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CHAPTER I 

 

INTRODUCTION 

 

1.1. Motivation 

Cervical cancer is the second most common malignancy among women worldwide. It is 

estimated that in 2008, 3,870 deaths will occur in the United States alone from this 

disease and 11,070 new cases of invasive cervical cancer will be diagnosed. [1] It is 

believed that the incidence of pre-invasive squamous carcinoma of the cervix has risen 

dramatically in recent years, especially among women under the age of 50. [2] When 

cervical cancers are detected early, they are highly curable. In fact, early detection of 

cervical pre-cancer has played a central role in reducing the mortality associated with this 

disease in the United States over the last 50 years. [3] However, this trend is completely 

negated in countries such as Zambia where the mortality and prevalence rate of invasive 

cervical cancer is the second highest in the world. [4] Existing screening and detection 

techniques, the Pap smear and colposcopy, have several deficiencies that prevent efficient 

management of an otherwise controllable disease. An automated diagnostic method with 

improved sensitivity and specificity that could allow for a “See and Treat” protocol 

would significantly improve the management of the disease. The impact of such an 

approach would be particularly useful in situations where professional care is difficult to 

achieve. 
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1.2. Specific Aims 

 Specific Aim (1):  Determine if the Raman spectra from low grade cervical lesions can 

be correctly differentiated from normal, inflammation, metaplasia and high grade 

lesions.  

In previous studies, Raman spectroscopy was used to predict the presence of high-grade 

lesions and was evaluated using histology as the gold standard and compared with the 

sensitivity of colposcopy. In this aim, the focus was two-fold. (1) Raman spectra were 

acquired from patients with low-grade lesions in order to characterize their spectral 

signatures.  Pre and peri menopausal patients were selectively recruited. (2) Using the 

spectra acquired in this study and previously acquired data; diagnostic algorithms based 

on non-linear regression methods were evaluated to determine their effectiveness.  

Menopausal status and location in the menstrual cycle were incorporated in the 

algorithms (aim 2).  

 

Specific Aim (2): Characterize the Raman spectra of the normal cervix.  

The second clinical study was designed to measure Raman spectra from areas of normal 

cervix in patients without evidence of cervical dysplasia. In this aim, multiple spectra of 

normal appearing areas were measured in each patient prior to hysterectomy and as well 

as in patients undergoing routine Pap smear.  Each measurement was confirmed as 

normal by either the results of the biopsy from the excised hysterectomy tissues or by a 

normal pap smear for the Pap smear patients.  Inter and intra-patient variability, the 

effects of menopausal state and location in the menstrual cycle on the Raman spectra 

acquired was assessed. 
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Specific Aim (3): Study the basis of observed spectral differences using confocal 

Raman Spectroscopy. 

 In developing Raman spectroscopy as a diagnostic tool for cervical precancers, the 

scientific basis for the success of the technique needs to be understood. What are the 

biochemical constituents of cervical tissues that are responsible for the observed Raman 

features? What causes the spectral differences between normal, non-precancerous and 

precancerous tissues that allow their differentiation? Confocal Raman spectroscopy will 

be used to develop this understanding on a microscopic as well as macroscopic level. 

 

1.3 Summary of Chapters 

 This thesis consists 5 chapters after this introduction chapter; Chapter 2 is an 

extensive background on both cervical cancer and Raman Spectroscopy.  The third 

chapter discusses the development of a new multi-class algorithm that shows better 

classification than the previous used algorithms.   The fourth chapter shows that using 

menopausal status classification can be improved compared to what is seen in chapter 3.   

The fifth chapter discusses a large clinical study that shows the application of Raman 

spectroscopy in two different settings, including “see and treat” and colposcopy guided 

by optical biopsy.   The last chapter (6) discusses the major conclusions found in this 

body of work and my contributions to the field.   This work resulted in several smaller 

contributions, which are shown in the appendices.  In the first appendix, the variation in 

the instrumentation used is discussed and how this affects the use of Raman spectroscopy 

as a diagnostic tool.   This second appendix, discusses Aim 3.   Due to the small number 
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of tissue samples that were collected due to the lack of availability, this was only as 

included as a part of the appendix.     
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CHAPTER II 

 

BACKGROUND 

 

2.1. Normal Cervical Biology 

The cervix measures 3-4 cm in length and is approximately 2.5cm in diameter.  

The size and shape of the cervix varies depending on age, parity and hormonal status [1], 

a typical normal cervix is shown in figure 2.2.a.  The cervix is covered by two types of 

epithelia: the multi-layered squamous epithelium covers most of the ectocervix and is 

separated from the stroma by the basal layer. The columnar epithelium consists of a 

single layer of columnar cells, and covers the surface of the endocervical canal.  The 

ectocervix consists of 15-20 layers of cells, has a large amount of glycogen, very few 

nerve endings and is typically pale pink in color.  The endocervix on the other hand, is a 

single cell layer thick, has extensive sensory nerve endings, very little glycogen content 

and usually appears reddish in color. [1] 

The interface of the two epithelia is called the squamous-columnar junction. Over 

time, the columnar epithelium is replaced by squamous epithelium, which causes the 

squamous-columnar junction to move towards the opening of the cervix called the os. 

This transitional epithelium is called squamous metaplasia. [2]   Squamous metaplasia is 

an irreversible process shown in figure 2.1.   The transformation zone (TZ) is the region 

where the columnar epithelium has been replaced or is currently being replaced by the 

new squamous epithelium.   In younger women, the transformation zone is visible but as 

a woman ages the cervix shrinks due to decreased estrogen levels, the transformation 
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zone may only be partially or not at all visible.  This region (transformation zone) is 

where most new cervical dysplasia occurs. [1] 

      

 

    

 

 

 

 

 

 

Figure 2.1. Progression of Columnar epithelium to squamous epithelium. [1] 

 

 

2.2. Cervical Disease and Progression 

Cervical intraepithelial neoplasia (CIN) refers to the development of neoplasia 

arising from the epithelium of the cervix. CIN refers to the precancerous stages of 

cervical carcinoma and is often also referred to as cervical dysplasia or squamous 

intraepithelial lesion (SIL). The progression and classifications can be seen in figure 2.2.  

Precancers may be categorized as mild, moderate and severe precancers (or dysplasia). 

The next step in the progression of this disease is carcinoma-in-situ (CIS) which is one 

step before the transformation of the dysplasia (precancer) to cancer [3-5]. Clinically 

speaking, cervical lesions can be divided into low grade lesions (mild precancers) and 

high grade lesions (moderate and severe precancers and CIS). It has been observed that 

Columnar Epithelium 

Immature Squamous Metaplasia 

Normal glycogen containing 
mature squamous  

metaplastic epithelium 

Atypical or 
dysplastic  
squamous 
epithelium 

Infection with  
oncogenic HPV types 
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some cases of dysplasia regress and return to normal while other cases persist and 

develop into CIS and potentially cancer. [1]  The distinction between high and low grade 

is important because patients with low grade lesions are typically followed but not treated 

whereas patients with high grade lesions are usually treated immediately with extended 

follow-up.    

Benign Low grade  (LGSIL) High grade (HGSIL)

Normal HPV Moderate CIN 

Inflammation Mild CIN Severe CIN 

Metaplasia  CIS 

 

 

 

 
 
 
 
Figure 2.2: Progression of Cervical Disease (a) normal/benign cervix ( Courtesy of the 
University of Washington) (b) mild dysplasia with arrow pointed to abnormal area that 
turned white due to application of acetic acid (courtesy of the Military Obstetrics & 
Gynecology) and (c) high grade cervical disease. 
 

Human papilloma viruses (HPV) are viruses that predominantly infect skin and 

mucosal membranes and produce characteristic epithelial proliferation, which may 

undergo malignant transformations. Most HPV infections have no symptoms and go 

away over the course of a few years. [4] Similarities observed in the morphological 

changes of the epithelial cells between those induced by HPV and precancers has led to 

the suggestion that certain strains of HPV may be involved in the early stages of cervical 
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precancer and other strains may aid in the progression of the disease. [6] Thus HPV is 

typically placed in the same category as mild precancers (low grade lesions) and are 

clinically treated as such. A HPV vaccine (released in fall 2006), GardasilTM, has been 

shown to prevent infection from two types of HPV - HPV 16 and 18 - that together are 

known to cause 70 percent of cervical cancer cases worldwide. GardasilTM also protects 

against HPV 6 and 11, which account for 90 percent of cases of genital warts. This 

vaccine is currently available to girls from ages 9-26 and is a sequence of 3 shots over a 6 

month time period.  However, females are not protected if they have been infected with 

any of the previously mentioned HPV type(s) prior to vaccination.  Additionally, 

GardasilTM does not protect against less common 12+ HPV types. Since the management 

and implementation of the vaccine is currently voluntary, there continues to be a need for 

the detection of precancerous changes in the cervix. [7]  

Cervical dysplasia can occur anytime after a female becomes sexually active since 

most but not all cases of cervical dysplasia are brought on by sexually transmitted HPV 

infection. There are no symptoms of cervical dysplasia so screening is necessary for 

disease prevention.  Cervical cancer on the other hand does not usually occur in women 

before the age of 40.  Women 65 to 70 years of age who have had at least three normal 

Pap tests and no abnormal Pap tests in the last 10 years depending on the advice of their 

doctor may stop having annual Pap smears. [7] Therefore most cervical dysplasia occurs 

before women go through menopause unless there has been a prior abnormal Pap smear 

but most cervical cancer develops in women who are either peri-menopausal or 

menopausal with some exceptions.  
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2.3. Menopause and the Menstrual Cycle 

Menopause is defined as the permanent cessation of the menstrual cycle of the 

female reproductive system. Perimenopause is defined as the transitional period from 

normal menstrual periods to no periods at all. During menopause, the ovarian source of 

estrogen declines (figure 2.3). This results in several physiological changes, such as 

thinning of the vaginal epithelium, decreased vaginal secretions and vascular instability. 

[8]  The transition can, and usually does, take up to ten years and is associated with 

hormonal, physical and psychological changes in the person which affects the 

biochemical makeup of the cervix and therefore the spectral signature of cervical tissue.      

 

Figure 2.3. Estrogen levels from puberty to menopause (© 2006 Odiidis) 

 

During menopause the estrogen levels decline rapidly but from puberty to menopause 

these levels fluctuate on a 28 day cycle (figure 2.4.).  Estrogen is responsible for the 

maintenance and maturation of the uterus, fallopian tubes, cervix and vagina.  During 

each cycle, estrogen regulates the consistency and composition of the cervical mucus and 

the cervix goes through many subtle changes.  For example, as estrogen levels rise they 

trigger gradual opening of the os (leading to a softer cervix) and the begin production of  
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Figure 2.4. Hormone levels during the menstrual cycle. (© 2000 Molson Medical 
Informatics) 
 

watery and elastic mucus. [8]  There are 4 different phases in the menstrual cycle; the 

proliferative phase (before ovulation), ovulation, the secretory phase (after ovulation) and 

menstruation.  Estrogen is present in increasing quantities during the proliferative phase; 

this phase is approximately 11 days long.  Estrogen levels fluctuate after ovulation due to 

the change in the source of the estrogen.  The estrogen in the proliferative phase comes 

from the developing follicles, while the estrogen in the secretory phase comes from the 

corpus luteum.  The secretory phase is approximately 12 days long.  Menstruation occurs 

when the corpus luteum stops making sex hormones and the levels drop, it typically lasts 

between 4 and 7 days. [8]      
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2.4. Current Screening Methods for Cervical disease 

The primary screening tool for cervical precancer is the Papanicolaou (Pap) smear, 

where scrapings from the walls of the ecto- as well as endocervix, which contain a 

variable number of cells are examined and diagnosed. [9] Although the widespread 

application of the Pap smear as a screening tool has greatly decreased the incidence of 

cervical cancer [10], sampling and reading errors lead to high false positive and negative 

rates. A meta-analysis of the accuracy of Pap smears showed that in low prevalence 

populations, the mean sensitivity and specificity of the Pap smear was 48% and 95%, 

respectively. [11] Yet, another meta-analysis which did not restrict their analysis to low 

prevalence populations found a mean sensitivity (ability to correctly classify disease) and 

specificity (ability to correctly classify benign cervix) of 58% and 69%, respectively. [12] 

This suggests that the presence and extent of precancer is often wrongly estimated. 

Annual Pap smear is the standard of care amongst women in the developed countries, but 

for most women in developing populations like Asia and Africa Pap smear is not standard 

care and the disease is often not found until it is in its later stages. Thus a tool that can 

“See and Treat” would relieve a tremendous burden in the developing countries. 

Colposcopy, which usually follows an abnormal Pap smear, is then typically used 

to direct the taking of biopsies. [13] A colposcope usually consists of a fixed focal length 

microscope with a variable magnification (4-40X) that is used to observe the surface of 

the cervix. The colposcopic image is produced by illuminating both the surface 

epithelium and the underlying stroma. To enhance the colposcopic image, 4-6% acetic 

acid is sometimes applied to the cervix. The application of acetic acid causes abnormal 

sites on the cervix to turn white, the area on figure 2.2.b is pointing to an area that turned 
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white after the application of acetic acid. This is a reversible process in that as the acetic 

acid depletes, the change is reversed to normal. This technique can be used repetitively 

on the same patient without harm. Colposcopy has a comparatively high degree of 

accuracy in pin-pointing the area and grade of the lesion. [14] However this procedure 

requires extensive training and its accuracy is variable and limited even in the hands of 

expert practitioners. [15] As a result, colposcopy is not used as a stand-alone method of 

diagnosis. Once the abnormal sites are identified colposcopically, multiple biopsies are 

taken using a standard punch biopsy forceps. These tissue samples are fixed in formalin 

and then sent for histologic examination. Histology then forms the gold standard for 

diagnosis and determination of treatment.  

Several new techniques for cervical disease detection have been introduced in the 

past few years, such as wet prep and cervicography.  Wet prep, or liquid-based thin-layer 

slide preparation, modifies conventional Pap smear. This technique rinses the cells into a 

vial of liquid instead of smearing them onto a slide, making the final slide easier to read 

by reducing the clumping of cells.  Results of this new method suggest that it is 

comparable to, or more sensitive than (possibly reducing reading error), the conventional 

Pap smear for the detection of abnormalities. [7] Wet prep is now routinely used to aid 

the Pap smear at least in the United States. In cervicography, a high resolution 

photograph is taken of the cervix after the application of acetic acid and sent to a central 

laboratory to be read by colposcopists who have received specialized training in 

interpretation of these photographs.  This technique, although still in the research phases, 

could be used in junction with or replace Pap smear.  Cervicography would eliminate the 

need for a trained colposcopists to look at each individual cervix and would standardize 
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how these images are read [16].  The limitation to this method is the extended amount of 

time needed to send the photographs off to be read.  

Thus existing conventional screening and diagnostic techniques for cervical 

precancers have several deficiencies that prevent efficient management of an otherwise 

controllable disease. Standard of care ultimately continues to rely on histology to make a 

definitive diagnosis before treatment is planned. An accurate, automated diagnostic 

method could allow faster, more effective patient management.  

 

2.5. Optical Methods 

The application of optical methods is suggested because it can detect alterations in 

tissue architecture and biochemical composition associated with the progression of 

disease. [17-28] Optical methods can provide automated, fast and non-invasive 

characterization of normal and non-normal tissues in vivo.  Several different optical 

methods have been used to characterize the cervix due to the need to monitor disease 

development and progression.  

 

2.5.1 Optical Coherence Tomography (OCT) 

OCT is a high resolution, cross sectional imaging modality analogous to 

ultrasound. It uses a low coherence near infrared light source to obtain depth-resolved 

images of tissue microstructure. Even in highly scattering tissues, structures up to 2mm 

deep can be imaged. [24]  OCT has high spatial resolution (~11um dependent on source) 

and images can be taken in real-time.  A recent study done by the Cleveland Clinic 

recruited 220 patients that had a history of an abnormal Pap smear (both in the US and 
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the Dominican Republic).  On each patient, they completed a visual exam, a colposcopic 

exam and OCT.   Using visual inspection, colposcopy and OCT together on abnormal 

tissue has a sensitivity of 46% and a specificity of 69%. [20]  In figure 2.5, OCT images 

from this study of the cervix are displayed.  In figure 2.5.a an OCT image of a cervix 

with high grade dysplasia is shown, and in figure 2.5.b an OCT image of a normal cervix 

is shown.  To the naked eye there seems to be little to no difference between these two 

OCT images.   

 

Figure 2.5: OCT images of the (a) CIN III and (b) unstructured normal ecto-cervix. [20] 

 

Since, a technique such as OCT is ultimately dependent on structural changes in 

the tissue microstructure and since other indications are known to have similar 

architectural disruptions, the reported study suggests OCT does not provide the 

performance needed to improve cervical precancer detection.   

2.5.2 Fluorescence Spectroscopy 

Fluorescence spectroscopy is a commonly tested optical technique for the in vivo 

detection of diseases in general and cancers in particular. Fluorescence spectroscopy of 

 b          a 
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both exogenous and endogenous chromophores has been successfully used to identify 

neoplastic cells and tissues in a variety of organ systems. [27] Fluorescence spectroscopy 

has been studied extensively for the diagnosis (and potential for screening) of cervical 

precancers. [17, 18, 29, 30] The first in vitro studies to assess the potential of 

fluorescence spectroscopy for cervical precancers was done by Mahadevan et. al [25]. 

This in vitro study highlighted the inter-patient variability of fluorescence signals and 

suggested the need for paired analysis (comparison of abnormal to the normal of the same 

patient).  

