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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

 

Motivation 

 Robot-assisted surgical systems are becoming increasingly common in medical 

procedures as they embrace many of the benefits of minimally invasive surgery including 

decreased patient trauma, reduced recovery time, and less financially costly treatment [1]. 

Medical errors can cause tissue trauma and can even result in fatal consequences. It has been 

found that over 400,000 deaths occurred in American hospitals due to medical errors per year 

[25]. The technology incorporated into surgical robots is promising for its potential to provide 

surgeons with superhuman capabilities. These abilities allow for procedures to be performed 

more safely and quickly when compared to procedures without robotic assistance. For example, 

robot-assisted surgical systems have the ability to dexterously navigate through tissue with both 

surgical tools and endoscopic cameras. These systems allow for relatively easy navigation within 

confined spaces where an operator’s human hand would normally be greatly limited. This 

dexterity is further strengthened through motion scaling, which translates large motions by the 

operator into diminutive actions of the robotic end effector. Finally, hand tremors generated by 

the doctor may be filtered and removed by robotic systems [3][4]. In addition to these technical 

enhancements to single surgical procedures, the potential for telesurgery, in which a doctor 

trained in a specialty field can conduct a procedure over great distances without needing to 

travel, opens doors to healthcare for regions of the world currently limited in medical training 

and experience [4].  
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In order for these systems to be utilized most effectively, the doctors operating them must 

have a complete and thorough understanding of both the robot’s abilities and the physiology of 

the human body. While the knowledge of how live tissue reacts to surgical procedures is gained 

through attending medical school and observing operations, the skills associated with 

successfully performing a procedure can only be developed through practice. Surgeons may 

receive limited practice for technically challenging procedures before performing them on live 

patients, because cadavers are expensive and involved procedures may only be able to be 

performed once. Additionally, mistakes are expected to occur during training and these can often 

render the rest of the cadaver useless for future studies [5]. Alternatively, many institutions use 

mannequins to represent a human body, but these fall short in simulating realism to the operator 

[6]. In desperate attempts to gain practical experience, students are even training venipuncture on 

other students [7]. These hindrances make training expensive for the hospital to provide to its 

surgeons, as a great number of repetitions may be necessary for a doctor to achieve full 

proficiency for a procedure. For example, one study has shown that a surgeon performing 

keyhole surgery requires 750 operations before he or she has perfected the skill [8].  

One of the most promising teaching aides for surgeons is the medical training simulator. 

This technology simulates a three-dimensional environment for many different medical 

procedures. The operator manipulates a robot to navigate through virtual tissue as seen on a 

computer monitor. This method of practicing surgical procedures through robotic training 

simulators has been shown to be a more efficient mode of learning than the use of cadavers. 

Statistically, it is estimated that one hour of training using a robotics simulator can have the same 

effects as three hours of training on a human cadaver [9].  
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While existing surgical robots and virtual surgical trainers are useful, limitations still 

exist. The aspect of the surgical systems that generates the sense of realism to the user is haptic 

feedback, which is the sense of touch. Haptic feedback provides the user with kinesthetic 

information regarding the real or virtual environment of the operation [4][10]. Without such 

force feedback, the operator has to rely entirely on visual cues from tissue manipulation to decide 

whether the forces applied are appropriate. This is a challenge that even expert surgeons find 

difficult. For example, experienced cardiac surgeons inadvertently applied forces great enough to 

rip fine polypropylene sutures and damage tissue when training with the da Vinci surgical robot 

without haptic feedback [11]. However, when haptic feedback was included in the system, these 

surgeons applied more consistent tensions in sutures and caused less tissue harm [11]. In a study 

of blunt dissections, a comparison of robot-assisted surgery with and without haptic feedback 

revealed that errors resulting in tissue damage were decreased by 66% when force feedback was 

utilized [12]. These studies demonstrate the clear need for further research into haptic feedback 

as it applies to robot-assisted surgery and training. 

 

Previous Research 

Haptic robots have been an active area of research over the last 44 years for both general 

applications and medical purposes [5]. In addition to surgical applications, haptics are applied in 

flight simulators, video game systems, and mobile devices. These haptic devices are both 

kinesthetic and tactile. Kinesthetic feedback means the haptics apply sensations to joint muscles. 

Tactile feedback generates feeling through surface texture. The research has led to the 

application of a variety of actuation methods such as DC electric motors, pneumatics, hydraulics, 

shape memory metals, magnetics, piezoelectric materials, and electrorheological fluids. For all 
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haptic purposes, the goal of the designer is to optimize the accuracy and magnitude of the forces 

being returned to the user and the speed with which those forces are applied. Unfortunately, 

these two qualities are often trade-offs, thus, compromises must be made. In order to maintain 

the sense of realism for general tasks, the user must experience both forces and torques, along all 

six degrees of freedom of a general rigid body. This challenging requirement often results in 

difficulty maintaining both low cost and high performance, despite several decades of haptics 

research [5].  

As such, the commercial availability for a haptic device and the number of degrees of 

freedom the haptic device offers are inversely related. In fact, the commercial availability of a 

seven degree-of-freedom haptic robot, similar to that being designed in this paper, is remarkably 

low. One of the few systems that provides seven degrees of force feedback is the MPB 

Technologies F7S: a system that provides a maximum torque of 2.5 Nm with a stiffness of 2 

N/mm at a cost greater than $32,000. The Force Dimensions Omega 7 also provides seven 

degrees of freedom but only utilizes three for force feedback. However, the maximum torque 

feedback available is relatively large at 12 Nm [5]. The SensAble Technologies’ Premium 1.0, 

1.5, and 3.0 are all six degree of freedom systems that have scissor-grip and thumb-pad end-

effectors available to increase their dexterity to seven degrees of freedom.  

There are a number of six degree of freedom systems available for commercial use 

including the SensAble Technologies Premium 1.0, 1.5, and 3.0, the Force Dimensions Delta 6, 

the Haption Virtuose 6D Desktop, 6D35-45, 6D40-40, and INCA 6D, and the MPB 

Technologies Freedom 6S. The maximum torque feedback of these robots ranges considerably 

from 2.5 Nm to 100 Nm with maximum stiffness values of 1 to 3.5 N/mm. These machines cost 

between $20,000 and $140,000, correlating strongly with maximum torque feedback [5].  
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These haptic systems have been applied to medical training for a wide variety of 

specialties. One of the most common haptic studies is training for needle insertion. The Mediseus 

Epidural simulator uses a low-cost SensAble PHANTOM Omni and a modified syringe end 

effector to create a commercially available haptic system for needle insertion [17]. A higher-

fidelity option, EpiSim from Yantric Inc., is available and uses a SensAble PHANTOM Desktop 

and a 6 DOF Premium to provide a more accurate simulation [18]. The National University of 

Singapore has developed an advanced feedback simulation for percutaneous vertebroplasty that 

requires the manipulation of three separate haptic devices [19]. At this point, the National 

University of Singapore’s research is still cost restrictive with efforts towards a financially viable 

solution. There are also many other needle insertion tasks which have been simulated in a haptic 

environment, including acupuncture, catheter insertion, spine needle biopsy, lumbar punctures, 

and suturing for wound closure. Most of the haptic systems developed for these purposes are 

based on commercially available systems with modified end effectors [5]. The encouraging 

results of these studies call for more research into high degree of freedom haptic devices for 

needle insertion procedures. 

There have been endeavors by other research institutions to build their own 7 degree-of-

freedom haptic devices entirely independent of any existing commercially available systems. 

