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CHAPTER I 

 

INTRODUCTION 

 

In the United States, there is a well-documented gap in mathematics performance 

between students from different economic backgrounds favoring students who do not come from 

economically disadvantaged homes (Coleman, 1966; Rampey, Dion, & Donahue, 2009). This 

gap is particularly relevant because of the growing importance of quantitative literacy to 

attaining a postsecondary education and future economic prosperity (Moses & Cobb, 2001; 

National Research Council, 1989, Riley, 1997). The mathematics performance gap between 

students from economically disadvantaged backgrounds and their more advantaged counterparts 

is evident at the national level, school level, and even before children start school. The 

mathematics knowledge students bring to school has important implications for their overall 

academic trajectories, favoring those with more competence. If the majority of students 

beginning school with less math knowledge come from low income homes, then a 

disproportionate number of these students will spend their K-12 career falling further behind 

their more advantaged peers. Perhaps for this reason, increased emphasis has been placed on 

improving the early math skills of children before they enter kindergarten. 

Currently, large scale preschool programs predominately serving children from 

economically disadvantaged backgrounds are not successfully narrowing the observed 

performance gaps between this group and their peers (US-DHHS, 2010). There are several 

challenges to improving the effects of these programs. One challenge is the very small amount of 

time allocated to mathematics instruction in typical preschool classrooms (Winton & Buysse, 
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2005), despite this being an important correlate of early mathematics learning (Bodovski & 

Farkas, 2007). Another challenge to improving math outcomes is teacher preparedness for 

delivering math instruction, another important correlate of student math learning (Hill, Rowen & 

Ball, 2005). Yet, when surveyed, preschool teachers report feeling uncomfortable with 

mathematics and knowing little about the standards (Copley, 2004), acknowledge not knowing 

how to develop children’s numeracy (Farran, Silveri, & Culp, 1991), and rank themselves as just 

mediocre in teaching math (Arnold, Fisher, Doctoroff, & Dobbs, 2002). In response to the need 

to better provide practitioners with the supports necessary to improve early childhood 

mathematics, early intervention research should focus on identifying strategies that are specific 

to early learning environments as well as to the needs of children from economically 

disadvantaged backgrounds.  

Despite the early development of certain fundamental mathematical ideas among children 

of all backgrounds, children from low income backgrounds appear to have greater difficulty 

engaging in the formal math curriculum introduced in school (Griffin, Case & Siegler, 1994; 

Resnick, 1989). Children from all backgrounds engage in mathematics before they start school 

by inventing ideas and strategies about shape and number based on their early experiences 

(Baroody, 1987; Resnick, 1989). These informal mathematical understandings facilitate or 

hinder children’s ability to engage in the formal curriculum introduced in school (Baroody, 1987; 

Clements, 2004; Griffin et al., 1994; Resnick, 1989). One hypothesis to explain observed 

differences in children’s ability to connect their informal ideas about mathematics with the 

formal math curriculum is based on the language experiences children have before they begin 

school. 
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There is ample evidence to suggest that children from economically disadvantaged 

backgrounds often use language differently than how it is used by teachers, schools (Tough, 

1982), and in math instruction (Orr, 1997). These differences in language usage lead to different 

mathematical representations and understanding (Orr, 1997; Resnick, 1989). There is further 

evidence that the difference in math ability between children from different economic 

backgrounds is not evident in non-verbal calculation tasks, but is very apparent in verbal tasks of 

reasoning (Jordan, Huttenlocher, and Levine, 1992). It is possible, then, the mathematics 

performance gap between students from different economic backgrounds might be addressed by 

in-school experiences that seek to provide young children with opportunities to use language in 

ways that better support their learning at school. 

The relationship between language and learning has its roots in the sociocultural 

perspective (Vygotsky, 1978) and undergirds the rationale to develop children’s math 

competencies through talk (National Council of Teachers of Mathematics, 2000). Language 

development and conceptual development are interdependent processes; development in one area 

facilitates development of the other (Carey, 2004). What is less understood is the process by 

which to guide young children’s participation in the conversation about mathematics that leads to 

their mathematical language and conceptual development.  

Math talk is often described as one process by which to guide children’s participation in 

mathematical activity using language in ways that builds conceptual understanding. This study 

conceptualizes a math talk learning environment as an instructional process situated at the 

intersection of math content, social activity, and instruction. This study will focus the content of 

the math talk learning environment on number sense development because early number sense is 

the most important predictor of children’s later success in elementary school mathematics 
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(Howell & Kemp, 2010; Jordan, Glutting, & Ramineni, 2010). The social activity of the math 

talk learning environment is based in playing games to generate student interest and motivation 

to focus on the math content (Griffin et al., 1994; Siegler, 2009). The instructional strategy to 

foster the math talk learning environment is guided participation in children’s use of math 

language and ways of reasoning. Thus, for this study, a math talk learning environment is 

defined as guiding children’s participation (instruction) in games (social activity) focused on 

number sense (content). 

While math talk is grounded theoretically and supported by several national 

organizations, several assumptions have been made concerning its usefulness in preschool. The 

first assumption is that practitioners know what math talk is when, in fact, very little guidance 

exists on defining its principal components. The second assumption is that practitioners are 

familiar with strategies for developing children’s math talk, particularly among children who 

have little or no experience with such language and ways of reasoning. Most resources on math 

talk focus on children in older grades and few provide instructions on how to develop this skill in 

preschool. The third assumption is that student participation in math talk will improve student 

learning.  Two studies demonstrate evidence that talk is important to children’s math 

development; however, neither study was specific to the direct effects of children using math 

talk. This study sought to examine these assumptions in an effort to inform classroom practices 

that might lead to an effective application of the math talk principle in the preschool classroom. 

Data were collected from the field to explore strategies of engaging preschool children 

from economically disadvantaged backgrounds in a math talk learning activity. 

Recommendations from this exploratory work provide early childhood educators with specific 

descriptions, examples, and demonstrations illustrating the principles of math talk. Finally, a 
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math talk intervention strategy was designed to test whether the components identified by this 

review lead to improved mathematics performance among preschool children from economically 

disadvantaged backgrounds.  

 

Objectives 

The objective of this study was to test the effects of a math talk intervention on the 

academic performance of preschool children from economically disadvantaged backgrounds. 

First, the study investigated whether children who engaged in math games (social interaction 

focused on developing number sense) would learn more math and reasoning skills than similar 

children who did not engage in these games. Second, this study examined whether there would 

be an additional learning benefit to children who engaged in math games with a focus on talk 

(guided participation in the use of language and ways of reasoning) to the playing of math 

games. This research sought to provide early childhood practitioners with specific strategies for 

improving the early math skills of children in programs serving economically disadvantaged 

populations. In addition, this research hopes to offer the early childhood research community 

empirical evidence for the use of math talk in preschool. 
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CHAPTER II 

 

REVIEW OF THE LITERATURE 

 

Background 

 

Two nationally representative longitudinal studies conducted by the National Center for 

Education Statistics show the importance of mathematics achievement to students’ future 

outcomes. Data from the National Education Longitudinal Study (NELS) reveal that 83% of 

students who took algebra I and geometry, compared to only 36% of students who did not take 

these courses, went on to college within two years of graduation (Riley, 1997). Data from the 

High School and Beyond (HS&B) study showed  the highest level of math taken while in high 

school explained nearly 25% of the earnings gap ten years after high school graduation between 

those who grew up in low income and middle income homes (Rose and Betts, 2004). Students 

with a strong grasp of mathematics have an advantage in academics and in the job market. Yet, 

the gap in mathematics performance between students from economically advantaged and 

disadvantaged backgrounds is large in size and has remained relatively unchanged for decades.  

The disparity between groups has persisted despite campaigns to improve pre-collegiate 

math and science for all students, particularly students from lower income homes who are 

typically underrepresented in those professional fields (see the United States federal statutes 

Elementary and Secondary Education Act and No Child Left Behind Act, and the National 

Science Foundation’s Educating Americans for the Twenty-First Century). Ever since the 

Coleman Report in 1966, researchers have recognized that the scores of students from 
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economically disadvantaged homes lag well behind those from more affluent backgrounds 

(Coleman, 1966). Almost forty years later, this trend is still evident across the K-12 years.  

