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CHAPTER I 

 

INTRODUCTION 

 

Colorectal Carcinoma 

Colorectal carcinoma is the third most common cancer among men and women 

in the United States.  When both sexes are taken together, CRC accounts for 10% of all 

cancer related deaths.  In the year 2005, it is estimated that there will be more than 

145,000 new cases and CRC will claim just over 56,000 American lives 1. 

 

Cyclooxygenase-2 

 Prostaglandin metabolism is important in many cellular processes involved in 

growth, apoptosis and angiogenesis.  Exactly how these processes are influenced by 

COX-2 is incompletely understood; however, COX-2 up-regulation has been shown to 

stimulate angiogenesis and tumor growth2, 3.  A growing body of experimental data 

implies that COX-2 inhibitors may be therapeutically efficacious in the treatment of 

gastrointestinal malignancy4-7.  Unfortunately, clinical evidence regarding COX-2 

regulation in human gastrointestinal pathology is limited. 

 Approximately 85% of colorectal carcinomas exhibit increased expression of 

cyclooxygenase-2 (COX-2)8 and evidence suggests this expression may promote tumor 

survival, invasiveness and angiogenesis3.  There is evidence to suggest that COX-2 

inhibition may be beneficial in preventing progression of existing colorectal polyposis5-7, 

9, 10; however, the effects of these drugs on colorectal cancer in vivo, either individually 
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or as a component of a multi-modal treatment regimen, are unknown.  For this reason, 

along with their relatively low toxicity profiles, selective inhibitors of COX-2 present 

potentially promising novel therapeutic agents for the treatment of colorectal cancer. 

 Tumor promoters and mitogens stimulate increases in COX-2 protein and 

prostaglandin levels.  In colorectal cancer, dysregulation of COX-2 is present nearly 

85% of the time8.  COX-2 disruption in ApcΔ716 mice results in a five-fold reduction in the 

number and size of intestinal polyps5.  Furthermore, COX-2 inhibitors have 

demonstrated an ability to suppress human colon cancer xenografts in nude mice4.  

This appears to occur in a dose dependent fashion. 

 Clinical evaluation of COX-2 inhibitors in familial adenomatous polyposis (FAP) 

has shown therapeutic efficacy in polyp prevention and regression6, 7, 9-11.  This is 

noteworthy because this population has essentially a 100% cumulative lifetime risk for 

developing colorectal cancer unless therapeutic intervention is undertaken.  Although 

this population represents a small percentage (<1%) of colorectal carcinoma cases, the 

therapeutic efficacy of selective COX-2 inhibition in this group may be applicable to non-

FAP cases of colorectal cancer.  FAP patients are believed to undergo progression from 

adenoma to carcinoma at an accelerated rate compared to other non-FAP individuals 

afflicted with sporadic and hereditary non-polyposis colorectal carcinoma. 

 

Microarray Studies 

 Recent advances in molecular biology have enabled researchers to evaluate the 

profile of transcripts present in a given sample of RNA.  This has been done in a more 

or less comprehensive manner using both cDNA chips and oligonucleotide based chips.  
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While such studies possess the potential to elucidate a great deal of information about 

certain biological systems under various conditions, they hold clinical potential as well.  

To harness this technology for clinical application is an ongoing goal of translational 

researchers around the world. 

 To date, many studies have been performed on a variety of tumor types in order 

to better understand the diverse range of cancers.  The purposes of these individual 

studies have been many, but generally they are interested in one of two things: biology 

or profiling.  Those investigators who are interested in identifying the specific genes 

involved in carcinogenesis and tumor behavior will go to great lengths to obtain a 

relatively pure population of tumor cells.  Others who are interested in tumor 

transcriptional signatures are more likely to harvest and homogenize gross tumor. 

 Each of these approaches has advantages as well as disadvantages.  The use of 

microdissection techniques (i.e. laser capture) to obtain “pure” samples of tumor cells 

does minimize contamination from other non-epithelial cells in the specimen.  Thus, it is 

presumed that the RNA obtained from such preparations reflects the transcriptional 

pattern of the actual tumor.  However, these techniques are labor intensive and time 

consuming, yielding small amounts of RNA in general; consequently, they are not 

practical for clinical implementation in their current forms. 

 On the other hand, preparation and homogenization of a specimen taken from a 

gross tumor is feasible to implement in a clinical setting and could produce useful 

transcriptional profiling information that includes other compartments of the tumor 

microenvironment.  Nonetheless, this practice does not provide a high level of 

homogeneity with regard to the specimen and generalizations about the biology of the 
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epithelial component of the tumor are not as confidently reached.  Alternatively, some 

investigators will screen grossly dissected specimens by microscopy to select tumor 

enriched tissue samples and try to achieve the best of both methods. 

 Since its introduction just before the millennium, gene expression technology has 

been applied to many tumor cell lines 12-22.  In the clinical arena, it has been applied to 

tumors from many organs including breast 12, 23-28, head and neck 29-33, stomach 34-37, 

pancreas 38-42, and prostate 43, 44.  While several studies have been done in colorectal 

cancer 45-51, few have been comprehensive with regard to the spectrum of stages 

represented or the platform used.  Furthermore, even fewer and similarly limited studies 

have been done in this field to evaluate the differences between primary tumors and 

their daughter liver metastases 52. 

 In 2002, two landmark studies demonstrated the potential for predicting 

prognosis that this technology might hold 27, 28.  Gene expression patterns were 

developed from a training set of breast tumors that corresponded to a “poor” prognosis 

and a “good” prognosis.  This profile was subsequently applied to a large group of 

breast tumors with remarkable performance.  This signature was able to identify 

patients who would do relatively well from those who would do poorly based on the 

profile into which they most closely fell.  Furthermore, this signature was able to 

differentiate patients who would do well from those who did not even among traditional 

“poor” prognosis groups (i.e. those with lymph node involvement). 

 Clearly, it has been recognized that the application of gene profiling technology 

could hold great potential in understanding the biology of CRC and selection of 

treatment.  Still, controversy over how valuable this technology may be in the clinical 
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arena exists 53, 54.  As methods of tissue procurement and processing are refined and 

profiles are developed using larger samples, confidence is likely to grow in this area of 

translational research.  This present proposal has been well designed and potential to 

generate new understanding about colorectal cancer that is metastatic to the liver.  The 

goal of this project is to continue laying the foundation of tumor profiling by gene 

expression to develop a system capable of providing useful information about the 

diagnosis, treatment, prognosis, and biology of stage IV colorectal cancer. 
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CHAPTER II 

 

URINE PGE-M: A METABOLITE OF PGE2 AS A POTENTIAL BIOMARKER OF 

ADVANCED COLORECTAL NEOPLASIA 

 

Introduction 

 Colorectal carcinoma (CRC) is the second leading cause of cancer-related 

deaths in the United States.  In 2005, it is estimated that there will be more than 

145,000 new cases of CRC and over 56,000 people will die of this disease.1  

 Cyclooxygenase-2 (COX-2) is an inducible enzyme associated with inflammation 

and malignancy.55 COX-2 is expressed in most CRCs and is associated with increased 

tumor size, invasion, and poor prognosis.56-59 A considerable body of evidence supports 

the notion that inhibition of cyclooxygenase activity, either with non-steroidal anti-

inflammatory drugs (NSAIDs) or selective COX-2 inhibitors, provides therapeutic benefit 

in patients with colorectal neoplasia.6, 11, 55 Likewise, epidemiologic studies have shown 

a benefit to NSAID or aspirin use in preventing or decreasing the mortality from CRC.60-