Richards-Kortum et al have since extensively developed and evaluated 

fluorescence spectroscopy for the detection of cervical precancers in vivo. [31] Early 

efforts were primarily focused on the application of single point fluorescence spectra 

acquired at multiple excitation wavelengths for the detection of cervical lesions. [32] 

Multivariate discriminations algorithms were developed based on fluorescence spectra 

acquired from 95 patients at three excitation wavelengths (337, 380 and 460 nm) and 

tested.  The prospective sensitivity and specificity of the multivariate algorithms based on 

paired fluorescence information for differentiating cervical precancers from normal 

tissues was 82% and 73%. The same studies described above show that the specificity in 

discriminating precancers from non-precancerous tissues is reduced to 68%. [33]  

Subsequent studies by this group have since moved to the measurement of entire 

excitation-emission matrices in an attempt to improve the diagnostic performance. More 

recently the use of diffuse reflectance has been additionally included in a continued effort 

to enhance the performance of fluorescence spectroscopy for cervical precancer 
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detection.  They have shown that using a multispectral digital colposcope to collect 

diffuse reflectance, images they can achieve 79% sensitivity and 88% specificity. [34]    

Another group from the University of Alabama- Birmingham found that they 

could detection high grade lesions compared to all other tissue with a sensitivity of 

approximately 90% and a sensitivity of 50%. [23] This result along with similar 

observations made in other organs indicate that fluorescence spectra of precancerous and 

cancerous tissues of, for example, the cervix and colon are similar in many patients to the 

fluorescence spectra of benign abnormalities such as inflammation, hyperplasia and 

metaplasia. [33, 35]  This suggests that the method of fluorescence diagnosis yields an 

unacceptably high false positive rate in discriminating cancers and precancers from all 

other tissues. It should also be noted that clinically it is extremely important to detect 

every high grade lesion. Thus, a sensitivity of 79% in detecting high grade lesions while 

presenting a significant improvement in current practice is not sufficient to change the 

standard of care which relies on biopsies and histology for treatment. [33]         

Several studies have been done to improve the sensitivity and specificity of the 

fluorescence measurements by taking menopausal state and location in the menstrual 

cycle into consideration. A study done by Gill et. al., showed that there was a statistical 

difference between pre and post menopausal fluorescence data and that the post 

menopausal women have a higher average fluorescence signal and this difference 

suggests collagen cross-linking with menopause. [36]  Another study done by Cox et. al., 

looked at the effects of the menstrual cycle on fluorescence measurements.  The study 

indicates that main concern of the menstrual cycle is hemoglobin absorption and can be 

avoided if measurements are not taken in the first eight days of the cycle. [37] These 
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reports clearly indicate the need to include the menopausal status as a variable in the 

development of diagnostic algorithms.  

 

2.6 Raman Spectroscopy 

Raman spectroscopy has been used for many years to probe into the biochemistry 

of various biological molecules. [26] In recent years, there has been interest in using this 

technique in diagnostics. [22]  Raman spectroscopy probes different characteristics of 

materials than fluorescence. Raman scattering is an inelastic scattering process, which 

arises from perturbations of the molecule that induces vibrational or rotational transitions. 

[38]  Thus Raman spectroscopy is a molecular specific technique that can be used as a 

biochemical tool for study of different materials; in particular this technique has the 

capability to provide differential diagnosis of precancers and cancers. 

Although, only a limited number of biological molecules contribute to tissue 

fluorescence, most with broadband emission, several types of biological molecules such 

as nucleic acids, proteins and lipids have distinctive Raman features that yield molecular 

specific structural and environmental information. These molecules have been studied in 

solutions as well as in their natural microscopic environment. [28] Results indicate that 

the molecular and cellular changes that occur with cancer result in distinct Raman 

spectra. The transitional changes in precancerous tissues as well as in benign 

abnormalities such as inflammation could also yield characteristic Raman features that 

allow their differentiation. For example, one of the more prominent changes that occur 

with cancer and precancer is increased cellular nucleic acid content; extensive DNA 

studies indicate that it may be possible to sample this change using Raman spectroscopy. 
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[21] On the basis of these biochemical differences, several groups have studied the 

potential of vibrational spectroscopy for cancer diagnosis in various organ sites. [26] 

These groups have shown that features of the vibrational spectrum can be related to 

molecular and structural changes associated with neoplastic transformation. Raman 

spectroscopy has been applied towards in vitro detection of cancers of epithelial and 

mesenchymal origin such as breast, colon, esophagus and gynecologic tissues. [22]  Most 

recently, new reports have been published on the application of Raman spectroscopy for 

the detection of cancers in vivo in organs such as the cervix, skin breast and the 

gastrointestinal tract (GI). [19, 39-42] 

 

2.6.1 Raman Theory 

Raman spectroscopy is based on the Raman Effect, which occurs when energy is 

exchanged between the incident photon and the scattering molecules.  Inelastic or Raman 

scattering occurs when a photon is incident on molecule and the scattered photon has 

more energy than the incident photon (Raman Anti-Stokes Scattering) or a photon is 

incident on molecule scattered photon has less energy than the incident photon (Raman 

Stokes Scattering).  If the scattered photon and incident photon have the same amount of 

energy, it is referred to as Rayleigh or Elastic Scattering.  A summary of these 

interactions can be seen in figure 2.6.    
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Figure 2.6. Schematic of the different types of scattering. [43] 
 

Raman spectra are typically plotted as the collected scattered intensity vs. Raman 

shift (frequency shift) between the incident and scattered photon.  In the Raman systems 

used in this project, the incident photon is either 785nm or 830nm.  Depending on the 

characteristics of the incident molecule, the frequency shift varies.  Many different 

chemical bonds have a narrow Raman peak that can be associated that particular bonds 

but since tissue is complex (and has very weak Raman signal), it is not trivial to 

determines the origin of each Raman peak.  Therefore the Raman spectra of cervical 

tissue needs to be extensively studied to determine where there are differences between 

disease classes as well as what might be contributing to these differences in order to 

determine the feasibility of this as a diagnostic tool. [44]    
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2.6.2 Using Raman Spectroscopy for Cervical Cancer diagnosis 

The largest clinical Raman study of the human cervix to date has been done in our 

lab at Vanderbilt University.   Raman spectra were measured in vivo from 110 patients 

undergoing diagnostic or therapeutic procedures involving the removal of cervical tissue 

prior to tissue excision. The Raman spectra were acquired using a portable Raman 

spectroscopy system consisting of a 785 nm diode laser (Process Instruments, Inc., Salt 

Lake City, UT), custom fiber optic probe, imaging spectrograph (Kaiser Optical Systems, 

Inc., Ann Arbor, MI), and back-illuminated, deep-depletion, charge coupled device 

(CCD) camera  (Princeton Instruments, Princeton, NJ), all controlled with a laptop 

computer. The spectra were corrected for instrumentation variations, then noise smoothed 

using a Savitzky-Golay filter and then the fluorescence was subtracted using the modified 

polyfit technique with a 5th degree polynomial. The resulting spectra were then 

correlated with the corresponding histopathologic diagnosis to characterize the 

differences between various diagnostic categories. 

The resulting mean spectra are shown in figure 2.7 (for 79 of the patients).  The 

most consistent peaks are labeled and found at 1006 (phenylalanine), 1058, 1086 (Lipids, 

nucleic acids backbone), 1244, 1270 (proteins), 1324 (adenine), 1450 (lipids and 

proteins), 1550, 1655 (lipids) cm-1. [45] Although the peak shapes and locations show 

consistency across all pathology classifications, there are small but significant differences 

in peak intensities between the different pathology categories. 

Based on these differences observed and using histology as the gold standard, logistic 

regression discrimination algorithms were developed to distinguish between normal 

ectocervix, squamous metaplasia, and high grade dysplasia using independent training 
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and validation sets of data. The classification model was constructed to automatically 

classify spectra into one of two categories (high grade dysplasia or benign cervix) using a 

two-tiered logistic regression model. An unbiased estimate of the accuracy of the model 

indicates that Raman spectroscopy was able to distinguish between high grade dysplasia 

and benign areas of the cervix (normal ectocervix and squamous metaplasia) with 

sensitivity of 89% and specificity 81% while colposcopy in expert hands was able to 

discriminate with a sensitivity of 87% and specificity of 72%. [46]  

 

 

 

Figure 2.7: Mean Raman spectral overlays for the following categories: (a) high grade 
dysplasia (n=29 spectra) and low grade dysplasia (n=6 spectra), (b) normal endocervix 
(n=8 spectra) and high grade dysplasia, (c) normal ectocervix (n=100 spectra) and normal 
endocervix, (d) low grade dysplasia and normal endocervix, (e) low grade dysplasia and 
normal ectocervix, (f) low grade dysplasia and squamous metaplasia (29 spectra) [47]. 

 

 

The limitation of this particular study is that the discrimination algorithms 

developed above were binary and this did not allow for multiple classes that the tissue 



 22

could belong to.  Thus, a new discrimination algorithm was developed based on novel 

statistical methods: Maximum representation and discrimination feature (MRDF) 

combined with sparse multinomial logistic regression (SMLR). 

MRDF is a method of feature extraction whose objective is to maximally extract 

the diagnostic information otherwise hidden in a set of measured spectral data by 

reducing its dimensionality through a set of mathematical transforms. Given a set of input 

data comprising spectra from different classes with a given dimensionality, nonlinear 

MRDF aims to find a set of nonlinear transformations of the input data that optimally 

discriminate between the different classes in a reduced dimensionality space. It basically 

invokes nonlinear transforms (restricted order polynomial mappings of the input data) in 

two successive stages.  A list of the terms used in this description on listed in table 2.1.    

In the first stage, the input spectral data T
Nxxx ],....,[ 21=x  (intensities 

corresponding frequency shift of the spectra) from each tissue type are raised to the 

power p′ to produce the associated nonlinear input vectors ],...,,[ 21
p
N

pp
p xxx ′′′
′ =x , which 

are then subject to a transform MΦ′  such that  p
T

MM ′′=′ xy Φ  are the first stage output 

features in the nonlinear feature space of reduced dimension M <<N.  In the second stage, 

the reduced M dimensional output features My′  for each tissue type are further 

transformed nonlinearly to the power p to produce higher order features 

],....,,[ 21
p

M
pp

Mp yyy ′′′=′y , and a second transform ΦK is computed so as to yield the final 

output features Mp
T
KK yy Φ=  in the nonlinear feature space of dimension K (K ≤ M). [48] 
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Table 2.1 MRDF terms 

Term Description 

x Input vector – spectral intensities 

N Dimension of x 

p' Normalization factor 

xp' x is raised to the power p' to form a restricted polynomial 

MΦ′   Linear transform 

y'm Resultant vector when MΦ′  is applied to xp' 

M Dimensionality of the vector after the first stage of MRDF 

p Normalization factor 

y'pm y'm is raised to the power p to form a restricted polynomial 

 ΦK  Linear transform 

yk Resultant vector when ΦK is applied to y'pm 

K Dimensionality of the final vector in MRDF 

 

SMLR is a method of supervised classification. It is a probabilistic multi-class 

model based on sparse Bayesian machine-learning framework of statistical pattern 

recognition. The central idea of SMLR is to separate a set of labeled input data into its 

constituent classes by predicting the posterior probabilities (likeliness) of their class-

membership. It computes the posterior probabilities using a multinomial logistic 
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regression model and constructs a decision boundary that separates the data into its 

constituent classes based on the computed posterior probabilities following Bayes’ rule 

i.e. a class is assigned to a data for which its posterior probability is the highest [48].  

 Now by combining Raman spectroscopy and the advanced statistical methods 

mentioned, the ability to successfully diagnosis cervical dysplasia will be shown.    This 

body of work will discuss both the advantages and the disadvantages associated with this 

method for cervical dysplasia detection and make suggestions on what needs to be done 

in the future for this technique to be used regularly in the clinic. 
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CHAPTER III 

 

MULTI-CLASS DISCRIMINATION OF CERVICAL PRECANCERS USING RAMAN 
SPECTROSCOPY 

 

3.1 Abstract 

Raman spectroscopy has the potential to differentiate among the various stages leading to 

high-grade cervical cancer, such as normal, squamous metaplasia, and low-grade cancer.  

For Raman spectroscopy to successfully differentiate among the stages, an applicable 

statistical method must be developed.  Algorithms like linear discriminate analysis (LDA) 

are incapable of differentiating among three or more types of tissues.  We developed a 

novel statistical method combining maximum representation and discrimination feature 

(MRDF) to extract diagnostic information with sparse multinomial logistic regression 

(SMLR) to classify spectra based on nonlinear features for multi-class analysis of Raman 

spectra.  We found that high-grade spectra classified correctly 95% of the time; low-

grade data was classified correctly 74% of the time, improving sensitivity from 92% to 

98% and specificity from 81% to 96% suggesting that MRDF with SMLR is a more 

appropriate technique for categorizing Raman spectra.  SMLR also outputs a posterior 

probability to evaluate the algorithm’s accuracy.  This combined method holds promise 

to diagnose subtle changes leading to cervical cancer. 

 

3.2 Introduction 

Raman spectroscopy has been used for many years to probe into the biochemistry 

of various biological molecules.[1]  It is a molecular specific technique that can be used 
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as a biochemical tool to provide differential diagnosis of precancers and cancers.  Several 

biological molecules such as nucleic acids, proteins and lipids have distinctive Raman 

features that yield molecularly specific structural and environmental information.  Results 

indicate that molecular and cellular changes that occur in precancerous tissues as well as 

in benign abnormalities, such as inflammation, yield characteristic Raman features that 

allow their differentiation.  For example, one of the more prominent changes that occur 

with cancer and precancer is increased cellular nucleic acid content; extensive DNA 

studies indicate that it may be possible to detect this change using Raman 

spectroscopy.[2]  On the basis of these biochemical differences, several groups have 

studied the potential of vibrational spectroscopy for cancer diagnosis in various organ 

sites.[1]  These groups have shown that features of the vibrational spectra can be related 

to molecular and structural changes associated with neoplastic transformation.  

Accordingly, Raman spectroscopy has been applied towards in vitro detection of cancers 

of epithelial and mesenchymal origin such as breast, colon, esophagus and gynecologic 

tissues.[3]  While many challenges have prevented the widespread application of Raman 

spectroscopy for disease detection, recent developments in detector and source 

technologies have resulted in acquisition of Raman spectra from tissue in 1-3 seconds.  

Several fiber optics probes have also been developed that are capable of measuring 

Raman spectra in vivo making it possible to apply this technique in a clinical setting.[4]  

There have been an increased number of reports published, on applying Raman 

spectroscopy for detecting cancers in vivo, such as in the cervix, skin, breast and the 

gastrointestinal (GI) tract with high sensitivities and specificities.[5-9]   
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In order to achieve such high sensitivities and specificities, the appropriate 

statistical algorithms must be used to tease out important information from the Raman 

data.  A variety of statistical methods have been developed to classify the tissue as 

normal or abnormal.  For example, many research groups have normalized peak 

intensities to the four common Raman bands and then performed a student’s t-test to 

identify the peak ratios corresponding to the most significant difference between tissue 

types.[9, 10]  Logistic regression algorithms have also been utilized to distinguish 

between cancerous and non-cancerous tissue based on Raman spectra.  This algorithm 

was developed by nonlinearly transforming traditional linear regression so the outcome is 

only 0 (normal) or 1 (cancerous).[11]  After normalizing peak ratios, multiple ANOVA 

have sometimes been used to identify the most diagnostically significant peaks.[12] 

Other attempts to analyze data have included using principal component analysis 

(PCA) to establish differences among and decrease data from Raman spectra.[7, 12, 13]  

Principal components are a set of virtual spectra; using weighted linear combinations 

(scores) results in the real, measured spectra with a specified percent-variance.  The 

scores provide information on how the spectra are correlated.  Sometimes, this scoring is 

followed by other statistical analyses such as probabilistic artificial neural networks 

which can then be used to train the input Raman spectra to correlate with known outputs 

or pathological categories; this network can then be used to predict the pathology of a 

new input of Raman spectra.  Alternatively, after the spectra are broken down using PCA, 

linear discriminant analysis (LDA) can be used to maximize differences between 

pathology groups and minimize differences within groups.[14]  Other approaches utilize 

Fisher discriminant analyses (FDA) to classify the spectra following PCA to search for 
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nonlinear correlations.[13]  The majority of these algorithms undergo cross-validation 

analysis using the leave-one-out method to assess their validity.[13, 14] 

Cluster analysis is one method where similarities between genes are described 

mathematically, either by measuring the Euclidean distance, angle, or dot products of two 

n-dimensional vectors from series of n measurements of genetic information.[15]  This 

algorithm can be similarly applied to determine subtle changes in Raman data.  Another 

process is decision tree learning with genetic algorithms to determine optimal subsets of 

discriminatory features for pattern recognition.[16, 17]  A linear decision binary tree can 

be used for binary and multi-class, such as Pap smear cell classification.[16]  A few 

drawbacks of these algorithms are that they require a significant amount of time to 

develop and, once developed, they are only applicable to one type of data set. 

The major limitation of these previous applications is that the discrimination 

algorithms are binary, which are not capable of determining which class the tissue could 

belong to.  Tissue is also not homogenous, there could be multiple tissue types present in 

a single tissue sample.  Therefore, some of these algorithms are run a second and third 

time to further classify the outcome.[11]  More recently, Widjaja, et. al., have combined 

support vector machines (SVM) with PCA to classify colonic tissues as normal, 

hyperplastic polyps, or adenocarcinomas[18]  However, conventional SVM techniques 

are used to solve problems with binary solutions.  Their modified SVM is able to perform 

multi-class classification, but still relies on initial binary classification with an 

incorporated one-against-one strategy to train the model based on probabilities. 

