. These cells differentiate into a limited number of lineages, 

usually restricted to the tissue these cells derive from.  Somatic tissue-specific stem cells 

such as bone marrow hematopoietic stem cells (HSC), neuronal stem cells, hepatic stem 

cells and epidermal stem cells are in this category of cells. A number of different types of 

putative stem cells are found in the mouse bone marrow: HSC, MAPC, mesenchymal 

stem cell (MSC) and germline stem cell (GSC).  However, the exact relationship among 

these stem cells as well as their true function in vivo remains elusive (Figure 36).  

 

Hematopoietic stem cell (HSC) 

HSCs are functionally defined by their unique capacity to self-renew and to give 

rise to all blood cell types. HSCs are the best characterized adult stem cells at present and 
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can be identified through surface staining. HSCs do not express mature blood lineage 

markers and express sca-1, c-kit and a low level of thy-1.1. Following the initial 

observation of stem cell activity in the sca-1+ fraction of the mouse bone marrow (225, 

226), identification of c-kit expression allowed researchers to identify a highly enriched 

population of cells with hematopoietic stem cell activity within the mouse bone marrow 

(227-230). These cells are subdivided into long-term HSCs that have an extensive self-

renewal activity and short-term HSCs that arise from long-term HSCs and have limited 

capacity to self-renew while retaining multipotency (231-233). These subsets of HSCs 

are distinguished by markers such as tie-2 and flt-3 (234, 235). It has been shown that a 

single HSC can give rise to long-term multilineage reconstitution and self-renewal in 

irradiated mice (236, 237). In addition, HSCs can be enriched based on the fact that they 

exclude Hoechst dye, a phenotype that represents an alternative description of HSCs 

(238). 

   The downstream progeny of HSCs that are lineage restricted oligopotent progenitor 

cells have also been identified (Figure 36). Common lymphoid progenitor (CLP), 

common myeloid progenitor (CMP), granulocyte-monocyte progenitor (GMP), and early 

thymic precursor (ETP) are examples of progenitor cells (239-244).  

 

Bone marrow multipotent adult progenitor cells (MAPC) copurifying with mesenchymal 

stem cells (MSC) are pluripotent stem cells. 

Recent studies in stem cell research have revealed that bone marrow is a complex 

organ harboring a wide variety of stem cells aside from hematopoietic stem cells.  MSCs 

and MAPCs are such examples. MSCs represent stromal cell precursors responsible for 

maintaining the structural integrity of bone marrow by generation of mesenchymal 
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tissues. Jiang et al. (224) reported the discovery of a putative pluripotent stem cell 

population in the bone marrow copurifying with MSCs. These cells were termed 

mulltipotent adult progenitor cells (MAPC) and are the focus of this research work. These 

cells were identified by limiting dilution of non-hematopoietic bone marrow cells and 

subsequent in vitro culture. FACS analysis of these cells indicate lack of CD34, CD44, 

CD45, c-kit, and major histocompatibility complex (MHC) class I and II expression, low 

levels of flk-1, sca-1 and thy-1 expression, and significant levels of CD13 and stage-

specific antigen 1 (SSEA-1). It should be noted that MAPCs do not express any markers 

of the hematopoietic lineage, including the markers for HSCs (e.g. CD34, c-kit). A single 

MAPC is found to differentiate into cells of visceral mesoderm, neuroectoderm and 

endoderm in vitro and, when injected into an early blastocyst, a single MAPC contributes 

to most somatic cell types. Upon transplantation into a non-irradiated host, MAPCs 

engraft and differentiate to the hematopoietic lineage, in addition to the epithelium of 

liver, lung and gut. As MAPCs proliferate extensively without obvious senescence or loss 

of differentiation potential, these cells may substitute embryonic stem cells or cord blood 

cells as the cell source for therapy of inherited or degenerative diseases through 

autologous transplantation without complications from graft rejection (245-247).   