However, few of them provide force-feedback at all 7 joints, which is a major point of the design 

presented in this thesis. One example of a haptic robot that does provide force-feedback through 

all 7 degrees-of-freedom is the SPIDAR-G, which is a tendon-driven system developed by 

MIMIC Technologies in Seattle, WA. The SPIDAR-G’s unique method of actuation uses eight 

cables to manipulate a sphere in the center of a cube. This allows the inertia felt by the user to be 

low but requires a very intricate design [20].  
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Contribution 

This thesis presents the design and implementation of a four degree-of-freedom robot 

integrated with a preexisting three degree-of-freedom robot. This resulting seven degree-of-

freedom haptic robot for use in robot-assisted surgery and surgical training is gravity-

compensated to maximize the realism felt by the user.  

 

Design Goals 

 The most important characteristic for any haptic robot is providing realistic force 

feedback. For a surgical robot, a realistic force can be related to a commonly performed medical 

practice such as suture tying. Approximately 2-5 N of force are produced during suture tying 

procedures [11]. The system shall be able to produce at least 2 N of force in all directions. This 

minimum value puts the force generated within the range expected in suture tying. Additionally, 

2 Newtons is not enough force to injure the user. The torque requirements are largely based on 

the desire for the device to enforce that hand alignment matches the operator’s view of a tool. 

Humans can produce on average about 13 to 18 N-m at the wrist [22]. The system shall be able 

to produce torques of at least 5% of these maximums, or .9 N-m about all axes. 

As previously stated, low inertia is critical for providing a sense of transparency to the 

user. Thus, one of the design goals is to minimize the robot’s mass. This is a notably challenging 

goal in that a 7 degree-of-freedom robot with force feedback inherently requires a significant 

amount of mass to function. At low speeds, the effects of the mass can be mitigated by statically 

balancing the device, which prevents the user from feeling the weight when not in motion. This 

also helps to minimize operator fatigue. The static weight felt by the operator shall be less than 

that of a 50 g mass, or .5 N. 
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Most commercially available haptic devices have a workspace of at least 10 cm in each 

direction. Very few of these systems exceed 50 cm in any particular direction [5]. A large 

workspace allows for the scaling of the user’s actions so that he or she can make large natural 

movements, which are then interpreted and scaled down to small, precise movements by the 

slave robot. The system shall have a workspace of at least 10 cm in all directions. The angular 

workspace shall be at least ±45 degrees along all axes away from the designated starting position 

of the device.  

There are also some design guidelines which are not quantified, but which informed the 

choice of kinematic mechanism. One key requirement for providing a sense of realism to the 

operator is low friction. An ideal system would have virtually no friction, thus, allowing the user 

to accurately feel the forces that are intentionally transmitted based on the virtual operating 

environment. In addition to minimizing friction, the device must have high stiffness. This will 

prevent any false motion of the end effector caused by unintended deflection.  

 One preexisting constraint on the robot is that it will be a 4 degree-of-freedom robot that 

must be compatible with the previously constructed 3 degree-of-freedom haptic robot 

constructed by Carl M. Perry in 1997 [21]. Thus, the goal is to build a 4 degree-of-freedom 

system and integrate the two together. The new additions shall not substantially restrict the 

workspace or capabilities of the 3 degree-of-freedom base robot. This workspace is described in 

the summary of the three degree-of-freedom base robot. 

 In summary, the quantitative performance requirements for the design are shown in Table 

1-1. The following general guidelines were also used to inform the design 

• Minimize the device’s inertia 

• Minimize the device’s friction 
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• Maximize the device’s workspace 

• Maximize the device’s stiffness 

 

Maximum Force 2-5 N 

Maximum Torque 900 mN-m 

Translational Workspace >10 cm in all axes 

Angular Workspace ±45 degrees in all axes 

Uncompensated Weight < 50 mN 

Table 1-1: Quantified design goals  

 

Base Robot Summary 

 

Figure 1-1: Complete base robot assembly 

 The 3 degree-of-freedom robot designed by Carl M. Perry is used to provide translation 

of the new 4 degree-of-freedom wrist and end effector. This base robot was built with the same 

intentions previously listed for the new haptic device. The system is a high-performance 3 
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degree-of-freedom system for haptic feedback with minimal rotational inertia and joint friction, 

low backlash between components, and high link stiffness [21]. 

The base robot has a serial-parallel configuration and uses a five bar linkage as a means 

of actuation. Two links of the five bar linkage are driven directly by Kollmorgen ServoDisc 

brushed DC motors with peak torques of 14.9 Nm. A Kollmorgen ServoDisc brushed DC motor 

with a peak torque of 37.02 Nm directly actuates the base of the robot. The range of motion for 

the two actuated links of the four bar linkage was measured to be 135° while the base can rotate 

±90°. The links, made of thin-walled carbon fiber tubes, were designed to be lightweight but 

long enough to provide a reasonable workspace. Each has a mass under 90 g with a maximum 

length of 27.3 cm.  

 The 3 degrees-of-freedom associated with this robot provide the gross translational 

motions at the end effector of the new 7 DOF system. The translation motion achieves >10 cm in 

each direction, thereby satisfying one of the previously listed design requirements. Each Midori 

CP-5UY rotary potentiometer senses its respective shaft’s rotation angle. These potentiometers 

are of high resolution with little noise and inertia. This data was not only utilized in determining 

the end effector’s position, but also for calculating the joint velocities through differentiation.  
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CHAPTER II 

 

GIMBAL DESIGN 

 

Introduction 

 

Figure 2-1: Complete gimbal assembly 

The gimbal is one type of mechanism which has been successfully integrated into 

surgical haptic devices. This tool can be designed to provide a statically balanced, lightweight, 

natural method of controlling an end-effector. One of the more intricately designed high degree-

of-freedom haptic robots that incorporates a gimbal is the Da Vinci Surgical System by Intuitive 

Surgical. This teleoperated robot is currently used for minimally invasive procedures, as its slave 

end effectors are small and precisely actuated. The workspace of the haptic user interface is of a 

reasonable size in that it is large enough to allow the user to move naturally and the system to 

utilize motion scaling effectively, yet small enough to where the links can maintain a low inertia 
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and a high stiffness. Intuitive Surgical’s gimbal design, as seen in Figure 2-2, has been 

demonstrated to successfully achieve many of the design goals previously listed, though its 

haptics are not currently used in surgery; however, the interface is capable of haptics. As such, 

this mechanism served as the primary inspiration for the haptic end-effector presented in this 

thesis. The final gimbal design utilized in this thesis’s system is featured in Figure 2-1.   

 

Figure 2-2 da Vinci Surgical System Controller 

 

Design Considerations 

 The goals previously listed were the guidelines that led to the final design, which is a 

three degree of freedom gimbal mechanism with a fourth gripper degree of freedom attached at 

the innermost gimbal link. In this section, the considerations which led to all aspects of this 

design are discussed. The drawings of each component are featured in Appendix A.   

 

Link Configuration 

 The gimbal and scissor-type end effector are comprised of four links in series to 

result in the desired total 7 degrees-of-freedom. In an effort to reduce the system’s mass, each of 
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the three gimbal links is only a quarter-circle, which keeps the rotational inertia as low as 

possible and also allows the user to more easily fit his or her hand into the system. Using a 

semicircle or full circle design for each link would have resulted in impeded motion for the user. 