The mathematics performance gap is observable at the national level, school level, and 

even before children start school. Starting with the oldest children and working backwards across 

the grades, the next sections summarize research demonstrating the performance gap associated 

with family income as well as the relationship between students’ later achievement and earlier 

mathematics performance. 

 

The Mathematics Performance Gap at the National Level  

National assessments taken in representative samples of fourth, eighth, and twelfth grade 

students show great variation in the performance between groups differentiated by parental 

income, in favor of students from more economically advantaged backgrounds (USDE, 2010). 

The National Assessment of Educational Progress (NAEP) is the only nationally representative 

and continuing assessment of student achievement in various subject areas. Results from the 

mathematics assessments administered over time show the size of the mathematics gap 

associated with family income is similar across all three grade levels tested (USDE, 2010). The 

gap size is equivalent to the number of points needed to move a student from one achievement 

level to the next higher level. In other words, the difference between groups in the number of 

points scored on the exam is enough to move a student who scored “basic” to “proficient” or 

from “proficient” to “advanced.”  

Children from families qualified for free and reduced lunch (the poverty criterion) are 

also differentiated by more than a standard deviation on the NAEP mathematics assessment from 

children of higher income families. Students from all backgrounds currently take an increased 
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number of high school math credits and advanced placement courses than students in school in 

1984 (USDE, 2007). Also fourth and eighth grade students from all income groups are scoring 

higher on the NAEP mathematics assessment than similar students in 1978 (twelfth grade 

students’ scores remain the same as in 1978) (Rampey et al., 2009).  The relative performance on 

the NAEP Mathematics Assessment between students from economically disadvantaged 

backgrounds and their peers, however, remains as large as it was more than a decade ago when 

NAEP first began collecting information on students’ eligibility for the national free-and-reduced 

lunch program (USDE, 2010).  

 

The Mathematics Performance Gap at the School Level   

The observed performance gap between students from different economic backgrounds 

can be linked across their K-12 career. Student performance in mathematics at the end of high 

school is significantly related to the highest level of math coursework taken in high school 

(Rampey et al., 2009) and taking advanced mathematics courses in high school matters more to 

later student achievement than taking advanced or regular courses of another subject matter 

(Gamoran, 1987).  Using the NELS dataset, Ingels and Dalton (2008) examined the mathematics 

performance gap across four income levels instead of the two used to report NAEP results (free 

and reduced lunch versus all others). They found that seniors from the highest income quartile 

took advanced mathematics courses at higher rates than seniors from lower income groups. In 

the 2004 cohort alone, forty percent of seniors from the highest income quartile enrolled in 

advanced mathematics courses compared to 14 percent of seniors from the lowest quartile and 21 

percent of seniors from the middle two quartiles.  
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The number of high school math courses students take is significantly related to their 

middle school coursework and differs by students’ economic backgrounds. Algebra has long 

been dubbed “the gatekeeper course” because taking it by the eighth grade puts students on track 

for a sequence of higher-level math classes important for qualifying them for post secondary 

work in science and math (Oakes, Ormseth, Bell, & Camp, 1990). In fact, 60% of the students 

who took calculus in high school had taken algebra in the 8th grade (Riley, 1997). Yet, almost 

two times the number of students from economically advantaged homes enroll in middle school 

algebra than do students from economically disadvantaged homes. Using data from the NAEP, 

Shakrani (1996) showed that substantially twice as many of the former (33%) than the latter 

(15%) were taking eighth grade algebra. 

The likelihood of being enrolled in eighth grade algebra is associated with students’ math 

performance at the end of fifth grade. The Early Childhood Longitudinal Study, Kindergarten 

Class of 1998-1999 (ECLS-K) was funded to follow a nationally representative cohort of 

students from the start of their kindergarten year through the eighth grade. In a brief focused on 

the experiences of a cohort of children who progressed on schedule from first through eighth 

grade in schools located within the United States (approximately 80% of the original cohort), 

Walston and McCarroll (2010) reported on students’ mathematics course enrollment. They found 

nearly four in 10 of the students were enrolled either in algebra or a higher mathematics course 

in the eighth grade, and those students taking more advanced math courses scored the highest on 

the ECLS-K mathematics assessment. Conversely, students who were enrolled in basic eighth 

grade math scored the lowest on the assessment and would thereby not be on track for the higher 

math courses in high school.  
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Students’ math achievement at the end of the fifth grade differs by family income and is 

due in part to differing educational experiences in elementary school. The educational 

experiences of students from economically disadvantaged backgrounds differ in important ways 

from those of their more advantaged peers, ways that are believed to be important contributors to 

their math performance at the end of elementary school. Using cross sectional data obtained 

through the National Science Foundation’s 1985 – 1986 National Survey of Science and 

Mathematics Education, Oakes et al. (1990) reported that children attending schools in 

economically disadvantaged neighborhoods had less extensive and less demanding programs 

available to them. High ability students in these schools had fewer opportunities, fewer 

resources, and fewer qualified teachers in mathematics than low-ability students in schools in 

economically advantaged neighborhoods (Oakes et al., 1990). Children in schools predominately 

serving children from economically disadvantaged homes, then, are less likely to have the access 

to enroll or the preparation to succeed in eighth grade algebra. 

 

The Mathematics Performance Gap Before Children Start School 

The mathematics performance gap between children from different economic 

backgrounds does not first appear in school, but is evident at school entry and has important 

implications for their overall academic achievement. West, Denton, and Hausken (2000) reported 

on the first year’s findings from the ECLS-K study in which children were assessed in the fall of 

their kindergarten year. The mathematics assessment consisted of five levels of increasing 

difficulty measuring children's procedural skills and conceptual knowledge. Regardless of 

income level, ninety-four percent of all first time kindergartners passed level one; virtually all 

children were capable of reading numerals, recognizing shapes, and counting to ten. The 
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mathematics performance gap appeared at higher levels between children whose families did or 

did not receive welfare. Children from families not receiving welfare were also able to sequence 

numbers, name ordinal positions, and solve word problems. These findings suggest that, at this 

age, children’s math knowledge may be relatively equal between groups in some mathematical 

content areas and more variable in others. 

 

Implications of Poor Mathematics Knowledge at School Entry 

Children’s mathematics performance at school entry is linked to later mathematics 

achievement and places children on different learning trajectories, which has important 

implications for lower performing children who are generally from economically disadvantaged 

homes. Aunola, Leskinen, Lerkkanen, and Nurmi (2004) found Finnish children’s math 

knowledge at school entry predicted their achievement at the end of the second grade. Bodovski 

and Farkas (2007) found the same relationship through the end of third grade for a nationally 

representative sample of American children. Moreover, both studies found children’s learning 

trajectories differed by their math knowledge at school entry. Children with higher math 

performance when they started school learned more math over time while children who started 

school with less knowledge fell further behind. As the ECLS-K study demonstrated, children 

from economically disadvantaged backgrounds are far more likely to enter school with fewer 

early math skills than their more advantaged peers. 

Early mathematics ability predicts more than later math skills and does more than place 

children on a higher or lower learning trajectory; early math appears to be the best predictor of 

later overall learning. A key study by Duncan et al. (2007) highlighted the importance of early 

math skills. Using data from six national datasets, Duncan et al. (2007) showed that, from among 
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the significant predictors of later achievement, children’s rudimentary mathematics skills 

mattered more than did early literacy skills or attentional skills (socioemotional behaviors and 

social skills were not significant  predictors of later achievement).  

Perhaps it is because of this pattern (whereby children who know more upon school 

entry, learn more) and the strong relationship between early math skills and later academic 

outcomes that many politicians and advocates of early childhood education are placing greater 

emphasis on early childhood outcomes, to address the performance gap when the gap is at its 

narrowest point. For example, in a speech to the Hispanic Chamber of Commerce in March of 

2009, President Obama said that investing in early childhood initiatives would be the “first 

pillar” (p. 2) of reforming our schools: 

Studies show that children in early childhood education programs are 
more likely to score higher in reading and math; more likely to graduate 
from high school and attend college; more likely to hold a job and more 
likely to earn more in that job. For every dollar we invest in these 
programs, we get nearly $10 back in reduced welfare rolls, fewer health 
care costs, and less crime. (p. 2-3) 
 

Comments like this one from the President draw on conclusions from earlier, smaller 

studies; there is surprisingly little evidence that the scale up of early childhood programs is 

making any sustainable effects on the academic achievement of children from economically 

disadvantaged backgrounds. Researchers acknowledge a closer investigation of the challenges to 

improving early math instruction was warranted. 

