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CHAPTER I 

 

INTRODUCTION 

 

Motivation 

According to the U.S. Department of Energy, global demand for energy is 

expected to more than double by 2050 exceeding 30 terawatts (TW) and more than triple 

by the end of the century to 46 TW.1 Nonrenewable resources, fossil and fissionable 

nuclear fuels, are being increasingly depleted and their continued use poses grave 

environmental threats. Excluding solar energy, the total renewable energy potentially 

available worldwide from wind, tidal, geothermal, biomass and hydroelectric sources is 

estimated to be between 12 and 27 TW, of which only a small fraction is currently 

utilized.2 Meanwhile, sunlight delivers more energy to the Earth in one hour than all the 

energy consumed on the planet in a full year; 125,000 TW strike the Earth’s surface: 

36,000 TW on land, of which 2,200 TW are within the U.S.2 If utilized, 10% efficient 

photovoltaics covering 0.16% of land on Earth would provide 20 TW of power, while 

covering a mere 1.6% of U.S. land would fulfill the entire country’s energy needs.2 

Despite solar energy’s enormous potential, it accounted for less than 0.1% of the 

world’s electricity in 2001.2 The primary reason for this discrepancy is today’s 

photovoltaic-generated electricity’s exorbitantly high cost, which is approximately 5 to 

10 times greater than fossil or nuclear electricity, and 10 to 20 times greater than primary 

fossil energy.3 The cost of solar electricity is dictated by the relatively high fabrication 

costs and low efficiencies of today’s commercial bulk silicon solar cells, which typically 
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require processing from a silicon melt (above 1414 °C) and have a theoretical efficiency 

limit of ~30%.4 To bring the cost of photovoltaics low enough to compete with today’s 

nonrenewable energy sources, paradigm-shifting research into new solar electricity 

conversion technologies is required.2 Within the Rosenthal group at Vanderbilt 

University, we are pursuing one of these technologies: a fully solid-state, inorganic 

nanomaterial-based photovoltaic ─ an evolution of the electrolyte-based Grätzel cell.5 

 

Nanomaterial-Based Photovoltaics 

Specifically, we are we are pursuing an ordered bulk heterojunction photovoltaic6 

featuring mesoporous nanocrystalline anatase titania (meso-nc-TiO2) functionalized with 

PbS/PbSe7 inverse core/shell8 nanocrystals shown in Fig. 1 (left). We seek to achieve 

efficiencies approaching that of photosynthesis, nature’s 99% efficient photon-to-electron 

conversion system, by designing our photovoltaic biomimetically such that it separates 

the functions of light harvesting and charge transport, with initial charge separation being 

ultrafast and unidirectional.6 Further efficiency gains will be realized by utilizing 

chemical self-assembly9 to form an interpenetrating network10 of functional constituents 

with an increased photoactive region as compared to bulk thin films.2,6 Low production 

costs will be achieved by using semiconductor nanocrystals, which are synthesized 

pyrolytically at temperatures less than ~300 °C,11 as the principal light-harvesting agent, 

while the inorganic framework will consist of nanostructured titania, an inexpensive 

material used as a pigment in a wide variety of applications, indium tin oxide (a 

transparent hole conductor), an aluminum electrode, and a small molecule chemical 

linker connecting the semiconductor nanocrystals to the titania (TiO2). Figure 1 includes 



 3 
 
 

a theoretical band diagram (right), which highlights that charge separation is primarily 

driven by enthalpy as charge carriers lower their energy as they travel away from the 

inverse core/shell.6 We envision this photovoltaic to be low cost and highly efficienct, as 

well as highly robust owing to its inorganic make-up. 

 

 

 

 

 

 
Figure 1: Nanomaterial-based photovoltaic. Left: Idealized graphic representation (not 
to scale) of a fully solid-state, inorganic nanomaterial-based photovoltaic. Right: Energy 
band diagram showing work function and band gap (where applicable) of each 
component; note that the alignment of the bands reduces back-transfer of charge carriers.2 

 

The benefits of meso-nc-TiO2 are three-fold: (1) the vertical orientation of the ~50 

nm wide pores will allow the incorporation of both semiconductor nanocrystals, via 

chemical self-assembly, and the hole-conducting material (ITO in this case); effectively 

‘stacking’ the nanocrystals vertically above the aluminum substrate will increase the 
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photoactive region, an effect known as the area enhancement factor (AEF),6 while 

physically separating the electron and hole conduction materials, TiO2 and ITO 

respectively, will reduce the surface area for charge recombination,2,12,13 (2) the pore 

walls are comprised of an amorphous network surrounding anatase nanocrystallites, 

which will likely improve the electron mobility and therefore the device efficiency over a 

purely amorphous framework,6,14 with the further advantage of anatase being the 

allotrope of titania having the highest charge-carrying rate,15 and (3) the TiO2 

nanocrystallites will also be able to generate charge carrier pairs, albeit relatively few, 

upon near-UV solar irradiation, typically around 3% of the spectral output of sunlight for 

anatase TiO2,12 with the synergistic benefit of improved performance when 

functionalized with lead-containing nanocrystals.16 Ultimately, periodically-arrayed 

monodisperse nanocrystals in nanostructured TiO2 could enable preferential attachment 

of specific crystal facets, resulting in optimal charge separation.2 

In addition to their photostability (resistance to photodegredation), incorporating 

semiconductor nanocrystals as the active light-harvesting agent in our proposed 

photovoltaic will improve photoconversion efficiency for several reasons. The permanent 

intrinsic dipole present in stoichiometric nanocrystals17 will act to vectorially separate 

charge carriers on the ultrafast timescale, potentially reducing the annihilation of charge 

carriers within the nanocrystal,13 and meeting the requirements for subsequent separate 

charge transport and extraction.18 Furthermore, the quantum confinement effects resulting 

from the size of the nanocrystals will positively impact efficiency in a number of ways: 

first, nanocrystals exhibit large extinction coefficients, on the order of ~106-107 L/mol-

cm at the band gap for CdSe nanocrystals,6 second, nanocrystals exhibit enhanced 
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absorption cross sections, for example a 35 Å CdSe nanocrystal has one thousand times 

the absorption cross section of bulk CdSe,13 and finally, quantum confinement in 

nanocrystals allows band gap tunability with size and composition.19 Engineering the 

band gap can improve device efficiency because band edge absorption is the most 

effective light harvesting behavior,20 and because the band gap can be tuned to capture as 

much of the solar spectrum as possible. 

This desire to maximize the amount of the solar spectrum utilized has led to the 

inclusion of Pb-containing nanocrystals in our proposed photovoltaic.  Nearly half of all 

solar energy lies beyond 700 nm,18 which is above the limit of most Cd-containing 

nanocrystals. Pb-containing nanocrystals, such as PbS and PbSe, have bulk band gaps 

much smaller than Cd-containing nanocrystals, which means they can absorb into the 

near-IR portion of the solar spectrum; PbSe for instance, would be able to harvest nearly 

the entire solar spectrum.6 An added benefit of using smaller band gap nanocrystals is 

that of impact ionization,21,22 also known as inverse Auger scattering. In PbSe 

nanocrystals it has been shown that a single photon of more than twice the band gap can 

produce two or more charge carrier pairs, a phenomenon known alternately as carrier 

multiplication or multiple exciton generation.7,23 Photons with energy greater than the 

band gap, which would otherwise be lost as heat, instead add to the photoconversion 

efficiency of the device. In theory, photovoltaic conversion efficiency could by increased 

via the effect of impact ionization above ~65%.2 Additionally, PbS nanocrystal cores will 

be coated with a narrower band gap shell material, PbSe (0.41 and 0.27 eV respectively). 

In contrast to the more common core/shell nanocrystals, which localize charge carriers 

within the core and thereby enhance fluorescence quantum yield, by optimizing the core 
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to shell, radius to thickness ratio, we hope to localize charge carriers principally in the 

shell.8 There they will be more likely to be transported separately along their respective 

pathways (TiO2 and ITO), further reducing the probability of electron-hole 

recombination. Charge-carrier localization in inverse core/shells and carrier 

multiplication in small band gap semiconductor nanocrystals are illustrated in Fig. 2. 

 

 

 

 

 
Figure 2: Inverse core/shell and impact ionization. Left: Charge-carrier localization in 
inverse core/shell nanocrystals. Charge-carriers are theoretically confined to the core in 
conventional core/shell nanocrystals, and to the shell in inverse core/shell nanocrystals. 
Right: Impact ionization occurs in semiconductor nanocrystals that experience quantum 
confinement because their diameter is on the order of their bulk Bohr radius, aB. In small 
band gap nanocrystals, a single incident photon of more than twice the band gap can 
produce two or more electron-hole pairs ─ a process known as multiple exciton 
generation.   

 

The meso-nc-TiO2 could be functionalized with PbS/PbSe inverse core/shells via 

a chemical linker molecule, likely mercaptopropionic acid (MPA).24-26 MPA can act as a 
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bifunctional surface modifier because the carboxylate group at one end has a strong 

affinity for TiO2, while the Thiol group on the opposite end binds strongly to the 

nanocrystals.26 Optimizing the linker molecule, for instance by incorporating a shorter 

molecule to lower the barrier to charge carrier dissociation,18 may be critical to final 

device efficiency. 