However, the semicircle or full circle design does have the benefit of greater stiffness. In order 

for the gimbal to function properly, all axes of rotation must intersect at a single point. The three 

gimbal axes are non-collinear and offset from each preceding axis by 90°. The complete gimbal 

assembly is seen in Figure 2-3. 

The scissor-type end effector link is designed so that the user grasps around the shaft of 

the final motor. This provides an intuitive method of controlling the gripper, which can be 

actuated by the user independently from the rotation of the gimbal links. This decoupling keeps 

the apparent inertia of the gripper low, and simplifies the control of the device. 

The weight and stiffness of the final assembly motivate the choice of engineering plastics 

for the gimbal arms. Delrin Acetal Resin is a plastic known for its low weight and high stiffness. 

As such, each link is comprised of two ¼” Delrin sheets bolted together, as shown in the 

exploded views in Figures 2-5, 2-6, and 2-7. Keeping the links as short as possible benefits both 

the stiffness and the weight of the system. To further reduce the inertia of the robot, the links are 

hollowed in a truss-style pattern, which reduces mass by 20 – 33% over a solid link, depending 

on the particular link. 

Delrin has a density of 1420 kg/m3 and a yield strength of 75842330 Pa. In calculating 

the strength to weight ratio of delrin, the formula is given as 

€ 

StrengthToWeight =
σ y

ρ
 

where σy is the yield strength and ρ is the density of the material. For delrin, this results in a 

strength-to-weight ratio of 53410 m2/s2. This is a very high value for a plastic material.  
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Figure 2-3: Complete gimbal assembly 
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Figure 2-4: Base robot link 4 with exploded view. Technical drawings for labeled components 

are provided in Appendix A.  
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Figure 2-5: Link 1 with exploded view. Technical drawings for labeled components are provided 

in Appendix A. 
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Figure 2-6: Link 2 with exploded view. Technical drawings for labeled components are provided 

in Appendix A. 
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Figure 2-7: Link 3 with exploded view. Technical drawings for labeled components are provided 

in Appendix A. 
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Force Transmission 

 A common approach for reducing apparent inertia of kinematic mechanisms is to keep all 

of the motors near the base of the mechanism. For parallel kinematic structures, this approach is 

straightforward, but for serial mechanisms like a gimbal, placing the actuators at the base 

introduces the problem of transmitting torques to each subsequent joint. Transmission of the 

motor torques can be accomplished with cables and pulleys, but complicated three-dimensional 

cable routing is difficult to assemble and maintain, and also introduces unwanted friction. Thus, 

each motor is placed directly at the joint it actuates. This allows a simple, low friction, gear or 

timing belt system to drive each joint. To allow for manufacturing and assembly tolerances, an 

adjustable-tension timing belt system connects the motors to the links. The distance between 

each motor and corresponding link rotation axis is adjustable to appropriately set the tension of 

the timing belt. This distance is very minimal such that it does not strongly impact the static 

balance of the system. All calculations were made with the motors in their final positions. For 

example, in Figure 2-6, items 14, 15, 16, and 17 can move in unison along the length of the link. 

The belt wrapped around item 15 and item 8 in Figure 2-5 becomes tensioned, at which point, 

the wedge pictured as item 18 can be placed between link 2 and the motor to prevent the tension 

from being released.  

 Other considerations with regard to torque transmission are friction, backlash, 

backdrivability, and the additional weight caused by the motors. To achieve minimal backlash, 

the axles chosen were of very low tolerances. As such, the axles were tightly held by the 

bearings. The bearing bores are reamed to the outer diameter of the bearing races. Two bearings 

separated by at least 1 inch support each link mounted to its respective axle, providing stability 

to the joint. The bearings used in the system all earned the ABEC-5 precision certification, and 
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are open style bearings to minimize friction. Of the available bearings for the robot given the 

dimensional constraints, the ABEC-5 bearings had a higher dynamic load capacity than the 

ABEC-7 bearings. This is significant because the bearings have a radially applied load from the 

timing belt’s tension. The ABEC-5 bearings have a radial load capacity of 84 pounds vs. 38 

pounds for the ABEC-7 bearings. The open bearings are well-covered by other components to 

help prevent dirt from entering the inner races.  

 A haptic robot must be easily backdrivable as to prevent the user from feeling any 

unnecessary inertia in the system. Unfortunately, the motors used in the robot were not powerful 

enough to allow for a 1:1 gear ratio between the motors and each link’s axle without the use of 

additional torque. This difficulty arises from a need to keep motor weight low. Motors powerful 

enough to maintain a 1:1 transmission would have been excessively heavy. Thus, a 6:1 gear ratio 

is used for the motor controlling link 1 while an 8:1 gear ratio is applied to the motor controlling 

links 2 and 3. This means that the user feels additional inertia to that of the links and the motor 

from the gear ratios.   

 The magnitude of this reflected inertia was found by multiplying the rotor inertia value 

given on the motor’s specification sheet by the square of the gear ratio. The equation for the total 

inertia for a given link is  

€ 

J t = J rN
2 + J l  

where Jt is the total inertia, Jr is the rotor inertia provided on the specification sheet, N is the gear 

ratio, and Jl is the inertia of the remaining components that make up the link. 

For the motor controlling link 1, a Maxon 272765 brushless motor, the given rotor inertia 

is 21.9 g-cm2. With the 6:1 gear ratio, this becomes 788.4 g-cm2. Jl for link 1 is 21948 g-cm2. Jt 

without the 6:1 gear ratio is 21970 g-cm2. Jt with the 6:1 gear ratio is 22736 g-cm2. The reflected 
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inertia makes up <4% of the inertia felt in link 1. Jt with the 6:1 gear ratio is negligibly larger 

than Jt without the 6:1 gear ratio. Thus, the increased inertia would not dramatically impact the 

user’s experience.  

For links 2 and 3, Maxon 283858 brushless motors with rotor inertias of 4.45 g-cm2 were 

used with 8:1 gear ratios. Thus, the reflected inertia of the rotor is 284.8 g-cm2. For link 2, Jt 

without the gear ratio is 20781 g-cm2 while Jt with the 8:1 gear ratio is 21062 g-cm2. For link 3, 

Jt without the gear ratio is 8871 g-cm2 while Jt with the 8:1 gear ratio is 9151.8 g-cm2. The 

reflected inertias are a small compromise and make up a negligible part of the total system inertia 

felt by the user. The gear ratios allow the motors to stay within their continuous torque limits at 

all times.  