65 Selective COX-2 inhibitors such as celecoxib also inhibit in-vitro and in-vivo tumor cell 

growth 66-69, angiogenesis70-72, invasion and metastasis.73 Furthermore, celecoxib has 

been shown to decrease the number and size of colorectal polyps in patients with the 

familial adenomatous polyposis syndrome (FAP).6, 7, 55 

 Experimental evidence in mice links COX-2 expression to increased 

prostaglandin (PG) activity and subsequent promotion of growth and metastasis in 

CRC.74 Specifically, COX-2 induction and subsequent production of PGE2, are 

 6



  

important for tumor development and angiogenesis.75 PGE2 is produced in high 

quantities among several COX-2 expressing colon carcinoma cell lines and has been 

shown to enhance malignant characteristics of colon carcinoma cells in vitro.76  It has 

been reported that PGE2 increases the proliferation, migration, and invasiveness of 

colon cancer cells76; conversely, inhibition of COX-2 decreases PGE2 levels and 

reduces growth factor mediated cell proliferation.77 

 Although eicosanoids such as PGE2 can be readily quantified in cell culture by 

various methods, quantification of endogenous PG production in humans is significantly 

more challenging.78, 79 The majority of measured urine PGE2 is a product of renal 

metabolism.80 Therefore, PG metabolites that are excreted in the urine are considered 

to more accurately reflect the systemic synthesis of their parent compounds.78-80  We 

have recently developed methods that utilize mass spectrometry to accurately quantify 

the major urinary metabolite of PGE2, PGE-M.81 

 The present study examines the role of urinary PGE-M as an indicator of COX-2 

activity in colorectal cancer, colorectal adenomatous polyps, and IBD.  Our results 

suggest that PGE-M may have utility as a biomarker in colorectal cancer and may be 

useful as a marker of disease activity in Crohn’s disease. 

 

Methods 

 

Patient Selection 

 Urine specimens were collected from 58 patients with colon or rectal cancer, 69 

patients who were endoscopically proven to have varying degrees of polyp disease 
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(“large/multiple” - ≥2 polyps or polyp >1.0 cm in diameter; or “simple/small” - <2 polyps 

and <1.0 cm in diameter), and 72 patients who had no evidence of colorectal disease by 

colonoscopy (normal controls).  Polyp size of >1cm was estimated by comparison to 

biopsy forceps (7 mm open, 2 mm closed) or obtained from the operative report if the 

polyps were resected.  Patients were selected from participants enrolled from three 

ongoing prospective clinical studies investigating the role of COX-2 in CRC and 

colorectal polyp disease.  These trials were conducted at Vanderbilt University Medical 

Center and The University of Alabama at Birmingham (UAB).  Patients with benign 

disease provided detailed medication lists at the time of enrollment; those who had used 

NSAIDs within 48 hours were excluded from analysis.  Patients diagnosed with CRC 

were asked to abstain from NSAID, aspirin, or selective COX-2 inhibitor use for at least 

48 hours prior to submission of their urine specimen.  Patients’ urine samples were 

collected prior to surgery or endoscopy.  All patients subsequently underwent 

endoscopy or surgical resection and were diagnosed with one of the aforementioned 

categories of colorectal disease. 

 As part of a clinical trial evaluating the role of COX-2 inhibition in rectal cancer, a 

subgroup of 13 patients underwent 5 days of oral celecoxib therapy.  These patients 

abstained from use of non-selective NSAIDs, aspirin, and selective inhibitors of COX-2 

for 7 to 10 days, before providing a pre-treatment urine specimen.  Patients then 

received celecoxib, 400 mg orally, twice daily for 5 days.  At the conclusion of the 

celecoxib treatment, a post-treatment urine specimen was obtained.   

 A cohort of patients with Crohn’s disease and ulcerative colitis was included as a 

comparison group to represent a benign inflammatory condition of the gastrointestinal 
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tract.  Since only four patients with ulcerative colitis were enrolled, only patients with 

Crohn’s disease were included in this study to prevent any discrepancy between these 

two different inflammatory conditions.  Twenty-eight patients with Crohn’s disease were 

prospectively enrolled and their urine specimens were collected.  Patients had 

previously been diagnosed by colonoscopy and biopsy with histological confirmation by 

a gastrointestinal pathologist.  No treatment intervention was attempted and medication 

regimens varied at the time of submission of the urine specimen. 

 Written consent for participation and to provide clinical samples was obtained 

from every patient included in the aforementioned studies, which were all approved by 

the Institutional Review Boards of Vanderbilt University and the University of Alabama 

at Birmingham. 

 

Quantification of Urinary PGE2 Metabolite 

 Urine specimens were processed by aliquoting into two 10 mL samples and the 

samples were immediately stored frozen at -80o C until final analysis.  Samples were 

submitted for analysis in a randomized order and the personnel performing the analyses 

were blinded to the clinical and disease status associated with each specimen. 

 Urine PGE-M was quantified using liquid chromatography and mass 

spectrometry (LC/MS) by the methods previously reported.81 Briefly, one ml of urine per 

patient was titrated to a pH of 3 by addition of 1M HCL and then 0.5 ml of methyloxime 

solution (1600 mg in 10 ml 1.5 M sodium acetate, pH 5) was added.  After one hour, the 

methyloxime was diluted with 10 ml H20 at pH 3 and each sample was applied to a C-18 

Sep Pack (after prepping the Sep Pack with 5 ml MeOH and 5 ml H20 at pH 3).  
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Samples were washed with 10 ml H20 at pH 3 followed by 10 ml Heptane and then 

eluted from the Sep Pack with 5 mL ethyl acetate.  The PGE-M internal standard (6.2 ng 

[2H6] O-methyloxime PGE-M in 10 µl) was added to the sample and the solution was 

dried under N2 at 37o C and reconstituted in 50 µl of LC mobile phase A, consisting of 

95% 5 mM NH4oAC, 5% ACN, and 0.1% HoAc.  Each sample was placed through a 

Spin X filter bullet tube by centrifugation and transferred to a mass spectroscopy vial.  A 

TSQ Quantum Triple Quadrupole Mass Spectrometer was used to quantify the amount 

of PGE-M per sample.  Urine creatinine was also measured and values of PGE-M were 

reported as ng PGE-M/mg creatinine. 

 Data from a time course study indicates that repeated testing of a single sample 

results in a coefficient of variance of about 15% (for 45 replicate samples).81 

 

COX-2 Immunohistochemistry 

 Immunohistochemistry for COX-2 was carried out for tissues that were available 

from the cancer and adenoma groups using the DAKO EnVision™ visualization kit.  