Conversely, a physical deposition method such as electrophoretic deposition 

(EPD) could be used.27 If functionalization via MPA is analogous to chemisorption, 

whereby an adsorbate adheres to a surface through the formation of a chemical bond, 

EPD is analogous to physisorption, which works only through weak intermolecular Van 

der Waals interactions. EPD has already been used to deposit a variety of nanocrystal 

systems,28-30 including CdSe nanocrystals.31-34 EPD employs the internal dipole moment 

of semiconductor nanocrystals35 to transport them through a non-polar solvent to a 

charged anode or cathode. In comparison to attachment via MPA, which can take up to 

two days, EPD can deposit nanocrystals in 15 to 20 minutes, making it a more attractive 

process for large-scale production.27 

Finally, if necessary, a barrier oxide between the ITO and the nanocrystals may be 

added. This barrier would be incorporated in order to prevent charge carrier back reaction 

and to self-heal the structure where missing nanocrystals could permit recombination.13 

Although a variety of work has been published on photovoltaic (and photocatalytic) 

devices that share many of the characteristics of our envisioned nanostructured solar cell, 

including Pb-containing nanocrystals, meso-nc-TiO2, and chemical linker molecules 

connecting the constituents, to the best of our knowledge, we are the only group that has 
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proposed such an ambitious device that could potentially benefit from the wide variety of 

phenomenon mentioned above. 

 

Characterization Techniques 

Scanning electron microscopy (SEM) works primarily by detecting secondary 

electrons that are inelastically scattered by atoms within the interaction volume near the 

surface of the sample. The SEM’s minimum probe size is too large to make it suitable for 

imaging either TiO2 or semiconductor nanocrystals, as is possible with the transmission 

electron microscope (TEM, see below). However, because it images with secondary 

electrons, it is ideal for imaging amorphous TiO2 nanostructures prior to calcination and 

for imaging thick TiO2 films or tall TiO2 pore walls; conversely TEM predominantly 

images crystalline materials and cannot be used to image specimens too thick for the 

electron probe to traverse. Of importance to this work, the SEM is limited in its depth of 

field, which makes determining pore depth by plan view imaging unworkable, and both 

oxide and polymer specimens alike experience varying degrees of sample charging, 

which hinders clear imaging of the final calcined product and makes imaging of the 

polymer mold nearly impossible. 

Both x-ray crystallography (XRD) and transmission electron microscopy (TEM) 

rely on the crystallinity of the nanostructured material, CdSe or TiO2 for example, to 

garner useful information. By measuring the diffraction of an x-ray beam incident on a 

crystalline sample, XRD allows definitive allotrope assignment by comparison with 

known diffraction patterns (PDFs). When used to investigate nanocrystallites, peak 

broadening in the XRD can be used to estimate crystallite size via the Scherrer’s 
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equation. Similarly, the TEM relies on the periodic nature of the crystal lattice to generate 

a phase contrast image of a nanocrystalline sample. Exact atomic positions can only be 

discerned from high-resolution TEM images using techniques such as focal series 

reconstruction or off-axis holography, while lattice fringe spacing can sometimes be used 

for allotrope determination. 

In contrast to TEM images, which can be used to produce data on a nanocrystal 

by nanocrystal basis, every XRD trace produces data from an enormous number of 

nanocrystals. Specifically, TEM imaging and XRD can be used to determine nanocrystal 

structure and size, while TEM alone can be used to determine nanocrystal shape. Another 

characterization technique that produces data from an ensemble of nanocrystals within a 

sample is Rutherford backscattering spectroscopy (RBS), which can be used to determine 

nanocrystal stoichiometry with an accuracy better than a picomol.36 RBS can be used to 

measure chemical composition by comparing the proportional energy variation of 

backscattered ions; heavier elements scatter ions to a greater extent than lighter ones. 

While TEM allows the determination of the crystal structure of individual 

nanocrystals, and can be used to size nanocrystals when many images are used, surface 

structure and chemical composition are nearly impossible to resolve.
12,31

 In order to 

image individual nanocrystal surfaces, aberration-corrected atomic number contrast 

scanning transmission electron microscopy (Z-STEM) must be used. Aberration-

corrected Z-STEM microscopes can be used to produce atomic resolution images with 

unprecedented detail. In fact, Z-STEM imaging has been used routinely for the last few 

years to produce images with resolution below one Ångstrom.37-41 
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CHAPTER II 

 

BACKGROUND 

 

ABC-Based Meso-nc-TiO2 Background 

Two synthetic methods were pursued to produce the mesoporous nanocrystalline 

anatase titania (meso-nc-TiO2) framework: the first was a “bottom-up” self-assembly 

approach based on the incorporation of a large amphiphilic block copolymer (ABC) into 

a TiO2 sol-gel, and the second was a “top-down” lithography-like approach that used a 

polymer mold, patterned by an anodic alumina oxide (AAO) template, to emboss a TiO2 

sol-gel.42 

The chemical self-assembly approach to mesoporous materials had limited access 

to the size regime of 2 to 50 nm pores, which the IUPAC defines as mesoporous, until the 

early 1990’s when chemists at the Mobil Corporation discovered that by using large 

organic amphiphilic surfactant molecules (ABCs) as templates for the final inorganic 

structure, they could synthesize materials with highly controlled pores in the 2 to 10 nm 

range.43,44 The incorporation of nanocrystallites into the pore walls of a wide variety of 

transition metal oxides, including TiO2, was first reported in 1998 by Galen D. Stucky’s 

group at the University of California at Santa Barbara,45 but it was not until 2002 that 

Stucky and coworkers reported predictably producing materials with nanocrystal-

containing pore walls.46 The difficulty until then had been that the pore walls, pore 

diameters, and nanocrystallite domains were all approximately the same size; therefore, 
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during calcination, TiO2 nanocrystals grew larger than the pore walls, into the pores 

themselves, thereby reducing or altogether eliminating the mesoporosity.47,48 

Maintaining the mesostructure during crystallite growth, primarily by improving 

the thermal stability of the material, became the research focus of the field and in 2003 

Crepaldi et al.49 and Li et al.50 both reported thermal stability up to 500 °C. Of greater 

interest to this work, Ozin and co workers were able, by changing the main solvent from 

ethanol to 1-butanol and controlling the relative humidity and temperature during aging, 

to produce thermally stable and crack-free thin films up to 1.5 by 2.3 inches on a glass 

substrate.51 Over the same time period Itaru Homma’s group at Japan’s National Institute 

of Advanced Industrial Science and Technology was employing mixed-metal oxide 

frameworks to improve the nanocrystalline character of their materials,50,52 an idea that 

was fully realized in 2005 with the publication of their report describing a ternary Li2O-

TiO2-P2O5 mesoporous oxide possessing “almost fully nanocrystalline anatase… made 

up of nanocrystalline anatase and tiny quantities of amorphous phase”.2 

It should be noted that meso-nc-TiO2 has already been used as a framework 

material for nanoscale host/guest structures, including semiconductor nanocrystal 

photovoltaics arrayed within meso-nc-TiO2.6 Meso-nc-TiO2 is also under investigation 

for use in organic-inorganic solar cells.53 Michael D. McGehee at Stanford, a former 

member of Stucky’s group at UCSB, has worked to incorporate aligned conjugated 

polymers as both electron and hole conductors.54 Meanwhile, Stucky’s group has taken 

this work in a different direction by infiltrating chalcogenide gases into mixed metal 

oxide-semiconduction oxide mesoporous hosts, thereby growing semiconducting 

nanocrystals within the mesopore walls.55 In fact, the use of meso-nc-TiO2 in 
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photovoltaic applications was validated by the long-time leader in the field, Michael 

Gratzel, who proposed to employ it in dye-sensitized solar cells.14 

 

Embossed Sol-Gel TiO2 Background 

Unfortunately, the diameter of pores synthesized in the ABC approach is limited 

to about 15 nm, so it is not surprising that McGehee’s group published a paper in 2005 

(Goh et al., Ref. 42) outlining the synthesis of vertically aligned pores with diameters 

between 30 and 65 nm, including anatase nanocrystals within the pore walls. This meso-

nc-TiO2 was reported to contain ~120 nm deep pores (with aspect ratios of 2 to 3), with 

defect-free regions as large as 200 µm by 200 µm allowing for large-scale uniformity of 

replication, and no metal ion contamination, which can introduce trap states or scattering 

centers, subsequently reducing photoconversion efficiency. This paper is noteworthy in 

that it addresses a size regime that is rarely tackled within the inorganic sol-gel literature, 

and according to the authors, their material is the only one to combine feature resolution 

below 50 nm with a high areal density of features with high aspect ratios. According to 

Goh et al., their method of embossing a TiO2 sol-gel with a polymer mold is analogous to 

the top-down approach of reverse-nanoimprint lithography. McGehee proposes to use 

this material in a polymer-based photovoltaic,56 where many of the requirements are the 

same as the solid-state device described here. 