Here we present a multi-class approach algorithm based on novel nonlinear 

statistical methods: Maximum representation and discrimination feature (MRDF) 
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combined with sparse multinomial logistic regression (SMLR).  We will demonstrate this 

multi-class method in the cervix.  Cervical dysplasia is a problem in both the US and 

throughout the world.  Cervical cancer is the second most common malignancy among 

women worldwide with more than 490,000 cases diagnosed, and 274,000 deaths each 

year.[19]  In the United States alone, it is estimated that in 2008, 3,870 deaths will occur 

from this disease and 11,070 new cases of invasive cervical cancer will be diagnosed.[20]  

The mortality rate in the US has been greatly reduced due to effective screening using the 

Pap smear and effective treatment of precancers (dysplasia).[21]  Due to how the disease 

progresses and regresses (shown in Figure 1), diagnosing the correct grade and progress 

of cervical dysplasia is very important in treating the disease.  Cervical dysplasia is 

usually classified as one of two groups: 1) Low grade dysplasia which includes human 

papillomavirus (HPV) and cervical squamous intraepithelial neoplasia (CIN) 1 and 2) 

High grade dysplasia which includes CIN2, CIN3 and carcinoma in situ (CIS).  The 

progression of disease is shown in figure 1, typically, low grade dysplasia is followed but 

not treated since approximately, 80% of low grade dysplasia regresses without treatment 

and less than 1% will develop into cancer.[22]  Conversely, 20% of high grade dysplasia 

will develop into cancer and only 1/3 will regress to a normal state without treatment.[20, 

22]  Therefore, an algorithm than can differentiate cervical tissue into at least 3 categories 

is essential: 1) benign cervix, normal, metaplasia and inflammation, 2) low grade and 3) 

high grade.   Metaplasia is often misclassified as dysplastic and therefore an additional 

category that classifies metaplasia could be beneficial. 
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Figure 3.1: A schematic of the progression of normal endocervix cells after squamous 
metaplasia begins.  The cells either transform into normal ectocervix or if infected with 
HPV may become dysplastic. 
 

 

In this paper, we demonstrate that by combining Raman spectroscopy data with a 

more sophisticated statistical method for classification will lead to an enhanced real-time 

diagnostic tool for cervical dysplasia.  First, we will show previous data analyzed with 

old algorithms.  Then, we will establish our new statistical method and use it on the data 

to show an improvement in specificity and sensitivity.  Finally, we will show that we can 

match or improve classification by Raman versus colposcopy. 
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3.3 Methods 

3.3.1 Data Collection and Instrumentation 

A total of 90 patients participated in this study.  Measurements were taken from 

either a procedure that removed diseased cervical tissue or a hysterectomy.  The same 

procedure was followed for data collection regardless of the procedure being performed.   

Thirty-three patients undergoing a colposcopy guided biopsy or Loop 

Electrocautery Excision Procedure (LEEP) were recruited to participate in the study as 

approved by the Vanderbilt and Copernicus Group Institutional Review Boards (IRBs).  

Informed consent was obtained from each patient prior to the procedure.  The cervix was 

exposed and visually examined by the doctor.  Acetic acid was applied to the cervix to 

turn abnormal areas white, followed by an application of iodine to clean the tissue and 

reveal the location of squamous epithelium.  Any abnormal tissue was removed and 

histopathology was performed.  Raman spectra were acquired after the application of 

acetic acid but before the application of iodine and the removal of tissue.  Spectra were 

measured from each visually abnormal area (1-6 measurements) and one visually normal 

area.  The patient’s age, date of last period, abnormal Pap smear result and menopausal 

status were noted upon chart review. 

Additionally, 33 patients undergoing hysterectomy were recruited to participate in 

the study as approved by Vanderbilt IRB.  Informed consent was obtained from each 

patient prior to the procedure.  The cervix was then exposed and visually examined by the 

doctor.  Acetic acid was applied to the cervix to keep the procedure similar to that of the 

dysplasia patients.  If the cervix was visually normal, spectra were measured from 
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multiple normal areas of tissue.  Measured areas were marked, the hysterectomy then 

proceeded as required and the removed tissue was histopathology was performed.    

Raman spectra were acquired using a portable Raman spectroscopy system 

consisting of a 785 nm diode laser (Process Instruments, Inc., Salt Lake City, UT), 7 

(300um) around 1 (400um) beam-steered fiber optic probe (Visionex Inc.), imaging 

spectrograph (Kaiser Optical Systems, Inc., Ann Arbor, MI), and back-illuminated, deep-

depletion, charge coupled device (CCD) camera (Princeton Instruments, Princeton, NJ), 

all controlled with a laptop computer.  For this study, the fiber optic probe delivered 80 

mW of incident light onto the tissue and collected the scattered light for 5 seconds.  In all 

cases, the overhead fluorescent lights and colposcope light were turned off during the 

measurements.  Any luminescent lights were left on but turned away from the 

measurement site.  

 

3.3.2 Data Processing 

The wavenumber axis was calibrated using neon-argon lamp, acetaminophen, and 

naphthalene standards each day.  The signal from the Raman spectrum was binned along 

the vertical axis to create a single spectrum per measurement site.  Prior to any signal 

processing, the spectrum was truncated to only include the region from about 990 cm-1 to 

1850 cm-1 to eliminate the Raman peaks due to the silica present in the fiber optic probe.  

The spectrum was then binned along the wavenumber axis in 3.5 cm-1 intervals and 

noised-smoothed with a 2nd order Savitzky-Golay filter.  Additionally, fluorescence 

background was removed using an automated, modified polynomial fitting method that 

utilizes a 5th degree polynomial to fit the fluorescence baseline.[23]  Once noise 
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smoothing, fluorescence subtraction were done spectra were normalized to its mean 

spectral intensity across all Raman bands and were used for subsequent data analysis. 

 

3.3.3 Statistical Analysis 

 To compare and contrast the binary versus multinomial class techniques, two 

different algorithms have been developed to classify cervical data.  The first is a binary 

algorithm that is based on peak rations and logistic regression.  The second is a multi-

class probabilistic algorithm that is based on machine support vectors and nonlinear 

logistic regression.  Both algorithms are described in detail below.   

 

3.3.4 Statistical Analysis – Binary 

 The first step in using Raman spectra is to develop a basic algorithm to 

discriminate between abnormal and normal tissue.  First, the mean and standard deviation 

at each wavenumber of the spectra within each pathology group was calculated to 

characterize the overall spectral trends for each group.  A Student’s t-test was performed 

at each wavenumber between individual pairs of pathology groups to identify regions of 

spectral distinction between two different pathologies.  Any major peak that showed 

statistical differences at the level of p< 0.01 between normal ectocervix spectra and high 

grade dysplasia spectra was chosen as an input for the algorithm.  Thus, the inputs to the 

algorithm are the normalized intensity values at 1006, 1055, 1244, 1305, 1324, 1450, 

1550, 1657 cm-1.  The classification model was constructed to automatically classify 

spectra into one of two categories (high grade dysplasia or benign cervix) using a two-

tiered logistic regression model.[11]  The first algorithm was developed to distinguish 
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normal from all other pathologies (metaplasia, high grade dysplasia) and the second 

algorithm discriminated high grade dysplasia from other pathologies (metaplasia).  

The first algorithm was trained using a training set to classify a spectrum as either 

normal ectocervix (score=0) or high grade dysplasia (score =1); the algorithm was then 

tested using a separate validation set.  The training and validation sets were randomly 

generated by dividing the normal ectocervix and high grade dysplasia data sets into a 

training set (two-thirds of the patients) and a validation set (one-third of the patients).  

The training and validation sets were divided by patients, not individual spectra, such that 

all spectra from one patient were either in the training set or the validation set, but not 

both.   

The algorithm then output a score, which represents the likelihood that the input 

data represents high grade dysplasia.  Data from the squamous metaplasia were also 

included as part of the validation set for the model even though no data from this 

category were included in the training set to examine the possibility that a single 

algorithm could discriminate all spectra of benign pathology from dysplasia spectra (see 

discussion).  Since the specificity of this single algorithm model was less than desired 

due primarily to misclassifications of squamous metaplasia spectra, a second logistic 

regression algorithm was developed to separate high grade dysplasia from squamous 

metaplasia to increase the specificity of the overall model. 

Any spectra from the test set with a score greater than 0.5 from the first algorithm 

formed the test set into the second algorithm (thus there were 8 high grade dysplasia, 8 

squamous metaplasia, and 4 normal ectocervix spectra).  The training set for the second 

algorithm was formed using only the high grade dysplasia spectra (29 spectra, score=1) 
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and squamous metaplasia (29 spectra, score=0) spectra as there were not enough spectra 

to create separate training and validation sets.  The same Raman bands from the first 

algorithm were also used as inputs in the second algorithm, but the output was a value 

(score) that represents the probability that the spectra were measured from an area of high 

grade dysplasia as compared with squamous metaplasia.  While the data did classify well 

using these algorithms, it was clear that we were losing some information in the Raman 

spectra by only looking at binary classification.   

 

3.3.5 Statistical Analysis – Multi-class 

Maximum representation and discrimination feature (MRDF) combined with sparse 

multinomial logistic regression (SMLR), was used to develop a multi-class diagnostic 

algorithm.[24]  This algorithm is a two step process; (1) extraction of diagnostic features 

from spectra using nonlinear MRDF and (2) classification based on these nonlinear 

features into corresponding tissue categories using SMLR.  Figure 3.2 shows a flow chart 

of this algorithm.   

MRDF is a method of feature extraction; it maximally extracts the diagnostic 

information otherwise hidden in a set of measured spectral data by reducing its 

dimensionality through a set of mathematical transforms as shown in figure 3.2.b.  Given 

a set of input data comprising of spectra from different classes with a given 

dimensionality, nonlinear MRDF determines a set of nonlinear transformations of the 

input data that optimally discriminates between the different classes in a reduced 

dimensionality space.  It invokes nonlinear transforms (restricted order polynomial 

mappings of the input data) in two successive stages. In the first stage, the input spectral 
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data T
Nxxx ],....,[ 21=x  (intensities corresponding to Raman shifts of the spectra) from each 

tissue type are raised to the power p′ to produce the associated nonlinear input 

vectors ],...,,[ 21
p
N

pp
p xxx ′′′
′ =x .  These vectors are then subject to a transform MΦ′  such that 

p
T

MM ′′=′ xy Φ  and are the first stage output features in the nonlinear space of reduced 

dimension M <<N.  In the second stage, the reduced M dimensional output features My′  

for each tissue type are further transformed nonlinearly to the power p to produce higher 

order features ],....,,[ 21
p

M
pp

Mp yyy ′′′=′y , and a second transform ΦK is computed so as to 

yield the final output features Mp
T
KK yy Φ=  in the nonlinear space of dimension K (K ≤ 

M).[25] 

SMLR is a method of supervised classification.  It is a probabilistic multi-class model 

based on sparse Bayesian machine-learning framework of statistical pattern recognition.  

The central idea of SMLR is to separate a set of labeled input data into its constituent 

classes by predicting the posterior probabilities of their class-membership.  It computes 

the posterior probabilities (from the equations shown in figure 3.2.b) using a multinomial 

logistic regression model and constructs a decision boundary that separates the data into 

its constituent classes based on the computed posterior probabilities following Bayes’ 

rule (i.e. a class is assigned to a spectra for which its posterior probability is the 

highest).[25]  Traditional statistical methods have focused primarily on using binary 

classification.  However, this method is limited when looking at complicated diseases, 

like stages of cancer.  A novel, multi-class method is more suitable for such applications. 

 



 41

 

Figure 3.2:  Flow chart of the multi-class discrimination algorithm. 
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3.4 Results 

Using both algorithms, a total of 29 high grade dysplasia (from 19 patients), 6 low 

grade dysplasia (from 5 patients), 29 squamous metaplasia (from 20 patients) and 100 

normal ectocervix (from 47 patients) were classified to compare the sensitivity and 

specificity of the two algorithms.   

First, the resulting spectra were then correlated with the corresponding 

histopathologic diagnosis to characterize the differences between various diagnostic 

categories.  Figure 3.3 shows the mean spectra for the full data set for each of the 

different categories.   

 

Figure 3.3: Average Raman spectra for normal ectocervix, low grade dysplasia, 
high grade dysplasia and metaplasia, the boxed regions are regions that are different. 
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Peaks were found at 1006, 1058, 1086, 1244, 1270, 1324, 1450, 1550, 1655 cm-1 

in most spectra.  Although the peak shapes and locations are consistent across all 

pathology classifications, there are small but significant differences in peak intensities 

among the different pathology categories.  Several spectral regions show statistically 

significant differences in comparing precancer to the normal ectocervix.  For example, in 

low grade spectra the 1324 cm-1 peak increases as compared with normal ectocervix, 

similar to the high grade precancer/normal ectocervix spectral comparison.  But, the 

intensity of the 1272 cm-1 and 1450 cm-1 peaks in low grade precancer spectra seems to 

remain similar to that seen in normal ectocervix, unlike in the high grade precancer 

spectra.  These differences are very subtle so there is a need for statistical approaches.  

A binary algorithm based on LDA was applied, using the output of this algorithm; we 

were able to distinguish between high grade precancer and benign areas of the cervix 

(normal ectocervix and squamous metaplasia) with sensitivity of 89% and specificity of 

88%.  Due to insufficient numbers (only data from 7 patients with evidence of LGSIL), 

we did not include low-grade data in this analysis.  The limitation of this particular 

discrimination algorithm is that it is binary, which does not allow for the multiple classes 

that the tissue could belong to.  In addition, the inputs for the algorithm were selected as 

normalized peak intensities thus ignoring other potentially useful information present in 

the spectra.  To address these limitations, a second discrimination algorithm was 

developed based on novel nonlinear statistical methods: MRDF combined with SMLR.  

In order to determine the effectiveness of a new discrimination algorithm as 

compared to the one used previously, we used the same 66 patients as before and 

classified this data using an algorithm based on MRDF and SMLR.  The diagnostic 
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algorithm using this method has the potential to discriminate using the complete in vivo 

Raman spectra acquired from the human cervix, simultaneously into the different 

pathological categories.  Unbiased performance estimates were obtained using leave-one-

patient-out cross validation.  The results indicate that Raman spectroscopy can 

distinguish high grade precancer from normal ectocervix and squamous metaplasia with a 

higher sensitivity and specificity than the binary algorithm (sensitivity - 92% (probability 

of disease classified correctly (LGSIL and HGSIL) and specificity - 96% probability of 

benign being classified correctly (normal and metaplasia) as shown in table 3.1.   

 

Table 3.1.  Classification using algorithm based on MRDF and SMLR. 

Classification Pathology based classification 

Raman Algorithm based 

classification 

High 

Grade 

Low 

Grade 

Metapl

asia 

Normal 

20 0 0 0 

0 5 0 0 

0 0 20 3 

High Grade 

Low Grade 

Metaplasia 

Normal 1 2 1 66 

 

 

High grade spectra were classified correctly 95% of the time, and only one 

misclassified as normal.  Low grade data was never classified as high grade and was 

misclassified as normal 29% of the time.  Very few low grade spectra were including in 

the analysis but this method now has a similar sensitivity and much higher specificity 
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than colposcopy guided biopsy in expert hands (sensitivity of 87% and specificity of 

72%). 

In order to ensure that our algorithm applies also to low-grade cervical 

precancers, we added twenty-seven patients which increased the number of samples 

within each category with an emphasis on low grade lesions.  Raman spectra from a total 

of 93 patients were analyzed using the algorithm based on MRDF and SMLR with leave-

one-patient-out cross validation.  The performance of the model is reported in table 3.2.   

 

Table 3.2.  Classification using algorithm based on MRDF and SMLR. 

Classification Pathology based classification 

Raman Algorithm based 

classification 

High 

Grade 

Low 

Grade 

Metaplasia Normal 

24 1 1 3 

0 18 0 3 

0 0 19 10 

High Grade 

Low Grade 

Metaplasia 

Normal 5 3 10 208 

 

 

The result of SMLR is a set of predictive values (or posterior probabilities) and 

these were obtained by using leave-one-patient-out cross-validation.  Figure 3.4 plots the 

predictive posterior probabilities of being classified as high grade dysplasia, low grade 

dysplasia, squamous metaplasia, and normal ectocervix for the normalized Raman spectra 

of the corresponding cervical tissue sites.  Even though emphasis was placed on 
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collecting low grade spectra, only 23 low grade spectra from 19 patients are represented 

in this study which may be a reason for the higher misclassification rate.  Even though we 

had some misclassifications with the low-grade data, overall, more than 88% of the data 

from this set classified correctly.  More clinical data from low grade cervix is needed to 

determine the full capability of this algorithm to differentiate between normal and low 

grade. 
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Figure 3.4: Posterior probabilities of being classified as normal ectocervix (N), low grade 
(LG) dysplasia, high grade dysplasia (HG) and metaplasia (MP). 
 

 

3.5 Discussion 

 Raman spectroscopy has the power to optically identify subtle changes in tissue 

that can lead to diseases like cancer.  Many statistical methods have been developed to 

tease out important, clinical parts of Raman spectra, allowing them to be correlated to 

specific pathological conditions.  Although binary methods have traditionally been used 
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to classify spectroscopy data, a more sophisticated method that is able to classify multiple 

classes at the same time is necessary as Raman spectroscopy moves closer to the clinic.  

Raman spectroscopy combined with a multi-class discrimination algorithm has great 

potential for biological applications, especially within tissue.  This paper demonstrates 

that when using the multi-class algorithm, we can improve the sensitivity from 92% to 

98% and the specificity from 81% to 96%.  Both methods (binary and multi-class) are an 

improvement over the current method of diagnosis, colposcopy guided biopsy in expert 

hands has a sensitivity of 87% and a specificity of 72% showing the capabilities of 

Raman spectroscopy.  

One major concern when taking in vivo measurements is that a certain sample 

volume may have two different pathological classifications.  The sample could be 75% 

metaplasia and 25% high grade dysplasia.   Therefore, in a binary algorithm that 

separates between high grade and metaplasia would classify this sample as metaplasia 

since the sample is dominated by metaplasia.   But with the multi-class algorithm, we 

may be able to show that this sample is mostly metaplasia, but has spectral contributions 

from the high grade dysplastic tissue.  This feature would prevent misdiagnosing the 

tissue as normal instead of metaplasia with some high-grade regions.  This is an 

important benefit of using the multi-class algorithm, even though the implementation of it 

is more complicated than a binary algorithm.   