    Pluripotency of MAPCs is demonstrated by in vitro culture, by blastocyst 

injection, and by adoptive transfer experiments. In particular, MAPCs have been shown 

to give rise to hematopoietic tissue, suggesting that these cells may indeed be a precursor 

population that generates HSCs in vivo. On the other hand, the self-renewal activity of 

hematopoietic stem cells is considered the primary mechanism of maintaining the pool of 

HSCs at present, whereas the function and phenotype of MAPCs in vivo still remains 

elusive.    
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HSC tissue plasticity  

Traditionally, adult stem cells have been viewed as cells restricted to the 

particular tissue of origin unable to differentiate into other tissues.  Various reports in 

recent years challenge this idea by demonstrating that adult stem cells, under certain 

microenvironmental conditions, give rise to cell types in non-related tissues, possibly 

indicating that they can switch cell fate. In particular, HSCs, besides forming blood cells, 

have been reported to give rise to liver cells (248), skeletal muscle cells (249-255), 

pancreatic islet cells (256), and other cell types.   

For instance, skeletal muscle is a site where significant tissue transdifferentation 

has been observed. Bone marrow mononuclear cells transplanted into immunodeficient 

mice migrate to areas of muscle degeneration where they play a role in the regeneration 

of the damaged fibers (249). Subsequent studies showed that transplantation of enriched 

HSCs into irradiated mdx mice, a mouse model with increased muscle cell turnover, leads 

to a low level contribution to muscle and partial restoration of dystrophin expression 

(250). Whether this occurs via simple fusion of HSCs with the muscle fiber, or via 

transdifferentiation of HSCs into muscle satellite cells followed by fusion with muscle 

fibers is currently uncertain. One study provides evidence for a stepwise progression of 

bone marrow cells – which may be different from HSC as the cells were not purified – to 

satellite cells, mononucleated muscle stem cells, and then to multinucleated myofibers 

(252), whereas such a progression could not be reproduced in another study (255).  

Bone marrow derived mononuclear cells have also been described to contribute 

to pancreatic islet cell regeneration. Following transplantation of bone marrow cells from 

mice that express green fluorescent protein (GFP) when the insulin gene is actively 
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transcribed, 1.7–3% donor derived insulin expressing cells could be detected in the 

pancreas of recipient mice (256).  An appropriate control experiment ruled out cell 

fusion between bone marrow donor cells and recipient islet cells. Yet other studies 

suggested that, although donor cells can be detected in the pancreas, they might be 

endothelial and not endocrine cells. For instance, bone marrow transplantation led to 

normalization of glucose and insulin levels in streptozotocin-induced diabetic mice even 

before appearance of donor-derived cells in the pancreas thereby suggesting an indirect 

effect of bone marrow cells in insulin production of these mice (257). 

The reports of tissue transdifferentiation have generated much confusion in the 

stem cell field amid excitement since the concept of tissue plasticity denies the principles 

in developmental biology that lineage restriction coincides with morphogenesis (258-

262). Nevertheless, stem cell plasticity is an important phenomenon that deserves further 

attention as it can expand the scope of application for various tissue-specific stem cells. 

Previous reports on tissue transdifferentiation heavily relied on adoptive transfer 

experiments that have limitations in replicating the in vivo state of normal physiology.  

 

Significance 

The field of stem cell research is evolving rapidly and is currently receiving a 

strong focus in the scientific and political community. A wide spectrum of therapeutic 

applications in diseases such as neurodegenerative diseases, leukemia, myocardial 

infarction and diabetes await advancement in the stem cell field for a possible cure.  

Adult stem cells have a number of advantages to embryonic stem cells. Critical issues in 

ethics can be bypassed by using adult stem cells, and moreover, adult stem cells will 

continue to be a better source for histocompatible donor cells until human embryonic 

 113



cloning becomes a standard procedure and an extensive library of embryonic stem cell 

lines is available from which to choose histocompatible donors.  