 

TiO2 Nanotube Background 

 Although Goh’s embossed TiO2 represents a significant improvement over the 

ABC-based synthetic approach, it still may not meet our dimensional requirements. 
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According to Goh et al. the maximum film thickness prior to cracking due to sol-gel 

condensation is ~150 nm thick, with ~120 nm deep pores. Even assuming idealized sol-

gel condensation, a stiffer polymer would be required to produce deeper pores, and this 

method is potentially limited to pore depths in the hundreds of nanometers. However, 

according to our envisioned photovoltaic architecture, pore depths of 5 to 10 µm will be 

necessary.6 Although it may be possible to stack TiO2 layers, this would be added 

complexity that could possibly be avoided. Conversely, high-aspect ratio TiO2 nanotubes 

could meet our dimensional requirements; in fact, TiO2 nanotubes have previously been 

functionalized with CdS57,58 and used in dye-sensitized solar cells.59-62 

Craig A. Grimes’ group at Penn State has exhaustively pursued one approach to 

produce up to ~134 µm deep TiO2 pores with suitable diameter and wall thickness.63 

Their material is produced in a similar fashion to the anodic alumina oxide template used 

in the Goh et al. synthesis of embossed TiO2. A thin Ti foil is anodized in an acid bath 

with specific parameters, causing it to develop an oxide of hexagonally packed parallel 

nanotubes, as opposed to the Al oxide which forms a continuous structure. Grimes and 

coworkers have applied their titania nanotubes to solar cells10,64,65 and as photocatalysts,66 

including functionalizing their material with CdS nanocrystals.67 

 

Electron Microscopy Background 

High-resolution transmission electron microscopy (HRTEM), in which lattice 

planes are visible, is the most commonly used technique for characterizing the structure 

of semiconductor nanocrystals.39 There are a wide variety of resources available which 

cover it in depth; in particular, the fundamentals of the TEM are well covered in the text 
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by Williams and Carter,68 while the specifics of imaging CdSe nanocrystals are contained 

in James McBride’s Ph.D. dissertation.39 

Unfortunately, even with HRTEM, surface and compositional information cannot 

be determined. Conversely, aberration-corrected atomic number contrast scanning 

transmission microscopy (Z-STEM), which uses a high-angle annular dark field 

(HAADF) detector to produce an incoherent - and therefore direct - image,68 can be used 

to garner atomic-level structural and compositional information at the same time69 

without extensive post-imaging simulation.70 Despite the enormous potential, the imaging 

of pyrolytically-synthesized semiconductor nanocrystals via Z-STEM has been limited to 

very few publications to date, including a report by Silcox and coworkers71 and works by 

the Rosenthal group.39-41,72,73 

In the Z-STEM, elastically scattered electrons are typically scattered coherently at 

low angles (forward); they can be used to form phase contrast images, just like in a 

conventional TEM, known as a bright field images.68 Inelastically scattered electrons on 

the other hand, almost always scatter incoherently, some to high angles.68 If the 

incoherently scattered electrons that are scattered to high angles are collected by an 

HAADF, without diffraction and phase contrast overwhelming the signal, they can be 

used to form images with atomic number (Z) contrast.74 This incoherent scattering of 

electrons is proportional to the atomic number to the power of ~1.7,75 therefore more 

electrons will scatter off a heavier atom, causing it to appear brighter in the final image.72 

Consequently, Z-contrast images contain both chemical information as well as spatial 

information from the direct interpretation of the incoherently formed images.76 These Z-
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contrast images are alternatively known as dark field images, annular dark field images or 

HAADF images. 

Unlike in the conventional TEM, the Z-STEM's objective lens is located before 

the specimen; therefore the microscope's peak resolution is directly proportional to the 

size of the electron probe, and is in turn limited only by the beam energy and by 

aberrations in the post-specimen lenses.77 Ultimately, the resolution in an electron 

microscope is limited by aberrations resulting from imperfections in the electron lenses. 

Beyond astigmatism, which can be easily corrected with a pair of octupoles, spherical 

aberration (Cs), due to the over focusing of off-axis electrons by the electron lenses, and 

chromatic aberration (Cc), due to the varying energies of electrons within the beam, are 

more difficult to correct. 68 The development of ever more sophisticated aberration 

correctors for use in Z-STEM microscopes has allowed for the correction of third-order 

Cs,77-79 and hopefully fifth-order Cc in the near future.80,81 

In this work two 300 kV aberration-corrected Z-STEM microscopes were used 

within Steve Pennycook’s STEM group at Oak Ridge National Laboratory (ORNL). The 

first was a VG Microscopes HB603U with a Nion quadrupole-octupole Cs corrector77,78,82-

84 (known simply as the VG603) that has been producing images with 0.78 Å resolution 

since 2004.38 More recently, an FEI Titan™ 80-300 STEM with a CEOS hexapole Cs 

corrector,85,86 has been installed as part of the DOE’s TEAM project, a joint effort 

between ANL, BNL, LBNL, ORNL and the Frederick Seitz Materials Research 

Laboratory at UIUC. 
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CHAPTER III 

 

EXPERIMENTAL METHODS 
 
 
 

ABC-Based Meso-nc-TiO2 Synthesis 

Mesoporous nanocrystalline anatase titania (meso-nc-TiO2) was prepared via sol-

gel self-assembly resulting from the use of a long-chain amphiphilic block copolymer 

(ABC); in this case, Pluronic P123 from BASF corporation, a triblock copolymer of 

poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) with the chemical 

formula HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H (designated EO20PO70EO20) 

was used.  In a typical synthesis,52 1 g of Pluronic P123 was dissolved in 10 g of ethanol 

(C2H5OH), to which was added a solution of 2.6 mL titanium (IV) isopropoxide 

(Ti(OC2H7)3) in 0.3 g of 2 M HCl while stirring.  The solution was allowed to stir 

overnight (20 hours total), and subsequently spin coated for ~30 seconds at 2500 r.p.m. 

onto glass or silicon substrates.  The thin films were allowed to air dry at room 

temperature for 5 days, followed by 7 days in an oven (in air) at 80 °C.  The samples 

were heat-treated at 400 °C for 6 hours in air to remove the organic species, followed by 

calcination at 650 °C for 1.5 hours in air to produce the desired nanocrystallinity. 

 
Embossed Sol-Gel TiO2 Synthesis 

Nanostructured TiO2 samples with vertically-aligned pores in the meso- to 

macroporous size range were synthesized by embossing TiO2 sol-gels with polymer 

molds patterned from anodic alumina oxide (AAO) templates.42 Double-sided AAO 

templates were purchased from Synkera Technologies of Longmont, CO, with nominal 
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dimensions of 55 nm diameter and 1 µm depth. A ~250 nm thick layer of 2.5% 

polymethyl methacrylate (PMMA, (C5O2H8)n, Mw=350 kg/mol) dissolved in 

chlorobenzene (C6H5Cl) was spin coated at 2000 r.p.m. for 30 seconds onto the AAO 

template.  The PMMA was infiltrated into the AAO pores by heating in air for 5 minutes 

at just below 200 °C, well above its glass transition temperature of 120 °C.  A 

macroscopically thick (>1 mm) layer of polydimethylsiloxane (PDMS, 

(CH3)3SiO[SiO(CH3)2]nSi(CH3)3, Dow Corning Sylgard® 184 Silicone Elastomer) was 

coated over the PMMA infiltrated into the AAO and cured.  The polymer mold was 

retrieved by wet chemical etching: a combined 3 hours in 10 wt % NaOH was usually 

enough time to remove the alumina on both surfaces of the Al foil substrate, while 1.5 

hours in 1.4 wt % FeCl3 in 4 M HCl was typically sufficient to dissolve the Al.  A TiO2 

sol-gel had been previously prepared by mixing 1 g of titanium (IV) ethoxide 

(Ti(OCH2CH3)4), 0.15 g of HCl, and 8 g of isopropanol ((CH3)2CHOH). After template 

removal, the free-standing PMMA rods with PDMS backing were spin coated with a 

TiO2 sol-gel at 1500 r.p.m. for 30 seconds.  The polymer mold coated with TiO2 was 

immediately embossed onto a substrate, typically Si, and the solution was allowed to dry 

at room temperature for a minimum of one day.  After drying, the PDMS backing was 

removed and any residual PMMA within the pores was dissolved by sonication in 

acetonitrile (CH3CN) for 1 to 2 hours.  The mesoporous TiO2 samples were calcined at 

450 °C for 6 hours in air to form nanocrystalline anatase TiO2. 
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Characterization Methods 

X-ray diffraction (XRD) scans were obtained using a Scintag X1 θ/θ automated 

powder X-ray diffractometer with a Cu target (λ = 1.54056 Å), a Peltier-cooled solid-

state detector, and either a zero-background, Si(510) sample support, or as prepared on a 

silicon wafer. The average TiO2 nanocrystallite size, d, was calculated from a form of the 

Scherrer’s equation modified for spherical particles,87 d=(4/3)Kλ/(βcosθb), assuming that 

peak broadening arises from size effects only, and individual nanocrystals are not multi-

domain.  For a given peak, β is the full-width at half-maximum intensity in radians on the 

2θ scale, λ is the wavelength of X-rays used (1.54056 Å), θb is the Bragg angle for the 

measured hkl peak, and K is a primarily shape-related coefficient87 equal to 0.9 for d 

taken as the volume-averaged crystallite dimension perpendicular to the hkl diffraction 

plane. 

A Hitachi S-4200 scanning electron microscope operating at nominally 15 kV 

was used to collect SEM images. The meso-nc-TiO2 samples were imaged either as 

prepared, or after sputter coating with a thin layer of gold or platinum (Pelco model 3 

Sputtering Instrument) to avoid charging. Film thickness was primarily determined by 

imaging small fragments of film standing on edge. These fragments were produced by 

scoring the film with a clean razor blade, which produces a macroscopic channel with 

nanoscale fragments at its edges. A Philips CM 20T transmission electron microscope 

(TEM) with a LaB6 emission source operating at 200 kV was used to collect images of 

the calcined meso-nc-TiO2. Samples were prepared by scraping the TiO2 films off of the 
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substrate, sonicating in isopropanol for 30 minutes, and pipetting onto holey carbon grids, 

followed immediately by wicking away excess solvent with a Kimwipe™. 