The goal of this present study was to develop a multivariate statistical algorithm 

capable of simultaneously classifying Raman spectral data acquired in vivo from human 

cervical tissues into high grade dysplasia, low grade dysplasia, squamous metaplasia, and 

normal ectocervix.  The first task for the development of such an algorithm is the 
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extraction of diagnostically relevant features from the observed spectra by reducing the 

dimensionality of the measured spectral variables.  For good classification performance, 

the extracted features should contain sufficient class-discriminatory information.  Most of 

the published reports on spectroscopic diagnostic algorithms have reported using standard 

linear techniques like PCA and FDA to extract diagnostic features from the measured 

spectra of tissue.[26-29]  Although these linear techniques have the advantage of 

providing closed-form solutions, which make them relatively easy to implement, they are 

limited because they only extract information from the second-order correlation in the 

data and ignore higher order correlations that could be useful for improved 

discrimination.  Use of nonlinear techniques is required for this purpose.[30]  There are 

several nonlinear methods that exist for feature extraction in the pattern recognition 

literature; most of them are iterative and often need a priori selection of a number of 

parameters associated with the learning or the optimization technique used.[30]  They 

also are limited by problems with convergence.[30]  One major advantage of the 

nonlinear MRDF technique is that unlike the iterative nature of other nonlinear feature 

extraction algorithms, it provides a closed-form expression of the nonlinear transform for 

maximum discrimination.[31, 32]  Another advantage of using this method to classify 

spectral data is that it has the ability to separate classes that are not linearly separable.  As 

spectral data tends to be non-symmetric, using MRDF can lead to spectral separations 

with higher accuracy.   

This increased sensitivity makes Raman spectroscopy superior over other types of 

spectroscopy and therefore ideal for detection of small changes in early dysplasia.  

Although the number of low grade spectra in this study is few, we could identify the low 
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grade spectra 74% of the time.  Once diagnostic features are extracted from the measured 

spectral data, the final task of the algorithm is to classify these extracted features into 

respective tissue categories.  The major advantage of using the SMLR approach for 

classification is that since it is based on a Bayesian framework, it is able to predict the 

posterior probability of class-membership of the investigated tissue site.  This idea is 

demonstrated in Figure 3.4 where the predicted posterior probabilities of the different 

cervical tissue sites classified as high grade dysplasia, low grade dysplasia, squamous 

metaplasia, and normal ectocervix are plotted.  One may also note that most of the 

dysplastic sites have been classified with a posterior probability of greater than 80% into 

the corresponding tissue categories.  The probabilistic approach can offer an important 

advantage by making it possible to further interrogate these sites, especially when the 

goal is to correctly identify all abnormal sites for accurate screening of cervical dysplasia.  

An additional advantage of the new algorithm is that it provides the posterior probability 

of samples belonging to the different diagnostic categories.  We expect this to be 

extremely useful in a clinical setting because health providers could recheck samples 

having lower posterior probability of belonging to one category by using a traditional 

biopsy method. 

 Other groups have suggested that optical technologies are capable of 

distinguishing high grade dysplasia or cancer from normal cervix, but have had little 

success at differentiating low grade dysplasia from normal or high grade.  In this paper, 

we have demonstrated that by using MRDF with SMLR, Raman spectroscopy is capable 

of picking out some of the subtle changes that occur during the early stages of dysplasia.  

Unfortunately, we were unable to collect a large number of low grade dysplasia data and 
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future studies need to be focused on low grade data collection.  Also, these algorithms 

need to be usable in real-time clinical settings which will also be developed in the future. 

  

3.6 Conclusions 

Using a probability-based robust diagnostic algorithm capable of simultaneously 

discriminating in vivo Raman spectra, acquired from human cervical tissues, into various 

pathological categories improves performance compared to more traditional methods by 

allowing for multi-class discrimination.  The results indicate that Raman spectroscopy in 

conjunction with the diagnostic algorithm can distinguish dysplasia from normal 

ectocervix (including metaplasia) with a classification accuracy of 95%.  One additional 

advantage of the algorithm developed in this study is that it provides the posterior 

probability of samples belonging to the different diagnostic categories.  This is expected 

to be extremely useful in a clinical setting, because clinicians could recheck any sample 

having a lower posterior probability of belonging to one category with the conventional 

biopsy method.  These discrimination techniques are not only applicable to the cervix, 

but could be used in the spectral data analysis of tissue types that require a multi-class 

diagnosis, like GI and skin cancers. 
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CHAPTER IV 

 

VARIATIONS IN THE NORMAL CERVIX 

  

4.1 Introduction 

Cervical cancer is the second most common malignancy among women worldwide, 

with more than 490,000 cases diagnosed and 274,000 deaths each year. [1]  In the United 

States alone, it is estimated that in 2008, 3,870 deaths will occur from this disease, and 

11,070 new cases of invasive cervical cancer will be diagnosed. [2]  Several recent meta-

analyses have reported low Pap smear sensitivities in the range of 50 percent, but as low 

as 20 percent. [3, 4] Most of these studies, however, indicate that the Pap smear is 

generally a very specific test, meaning that cytology correctly identifies a high proportion 

of women who do not have high grade lesions or cancer.  Although cervical cancer does 

affect young women, many older women do not realize that the risk of developing 

cervical cancer is still present as they age. Slightly over 20% of women with cervical 

cancer are diagnosed when they are over 65. [5] Further, cervical cancer in Hispanic 

women occurs at a rate that is more than two times that of non-Hispanic white women. 

African-American women develop this cancer about 50% more often than non-Hispanic 

white women. [5] Thus there is a continued need for an effective diagnostic and guidance 

tool. 

Optical methods, including fluorescence spectroscopy, reflectance spectroscopy, 

optical coherence tomography (OCT), and Raman spectroscopy have been investigated as 

s potential new diagnostic tool.  In particular, Raman spectroscopy has shown 
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considerable promise as a new technology to detect and screen for cervical precancers 

with improved specificity over traditional methods.  Current studies suggest that Raman 

spectroscopy can differentiate between normal cervical tissue, metaplasia, low grade 

squamous intraepithelial lesion (LGSIL), and high grade squamous intraepithelial lesion 

(HGSIL) with an accuracy of 90%.  The most difficult pathology to classify is LGSIL, 

which is often misclassified as normal (Chapter 3).  One of the goals of this study, then, 

was to improve the ability to differentiate between LGSIL and healthy squamous 

epithelium.       

One method to improve the differentiation of LGSIL from healthy tissue is to 

determine the source of spectral variability in the normal cervix.   Many different 

physiological factors may affect the normal cervix, such as hormonal status and previous 

disease of the cervix. Several studies have shown that menopausal state and location in 

the menstrual cycle impact the optical properties.  For example, a study done by Gill et. 

al. showed that there was a statistical difference between pre- and post-menopausal 

fluorescence signal, and that the post-menopausal women had a higher average 

fluorescence signal.  This difference is likely due to the changes in collagen cross-linking 

of the cervix that occur during menopause. [6]  Another study done by Cox et. al. looked 

at the effects of the menstrual cycle on fluorescence measurements.  It indicated that the 

primary spectral differences seen relative to the menstrual cycle were caused by 

hemoglobin absorption, but this variability can be avoided if measurements are not taken 

in the first eight days of the cycle. [7]  The above studies used only fluorescence 

spectroscopy, but other changes in the cervix may be detected by Raman since the 

biochemical composition of the cervix changes during the menstrual cycle. 
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Variations in normal cervical spectra due to menopausal status and time point in the 

menstrual cycle, previous vaginal deliveries and evidence of previous disease were 

investigated in this study.  These differences were then used to improve the ability of 

Raman spectroscopy to diagnose low grade dysplasia.  Raman spectra from "normal 

patients" (no evidence of cervical dysplasia) and where then analyzed using advanced 

statistical methods.  Based on the results from investigating the variations in the normal 

cervix, more stratifications, in particular location in the menstrual cycle where included 

in the diagnostic algorithm and the ability to classify LGSIL improves to 97%.     

  

 

4.2 Methods 

4.2.1 Clinical Study Design-Pap Smear Patients 

Ninety-one patients undergoing a routine annual Pap smear were recruited to 

participate in the study as approved by the Institutional Review Board (IRB).  To be 

eligible for enrollment, the patient must be undergoing a routine Pap smear, be between 

the ages of 18-75, and have a cervix (no history of a hysterectomy).  Informed consent 

was obtained from each patient prior to the procedure.  The cervix was exposed, visually 

examined by the attending physician, and wiped clean with a dry cotton swab and then 

with a saline solution.  Multiple Raman spectra (3-5) of normal appearing sites were 

measured in vivo, and tissue sites were recorded as squamous epithelium, columnar 

epithelium, or at the squamous-columnar junction as determined by the attending 

physician. The Pap procedure then proceeded according to standard clinical protocol.  

The acquired spectra were considered normal if the Pap smear came out negative.  The 
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patient’s age, last menstrual period, artificial hormones (including contraception), and 

menopausal status were all noted upon chart review.   

 

4.2.2 Clinical Study Design- Colposcopy Patients 

Thirty one patients undergoing colposcopy-guided biopsy were recruited to 

participate in the study as approved by the Vanderbilt and Copernicus Group IRBs.  To 

be eligible for enrollment, the patient must be undergoing a colposcopy-guided biopsy, be 

between the ages of 18-75, and have a cervix (no history of a hysterectomy).  Informed 

consent was obtained from each patient prior to the procedure.  The cervix was exposed 

and visually examined by the attending physician.  Acetic acid was applied to the cervix 

to turn abnormal areas white, enabling visualization of abnormal areas, and iodine was 

applied to clean the tissue and show the location of squamous epithelium. The abnormal 

tissue was removed and the pathology was examined. Spectra were measured after the 

application of the acetic acid and before the application of the iodine (if needed).  Spectra 

were acquired from each area where a biopsy was taken and one visually normal area.  

The patient’s age, last menstrual period, abnormal Pap smear result, and menopausal 

status were all noted upon chart review.   

 

4.2.3 Data Collection 

Raman spectra were collected from multiple sites in vivo using a portable Raman 

spectroscopy system consisting of a 785 nm diode laser (Process Instruments, Inc., Salt 

Lake City, UT), beam-steered fiber optic probe (Visionex Inc., Atlanta, GA), imaging 

spectrograph (Kaiser Optical Systems, Inc., Ann Arbor, MI), and back-illuminated, deep-
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depletion, thermo-electrically cooled charge coupled device (CCD) camera (Roper 

Scientific, Inc., Princeton, NJ), all controlled with a laptop computer.  A photograph of 

the system can be seen in figure 4.1; more details of the system can be found elsewhere 

[8]. The fiber optic probe deliverers 80mW of incident light onto the tissue for 3 seconds. 

For each measurement, the overhead fluorescent lights were turned off. 

 

 

 

Figure 4.1: Photograph of the system 

 

Spectral calibration of the system was preformed each day using a neon-argon 

lamp, naphthalene and acetaminophen standards to correct for system wavenumber, laser 

excitation, and throughput variations.  The spectra were further corrected using a 

calibrated tungsten lamp to correct for system variations.  The spectra were processed for 

fluorescence subtraction and noise smoothing using a modified mean polynomial fitting 

approach [8]. Following data processing, each spectrum was normalized to its mean 

spectral intensity across all Raman bands to account for overall intensity variability. 
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These normalized spectra were categorized according to histology (squamous epithelium, 

columnar epithelium, or at the junction) as determined by the attending physician, and by 

menopausal status and used for further comparison and analysis. 

 

4.2.4 Statistical Analysis 

 The analysis technique that is used in this paper has been described elsewhere[9].   

The process consists of two steps - the first is extraction of diagnostic features from the 

spectra using the nonlinear maximum representation and discrimination feature (MRDF).  

The processed data set undergoes a two-step, non-linear transform to extract relevant 

features that provide the best class separation.  The second step is a probabilistic 

classification scheme based on sparse linear multinomial logistic regression (SMLR) for 

classifying the nonlinear features into corresponding tissue categories.  SMLR is a 

probabilistic multi-class model based on a Bayesian machine-learning framework of 

statistical pattern recognition. The main focus of SMLR is to separate a set of labeled 

input data into its class by predicting the posterior probabilities of their class 

membership. All classification was done using leave-one-patient-out cross-validation.  

 

4.3 Results 

4.3.1. Variations in Hormonal Status 

The spectra in Figure 4.2 are shown stratified by menopausal status.  The data is 

separated into one of 4 groups: pre-menopausal proliferative phase (days 1-14 of the 

menstrual cycle), or pre-menopausal before ovulations (PBO); pre-menopausal secretory 
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phase (days 15-28+ of the menstrual cycle), or pre-menopausal after ovulations (PAO); 

peri-menopausal (PERI); and post-menopausal (POST).       
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Figure 4.2: Average Raman spectra for post menopausal normal cervix (POST-30), peri 
menopausal normal cervix (PERI-34), pre-menopausal after ovulation normal cervix 
(PAO-54) and pre-menopausal before ovulation normal cervix (PBO-47).  

 

 

Women who were on traditional oral contraceptives were placed in the category 

in which they best fit.  The spectra have subtle but consistent differences, especially at 

1250cm-1 and 1300-1320cm-1.  These differences could be due to the changes caused 

different levels of estrogen and progesterone during a women's lifetime.  As seen in the 

confusion matrix shown as Table 4.1, the data were classified with an overall accuracy of 

98.2%.  
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Table 4.1:  Confusion matrix from the menopausal status data.  

Histopathology  

PBO PAO PERI POST 

PBO 47 0 0 0 

PAO 0 53 0 0 

PERI 0 0 33 1 

 

Raman 

Algorithm 

POST 0 1 1 28 

 

 

Only 3 spectra were classified incorrectly, and one of the misclassifications was a 

post-menopausal spectrum that was atrophic.  This is relatively common in post-

menopausal women and is clinically treated as normal, although an atrophic cervix has 

different biochemical components. 

 

4.3.2. Variations in Number of Vaginal Deliveries 

The cervix changes significantly during pregnancy, during a vaginal delivery, the 

cervix must stretch to allow for the baby to leave the uterus.   All women who have had a 

caesarian section (C-section) or a miscarriage were excluded from this study. When 

comparing the no vaginal deliveries (zero) to one vaginal delivery (one) and two or more 

(two plus), the classification accuracy was 62%.  The confusion matrix is shown in table 

4.2.    
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Table 4.2: Confusion matrix for the number of vaginal deliveries. 

Histopathology  

Zero One Two 

Zero 33 1 22 

One 1 13 4 

Raman 

Algorithm 

Two 18 4 36 

 

 

Due to low classification accuracy, we determined that previous vaginal deliveries do not 

significantly affect the biochemical composition, as seen in the Raman spectra, of the 

cervix in the long term and therefore do not need to be included in any of our algorithms.  

Although variations that would be seen in the Raman spectra still may be present.     

     

4.2.3 Variations in Cervical Health 

Variations in previous cervical health have the potential to affect the Raman 

signatures.  Spectra from women who have had previous cervical disease but currently 

have a healthy cervix (pervious abnormal) and spectra from women who have had no 

history of cervical disease are shown in Figure 4.3.  There are consistent differences at 

the 1250 cm-1 peak and at the shoulder around 1400 cm-1.    
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Figure 4.3: Average Raman spectra form no previous abnormal Pap smear  (110 spectra 
and previous abnormal Pap smear (53 spectra) 
 

 

In table 4.3, the confusion matrix for classification using MRDF and SMLR is shown.  

The spectra were classified correctly 99.3% of the time.  

 

Table 4.3: Confusion matrix for previous disease vs. the true normal (no abnormal Pap 
smear).  

Histopathology  

True normal Previous disease 

True normal 109 0 Raman 

Algorithm Previous disease 1 53 
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Although pervious disease has a significant affect on the biochemical signatures 

of the cervix, this information is not incorporated into the algorithm because no acetic 

acid has been added to the cervix in these studies.   In the data included in the LGSIL to 

Normal almost all the normal data has had disease somewhere in the cervix, so this 

difference should not affect the result of the classification algorithm.  This information 

needs to be considered if this technology is used as a screening method but as a guidance 

of biopsy it does need to be considered because these cervix all have evidence of disease.     

 

4.2.4 Dysplasia Study 

Average LGSIL spectra and the average normal spectra are displayed in Figure 

4.4.  The largest difference occurs between 1230cm-1 to 1300cm-1.  Many biochemical 

changes occur as tissue changes from normal cervical tissue to dysplastic cervical tissue, 

but in LGSIL, these changes are very subtle because only a few of the cells have 

undergone this transformation.  The classification accuracy when discriminating between 

LGSIL and normal tissue is 81% using MRDF and SMLR (CHAPTER 3).   
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Figure 4.4: Average Raman spectra for normal cervix (34) and low grade cervix (30). 

  

 

Using the new algorithm that incorporates hormonal status, the classification 

accuracy improved to 97% for LGSIL.  The new higher class discrimination algorithm 

was developed using the information obtained from the menopausal status study.  PERI 

and POST spectra were not included in this analysis because there were not enough 

spectra.  In table 4.4, the classification using 4 classes: normal-PBO, normal-PAO, low 

grade-PBO, and low grade-PAO is shown.  In this table, there are a total of 4 spectra that 

are classified incorrectly: two LGSIL and two normal. 
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Table 4.4: Confusion matrix for LGSIL vs. Normal separated by location in the menstrual 
cycle. 