 Mounting the motors directly at the gimbal links does add to the Jl inertia term felt by the 

user. This added inertia is minimized by placing the motors as close to the axes of rotation as 

possible, decreasing the moment arm of the motor. For example, the motor controlling α2 sits 

5.28 cm away from the center of rotation. With a mass of 110 g, the motor contributes a moment 

of inertia of 

€ 

J = mr 2 = 110* 5.282 = 3066gcm 2. As the r term in this equation increases, the 

inertia increases quadratically. The motors are also positioned such that their mass provides 

partial static balancing to the system. Relative to each link's axis of rotation, the motor actuating 

each joint sits opposed to most of the mass of the link. As described in Chapters II and III, the 

remaining static balance correction for the gimbal is accomplished through a spring apparatus, 

software, and commanded as motor torques.  
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Motor Selection 

 The key for motor selection is power. Power is defined as 

€ 

P =ω ×τ  where ω is the 

motor’s speed and τ is the motor’s torque. The assumption was made that for a haptic robot such 

as this gimbal, the motor’s speed will remain quite low (<60 rpm). The torque is much more 

critical in order for the user to feel the desired forces. For the purposes of keeping inertia low, the 

second priority for the motors was a high torque-to-weight ratio. Because of the disparity in 

significance between torque and speed, choosing motors became focused on finding motors with 

enough torque to compensate handle the inertias of each link while remaining lightweight. Once 

motors were selected, the power demanded by each motor was examined to ensure the values 

were within reasonable limits. The motor chosen to manipulate the first link is a Maxon 272765 

brushless 60 Watt DC motor with a peak torque of 519 mNm and a weight of 305 grams. A 

Maxon 283858 brushless 25 Watt DC motor with a peak torque of 121 mNm and a weight of 110 

grams actuates each subsequent link and the gripper. A larger motor was chosen to manipulate 

the base link because of the increased inertial load felt on that link. Additionally, the 60 Watt 

motor is mounted to Link 4 of the original haptic robot, thus, it does not affect the inertia of the 

gimbal. These motors provide sufficient torque to achieve 5% of human average maximum wrist 

torque of 18 N listed in the design specifications. However, these torques were between the 

continuous torque limits and the stall torques. Thus, the previously described transmissions were 

applied in the form of timing belts. The data sheets for these motors are included in Appendix A. 

 

Position Sensing and Force Commands 

 The motors use built-in magnetic incremental encoders to determine the position of the 

joints. This position is used to calculate the robot Jacobian matrix as described in the next 
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section. Through the Jacobian matrix, the required force is converted to required joint torques.  

Since the design includes very few sources of friction, commanded forces may be produced 

open-loop by computing the required motor currents, where for each motor the torque-current 

relationship is given by 

€ 

τ = ktji
j = 1,...,7 

where 

€ 

τ  is the motor torque, 

€ 

k  is the torque constant, and 

€ 

i  is the current.  
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CHAPTER III 

 

KINEMATIC ANALYSIS AND CONTROLS 

 

Introduction 

 The kinematic analysis of the system includes determining the forward kinematics, the 

Spatial Jacobian, the Body Jacobian, and the gravity terms of the system dynamics.  

 

Forward Kinematics 

 The forward kinematics were determined through the application of screw theory. The 

initial starting configuration of the robot was chosen by manipulating the system without any 

forces from the motors. The configuration that felt most natural was established as the starting 

position, and this home orientation is featured in Figure 2-3. Coordinate frames were assigned 

such that the z-axis is the axis of rotation for each joint. Positive angle values were assigned 

arbitrarily for joint rotation. Only the first 6 active links of the robot were addressed in the 

forward kinematics. The final link, the gripper, will be addressed individually as its purpose is 

unique to the system.  

The forward kinematics can be obtained through the application of the product of 

exponentials formula, which relates each configuration of the robot to its starting configuration 

as 

€ 

gi (θ 1,...,θ n ) = e ˆ ξ 1θ1 ...e ˆ ξ nθn gi (0), 

Where 

€ 

gi (0)  is the homogeneous transformation matrix corresponding to the reference 

configuration of link 

€ 

i , 

€ 

gi (θ 1,...,θ n ) is the configuration of link 

€ 

i  corresponding to the joint 
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angles 

€ 

θ 1 through 

€ 

θ n, and the exponentials are matrix exponentials of the joint twists 

€ 

ˆ ξ 1 through 

€ 

ˆ ξ n  multiplied by the joint angles.  

 

Figure 3-1: Diagram featuring joint angle assignments, distance variables, and coordinate frame 

orientations 
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The joint twists are given as follows 

€ 
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Body Jacobian and Spatial Jacobian 

 The Jacobian matrix is formulated column-wise, and in the case of the Body Jacobian is 

given by  

€ 

J st
b (θ ) = [ξ1

T ,...,ξn−1
T ,ξn

T ]
ξi
T = Ad

(e
ˆ 
ξ iθ i ...e

ˆ 
ξ nθ ngst (0))

−1 ξI

ξi =
vi
ω i
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⎤ 
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−ω i × qi (0)
ω i
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The columns of the Body Jacobian are joint twists written with respect to the end effector frame 

[24]. The Spatial Jacobian is given by  

€ 

J st
s (θ ) = [ξ1,ξ2

' ,...,ξn
' ]

ξi
' = Ad

(e
ˆ 
ξ 1θ1 ...e

ˆ 
ξ i−1θ i−1 )

ξi
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For serial robots, the Jacobian matrix of the robot relates the end effector velocity to the 

joint velocities, as given by the equation 

€ 

J ˙ q = ˙ x , 

where 

€ 

˙ q  represents the joint angle velocities, 

€ 

˙ x   is the rigid body velocity of the end effector, 

and J is the Jacobian matrix. The Jacobian can be determined by analyzing the twists of each 

joint. This was done for both the Spatial and the Body Jacobian. The code that generated these 

Jacobian matrices is found in Appendix C. 

The Jacobian matrix also provides the static force mapping between end effector forces 

and joint torques for serial robots. This relationship is given by  

€ 

τ = JTF , 

where F is the force applied at the end effector and τ is the vector of joint torques. This 

relationship is used by control software to translate the desired force and torque at the end 

effector to the appropriate joint torques. 

 

Equivalent Serial Robot 

 The parallelogram structure of the 3 degree-of-freedom base robot has an equivalent 

serial kinematic formulation. This allows the static force mapping of the previous section to be 

used to compute the joint torques of an equivalent serial robot, which are then converted to the 

torques to be applied to the parallel mechanism. The parallelogram manipulator shown in Figure 

3-2 can be actuated either by joint torques acting along the coordinates 

€ 

θ 1 and 

€ 

θ 2, as a parallel 

robot, or by joint torques acting along the coordinates 

€ 

θ 1 and 

€ 

θ 4 , as a serial robot. Joint torques 

computed for the serial structure are converted to torques for the parallel structure as follows.  
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Figure 3-2: Parallelogram representation of the original haptic system 

 The parallelogram property implies that α (positive as drawn) is equal to 

 

Since θ4 (negative as drawn) and α (positive as drawn) are complementary angles,  

 

Solving for θ4, we find that 

 

The virtual work of a virtual displacement along the angles θ1 and θ2 is given by 

 

In the serial robot formulation, the motors would act along θ1 and θ4, giving the virtual work 

 

Assume that  and  are known. By equating the virtual work, we find the required motor 

torques τ1 and τ2 in the parallel structure: 
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By the constraint equation defining θ4 above, we have 

 

 

Since the variations are arbitrary, the torques must be related by  

, 

which completes the description of how the equivalent serial robot torques are converted to the 

parallel robot torques. 

 

 Gravity Compensation 

 The gimbal added significant weight to the original haptic system. In order to ensure that 

the design requirement for static weight is met, the motors of the base robot can be used to 

compensate for this added mass. To control the motors for such compensation, the gravity matrix 

for the system must to be calculated. To solve for this matrix, the gravitational potential energy 

for the robot is determined, and then differentiated with respect to each degree of freedom six 

separate times: once for each motor, excluding the gripper.  

 The potential energy of each link of the robot can be used to find the static torques 

required at the motors to counteract the forces due to gravity. The height of the center of mass of 

each link is isolated from the forward kinematics and placed into a 6x1 matrix, h. The mass of 

each link is ordered as a 1x6 matrix, m. The gravitational potential energy of the robot is given as 

a scalar. The constant acceleration due to gravity, g, is 9.81 m/s2.  