 

Z-STEM Experimental 

Embossed TiO2 samples, with and without nanocrystals, were prepared in the 

same way for Z-STEM imaging as they were for TEM imaging: by scraping the films off 

their substrate, sonicating in isopropanol for 30 minutes, and pipetting onto holey carbon 

grids, followed immediately by wicking with a Kimwipe™. Nanocrystal samples 

however were cleaner and more dilute when prepared for Z-STEM as opposed to TEM; 

additionally, ultra-thin carbon on lacey support TEM grids were used instead of ultra-thin 

carbon on Formvar (both purchased from Ted Pella, Inc.). 

 Samples imaged in the VG603 were sometimes heated with a light bulb in air for 

10-15 minutes or plasma cleaned for 5-10 seconds prior to insertion into the air lock. 

While under vacuum they were heated again with a light bulb for 10-15 minutes, allowed 

to cool for 15-20 minutes, and then inserted into the column, where they were often 

allowed to cool down overnight. These steps were taken to reduce excess organics, which 

often polymerized and agglomerated under beam irradiation, obscuring the images. A 

complete explanation of the operation of the VG603 can be found in the aforementioned 

thesis.39 In the case of samples imaged in the Titan, where no light bulb treatment under 

vacuum was available, nanocrystal samples were plasma cleaned for 5-10 seconds 

immediately prior to insertion into the column. 

Unlike the VG603, where the vacuum is controlled manually during specimen 

exchange, the Titan has a computer-controlled routine. An external turbo pump was used 
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as a roughing pump before the microscope took control in the ultra-high vacuum range. 

Because the column of the Titan is based on that of the Technai™ and earlier Philips 

microscopes, sample insertion was quite similar to that of the Philips CM 20T located at 

Vanderbilt. After sample insertion, the roughing pump was shut down, and the beam was 

allowed down the column by opening the column valves. 

In contrast to the VG603, which is a dedicated STEM, the Titan can operate in 

both STEM and conventional TEM modes. In fact, the manufacturer (FEI) offers Titans 

with aberration correctors before the specimen (for conventional TEM), after the 

specimen (for STEM), and both before and after the specimen. After confirming the Titan 

was in STEM mode, the condenser aperture was set to 150 µm and the spot size was set 

to 8. The DOE-TEAM Project’s Titan is outfitted with a monochromator; although it is 

not typically used in STEM imaging, it is paired with an ultra-stable power supply, 

critical for atomic-resolution imaging. 

The monochromator tended to drift, particularly when the microscope was not in 

use for an extended period of time, such as overnight, and therefore had to be adjusted at 

the beginning of each session. Coarse alignments and aberration corrector settings were 

also prone to drift overnight, and were often adjusted every morning. Prior to initial 

imaging, the eucentric height of the specimen was found, all lenses were normalized, and 

the beam was reset. The beam was then aligned using a combination of the microscope’s 

console controls and the aberration corrector software. 

After the electron beam had been optimized (i.e. monochromator adjusted, beam 

aligned, etc.) there were two options for further tuning. While the aberration corrector 

software could have been used from this point onwards, it was customary to optimize the 
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Ronchigram in a fashion similar to tuning the VG603.39 As in the VG603, optimizing the 

Ronchigram was easiest when nanocrystals were visible in the field of view at 

magnifications below 500 kX. When optimizing the Ronchigram, wobbling the defocus 

was used to locate the center of symmetry. Generally speaking, if the center of focus was 

not centered within the field of view then coma needed to be reduced; if the center of 

focus was not round, or the features within the center of focus were elongated, then the 

beam was astigmated. 

After optimizing the Ronchigram, the condenser aperture was set to 70 µm, the 

camera length was set for imaging, the specimen was returned to the eucentric height, and 

the HAADF detector was inserted into the column. After a dark field image was brought 

into focus, the aberration corrector software was used to fine-tune the corrector. First and 

second order aberrations were coarse-tuned using the continuous defocus feature. After 

multiple iterations using the continuous defocus function, A1 and C1, also known as two-

fold astigmatism and defocus respectively, could be held below 1 nm each. The tableau 

function could then be used to tune the higher-order aberrations. 

In addition to correcting A1 and C1, the initial iterations of the tableau feature 

were used to correct A2 and B2, also know as three-fold astigmatism and axial coma 

respectively. After each iteration, the corrector software suggested an aberration to 

correct for; while this was not always the best choice, it often was, and almost always 

was correct for lower order aberrations, such as A2 and B2. After three to four iterations 

of the tableau feature, it was usually prudent to check for specimen drift, followed by 

coarse tuning the coma and astigmatism using the continuous defocus feature. It is noted 
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that a slight misalignment between the hexapoles in the corrector appear as astigmatism 

in the images.75 

Finally, third order aberrations were corrected using the enhanced tableau feature. 

Specifically, A3, S3 and C3, known as four-fold astigmatism, star aberration and 

spherical aberration (Cs) respectively, were corrected by increasing the tilt to 24-28 

milliradians (mrad), setting the probe semi-aperture to 24.7 mrad (for the 70 µm 

aperture), and adjusting for the measurements of the enhanced tableau. Any adjustment of 

the higher order aberrations required a re-calibration of the lower order aberrations, as 

focused imaging ultimately depended on reducing coma and astigmatism. 
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CHAPTER IV 

 

CHARACTERIZATION OF MESOPOROUS OXIDES 
WITH AND WITHOUT DEPOSITED NANOCRYSTALS 

 

ABC-Based Meso-nc-TiO2 

The amphiphilic block copolymer (ABC) self-assembly approach was first used to 

synthesize material by following the literature preparation of Homma and coworkers.52 

While they typically synthesized a mixed-metal oxide, the focus of this project remained 

on a purely TiO2 framework. Complications arose during the gelation step, and it became 

apparent that their quantity of catalyst (HCl) would not be appropriate given our specific 

conditions, which included unknown variables such as age of chemicals, relative 

humidity, etc. Ultimately, the correct quantity of HCl was empirically determined such 

that the sol-gel product matched their results. Figure 3 contains two TEM images taken 

from separate trials that show mesoporosity, nanocrystallinity, and reproducibility. 

Small-angle and wide-angle XRD characterization of the ABC-synthesized meso-

nc-TiO2 was attempted using multiple specimen preparation techniques. Scans were 

performed on the material as-synthesized on a Si substrate, scraped off the substrate and 

sonicated in isopropanol for 30 minutes, and scraped off the substrate as powder. In each 

case the background overwhelmed the nanocrystalline TiO2 peaks. This low signal to 

noise ratio was likely due to the small fraction of crystallized TiO2 within the amorphous 

framework,45 or due to contamination by the Si substrate, either directly in the case of the 

samples analyzed as-synthesized, or via Si chips accidentally introduced during scraping. 
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Figure 3: TEM of meso-nc-TiO2 via ABC self-assembly. Left: TEM image of 
mesoporous nanocrystalline TiO2 prepared similarly to the method of Honma and 
coworkers52 (dashed white circles denote mesopores). Right: TEM image highlighting 
nanocrystallinity of TiO2 (arrows point to lattice fringes or moiré patterns). These images 
are from separate trials, highlighting the reproducibility of this synthetic technique.  
 

As noted above, the aging and drying times required to produce high-quality 

meso-nc-TiO2 are not consistent with low-cost processing. This limitation however, pales 

in comparison to the inherent shortcomings of all current ABC-based TiO2 syntheses. 

The three primary technical requirements of the nanostructured TiO2 for use in our 

proposed photovoltaic device are: (1) nanocrystallinity for improved charge carrier 

transport, (2) pore diameters greater than the sum of three nanocrystal diameters plus 

linker molecules (to allow self-assembly of nanocrystals and subsequent infiltration of 

ITO),88 and (3) vertically aligned pores (again to allow self-assembly and infiltration of 

ITO). Only the first requirement can be met by ABC-based TiO2 syntheses, therefore 

after demonstrating a repeatable process for synthesizing meso-nc-TiO2 via the ABC 

approach, and acknowledging its limitations, this bottom-up method was set aside for a 
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top-down approach, embossing of sol-gel TiO2 with polymer molds,42 that would satisfy 

all three primary technical requirements outlined above. 

 

Embossed Sol-Gel TiO2  

Following the general dimensional requirements outlined in Goh et al., a suitable 

anodic alumina oxide (AAO) template was located commercially from Synkera 

Technologies. For comparison, SEM images of four different AAOs are included below 

in Fig. 4: (a) AAO used by Goh et al., (b) AAO purchased from Synkera Technologies 

and employed in the present work, (c) AAO reported by Masuda el at.89 as-fabricated 

(left) and ‘ideally ordered’ (right) via pretexturing by a SiC master patterned with 

electron beam lithography, and (d) ‘ideally ordered’ AAO synthesized by Dr. Deyu Li 

and coworkers at Vanderbilt University according to the re-anodization process of 

Masuda and coworkers.90,91 Of note is the packing efficiency, a consequence of the 

degree of hexagonal ordering and pore wall thickness, which is seen to increase from the 

Goh et al. AAO to the Synkera AAO, and is maximized in both of the ‘ideally ordered’ 

AAOs. 
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Figure 4: SEM of different AAO templates. SEM images of four different anodic 
alumina oxide (AAO) materials for use as meso-nc-TiO2 templates: (a) AAO used by 
Goh et al., (b) AAO purchased from Synkera Technologies, (c) AAO produced by 
Masuda el at. as-fabricated (left) and ‘ideally ordered’ (right) via pretexturing, and (d) 
‘ideally ordered’ AAO synthesized by Dr. Deyu Li and coworkers at Vanderbilt 
University. 
 