Histopathology  

Normal-

PBO 

Normal- 

PAO 

LGSIL-

PBO 

LGSIL- 

PAO 

Normal- PBO 19 0 1 1 

Normal-PAO 0 13 0 0 

LGSIL-PBO 1 0 14 0 

 

Raman  

Algorithm 

LGSIL-PAO 1 0 0 14 

 

 

4.3 Comment 

This study brings Raman spectroscopy one step closer to clinical use by 

improving the specificity in diagnosing dysplasia.  This improvement was accomplished 

by incorporating variations in the normal cervix to differentiate LGSIL from normal.  It 

was found that changes due to menopausal state and menstrual cycle location in the 

normal cervix can be detected with Raman spectroscopy.   These stratifications need to 

be considered when using a classification algorithm to differentiate between normal and 

dysplastic tissue.  When this information is incorporated into the algorithm, the 

classification accuracy improves from 81% to 97%, indicating the potential of Raman 

spectroscopy to diagnosis low grade dysplasia.    The results are very promising, but the 

application of this new multi-class algorithm was on a small set of dysplasia/normal data.   

Both menopausal status as well as location in the menstrual cycle affects the Raman 

spectra, but due to the nature of cervical dysplasia, only pre-menopausal women were 
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included in the dysplasia portion of the study.  Other studies suggest Raman can be used 

to diagnose HGSIL with high success [10].   

One limitation of this study is that there are some instances where women do not 

fit into any of the categories (PBO, PAO, PERI or POST).    This can be due to a form of 

birth control (Depo-Provera (Depo)) or to very irregular periods (amenorrhea).  The 

MRDF and SMLR results from the spectral data from patients on Depo were very 

consistent and are shown in table 4.5.  The cervices of the women who use Depo for 

either birth control or health reasons classifies as pre-menopausal after ovulation (PAO).  

Since depo delivers a high level of progesterone, it stops the ovaries from releasing eggs, 

causes the cervical mucus to thicken, and changes the uterine lining, similar to the 

changes after ovulation.  After ovulation, the corpus luteum produces high levels of 

progesterone, and this progesterone thickens the mucus in the cervix and acts on the 

lining of the uterus.   The amenorrhea results are also as expected.  These women have 

very inconsistent periods and therefore may fall at any point in the cycle.  Despite this 

limitation, this application of Raman spectroscopy would still be very beneficial in the 

clinic.   
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Table 4.5: Classification of amenorrhea and depo data as classified by MRDF and 
SMLR.  

Histopathology  

Amenorrhea Depo 

PBO 1 0 

PAO 2 4 

PERI 1 0 

 

Raman 

Algorithm 

POST 2 0 

 

Optical spectroscopy for diagnostics has many advantages, such as real time 

monitoring, the ability to do "see and treat" procedures, a reduced need for biopsies, and 

the ability to monitor progression.  Although the Raman signatures are significantly 

weaker than other forms of optical spectroscopy, the slightly longer acquisition time and 

increased data processing is negated by the increased sensitivity and specificity.  For 

example, using fluorescence spectroscopy, the prospective sensitivity and specificity of a 

paired multivariate algorithm for discriminating precancers from non-precancerous 

tissues is 68% [11], whereas Raman spectroscopy has been shown to discriminate these 

tissues with an accuracy of 97% [12]. 

 

Studies show that Raman spectroscopy has the potential to detect small variations 

both in the normal cervix and in the cervix as it becomes dysplastic [10, 12]. The 

ectocervix consists of a dense fibromuscular stroma which is composed primarily of 

collagenous connective tissue and a ground substance of mucopolysaccharides.  The 

connective tissue is approximately 15% smooth muscle and a small amount of elastic 
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tissue.  Hormonal changes, such as menopausal status and location in the menstrual cycle, 

change the composition of the ectocervix [13].  Therefore, Raman signatures vary 

significantly depending on location within the menstrual cycle and with the onset and 

completion of menopause.  These differences are important when trying to correctly 

classify the results.   Spectral differences are shown in figure 1; the most notable 

differences occur around 1250cm-1, 1300cm-1, and 1320cm-1, most likely due to changes 

in protein levels, especially elastin and collagen.   During the menstrual cycle, the cervix 

becomes softer or more elastic as the level of estrogen increases.  After ovulation, this 

process is reversed, and the cervix loses some of its elasticity.  During peri-menopause, 

the layer of epithelial cells thins, and the vascularity and content of the cervix is erratic, 

but the spectra are consistent.  The most variable and therefore the hardest group to 

classify is the post-menopausal group.  The absence of ovarian estrogen and progesterone 

causes the cervix to change, including both dryness and atrophy.  These conditions are 

considered normal in a woman who has gone through menopause but could cause major 

differences in the Raman spectra. 

 The changes due to dysplasia are different than those associated with hormonal 

variations.  The largest change when comparing LGSIL Raman spectra to normal Raman 

spectra are in the 1230-1300 cm-1 range.  This peak range is usually associated with 

proteins and lipids[14].  It is expected that there will be variations in the protein and lipid 

content when dysplastic changes occur because of an increase in metabolic activity.  

Another expected change is a reduction in the glycogen peaks[15] that occur around 1300 

cm-1.   This difference is expected to be minimal in LGSIL because the disease only 



 70

affects a small portion of the epithelium.  As the disease progresses towards HGSIL, this 

drop in the glycogen peak is expected to be more drastic.   

Stratification and classification with a non-linear multi-class algorithm yields a 

posterior probability.  This is a powerful tool because it provides the confidence that a 

particular area is classified correctly.  If the confidence is low and the area is suspicious 

based on the doctor's observation, a biopsy could be taken as current clinical protocol 

suggests.   This method would greatly reduce the number of biopsies taken but would not 

eliminate them completely.  But then, most diagnoses could be determined in the clinic 

on the day of the visit instead of several days to a week later.  This eliminates the stress a 

woman feels while waiting for results and the need for a follow up visit to discuss the 

results of the biopsy. 

In future work, independent validation on a larger dysplasia patient population 

will be done to confirm clinical effectiveness.  Additionally, other changes in the normal 

cervix will be characterized and the algorithm modified as needed.  Overall, this method 

for LGSIL diagnosis seems promising and would greatly benefit rural communities and 

working individuals by limiting the time spent at the doctor's office. 
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CHAPER V 

 

RAMAN SPECTROSCOPY FOR CERVICAL PRECANCER DETECTION 

 

6.1 Introduction 

Cervical cancer is the second most common malignancy in women with over 

490,000 cases diagnosed and 274,000 deaths each year [1].  In the last 50 years, early 

detection has played a role in reducing mortality, but the incidence of pre-invasive 

cervical squamous carcinoma has risen dramatically [2].  While annual Pap smears are 

the standard of care amongst women in developed countries, most women in Asia and 

Africa typically do not have one.  Due to the lack of consistent screening techniques, the 

percentage of women that die from invasive cervical cancer increases from 32% in the 

US to 56% in the entire world.  Furthermore, over 80% of cervical cancer cases occur in 

developing nations [3].  Invasive cervical cancer is the number one cause of cancer 

related deaths among women in sub-Saharan Africa [3].  The Pap smear is not the 

standard of care in developing countries because of high costs, difficulty in preserving 

cell samples and transporting slides, lack of trained lab technicians to analyze the slides, 

and obstacles in bringing the women back for follow-up tests and for treatment [4].  Thus 

a tool that can screen and diagnose cervical cancer would relieve a tremendous and 

unnecessary burden in developing countries.  A tool that has the ability to accurately 

diagnose cervical cancer must be sensitive enough to differentiate between various 

stages, including normal, inflammation, metaplasia, low grade squamous intraepithelial 

lesion (LGSIL), high grade squamous intraepithelial lesion (HGSIL), and cancer.  From 
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this diagnosis, the care provider could decide on the appropriate treatment, whether to do 

nothing, to perform a loop electrosurgical excision procedure (LEEP), or something more 

drastic like a hysterectomy.   

Optical techniques have the potential to fill this need.  These techniques can be 

used as a "see and treat" method for detecting abnormalities in the cervix due to their 

noninvasive nature and ability to detect both biochemical (Raman [5-9] and fluorescence  

spectroscopy [10, 11]) and structural (optical coherence tomography [12]) changes in the 

cervix.  Raman spectroscopy is a molecular specific, noninvasive technique that measures 

the biochemical composition of a molecule by inducing vibrational or rotational 

transitions [13].  It has been used for many years to probe into the biochemistry of 

various biological molecules [8].  Recently, there has been an interest in using this 

technique for diagnosing precancers and cancers [14]. 

Although only a limited number of biological molecules contribute to tissue 

fluorescence, several biological molecules such as nucleic acids, proteins, and lipids have 

distinctive Raman features that yield structural and environmental information.  Results 

indicate that molecular and cellular changes that occur in precancerous tissues as well as 

in benign abnormalities such as inflammation yield characteristic Raman features that 

allow their differentiation.  For example, one of the more prominent changes that occur 

with cancer and precancer is increased cellular nucleic acid content; extensive DNA 

studies indicate that it may be possible to sample this change using Raman spectroscopy 

[15].  On the basis of these biochemical differences, several groups have studied the 

potential of vibrational spectroscopy for cancer diagnosis in various organ sites [8].  

These groups have shown that features of the vibrational spectra can be related to 
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molecular and structural changes associated with neoplastic transformation.  Raman 

spectroscopy has been applied towards in vitro detection of epithelial and mesenchymal 

cancers such as breast, colon, esophagus and gynecologic tissues [14].  Recent 

developments in detector and source technologies have resulted in acquiring Raman 

spectra from tissue in 1-3 seconds.  Several fiber optics probes have been developed that 

are capable of measuring Raman spectra in vivo making it possible to apply this 

technique in a clinical setting.  An increased number of reports have been published on 

applying Raman spectroscopy to detect cancers in organs in vivo such as the cervix, skin, 

breast and gastrointestinal tract with high sensitivities and specificities [9, 16-19].  In 

developing countries such as India and Zambia, where the use of the Pap smear is not 

practical for cervical cancer detection, Raman spectroscopy can be utilized as a screening 

and diagnostic tool. 

Raman spectroscopy does have a couple drawbacks, but these can easily be 

overcome.  First, measurements must be taken in the dark as sunlight affects the spectra.  

To address this concern, the procedure can be done in a room without windows, lit with 

incandescent lights.  Secondly, the signal output tends to be weak.  Post processing is 

done to extract weak Raman signal from the much stronger fluorescence. 

Raman measurements can be used for both screening and diagnosis.  In the US, 

women are usually screened every year with the Pap smear.  An abnormal diagnosis from 

the Pap smear is usually followed by HPV testing and/or a colposcopy guided biopsy.  

Our Raman system can be used in both settings, replacing Pap smear and biopsy.  In this 

paper, we show a successful clinical application of Raman spectroscopy to diagnose and 

screen for cervical cancer and precancer. 
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5.2 Methods 

5.2.1 Clinical Study Design-Dysplasia Patients 

Forty-three patients undergoing a colposcopy guided biopsy were recruited to 

participate in the study as approved by the Institutional Review Board (IRB).  To be 

eligible for enrollment, the patient must be undergoing a colposcopy guided biopsy, be 

between the ages of 18-75 and still have a cervix (no history of a hysterectomy).  After 

informed consent was obtained from each patient, the cervix was exposed and visually 

examined by the attending physician.  Acetic acid was applied to the cervix (to turn 

abnormal areas white for visualization) and abnormal tissue was removed and placed in 

fixative solution for pathology examination.  After applying acetic acid and before 

removing the tissue, spectra were acquired from multiple areas of tissue to be removed 

and 1-2 visually normal areas.  Based on the pathology, spectra were placed into three 

categories for analysis: no disease (normal), LGSIL, and HGSIL.  Only pre-menopausal 

patients were included in the analysis. 

 

5.2.2 Clinical Study Design-Pap Smear Patients 

Twenty-nine patients undergoing a routine pap smear were recruited to participate 

in the study as approved by the IRB.  To be eligible for enrollment, the patient must be 

undergoing a routine pap smear, be between the ages of 18-75 and still have a cervix (no 

history of a hysterectomy).  Informed consent was obtained from each patient prior to the 

procedure.  The cervix was exposed and visually examined by the attending physician.  

The pap procedure was done according to standard clinical protocol.  The cervix was 
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wiped clean with a dry cotton swab and then with a saline solution.  Acetic acid is applied 

to the cervix and measurements were taken in the same location as before.  The spectra 

were considered normal if the Pap smear was negative.  The patient’s age, last period, 

artificial hormones, any pervious abnormal Pap smears and menopausal status were all 

noted upon chart review.  Only pre-menopausal patients with no previous abnormal Pap 

smears were included in this study.  These patients are referred to as true normal.  Table 

5.1 lists the four categories used to describe the data set. 

 

Table 5.1:  Summary of the categories used to describe this data set. 

Description True Normal Normal LGSIL HGSIL 

History of Abnormal Pap 

smear (i.e. one or more) 

No Yes Yes Yes 

Evidence of Disease on the 

cervix regardless of location 

No Yes  Yes  Yes 

Evidence of disease where 

measurement is taken 

No No Yes Yes 

Presence of acetic acid Yes Yes Yes Yes 

Biopsy results NA No evidence 

of disease 

CIN I, HPV 

cellular 

effects 

CIN II, 

CIN III, 

CIS 
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5.2.3 Data Collection 

Raman spectra were collected from multiple sites in vivo using a portable Raman 

spectroscopy system consisting of a 785 nm diode laser (Process Instruments, Inc., Salt 

Lake City, UT), beam-steered fiber optic probe (Visionex Inc., Atlanta, GA), imaging 

spectrograph (Kaiser Optical Systems, Inc., Ann Arbor, MI), and back-illuminated, deep-

depletion, thermo electrically cooled charge coupled device (CCD) camera (Roper 

Scientific, Inc., Princeton, NJ), all controlled with a laptop computer.  Details of the 

system have been previously reported [20].  The fiber optic probe delivered 80mW of 

incident light onto the tissue for 3 seconds.  For each measurement, overhead fluorescent 

lights were turned off. 

Spectral calibration of the system was preformed each day using a neon-argon 

lamp, naphthalene and acetaminophen standards to correct for system wavenumber, laser 

excitation, and throughput variations.  The spectra were processed for fluorescence 

subtraction and noise smoothing using the modified mean method, described previously 

[20]. Following data processing, each spectrum was normalized to its mean spectral 

intensity across all Raman bands to account for overall intensity variability.  These 

normalized spectra were categorized according to menopausal status and histology as 

determined by the pathologist. 

 

5.2.4 Statistical Analysis 

The analysis technique used in this paper has been described elsewhere [21].  The 

process consists of two steps - first, extraction of diagnostic features from the spectra 

using the nonlinear maximum representation and discrimination feature (MRDF); second, 
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developing a probabilistic scheme of classification based on linear sparse multinomial 

logistic regression (SMLR) for classifying nonlinear features into corresponding tissue 

categories.  All classification was done using leave-one-patient out cross-validation. 

5.3 Results and Discussion 

Raman spectroscopy has been shown to be an effective method for cervical 

dysplasia detection.  Previous studies show that Raman can be used to differentiate 

between high grade dysplasia and normal tissue.  Due to inadequate low grade data, the 

true ability of this method had not been shown.   This study provides evidence that 

Raman spectroscopy has the potential to differentiate between LGSIL, HGSIL and 

normal cervix.   

The average Raman spectra from true normal ectocervix, normal ectocervix, 

LGSIL and HGSIL are shown in Figure 5.1.  The biggest difference can be seen between 

dysplasia (both high grade and low grade) and normal in the 1200-1300 cm-1 range, 

highlighted with a dashed box.  The peak around 1250 cm-1, usually associated with 

collagen, is higher in both true normal and normal spectra.  Conversely, the peak around 

1330 cm-1 is higher in the LGSIL spectrum and in the HGSIL spectrum; this peak is 

usually associated with DNA and glycogen [22, 23].  This difference is expected because 

as tissue gets more dysplastic, the amount of cellular DNA will increase due to rapid 

dividing and irregular growth [15]. 
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Figure 5.1: Average Raman spectra for true normal ectocervix, normal ectocervix, LGSIL 
and HGSIL.  

 

A four class algorithm (MRDF and SMLR) was used to classify the data (true 

normal, normal, LGSIL and HGSIL).  The classification results were obtained based on 

leave-one patient out cross validation of the entire data set.  This algorithm was able to 

classify dysplastic cervix with 97% accuracy.  Its best performance was with true normal 

and HGSIL where all the spectra were classified correctly, and it misclassified 

approximately 2-9% in the other 2 categories.  The result of the classification algorithm 

can be seen in Table 5.2.   
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Table 5.2: Classification of samples using on MRDF and SMLR leave one patient out 
cross validation. 

Histological Classification  

True 

Normal 

Normal LGSIL HGSIL 

True 

Normal 

52 1 1 0 

Normal 0 35 1 0 

LGSIL 0 0 43 0 

 

Raman 

Classification 

HGSIL 0 1 0 12 

 

A total of 4 spectra classified incorrectly suggesting several limitations of this 

current method.  Two normal samples classified incorrectly: one as true normal and one 

as HGSIL; two LGSIL samples classified incorrectly: one as true normal and one as 

normal.  For example, the biopsy correlating to one of the normal spectra that classified 

incorrectly came back as intense chronic endocervicitis suggesting that not all benign 

cervical conditions will classify as normal and that inflammation should be a separate 

category in the algorithm.  The other normal spectra that classified incorrectly classified 

as true normal was taken from a patient who had never had an abnormal Pap smear, the 

area that was misclassified was believed to be normal.  For the LGSIL sample that 

classified as true normal, biopsy results suggested mild HPV changes (LGSIL) in the 

tissue but no CIN, for this particular patient, this was the 1st abnormal Pap smear and the 

patient was young.  These two misclassifications suggest that our method may not be able 



 82

to detect initial local HPV effects or the initial diffuse HPV effects.  The other LGSIL 

that misclassified as normal had mild HPV changes where the biopsy was taken but did 

have CINI elsewhere, it is suspected that the biopsy was not taken exactly where the 

measurement was taken and could have possibly been normal.   In figure 5.2, the 

posterior probabilities are shown from the data in Table 5.1.  This displays how likely a 

particular spectrum will classify into each of the categories, which may be useful 

clinically because a doctor can determine the confidence that a measurement fits within a 

certain category. 
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Figure 5.2: Posterior probabilities of classification as true normal ectocervix (T_N), 
normal ectocervix (N), LGSIL (LG) and HGSIL (HG).  