Antigen retrieval was carried out using EDTA and high temperature pressure treatment 

for 15 minutes.  The reaction was quenched by incubating with 0.03% hydrogen 

peroxide and sodium azide solutions for 5 minutes.  Incubation with the primary 

antibody (Oxford Biomedical Research #PG 27 B rabbit polyclonal, dilution 1:200) was 

performed for 30 minutes.  After washing, incubation with the secondary HRP labeled 

anti-rabbit antibody with a labeled polymer, provided by EnVision™.  After development, 

tissue expression was scored against a seminal vesicle positive control.  A 

gastrointestinal pathologist (MKW) noted the presence or absence of COX-2 expression 
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as well as the pattern (epithelial or stromal) of expression; this was subsequently 

correlated with urine PGE-M levels for these patients. 

 

Statistical Analysis 

 We characterized the right skewed urine PGE-M distribution using the median 

and inter-quartile range (25th and 75th percentiles).  Urine PGE-M values (reported in 

ng/mg Cr) were analyzed using non-parametric tests and transformed to their natural 

log for graphical display for each comparison.  The logarithmic transformation reduced 

skewness of the PGE-M distributions and t-tests and ANOVA were used to assess 

group differences for log PGE-M values.  Alternatively, Wilcoxon rank-sum and Kruskal-

Wallis tests were used to determine significant inter-group differences for non-log 

transformed data; for multiple group comparisons, individual rank-sum tests were 

carried out, adjusting the p-values accordingly (multiplying by the number of 

comparisons).  The signed-rank test was used for analysis of paired/repeated measures 

data.  Adjusted  p-values of <0.05 were considered statistically significant.  Multiple 

logistic regression was used to assess the discriminatory ability of urine PGE-M, while 

adjusting for the effect of other covariates.  PGE-M values were parameterized using 

restricted cubic splines82 to allow a flexible structural relationship with classification 

probabilities.  The STATA® (StataCorp, College Station, TX) and SAS® (Cary, NC) 

statistical software packages were utilized for analysis and graphics preparation. 
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Results 

 Urine specimens from a total of 227 patients were analyzed in this study.  The 

set included 58 patients with colon or rectal cancer, 69 patients with varying degrees of 

colorectal adenomatous polyps (33 with polyps >1 cm, 37 with polyps <1 cm, 11 with ≥2 

polyps), 72 patients that had no colorectal pathology on endoscopy, and 28 patients 

with Crohn’s Disease.  The clinical characteristics of each group are summarized in 

Table 1. 
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Table 1.  Demographic characteristics for groups involved in the study. 

 

  

CRC Cases 
(n=58) 

Large/Multiple 
Polyp Cases 

(n=44) 

Small Polyp 
Cases 
(n=26) 

Polyp-free 
Controls 

(n=72) 

Crohn’s 
Cases 
(n=28) 

Age, mean (SD) 
Female (%) 
NSAIDs within 48 hrs 

60.9 (10.0) 
45 
0 

59.6 (11.5) 
25 
8.8 

60.5 (7.2) 
30.8 
17.1 

60.9 (7.5) 
26.4 
18.6 

38.8 (11.7) 
53.6 
n/a 

Characteristics of Neoplasia 

Location (%) 
     Left colon 
     Right colon 
     Both 
     Unknown 
> 1 Polyp (%) 
Polyp ≥ 1 cm (%) 
Tubulovillous/villous (%) 
Median PGE-M 
Interquartile Range 

  
61.7 
38.3 

0 
0 
-- 
-- 
-- 

15.0 
 9.11 - 26.9 

  
38.2 
52.9 
2.9 
5.8 

14.7 
94 

11.8 
15.6 

7.79 - 22.9 

  
45.7 
40 

11.4 
2.9 

25.7 
-- 
-- 

9.69 
6.54 - 20.4 

  
-- 
-- 
-- 
-- 
-- 
-- 
-- 

7.17 
4.69 - 15.9 

  
-- 
-- 
-- 
-- 
-- 
-- 
-- 

21.9 
17.4 - 49.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SD – standard deviation 
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PGE-M Among Polyp-Free Men and Women Controls 

 Among our control group of patients with no endoscopic evidence of colorectal 

pathology, a difference in urine PGE-M was seen between male and female subjects 

(NSAID users excluded).  Otherwise healthy polyp-free men (controls) had a higher 

level of PGE-M (median 8.59 [IQR 5.67 – 22.3]) than polyp-free women (controls) 

(median PGE-M 4.25, IQR 2.35 – 6.03). This difference was significant (Wilcoxon rank-

sum, p = 0.0027) and is consistent with our previous findings of men having higher 

baseline PGE-M levels than women.81  No significant difference was noted with respect 

to age (Spearman’s rank correlation p=0.19), or race (whites vs. non-whites, p=0.98) 

among control individuals.  Smoking as a potential confounder could not be evaluated 

due to the low number of smokers in the control group (n=4). 

 

COX-2 Expression by Immunohistochemistry 

 To evaluate COX-2 expression in neoplastic tissue, immunohistochemistry using 

a COX-2 specific antibody was performed on tissue sections taken from paraffin 

embedded blocks of 32 pathological specimens (CRC n=26, large adenoma n=6) for 

which corresponding urine PGE-M data was available.  Specimens were scored as 

either expressing COX-2 (to any degree) or as not expressing COX-2.  In total, 77% (20 

out of 26) of the CRC and 50% (3 out of 6) large adenoma specimens were found to 

express COX-2.  However, no significant correlation was identified regarding the 

intensity or pattern of COX-2 expression and urinary PGE-M levels among this group 

(epithelial or stromal; Wilcoxon rank-sum p=0.55 and p=0.27, respectively). 
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Patients with CRC 

 Among the aforementioned classification groups, the CRC group (median PGE-

M 14.65, IQR 5.94 - 92.1) and the multiple/large polyp disease group (median PGE-M 

15.6, IQR 4.54 - 30.6) had elevated urinary PGE-M levels compared to the simple/small 

polyp group (median PGE-M 6.92, IQR 3.56 - 22.2), and the polyp-free group (median 

PGE-M 7.20, IQR 1.55 - 31.5) (figure 1).   Urinary PGE-M in the CRC group was 

significantly elevated compared to the simple/small polyp and polyp-free groups 

(Wilcoxon rank-sum adjusted for multiple comparisons p = 0.006 and p = 0.0004, 

respectively).  There was no difference in urine PGE-M with regard to tumor location 

(right sided tumors n=21, median 11.4 [IQR 8.54 – 37.9]; left sided tumors n=37, 

median 15.1 [IQR 9.52 – 21.7]; Wilcoxon rank-sum p=0.62).  Smoking as a potential 

confounder counfounder could not be evaluated due to incomplete smoking data on the 

rectal cancer patients (smoking status at the time of resection available for only 28 out 

of 58 patients; however, only 7 were actively smoking). 
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Figure 1. 