Given that the AAO was purchased commercially, the initial transition from AAO 

template to final meso-nc-TiO2 material required minimal modifications to the published 

synthesis. SEM images representative of more than 50 samples are included in Fig. 5 

with the exception of the inset on the right, which is a side-view of the TiO2 pores as 

reported by Goh et al. Unfortunately, as seen in the image of the film standing on its edge 

(right), two deficiencies are apparent. First and foremost, the pores do not appear to 

extend down into the sample more than 25 to 50 nm, which limits the AEF and 

correspondingly decrease the final device efficiency. Secondly, the TiO2 film beneath the 

shallow pores was often in the range of 100 to 1000 nm; TiO2 films thicker than ~150 nm 

crack due to tensile stress induced during condensation,42 and would lower final device 
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efficiency due to increased resistance, charge recombination, etc.88 It is noted that TEM 

imaging of thick films is impossible because the electron beam cannot pass through them. 

 

 

 

 

 

 
Figure 5: SEM of meso-nc-TiO2 via embossed sol-gel. SEM images of typical mseo-
nc-TiO2 synthesized according to the procedure of Goh et al. representative of more than 
50 samples, except for the inset on the right which is an image of Goh et al.’s material.42 
In the plan view (left), the final TiO2 nanostructure closely matches the AAO template 
(seen in Fig. 4), while when imaged standing on edge (right), the film is greater than 100 
nm thick with pores less than 50 nm deep (in contrast to the ~120 nm deep pores visible 
in the inset at right). 

 

Therefore, replicating McGehee and coworker’s ~120 nm deep pores was 

considered a top priority. The possibility that the imaging capabilities of the SEM did not 

allow for accurate determination of pore depths was ruled out by viewing a sectioned 

substrate, coated with Pt to prevent charging. This left two alternatives as the likely 

culprits: either the PMMA in chlorobenzene was not infiltrating the AAO pores deep 

enough, or the TiO2 sol-gel was not penetrating the PMMA positive (i.e. rods). Initial 

trials focused on sonication as a means to facilitate liquid penetration, however, after 

many attempts (5 trials composed of 20 samples) no improvement was observed.  
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Lack of PMMA infiltration into the AAO is more probable when viewed in light 

of results reported by Goh et al. They attempted different stiffness polymers and AAO 

pore diameters before finding a suitable combination. For instance, a low stiffness 

polymer (h-PDMS) or a smaller diameter AAO (resulting in 25 nm diameter PMMA 

rods), they produced rods did not have the stiffness to withstand the van der Waals 

interaction between them, and collapsed into aggregates of ~500 nm and ~200 nm 

respectively.42 Because Synkera’s AAO pore depth is nominally 1000 nm, it is highly 

unlikely that the PMMA in chlorobenzene is in fact infiltrating the pores, but never much 

more than ~150 nm. If it were reaching that depth or more, then we would have seen an 

agglomeration of pores in the final product, which was not observed. Therefore, it is quite 

likely that the PMMA is not penetrating down into the AAO pores. 

Beyond sonication, a variety of approaches for guaranteeing PMMA infiltration 

were devised. Increasing the time at temperature of the infiltration and counter 

intuitively, lowering the temperature of infiltration, allowing for a decrease in the 

outward pressure exerted on the incoming PMMA by gas trapped in the pores, were both 

tested multiple times, however neither produced the desired effect. Similarly, attempting 

to drive off solvent trapped within the pores after PMMA spin coating but prior to 

infiltration by heating to below PMMA’s glass-transition temperature (~120 °C) was 

considered. Wetting the AAO with pure chlorobenzene prior to PMMA/chlorobenzene 

infiltration was also considered, given the possibility that 350 kg/mol PMMA aggregates 

might be sticking at the top of the nominally 55 nm diameter pores. Finally, increasing 

(or decreasing) the concentration of PMMA in chlorobenzene was not attempted for two 

reasons unrelated to its likelihood of solving the problem: first the Goh et al. paper calls 
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for no more than 250 nm of PMMA solution after spin coating, which required referring 

to electronic device fabrication documentation to determine adequate concentration and 

spin coating speed, and second, 350 kg/mol PMMA has very low solubility in typical 

solvents; only two solvents are usually employed (chlorobenzene and THF, 

tetrahydrofuran), and dissolution is very slow even in these. 

Although TiO2 penetration between the polymer rods was not likely the problem, 

a few ideas were developed to ensure that it was not inhibiting the formation of deep 

pores. Because the polymer rods are hydrophobic, and would therefore resist the 

adsorption of the TiO2 sol-gel, it was thought that introducing a surface layer of water 

onto the polymer rods would enhance TiO2 penetration.  Two methods were devised to 

attempt this approach: (1) immediately prior to TiO2 sol-gel spin coating, removing the 

chilled polymer mold from a refrigerator, causing the condensation of water vapor on the 

rods, and (2) covering the polymer rods with ethyl ether (boiling point of 34.6 °C) and 

breathing on them while the liquid evaporates, producing the same condensation effect. 

Chilling the polymer rods would also cause them to contract thereby enlarging the 

openings available for TiO2 infiltration. 

Ultimately, this overall effort to increase pore depths was limited by two factors. 

First, there is no currently available technique for determining the height of the PMMA 

rods.  SEM is not suitable because the electron beam damages the polymer mold, while 

AFM cannot resolve the rod heights due to their high aspect ratios and the minimal space 

between rods.42 The only characterization possible is of the final embossed TiO2 from 

which we can infer the polymer rod heights. Without the ability to characterize polymer 
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rod height, it was impossible to determine which step was not working (if not both), and a 

solution to one but not the other, would have gone unnoticed. 

After repeated unsuccessful attempts to resolve the two liquid infiltration 

problems, a wholly different strategy was developed which removed the PMMA, and its 

infiltration, entirely. Instead, the TiO2 sol-gel was spin cast directly onto the AAO 

template, resulting in the formation of a TiO2 positive (i.e. rods instead of pores). These 

rods however, appeared shorter than the depth of the shallow pores, as no surface 

roughness was visible in sections of film standing on edge. Although a strategy for 

fabricating taller rods was devised, it was not implemented because of the dimensions of 

the final product. Given the Synkera Tech. AAO, which possesses thin pore walls and 

relatively high packing efficiency, the negative of the structure, with TiO2 rods in place 

of the pores, leaves very little space for light-harvesting nanocrystals and ITO. 

Representative SEM images of these TiO2 rods are shown in Fig. 6. 

 

 

 

 

 

 
Figure 6: SEM of TiO2 positive rods. Typical plan-view SEM of TiO2 rods synthesized 
by spin casting the TiO2 sol-gel directly onto the AAO template. When viewed from the 
side (not pictured) these rods were less than 25 to 50 nm in height. 
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XRD characterization of the embossed TiO2 was performed on both the as-

synthesized film on the Si substrate, and after being scraped off the substrate as powder. 

In agreement with the report of Goh et al., the (101) peak of anatase TiO2 was repeatedly 

observed at ~25.3° 2θ in the powder samples. Given the thermal treatment of the sol-gel 

TiO2 embossed film, the presence of anatase was to be expected. The anatase 

nanocrystallite domain size was calculated according to the modified Scherrer’s equation, 

d=(4/3)Kλ/(βcosθb),87 to be 31.8 nm. XRD traces from two successful samples are shown 

in Fig. 7 above the powder diffraction file (PDF) peaks associated with pure anatase and 

pure rutile TiO2. It is noted that the relatively weak signal of the anatase peak above the 

background is consistent with the small fraction of crystalline material present in the 

powder; in fact, early reports of semicrystalline meso-nc-TiO2, while visible with 

HRTEM were not initially verified with XRD.45,92 
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Figure 7: XRD of embossed TiO2. XRD traces of embossed TiO2 samples scraped off 
their substrates as powder. Bulk anatase and rutile TiO2 diffraction peak locations and 
relative intensities are shown as well. The anatase crystallite size was calculated 
according to the modified Scherrer’s equation to be 31.8 nm. 
 

Although the Goh et al. synthesis of ~120 nm deep pores was ultimately 

unsuccessful, the fabrication of shallow pores serendipitously had a significant impact. 

Because TEM and Z-STEM require sample thicknesses in the tens of nanometers range, a 

thin film with shallow pores proved very useful. Transverse TEM sample preparation can 

be fairly tedious, and permits imaging of the film's cross-section only.  Plan view 

imaging is only possible if the entire thickness of the sample (pore wall height plus the 

film beneath) is kept below ~50 nm.93 Additionally, as the embossed TiO2 was 

functionalized with light harvesting nanocrystals, plan view imaging of unsectioned 

samples helped with the chemical self-assembly fabrication effort. 

Sixteen trials were run in order to reproducibly fabricate thin films with shallow 

pores. Returning to the original process, TiO2 film thickness is determined during the 
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spin coating of the TiO2 sol-gel onto the polymer mold. Although a variety of 

experimental variables were considered, variation of spin coating speed was ultimately 

chosen as the most effective and repeatable. Unfortunately, if the spin coating speed was 

above ~3500 r.p.m., not enough liquid sol-gel remained on the polymer mold to adhere it 

to the substrate (typically silicon); ultimately, a spin coating speed of 3000 r.p.m. 

produced the best films. As noted above, according to Goh et al. TiO2 films thicker than 

~150 nm cracked due to tensile stress induced during condensation,42 as seen from early 

examples of our material in Fig. 8 (left) which were sometimes as thick as 0.5 to 1 µm. 