 

Since menopausal stratus affects Raman spectra, only pre-menopausal women 

were considered for this study (unpublished work).  It is expected that if the algorithm 
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was run on a group of post or peri-menopausal women, we would find similar results.  As 

most cases of cervical dysplasia occur in younger women, our data set from older women 

is not large enough at this time to carry statistical significance. 

Although spectral differences are small and cannot easily be seen, they are 

significant enough to be picked up by sophisticated algorithms.  There are many 

advantages to using MRDF and SMLR for data reduction and classification.  One 

advantage is that it outputs a posterior probability as a measure of confidence in correctly 

classifying the tissue.  Higher posterior probabilities lead to more confidence in the 

result, allowing the doctor to be more confident in their diagnosis.  Although the primary 

application of this system is to “see and treat” in developing countries, this method could 

also be used in junction with colposcopy to reduce the number of biopsies taken.  For 

example, a doctor could place the probe on the suspected area and find a posterior 

probability of 97% that the tissue is LGSIL.  They may consider this area low grade 

without having to biopsy.  In situations where the area has a lower posterior probability 

of being low grade, the doctor may take a biopsy to ensure that the area is low grade. 

This method would be very useful in developing countries, where “see and treat” 

methods are optimal.  One major problem with screening alone is poor follow-up testing 

among women with abnormal pap smears.  Usually, an abnormal Pap smear requires a 

follow-up biopsy and then a return visit 3-6 months later depending on the result.  

However, an estimated 10-61% of women with abnormal Pap smears do not show up for 

follow-up testing [24].  Factors associated with this noncompliance include (1) only an 

elementary education, (2) prior surgery, (3) additional diseases, (4) consumption of 

medications for chronic conditions, and (5) family illness [25].  Additionally, only an 
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estimated 5 percent of women in developing countries have been screened for cervical 

dysplasia in the past 5 years compared with some 40 -50 percent of women in developed 

countries [25].  In developing countries, standard practice is for a nurse to photograph the 

cervix to send to a doctor for diagnosis.  This time-consuming process also has a high 

error rate and level of ambiguity.  Our method would allow a nurse to find suspicious 

areas, take Raman measurements, report an accurate diagnosis, and decide on treatment 

all on the same day, reducing the number of patients who are treated unnecessarily and 

ensuring patients receive an accurate diagnosis the same day in the clinic.  Raman 

spectroscopy has the potential to solve many of the obstacles facing accurate diagnosis 

and screening of cervical cancer. 
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CHAPER VI 

 

CONCLUSIONS AND FINAL REMARKS 

 

6.1 Summary of Conclusions 

Many discoveries were made in the course of this dissertation.  In this work, Raman 

spectroscopy was applied in vivo to over 200 patients.  The conclusions made supported 

by this dissertation are listed below. 

 

1) Multi-class discrimination algorithms can successfully classify cervical dysplasia into 

four separate categories demonstrating sensitivity and specificity greater than 90%, 

exceeding both more traditional binary methods (PCA and LDA) and the current gold 

standard of colposcopy. 

2) Changes due to menopausal state and menstrual cycle location in the normal cervix 

can be detected with Raman spectroscopy.  This is due to hormonal changes that 

change the composition of the ectocervix.   

3) Changes due to previous vaginal births are not detectable by Raman spectroscopy but 

changes due to previous disease are. 

4) The cervix of women who use Depo for either birth control or health reasons 

classifies as pre-menopausal after ovulation (PAO), since Depo delivers a high level 

of progesterone.  
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5) When comparing Raman spectra from pre and post menopausal women, there is a 

need for stratification based on menopausal status for effective diagnosis in patients 

with evidence of cervical disease. 

6) When this information is incorporated into the algorithm, the classification accuracy 

improves from 81% to 97% indicating the wide-spread potential of Raman 

spectroscopy. 

7) Finally, using true normal, normal of disease, HGSIL and LGSIL, the true capability 

of Raman spectroscopy was tested, the classification accuracy was 97%.   Therefore I 

believe that Raman spectroscopy has the potential to solve many of the obstacles 

facing accurate diagnosis and screening of cervical cancer. 

   

This work resulted in 1 accepted peer-reviewed publication, 2 submitted peer-reviewed 

publications (plus 1 in preparation) and 3 conference presentations/abstracts.  This work 

also resulted in 3 second author publications.  

 

6.2 Contributions to the field and Future directions 

Over the course my PhD work, I have demonstrated to many people that there 

might be a different way to detect cervical abnormalities.  I have shown many doctors the 

possible see and treat application of this method that will be particularly usefully in 

developing countries such as sub-Sahara Africa and India.  Although I was unable to 

implement this during my PhD work, I did bring the research to a point that this could be 

done in the near future.  I was able to show with high success, that Raman can be used to 
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detect cervical dysplasia; now the only issues are political and bureaucratic to get this 

done elsewhere.   

This method would be very useful in developing countries, where “see and treat” 

is an optimal method.  One major problem with screening alone is poor follow-up testing 

among women with abnormal Pap smears.  The majority of the time, an abnormal Pap 

smear requires a follow-up biopsy and then a return visit 3-6 months later depending on 

the result of the biopsy.  However, an estimated 10 -61 percent of women with abnormal 

Pap smears do not show up for follow-up testing [1].  Factors associated with this 

noncompliance include (1) only an elementary education, (2) prior surgery, (3) additional 

diseases, (4) consumption of medications for chronic conditions, and (5) family illness 

[2].  Additionally, only an estimated 5 percent of women in developing countries have 

been screened for cervical dysplasia in the past 5 years compared with 40 -50 percent of 

women in developed countries.  One of the current practices in developing countries is 

for a nurse to take a photograph of the cervix and send it to a doctor to get his diagnosis.  

This takes time and has many sources of error and ambiguity.  Our method would allow a 

nurse to find a suspicious area, take a Raman measurement of the area, and then 

effectively diagnosis the area.  The nurse could then either allow the women to go home 

untreated, treat the lesion with a LEEP in the clinic that day or send the patient to a 

doctor if the diagnosis is more serious.  This process could reduce the number of patients 

who are treated unnecessarily and ensure patients are getting an accurate diagnosis during 

the same day in the clinic.  One major issue in both the lower socioeconomic classes and 

in undeveloped countries is education.  We need to educate women that cervical 

screening is very important because it has no symptoms in its early stages and it is caused 
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by a sexually transmitted disease- HPV.  HPV is the most common STD and the majority 

of the population who have HPV are unaware. 

There are a few things that need to be done in order to have this technology 

implemented.  First, we need to understand if there are any differences due to race or 

ethnicity.  Most of the data I collected have been from the Caucasian population due to 

populations at Vanderbilt and in Northern Kentucky.  Although I don’t expect there to be 

any differences due to race or ethnicity, this does need to be quantified before the 

technology can be extrapolated to the developing world.  An IRB has been recently 

approved at Meharry Medical College in Nashville, in order to determine if there any 

effects on the Raman spectra due to race or ethnicity.  If any differences exist in the 

baseline Raman spectra of these populations, it is possible that they are not due to race 

but are more due to culture and socioeconomic class leading to nutritional, hygienic, or 

cultural differences.  We may or may not be able to easily quantify these differences (if 

any exist) but need to consider this aspect when attempting to move this technology 

across cultures. 

Although I was able to significantly reduce the size of the system and make the 

system more clinically applicable, some changes still need to be made.  One thing that 

needs to be done is the process needs to be automated, so spectra can be taken, processed, 

and placed directly into the discrimination and algorithm, resulting in a posterior 

probability and a diagnosis.  This would be particularly useful in clinics in developed 

countries as this method may be used in conjunction with biopsy to offer an additional 

confidence level.  For example, if the output of this algorithm is 60% low grade but we 



 91

are suspicious that it could be high grade due to the doctor's colposcopic examination or 

high grade Pap smear results, a biopsy can still be taken to confirm the results.  

Unfortunately, there are some difficulties in combining these programs into one that can 

easily be run.  The software will have to rewritten in a format that can be either run 

through Matlab or Labview.  My programming skills are not sophisticated enough to 

implement this change and hopefully we can find a programmer to make this a reality.  

Also, additional changes are still being added to the algorithm to make it even more 

sensitive and specific.   

The mapping study was very informative.  Many key findings were made.  We 

were able to see how much of the stoma we capture in our probe spectra.  Unfortunately, 

it was very difficult to obtain dysplasia samples.  There are only a few dysplasia patients 

included in the study due very limited availability.  Most places are unwilling to part with 

any portion of the tissue, even just for a few hours because of its diagnostic potential.  I 

think that a longer study (over several years) that allows for more dyspastic tissue 

samples to be studied and therefore more statistically sound observations could be made.  

This would allow us to confidently quantify the differences that are observed in our probe 

based study.  If we could say the increase in the 1330 cm-1 peak is due to the increased 

number of nuclei or larger nuclei or intercellular glycogen, we would better understand 

the biochemical changes that occur as the cervix becomes dysplasic and what we are 

actually detecting when using Raman spectroscopy.    

One thing I found particularly interesting is that it was necessary to train the 

physician in using the device.  Taking spectra on their hands was not adequate to get the 

patient experience.  We found that data did not classify well in either study for each of 
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the doctors’ 1st measurement.  In the normal study, slipping was a major issue due to the 

smaller speculum used as well as the lack of acetic acid to dry out the cervix.  There is a 

characteristic peak that is not in the other spectrum that occurs around 1290 cm-1 when 

the probe slips during measurement.  In the dysplasia study, the differences were not as 

obvious, but data were consistently misclassified on the physicians 1st day of 

measurements.  This could be due to the probe being held on the tissue at angle.  It might 

be necessary to have a sensor at the end of the probe to ensure it is in full contact.  This 

issue was easily resolved after the doctor completed several measurements. 

If I could change one thing, I would have kept my normal study consistent with 

the dysplasia study.  In the normal study, acetic acid was not used was not used for 

consent purposes; I thought this additional step may limit the number of patients that we 

were able to consent because of the additional time and slight discomfort.  Now, an 

additional number of patients need to be collected so the true normal can be included in 

the discrimination algorithm.  There are some differences in the cervix after any sort of 

dysplastic change and this case needs to be considered when developing a diagnostic 

technique.  However, depending on the utilization of this method in the clinic, the 

addition may not be fully necessary.   

No matter who undertakes this project, I think it will greatly benefit society.  I 

believe that Raman spectroscopy will be used in the future to detect cervical dysplasia 

especially in developing areas.  I am excited to see where this projects goes, whether or 

not I am directly involved or just catching up by what is published in the literature.  I 

hope to be involved at some level especially in the next few years.  I cannot wait to see 

not only the future of Raman spectroscopy in detecting cervical dysplasia, but also how 
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optical spectroscopy and optical imaging revolutionizes cancer detection and cancer 

treatment and medicine in general.  I feel that I have done my part in advancing optical 

technologies in medicine.  I feel that I have opened eyes to what optical technologies are 

and what their capabilities may be.  We have seen a few of the optical technologies 

(OCT) move into the medical norm and I feel that some of these other modalities are 

almost ready to make the jump from the lab to the clinic. 

 

Graduate school has been an enlightening experience; not only allowing me to 

have a greater understanding of BME but also of myself.  In my project, I was able to 

develop professional relationships.  I think getting my PhD will open many doors for me 

and what I have learned while at Vanderbilt University is irreplaceable.  The amount of 

growth emotionally, mentally, and professionally would not have been possible without 

my graduate experience at Vanderbilt. 
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APPENDIX I 

 

INSTUMENTATION VARIATIONS 

 

A1.1 Raman Instrumentation 

A Raman spectroscopy system that is used for clinical applications consists 

typically of 5 major components: (1) a fiber-optic probe, (2) a laser, (3) a spectrograph, 

(4) a charged-coupled device (CCD), and (5) a computer. A typical configuration (and 

the one used in our lab) is shown in Figure A1.1.  

 

 

 

Figure A1.1:  Schematic of a typical Raman spectroscopy system used in clinical 
applications. 
 
 

The probe is used for both excitation and collection.  The probe used in all of the 

experiments described in this dissertation was built by Visonex (Atlanta, GA); it is made 

of beam-steered fused silica with a total of 7 collection fibers that surround a single 
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emission fiber. A diode laser with near-IR excitation wavelengths are used most often in 

clinical applications because of their size and portability.  A 785nm laser made by 

Process Instruments, Inc. (Salt Lake City, UT) has been used for all the studies, although 

we have recently found that a smaller diode laser made by Innovative Photonics Systems 

(Monmouth, NJ) has a comparable signal and is much smaller. The collected light is 

directed into f-number matched holographic spectrograph in order to provide high 

throughput and a flat image field at the detector.  The spectrograph used to collect the 

data discussed here is made by Kaiser Optical System, Inc. (Ann Arbor, MI).  A CCD is 

composed of rectangular arrays of photosensitive pixels arranged either in horizontal or 

vertical directions. For Raman spectroscopy, the wavelength direction corresponds to the 

horizontal rows, and the columns are binned vertically so that an intensity corresponds to 

each wavelength. Our system employs a back-illuminated, deep depletion CCD.  The 

current configuration has a thermoelectrically (TE) cooled CCD camera made by Roper 

Scientific, Inc. (Princeton, NJ), but previous versions of the system have used a liquid 

nitrogen (LN) cooled camera also made by Roper Scientific.  From here on out, these will 

be referred to as TE and LN.  A photograph of each of these systems is shown in figure 

A1.2, the system with the LN camera is in figure A1.2.a and the one with the TE is in 

A1.2.b. 
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                  (a)                                                                          (b) 

 

Figure A1.2. Pictures of the systems described in this chapter: (a) the LN system and (b) 
TE system. 

 

 Interchanging the camera throughout clinical measurements has the potential to 

create spectral variation that lowers the integrity of the measured spectra.  But the change 

was made from the LN to the TE camera to improve clinical applications.  The LN 

camera requires that liquid nitrogen be put into the camera every few days to keep the 

camera cold.  Also, note the size and the appearance differences that came with the 

change of the cameras, the one in Figure A1.2.b has much more practical clinical 

application.  After the liquid nitrogen was put in, it took over an hour for the camera to be 

cooled to the appropriated temperature (-70C).  The camera also had a controller that had 

to be attached to a battery pack at all times to maintain the temperature.   This made the 

system more bulky and more difficult to transport into the clinic.   The new TE camera is 

USB controlled and can cool to -70 C in less than 15 minutes.  This system does not have 

to be attached to a battery pack (although ideal when trying to move from room to room 

in the clinic) and has no controller.  This camera variation must be understood and then 

corrected for in order to increase the diagnostic reliability of Raman spectroscopy.  
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A1.2 Variations in Instrumentation 

 In order for Raman spectroscopy to be an effective diagnostic tool, the origins and 

relative contributions of spectral variation must be understood. The goal of this PhD 

project is not to quantify these spectral variations, but, because a few became apparent as 

the project progressed, the differences were noted and changes were made.  There have 

been several groups that have studied the reproducibility of the Raman spectra of healthy 

tissue, in particular, skin [1] and cervical tissue. [2]  This suggests that spectra recorded 

from the same sample should be similar a posses minimal variability but, as you can see 

in Figure A1.3, this is not the case when two different Raman spectroscopy 

instrumentations measured normal spectra of the skin. [3, 4]  

 

Figure A1.3:  Raman skin spectra recorded with different Raman spectroscopy 
instrumentation systems. 
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 In general, the spectral shape is similar, but there are regions of variation; in this 

particular case, the signature is slightly different between 800 and 1500 cm-1. Therefore, 

it is necessary to be conscious of variations in data caused by instrumentation; these 

variations occur day-to-day as well as over the entire period of a study.   Because the 

differences shown in Figure A1.3 are from different institutions with different instrument 

configuration, differences in more similar systems may be less obvious.  

 Previously, a group in Texas tested the variability of different instrumentation for 

fluorescence spectroscopy.  They looked at the variability among spectra of three 

different standard trays that were recorded three times a day at three different locations 

using three spectrometers and four fiber optic probes, all having the same basic geometry. 

[5]   Most of the variability was explained by differences in the spectrometer (70%) or 

fiber optic probe (15%).  These investigators failed to assess differences due to the CCDs, 

which we believe can also affect Raman spectra.    

 Recently in our lab, a study has been done to assess the variability among spectra 

using different probe-based instrumentation systems.  The probe, camera, and laser were 

varied.  Using 8 different instrumentation combinations the spectral variance of skin 

spectra was estimated. The index finger of a volunteer was measured three times with 

each instrumentation combination.  Each probe delivered 80 mW of 785 nm incident light 

onto the tissue and collected the reflected light.  The integration time for each sample was 

held constant at three seconds.  For each measurement, all overhead fluorescent lights 

were turned off and the sample was covered with an opaque cloth.   Spectra from this set 

of experiments are shown in Figure A1.4, where the probe and spectrometer are constant 

but the camera and the laser vary.    
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 In this figure, there is little difference in the two cameras used (Pixis and Andor).   

The variance was calculated and was found to be minimal when comparing the different 

cameras.  The biggest variable was changing the probe (both had different geometries), 

but if the collection optics are kept the same, the spectra may be reliably compared.    

 

 

 

Figure A1.4:  Average spectra after probe and spectrometer variable isolation. 

 

 

 A major limitation in this study is that only newer cameras were used.  Both the 

Andor and the Pixis camera used in these experiments are TE cooled back-illuminated 

CCDs.   The same chip made by the same company is in both of these cameras and they 

are only a few years old.   Therefore, even though this study suggests that camera 
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variations are non-significant, using an older camera with a different chip might affect the 

spectra more significantly.   Additionally, the spectra used in this analysis had significant 

post-processing, including white-light correction.  We have used older, LN cameras in 

previous studies; however, the appropriate standards were not taken and the camera is 

currently broken.  At this time, spectral differences resulting from chip type and age have 

not been evaluated. 