How various stem cell populations in the body are maintained, and what the 

relationships between the stem cells are, represent important questions that are not fully 

understood. Bone marrow harbors a heterogeneous set of stem cells that constitutes blood, 

bone, blood endothelium, and even germ tissues. Further, the possibility exists that a 

pluripotent stem cell population, MAPC, may be sustaining these tissue specific stem 

cells present in murine bone marrow as well as other stem cells localized in different 

tissues. Our understanding of bone marrow stem cells is still too primitive to provide a 

definite picture of lineage relationships, partly due to relative rarity of the stem cells as 

well as the extreme complexity and heterogeneity of cell types in the bone marrow unlike 

other tissues with limited types of parenchymal and stromal cells. The outcome of our 

proposed research will provide important clues to determine how various stem cell 

populations are maintained in vivo, and may help uncover unidentified stem cells in 

murine bone marrow that can be cultivated in stem cell research and therapy.    

In addition, identification of GSCs brings new possibilities to the stem cell field 

and reproductive biology. Our investigation of the mechanism of menopause will include 

the complex interplay between bone marrow GSCs and the ovarian microenvironment 

and move away from a rather simplified model of declining number of oocytes in the 

female ovary. We may find that autologous transplantation of in vitro activated GSCs 

may prolong reproductive cycles in humans.  In vitro development of oocytes from 

GSCs may become a less invasive source of human ova for in vitro fertilization compared 

to current ova extraction protocols.  

It should be noted that the results obtained from our research proposal will be 
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applicable to human systems, as all the stem cell populations including HSCs described 

in mice have counterparts in human bone marrow with minor disparities in terms of 

surface phenotypes. Interestingly, MAPCs have also been isolated from rats and humans.  

Aside from the additional requirement of leukaemia inhibitory factor (LIF) by murine 

MAPCs for expansion, human and murine MAPCs share common features (224).  There 

are striking similarities in the stem cell activity among different species due to highly 

conserved growth factors, cytokines and signaling pathways, which is speculated to be 

the natural consequence of the critical dependence of an organism on the activity of stem 

cells for survival throughout life. 

The results from this research will help to resolve current scientific controversies 

regarding the fate of various stem cells and provide a way to expand the therapeutic 

applications of bone marrow stem cells to the treatment of cancer, diabetes, degenerative 

diseases, and congenital diseases.  
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Results 

 

Overall strategy 

The aim of this research work was to test the hypothesis that HSCs derive from a 

precursor population, and can transdifferentiate into non-hematopoietic tissues as well as 

hematopoietic tissues in vivo. To this endeavor, we have generated a transgenic mouse 

model to track bone marrow hematopoietic stem cells. The transgenic mouse model was 

meant to allow us to pulse-label HSCs in vivo, and to track the progeny from these cells. 

By determining whether the HSC pool is only comprised of HSCs derived from the 

previously pulse labeled HSCs, or is also comprised of unlabeled HSCs, we can infer the 

presence or absence of a precursor population (Figure 37). Specifically, MAPC represents 

the most likely candidate for this precursor population in light of its pluripotency. In 

addition, by tracking pulse labeled HSCs in other somatic tissues, we can study 

transdifferentiation of HSCs in vivo.  

In detail, the bigenic transgenic system for cell-fate mapping of bone marrow 

stem cells that we proposed to develop consists of CreER, a fusion protein of cre 

recombinase and estrogen receptor, whose expression is driven by the c-kit promoter, and 

a reporter gene for CreER activity, LacZ/YFP (Figure 38). The c-kit promoter restricts 

CreER expression to c-kit+ stem cells, HSCs in particular (227, 230, 263), and avoids 

CreER expression in the putative precursor cells lacking c-kit expression (224). The c-kit 

promoter was deliberately chosen for the cell fate mapping of HSCs, as c-kit expression 

is currently the most reliable surface marker for identification of HSCs and pluripotent 

MAPCs are thought not to express c-kit. More importantly, an extensive promoter study 

confirms that the c-kit promoter used in our system with six Dnase hypersensitivity sites, 
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including important regulatory elements, is fully functional (264). The reporter gene 

driven by the β-actin promoter is actively transcribed ubiquitously throughout mouse 

development allowing us to track the stem cells differentiating into any cell types.  