0 2 4 6

Polyp-free

Simple/Small Polyp

Large/Multiple Polyp

Cancer

Log PGE-M (ng/mg Cr)

 
Urine PGE-M by Pathology Group.  The groups consisted of patients with CRC, patients with large 
(>1cm) or multiple (<1cm but ≥2 in number), small polyps or simple polyps (<1cm and <2 in number), and 
no polyp disease.  A significant difference was detected between the groups (p=0.0003); adjusted pair 
wise comparisons are listed.  Log transformed median urine PGE-M values and interquartile range (IQR) 
are indicated by box plot for each group.  The inter quartile range of values is represented by the box, 
with the median logPGE-M value indicated by a line within the box; the bars represent the most extreme 
values that are not outliers or 1.5 times the size of the IQR, whichever is smaller.  Outliers are 
represented by small circles 
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Patients with Polyp Disease 

 Patients with large/multiple polyps comprised of a heterogeneous group with 

variable sizes of polyps - either polyps greater than 1.0 cm in size or greater than 2 

polyps, regardless of size.  Therefore, we sought to determine if polyp size, regardless 

of number, had any impact on PGE-M levels.  Patients with adenomas greater than 1.0 

cm in size, regardless of number of polyps, were found to have PGE-M levels that were 

elevated relative to those with adenomas less than 1.0 cm in size, even if multiple 

(median PGE-M 16.1 [IQR 6.43 – 30.6] versus 13.2 [IQR 10.3 – 16.1];  Wilcoxon rank-

sum p = 0.056; figure 2).  The urine PGE-M values of patients with small (<1 cm) 

polyps, even though they were multiple in number, was similar to those patients who 

had no detectable colorectal pathology by endoscopy (median PGE-M 10.9 [IQR 6.4 – 

20.9] vs. 7.2 [IQR 4.7 – 16.4]; p = 0.56). 

 Due to the small sample size of tubulovillous and villous adenomas (n=4) in the 

adenoma group, we were unable to determine whether histological subtype correlated 

with PGE-M levels.  It should also be noted that out of the 33 patients with polyps >1 

cm, 20 were sufficiently large that they were referred for resection; the remaining 13 

patients had polyps >1cm found on endoscopy.  However, among non-NSAID users, 

there was no significant difference between the resected polyps and endoscopically 

discovered polyps that were >1cm in size (median PGE-M 18.3 [IQR 7.73 – 24.7] vs. 

17.1 [IQR 12.3 – 36.7]; Wilcoxon rank-sum p=0.44). 
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Figure 2. 

1 2 3 4 5

Large (>1cm)

Small (<1cm)

Log PGE-M (ng/mg Cr)

 
Large versus Multiple Small Polyps.  Patients with large (>1cm) polyps trended toward having an elevated 
urine PGE-M compared to patients with small multiple polyps (<1cm and ≥2 in count, p=0.056).  Log 
transformed median urine PGE-M values and interquartile range (IQR) are indicated by box plot for each 
group.  The inter quartile range of values is represented by the box, with the median logPGE-M value 
indicated by a line within the box; the bars represent the most extreme values that are not outliers or 1.5 
times the size of the IQR, whichever is smaller.  Outliers are represented by small circles 
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Patients with Potential Surgical Disease: Large Adenomas or CRC 

 Patients with small (< 1 cm, even if multiple) or no polyps had similar median 

PGE-M values and distributions (median 9.69 [IQR 6.41 – 22.2] versus 7.05 [IQR 2.35 – 

24.7], Wilcoxon rank-sum p=0.81). Similarly, patients with CRC or polyps greater than 

1.0 cm in size had similar median urine PGE-M values and distributions (median 14.95 

[IQR 5.94 – 92.1] versus 18.85 [IQR 11.9 – 25.6], Wilcoxon rank-sum p=0.26).  As was 

the case for all patients with CRC, most of the patients with large polyps in this study 

underwent surgical resection of their disease since they were not amenable to 

endoscopic resection.  Given these similarities, we grouped patients with large polyps 

and those with CRC as one group that was considered to be at high risk of having a 

large polyp or potentially surgical disease and compared their PGE-M levels to those 

with small or no polyp disease that had a very low risk of having surgical disease.  

There was a significant difference in PGE-M values between the large polyp/CRC group 

and the small/no polyp group (median PGE-M 15.1 [IQR 3.68 – 92.1] versus 7.34 [IQR 

1.44 – 35.2]; Wilcoxon rank-sum p < 0.0001). 

 Using this classification scheme, a multiple logistic regression model was created 

that incorporated gender and PGE-M level.  The probability of a patient in our sample 

population having a large polyp/potential surgical disease increases as urine PGE-M 

level rises for both genders.  At lower PGE-M levels, the discernment between benign 

and more advanced disease is less clear due to the greater overlap between the 

distributions of these groups; however, as the PGE-M level increases, the distinction 

becomes much more apparent (figure 3). 
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Figure 3. 
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Probability of CRC or Large Adenoma Increases with Urine PGE-M.  Multiple logistic regression model 
using restricted cubic splines demonstrates the probability of having CRC or a large polyp versus a more 
benign condition (small or no polyps).  Both PGE-M level and gender contributed in a significant manner 
to this model (p=0.0002 and p=0.0006, respectively).  The solid line represents the predicted probability 
obtained from the model; the shaded area represents the 95% confidence interval for the prediction.  
Probabilities are displayed separately for men and women. 
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Urine PGE-M and COX-2 Inhibition   

 Thirteen patients with rectal cancer underwent 5 days of treatment with 

celecoxib, 400 mg orally twice daily and provided both pre- and post-treatment urine 

specimens.  Paired analysis of these pre- and post-treatment specimens revealed a 

significant decrease in urine PGE-M after treatment with celecoxib (median PGE-M 21.7 

[IQR 16.2 – 29.9] vs. 9.14 [IQR 7.14 – 13.2], signed-rank test p = 0.009).  Celecoxib 

treatment in these patients with rectal cancer suppressed urinary PGE-M to the level of 

patients with minimal or no detectable colorectal disease (small polyps or polyp-free; 

figure 4). 

 Six patients with large polyps were identified to have taken NSAIDs within 48 

hours of urine sample collection.  Their PGE-M levels were also similar to control levels 

of PGE-M and therefore these patients were excluded in other comparisons. 
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Figure 4. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Inhibition of COX-2 in rectal carcinoma.  Thirteen patients with a diagnosis of stage I-III rectal carcinoma 
were treated with a 5 day course of celecoxib 400 mg orally twice a day.  Each patient provided pre-
treatment and post-treatment specimens, which were analyzed in a paired manner. PGE-m levels were 
significantly decreased after 5 days of celecoxib treatment (p=0.009).  Median urine PGE-M values and 
interquartile range (IQR) are indicated by the square symbol and bars, respectively, for each time point. 
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Patients with Crohn’s Disease 

 Since COX-2 activity is also induced during inflammatory conditions, we 

evaluated the status of urine PGE-M levels in a group of patients with a benign 

gastrointestinal inflammatory condition, Crohn’s disease.  Urine samples were collected 

prospectively from a group of 28 consecutive patients who had been diagnosed with 

Crohn’s disease; however, tissue was not uniformly available to perform COX-2 

immunohistochemistry.  As a group, patients with Crohn’s disease had markedly 

elevated levels of urine PGE-M relative to the other groups that were evaluated (median 

PGE-M 19.85 [IQR 6.89 – 90.2]).  This was significantly different from the small/polyp-

free group (Kruskal-Wallis p = 0.0001; adjusted rank-sum p < 0.0001) and the 

CRC/Large polyp groups (adjusted rank-sum p = 0.035). 