 

Summary 

Representative national studies conducted by the Department of Education all confirm a 

large and persistent achievement gap in mathematics between children whose families differ by 

income. Longitudinal studies demonstrate the relationship between postsecondary income 
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earning and the highest math course taken, highest math course taken and taking algebra by the 

eighth grade, eighth grade algebra enrollment and fifth grade math achievement, and elementary 

math achievement with children’s math skills when they enter kindergarten. Furthermore, these 

studies consistently show how these relationships differ by family income favoring students from 

more advantaged economic backgrounds. The patterns illuminated here have two important 

implications. The first implication is that children with poor math skills at school entry are 

disproportionately represented by children from economically disadvantaged backgrounds. The 

second implication is that school further disadvantages these children by placing them on a lower 

educational learning trajectory over the K-12 years. It is likely due to these implications that the 

academic outcomes of early childhood programs have received much attention, and challenges to 

addressing early childhood mathematics education have been closely investigated. 

 

Current Challenges to Improving Early Childhood Mathematics Education 

Findings from the first randomized study of the effects of Head Start have recently been 

released with depressing results.  Head Start, created in 1965, is the largest national school 

readiness program in the United States serving children from families that meet 100% of the 

poverty level. The Head Start Impact Study (US-DHHS, 2010) was conducted with a nationally 

representative sample of 84 delegate agencies and included nearly 5,000 newly entering, eligible 

3- and 4-year-old children who were randomly assigned to either a Head Start group that had 

access to Head Start program services or control group that did not have access to Head Start, but 

could enroll in other early childhood programs or non-Head Start services selected by their 

parents. Results from the study showed that Head Start children showed no sustainable effects 

through the end of first grade. In other words, by the end of first grade, there were no observable 
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differences between children who did or did not participate in Head Start in their ability to excel 

in the formal curriculum introduced in elementary school. There are several challenges to 

improving the effects of programs like Head Start. When considering the challenges specific to 

the improvement of early childhood mathematics education, it is necessary to examine research 

from kindergarten and elementary school. The amount of time allocated for math instruction and 

teacher preparedness to engage children in mathematics are both necessary to achieve higher 

outcomes, but appear to be absent from today’s typical preschool classrooms. 

 

Time Spent in Instruction 

Time in instruction has been significantly linked to students’ math achievement in 

elementary and secondary grades (Barr & Dreeben, 1983; Brophy, 1986) as well as among 

kindergartners (Bodovski & Farkas, 2007). However, in preschool learning environments, very 

little time is dedicated to explicit instruction in any subject matter (Zill et al., 2001) and 

consequently little time is allocated specifically for mathematics instruction (Graham, Nash & 

Paul, 1997). Findings from the National Center for Early Development and Learning’s Multi-

State Study of Pre-K (NCEDL-MS) indicate that children were engaged in math activities for 6% 

of the school day (Winton & Buysse, 2005). The time in math instruction was less than the 

amount of time spent in gross motor (7%), science (8%), art/music (9%), social studies (13%), or 

literacy/writing (13%). For the remaining 44% of the time observed, children were not engaged 

in any learning activity. 

When children are exposed to mathematics, it is typically integrated with other subjects, 

which has the possible effect of further watering down the direct effects of instruction. In 

response to these findings, the largest association of advocates of young children, the National 
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Association for the Education of Young Children (NAEYC), and the largest association of math 

educators, the National Council of Teachers of Mathematics (NCTM), issued a joint statement 

concerning early childhood mathematics instruction advocating for the explicit instruction of 

mathematics: 

In high-quality mathematics education for 3- to 6-year-old children, 
teachers and other key professional should… actively introduce 
mathematical concepts, methods, and language through a range of 
appropriate experiences and teaching strategies. (2002, p. 4) 
 

 

Teacher Knowledge and Attitudes About Mathematics  

Teachers’ knowledge and attitudes have a great influence on children’s math 

development. Hill et al. (2005) highlighted the critical importance of teachers’ mathematical 

knowledge for teaching first and third grade mathematics and the relationship between that 

knowledge and student outcomes in mathematics. Teaching elementary school mathematics 

requires more than understanding mathematical content alone or knowing how to teach well 

alone. Hill et al. characterize the work of teaching mathematics as instruction that includes 

explaining concepts to students, interpreting students’ responses, and facilitating group 

discussions about mathematics. The researchers developed an instrument to measure teachers’ 

content knowledge for teaching mathematics.  Teachers’ scores on this measure predicted 

children’s math achievement as strongly as children’s background characteristics, such as socio-

economic status. However, preschool teachers appear to be inadequately prepared to instruct 

mathematics (Lobman, Ryan, & McLaughlin, 2005). Primary school teachers with little content 

knowledge tend to depend on texts for content, de-emphasize verbal interactions about 

mathematical ideas, and overuse seatwork assignments (Brophy, 1991).  
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In addition to teacher knowledge about mathematics, teachers’ attitudes toward 

mathematics have been linked to student achievement in mathematics. Beilock, Gunderson, 

Ramirez, and Levine (2010) showed that teachers of young children who possessed higher levels 

of mathematics anxiety may unintentionally pass on these negative feelings to their students. 

This is alarming when considering the “math anxiety” reported among preschool teachers. For 

example, many teachers reported being uncomfortable with mathematics and knowing little 

about the standards (Copley, 2004), reported not knowing how to develop children’s numeracy 

(Farran et al., 1991), and ranked themselves as just mediocre in teaching math (Arnold et al., 

2002).  

To adequately prepare children from low income backgrounds for elementary school 

mathematics requires preparing preschool teachers with the knowledge, skills, and confidence to 

ground children’s knowledge in the mathematical foundations required for future success. A case 

study of improving preschool math instruction chronicled one teacher’s experiences as she 

learned to implement a new math curriculum (Ginsburg & Amit, 2008). Her experiences 

demonstrate teaching math to preschoolers is as multifaceted as teaching math in older grades. 

For example, she had to develop profound knowledge of the subject matter, alter her pedagogy in 

response to the changing needs and understandings of the children, and use multiple strategies to 

help children connect their everyday experience to abstract ideas. While teaching preschool 

mathematics might be as difficult as teaching mathematics in the older grades, the content and 

strategies used need to be specific to the developmental needs and understanding of preschool 

children.  
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The Need for Strategies Specific to Preschool 

The Committee on Early Childhood Mathematics, NAEYC, NCTM, and education 

experts warn that prescribing an increase in time spent doing mathematics and an increased 

expectation of academic outcomes could cause many early childhood practitioners to lean 

towards inappropriate strategies imported from older grades. For example, Seo and Ginsburg 

(2004) represent the conflict in this way:  

We do not wish to pressure young children, to subject them to harsh forms 
of instruction, and to impose on them material they are not ready to learn. 
We do not want a “push-down curriculum” forcing young children to 
engage in developmentally inappropriate forms of written drill and 
practice in mathematics. Our desire to prepare children for school success 
(and to avoid school failure) thus clashes with our reluctance to impose 
inappropriate forms of teaching on young children. (p. 91) 
 

In order to avoid the push down from older grades, the approach in early childhood must 

be carefully constructed around the skills and needs of younger children. In a paper where Farran 

laid out a prescription for the kinds of programs young children from poor families need, she 

argued, “Interventions for children with fragmented and disconnected early experiences must be 

organized and structured with parameters that children can grasp and depend on. Teachers must 

understand the necessity of creating enriching experiences that follow predictable patterns” 

(Farran, 2005, p. 279). For this reason, it is important to consider the specific mathematical skills 

and understandings very young children from economically disadvantaged backgrounds have 

formed before they come to school and how instruction might support later learning. 

 

Summary 

Due to the long standing performance gap in mathematics and the potential consequences 

for students who start school on the lower end of this gap, much attention has been drawn to 
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programs that might help prepare children at risk for lower math achievement for the formal 

math curriculum. Research on large scale preschool programs serving children from 

economically disadvantaged backgrounds has not shown they have been effective in improving 

outcomes for their participants. An examination of elementary school research on important 

correlates of math achievement reveals that the time spent in instruction and teachers’ knowledge 

and attitudes towards mathematics are critical to student achievement in mathematics. However, 

there are important challenges to improving early childhood mathematics that need to be 

addressed. In addition, answers to these challenges must be specific to the developmental needs 

of preschool children and to the particular population at risk of lower math achievement.  