CreER is a fusion protein of Cre and a modified estrogen receptor that responds 

only to tamoxifen, an estrogen receptor agonist, and not to endogenous estrogen. In the 

absence of tamoxifen, CreER protein is normally excluded from the nucleus without 

access to floxed genes in the nucleus. In the presence of tamoxifen, however, CreER 

bound to tamoxifen translocalizes into the nucleus and its recombinase activity provided 

by the cre component of the fusion protein deletes the sequences encompassed by two 

loxP sites (265, 266). As the expression of CreER is restricted to c-kit+ stem cells, the 

recombination event will take place only in these stem cells and not any other cells.  

The recombinase activity by CreER initiated by tamoxifen will result in the rapid 

deletion of the LacZ gene followed by de novo expression of yellow fluorescent protein 

(YFP) in the bigenic mice containing the LacZ/YFP construct. This genetic change is 

irreversible and permanent for the rest of the life of the cell that was expressing CreER at 

the time of tamoxifen injection. All future progeny of this cell will continue to express 

YFP, even in mature differentiated cell types that have lost c-kit expression, as the YFP 

gene is driven by the ubiquitously active β-actin promoter and not by the c-kit promoter. 

The ubiquitously active LacZ/YFP reporter gene, together with the stem cell-restricted 

CreER gene, allows us to pulse label stem cells and monitor self-renewal of these cells 

and/or differentiation of the cells into various lineages. 

 

C-kit.CreER.ires.eGFP construct 

C-kit is the tyrosine kinase surface receptor for stem cell factor (SCF). C-kit is 
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currently the single most important and functionally relevant surface marker for 

identification of HSCs and a number of other tissue-specific stem cells. The interaction 

between SCF and c-kit has been found critical for the maintenance of the HSC 

compartment by promoting self-renewal activity. Recently identified GSCs are also 

thought to be enriched among the c-kit+ population in murine bone marrow. GSCs are 

distinguished from HSCs by lack of sca1 expression. GSCs also express germline 

markers including mvh, Oct4, Dazl, Stella, Fragilis, and Nobox (263).   

On the other hand, the putative precursor population to HSCs, MAPC, does not 

express c-kit.  While the phenotype of MAPC in fresh bone marrow is unknown, 

MAPCs in culture do not display c-kit expression. This morphology and phenotype of 

MAPCs does not change after 30 to more than 120 population doublings (224). 

The success of this research depends heavily on the quality of the promoter 

driving CreER expression. Mouse c-kit gene is over 80-kb long and includes at least 21 

exons; the first 2 exons are separated by a large (about 20 kb) intron (267). Inherited c-kit 

expression defects due to distant upstream deletions suggest the existence of long-range-

acting regulatory sequences (267-270). More importantly, the 5kb 5’UTR fragment of the 

c-kit gene is unable to drive the expression of a reporter gene in murine bone marrow 

(264, 271). In order to identify additional proximal regulatory elements Cairns et al. 

(264) cloned about 10 kb of 5' flanking sequences and the whole first exon and intron, 

and explored DNase I sensitivity of this DNA region in chromatin from c-kit-expressing 

hematopoietic, melanocytic, and embryonic stem (ES) cells as well as hematopoietic cells 

that do not express c-kit. Six DNase hypersensitivity regions were identified and a 

promoter construct including all the DNase hypersensitivity regions was generated and 

subsequently injected to study its function in the transgenic mouse system. The promoter 
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was able to drive GFP expression, the readout in this promoter study, in immature bone 

marrow cells and downregulate GFP expression upon maturation (264).  

The construct was cloned using standard cloning techniques and the overall 

schematic of the construct is shown in Figure 39A. 

 

Cell line transfection of c-kit.CreER.ires.eGFP construct  

The P815 cell line was selected for testing the integrity of the construct, as P815 

is a mastocytoma cell line expressing c-kit in which the construct should be active. 