  In this chapter, differences due to instrumentation are discussed.   Other sources 

of variations such as the doctor's experience and the probe slippage are also discussed. 

 

A1.3 Patient Population Studied 

 Patient population data has been obtained over the past 8 years by either Elizabeth 

Kanter (EK) or Amy Robichaux-Viehoever (ARV), the PhD student who worked on the 

project before EK.  Both collected measurements on women with evidence of cervical 

dysplasia; ARV collected mostly data from patients with HGSIL and hysterectomy 

patients.  And EK collected data focusing on patients with LGSIL and Pap smear 

patients.   Both ARV and EK have spectral data from healthy cervical tissue to serve of a 

control (either hysterectomy or Pap smear). Only the hysterectomy patients are included 

in this analysis because the Pap smear patient procedure was not consistent with that of 

the dysplasia study because no acetic acid was applied to the cervix before Raman 

measurements were taken.   All of the measurements taken by ARV were taken using the 

LN cooled CCD, while all the measurements taken by EK were taken using the TE 

cooled CCD.    
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A1.3.1 Clinical Study Design - Dysplasia Patients 

Eighty-five (33 AVR and 52 EK) patients undergoing either a colposcopy guided 

biopsy or a LEEP were recruited to participate in the study, as approved by the 

Institutional Review Board (IRB).  To be eligible for enrollment, the patient must be 

undergoing a colposcopy guided biopsy or a LEEP, be between the ages of 18-75, and 

still have a cervix (no hysterectomy).  Informed consent was obtained from each patient 

prior to the procedure.  The cervix was then exposed and visually examined by the 

doctor.  Acetic acid was applied to the cervix (to enable visualization of abnormal areas 

by turning them white), which was followed by iodine (to clean the tissue and show the 

location of squamous epithelium). The abnormal tissue was removed and placed in a 

fixative solution for pathology examination. Spectra were measured after the application 

of the acetic acid and before the application of the iodine.  Spectra were acquired from 

multiple areas of tissue to be removed by the procedure, and 2 visually normal areas.  

Tissue that is removed was underwent pathological analysis.   

  

A1.3.2 Clinical Study Design - Hysterectomy Patients 

Thirty-six (33 ARV and 3 EK) patients undergoing hysterectomy were recruited 

to participate in the study, as approved by Vanderbilt’s IRB.  To be eligible for 

enrollment, the patient must have been undergoing a hysterectomy for something other 

than cervical disease and have been between the ages of 18-75.  Informed consent was 

obtained from each patient prior to the procedure.  The cervix was then exposed and 

visually examined by the doctor.  Acetic acid was applied to the cervix to keep the 

procedure similar to that of the dysplasia patients.  If the cervix was visually normal, 
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spectra were measured from multiple normal areas of tissue that were removed by the 

doctor during the procedure.  Removed tissue underwent pathological analysis.  

 

A1.4 Data Collection 

Raman spectra were collected from multiple sites in vivo using a portable Raman 

spectroscopy system consisting of a 785 nm diode laser, a beam-steered fiber optic probe,  

an imaging spectrograph, and back-illuminated, deep-depletion, TE cooled CCD camera 

or a LN cooled CCD.  All of these instruments are controlled with a laptop computer. 

Details of the system can be found elsewhere. [6] The fiberoptic probe delivered 80mW 

of incident light onto the tissue for 3-5 seconds. For each measurement, the overhead 

fluorescent lights were turned off. 

 

Spectral calibration of the system was preformed each day using a neon-argon 

lamp, naphthalene, and acetaminophen standards to correct for system wavenumber, laser 

excitation, and throughput variations.  The spectra were processed for fluorescence 

subtraction and noise smoothing using the modified- mean method; this method is 

described in detail elsewhere. [6] Following data processing, each spectrum was 

normalized to its mean spectral intensity across all Raman bands to account for 

variability in overall intensity. White light correction was not done because this data does 

not exist for the data collected by ARV.   These normalized spectra were categorized 

according to histology as determined by the pathologist and by menopausal status before 

it was used for further comparison and analysis. 
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A1.5 Statistical Analysis 

The same analysis technique was used as was explained in previous chapters.   

The process consists of two steps: the first, extraction of diagnostic features from the 

spectra using the nonlinear maximum representation and discrimination feature (MRDF), 

and the second, development of a probabilistic scheme of classification based on linear 

sparse multinomial logistic regression (SMLR) for classifying the nonlinear features into 

corresponding tissue categories.   This technique was used because it was necessary to 

detect small differences in recorded spectra that were caused to the camera.    

 

A1.6 Spectral results 

 The average of 3 Raman spectra from ARV normal cervix and EK normal cervix 

are shown in Figure A1.5.   There are few visible differences; these could be due to 

processing and possibly camera resolution or quantum efficiency.   The spectral 

resolution using the LN camera is believed to be around 10 wavenumber and the spectral 

resolution of the TE cooled camera is about 8 wavenumbers.  The spectra taken with the 

LN (ARV) are much nosier than the spectra taken with the TE camera (EK).   The spectra 

taken by ARV have a longer integration time of 5 seconds compared to the 3 seconds 

used for the EK data.   This difference is due to the quantum efficiency of the cameras; 

the TE camera has higher quantum efficiency than the LN and therefore could produce 

smoother spectra in the same amount of time or even less. These differences could 

account for the more pronounced peaks in the EK normal spectra.  In general, the shape is 

very similar and the same peaks are present.   
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Figure A1.5. Average normal cervical spectra. 

 

 

 The average spectra from all of EK's data from HGSIL, LGSIL and normal are 

shown in Figure A1.6.   When comparing differences between the camera and differences 

between pathology groups, they are on the same magnitude.  Therefore, the differences in 

the camera need to be accounted for, and this is validated using statistical methods. 
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Figure A1.6. Average spectra from normal cervical, LGSIL and HGSIL. 
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A1.7 Classification results 

A four- class algorithm (MRDF and SMLR) was used to classify the data (normal, 

metaplasia, LGSIL and HGSIL).   In all cases, the classification results were obtained 

based on leave-one- sample- out cross validation of the entire data set.  The classification 

was originally run 3 different times.  The first time, the ARV and EK data were combined 

and the classification accuracy was 79.6%.   The confusion matrix is shown in Table 

A1.1; it is shown in percentages for ease of understanding.    

 

Table A1.1. Confusion matrix for all ARV and EK data. Classification accuracy 79.6% 

Histological Classification  

Normal Metaplasia LGSIL HGSIL 

Normal 85.8% 47.6% 25% 17.9% 

Metaplasia 1.7% 52.4% 0% 0% 

LGSIL 11.7% 0% 75% 0% 

 

Raman 

Classification 

HGSIL 0.8% 0% 0% 82.1% 

 

 

Because the algorithm had such poor classification, the reason for misclassification was 

investigated.  It was noted that most of the misclassified data was collected by ARV and 

not by EK.   The dysplasia data was more heavily weighed on EK's data (it comprised of 

61%) but the normal data was mostly ARV data; consequently, instrumentation variations 

are probably responsible for the misclassification and would explain why EK's data 

classified better.    
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 Because the statistical analysis that is used throughout this dissertation is very 

complex, a much simpler method using PCA and LDA were used to see if 

instrumentation variations could be used to accurately separate the data.  The all the 

normal data was run through PCA, and the first 14 PC's were used in order to use linear 

discriminate analysis.   The results are shown in Figure A1.7.   
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Figure A1.7. PCA/LDA results of the normal data classified by both systems. 
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This figure shows that there are significant differences between the two systems.   The 

system used for EK was misclassified as the system used by ARV once, and the system 

used by ARV was classified as EK 1 time.   This shows that the differences between the 

two systems are great enough that simple statistical methods can easily differentiate 

between the two systems, and this needs to be taken into consideration when using 

statistical algorithms.  

 
In order to prove the system variations (specifically the changing of the camera – 

all other instrumentation remains unchanged) were responsible for poor classification, the 

algorithm was rerun for both ARV’s data set and for EK's data set individually.   The 

results are shown in Tables A1.2 and A1.3 respectively.    

 

 

Table A1.2. Confusion matrix for all ARV data only.  Classification accuracy 94%. 

Histological Classification  

Normal Metaplasia LGSIL HGSIL 

Normal 86.5% 0% 29% 16.6% 

Metaplasia 0% 100% 0% 0% 

LGSIL 10.8% 0% 71% 0% 

 

Raman 

Classification 

HGSIL 2.7% 0% 0% 83.4% 
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Table A1.3. Confusion matrix for all EK data only.  Classification accuracy 87%. 

Histological Classification  

Normal Metaplasia LGSIL HGSIL 

Normal 86.5% 0% 13% 16.6% 

Metaplasia 0% 100% 0% 0% 

LGSIL 10.8% 0% 87% 0% 

 

Raman 

Classification 

HGSIL 2.7% 0% 0% 83.4% 

 

 

 ARV data classified correctly 94% of the time.   The low grade was classified 

poorly in this particular algorithm because there was insufficient data.   The biggest cause 

of concern 16.6% of HGSIL was classified as normal; this is a large number of false 

negatives and could be very dangerous because up to 20% of HGSIL may progress to 

invasive cancer if left untreated. [7]     

When the algorithm was applied to EK's data, dysplastic cervix was classified 

with 87% accuracy.  EK's data classification accuracy is less than ARV's classification 

accuracy, which could be attributable the EK's focus on LGSIL (LGSIL is much harder to 

classify).  Its best performance was in metaplasia, where all the spectra were classified 

correctly, and was approximately 12-16% misclassified in the other 3 categories.  In 

order to improve classification of normal, low grade, and high grade, the classification 

algorithm was modified to only include pre-menopausal women (as a consequence of the 

differences explained in Chapter 4).  After all the data that was not from pre-menopausal 

women was eliminated and the classification algorithm was rerun.  The classification 
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accuracy improved to 94% after making that correction and the confusion matrix is 

shown in Table A1.4. 

   

Table A1.4. Confusion matrix for all EK pre-menopausal data only.  Classification 
accuracy: 94%. 

Histological Classification  

Normal Metaplasia LGSIL HGSIL 

Normal 87.1% 0% 4.8% 0% 

Metaplasia 0% 100% 0% 0% 

LGSIL 12.9% 0% 95.2% 0% 

 

Raman 

Classification 

HGSIL 0% 0% 0% 100% 

 

 

In this instance, the performance of metaplasia remained the same at 100%, but 

the classification of high grade improved from 83.4% to 100% and low grade improved 

from 87% to 95%.  As shown in chapter 4, we can further improve this accuracy if we 

separate this data into before and after ovulation, but due to insufficient data, that has not 

yet been completed.  A total of spectra from 5 patients were classified incorrectly, 2 

spectra that were low grade were classified as normal, and 4 spectra that were normal 

classified as low grade.   Of the normal spectra that were classified incorrectly, 2 of them 

were in patients in which the doctor was not 100% sure that the area that was being 

measured was completely normal; however it was not HGSIL like the majority of the 

cervix.  Additionally, one of the others that was misclassified as normal, and one of the 

LGSIL that was misclassified as normal was taken on the doctor's first day of taking 
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measurements.   The remaining patient (2 misclassified spectra) had no explanation of 

why the spectra might be misclassified unless it was a miscommunication between the 

operator and the doctor and the spectra actually classified correctly. 

 

A1.8 Independent Validation 

Independent validation is essential to testing any new clinical technique. 

Therefore, after the testing of the algorithm, a very small independent validation was 

done.  We used spectra taken from patients undergoing a routine Pap smear that had 

come back abnormal.  When the spectra were taken, the time of the measurement on the 

cervix was noted.  The spectra were then run through the algorithm developed for this 

study.  The colposcopy was done as normal, and the colposcopy results were compared to 

the algorithm results.  The results of the six spectra that were run are as follows: 3 

classified as LGSIL and 3 classified as normal.  All of the spectra came from a cervix that 

the Pap smear suggested possible LGSIL.  In all the areas that were classified as normal, 

there were no biopsies taken, but colpscopic examination suggested that these areas were 

indeed normal.  In the area that classified as LGSIL, 2 of these regions were biopsied and 

were LGSIL, the other region was not biopsied but it was noted in the examination that it 

had a mosaic appearance.   This region may have had some disease but there is no way to 

confirm this.   Notably no acetic acid was used on these patients (which are why the Pap 

smear data was not included in the instrumentation variations), but, surprisingly, this does 

not seem to affect the outcome.  All but one of the six spectra were classified correctly 

and the remaining spectrum does not have a matching diagnosis.   
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A1.9 Training 

Probe slippage during measurements was an issue that may have affected the 

accuracy of readings taken during these studies. The doctor typically tells us that he or 

she thinks the probe slipped and that we should retake the measurements.  It was found 

that when the probe slipped there was a characteristic shape associated of the spectra.   

Figure A1.8 shows the spectrum from the cervix of a single patient, one is a normal 

spectrum with no slipping, and the second is a spectrum that was recorded when the 

probe slipped.   It has been shown that cervical spectra within the same patient are 

relatively similar, so visible differences like this are easy to observe. [2]  A double peak 

in the 1000-1100 cm-1 wavenumber region is characteristic of this type of error, and the 

observance of a third peak is also common (the "third peak" in Figure A1.8 is more of a 

shoulder around 1120 cm-1).  The general shape of the slipped spectra is slightly different 

from that of the normal, but the relative intensity of the peaks is dramatically different.   

Another trend that was seen was much more subtle than the slipping phenomena, is that 

the doctors’ first day of taking measurements is often misclassified.  For example in table 

A1.4, most of the normal spectra that are misclassified are taken on the doctors’ first day 

of taking measurements.  This difference is much more subtle than the differences due to 

the probe slippage, because the graphical differences are not visible to the naked eye.  It 

is possible that this could be due to the angling of the probe or not holding it flush to the 

tissue when taking a measurement.  This issue suggests that before a doctor begins using 

this procedure in the clinic, a short training session needs to occur.  It appears that after 

just a few measurements, the doctor can accurately hold the probe in the correct position 

and, therefore, the data classifies correctly. 
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Figure A1.8: Raman spectrum from a normal cervix, the dotted line is from when the 
probe slipped and the solid line is from when it was held in place properly.  

 

 

A1.10 Conclusions 

The spectral differences that results from either camera variations or system 

variations are small and can not be easily seen.  Nevertheless, these differences are 

significant enough to be picked up by the sophisticated algorithm employed by EK in this 

study.  Also, it is necessary to either use the exact same equipment or do significant post-

processing.   Finally, physicians training with the proper use of the probes will increase 

the quality and accuracy of the data collected which will improve the accuracy of the 

patient's diagnosis. 
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APPENDIX 2 

 

RAMAN MICROSPECTROSCOPY OF THE HUMAN CERVIX 

 

A2.1 Introduction 

A2.1.1 Normal Cervix 

A typical cervix is 3-4 cm in length and approximately 2.5 cm in diameter, but the 

size and shape vary with age, parity, and hormonal status. [1]  The cervix consists of two 

types of epithelia: the stratified non-keratinizing squamous epithelium that covers the 

ectocervix and is separated from the stroma by the basal layer, and the columnar 

epithelium that consists of a single layer of columnar cells and covers the surface of the 

endocervical canal. The interface of the two epithelia is called the squamocolumnar 

junction.  The location of the squamocolumnar junction varies over a woman's lifetime 

due to age, hormonal status, child birth trauma, oral contraceptives, and pregnancy.   The 

region where the columnar epithelium has been (or is being) replaced by squamous 

epithelium is called the transformation zone. [1]   Almost all squamous cervical 

neoplasias begin at the functional junction and occur when the newly formed immature 

epithelium becomes atypical instead of normal mature squamous epithelium. [2]   

 

A2.1.2 Cervical Disease and Progression 

The term squamous intraepithelial lesion (SIL) refers to the development of 

neoplasia arising from the epithelium of the cervix and is often also referred to as cervical 

dysplasia. Clinically speaking, cervical lesions can be divided into low grade lesions 
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(LGSIL, or mild dysplasia) and high grade lesions (HGSIL, or moderate and severe 

dysplasia and carcinoma-in-situ (CIS)). This distinction is important, as patients with 

LGSIL lesions are typically followed but not treated, whereas patients with HGSIL are 

usually treated immediately with extended follow-up. [2-4]  Most cervical lesions can be 

associated with a human papilloma virus (HPV) infection.  HPV is a class of viruses that 

predominantly infect skin and mucosal membranes and produce characteristic epithelial 

proliferation, which can lead to malignant transformations. [2]   There are several HPV 

strains that are more likely to induce this transformation; these include 16 and 18, which 

can be protected against using the Gardasil vaccine, and approximately 12 other subtypes. 

 

A2.1.3 Relationship between Cervical Pathology and Cervical Biochemistry 

 As tissue becomes dysplastic, several changes occur, such as the nucleus to 

cytoplasm ratio increasing in the epithelium.  This change is more drastic as the lesion 

becomes more serious and is one of the most important factors in assessing the grade of 

the disease.   Another relevant change in the epithelium is a decrease in the amount of 

glycogen as disease progresses. [1]  Changes associated with menopause also affect the 

biochemistry of the cervix, as discussed in Chapter 4.  The epithelium thins, but the 

biochemistry of the tissue should remain constant but the ratio of components such as the 

epithelium and stroma should change.  Other changes that occur in post menopausal 

women include the collagen matrix coalescing. [5]      
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A2.1.4 Raman Spectroscopy 

As shown in the previous chapters, Raman spectroscopy has the potential to 

detect biochemical changes that occur in the cervix.  DNA and other nuclear material, as 

well as glycogen, have characteristic Raman peaks, and changes in these peaks have been 

seen in vivo.  In chapter 3, Figure 3.3 displays the average spectra taken in vivo from each 

of the following categories: LGSIL, HGSIL, normal, and metaplasia.  In these spectra, 

the ratio of the 1260 cm-1 peak (associated with collagen) to the 1320 cm-1 peak 

(associated with DNA) increases in the LGSIL and HGSIL groups compared to benign 

cervix, meaning more DNA is present compared to the amount of collagen.     