V=mgh 
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 The torque at each motor is given by differentiating  with respect to each of the angles. 

For joint 1, the torque is computed by  

€ 

τ1 =
δV
δθ1

−
δV
δθ2

 

due to the interpretation of 

€ 

θ 2 a serial joint in the kinematics. 

 Although the base robot was originally designed to be statically balanced, as stated in 

Chap. 1 [21], the inclusion of the gimbal imbalances the design. As previously noted, static 

balance is an important factor in creating a sense of realism for the user.  

The torque calculations show that the motors for links 1 and 2 do not have a high enough 

continuous torque limit to compensate the weight of the gimbal in all positions. It was calculated 

that the link 1 joint would require, at most, a torque of 1.97 Nm and the link 2 joint would 

require 3.23 Nm simply to maintain static balance at all points. The motors operating these joints 

have a continuous torque of 1.39 Nm and a peak torque of 14.9 Nm. While the necessary torques 

are capable of being output by the motors, it is dangerous to operate the motors outside of the 

continuous torque limit for an extended amount of time. As such, an alternative solution is 

needed.  

 The most obvious method for adjusting the system to increase the motors’ torques is to 

use a gear ratio. With high speed being unimportant to the device, this is a logical path to follow 

for solving the weight problem. However, attempting to compensate for the additional weight 

through applying a gear ratio would require significant modifications to the design of the original 

system. This is unnecessarily challenging when there is a viable alternative to balancing with the 

motors through the use of springs. Building a spring apparatus won’t require redesigning the 

base robot. Attempting to place a gearhead on the motors of the three degree-of-freedom robot 

would call for a substantial overhaul of the system. 



 30 

 Spring compensation of the base robot is an ideal solution for static balancing, because 

springs add little mass but can counteract the gravity torques. The original system was designed 

to be very compact to keep the inertia and footprint low. The small size causes difficulties fitting 

springs to the robot, because real springs need a significant amount of space for extension and 

compression in order to remain linear and prevent permanent deformation of the springs. 

Fortunately, it is possible to add springs to the base robot without any significant modification to 

the original design. Following the methods of Herder in [23], as shown in Figure 3-3, both ends 

of a spring may be rotated about the joint axis the spring acts on without changing the stored 

energy. Utilizing this technique, a spring balancing apparatus becomes feasible. 

 

Figure 3-3: Diagram from [23] which shows how the rotation of spring elements produces equal 

compensation. 

 The structure of the spring balancing mechanism for both links is shown in Figure 3-4. 

Because commercial off-the-shelf springs are sold only in discrete steps of length, stiffness, and 

diameter, an iterative process of spring choice and choice of the design parameters is required to 

find an approximate solution for static balancing. Although it should be theoretically possible to 
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achieve exact balance for a point mass held at the distal end of the base robot, the requirement 

that the springs have zero unstretched length cannot be met for joint θ2 since real springs always 

have nonzero unstretched length. Since motor torques can be used to correct for minor errors in 

the spring balance, a solution which requires only motor torques within the continuous torque 

limit of the motors is acceptable. 

 Springs within the feasible ranges of diameter and length were tested in simulation to 

determine the final choice of spring. Feasible diameters were limited to ½” to allow for the 

springs to be added without making contact with surrounding components. Realistic spring 

lengths were limited to maximum extended lengths of 9”. This value was chosen to maintain a 

small footprint. By discretizing the joint space of the robot, the maximum motor torques required 

for perfect balancing after the inclusion of the springs can be calculated for each spring. The 

spring found to produce the lowest required motor torques was selected as the balancing spring 

for each joint. 
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Figure 3-4: Gravity compensation apparatus with exploded view. Technical drawings for labeled 

components are provided in Appendix A. 

 

3 DoF Robot - θ2 Controlled Link (Link 2) 

 The first step is to determine the free length of the spring. This is different from the initial 

length given in the spring’s specifications because the spring is under a load even at the initial 

length. Thus, its free length can be determined using Hooke’s Law. 
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€ 

Fi = k(ℓ s − ℓ f )

ℓ f = ℓ s −
Fi
k

 

Here,   

€ 

ℓ f  is the free length of the spring,   

€ 

ℓ s  is the initial length of the spring,  is the spring rate, 

and  is the initial load of the spring. From here, the extended length of the spring at any 

position of the robot can be determined using the Law of Cosines as follows. 

  

€ 

ℓ e = d1
2 + d2

2 − 2d1d2 cos(
π
2
−θ 1 −θ 4 )  

Here,   

€ 

ℓ e  is the extended length of the spring at a given orientation,  is the distance from the 

center of rotation of one spring terminal, and  is the distance from the center of rotation of the 

second spring terminal. The angle within the cosine function was determined by the placement of 

items 31 and 32 in Figure 3-4.  

 Using the equation for potential energy of a spring, the amount of energy added to the 

system through the spring apparatus is determined as follows. 

  

€ 

E2 = 2* 1
2
k(ℓ e − ℓ f )

2 

The spring energy is multiplied by 2 due to the 2 parallel springs acting on the system at all 

times. This energy was then added to the gravitational potential energy previously determined 

and is included in the differentiation that leads to the necessary motor torque. 

The spring chosen, which produces the lowest required motor torque within the feasible 

range of spring choices and mechanism designs, has the following specifications. 

  

€ 

k = .8 lb
inch

= 140.2N
m

ℓ s = 3inches = .0762m
Fi = .5lb = 2.225N
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The joint torque that is needed to statically balance link 2 will never exceed 37.9 N-cm. 

Since the continuous torques for these motors is 139 N-cm, the motors will always be well 

within the their accepted operational limits. 

 

3 DoF Robot - θ1 Controlled Link (Link 1)  

 To balance the torque on joint 1, a similar process was used. The ideal spring balancing 

mechanism would place a tension or compression spring directly above or below the rotational 

axis of link 1, but the existing robot design does not allow such a placement. By using 

compression springs and cables in place of tension springs, the springs can be placed to either 

side of link 1 and attached directly to the link, as shown in Figure 3-4.  

 The height offset between the center of the spring and its attachment point on link 1 calls 

for a projection between the eyelet and the attachment plane. The cable is connected to a washer 

that sits against the end of the spring. The other end of the spring sits against a Delrin plate that 

is mounted to the outside of the motors. The cable runs through the middle of the compression 

spring and through an eyelet that is slightly above the terminal on link 1. The cable must make a 

sharp turn around this eyelet so low friction ceramic eyelets were used. From here, trigonometry 

was used to determine the spring energy as follows. 
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Figure 3-5: Cable routing diagram for Link 1 gravity compensation 

 The following steps describe the math to determine   

€ 

ℓ c , featured in Figure 3-5. The first 

step was to determine the length between the eyelet, which is a fixed height, and the cable 

terminal on link 1. To do so, the eyelet height was projected onto the same plane as the cable 

terminal. The law of cosines could easily be applied using the eyelet height as one length of the 

triangle and the distance from the cable terminal on link 1 to the center of rotation as the other 

length.  