Following transient transfection with Fugene lipofectamine, the expression of CreER was 

examined by staining with the primary rat-anti-Cre-Ab and the secondary rabbit-anti-

ratIgG-PE-Ab 48 hours post transfection. CreER expression was observed in the 

transfected P815, but not in untransfected cells. Neither transfected nor untransfected 

cells showed staining with an isotype control for the anti-Cre-Ab (Figure 39B). The 

transfection result was reproducible in an independent experiment with P815 cells.      

 

Pronuclear injection of c-kit.CreER.ires.eGFP construct and pups carrying the transgene 

The construct was linearized by AatII and SalI sequential digestion and was 

provided to the Vanderbilt transgenic core facility for pronuclear injection. Two separate 

injections were performed and 26 pups were born. Two pups died soon after birth. 26 

pups including the dead pups were genotyped by performing 300 bp PCR for detection of 

the CreER sequence. Four pups carried the transgene (Figure 39C).  

 

CreER expression on bone marrow hematopoietic stem cells   

 The pups carrying the transgene were initially bred with C57BL/6 wild type mice. 
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The resulting pups carrying transgenes from founder 12, 20, and 22 were analyzed for 

expression of CreER using anti-cre antibody we received from Dr. Guoqiang Gu. When 

gated on large cells, a slight shfit in cre staining was observed in pups from founder 12 

whereas pups from 20 and 22 showed no staining with this antibody (Figure 40A). We 

also used anti-cre antibody obtained from Dr. Polk’s laboratory, but non-specific staining 

prevented further evaluation of cre expression (data not shown).   

Next, we tested the reporter activity of cre instead of relying on cre staining to 

analyze cre expression profile. The founder transgenic mice were bred with LacZ/YFP 

reporter mice. These mice express YFP protein upon recombination by cre. The double 

transgenic pups were genotyped and the first batch of pups from founder 18 was treated 

with tamoxifen-infused food for three weeks. Each mouse was fed with 2g of food that 

contained 2mg of tamoxifen on a daily basis. Following tamoxifen administration, we 

waited one month for mature hematopoietic cells to develop from YFP labeled 

hematopoietic stem cells and analyzed YFP expression with LSRII. These double 

transgenics showed no sign of YFP expression (Figure 40B).  

  

Adoptively transferred bone marrow stem cells do not contribute to germline parasitism.   

Germline parasitism by donor bone marrow cells in the recipient mice was 

examined by generating bone marrow chimeras of Ly5.1 and Ly5.2 male mice where the 

bone marrows of Ly5.2 recipient mice are replaced by the Ly5.1 bone marrow. The male 

recipient mouse was immediately bred with an Ly5.2 wild type female mouse and the 

progeny was analyzed for the expression of Ly5.1 and Ly5.2 with flow cytometry. The 

recipient mice were unable to reproduce for three months following lethal irradiation. 

These mice showed accelerated aging and started exhibiting white and gray coat color. 
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However, the mice regained reproductive capacity and began to breed. 13 pups were born 

from the chimeric male mice and wild type female mice. Surprisingly, all 13 pups from 

the breeding showed no expression of donor derived Ly5.1 indicating that germline 

parasitism did not occur (Figure 41). This result is in line with a recent publication by 

Eggan et al refuting extragonadal source of germline stem cells using a parabiotic system 

(272).   
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Discussion 

 

 Four transgenic founders were obtained from the pronuclear injection of the 

completed construct containing CreER gene under the control of the c-kit promoter. 

Progeny from three of the founders did not stain with cre antibodies obtained from 

various sources, but progeny from one of the founders showed minor staining. As cre 

antibodies in general have problems for use in fluorescent-activated cell sorting (FACS) 

and immunohistochemistry, we have decided to test the reporter activity of cre, instead of 

relying on cre staining to analyze cre expression profile. The founder transgenic mice 

were bred with LacZ/YFP reporter mice, which express YFP protein upon recombination 

by cre. The resulting double transgenic pups were genotyped and treated with tamoxifen-

infused food for three weeks. However, these double transgenics showed no sign of YFP 

expression (Fig 40B).   