 

The Math Knowledge Children Come to School With 

Children’s basic understanding of counting, number, and arithmetic emerges before they 

begin attending school (Resnick, 1989; Song & Ginsburg, 1987). From birth to age five, young 

children develop informal ideas about number, geometry, and measurement (see Geary 1994 for 

a review). Children seem to acquire informal mathematics through such processes as 

spontaneous interactions with the environment, imitation of more capable peers or adults, and 

watching television (Song & Ginsburg, 1987). Formal mathematics represents the culturally 

constructed body of knowledge that children learn in school through interactions with teachers or 

more knowledgeable peers. There are several important challenges for all children to learning 

formal math, and various hypotheses explaining the differences observed in math performance 

by students’ economic backgrounds. These next sections review the informal math knowledge 

most children come to school with, the challenges to learning the formal math they encounter in 

school, and specific challenges for children from economically disadvantaged backgrounds to 
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connecting their informal mathematical knowledge and the formal mathematics curriculum they 

encounter in school. 

 

Children’s Informal Mathematics 

The mathematical skills and strategies children formulate independent of instruction are 

referred to as informal mathematics, sometimes called “everyday” math (Song & Ginsburg, 

1987). Through observation, experience, and everyday conversation, children develop and test 

theories about more and less, taking away, shape, size, location, pattern, and position (Ginburg, 

Lee, & Boyd, 2008). Children who have more opportunities to engage in informal mathematical 

tasks will develop a more flexible use of and concrete understanding of general math principles 

than will peers who have fewer opportunities. For example, helping to set the table for the 

correct number of family members or sharing cookies with a sibling so that each has the same 

amount are informal interactions about math that will help children form accurate ideas about 

number and quantity. Building towers with blocks or assisting an adult with measuring 

ingredients for a recipe aid children’s conceptual understanding of comparisons and 

measurement. In the absence of experiences and discussions about number, quantity, shape, 

and/or measurement, children are less prepared to make important connections between their 

intuitive understanding about mathematical concepts and the symbols and rules presented in 

school (NAEYC/NCTM, 2002). Additionally, children may develop a sufficient wealth of 

informal mathematical knowledge that schools fail to connect with the formal mathematics 

curriculum (Clements, 2004; Resnick, 1989). 
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The Challenge of Formal Mathematics 

Formal mathematical knowledge is taught in school (Geary, 1994; Resnick, 1989) and 

emphasizes written symbols, algorithms, and principles (Song & Ginsburg, 1987). Formal 

mathematics are usually those mathematical skills and concepts that children will not learn 

spontaneously and are the result of deliberate efforts by teachers and students (Geary, 1994; 

Resnick, 1989). For example, children may learn that the word “plus” means the summation of 

two or more numbers by hearing it in an informal setting. However, they are unlikely to learn 

that + is a symbol used to represent that word until they encounter this in school. Many early 

childhood math educators reason that understanding the formal math sentence 3 + 2 = 5 is a far 

simpler task for children who already have the informal understanding of the words three, two, 

five, plus, and altogether (for a review, see Geary, 1994). Conversely, understanding the same 

formal math sentence presents many difficult challenges for children who have not developed 

these informal mathematical ideas. 

Children’s ability to succeed in the elementary school math curriculum depends on their 

ability to overcome several challenges specific to the learning of formal mathematics. Whether 

learned informally through experience or formally through instruction, children must come to 

understand the functional and abstract nature of quantity. The arbitrary word three can be applied 

to any set of concrete or abstract things (3 houses, 3 cookies, 3 ideas). They learn that the word 

three is not connected to the objects being counted, but instead represents how many is in the set. 

Children must come to understand that each number in the counting series is related to the 

number before it and after it; each number represents one more than the number before it and one 

less than the number after it. Children must learn that when you count 4 cookies, that the last 
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number stated (i.e., four) represents the group of cookies, including those that were tagged one, 

two, and three.  

Another challenge to learning formal mathematics is understanding quantity in 

decontextualized terms. In informal settings, children are more likely to hear numbers connected 

to objects, such as “I put two plates on the table. I need one more to have three.” However, the 

formal code “What is two and one more?” is context free. Research shows that young children 

capable of answering one question in context struggle to answer the same question stated 

formally (Hughes, 1983). For example, a child who is able to answer the question, “You ate three 

cookies and then one more; how many cookies did you eat altogether?” might not be able to 

answer the question, “What is three plus one more?” 

A third, but related, challenge for children learning formal mathematics is the language 

that is used. Sometimes children might understand a mathematical concept, but not a teacher’s 

description of the procedures she is asking students to use (Carpenter, Fennema, Franke, Levi, & 

Empson, 1999). A teacher might ask a child to add them together, take away all of them, or give 

each child one cup. The child receiving these instructions might be able to do each of these tasks, 

but be unfamiliar with the math terminology. Moving beyond the specific vocabulary a teacher 

might use, the syntactical structure of a mathematical question also needs to be considered. A 

single math problem can be asked in several different ways, but require the same procedure to 

solve it (Ellis had 5 cookies and ate 2 of them, so how many are left? Ellis has 2 cookies, how 

many more does he need to have 5? Ellis has 2 cookies. Tom has 5 cookies. How many more 

cookies does Tom have than Ellis). All of these challenges pose difficulties for children from all 

backgrounds in making appropriate connections between what they understand informally about 

shape and number and what teachers or peers are saying in class or doing in written form. 
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Challenges for Children from Economically Disadvantaged Backgrounds 

While the abstraction of mathematics, the decontextualization of formal mathematics, and 

the language of mathematics pose challenges to all children, the latter might potentially cause 

additional challenges for children from economically disadvantaged backgrounds. Using words 

and communicating knowledge to others are learned skills; skills important to classroom learning 

(Farran, 1982). Tough (1982) argues that differences in children’s language skills are due to the 

differences in children’s experiences with how language is used. Parents who are disposed to 

reason with children about their behavior, share narratives describing their day, express ideas 

about activities, and encourage children to think about their experiences are shaping how their 

children observe, compare, and reason. Children who come to school with these skills will, in 

general, perform better in school.  

While children from different backgrounds are certain to have had multiple and diverse 

experiences with language and reasoning, children from economically disadvantaged homes 

often have not experienced using language congruous with that of their teachers and ways of 

reasoning highly valued at school (Cazden, 2001; Tough, 1982). There is evidence that 

differences in how children of all ages use language are related to their ability to integrate their 

informal math knowledge with the formal math being taught in school (Orr, 1997; Resnick, 

1989). In an experimental school established to use action research to develop courses, 

curriculum, and teaching strategies for an economically representative body of high school 

students, the faculty traced specific ways that nonstandard English usage led to 

misunderstandings in several content areas. Orr (1997), author and co-founder of the school, 

describes a divergence between speakers of standard and nonstandard English in the use of 

function words (prepositions, conjunctions, and relative pronouns). This divergence, or linguistic 
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interference, appeared to be related to a divergence in conceptual understanding. Thus, the basic 

perceptions, intuitive understandings, and ways of reasoning about quantitative comparisons 

appeared to be shaped by the language children used.  

The linguistic interference experienced by speakers of nonstandard English was 

especially pronounced in their math and science performance. For example, students’ different 

usage of the prepositions as and than resulted in misrepresentations of subtraction and division. 

Nonstandard English speakers would often say, “three is two times less than six” instead of 

“three is half as much as six.” However, the former way of reasoning could lead to thinking that 

“three is two times less than nine.” Differential usage of the prepositions as, than, by, to, from, 

of, between, among, and so forth affected students’ representations of addition, subtraction, 

multiplication, division, distance, motion, and magnitude comparisons. However, interventions 

designed to focus solely on language development to address children’s educational 

disadvantage fail to meet the needs of children from poor and low income backgrounds. Farran 

(1982) argue the children’s disadvantage is not a lack of language, but a lack of experience in 

using language in ways that support learning. 