  

€ 

ℓ p = ℓ e
2 + ℓ t

2 − 2ℓ eℓ t cos(θ 1 )  

 Here,   

€ 

ℓ p  is the distance between the projected eyelet height and the cable terminal on 

link 1,   

€ 

ℓ e  is the projected eyelet height, and   

€ 

ℓ t  is the distance between the cable terminal and the 

center of rotation. From here, there is a right triangle formed using the distance from the eyelet to 

the plane on which it was previously projected as one leg and   

€ 

ℓ p  as the other leg. Applying 

Pythagorean’s Theorem results in the final distance between the eyelet and the cable terminal at 

all points. This distance is calculated as follows.  
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€ 

ℓ c = ℓ p
2 + ℓ d

2  

 Here,   

€ 

ℓ d  is the distance between the eyelet and the plane of the cable terminal and   

€ 

ℓ c  is 

the distance between the eyelet and the cable terminal. As with the gravity compensation for link 

2, now the spring energy can be calculated easily for all orientations.  

  

€ 

E1 = 2* 1
2
kℓ c

2  

 Once again, two springs were used in parallel for this compensation meaning the energy 

is doubled. The springs ultimately chosen for this application have the following qualities.  

  

€ 

k = 1.3 lb
inch

= 227.8N
m

ℓ u = 5inches = .127m
 

 Here,   

€ 

ℓ u  represents the uncompressed length of the spring.  and  are then added to 

the  term previously defined. These are included in the subsequent differentiation for 

determining the joint torques necessary at every position. With the springs chosen, the maximum 

joint torque necessary to maintain any orientation at link 1 is .50 N-cm. As with link 2, the 

continuous torques for these motors is 139 N-cm, thus, the motors are always held within their 

operational constraints.  

 

Electronics Package 

 

Potentiometer Signal Conditioning 

 In order to operate the original 3 degree-of-freedom robot, readings from the high 

resolution potentiometers attached to each motor needed to be made. The voltage output by a 

potentiometer is linearly related to the angle by which the corresponding motor has turned. A 
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signal conditioning circuit was constructed to supply +5 Volts to each potentiometer while also 

amplifying the output signal to increase its resolution and reducing noise through filtering. After 

being processed by the circuit, the potentiometer signal was found to have noise <±2 mV; a 

value that corresponds to ~.4° of variance in the measurement of the joint angles. This circuit is 

an entirely new circuit that did not exist with the original robot at the start of this integration 

project. The circuit is detailed in Appendix B. 

 A significant issue with reading potentiometer signals is that of noise: both emitted from 

surrounding electronics and generated through ground loops. Careful consideration was taken in 

wiring the system to prevent any ground loops from being inadvertently constructed. The 

problem of emitted noise was addressed using shielded cable for all connections. The shields 

were all grounded to the earth. Low pass filters were used in the NI Analog Input box, as well. 

These steps were successful in reducing noise to the <±2 mV experienced.  

 

Digital Encoder Readings 

 The digital encoders mounted on the motors of the gimbal are connected to the computers 

through a Contec CNT32-8M(PCI) card and in-house designed printed circuit board. The circuit 

boards are shown in Appendix B. 

 

Servo Drives 

 The original base robot motors are driven by Advanced Motion Controls 25A8 PWM 

servo drives. These operate at a continuous current of 12.5 amps with a peak current of 25 amps. 

They are supplied 60 volts through a linear power supply.  
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 The minimum inductance requirement of 200 µH for these amplifiers is not met by the 

Kollmorgen motors. External inductors of ~224 µH were built and put in series with the motors 

and the servoamps. The inductors consist of powder core toroids wound with 78 turns of a pair of 

18 Ga magnet wires in parallel. 

 The gimbal motors use Advanced Motion Controls AZB12A8 PWM servo drives for 

operation. These amplifiers are rated for 6 amps of continuous current with a peak current of 12 

amps. The 60 watt motor’s servo drive is provided 48 volts from a switching power supply 

(Mean Well RSP-500-48). The 25 watt motors are powered from a 24 volt switching power 

supply (Mean Well SP-480-24).  

  

Data Acquisition 

 All analog input and digital output connections between the servoamps and the computer 

are made through a National Instruments SCB-68 connector block and a National Instruments 

CB-68LPR connector block. The data acquisition card is a National Instruments M series 6229 

PCI card. The details of these connections are listed in Table D1. The + Current Reference In 

and - Current Reference In pins on the servoamps are driven by a Measurement Computing PCI-

DAC 6703 PCI analog output card.  

 

Computer Controller 

 The controller for the haptic system was built in Matlab’s Simulink RealTime. The 

controller approximates cancellation for the gravity terms of the robot to keep the system 

statically balanced through its entire use. The input is the angular position of each joint and the 

output is the torque required to compensate for the gravity in that orientation. This impendance 
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controller reduces the uncompensated weight to create transparency for the user. The software 

brings the uncompensated weight below 50 mN, as targeted in the design goals. 

 To demonstrate the force feedback capabilities of the system, a virtual haptic box was 

built in the controller. When the end effector is inside of the box, the only torque being applied 

by the motors is that of gravity compensation. When the end effector makes contact with the 

walls of the box, a spring-damper system is introduced to simulate the feeling of running into a 

real-world wall. The gimbal is still rotatable when the end effector is pressed against the wall; 

however, the translation motion is strongly restricted. The virtual spring has a spring constant of 

-1000 N/m, thus, generated a significant amount of force quickly. Images of the Simulink 

controller are featured in Appendix C. 

 

Results and Conclusion 

 The haptic control successfully proved the robot’s feedback abilities. Figure 3-6 shows 

the position of the end effector being consistently halted at the haptic box walls in all directions 

during a trial. Figure 3-7 shows how the torques of each motors reacted to impact with the haptic 

walls during that same trial.  



 40 

 

Figure 3-6: Position of the end effector within the haptic box 

 

Figure 3-7: Haptic torques reacting to impact within the haptic box 

The 7 degree-of-freedom haptic robot has achieved all of its design goals. The tool’s 

characteristics fall within or exceed the expectations set by other commercially available 

systems. The result is a viable haptic interface for implementation into surgical robotics research. 
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The system can serve in a master-slave system effectively for many applications due to its large 

workspace and haptic feedback.  
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APPENDIX A 

Appendix A consists of technical drawings and data sheets for all the components that comprise 

the gimbal and spring support system. 

 

 

 

 

 

 

 

 

 



 43 

 

 

 

 

 

 

 



 44 



 45 

 

 



 46 

 

Figure A1: Item 1 – 30 mm DC Motor 
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Figure A2: Item 2 – 30 mm Motor mount (all measurements in inches) 
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Figure A3: Item 3 – Aluminum mount link (all measurements in inches) 
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Figure A4: Item 4 – 15 tooth timing belt (SDP-SI Part # A 6N16-015DF1206) (All 