However, spin coating at 3000 r.p.m. reduced the film thickness to ~100 nm, and 

produced areas of crack-free films as large as ~100 µm2, as seen in Fig. 8 (right). 

 

 

 

 

 

 
Figure 8: SEM of cracked and crack-free embossed TiO2. Left: Early example of 
embossed TiO2 film with cracks produced during condensation due to the film thickness 
exceeding ~150 nm, as seen from the inset. Right: Embossed TiO2 films ~100 nm thick 
(upper left) had many large crack-free regions. 
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Embossed Sol-Gel TiO2 with Electrophoretically Deposited CdSe 

 Nathanael Smith and Kevin Emmett were responsible for developing the 

procedure for electrophoretic deposition (EPD) of nanocrystals onto the embossed TiO2 

films, and performed many of the depositions used in this work. Initially, embossed TiO2 

films with electrophoretically deposited CdSe were examined in the SEM to determine if 

the depositions had been successful. Although individual CdSe nanocrystals are too small 

to be imaged using the SEM, it was immediately apparent that something had been 

deposited onto the TiO2. Comparing the embossed TiO2 seen above in Fig. 5 to that seen 

in Fig. 9 (after EPD), once can clearly discern the presence of a layer above the embossed 

TiO2 substrate. The composition of this layer is likely a mixture of CdSe nanocrystals and 

the organic surfactants in which they are synthesized. The electron beam, when focused 

on these samples, produced a residual dark region as seen in the center of Fig. 9 (lower 

right). This was likely evidence of charging, as the beam interacted with deposited 

organic surfactants,  an effect that was never seen in the as-synthesized embossed TiO2 

films. Ultimately, the deposition of CdSe nanocrystals by EPD was confirmed by 

Nathanael Smith who performed RBS on various samples; however deposition was not 

always successful and was found to depend on nanocrystal cleanliness.94 
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Figure 9: SEM of embossed TiO2 with electrophoretically deposited CdSe. Upper 
Left and Right: Representative embossed TiO2 films after EPD of CdSe nanocrystals. 
Lower Left: High magnification of embossed TiO2 pores after EPD. Lower Right: 
Embossed TiO2 film after EPD showing a residual dark region in the center of the image, 
which is likely charging due to the presence of deposited organic surfactants. 

 

Some embossed TiO2 films after EPD were scraped off their substrates for 

imaging in the VG603 STEM. Representative low magnification annular dark field 

(ADF) images are shown in Fig. 10; on the left, three complete pores (dark circles) and 

one incomplete pore are decorated with CdSe nanocrystals (bright white spots), and on 

the right, one individual pore (large dark circle) is filled with a handful of nanocrystals. 

Figure 10 (right) highlights one of the primary difficulties in imaging CdSe nanocrystals 

in TiO2 pores; excess organic surfactants from the CdSe synthesis, which are deposited 

along with the nanocrystals during EPD, build up under illumination by the electron 
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beam, blurring the final image. In pure nanocrystal samples, this contamination can 

sometimes be removed by heating in air and under vacuum, allowing for atomic 

resolution, while in the composite material this organic contamination is likely fixed in 

place. 

 

 

 
 

 

 
 

 
Figure 10: Z-STEM of embossed TiO2 with electrophoretically deposited CdSe. Left: 
Complete pores (dark circles) are decorated with CdSe nanocrystals (bright white spots). 
Right: One individual pore (large dark circle) is filled with a handful of nanocrystals. 
Contamination from excess organic surfactants obscures the nanocrystal atomic columns. 

 

Another source of difficulty in imaging with Z-STEM is the competing effects of 

atomic number contrast and thickness contrast. Atomic number contrast, which is a result 

of collecting the widely scattered electrons using a high-angle annular dark field 

(HAADF) detector, causes heavier atoms (and atomic columns) to appear brighter in the 

ADF images. In our samples the Cd and Se atoms within the CdSe nanocrystals should 

appear roughly twice as bright as the Ti atoms of the TiO2 substrate.75 Thickness contrast, 
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which is a result of increased interaction (scattering) through thicker regions, causes 

those thicker regions to appear brighter in the ADF images. 

The competing effects of these two sources of contrast are shown in the ADF and 

bright field (BF) images in Fig. 11. In the ADF image the large dark circular region is the 

pore itself (where the beam has to pass through less TiO2), and the "halo" surrounding the 

pore is the thicker pore wall, which is brighter due to thickness contrast. The two small 

bright spots within the pore are almost certainly CdSe nanocrystals considering that they 

are almost as bright as the pore walls. In the simultaneously collected BF image, moiré 

patterns (produced as the electron beam travels through multiple misoriented anatase 

nanocrystallites) are visible throughout the pore wall region. Within the pore itself, both 

lattice fringes and moiré patterns result from the CdSe nanocrystals and the anatase 

nanocrystallites. Recall that meso-nc-TiO2 is comprised of anatase TiO2 nanocrystallites 

in an amorphous TiO2 matrix; the latter is detectable in the pore itself by the absence of 

fringes in some areas. It is noted that the BF image is a phase contrast image; therefore 

nanocrystals at different heights show up in the image, as opposed to the ADF image in 

which only nanocrystals at the defocus height (i.e. in focus) appear. 
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Figure 11: Competing contrast from ADF and BF imaging. Left: Z-STEM annular 
dark field (ADF) image. Right: Simultaneously collected bright field (BF) image. See 
text for a description of the competing effects of atomic number contrast and thickness 
contrast. 
 

In addition to the aforementioned difficulties in imaging, depositing too many 

CdSe nanocrystals during EPD resulted in poorly resolved images. The ADF images in 

Fig. 12 show excess CdSe nanocrystals both within the pore as wall as on top of the pore 

wall. Depositing this many CdSe nanocrystals also introduced further excess organic 

surfactants, obscuring the images further. 
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Figure 12: Z-STEM of excess deposited CdSe nanocrystals. Representative images of 
embossed TiO2 pores with too many CdSe nanocrystals deposited via EPD. 
 

At the boundary of the pore and pore wall, Fig. 13 shows a large nanocrystal, 

which is possibly anatase TiO2. The lattice fringes (possibly moiré patterns) cannot be 

unambiguously assigned to anatase TiO2, however the relative similarity in brightness 

between the nanocrystal and the crystalline matrix surrounding it support this contention. 

In contrast, the large nanocrystal shown in Fig. 14 is more likely CdSe. In this case, the 

nanocrystal appears significantly brighter than the pore in which it resides. Furthermore, 

the tiny bright spots near the nanocrystal in Fig. 14 (right) are almost certainly Cd or Se 

single atoms; these single atoms are probably unreacted precursors bound up in the 

organic surfactants covering the nanocrystal surface. It should be noted however, that if 

the nanocrystal in Fig. 14 is in fact CdSe, it is an outlier - much larger than the average 

CdSe nanocrystals deposited in this sample (typically 2-3 nm). 
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Figure 13: Z-STEM of possible TiO2 nanocrystal. 

 

 

 

 
 

 

 
 

 
Figure 14: Z-STEM of probable CdSe nanocrystal. 
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Z-STEM of TiO2 Nanotubes 

Nathanael Smith and Kevin Emmett were also responsible for developing the 

procedure for anodizing Ti foils to form TiO2 nanotubes, and produced all of the TiO2 

nanotubes used in this work. TiO2 nanotube arrays were scraped from their substrates and 

imaged using the VG603 STEM, as seen in Fig. 15. At the nanotube ends, where the 

tubes are broken unevenly, the beam passes through only one side of the nanotube wall 

(instead of both walls of the intact tube), and examples of these regions are shown at 

higher magnification in Fig. 16. As in Fig. 15, the dark spots are thinner regions of the 

nanotube walls. Although an attempt was made to deposit CdSe nanocrystals via EPD 

into these nanotubes, these images show that it was unsuccessful. This ineffectiveness 

can be accounted for by the lack of cleanliness of the CdSe nanocrystals, as well as the 

length of these nanotubes in comparison to the shallow pores of the embossed TiO2. 

 

 

 
 

 

 
 

 
Figure 15: Z-STEM of TiO2 nanotubes. 
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Figure 16: Z-STEM of TiO2 nanotube walls. 

 

Z-STEM of TiO2 Nanotubes with Electrophoretically Deposited CdSe 

Cleaner CdSe nanocrystals were successfully deposited in TiO2 nanotubes, as 

confirmed by Nathanael Smith via RBS. Transverse samples were etched with HF and 

thinned with an ion mill by Julia Luck of Steve Pennycook's STEM group at ORNL. A 

low magnification BF image of an array of TiO2 nanotubes is shown in Fig. 17 (left); BF 

thickness contrast is the inverse of ADF thickness contrast, therefore the darker regions 

are the thicker (taller) sections of nanotubes. An ADF image of a thin portion of a 

nanotube wall is shown in Fig. 17 (right); the brighter band is the thicker (taller) portion 

of the nanotube wall, while the darker band is likely the base of the nanotube. 
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Figure 17: BF and ADF plan-view images of TiO2 nanotubes. Left: Transverse BF 
image of thinned TiO2 nanotube array. Darker nanotubes (lower right) are thicker than 
lighter nanotubes (center); partial nanotubes (upper left) are thinned completely. Right: 
Transverse ADF image of completely thinned (partial) TiO2 nanotube. Brighter band is 
the nanotube wall, while the darker band is likely the base of the nanotube. 
 