 

Urine PGE-M as a Screening Biomarker 

 To determine the potential utility of urine PGE-M as a biomarker of colorectal 

disease, sensitivity and specificity analyses were performed and ROC curves were 

created.  We have shown that two non-pathology related factors impacted PGE-M 

levels: gender and NSAID use.  To that end, ROC curves were created for men, 

women, and the entire group of patients; likewise, NSAID users were excluded (figure 

5).  
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Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Separate ROC analyses were performed, demonstrating sensitivity and specificity at each cutoff value of 
urine PGE-M for men, women, and all patients combined using PGE-M for: A.  potential surgical disease, 
including CRC or large polyps (median urine PGE-M values for positive individuals 
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 Table 2 summarizes our findings by gender for CRC, as well as the 

aforementioned potential surgical group (CRC and large polyps).  The sensitivity and 

specificity can be inversely adjusted up or down by modifying the cutoff value selected 

to indicate a “positive” test.  Accordingly as the cut point for a positive test increases, 

sensitivity approaches 100%, while specificity decreases accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 25



  

 

 

 

 

 

 

 

 
Table 2.  Sensitivity and specificity analysis of urine PGE-M for the detection of CRC versus benign disease (all 
polyp patients and controls) or CRC/large polyps (potentially surgical disease) versus small/no polyps (non-surgical 
disease).  The area under the curve (AUC) for each receiver-operator curve (ROC) is listed along with the specific 
cut points that yield the highest correct classification for each group.  All analyses exclude NSAID users; combined 
and gender specific tables are provided. 

CRC vs. Non-Cancer CRC/Large Polyp vs. Small/No Polyps 
 All Men Women All Men Women 
AUC 
Median PGE-M (Positive) 
Median PGE-M (Negative) 
Cut point log(PGE-M) 
Cut point PGE-M 
Sensitivity 
Specificity 

0.64 
15.0 
11.3 
2.07 
7.93 
90% 
45% 

0.54 
14.7 
12.3 
2.11 
19.2 
88% 
35% 

0.84 
17.0 
7.67 
2.07 
7.23 
92% 
78% 

0.70 
15.1 
7.21 
2.04 
7.67 
88% 
53% 

0.67 
15.1 
9.59 
2.11 
8.26 
92% 
46% 

0.84 
11.4 
5.61 
2.04 
7.67 
83% 
86% 
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Discussion 

 The present study shows that urine PGE-M levels are increased in patients with 

colorectal carcinomas, large colonic polyps, and Crohn’s disease.  This is consistent 

with the fact that 75-85% of colon cancers express COX-2.55 Accurate quantification of 

PGE-M requires a single urine specimen and abstinence from COX-2 inhibitors or 

NSAIDs for 48 hours prior to collection, (although we acknowledge that patients may 

use these medications surreptitiously despite instructions to the contrary83). There is a 

modest but significant difference in median urine PGE-M levels between healthy men 

and women that appears to be attributable to gender, independent of age.  Although we 

were unable to demonstrate a correlation between COX-2 expression and PGE-M level, 

this was likely due to the fact that the majority of tumors express COX-2 to some degree 

and our sample size of patients with tissue available for IHC was relatively small.  Only 

6 out of 26 CRC patients and 3 out of 6 large adenoma patients were found to be non-

expressers of COX-2; therefore, our sample was underpowered to detect a difference 

between COX-2 expressing and non-expressing tumors (a sample size of 40 non-

expressors and 40 expressors of COX-2 would be required to detect a 5 ng/mg Cr 

difference in urine PGE-M while achieving an α=0.05 with a power=0.80). 

 Our findings suggest that assessment of urine PGE-M level deserves further 

investigation as a non-invasive clinical marker for discerning patients who would benefit 

from colonoscopy for surveillance for colorectal neoplasia.   According to the Early 

Detection Research Network (EDRN), for detection of CRC a candidate biomarker must 

demonstrate a sensitivity of 40% and specificity of 80% prediction of any stage 

adenocarcinoma of the colon to be considered for further investigation; for detection of 
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adenoma(s) of any size, a biomarker must similarly demonstrate a sensitivity of 30% 

and specificity of 70% to be further investigated.84  For women in the cohort described, 

optimal sensitivity and specificity, defined as the cutpoint at which the misclassification 

rate is lowest, were 92% and 78%, respectively for CRC, while optimal sensitivity and 

specificity for the detection of potentially surgical neoplasms (large polyps or CRC) were 

83% and 86%, respectively.  For men, optimal sensitivity and specificity for the 

detection of CRC were 88% and 35%, respectively, while for potentially surgical 

neoplasms, optimal sensitivity and specificity were 92% and 46%, respectively.  Indeed, 

it may be that this assay holds more potential for female patients.  These data suggest 

that assessment of urinary PGE-M should be further investigated as a non-invasive test 

to indicate the need for screening colonoscopy for detection of large adenomas or 

colorectal carcinoma.   

 Currently advocated preventative screening measures for CRC in the United 

States include flexible sigmoidoscopy with double contrast barium enema or 

colonoscopy and fecal occult blood testing (FOBT).85 Among asymptomatic patients 

with an uncomplicated past medical or family history, these tests are not recommended 

to begin until age 50 for both men and women.  Fecal occult blood testing as a part of 

the regimen is the only currently recommended non-invasive adjunct in screening for 

colorectal cancer.  Appealing features of FOBT are that it is non-invasive and can be 

performed by patients in their own home; however, problems with compliance (3 

consecutive stools must be screened) do exist.  Furthermore, the sensitivity and 

specificity of FOBT for detecting advanced neoplasia are much lower than its more 

invasive counterparts (i.e. colonoscopy, double contrast barium enema, etc).86 
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Nonetheless, when FOBT was first introduced, its application improved mortality due to 

CRC by approximately one third according to one randomized trial carried out in 

Minnesota.87 

 At present, there is no widely accepted, non-invasive screening test for CRC that 

is easily and completely administered in a clinical setting.  Further study in larger 

populations will be required to determine whether measurement of urinary PGE-M will 

enhance the detection of occult colorectal carcinomas or adenomas (alone or in 

combination with FOBT) and allow better selection of patients for more invasive testing 

such as colonoscopy. 

 A potential confounding factor in the assessment of urine PGE-M levels as an 

indicator of colorectal neoplastic disease is the fact that COX-2 levels may be elevated 

in numerous inflammatory and extracolonic malignant conditions.  For example, urinary 

levels of PGE-M are elevated in patients with advanced lung carcinoma81 and we have 

recently found PGE-M to be elevated in pancreatic cancer (unpublished data).  

However, through larger validation studies, based on a patient’s clinical presentation an 

elevated PGE-M level may potentially serve as an indicator for further clinical 

evaluation. 

 In a trial of patients with advanced NSCLC treated at Vanderbilt University using 

celecoxib and cytotoxic chemotherapy, PGE- M levels were monitored during their 

treatment course.  Those patients who had a decrease in PGE-M levels during the 

course of treatment had significantly improved survival compared with those patients 

who had either no change or an increase in urinary urine PGE-M levels.88  The degree 

of increase in PGE-M level correlated with the risk of decreased survival as the degree 
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of decrease in PGE-M level correlated with improved survival.  These data suggest that 

urine PGE-M may serve as a useful biomarker for assessment of intratumoral COX-2 

activity and as a prognostic marker of response to treatment in the setting of COX-2 

expressing malignancies.   

 Our results also show that urine PGE-M levels are elevated in patients with 

Crohn’s disease to levels higher than those patients with colorectal carcinoma.  