  One possibility was that p.o. administration of tamoxifen is not optimal for 

CreER activation of HSCs. We have subsequently administered tamoxifen i.p. when 

testing other founders, but have seen no recombination event. It was also a possibility that 

the YFP signal was not strong enough for detection. LSRII at the flow cytometry core 

facility did not have an excitation laser at 514nm that induces maximal excitation of YFP 

and used 532nm laser. While YFP does have a range of excitation wavelengths, the 

possibility remained that suboptimal excitation of YFP paired with low expression of the 

protein might have adversely affected the outcome of this experiment. Unfortunately, the 

antibodies available for YFP that can boost the signal are not optimal for FACS. 

Therefore, another cre reporter strain that expresses LacZ upon recombination that shows 

better sensitivity to cre activity was one alternative. We have however decided to pursue 
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another alternative, which was to use fluorescent microscopy using a specific filter for 

YFP. However, none of the progeny treated with tamoxifen showed YFP expression on 

fluorescent microscopy. As a result, we have decided that even the founder showing 

minor staining with anti-cre antibody is expressing CreER at levels too low to achieve 

optimum levels for efficient recombination of the reporter gene and decided another 

round of pronuclear injection of the construct might be necessary.  

The transgenic mouse system that we generated was also to be used to test the 

hypothesis that the bone marrow stem cells may contribute to the generation of 

reproductive cells. The central dogma of reproductive biology has been that females of 

most mammalian species lose the capacity for oocyte production during fetal 

development, and only a finite number of oocytes present postnatally are responsible for 

the lifetime reproductive activity (273-277). For instance, in humans it has been 

estimated that, of 106 oocytes present at birth, less than 3ⅹ105 survive through puberty. 

The number of surviving oocytes decreases over time until menopause hits females as the 

remaining oocytes are unable to sustain the menstrual cycle. Similar observations have 

been made in female mice, which exhaust their pool of oocytes with age. A series of 

recent studies have, however, challenged this dogma by showing rapid turnover of murine 

oocytes during juvenile and adult life of mice (278). This high turnover rate of oocytes 

observed in adult mice was originally attributed to the non-follicle-enclosed germ cells 

present on the ovarian surface, but their number dropped precipitously following puberty 

and another source of oocytes was suspected. A landmark paper by Johnson et al. 

subsequently identified a putative germline stem cell (GSC) population in murine bone 

marrow and in peripheral blood that migrates to mouse ovary and generates bona fide 

oocytes (263). Germline contribution of these bone marrow stem cells, distinct from 
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hematopoietic stem cells by their lack of sca-1 expression but sharing c-kit expression, 

was shown by adoptive transfer of whole murine bone marrow into recipient mice whose 

ovaries were chemically ablated.  Adoptive transfer of peripheral blood into recipient 

mice also supported oogenesis, implying continuous seeding of GSCs into ovary via 

blood circulation.  

The question remains whether the oocytes developing from these transplanted 

GSCs are able to fully mature functionally and undergo fertilization with male sperms, or 

turn out to be an artificial non-functional development of stem cells misplaced from their 

original niche space. Therefore, while the transgenic mouse system was being optimized, 

I have also tested whether bone marrow stem cells can differentiate into ovarian follicles 

in an alternative method using the adoptive transfer system. As female mice subjected to 

lethal dose of irradiation undergo ovarian atresia which likely does not recover over time, 

germline parasitism by donor bone marrow cells in the recipient male mice was examined 

instead. The result showed that 13 pups were born from the chimeric male mice and wild 

type female mice showed no expression of donor derived Ly5.1 indicating that germline 

parasitism did not occur (Figure 41). This result is in line with a recent publication by 

Eggan et al refuting extragonadal source of germline stem cells using a parabiotic system 

(ref).  