measurements in inches) 
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Figure A5: Item 5 - ¼” Hex nut (Inches) 
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Figure A6: Item 6 - Belt spacer (Inches) 
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Figure A7: Item 7 – 90 tooth timing belt (SDP-SI Part # A 6Z16-090DF2508) (Inches) 
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Figure A8: Item 8 – 80 tooth pulley (SDP-SI Part # A 6Z16-080DF2508) (Inches) 
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Figure A9: Item 9 – Delrin gimbal link 1 (Inches) 
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Figure A10: Item 10 – ¼” gimbal axle (Inches) 
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Figure A11: Item 11 – Open ball bearing (Inches) 
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Figure A12: Item 12 – Bearing spacer (Inches) 
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Figure A13: Item 13 – Delrin gimbal link 2 (Inches) 
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Figure A14: Item 14 – 22 mm DC motor 
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Figure A15: Item 15 – 22 mm motor mount (Inches) 
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Figure A16: Item 16 – 10 tooth timing belt (SDP-SI Part # A 6N16-010DF1204) (Inches) 
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Figure A17: Item 17 – Acrylic 22 mm motor holder (Inches) 
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Figure A18: Item 18 – Alpha 2 ABS wedge (Inches) 
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Figure A19: Item 19 – Delrin gimbal link 3 (Inches) 
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Figure A20: Item 20 – Delrin gimbal link 3 outer layer (Inches) 
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Figure A21: Item 21 – Alpha 3 ABS wedge (Inches) 
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Figure A22: Item 22 – 22 mm motor delrin mounting plate (Inches) 
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Figure A23: Item 23 – End effector gripper (Inches) 
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Figure A24: Item 24 – Compression spring data 
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Figure A25: Item 25 – Compression spring delrin tube (Inches) 
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Figure A26: Item 26 – Compression spring delrin tube holder (Inches) 
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Figure A27: Item 27 – Ceramic eyelet holder (Inches) 
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Figure A28: Item 28 – Spring mount delrin plate for base robot (Inches) 
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Figure A29: Item 29 – Eyelet mount for inside portion of delrin plate (Inches) 
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Figure A30: Item 30 – Base robot link 1 mount for compression spring cables (Inches) 
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Figure A31: Item 31 – Extension spring mount for link 2 of base robot (Inches) 
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Figure A32: Item 32 – Base robot link 2 holder for delrin spring mount (Inches) 
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Figure A33: Item 33 – Extension spring data (Inches) 
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APPENDIX B 

Appendix B is composed of schematics describing the electronics package used in operating the 

robot. 
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Figure B1: PCB for brushless servoamp  

   

   

Figure B2: Connections for PCB for brushless servoamps 
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Figure B3: A circuit to transform 120 Vac into +12Vdc and -12Vdc 

 

Figure B4: Voltage regulators converting +12 V into +10 V and -12 V into -10 V, respectively 
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Figure B5: A circuit producing +5 V from the +10 V rail 

 

Figure B6: A circuit producing -2.5 V from the +5 V rail 
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Figure B7: A circuit processing each potentiometer output signal. The potentiometer output 

range of was amplified ~21x for each potentiometer. The voltage was offset to keep the new 

range of outputs within the readable range of the analog input board. Low-pass filters were 

included to remove harmonic emissions that may impact the potentiometer signal. 
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APPENDIX C 

Appendix C is composed of the computer code used to control the robot. 
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% rotationX.m 
% Creates a rotation matrix about the x axis by "th" radians 
function R = rotationX(th) 
R = [ 1    0     0; ... 
     0    cos(th) -sin(th); ... 
     0    sin(th) cos(th)]; 
end 
 
 
% rotationY.m  
% Creates a rotation matrix about the y axis by "th" radians 
function R = rotationY(th) 
R = [cos(th)  0    sin(th); ... 
     0        1      0; ... 
     -sin(th) 0    cos(th)]; 
end 
 
 
% rotationZ.m 
% Creates a rotation matrix about the Z axis by "th" radians 
function R = rotationZ(th) 
  
R = [cos(th) -sin(th) 0; ... 
     sin(th)  cos(th) 0; ... 
     0        0       1]; 
  
end 
 
 
% Adjoint.m 
% Creates an adjoint matrix of a given matrix "g" 
function [ Adg ] = Adjoint( g ) 
Adg = [ g(1:3,1:3) hat3(g(1:3,4))*g(1:3,1:3); 
        zeros(3,3) g(1:3,1:3)]; 
  
end 
  
 
 
 
% hat.m 
% a generalization of the skew-symmetric matrix w^ in so(3) 
function xhat = hat(x) 
xhat = [ 0 -x(6) x(5)  x(1); ... 
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        x(6) 0   -x(4) x(2); ... 
        -x(5) x(4) 0   x(3); ... 
        0      0   0    0]; 
end 
 
% forward_kinematics.m 
  
% Establish angle variables for calculations 
syms phi theta1 theta4 alpha1 alpha2 alpha3 real 
  
% Known distances of the system 
d1 = .191; 
l1 = .178; 
l4 = .165; 
sigma = .0292; 
  
% Coordinate frames defined by distances and rotation angles from the  
% inertial frame 
g10 = eye(4); 
g20 = [rotationX(pi/2), zeros(3,1); zeros(1,3), 1]; 
g30 = [rotationX(pi/2), [0,0,l1]'; zeros(1,3), 1]; 
g40 = [rotationY(pi/2)*rotationZ(pi/2), [l4+d1,0,l1+sigma]'; zeros(1,3),1]; 
g50 = [rotationX(-pi/2)*rotationZ(pi), [l4+d1,0,l1+sigma]'; zeros(1,3),1]; 
g60 = [rotationZ(pi), [l4+d1,0,l1+sigma]'; zeros(1,3),1]; 
  
% Spatial twists 
xi1_s = [0; 0; 0; 0; 0; 1]; 
xi2_s = [0; 0; 0; 0; -1; 0]; 
xi3_s = [l1; 0; 0; 0; -1; 0]; 
w4_s = [-1;0;0]; 
xi4_s = [cross(g40(1:3,4),w4_s); w4_s]; 
w5_s = [0;1;0]; 
xi5_s = [cross(g50(1:3,4),w5_s); w5_s]; 
w6_s = [0;0;1]; 
xi6_s = [cross(g60(1:3,4),w6_s); w6_s]; 
  
% Product of exponentials formula 
e1 = simplify(expm(hat(xi1_s)*phi)); 
e2 = simplify(e1*expm(hat(xi2_s)*theta1)); 
e3 = simplify(e2*expm(hat(xi3_s)*theta4)); 
e4 = simplify(e3*expm(hat(xi4_s)*alpha1)); 
e5 = simplify(e4*expm(hat(xi5_s)*alpha2)); 
e6 = simplify(e5*expm(hat(xi6_s)*alpha3)); 
  
% Forward kinematics map for each coordinate frame 
g1 = simplify(e1*g10); 
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g2 = simplify(e2*g20); 
g3 = simplify(e3*g30); 
g4 = simplify(e4*g40); 
g5 = simplify(e5*g50); 
g6 = simplify(e6*g60); 
  
forward_kinematics_has_run = 1; 
 
% Dynamics.m 
  
% The height of the center of mass of the first three coordinate frames 
hL1 = g1(3,4); 
hL2 = g2*[0; .0803; 0; 1]; 
hL3 = g3*[.127; .0466; 0; 1]; 
  
% The transformation matrix between the center of rotation to the center 
% of mass of each link of the gimbal 
CoGL4 = [-.07356; -.000188; -.09852; 1]; 
CoGL5 = [-.0001333; -.01345; -.0684; 1]; 
CoGL6 = [-.00407; -.000243; -.03514; 1]; 
  
% The vector from the inertial frame to the center of mass of each link 
% of the gimbal 
hL4 = g4*CoGL4; 
hL5 = g5*CoGL5; 
hL6 = g6*CoGL6; 
  
% Constants characteristic of the robot 
g = 9.81; 
m1 = 0; 
m2 = .1054; 
m3 = .4345; 
m4 = .220718; 
m5 = .28; 
m6 = .316; 
  