Although we did not collect samples after pharmacologic intervention among the 

Crohn’s patients, further studies are necessary to determine whether urine PGE-M may 

be a useful objective measure of the activity of this disease as well.  Furthermore, it will 

be both interesting and important to determine whether other COX-2 expressing 

neoplasms or other conditions that cause systemic inflammation are associated with 

increased urine PGE-M levels. 

 In the present pre-validation phase of our study of urinary PGE-M, we found that 

urine PGE-M levels were significantly elevated in patients with CRC and large colorectal 

polyps.  Our findings suggest urine PGE-M levels deserves further investigation as a 

clinical biomarker of CRC.  Further development will be required to determine whether 

this test can serve as a non-invasive and low cost test in screening normal risk patients 

for colorectal cancer and significant adenomas or serve as a compliment to FOBT.  It is 

possible that the combination of the two tests could be useful in improving the selection 

of patients who should undergo colonoscopy.  Although the increase urine PGE-M may 

be a confounding problem in segregating patients with colorectal neoplasia versus 

those with other types of cancers and inflammatory conditions, additional study with a 

larger cohort of patients will determine whether elevated urinary PGE-M may be a 
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useful marker for significant GI pathology or other disease resulting in systemic 

inflammation.   
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CHAPTER III 
 

TREATMENT OF RECTAL CANCER WITH CELECOXIB: 

CHANGES IN GENE EXPRESSION AND CORRELATION WITH URINE PGE2 

METABOLITE LEVELS 

 

Introduction 

 Cyclooxygenase-2 (COX-2) is an inducible enzyme associated with inflammation 

and malignancy.55 COX-2 is expressed in a majority of CRCs and is associated with 

increased tumor size, invasion, and poor prognosis.56-59 A large body of literature 

supports the concept that inhibition of COX-2, either with non-selective (NSAIDs) or 

selective COX-2 inhibitors (e.g. celecoxib), may offer therapeutic benefit in patients with 

colorectal neoplasia.6, 11, 55 Selective COX-2 inhibitors such as celecoxib also inhibit in-

vitro and in-vivo tumor cell growth 66-69, angiogenesis70-72, invasion and metastasis.73  

Furthermore, epidemiologic studies have shown a benefit to NSAID or aspirin use in 

preventing or decreasing the mortality from CRC.1, 61-65  Likewise, celecoxib has been 

shown to decrease the number and size of colorectal polyps in patients with the familial 

adenomatous polyposis syndrome (FAP).6, 7, 55 

 In recent years, the characterization of solid tumors using microarray gene 

expression technologies has proliferated.  Gene expression patterns have been used to 

investigate the biology and clinical prognosis of breast cancer25-28, 89, head and neck 

cancer32,  and pancreatic cancer42 among others.  Colorectal carcinoma, has also been 

characterized using these techniques16, 46, 90-94 and notably, a gene expression pattern 

that corresponds to a “poor” or “good” prognosis has been developed for this disease.47  
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Still, while some have studied the effects of COX-2 inhibition on gene expression in 

CRC cells in vitro95, these effects have not been studied on human CRC tumors in vivo 

to our knowledge. 

 In this novel study, designed and executed as a prospective clinical trial, we 

report our findings of changes in gene expression in vivo in human CRCs treated with 

the selective COX-2 inhibitor, celecoxib.  Furthermore, we go on to correlate changes in 

gene expression with a surrogate biomarker of COX-2, PGE-M. 

 

Methods 

 

Patients 

 Sixteen patients were recruited at the Vanderbilt Ingram Cancer Center at 

Vanderbilt University Medical Center (VUMC) and the Tennessee Valley Healthcare 

System Veterans Affairs Medical Center (VAMC) in Nashville, TN between 2003 and 

2005.  All patients were diagnosed with rectal cancer and clinically staged I-III according 

to current AJCC guidelines; patients with known stage IV disease were not eligible for 

enrollment.  All protocols and procedures were approved by the Institutional Review 

Board at Vanderbilt University Medical Center. 

 

Study Protocol 

 At the time of diagnosis, patients were asked to abstain from using NSAIDs or 

selective COX-2 inhibitors for 2 weeks prior to undergoing staging endorectal ultrasound 

(EUS) and pinch biopsy to obtain both diagnostic and study specimens.  Participants 
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then underwent 5 days of treatment with celecoxib (as Celebrex® , Pfizer, Inc.) 400 mg 

twice daily by mouth.  At the conclusion of treatment, patients then underwent a second 

biopsy to obtain additional tissue for analysis.  At both pre- and post-treatment time 

points, other clinical specimens were obtained as well, including urine and blood. 

 

Tissue Processing 

 At the time of biopsy, multiple tissue specimens were obtained from the primary 

rectal tumor.  For each patient, one representative pre-treatment specimen was sent to 

pathology to confirm the diagnosis of adenocarcinoma.  The remaining specimens were 

immediately flash frozen in liquid nitrogen and transported to the laboratory.  The biopsy 

tissue was then stored at -80° C until further use.  All specimens were processed for 

RNA isolation within 2 weeks of receipt. 

 

COX-2 Immunohistochemistry 

 Immunohistochemistry for COX-2 was carried out on a representative specimen 

for all tumors using the DAKO EnVision™ visualization kit.  Antigen retrieval was carried 

out using EDTA and high temperature pressure treatment for 15 minutes.  The reaction 

was quenched by incubating with 0.03% hydrogen peroxide and sodium azide solutions 

for 5 minutes.  Incubation with the primary antibody (Oxford Biomedical Research #PG 

27 B rabbit polyclonal, dilution 1:200) was performed for 30 minutes.  After washing, 

incubation with the secondary HRP labeled anti-rabbit antibody with a labeled polymer, 

provided by EnVision™.  After development, tissue expression was scored against a 

seminal vesicle positive control.  A gastrointestinal pathologist (MKW) noted the 
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presence or absence of COX-2 expression as well as the pattern (epithelial or stromal) 

of expression. 

 

RNA Isolation 

 Once a diagnosis of carcinoma was made from the tissue sent to pathology, 

adjacent biopsy specimens were homogenized into lysis buffer.  Isolation of RNA was 

then carried out using the spin-column method (Qiagen RNeasy® kit).  RNA was eluted 

with 10mM Tris/DepC H2O at pH 8.0 and the quality and quantity of each specimen 

were estimated using ultraviolet optical density.  Those samples with an RNA 

concentration of 500 ng/μl and a 260nm/280nm absorption ratio of 1.8 – 2.1 were 

submitted to the Vanderbilt Microarray Shared Resource for further quality control and 

analysis prior to gene chip hybridization. 

 

Microarray Hybridization 

 Samples of RNA isolated from tumor specimens were submitted for microarray 

analysis to the Vanderbilt Microarray Shared Resource (VMSR).  Prior to hybridization, 

RNA quality was determined using the Agilent 2100 bioanalyzer.  Using approximately 1 

μg of total RNA, electrophorectic spectra were generated for each sample.  Using 

analysis software from the bioanalyzer, an RNA integrity number (RIN) was generated.  

Only those specimens with RINs greater than 7.0 were carried forward for hybridization. 