This principle can also be observed in preschool children’s math development. Jordan 

and colleagues (1992) demonstrated that preschool children from different economic 

backgrounds performed similarly on non-verbal calculation tasks, but significantly different on 

verbal tasks of math reasoning. Preschool children from different economic backgrounds engage 

in similar informal mathematical activities during free play (Seo & Ginsburg, 2004) and employ 

similar strategies to solve basic math problems (Ginsburg & Pappas, 2004). Such research 

suggests that children from economically disadvantaged backgrounds possess sufficient informal 

mathematical competence, but less experience in using mathematical language in ways that 
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support their formal mathematical development. It would stand to reason then that an appropriate 

intervention of early childhood mathematics for preschool children from economically 

disadvantaged backgrounds would focus on providing opportunities to hear and use language in 

ways that shape their mathematical reasoning.  

Summary 

The mathematical understandings children derive from everyday play or interactions with 

more knowledgeable individuals are informal mathematics. The mathematical concepts, 

symbols, and vocabulary taught in school are formal mathematics. Many educators of early 

childhood mathematics theorize that children who are able to connect their informal math 

knowledge with the formal curriculum presented in schools are better able to excel in elementary 

school mathematics. Formal mathematics learning possesses challenges for children from all 

backgrounds; however, more challenges are likely to be experienced by children from poverty. 

Evidence shows that children from economically disadvantaged backgrounds do not lack basic 

math concepts and skills, yet appear to show less proficiency in verbal reasoning skills. It is 

possible that children from disadvantaged backgrounds would benefit from in-school experiences 

focused on providing opportunities to use language in ways that better support learning in 

school. 

 

Theoretical Framework 

 

The Relationship Between Language and Learning 

The construction of knowledge and understanding is thought of as an inherently social 

activity mediated by language. Vygotsky (1978) conceptualized social interaction as being at the 
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core of the developmental process. The child’s interactions with other people, notably those who 

are more advanced and capable, mediate the child’s encounters with the world. Making sense of 

that world, or cognitive development, occurs as the child participates in the cultural life of the 

community and uses the tools of that community. The language used and the way language is 

used by the community become the language and ways of reasoning by the individual. This 

perspective of cognitive development can be applied to the learning of mathematics. As children 

use the tools of the formal mathematics community, such as its vocabulary and ways of 

reasoning, and thereby internalize new knowledge.  

The process by which social interaction leads to new knowledge is described by Carey 

(2004) as “bootstrapping.” According to the bootstrapping concept, learning new words in 

context, even without fully understanding them, creates new structures. These structures then 

provide an opportunity for the novice to make assumptions about new ideas. As the novice 

interacts with an individual or community that understands both the new concept and what the 

novice is already familiar with, the novice’s assumptions are clarified. Eventually this interaction 

helps the novice map relations between the novel words learned and previously understood 

concepts. At first, the bits of knowledge that a novice acquires within the new structures may be 

disconnected from each other or some bits might be misrepresented altogether. The interaction 

within the cultural community plays a critical role by allowing the novice attempts at using the 

tools of that community. It is through trying to use the knowledge – such as what happens when 

an individual is talking about new concepts – that he or she begins to make connections, correct 

representations, and gain new knowledge. 

Math knowledge is conceptual understanding (what a child comprehends). Talking about 

math requires using that knowledge. Math talk, then, is the use of domain specific vocabulary for 
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the purpose of reasoning mathematically. The National Research Council (NRC) in collaboration 

with the NCTM outlined a set of curriculum and pedagogical standards for mathematical talk 

(language and ways of reasoning) that is believed to lead to language and conceptual 

development: 

 Modeling: representing worldly phenomenon by mental constructs, often 

visual or symbolic, that capture important and useful features 

 Optimization – finding the best solution (least expensive or most efficient) 

by asking “what if” and exploring all possibilities 

 Symbolism – extending natural language to symbolic representation of 

abstract concepts in an economical form that makes possible both 

communication and computation 

 Inference – reasoning from data, from premises, from graphs, from 

incomplete and inconsistent sources 

 Logical analysis – seeking implications of premises and searching for first 

principles to explain observed phenomena 

 Abstraction – singling out for special study certain properties common to 

many different phenomena 

(NRC, 1989, p. 31) 

 

A math talk learning environment is designed by teachers to provide opportunities for the 

use of math talk. The purpose of this activity is to co-construct mathematical understandings. 

Whereas it is possible for a child to engage in math talk alone (e.g., while reasoning to him or 
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herself which shape comes next in a pattern), engaging in a math talk learning environment 

requires two or more individuals to construct knowledge and understanding together. 

 

Components of a Math Talk Learning Environment  

The social interaction required to engage children in talking about math concepts in a 

way that leads to their language and conceptual development involves intentional planning on 

the part of the teacher. The teacher must consider the content of the lesson, the activity in which 

children will participate, and the mode of instruction that fosters interactions about the math 

content. Content, activity, and instruction are the three components of a math talk learning 

environment. This section describes each component and what occurs at the intersections among 

them. 

The content. Mathematical content is the subject matter teachers are trying to impart to 

children. The NCTM has worked for almost two decades to define and articulate appropriate 

mathematics curriculum and standards. In 2006, the NCTM released Curriculum Focal Points 

for Prekindergarten through Grade 8 Mathematics: A Quest for Coherence. The focal points 

recommended for prekindergarten are number and operations, geometry, and measurement. 

While early experiences with all three topics are relevant, developing a strong sense of number 

prior to first grade is critical for later mathematical competency (Griffin, et al., 1994; Jordan et 

al., 2010). Number sense (also referred to as ‘numerosity’, ‘number competence’, ‘numerical 

proficiency’, or ‘mathematical proficiency’) (Howell & Kemp, 2010) includes being able to 

count, state the cardinal number, perform one-to-one correspondence, subitize, recognize 

numerals, manipulate a number line, compare magnitude, and compose numbers. 
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Number sense is highly related to later student success in the formal math curriculum.  

Griffin et al. (1994) argued that children from low income backgrounds were less likely than 

their more advantaged peers to begin school with the central conceptual structures required to 

compare quantity, for example. These central conceptual structures, such as a mental number 

line, could be developed through interventions designed to give children practice with using 

number lines. Jordan and colleagues (2010) found children’s number sense at the beginning of 

first grade made a significant and unique contribution to math achievement at the end of third 

grade, over and above both age and cognitive factors.  They defined number sense as the ability 

to flexibly count, judge numerical magnitude, and perform simple addition and subtraction 

calculations in three contexts (non-verbally, story format, and decontextualized). In pilot work 

investigating relationships between components of early number sense and standardized 

measures of mathematics, Howell and Kemp (2010) found few children at the end of the 

preschool year were able to use number flexibly or design mental strategies for solving 

mathematical tasks, skills that were significantly related to scores on standardized math 

measures. 

Collectively, this research suggests three important points. The first is that number sense 

should occupy a substantial portion of the intellectual content on which preschool children focus. 

The second point is that number sense can be influenced through experience. The work by 

Griffin et al. (1994) in particular demonstrates that these experiences should be deliberate in 

nature, not perfunctory or marginal. The third point is that multiple experiences are necessary for 

children to develop a flexible use of count and number. Howell and Kemp (2010) report that 

preschools often focus on counting skills (rote counting) without giving adequate opportunities 



29 

for children to learn the principles of counting (e.g., three is one less than four and two more than 

one). 

The social activity. The social activity used to engage children in mathematical content 

is also important to young children’s learning. Games provide an opportunity to practice 

mathematical principles, communicate mathematically, and make connections between informal 

ideas and more exact representations. Games also engage children’s interests (Randel, Morris, 

Wetzel, & Whitehill, 1992) and engender intersubjectivity (Rogoff, 1990), both of which lead to 

greater student effort towards a given task (Paas, Renkl, & Sweller, 2003). 

When children manipulate objects in games and use mathematics to execute the rules of 

the game, children practice mathematics and come to understand numbers and the quantities they 

represent. When children use board games, they are practicing count, one-to-one 

correspondence, numeral recognition. They come to learn and understand why 13 is larger than 

nine, and later, that it is larger by a value of four. When they play with dice, they not only 

practice subitizing (instantly recognizing quantity), but are also developing the skills to compose 

and decompose quantities (three dots and three more dots are six altogether). Several successful 

interventions of early mathematics used games to focus children’s attention on count and 

number. For example, a series of intervention studies by Siegler and colleagues tested whether 

playing linear board games with preschool children from low-income backgrounds would 

improve their number sense (Booth & Siegler, 2006; Ramani & Siegler, 2008; Siegler & Opfer, 

2003). The researchers theorized:  

[B]oard games provide multiple cues to both the order and the magnitude 
of numbers. The greater the number in a square of the game, the greater 
(a) the number of discrete movements of the token the child has made, (b) 
the number of number names the child has spoken, (c) the number of 
number names the child has heard, (d) the distance the child has moved 
the token, and (e) the amount of time that has passed since the game 
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began. The linear relationships between numerical magnitudes and these 
kinesthetic, auditory, visuospatial, and temporal cues provide a broadly 
based, multimodal foundation for a linear representation of numerical 
magnitudes. (Siegler, 2009, p. 3) 
 

Siegler and colleagues found children who played the linear board game focused on 

number significantly improved on all measures of number sense. The number sense scores of 

children who played a similar game focused on color rather than number did not change from 

pretest to posttest. In one study, the number sense of children who played the number game grew 

to be equivalent to a group of children from middle class backgrounds who did not participate in 

the intervention. The findings suggest that children can construct deeper understandings of 

number relationships through playing games focused on number. 