Transverse ADF and BF images of a completely thinned (partial) TiO2 nanotube 

are shown in Fig. 18. In the ADF image (left), the bright regions are possibly CdSe 

nanocrystals, particularly those with clear fringes. Lattice fringes in the BF image (right) 

are also visible and correspond well with the bright regions in the ADF image. 

Unfortunately, a more convincing image showing a probable CdSe nanocrystal on a 

thinned nanotube was lost due to a computer crash. In this image, a very thin partial 

nanotube contained a quite bright nanocrystal, whose brightness could not be accounted 

by thickness contrast alone, given the thinness of the nanotube wall. 
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Figure 18: ADF and BF of thinned TiO2 nanotube wall. Left: Transverse ADF image 
of completely thinned (partial) TiO2 nanotube showing possible CdSe nanocrystals 
(bright regions) Right: Corresponding transverse BF image showing lattice fringes. An 
image of a thinner partial nanotube with a brighter nanocrystal, almost certainly CdSe, 
was lost due to a computer crash. 
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CHAPTER V 

 

Z-STEM IMAGING OF VARIOUS NANOCRYSTAL SYSTEMS 

 

Ultra-small White-light Emitting CdSe Nanocrystals 

Recently within the Rosenthal group, we have synthesized monodisperse, ultra-

small CdSe nanocrystals. Contrary to predicted behavior, these ~1.5 nm diameter 

nanocrystals emit very pure, broad-spectrum white light.95 These nanocrystals offer an 

exciting new possibility for white-light emitting diodes (LEDs) in energy efficient solid-

state lighting.  Preliminary results using these nanocrystals as nanophosphors have 

yielded devices exhibiting near pure white CIE coordinates of 0.324, 0.322 and an 

extraordinary color rendering index of 93, which already exceeds the Department of 

Energy’s 2025 goal.96 In order to realize the potential of ultra-small CdSe for white solid-

state lighting, a thorough understanding of the fundamental structure of these ultra-small 

nanocrystals is needed. 

In contrast to large CdSe nanocrystals (2-8 nm in diameter), which have been 

extensively studied and are well understood, there has been little research to date on the 

properties of ultra-small nanocrystals (1-2 nm in diameter) due to the lack of a reliable 

synthetic method to produce high quality nanocrystals in large quantities in this size 

regime. Due to their small size, however, conventional TEM cannot resolve these ultra-

small nanocrystals, and both the Titan and the VG603 were used in attempts to image 

them. Since the emission spectrum of this material has never been seen before, it was not 

clear that they would be similar in structure to larger, monochromatic nanocrystals.  
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Theoretical work in the literature has predicted several different structures for CdSe in 

this size regime, ranging from planar structures of 15 atoms to cage structures of 62 

atoms.97,98 

Roughly half a dozen attempts to image these ultra-small nanocrystals were made, 

only one of which was successful. Obviously then, there were a variety of difficulties in 

imaging these nanocrystals. One possibility was that the ultra-small nanocrystals were not 

comprised of a regular crystalline lattice, or that there were not enough atoms to form a 

recognizable structure. Another possibility was that the nanocrystals were rotating under 

the electron beam, or being damaged or even destroyed when illuminated. Thus it was not 

clear if the nanocrystals were suitable for high-resolution imaging, or if the microscopes 

themselves were capable of imaging them. 

Ultimately, we were able to collect the first lattice-resolved images of 

nanocrystals in this size regime using the Titan, the best of which is shown in Fig. 19 

(left). Two nanocrystals in particular are blown up in the inset and in Fig. 19A. Although 

it is difficult to discern the lattice planes in these images, they were unmistakable when 

viewed in the microscope, where one can move the field of view around and any regular 

pattern (in this case lattice fringes) stands out against the amorphous background. This 

suggests that the nanocrystals have reasonably defined lattice planes, which appear to be 

wurtzite in structure, with a diameter of approximately 1.5 nm; a theoretical ball and stick 

model is shown in Fig. 19B. These nanocrystals are composed almost exclusively of 

surface atoms and their irregular lattice spacing suggests the presence of defects, both of 

which provide sites for charge trapping to occur. The existence of a wide variety of trap 

sites leads to the possibility of many energetically different states from which 
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recombination can occur, giving rise to the broad-spectrum white-light emission.95 It is 

noted, that the surface of these nanocrystals appear to be lacking an oxide coating, which 

is almost always found on larger nanocrystals.37,39-41 

 

 

 

 

 

 

 
Figure 19: Z-STEM of ultra-small CdSe nanocrystals. Left: Lattice-resolved image of 
ultra-small white-light emitting CdSe nanocrystals. Red arrows point to a magnification 
of two nanocrystals in particular shown in the inset. A: Further magnification of two 
nanocrystals showing four lattice planes each. B: Theoretical ball and stick model of a 
four lattice plane wurtzite nanocrystal (courtesy of James McBride). 
 

XRD traces of six small (1-2 nm in diameter) nanocrystal samples, ranging from 

415 nm-absorbing to 450 nm-absorbing CdSe, are shown in Fig. 20 along with the PDF 

peaks for wurtzite CdSe. These XRD traces are consistent with earlier reports of 

nanocrystal XRD spectra, such as that from Murray et al.11 The nanocrystallite domain 

size could not be calculated with the modified Scherrer’s equation due to the extensive 
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peak broadening resulting from the small size of these nanocrystals. Traces A and B, 417 

nm-absorbing and 415 nm-absorbing CdSe respectively, are from two samples of 

functionally equivalent ultra-small white-light emitting nanocrystals. Trace A was 

restricted to the range of 35 to 60° 2θ in an effort to capture the three strong peaks at 

42.0°, 45.8° and 49.7° 2θ in the wurtzite CdSe PDF. The XRD traces in Fig. 20, along 

with the magnification of Trace A in Fig. 21, highlight how significantly the PDF peaks 

broaden for the smallest nanocrystals. Unfortunately, increasing the duration of the scan 

or the concentration the nanocrystals in the sample will not produce more distinguishable 

peaks. 

 

 

 

 
 

 
Figure 20: XRD of small CdSe nanocrystals. XRD traces of small CdSe nanocrystals 
ranging from ~1.5 to ~2 nm in diameter. Bulk wurtzite CdSe diffraction peak locations 
and relative intensities are shown as well. The modified Scherrer’s equation could not be 
used to calculate the various crystallite sizes due to extensive peak broadening. 
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Figure 21: XRD of ultra-small CdSe nanocrystals. XRD trace of 417 nm-absorbing 
ultra-small white-light emitting CdSe nanocrystals. Bulk wurtzite CdSe diffraction peak 
locations and relative intensities are shown as well. 
 

CdSe Nanocrystals of Various Sizes 

Along with the effort to image ultra-small nanocrystals, CdSe nanocrystals in a 

variety of sizes were imaged using both the VG603 and the Titan. Nanocrystals in these 

sizes have been imaged previously, primarily with the TEM, and some of these images 

have been used to produce sizing curves relating absorption wavelength to nanocrystal 

diameter.99 The primary drawback in sizing with the TEM however is that coherent, 

phase contrast imaging does not give actual atomic positions and therefore can only give 

an approximation of the surface. In the case of the small nanocrystals (below ~2 nm in 

diameter), TEM sizing becomes increasingly unreliable as fewer lattice planes are 

involved in forming the image. In contrast, incoherent imaging in the Z-STEM, 
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particularly with aberration-corrected atomic-scale resolution, can be used to measure 

exact nanocrystal dimensions. 

Figures 22, 23 and 24 are the highest quality images from various samples of 486 

nm-, 530 nm- and 581 nm-absorbing CdSe nanocrystals respectively. According to Yu et 

al., these first absorption peak positions correspond to nanocrystal diameters of ~2 nm, 

~2.5 nm and ~3.8 nm respectively.99 These nanocrystals were synthesized at Vanderbilt 

by James McBride and Albert Dukes. Unfortunately, due to a variety of difficulties, 

primarily sample cleanliness, only a statistically insignificant number of nanocrystals 

were imaged in each size regime. 

 

 

 
 

 

 
 

 
Figure 22: Z-STEM of 486 nm-absorbing CdSe nanocrystals. Lattice fringes are 
barely visible in these images; from their shape, size can be estimated, but not their 
structure. 
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Figure 23: Z-STEM of 530 nm-absorbing CdSe nanocrystals. Lattice fringes are 
clearly discernable in these images, and even atomic-resolution dumbbells (atomic 
columns of Cd and Se atoms) are visible in the uppermost nanocrystal in Fig. 23 (right). 
 

 

 
 

 

 
 

 
Figure 24: Z-STEM of 581 nm-absorbing CdSe nanocrystals. Lattice fringes and 
nanocrystal surfaces are clearly visible, however no atomic-resolution dumbbells are 
discernable. 
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XRD traces of four large nanocrystal samples, ranging from 595 nm-absorbing to 

660 nm-absorbing CdSe, are shown in Fig. 25 along with the PDF peaks for wurtzite 

CdSe. According to Yu et al., the first absorption peak positions of 595 nm, 610 nm, 645 

nm and 660 nm, correspond to nanocrystal diameters of ~4.5 nm, ~5.0 nm, ~7.8 nm and 

~8.3 nm respectively.99 Again, these XRD traces are consistent with Murray et al.'s report 

of nanocrystal XRD spectra,11 and the nanocrystallite domain size could not be calculated 

due to peak broadening. 