Once the transgenic mouse model system for cell-fate mapping of hematopoietic 

stem cells becomes available, we will test the hypothesis that HSCs derive from a 

precursor population, and can transdifferentiate into non-hematopoietic tissues as well as 

hematopoietic tissue in vivo. We will also address the contribution of bone marrow stem 

cells in gametogenesis. More specifically, we will test our hypothesis in two specific aims. 

In aim 1, we will determine the presence or absence of a precursor population to HSCs. 
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HSCs will be pulse-labeled with YFP and followed over time. A decreased number of 

YFP+ cells over time would demonstrate the presence of a precursor population to HSCs. 

Additionally, YFP-labeled HSCs will be examined with or without irradiation to 

determine the effect of bone marrow injury on the putative precursor population. We 

hypothesize that injury will activate a normally dormant precursor population, namely 

MAPC, to become activated and differentiate into HSCs. In aim 2, we will examine 

transdifferentiation of HSCs into non-hematopoietic tissues. Cell-fate mapping of HSCs 

will provide a definitive answer to the question of whether transdifferentiation occurs in 

vivo. The progeny of pulse-labeled HSCs will be followed in various tissues including 

pancreatic islets, heart, and skeletal muscle, to search for transdifferentiated HSCs. The 

putative bone marrow GSC that expresses c-kit will also be pulse-labeled using the same 

cell-fate mapping system in female mice. The contribution of GSCs in ovarian oogenesis 

will be observed in the presence or absence of injury in vivo. 

These studies will enhance our understanding of the critical cellular events 

involved in the development of the hematopoietic system. The results from this research 

are designed to provide insight into the fate of stem cells and expand the therapeutic 

applications of stem cell biology.  
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Materials and Methods 

 

Mice. C57BL/6 (B6) mice and Ly5.1 (B6SJL) mice were purchased from the Jackson 

Laboratory. LacZ/YFP mice were obtained from Dr. Mark Decaesteker’s laboratory. All 

animal studies were approved by the Institutional Animal Care and Use Committee of 

Vanderbilt University (Nashville, TN). 

 

Reagents. Restriction enzymes and DNA ligase were purchased from NEB. Anti-cre 

antibodies and rabbit-anti-rat-IgG-PE were kindly provided from Dr. Guoqiang Gu and 

Dr. Brent Polk. Anti-Ly5.2-FITC and anti-Ly5.1-PE were purchased from BD 

Biosciences-Pharmingen.  

 

Cloning of of c-kit.CreER.ires.eGFP construct. The construct was cloned with standard 

cloning techniques. The c-kit promoter construct with eGFP was a kind donation from Dr. 

Sergio Ottolenghi at Universita Milano-Bicocca-Piazza delle Scienze, and CreER from 

Dr. Andrew Mcmahon at Harvard University. Ires sequence came from Stratagene.  

PBR322 was utilized as the plasmid backbone, to circumvent plasmid toxicity observed 

in initial cloning steps. GBE180, a pcnb deficient strain of DH5α E.coli was used in the 

final steps of ligation in which ColE1-dependent plasmids such as pBR322 replicate in as 

low as one plasmid copy number per cell.  

 

Genotyping of the transgenic mouse expressing c-kit.CreER.ires.eGFP construct.  Mice 

were genotyped using standard PCR technique with tail DNA. The primers used to target 

the cre region of the construct were 5’-TGGAAGGCATGGTGGAGATCTTTG-3’, and 
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5’-ATGAGAAGGAGCTGAGCTAGGCGG-3’. 

 

Flow cytometry. Single-cell suspensions of P815 cells or primary bone marrow cells were 

prepared and stained with fluorescently-labeled mAbs as described previously (183). In 

all experiments, dead cells were excluded from the analysis by electronic gating. Flow 

cytometry was performed using a FACSCalibur instrument with CellQuest software (BD 

Immunocytometry Systems), or an LSRII instrument, and the acquired data were 

analyzed using FlowJo software (Tree Star Inc.). 