Two reasons why games are successful in influencing student learning are that they 

capture children’s interest and provide a context for intersubjectivity. When the joint attention of 

teacher and learner is focused on the child’s interests, language and concepts are better 

remembered by the child. For example, in an experimental study, toddlers were better able to 

remember the names of toys when they were told its name while they were in play with those 

toys; conversely, children who were told the name of the same toy while they were attending to 

another toy did not remember the names or concepts they were told (Tomasello & Farrar, 1986). 

Providing instruction for children when they are engaged in their own interests, rather than 

having to redirect children’s attention, increases the likelihood children will learn more 

efficiently.  

Intersubjectivity provides the grounds for communication and at the same time supports 

the extension of children’s understanding (Vygotsky, 1978). In a study of 54 four and five-year-

old children from middle-class backgrounds, generating explanations, regardless of the presence 

of a listener, improved learning of a task, but generating explanations for a listener led to more 
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flexible knowledge that could be transferred to novel problems. In addition, more children 

attempted to give an explanation and the explanations were more detailed when an adult was 

listening (Rittle-Johnson, Saylor, & Swygert, 2008). Authors noted that, despite the difficulty in 

eliciting clear verbal explanations from young children, attempting to explain to a listener still 

had moderate effects. The importance of intersubjectivity, at the preschool level at least, might 

be underestimated; joint attention appears to increase children’s motivation to communicate and 

attempting to communicate appears to improve cognition.  

The instructional process. Using games focused on count and number might be 

adequate for practicing children’s early number sense, but together they are not enough to bring 

about the dynamics and interactions that optimize learning. Students do not automatically begin 

talking about mathematics in meaningful ways; exposure to mathematical talk, that is the 

language and the ways of reasoning, does not guarantee that students will understand or use this 

kind of talk (Rittenhouse, 1998). Essential to the challenge of engaging very young children in 

relevant mathematical experiences is the role that teachers play in stimulating interactions that 

support language and conceptual development. Drawing from the literature on guided instruction 

and the literature on developing children’s mathematical talk in the older grades, teachers must 

be skillful at scaffolding children’s talk, transferring responsibility of game play to children, and 

moving between different teachers roles. 

Helping students learn to talk with one another to build ideas involves a process called 

scaffolding (Vygotsky, 1978). Scaffolding implies intentionally locating what children can do 

alone and moving children’s thinking and language into what they might do with assistance. 

Scaffolding is not easy for teachers to implement – it requires giving attention to individual 

children, taking the perspective of individual children to understand what he or she is trying to 
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say or do or what he or she misunderstands, determining the level of mathematical understanding 

that follows next, and selecting tasks or representations that will clarify novel concepts and 

language. Bransford, Brown, and Cocking (2000) list the following goals of scaffolding 

children’s talk and reasoning:  

 Motivate or enlist the child’s interest related to the task; 

 Simplify the task to make it more manageable and achievable for a child; 

 Provide some direction in order to help the child focus on achieving the goal; 

 Clearly indicate differences between the child’s work and the standard or desired 

solution; 

 Reduce frustration and risk; and 

 Model and clearly define the expectations of the activity to be performed  

Scaffolding children’s talk and reasoning in these ways helps children engage in 

mathematical activity at a level just above what they would be able to do alone; however, as 

children become more capable of navigating the tasks alone, they can take more responsibility 

for directing and managing the activity. In effective use of guided participation, teachers must be 

able to perform this transfer of responsibility. By doing so, children are practicing the skills that 

were once beyond their ability and internalizing the language and ways of reasoning (Rogoff, 

1990). For example, the first time playing a math game, the teacher will have the sole 

responsibility for dictating the rules of play; however, with repetition, children will begin to 

direct one another’s activity. Children who internalize the rules for play will notice if another 

child does not move the correct number of spaces or counts the cards incorrectly. In this way, 

children’s learning is enhanced in two ways. First, children are attending to the activity even 
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when it is not their turn in play. Another benefit is that interactions are enhanced because there 

are more participants than just the teacher and the child in play. 

As children take more responsibility for the social activity, the teacher’s role in the 

activity will shift. To begin, teachers act as an instructor of the task, reminding children what the 

goals are and instructing them in how to attain the goals. As children take more responsibility, 

teachers must shift among three roles. Lampert (1985) describes two roles: the role of participant 

and the role of commentator. As a participant, the teacher engages in the discourse, models 

mathematical language and ways of reasoning, revoices students’ ideas in more exact language, 

and actively scaffolds children’s levels of difficulty. As a commentator, the teacher states the 

rules of the activity and explains why a student’s justification or explanation was representative 

of math talk. The changing role of the teacher aids children’s mathematical development by 

providing explicit instruction in and models for using mathematical talk and ways of reasoning. 

 

At the Intersections of Content, Instruction, and Social Activity 

Mathematical content, instruction, and social activity are three independent constructs 

that, when linked together within a sociocognitive framework, provide an illustration of the types 

of interactions that occur at the intersections of any two constructs. Figure 1 displays this model 

that situates math talk at the center of the three constructs, demonstrating the importance of 

having all three constructs present to optimize learning opportunities for young students.  

At the intersection of math content and instruction (a), there is an absence of social 

interaction; instruction is not reciprocal or shared interactions. Teachers are talking and/or they 

are presenting or modeling content. Examples include teachers lecturing, explaining, writing on 

the board, and pointing at materials. However, children may or may not attend to or engage in 
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the content to be learned. At the intersection of content and social activity (b), there is an absence 

of instruction; children are doing mathematics collaboratively with (an) adult(s) or peer(s), but 

their thinking is not being extended beyond what they can conceive alone. Children are engaged 

in social activity that uses math content with which they are already comfortable; they are 

working at a level they already understand or are using skills they already have. At the 

intersection of instruction and social activity (c), teachers are using the principle of guided 

participation - activity that is guided by dialogic instruction and, equally important, activity in 

which children are as engaged as is the guide (Rogoff, 1990). While this interaction may be 

beneficial to children’s development, in the absence of mathematical content, this activity is not 

fostering children’s math development. 

 
Figure 1. The Intersecting Circles of Instruction, Content, and Activity. This model 
serves as a representation of the independent constructs of instruction, content, and 
social activity as well as the intersections among them: (a) is the intersection of 
content and instruction, (b) is the intersection of content and social activity, (c) is 
the intersection of instruction and social activity, and (d) is the intersection of 
instruction, content, and social activity. 

b 

a 

d 

Instruction 

Social 
Activity 

c 

Mathematical 
Content
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The math talk learning environment is situated at the intersection of instruction, content, 

and social interaction (d). For this study, a math talk learning environment is defined as guiding 

children’s participation (instruction) in games (social activity) focused on number sense 

(content). Altogether, math talk is theorized to help math learning in three important ways. First, 

when children talk about mathematics it helps develop new knowledge. New structures are 

formed when children encounter new language and ways of thinking used by the community. As 

children use the language and reasoning skills, they internalize new knowledge.  

Second, talking about mathematics helps make important connections between bits of 

previously disconnected information. When children first develop new knowledge structures, 

they make assumptions about the information that belongs within that conceptual circle. Through 

talk with a more knowledgeable other, assumptions are either reinforced or clarified.  

Third, talking about mathematics provides information to a teacher or a more 

knowledgeable peer about the novice’s thinking, what is understood or misunderstood, in order 

to provide feedback to the teacher. This feedback is critical if the teacher is to assist the novice’s 

conceptual development.  