 

 

 

 
Figure 25: XRD of large CdSe nanocrystals. XRD traces of large CdSe nanocrystals 
(~4.5 nm to ~8.3 nm in diameter). Bulk wurtzite CdSe diffraction peak locations and 
relative intensities are shown as well. The modified Scherrer’s equation could not be used 
to calculate the various crystallite sizes due to peak broadening. 
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Inverse Core/Shell PbS/PbSe Nanocrystals 

As mentioned above, Pb-containing nanocrystals have been envisioned for 

inclusion in our photovoltaic devices. In addition to harvesting nearly the entire solar 

spectrum,6 they may benefit from the potentially paradigm-shifting impact of carrier 

multiplication.21,22 An inverse core/shell architecture of PbS/PbSe will further localize 

charge carriers in the shell, where they are less likely to recombine.8 Danielle Garrett has 

successfully synthesized these inverse core/shell PbS/PbSe nanocrystals, and the best 

representative Z-STEM images (taken with the Titan) are shown in Fig. 26. Although 

atomic-resolution dumbbells are barely visible in the central nanocrystal in Fig. 26 

(right), there is no discernable indication of a separate core and shell, as seen in 

CdSe/ZnS core/shell nanocrystals.41  

 

 

 
 

 

 
 

 
Figure 26: Z-STEM of inverse core/shell PbS/PbSe nanocrystals. Lattice fringes are 
clearly discernable in these images, however even though atomic-resolution dumbbells 
are visible in the central nanocrystal in Fig. 26 (right), there is no clear demarcation 
between core and shell, as seen in CdSe/ZnS core/shell nanocrystals. 
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CHAPTER VI 

 

CONCLUSION 

 

The Rosenthal group has been researching a next-generation photovoltaic device 

that relies on a nanocrystalline anatase framework, ideally with vertically aligned 

mesopores. This framework was initially produced via an ABC-based synthesis, followed 

by embossing of TiO2 sol-gels, and finally by anodization of Ti foils into arrays of TiO2 

nanotubes. CdSe nanocrystals were deposited via EPD on to the latter two materials, with 

the TiO2 nanotube arrays ultimately preferred. A variety of TiO2 samples, including those 

with deposited CdSe nanocrystals, were characterized using SEM, TEM, XRD, RBS and 

Z-STEM; much of this characterization is the first of its kind for these materials. The 

synthesis and characterization of these materials represents a significant milestone in the 

fabrication of our next-generation photovoltaic devices. 

Furthermore, Z-STEM was used to image a variety of nanocrystal systems, 

producing the first images of ultra-small white-light emitting CdSe nanocrystals. 

Although the diameter of the ultra-small CdSe nanocrystals could not be confirmed, the 

imaging of these novel white-light emitting nanocrystals is fundamental transformational 

research. Knowing the structure will aid in our understanding of the origin of these 

nanocrystals’ broad emission and also further our understanding of the early stages of 

nanocrystal growth. In addition to opening new avenues for fundamental research, 

understanding these white-light emitting nanocrystals will aid in the development of a 

solid-state white-light source suitable for commercial and residential use. 
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CHAPTER VII 

 

FUTURE WORK 

 

Z-STEM with Electron Energy Loss Spectrometry 

Z-STEM imaging measures only the portion of the transmitted electron beam that 

is scattered to high angles, via the HAADF detector, therefore the remaining low-angle 

(forward) scattered electrons can be simultaneously employed for high resolution electron 

energy loss spectrometry (EELS).100-102 An EELS spectrum results from the energy loss 

associated with the inelastic scattering of the transmitted beam by plasmons, valence 

electrons, and inner-shell electrons (in order of increasing energy loss) and can therefore 

be used to determine chemical composition, significantly of elements lighter than 

oxygen, atomic arrangement, chemical bonding and electronic structure,68,70,93 including 

possible quantification of charge carriers.103 The combination of Z-STEM with EELS, 

when combined with analysis of the fine-detail intensity variations within the energy-loss 

near-edge structure (ELNES),70,93,104-108 has been characterized as “arguably the most 

powerful analytical technique for atomic characterization”.68 

Utilizing the Z-STEM microscopes within Dr. Stephen J. Pennycook's group at 

ORNL, EELS analysis will be performed on meso-nc-TiO2, Pb-containing nanocrystals, 

and meso-nc-TiO2 functionalized with Pb-containing nanocrystals. Z-STEM with EELS 

will be used to verify TiO2 allotrope,70,105 to compare the nanocrystalline TiO2 at the pore 

wall edges with the bulk TiO2, to determine if there is any stoichiometric 
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difference,70,104,107 and to search for the possibility of electronic (trap) states within the 

band gap, which "would appear as a pre-edge shoulder to the main edge".13  

Pb-containing nanocrystals may also be suited to Z-STEM with EELS. In the case 

of PbSe, the presence of lead-rich facets and facet-junctions will be explored; this will 

help to understand nanocrystal growth and attempt to answer the lingering issue of 

inverse proportionality of quantum yield to PbSe nanocrystal size.109 The light-harvesting 

nanocrystal/TiO2 interface is known to be a critical factor in overall photovoltaic 

efficiency; the incorporation of a linker molecule will introduce additional areas for 

investigation by Z-STEM with EELS. Specifically, the coverage of pore walls with 

nanocrystals, and corresponding location of linker molecules, the bonding between the 

constituents, and the resulting electronic structure of the assembled nanostructure will be 

examined. Successful Z-STEM imaging with simultaneous EELS analysis would be a 

significant achievement and add to the knowledge base required to fully realize low-cost, 

high efficiency next generation photovoltaics. 

 

Electron-Beam Induced Current Studies of Nanostructured Photovoltaics 

For our nanostructured photovoltaics, the local characterization of charge-

collection properties can provide critical information for device optimization. The 

electron beam in an SEM or TEM can be used to induce charge generation, while 

simultaneously producing an image; a technique know as electron-beam induced current, 

or EBIC. SEM-EBIC is one of the standard techniques of mapping local carrier 

generation efficiency,110,111 which has been extensively applied to semiconductor solar 

cells.112-114 To our knowledge, however, this technique has never been utilized for studies 
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of photovoltaic materials of more complex architecture, such as our nanostructured 

photovoltaics. In collaboration with ORNL, we plan to develop the capabilities for SEM-

EBIC characterization of complex photovoltaics in order to map local charge collection 

efficiency in our devices. Simultaneously, we plan to develop the capacity to perform 

remote EBIC (or REBIC) measurements, described below. Following development of 

SEM-EBIC (and REBIC), will be the development of TEM-EBIC, ultimately leading to 

atomic-scale resolution Z-STEM with EBIC. 

S. Jesse et al. have previously utilized EBIC and related techniques for the 

characterization of electrical transport properties of nanotube networks with nm-scale 

resolution.115 They were able to determine the quality of individual junctions and utilize 

this information for device development. In collaboration with Stephen Jesse and Sergei 

Kalinin at ORNL’s Center for Nanophase Materials Sciences (CNMS), we propose to 

build on this expertise and adapt the methods and hardware for studies of our 

photovoltaics. Initially the contacts will be deposited using optical lithography equipment 

at the Nanofabrication Research Facility at CNMS. Different contact configurations will 

be investigated and the optimal sample architecture will be chosen. The Focused Ion 

Beam instrument at CNMS may also be utilized for precision contact placement. The 

SEM-EBIC sample holder (for the Hitachi 4700 SEM at ORNL) will be adapted to 

accommodate the optimized sample geometry. The nanocomposite samples will be 

investigated by ambient scanning probe microscopy, including topographic 

measurements and Kelvin probe (Asylum Research MFP-3D) under different 

illumination conditions to establish photosensitivity. 
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 Mapping of the charge collection efficiency in our nanostructured photovoltaics is 

to be completed in collaboration with Albina Borisevich (of Steve Pennycook’s STEM 

group at ORNL), Sergei Kalinin and Stephen Jesse on ORNL’s Hitachi 4700 SEM. The 

geometry of SEM-EBIC for conventional solar cells is given in Fig. 27 (left). The 

contrast arises from the variations in carrier recombination properties. For example, in 

polycrystalline silicon, the electroactive defects, grain boundaries, and p-n junctions are 

manifested by the decrease in EBIC signal. In our nanostructured photovoltaics we 

expect to image a variety of nanostructural elements, as well as compare charge carrier 

activity between samples. We project that the region immediately within the pore walls 

should contribute the most charge carriers to the EBIC signal, as this is where the 

nanocrystal density will be the greatest. 
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Figure 27: SEM-EBIC and REBIC. Schematic of SEM-EBIC (left) and SEM-REBIC 
(right) experimental setups. 
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SEM-REBIC employs slightly different sample geometry than EBIC, as shown 

below in Fig. 27 (right). The contrast in this case is believed to be related to transport 

properties and internal fields in the sample. We envision that highly resistive features, 

such as poorly attached nanocrystals or matrix defects, will produce features on the 

REBIC images. When bias is applied from the top to the bottom of the sample, we expect 

that changes in REBIC contrast for different bias values will give us information on the 

distribution of the effective electric fields of the nanocrystals-matrix junctions. The 

results will complement our EBIC studies and give critical information on the influence 

of specific structural features on the performance of these photovoltaics. 
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