The hybridization reaction was performed using 5μg of total RNA, and generation of 

cDNA transcripts from RNA templates was by a first strand reaction which included 

hybridization to T7dt24 oligo using SuperScript II reverse transcriptase with 
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deoxynucleotides.  Subsequently, a second strand reaction which employed E.Coli DNA 

ligase, E.Coli DNA polymerase I, RNAse H, T4 DNA polymerase, and deoxynucleotides 

was performed to complete cDNA synthesis.  Next, cDNA was purified using a spin 

column and biotin-labeled cRNA synthesized using biotinylated nucleotides (CTP and 

UTP) and T7 RNA polymerase.  These cRNA transcripts were purified with a spin 

column, quantitated, fragmented, and hybridized to the array.  After hybridization, arrays 

underwent staining with phycoerythrin-streptavidin and were scanned for signal. 

 The Affymetrix U133 Plus 2.0 GeneChip® microarray platform was used and is 

considered to be comprehensive for the human genome; specifically, the probe sets 

correspond to approximately 33,000 genes.  Finally, analysis of microarray results was 

performed using software included in the Affymetrix GeneChip® Scanner 3000 

microarray analysis software suite. 

 

Measurement of Urine PGE-M 

Urine specimens were obtained from 13 of patients in the study before and after 

treatment with celecoxib.  These specimens were aliquoted into two 10 mL samples, 

which were immediately stored frozen at -80o C until final analysis.  Samples were 

submitted for analysis in a randomized order and the personnel performing the analyses 

were blinded to the clinical and disease status associated with each specimen. 

 Urine PGE-M was quantified using liquid chromatography and mass 

spectrometry (LC/MS) by the methods previously reported.81 Briefly, one ml of urine per 

patient was titrated to a pH of 3 by addition of 1M HCL and then 0.5 ml of methyloxime 

solution (1600 mg in 10 ml 1.5 M sodium acetate, pH 5) was added.  After one hour, the 

 36



  

methyloxime was diluted with 10 ml H20 at pH 3 and each sample was applied to a C-18 

Sep Pack (after prepping the Sep Pack with 5 ml MeOH and 5 ml H20 at pH 3).  

Samples were washed with 10 ml H20 at pH 3 followed by 10 ml Heptane and then 

eluted from the Sep Pack with 5 mL ethyl acetate.  The PGE-M internal standard (6.2 ng 

[2H6] O-methyloxime PGE-M in 10 µl) was added to the sample and the solution was 

dried under N2 at 37o C and reconstituted in 50 µl of LC mobile phase A, consisting of 

95% 5 mM NH4oAC, 5% ACN, and 0.1% HoAc.  Each sample was placed through a 

Spin X filter bullet tube by centrifugation and transferred to a mass spectroscopy vial.  A 

TSQ Quantum Triple Quadrupole Mass Spectrometer was used to quantify the amount 

of PGE-M per sample.  Urine creatinine was also measured and values of PGE-M were 

reported as ng PGE-M/mg creatinine.  Data from a time course study indicates that 

repeated testing of a single sample results in a coefficient of variance of about 15% (for 

45 replicate samples).81 

 

Results 

 At the conclusion of this study, 16 patients had been prospectively enrolled and 

completed treatment; patient demographic data is provided in Table 3.  Briefly, the 

mean age was 60.4 (SD 9.76 years) and the gender break down was 50% male and 

50% female.  The majority of the patient population was white and most patients had 

AJCC stage II or III disease at enrollment.  All together, RNA from a total of 32 rectal 

tumors was hybridized for these patients (one pre- and one post-celecoxib treatment for 

each patient); 26 urine PGE-M values were also available for correlation with our 

microarray data (pre- and post-celecoxib specimens for 13 of the 16 patients). 

 37



  

 

 

 

 

 

 

 

Table 3.  Demographic and clinical characteristics of patients in the study 
 Patient Age Gender Race AJCC Stage 

1 53 Female Black 3 
2 67 Male White 2 
3 52 Female White 2 
4 61 Female White 3 
5 69 Female White 3 
6 47 Male Black 2 
7 65 Female White 2 
8 80 Male White 3 
9 50 Male White 1 

10 62 Female White 2 
11 77 Female White 1 
12 66 Female White 2 
13 58 Male White 2 
14 56 Male White 3 
15 49 Male White 3 
16 55 Male White 1 
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COX-2 Expression 

 Of the 16 patients in our study, 15 specimens were available to evaluate COX-2 

expression by IHC.  Eleven out of the remaining 15 tumors expressed COX-2, while 4 

tumors did not (data not shown), which was approximately 73% of all specimens 

assessed.  This proportion of COX-2 expressing tumors was found to be consistent with 

previously published estimates of COX-2 expression in colorectal tumors.57, 58 

 

Changes in Gene Expression After Treatment with Celecoxib 

 After patients underwent the prescribed therapy with celecoxib, microarray data 

were analyzed using the permutational t-test.  From this analysis, 1350 genes were 

found to be differentially regulated in a significant manner (p-values <0.05).  Even after 

the criteria were tightened (p-values <0.01), a substantial, yet refined list of some 201 

genes was left; this included 174 probes that had at least a locus link ID.  These data 

lists were uploaded to WebGestalt (University of Tennessee and Oak Ridge National 

Laboratory), a web based gene set analysis toolkit that draws from variety of public 

databases and analysis tools.96  Pathway information, molecular function, and other 

genome related queries were then carried out. 

 Using the refined gene set and Gene Ontology database annotation97, we were 

able to view subsets of genes with regard to molecular function, biological process, and 

cellular component.  Using strict criteria (only those categories that included more than 

2 genes and had p-values <0.01 based on a hypergeometric test), a classification tree 

was created to organize our data into the aforementioned categories (figure 6). 
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Figure 6. 

 

Gene Ontology tree organizing the refined set of genes that changed in rectal tumors after treatment with 
5 days of celecoxib.  Those with p-values are statistically significant (hypergeometric test) 
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 To evaluate the genes impacted by celecoxib treatment with regard to general 

biological pathway, we analyzed them with the Kyoto Encyclopedia of Genes and 

Genomes (KEGG).98  For more specific pathway analysis genes impacted by celecoxib 

treatment that had a p-value of <0.05 were analyzed using the Biocarta Pathway 

project.99  The results of these analyses are shown in Tables 4 and 5, respectively. 
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Table 4.  KEGG pathway analysis using top significantly changed genes (p<0.01) after celecoxib 
treatment. 

KEGG Pathway Genes Entrez Gene IDs P-value 

Purine Metabolism 5 4860, 5167, 5425, 8382, 8833 0.011 
Wnt Signaling Pathway 5 1457, 3725, 5579, 56998, 9475 0.008 
Focal Adhesion 5 1793, 3725, 5579, 6714, 9475 0.033 
Tight Junction 5 1457, 154810, 2017, 5579, 6714 0.004 
Pyrimidine Metabolism 3 4860, 5425, 8382 0.044 
Butanoate Metabolism 3 157570, 51109, 51400 0.011 
Nicotinate and Nicotinamide Metabolism 3 4860, 5167, 55191 0.018 

 
 
 
 
 
 
 
Table 5.  Biocarta pathway analysis of genes changed after celecoxib treatment (genes with p<0.05). 