 

Summary 

Language and learning have long been theorized as interdependent processes; growth in 

one area facilitates growth in the other. The process by which teachers can initiate and sustain 

this iterative process is through the use of a math talk learning environment. This teaching 

strategy is situated at the intersection of math content, social activity, and instruction and, for this 

study, is defined as guiding children’s participation (instruction) in games (social activity) 

focused on number sense (content). Math talk is theorized to help children develop new 
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structures for knowledge; make important connections between previously distinct bits of 

information; organize their own ideas; and provide important clues for feedback from more 

knowledgeable teachers or peers. 

 

Assumptions Underlying Math Talk in Preschool 

The NCTM (2000) has asserted for more than a decade that math instruction needed to 

shift away from the instruction traditionally seen in American classrooms towards instruction 

focused more on the important relationship between language and learning. Traditional 

instruction is regarded as classrooms where teachers are the sole authority of right answers and 

students memorize procedures. Reformed instruction as advocated by the NCTM and many math 

educators is envisioned as classrooms where children use mathematical communication to reason 

together about mathematics. Even at preschool, they use logic and evidence as verification, and 

invented strategies to solve problems. The NCTM made recommendations for instructional 

programs from prekindergarten through grade 12 in their Principles and Standards for School 

Mathematics (2000). Among the standards, the Communication Standard for students in 

prekindergarten to grade two recommends that students are enabled to:  

Organize and consolidate their mathematical thinking through 
communication; communicate their mathematical thinking coherently 
and clearly to peers, teachers, and others; analyze and evaluate the 
mathematical thinking and strategies of others; and use the language of 
mathematics to express mathematical ideas precisely. (p. 60) 
 

The importance of communicating mathematically has also been voiced in the recently 

released draft of the Common Core State Standards Initiative (NGA/CCSSO, 2010) issued by the 

Council of Chief State School Officers and the National Governors Association Center for Best 

Practices. Among the standards for students in kindergarten, the CCSSI advocate that children 
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say the number names, count, state whether the number of objects in a group is greater, less than, 

or equal to another group, represent addition and subtraction, describe objects in the environment 

using names of shapes and describe relative positions using specific terms. Among the standards 

for students in first grade, recommendations include children explaining and justifying properties 

of addition and subtraction, organizing and representing data, asking and answering questions 

about number. In order to execute any of the aforementioned tasks children must use and 

interpret formal mathematical language. 

The National Research Council’s Committee on Early Childhood Mathematics stated: 

Connecting and communicating are particularly important in the 
preschool years. Children must learn to describe their thinking 
(reasoning) and the patterns they see, and they must learn to use the 
language of mathematical objects, situations, and notation. Children’s 
informal mathematical experiences, problem solving, explorations, and 
language provide bases for understanding and using this formal 
mathematical language and notation. The informal and formal 
representations and experiences need to be continually connected in a 
nurturing "math talk" learning community, which provides 
opportunities for all children to talk about their mathematical thinking 
and produce and improve their use of mathematical and ordinary 
language. (Cross, Woods & Schweingruber, 2009, p. 2.13) 
 

Despite these recommendations for the use of math talk in preschool, there is no clear 

definition of what this means, no specific components identified, no guidance on how to teach 

this to children (particularly among those without former experience in using math language or 

in using language for reasoning), and no evidence that math talk matters to students’ 

preparedness for elementary school mathematics.  

 

What is Math Talk?  

Teachers are instructed to use math talk in the preschool classroom in order to both 

model the language of mathematics and encourage children to develop the ability to 
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communicate mathematically; however, few resources offer clear instructions or illustrations of 

how to do either. The majority of resources on using math talk (e.g., Chapin, O’Conner & 

Anderson, 2003; Lampert & Blunk, 1998; Sullivan & Lilburn, 2002) are written for teachers of 

grades one through grade six. It is becoming increasingly understood that to engage in math talk 

at older grades requires fostering the language and reasoning skills at much younger ages 

(Whitenack & Yackel, 2002), particularly among students from economically disadvantaged 

backgrounds without experiences in using math language in ways to think and reason 

mathematically.  

 

How Should Practitioners Teach Math Talk?  

In tandem with recommendations to help young learners communicate mathematically, 

several evidence-based preschool math curricula now include instructions for teachers to both 

use math talk and develop children’s math talk. For example, in the preschool curriculum, 

Building Blocks for Math PreK Curriculum (herein Building Blocks) (2007a) teachers are 

encouraged to extend children’s thinking, ask children to listen to and build upon other 

children’s reasoning, and to use “every day” mathematics when interacting with children 

throughout the day. In the Right Start program, later called Number Worlds (Griffin et al., 1994), 

one of the five major instructional principles is to expose children to the major ways number is 

discussed in developed societies. In Big Math for Little Kids (BMLK) (Greenes, Ginsburg, & 

Balfanz, 2004), one of the seven major instructional goals is to develop children’s familiarity 

with and use of the language of mathematics. Embedded in the BMLK lessons are mathematical 

symbolism and terminology, including vocabulary that promotes prediction (what might happen) 

and verification (evaluating mistakes, checking answers) in order to develop and enhance 
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children’s discussion skills. In addition, BMLK asks teachers to specifically develop a 

community of math learners by ensuring children learn to listen to peers, follow and comment on 

other children’s line of reasoning, and formulate questions.  

Despite encouraging teachers to use discussion of mathematics as it naturally occurs in 

preschool, Clements and Sarama (2007b) reported “no evidence of talk about mathematics” 

during their preliminary testing of Building Blocks.  Although engaging children in math talk 

was an optional part of the curriculum and not enforced by the project support in the classroom, 

it is unclear why teachers failed to include this in their practice. It is possible that teachers did 

not know how to engage children in math talk or they did not believe such a practice was 

important to children’s development. 

 

Does Math Talk Matter to Student Learning?  

Two studies demonstrate evidence that talk is important to children’s math development; 

however, neither study was specific to the direct effects of children using math talk. Researchers 

tested whether preschool teachers’ math-talk would be related to the growth in children’s 

mathematical knowledge (Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 2006). In a 

study of 26 preschool classrooms, data collection included 1-hour worth of audio recordings of 

teacher talk and the math achievement of 140 children measured at two time points. Results from 

this study showed that there was great variation in both the type and quantity of math language 

used by teachers. Teachers provided between one and nine types of math input between one and 

104 instances of math-talk usage in the hour long recording of teacher talk. The type and 

quantity of teacher math-talk were highly correlated; teachers who used more diverse types of 

math language also used this language more frequently. Moreover, there was a statistically 
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significant association of math input made by teachers with children’s gain in math knowledge 

on a non-standard measure created by the investigators. What is less understood is whether the 

amount that children themselves are talking about mathematics plays a role in their mathematics 

development. 

In a project funded by the US Department of Education’s Institute of Education Sciences 

to assess the effectiveness of “scaling-up” a pre-K mathematics curriculum at sites different from 

that of the developers, Vanderbilt University was selected to test Building Blocks in Nashville, 

Tennessee. Twenty sites, 16 public schools and four Head Start centers, were randomly assigned 

to one of two conditions while blocking for system (public/Head Start). This process yielded 31 

classrooms that participated in the new math curriculum training while 26 classrooms conducted 

business as usual. Individual children were assessed in the first and last six weeks of the 

implementation year using two subtests from the Woodcock Johnson Achievement Battery 

(Woodcock, McGrew, & Mather, 2001), a standardized measure of mathematical knowledge. 

Observations of children’s behavior were collected over 12 hours of observations on three 

different days using the Child Observation in Preschool (COP) (Farran, Plummer, Kang, 

Bilbrey, & Shufelt, 2006). While children in both conditions gained in math achievement over 

the preschool year, children in the treatment condition gained significantly more. 

In an analysis of data from this project, researchers (Cummings, Hofer, Farran, & Lipsey, 

2009) tested mediators of the curriculum’s effect on children’s gain in mathematics. Because 

teachers of the new curriculum were encouraged to engage children in talk about mathematics by 

asking children to explain their answers or the answers given by their peers, one mediator tested 

was the proportion of observations children were talking while they were engaged in a math 

activity. Children in control classrooms were seen talking during math activities 2% of all 
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observations while children in treatment classrooms were seen talking during math activities 4% 

of all observations. Despite the small proportion of observations in which children were talking 

during a math activity in either condition, doubling the percentage of observations children were 

talking during a math activity significantly explained the greater gain achieved by students in the 

treatment condition. This provides evidence that child-talk is important to children’s learning of 

mathematics and should be investigated further as a developmentally appropriate intervention of 

early mathematics.   