% Link 1 Spring Energy 
% Code calculating the spring energy necessary for gravity compensation 
% of Link 1 as described in Chapter 3 
k1 = 1.3; 
c = 2.2; 
eyeletdistance = .87; 
eyeletheight = 3.5; 
arc = sqrt((c^2)+(c^2)-(2*c*c*cos(theta1))); 
arc_fun = matlabFunction(arc); 
cableheight = sqrt((eyeletheight^2)+(c^2)-(2*eyeletheight*c*cos(theta1))); 
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cable = sqrt((eyeletdistance^2)+(cableheight^2)); 
cable_fun = matlabFunction(cable); 
% stretchedcable = sym('.0254')*sqrt((arc^2)+(cable^2)); 
% stretchedcable_fun = matlabFunction(stretchedcable/.0254); 
cable = cable * .0254; 
k1 = k1*4.45/.0254; 
SpringEnergyL1 = 2*.5*k1*((cable)^2); 
SpringEnergyL1_fun = matlabFunction(SpringEnergyL1); 
  
% Link 4 Spring Energy 
% Code calculating the spring energy necessary for gravity compensation 
% of Link 4 as described in Chapter 2 
k = .8; 
springlen = 3; 
freelength = springlen-(0.5/k); 
freelength = freelength*.0254; 
D1 = 7.5; 
D2 = 3; 
extendedlength = simplify(.0254*sqrt((D1^2)+(D2^2)-2*D1*D2*cos(pi/2-theta4-theta1))); 
extendedlength_fun = matlabFunction(extendedlength); 
k = k*4.45/.0254; 
SpringEnergyL4 = simplify(2*.5*k*((extendedlength - freelength)^2)); 
SpringEnergyL4_fun = matlabFunction(SpringEnergyL4); 
  
% Gravitational Forces 
% The height of each center of mass of each link of the robot 
h = [hL1; 
    hL2(3,1); 
    hL3(3,1); 
    hL4(3,1); 
    hL5(3,1); 
    hL6(3,1)]; 
  
% Mass matrix of each link 
m = [m1, m2, m3, m4, m5, m6]; 
  
% Summation of all energy in the system 
V = m*h*g + SpringEnergyL1 + SpringEnergyL4; 
V_fun = matlabFunction(V); 
  
% Torques needed at each joint to compensate for gravity as described in 
% [24] 
N = [diff(V, phi); 
    diff(V, theta1) - diff(V, theta4); 
    diff(V, theta4); 
    diff(V, alpha1); 
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    diff(V, alpha2); 
    diff(V, alpha3)]; 
N = simplify(N); 
N_fun = matlabFunction(N); 
  
% Function to determine maximum torque needed for theta1 and theta4 at any 
% point in time 
J = zeros(6, 10000000); 
i = 1; 
        for th1 = -pi/2:.1:pi/2 
            for th4 = -pi/2:.1:pi/2 
                    J(:, i) = N_fun(0, 0, 0, th1, th4); 
                        i = i + 1; 
            end 
        end 
  
% Determine the maximum torque that will be needed for theta1 and theta4 
theta1max = max(J(2,:)) 
theta4max = max(J(3,:)) 
 
% Dynamics Function block in the block diagram. Calculates the motor 
% torques necessary for each joint angle 
  
function N = dynamics_fun(alpha1, alpha2, alpha3, theta1, theta4) 
%DYNAMICS_FUN 
%    N = DYNAMICS_FUN(ALPHA1,ALPHA2,ALPHA3,THETA1,THETA4) 
  
%    This function was generated by the Symbolic Math Toolbox version 6.0. 
%    19-Jun-2015 15:17:30 
  
  
t2 = theta1+theta4; 
t3 = cos(t2); 
t4 = sin(t2); 
t5 = cos(alpha2); 
t6 = t3.*t5; 
t7 = cos(alpha1); 
t8 = sin(alpha2); 
t9 = t4.*t7.*t8; 
t10 = t6+t9; 
t11 = t4.*-2.0e1+2.9e1; 
t12 = cos(alpha3); 
t13 = sin(alpha1); 
t14 = sin(alpha3); 
t15 = t4.*t8; 
t16 = t3.*t5.*t7; 
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t17 = t15+t16; 
t18 = t4.*t5; 
t19 = t18-t3.*t7.*t8; 
N = [0.0;sin(theta1).*(-5.019359439999996e-3);t3.*3.1802839919784-t4.*4.32580441536e-
1+t3.*t5.*3.661484400000045e-4-t3.*t8.*1.458770544e-1+t4.*t7.*4.070657930400033e-4-
t4.*t13.*3.471564377448e-1+t10.*t12.*1.26168372e-2-t10.*t14.*7.532902799999984e-4-
t3.*1.0./sqrt(t11).*(sqrt(t11).*1.2e1-1.9e1).*3.3909e-1+t4.*t5.*t7.*1.458770544e-
1+t4.*t7.*t8.*3.661484400000045e-4+t4.*t12.*t13.*7.532902799999984e-
4+t4.*t13.*t14.*1.26168372e-
2;t3.*(t7.*1.490717228395421e72+t13.*1.74797274311606e69+t5.*t13.*6.264076208245784e7
1-t7.*t12.*3.234688101058061e69-
t7.*t14.*5.417769782430591e70+t8.*t13.*1.572270389694911e69+t8.*t12.*t13.*5.4177697824
30591e70-t8.*t13.*t14.*3.234688101058061e69).*2.328787989647591e-73;t4.*t5.*(-
1.458770544e-1)-t4.*t8.*3.661484400000045e-4-t12.*t17.*1.26168372e-
2+t14.*t17.*7.532902799999984e-4-t3.*t5.*t7.*3.661484400000045e-
4+t3.*t7.*t8.*1.458770544e-1;t12.*t19.*(-7.532902799999984e-4)-t14.*t19.*1.26168372e-2-
t3.*t12.*t13.*1.26168372e-2+t3.*t13.*t14.*7.532902799999984e-4]; 
 
 

 

Figure C1: Reading all joint angles 
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Figure C2: Determine the joint torques for gravity compensation from the dynamics and add the 

haptic box torques 

 

 

 
 

Figure C3: Computing joint velocities 
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Figure C4: Determines the position of the end effector 
 

 
 

Figure C5: Computes the hybrid jacobian 
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Figure C6: Computes the end effector velocity 
 
 

 
 

Figure C7: Computes the haptic torques 
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APPENDIX D 

 

Appendix D contains all tables referenced 
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Data Type Terminal Number Corresponding Port Number 
φ    

Current Monitor Out 23 AI 15 
Current Reference Out 57 AI 7 

Inhibit In 19 P0.4 
Potentiometer Out 34 AI 8 

θ1   
Current Monitor Out 58 AI 14 

Current Reference Out 25 AI 6 
Inhibit In 52 P0.0 

Potentiometer Out 33 AI 1 
θ2   

Current Monitor Out 26 AI 13 
Current Reference Out 60 AI 5 

Inhibit In 51 P0.5 
Potentiometer Out 68 AI 0 

α1   
Current Monitor Out 61 AI 12 

Current Reference Out 28 AI 4 
Inhibit In 17 P0.1 
Fault Out 16 P0.6 

α2   
Current Monitor Out 63 AI 11 

Current Reference Out 30 AI 3 
Inhibit In 49 P0.2 
Fault Out 48 P0.7 

α3   
Current Monitor Out 31 AI 10 

Current Reference Out 65 AI 2 
Inhibit In 47 P0.3 
Fault Out 46 PFI 11/P2.3 

α4   
Current Monitor Out 66 AI 9 

Current Reference Out J23 AI 31 
Inhibit In 45 PFI 10/P2.2 
Fault Out 11 PFI 0/P1.0 

 

Table D1: Connections between the servoamps and the National Instruments Analog Input board 
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