Additionally, in chapter 4, Figure 4.2 displays the average spectra taken in vivo from each 

of the following categories: normal cervix from the 1st part of the menstrual cycle, the 2nd 

part of the menstrual cycle, peri-menopausal, and post menopause.  In these spectra, the 

ratio of the 1260 cm-1 peak (associated with collagen) to the 1320 cm-1 peak (associated 

with DNA) increases in post-menopausal women compared to all other categories, 

meaning more signal is derived from the stroma compared to the epithelium since the 

epithelium is thinning (this change is small).   

 

6.1.5 Optical Microspectroscopy 

All of the differences described above were seen with probe-based measurements 

on in vivo tissue where the sampling volume is on the order of millimeters 

(approximately 1-2 mm).  It is therefore important to understand the biochemical and 

morphologic basis of the spectral signatures, as well as the basis for differences in the 

signatures of the tissues when developing a diagnostic technique.  Raman micro-



 117

spectroscopy records spectroscopic information from tissue with high spectral and spatial 

resolution, and is thus a useful tool for understanding the biological basis of spectral-

based tissue discrimination. 

 

A2.1.6 Goal of this Study 

The goal of this study was to determine from where a few of the differences that 

are observed in the in vivo Raman spectra originate, most the differences are expected to 

come from the epithelium in diseased patients since that is where the disease originates.  

Micro-Raman spectra were acquired from several different cervical tissue samples using 

a Renishaw Raman microscope.  Stroma and epithelium of pre- and post-menopausal 

women and diseased and non-diseased women were characterized with this system.  The 

spectra were compared to one another and to the probe data described in the pervious 

chapters.   The majority of the signal that is seen in the probe data was collected from the 

stroma, and this proportion increases in post-menopausal women, likely due to the 

thinning of the epithelium.  

 

 

A2.2 Methods 

A2.2.1 Sample Collection and Preparation 

Informed consent was obtained from patients undergoing LEEP excision and 

vaginal hysterectomy. Ethical approval for this study was obtained from Gloucestershire 

Local Ethics Committee (Institutional Review Board). Tissue samples, which were 

typically 1cm in diameter, were immediately snap frozen in liquid nitrogen upon 
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excision. For each patient, their age, menopausal status, and date of last menstrual period 

(if applicable) were noted.  

Frozen sections with a thickness of 15-20 microns were placed onto calcium 

fluoride slides for Raman spectral mapping and stored frozen until measured. Serial 

seven micron sections from either side of the mapping section were obtained and stained 

with hematoxylin and eosin (H&E) for histopathological evaluation. An expert 

pathologist annotated each sample with the different pathologies, including normal 

ectocervix epithelium, normal endocervix epithelium, transition zone, and LGSIL or 

HGSIL.  Glands, stroma, and warts due to HPV were also identified for correlation with 

frozen sections.  A total of 12 samples were obtained from a total of 6 patients - 3 from 

hysterectomy patients and 3 from LEEP patients.   Two of the LEEP patients had 

evidence of HPV (LGSIL) and HGSIL in other parts of the tissue that was not available 

to us.  Two of the hysterectomy patients were post-menopausal, and the final one was 

pre-menopausal.          

 

A2.2.2 Raman Microspectroscopy 

Prior to Raman microspectroscopy, sections were thawed at room temperature. 

Raman spectra were acquired using a customized Renishaw System 1000 spectrometer 

with Streamline™ technology, a novel rapid technique for Raman data acquisition as 

described previously. [6] The system is shown in Figure A2.1.   
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Figure A2.1:  Schematic of the system used. 

 

 

The system consists of two parts - a Renishaw spectrometer and a microscope.  

The spectrometer has a diode laser with a wavelength of 830 nm used for excitation and a 

300 lines/mm grating used to disperse the scattered light, which was measured with a 

deep depletion charge coupled device (CCD) detector.  The microscope consists of a 

Leica 50x long working distance objective used to focus the laser on the sample and to 

collect the Raman scattered light and a motorized translation stage.  Renishaw Streamline 

proprietary hardware and software built in to WiRE™ 3.0 was used for Raman mapping.  

Raman spectra acquired from regions of interest identified by the pathologist were 

acquired with a spectral acquisition time of 40 seconds and step size of 12.7 microns in 

both x and y directions. Typical maps were of the order of 50 x 100 spectra, which took 

approximately 14 hours to acquire.  Some lager areas where acquired, and these maps 

took 3 days to acquire; fortunately, using the streamline this time was reduced from 3 



 120

weeks.  A white light montage of each tissue sample was taken to correlate the Raman 

spectra to the histology image.  

 

6.2.3 Data Processing 

Standards where taken at the beginning of each measurement day, or the 

beginning of the measurement if it took several days.  The spectrometer was calibrated 

daily with a silicon standard, which had its center wavenumber set at 520.4 cm-1.  Data 

processing was carried out using Matlab and the PLS toolbox (Eigenvector Technologies, 

Manson, Washington, USA). First cosmic rays were manually removed prior to principal 

component analysis (PCA). Pseudocolor principal component (PC) score maps were then 

generated. The pseudocolor score maps were compared to the H&E sections and were 

then used to select regions of different tissue pathological classification within both the 

epithelium and stroma. From the selected region, mean spectra were calculated for each 

region, and background subtraction was achieved by iterative subtraction of a 5th order 

polynomial.   

 

A2.2.4 Data Analysis 

Raman peaks within the mean spectra that differed between the various pathology 

groups were identified and compared with the literature.  Spectra were visually compared 

to spectra from the in vivo data.    In some instances, the spectra were added together to 

best fit the spectra in the in vivo data to get the best visual approximation for where the 

majority of the signal originates.  All resulting spectra were correlated to the existing 

data.        
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A2.3 Results 

The white light image of a section of frozen normal cervical tissue is displayed in 

figure A2.2.a; regions of epithelium (E) and stroma (S) are marked.  This image was 

mapped using Raman microspectroscopy, and the mean spectra from the epithelium and 

stroma are shown in figure 6.2.b.  There are several differences between the mean 

spectra: the epithelium has a higher signal at 1086, 1126, and 1334 cm-1, while the stroma 

has a higher signal at 1246, 1554, and 1614cm-1.  
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(a) 

 

(b) 

  

Figure 6.2:   (a) White light image of the ecto-cervix; the bottom portion is epithelium, 
and the upper portion is stroma. (b) The corresponding average Raman spectra from each 
region.  
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In order to relate this result to the work discussed in previous chapters, these 

measurements taken with the microspectroscopy system were compared with those taken 

with a fiber optic probe-based system.   The amount of signal that that comes from the 

relatively thin surface epithelium versus how much of the signal is due to the stroma was 

quantified.  It was found that the best approximation of probe-measured spectra consisted 

of approximately 75% stroma and 25% epithelium using best fit and laying the two 

figures on top of one another.  Figure 6.3 shows the combination of 75% stroma and 25% 

epithelium in the top panel and the spectra from a probe measurement in the bottom 

panel.    Although this is an approximation (a more thorough approximation was not done 

because of the differences found in Appendix 1), the region from 1000cm-1 to 1150cm-1 

is different between the two panels.  This could be due to several factors; first, the optics 

are different in both of the set-ups and therefore different backgrounds might be present.  

As was shown in Appendix 1, spectra from two systems, especially if the geometries are 

different cannot be directly compared but crude approximations can still be made.   Some 

of the differences are, silica fibers are used in the probe but not the micro-spectrometer 

system, and silica has a Raman peak at approximately 1000 cm-1.  Differences are also 

seen in the 1200-1400 cm-1 region, which could be due to a background subtraction issue.  

Additionally, a 785nm laser was used for the probe measurements, and an 830nm laser 

was used for the mapping measurements. 
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Figure A2.3. Raman spectra of 75% stroma and 25% epithelium in the top panel and the 
spectra from a probe measurement in the bottom panel 
 

 

Average spectra of the stroma from pre (before ovulation)- and post-menopausal 

women are shown in figure A2.4.   There are increases at 1030, 1098, 1314, 1126, 1314, 

1558, and 1578 cm-1 in the pre-menopausal women compared to the postmenopausal 

women.   Differences are expected because the cervix changes as a women ages.  The 

average spectra from the epithelium in pre- and post-menopausal women is not shown 

because there were no visible differences between the spectra.  The spectra in figure 4.2, 

which shows average spectra taken in vivo from normal cervix from the 1st part of the 

menstrual cycle, the 2nd part of the menstrual cycle, peri-menopausal, and post 

menopause, have some similar trends compared to the spectra in figure A2.4.  The peak 

in the 1314 cm-1 to 1330 cm-1 range is higher in the pre-menopausal spectra compared to 

the post menopausal spectra, and the post-menopausal spectra are slightly higher at the 



 125

1450 cm-1 peak than the pre-menopausal.  The epithelium might contribute to some of the 

changes that occur in the spectra shown in chapter 4, but since the spectra shown in 6.4 

are from a woman who only underwent menopause in the last 5 years, the changes 

associated with menopause might not have taken full effect.       
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Figure A2.4: Average Raman spectra from the stroma of pre- and post-menopausal 

women.  

 

 

Raman spectra were acquired from a sample that has both normal ectocervix and 

LGSIL (or mild HPV changes), a histology image of which is shown in figure A2.5.  The 

region from which measurements were taken are highlighted and labeled (a-normal 

ectocervix, b-LGSIL, c-stroma under normal and d-stroma under LGSIL).   Average 

spectra from normal ectocervix and LGSIL regions are shown in figure A2.6.  Figure 
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A2.7 shows the average spectra from the stroma from a region under normal epithelium 

and the stroma from diseased epithelium.   

 

 

Figure A2.5:  Histology image from a cervix that has evidence of LGSIL and normal. a-
normal ectocervix, b-LGSIL, c-stroma under normal and d-stroma under LGSIL. 

 

 

LGSIL, in this case HPV changes, is shown along with normal to highlight the 

different peak intensities as determined by an expert pathologist and based on the 

pathology of the rest of the tissue.   The differences between normal epithelium in the 

cervix and HPV changes within the same sample are subtle.  Slight increases in intensity 

can be seen at 1334 and 1082cm-1, both of which are usually associated with DNA.   
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Figure A2.6: Average Raman spectra from the epithelium of HPV infected tissue and 
from normal cervical tissue.  
 

 

 There are larger differences between the stroma under HPV infected tissue and 

the stroma under normal tissue.  The average spectra from the stroma of HPV infected 

tissue and from normal tissue, as depicted in figure A2.5, are shown in figure A2.7.  

There are increases in peak intensity from 1000 cm-1 to 1100 cm -1 and from 1250 cm-1 to 

1350 cm-1.  The stroma under normal tissue seems to be more active than the stroma 

under the infected cervical tissue.  This suggests that having disease in the epithelium 

does affect the underlying tissue.  It is expected that in diseased tissue, the increase in 

signal associated with disease in the epithelium and thickening of the epithelium will 

increase the percentage of the signal coming form the diseased portion of the tissue, 

making differentiation of disease and normal possible.    
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Figure A2.7: Average Raman spectra from the stroma of HPV infected tissue and from 
normal cervical tissue. 
 

 

A2.4 Discussion 

 Human cervical tissue was investigated with a Raman micro-spectrometer 

microscope.  This allowed for the differences between the epithelium and the stroma, the 

changes that occur with aging, and the differences that occur with disease to be 

highlighted.  Many studies have been completed on in vivo cervical tissue, and have 

clarified where some of the changes in tissue originate. [7, 8], [Chapter 3-5]     

The stroma is composed mostly of collagenous connective tissue, whereas the 

epithelium is a more active cellular layer.  These differences can be seen when comparing 

the average Raman spectra from stroma and epithelium in Figure A2.1.b.  The stroma has 

higher signal in regions that are usually associated with collagen, such as the 1002, 1266, 
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and 1555 cm-1 peaks. [9]   Conversely, the epithelium has higher signal in regions 

associated with DNA, such as 1334 cm -1 [10], and lipid content, like the 1086 [11] and 

1126 cm-1 peaks. [12]  The components displayed in figure A2.2.b were then added 

together to estimate the relative contribution of the epithelium and stroma in the spectra 

taken from the normal cervix with a probe in vivo.   The best estimate is that 25% of the 

signal comes from the epithelium and 75% of the signal comes from the stroma.  This 

was somewhat unexpected since the probe geometry favors collection from the surface of 

a tissue, in this case the epithelium.  The excitation photons can penetrate well into the 

stroma, however, since the epithelium is only about 200 microns thick.  

The stroma is more active in pre-menopausal women than post-menopausal 

women because it is no longer needed in post-menopausal women. [1]  Collagen is 

present in both the pre- and post-menopausal spectra, but there are some differences in 

the peaks associated with it.  Overall, the trend is a decrease in the peaks associated with 

collagen (1030 cm-1 [13], 1126 cm-1, 1314 cm-1 [14] and 1558 cm-1 [9]), but in two of the 

peaks associated with collagen (854 cm-1 [14] and 938 cm-1 [7]), there is an increase in 

relative intensity of collagen in menopausal women compared to pre-menopausal women.  

There is a structural change in the collagen in the stroma that occurs with menopause.  

The collagen matrix coalesces, which suggests a change in the dynamics of the matrix 

that results in the shrinking of the cervix [5], which explains why some of the peaks 

associated with collagen increase and others decrease.   There is also an increase in a few 

of the peaks usually associated with DNA, such as 1098 cm-1, 1314 cm-1, and 1578 cm-1.  

The decrease in DNA is expected because the cervix is primarily regulated by ovarian 

estrogens.  The estrogen is present in significantly lower levels in the post-menopausal 
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women, and therefore it is expected that the cellular content, and thus DNA content, of 

the cervix decreases. 

Several differences are expected between dysplasia and normal spectra (figure 

A2.6 and A2.7).   Dysplasia only directly affects the surface epithelium.  The grading of 

cervical dysplasia is dependant on the degree of epithelium involvement; as soon as 

disease invades into the stroma, it is considered cervical cancer.  In figure A2.6, 

differences between the epithelium of a normal vs. diseased cervix are displayed.  This 

cervix has very mild disease (HPV changes), so it is expected that there will be some 

changes in the Raman originating from the epithelium.  Some of the changes that occur in 

the spectra can be associated with DNA, in particular at 1334 cm-1. [15] It is expected 

that as a tissue starts to become more active, and in this case more dysplastic, the amount 

of cellular proliferation and therefore the amount of DNA should increase.  Although this 

change is very subtle in the example shown, this is expected because there is a minimal 

amount of disease present.  In fact, this type of disease will regress back to normal the 

majority of the time and is very unlikely to develop into anything serious.       

The changes that are seen in the average Raman spectra from the stroma below 

HPV infected tissue and from the stroma below normal tissue, in figure A2.7, are more 

unexpected than what is seen in figure A2.6.  In this graph (figure A2.7), there are 

increases in two regions of the spectra of stroma below a normal compared to stroma 

below a disease.   This suggests that disease could actually indirectly affect the 

underlying cervix.  There are some differences in peaks, such as 1316 cm-1 [16] and  

1334 cm -1 [15], that are associated with DNA, and increases in peaks that are associated 

with glycogen – 1048 cm -1, 1083 cm -1, 1256 cm-1 and 1333 cm-1 [13].  It is known that 
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the glycogen in the epithelium decreases with disease [1], but there is no mention of what 

happens in the stroma as a result of disease in the epithelium.  Other increases are in the 

lipid content of the cervix.  The peaks at 1260 cm-1 to 1304 cm-1 [16] are associated with 

the Amide III band.  All of these increases may suggest healthy tissue, but the reason for 

this is unknown.  It could be due to the nutrients in the blood being used to produce new 

dysplastic cells, or it could be that disease decreases the activeness of the surrounding 

tissue.   This phenomenon needs to be studied in more detail. 

The findings in this chapter will help improve the detection abilities of Raman 

spectroscopy in vivo.  It cements the need to separate pre- and post menopausal women, 

since the thinning of the epithelium increases the stromal contribution, and there are 

differences in the normal stroma between these two groups.  It also suggests that small 

changes in the cervix associated with the disease can be seen in both the epithelium and 

the stroma, so the collection volume is reasonable for cervical dysplasia detection.    

 

A2.5 Conclusions 

 We were able to show that using Raman mapping of the human cervix, one can 

see differences between the epithelium and stroma, and that when this is compared to 

probe data, the stroma dominates the signal even though it is subsurface.   It was also 

found that Raman can detect changes associated with menopause in the stroma but not in 

the epithelium.  In a previous chapter (4), it was demonstrated that using the probe-based 

system, there were statistical differences between pre- and post-menopausal women.   It 

was found that these differences are due to changes in the stroma due to the coalescence 
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of collagen.  Additionally, it was found that HPV affects the spectra of both the 

epithelium and the stroma.    

 

A2.6 Future directions and limitations 

 Several experiments need to be done to make this study more complete.  First, all 

of the mapping data was done at 830nm, whereas all the probe data was done at 785nm, 

so a comparison of the two different wavelengths needs to be done.  Ideally we need to 

do the comparison on the same piece of tissue.  Also, high grade dysplasia and cancer 

need to be added to the dysplasia part of the study.  Unfortunately, obtaining this tissue is 

very difficult.  It is almost impossible to obtain dysplasia tissue in the US; therefore, we 

have been working with a group in England to obtain these tissue samples.   We have 

been collecting tissue for several months and have not been able to obtain any high grade 

samples and only 2 low grade samples.    
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