 

Fluorescent microscopy. Single-cell suspensions of bone marrow cells were prepared and 

visualized with fluorescent microscopy using YFP filter. The cells were either fixed with 

1% paraformaldehyde or not fixed prior to microscopy.  
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Figure 36. The lineage relationship among bone marrow stem cells and progenitor cells. 
Arrows indicate established relationship in vivo whereas dotted arrows indicate the 
capacity to differentiate but in vivo significance is uncertain. MAPC: multipotent adult 
progenitor cell, HSC: hematopoietic stem cell, GSC: germline stem cell, MPP: 
multipotent progenitor population, ETP: early thymic progenitor, CLP: common 
lymphoid progenitor, CMP: common myeloid progenitor.  
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Figure 37. The overall experimental strategy for the cell-fate mapping of hematopoietic 
stem cells. (A) HSCs express CreER and GFP. (B) Tamoxifen treatment of HSCs results 
in RFP labeled HSCs. (C) Over time, labeled HSCs maintain the HSC compartment by 
themselves ① or a precursor population (MAPC) contributes to the HSC compartment 
②.     
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Figure 38. The schematic diagram for determining presence or absence of a precursor 
population to HSC. (A) HSCs express CreER and GFP. When tamoxifen is injected, 
CreER binds to tamoxifen,  translocalizes into the nucleus, and recombines LoxP sites. 
(B) Upon recombination, the β-actin promoter begins to drive YFP expression in HSCs. 
(C) The progeny of these labeled stem cells will retain YFP expression following 
differentiation. 
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Figure 39. Generation of the transgenic mouse model for the cell-fate mapping of HSC. 
(A) Schematic representation of C-kit.CreER.ires.eGFP construct in pBR322 plasmid 
backbone. The plasmid was linearized by serial digestion with SalI and AatII and 19kb 
fragment containing 5’UTR of Kit promoter, CreER, ires, eGFP, polyadenylation signal, 
and Kit intron 1, was purified by gel electrophoresis in LMP agarose for pronuclear 
injection.  (B) A fraction of purified construct from (A) was used for lipofectamine 
transfection of P815 mastocytoma cell line. The red peak represents untransfected cells 
with isotype control staining, the green peak  untransfected cells with anti-CreER 
staining, the blue peak transfected cells with isotype control staining, and the orange peak 
transfected cells with anti-CreER staining. Data shown is representative of two 
independent experiments. (C) PCR analysis of pups from pronuclear injection of the 
purified construct into BDF1 background. 81 and 90 are dead pups. Plasmid is the 
positive control using the construct plasmid from (A). 1-24 are live pups that survived 
into adulthood. 12, 18, 20, and 22 are the pups carrying the transgene.   
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Figure 40. Expression of CreER by the transgenic mouse model. (A) Founder 12 stained 
with anti-cre IgG followed by secondary staining with anti-Ms-IgG-PE and gated on 
large cells from FSC and SSC profile. The upper plot shows the histogram on PE channel 
and the lower plot shows GFP channel. A minor shift is seen on founder 12. (B) Thymic 
and bone marrow cells were collected from three Founder 18 double transgenic pups 
treated with tamoxifen p.o. for three weeks and then sacrificed one month later and two 
LacZ/YFP transgenic without CreER.  The cells were analyzed for YFP expression on 
LSRII. None of the mice showed YFP expression.  
 
 
 
 

 132



 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Adoptive transfer of bone marrow stem cells does not result in germline 
parasitism of the recipient mice. Germline parasitism by donor bone marrow cells in the 
recipient mice was examined by generating bone marrow chimeras of Ly5.1 and Ly5.2 
male mice where the bone marrows of Ly5.2 recipient mice are replaced by the Ly5.1 
bone marrow. The male recipient mice was immediately bred with Ly5.2 wild type 
female mice and the progeny was analyzed for the expression of Ly5.1 and Ly5.2 with 
flow cytometry. Twelve plots shown are Ly5.1 and Ly5.2 staining of the individual 
pupsprogeny. Transplanted Ly5.2 bone marrow did not contribute to reproduction of the 
recipient mice. 
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