Biocarta Pathway Genes Entrez Gene IDs P-value 
Signaling of Hepatocyte Growth Factor Receptor 5 1793, 2549, 3725, 5728, 6714 0.028 
Rho cell motility signaling pathway  

 

 

 

 

 

 

  

 

 

 

 

 

4 10458, 6714, 8395, 9826 0.026 
mTOR Signaling Pathway 4 2280, 5164, 5728, 6194 0.022 
Nuclear receptors coordinate activities of chromatin 
remodeling…in carcinoma cells

4 10499, 2962, 6714, 8850 0.009 

Skeletal Muscle Hypertrophy…AKT/mTOR Pathway 4 3479, 5164, 5728, 6194 0.029 
Role of EGF Receptor Transactivation by GPCRs in 
Cardiac Hypertrophy

4 183, 1909, 3725, 8038 0.009 

p53 Signaling Pathway 3 317, 595, 898 0.049 
IGF-1 Receptor and Longevity 3 2688, 3479, 6649 0.018 
Role of PPAR-gamma Coactivators in Obesity and 
Thermogenesis 

3 10499, 10891, 6714 0.010 

Regulation of PGC-1a 3 10014, 10891, 5465 0.018 
The PRC2 Complex Sets Long-term Gene 
Silencing…Histone Tails

3 2145, 7528, 8726 0.028 
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Changes in Urine PGE-M and Gene Expression 

 To evaluate the relationship between PGE2 and gene expression, we sought to 

evaluate possible connections between the two after treatment with celecoxib.  A 

urinary metabolite of PGE2, PGE-M, was measured before and after celecoxib 

treatment.  We have previously shown this metabolite to be a potential biomarker of 

colorectal carcinoma.100  Patients were ranked according to the magnitude of their 

change in urine PGE-M.  These ranks were plotted against changes in expression for 

each of the 201 genes found to be significantly altered in expression (p<0.01) and a 

regression analyses were performed.  Changes in the expression of 13 probes 

(corresponding to 8 named genes) were found to significantly correlate with changes in 

urine PGE-M after celecoxib treatment (Table 6).  An example, using CTNNBIP1, is 

shown in figure 7. 
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Table 6.  Probes that showed a significant correlation in fold change versus the change in urine PGE-M 
after celecoxib treatment. 

Affymetrix Probe ID Gene Symbol Entrez Gene ID P-value 
219522_at FJX1 24147 0.029 
219324_at n/a 79159 0.000 
241990_at RHOV 171177 0.024 
241903_at KCTD3 51133 0.029 
242444_at C1QTNF6 114904 0.001 
242681_at CTNNBIP1 56998 0.007 
1560181_at C18orf1 753 0.041 
1555778_a_at POSTN 10631 0.021 
57703_at SENP5 205564 0.035 
238542_at ULBP2 80328 0.001 
243825_at n/a n/a 0.031 
235118_at n/a n/a 0.029 
230962_at n/a n/a 0.007 
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Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

Linear regression of the change in urine PGE-M (by rank order) after 5 days of celecoxib treatment 
versus the fold change in one of the 8 named genes that showed significant correlation with this 
biomarker.  The regression shown here is for beta catenin interacting protein 1 (CTNNBIP1), a negative 
regulator of Wnt signaling (p=0.007) 
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Discussion 

 Inhibition of COX-2 in the treatment of CRC has remained an area of great 

therapeutic interest.  Here, we have presented the results of a prospective clinical trial 

where we investigated the effects of the selective COX-2 inhibitor, celecoxib, on gene 

expression in a cohort of patients with rectal carcinoma.  To our knowledge, this study is 

novel in that we sought to evaluate gene expression before and after pharmacologic 

intervention in the same patients in a prospective clinical setting. 

 Our analysis of the genes with altered expression after treatment with celecoxib 

has provided some insight into the biological processes affect by this drug.  Using 

KEGG analysis, we found pathways specific to nucleic acid synthesis and metabolism 

as well as cell adhesion appear to be affected by celecoxib; likewise, the Wnt signaling 

pathway sees several of its members negatively regulated after celecoxib treatment.  

Using Biocarta pathway analysis, we identified members of the HGF and EGF receptor 

signaling, mTOR, and PPAR-gamma pathways as being differentially impacted after 

celecoxib treatment.  This is significant as many of these pathways have been 

implicated as being important in the development and progression of CRC. 

 In addition, we have shown that 13 of the 201 most significantly changed probes 

correlate with urine levels of PGE-M.  This is interesting as it suggests the these genes 

change in response to interruption of PGE2 production.  Not only does it imply that these 

genes are affected by the COX-2 specific effects of celecoxib, but that they are 

specifically influenced by signaling from prostaglandin E2. 

 While this present study is small, it was carried out prospectively with a gene chip 

considered to be comprehensive for the human genome.  We have shown that high 
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quality RNA can be acquired from rectal tumor pinch biopsy specimens; furthermore, 

using RNA obtained in this manner, microarray technology is feasibly applied in the 

clinical setting.  From the information gleaned in this study, potential targets for 

therapeutic intervention may be identified that can be combined with celecoxib for 

maximal effectiveness. 

 Future studies will be aimed at in vitro and in vivo validation of these findings.  

Likewise, trials aimed at evaluating the efficacy of celecoxib in the treatment of CRC, in 

combination with established surgical, neoadjuvant chemotherapy-radiation, and 

adjuvant chemotherapy regimens, are ongoing.  These studies hold the short-term 

potential of demonstrating a therapeutic benefit in this disease to use of a drug with a 

relatively mild toxicity profile.  In the long-term, information gathered from these and 

other gene expression studies may elucidate other targets for intervention using other 

pharmacologic agents.  
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CHAPTER IV 

 

SUMMARY AND CONCLUSION 

 

 The above body of work has sought to establish a relationship between gene 

expression patterns and COX-2 activity in CRC.  We have also demonstrated that 

surrogate markers of COX-2 activity (in this case, urinary PGE-M) are feasible markers 

of colorectal neoplasia and possibly response to therapies directed against COX-2.  We 

have also sought to identify candidate genes and pathways important in the biology of 

this disease; however, this study is only the beginning.  Based on the findings of our 

experiments, a biological and bioinformatic foundation will be built.   

 Insight into biological pathways and involved genes will be gained from these 

studies and expanded toe evaluate higher stage CRC and liver metastases.  This in turn 

can be taken forward for further study in laboratory model systems.  From there, long-

term survival will become available over the next few years.  This will allow a 

comprehensive analysis of the microarray data in the context of the complete 

clinicopathological picture.  From there gene expression profiles can be modified as it 

becomes known which patients responded to treatment, recurred, etc.  Likewise, new 

specimens will be collected and prospective application of the gene expression 

signatures can be undertaken.  Ultimately, once confident signatures are developed, 

they may be used as staging tools (alone or as a component of existing staging 

systems).   
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 Indeed, COX-2 is a very relevant facilitator of colorectal disease.  Clinical trials 

are proceeding with celecoxib to determine whether it can impact recurrence and 

survival in CRC.  Likewise, we are pursuing urine PGE-M as a biomarker with the 

assistance of the EDRN.  These studies, coupled with our ongoing microarray 

experiments may lead to a better understanding of how COX-2 affects colorectal 

disease behavior clinically, as well as the molecular basis for these effects. 
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