 

Summary 

Math talk is discussed frequently in current literature on early childhood mathematics 

education and touted as both an important instructional tool for teachers and a key ingredient of 

student learning. Despite the number of years math talk has been advocated, it has just recently 

been included as a standard for preschool instruction and incorporated into a number of early 

childhood mathematics curricula. Despite this, there is relatively little known about how to 

define math talk or its principal components. While there are materials available to practitioners 

providing some examples of math talk, most are based on work in elementary school classrooms 

where students appear to be familiar with its use. However, preschool children require examples 

of and practice in how to use mathematical language for thinking and reasoning mathematically. 

Research shows that children from economically disadvantaged backgrounds do not demonstrate 

as much mastery as children from more advantaged homes and suggest early childhood 

experiences help foster this skill. Although there is empirical evidence to suggest that both 

teacher talk about mathematics and children talking during math activities are both associated 

with math learning outcomes at the end of the preschool year, it is still unknown how to develop 
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child-talk about mathematics or whether doing so leads to improved early math skills among 

preschoolers.  

Structuring a Math Talk Intervention 

To address the assumptions underlying the usefulness of math talk in the preschool 

classroom, it was necessary to conduct a pilot study of activities and strategies that would 

compose an intervention. With support from the Administration of Children and Families’ Office 

of Head Start, the author hired two former teachers to work as co-investigators on the Talking 

About Mathematics in preSchool (TAMS) project. The pilot work for the TAMS intervention 

was conducted by the three of us with 58 four to five year old children enrolled in three Head 

Start classrooms in 2009-2010.  

Over six weeks, on two days each week, we spent between one and three hours 

conducting small group sessions with children. Sessions were recorded and notes were taken for 

later discussion. At the end of each day, we met to share results and recommend revisions to the 

tested activity before the next classroom visit. Our goal was to identify activities and strategies 

that would facilitate children’s discussion of mathematical concepts and information. The group 

identified important challenges to engaging children in talk about mathematics and some 

successful strategies for overcoming those challenges.  These next sections describe the 

challenges encountered during the pilot work and subsequent recommendations for developing a 

structured math talk learning environment for testing of its benefits to children’s math readiness 

skills. 
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Challenges  

Much published research on what preschool children know and are able to do upon 

entering kindergarten described abilities that exceeded those of the particular population we 

worked with in 2010. For example, when asked to count, more than one child responded with 

“A.” When the investigator prompted the child saying, “One… What comes next?” the child 

responded “A, B.” Children’s skills were well below what was anticipated and therefore 

presented this project with the challenge of engaging children in both ideas and language that 

appeared to be completely novel to them. Conversely, children did not possess the language or 

prior experience required to talk about the mathematics activities they were engaged in. For 

example, the majority of children could not respond appropriately to questions asking if there 

were “too many or not enough” or “who has more blocks?” Therefore, the initial goal of 

engaging children in extended talk about mathematics was then modified to include explicit 

modeling of math language and requests that children revoice the language being modeled.  

In addition to skill level and unfamiliarity with the language of math, another important 

challenge was identified. When asked open-ended math questions that required more than one-

word responses, even children who were talkative in informal contexts would remain silent. 

Children were willing to talk to investigators during book readings, meal time, or free play and 

so their lack of responsiveness did not appear to be a result of unfamiliarity with the adults. 

There are three alternative explanations for children’s reluctance to talk. Because these 

investigations were conducted in children’s sixth and seventh months of preschool (for those 

who were attending preschool for the first time), the first possibility is that children had already 

learned the typical pattern of school discourse. Typical school discourse between teachers and 

students in formal settings follows a prescribed pattern of Initiation-Response-Evaluate (IRE) 
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(Buzzeli, 1996). Even children as young as three in school learn that the teacher initiates through 

closed questioning “What number is this?” Children respond, “One.” Teachers evaluate the 

accuracy of the response by saying, “Yes” or “No.” This pattern becomes engrained in children, 

and may have a detrimental effect; initiating conversation in any formal setting, including small 

group sessions, triggers the automated reaction to search for a one word response. Because 

investigators were using open-ended questions, children did not know how to respond. 

Another possible explanation for children’s disinclination to provide longer responses to 

open-ended questions is their lack of familiarity with group discourse – the practice of listening 

to a speaker and responding appropriately to any given topic. A third possible explanation is that 

investigators and children have no experiences in common from which to draw for discussion 

purposes. During this exploratory phase of the study, children were generally more excited and 

talkative during the second or third trial of any given activity. Investigators speculated that 

having prior experience in playing each game gave children and investigators a shared context 

for discussing the mathematics embedded in the activity.  

 

Recommendations  

To overcome these challenges, the investigators arrived at the following 

recommendations for the structure of the math talk learning activity to be tested experimentally. 

Math games. The math talk learning activity should not focus on developing new or 

including multiple activities, but rather focus on a few activities that could be played with little 

to no prior mathematical knowledge but then adapted to be increasingly more challenging and 

mathematical as children master each level. Focusing on fewer activities while making those 

activities increasingly more difficult solves several of the aforementioned problems by beginning 
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at low levels of ability, providing familiarity of language and content and a shared context 

between the investigators and children on which to build conversations. In addition, adapting a 

game gradually places less cognitive demand on young children to learn new game rules thereby 

allowing them to focus more on learning the math talk.  

To focus the math talk learning activity on a few activities that could be scaffolded 

according to children’s early abilities, investigators recommended using games that targeted the 

very basics of mathematics known as number sense. Initially, eight activities were organized to 

be tested. After several iterations, three activities met all of the following conditions: the math 

activities (a) were successful in eliciting talk from children, (b) could be played with a 

comparison group of children without eliciting talk from children, and (c) could be played at 

varying skill levels so that, as children master a game at each level, the game could be made 

more challenging. The three games, their rules, and variations in difficulty are described in the 

next section. 

Establishing an environment for talk. We decided that the math talk learning activity 

should begin early in the school year, before IRE patterns are engrained. Another important 

component of a math talk learning activity recommended by the investigators was to 

intentionally help children develop group discourse skills as described by Kantor, Green, 

Bradley, and Lin (1992). In Kantor’s research, teachers were observed scaffolding preschool 

children’s group discourse skills by modeling and explicitly guiding children to take turns to 

speak, listen to the speaker, and respond appropriately to what the last speaker just said. Because 

the development of group discourse as described by Kantor et al. (1992) required both a 

considerable amount of focus (children were completely immersed in this activity) and time 

(over the entire school year), investigators concluded that a study designed to test a math talk 
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learning activity should administer a concentrated dosage of similar treatment. Our math talk 

learning activity, therefore, would be conducted with small groups of children in order to provide 

the instructional intensity necessary to scaffold their math talk as well as their conversations with 

one another. The small groups would be conducted outside the classroom to lessen distractions 

and avoid contamination of instruction to other children in the classroom. 

Two specific strategies were spontaneously used by investigators during this first phase 

of the study and found to be successful in eliciting the use of math talk and engaging children in 

mathematical thinking. The first was to teach children hand-gestures for mathematical ideas – 

similar to sign language – for “greater/more than” (hands held facing each other shoulder 

distance apart), “smaller/less than” (same as greater/more than except the hands are held close 

together), and “same as/equal to” (both hands face down, fingers pointing towards each other and 

on the same plane). Using these hand gestures provided a useful scaffold for children’s use of the 

language and developing the ideas the gestures represented. Also, by associating mathematical 

ideas with physical movement, children had an additional support for recalling the actual 

vocabulary. 

Another strategy that proved useful towards scaffolding children’s use of math talk was 

named the doublecheck. Each time a student completed his or her turn in any game, the 

investigator said, “Let’s doublecheck” and would proceed to model a method for checking his or 

her accuracy. In the event a child had made an error in his or her calculation, the investigator 

would use the math hand gesture to represent if, for example, the number of apples removed 

from the tree was more than, less than or the same as the number on the spinner. After enough 

exposure to this modeling, children became very excited to doublecheck one another’s moves 
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during game-playing. Several children quickly began using the verbal language in place of the 

gestures and would doublecheck one another without the investigator having to ask them to. 

Despite their spontaneous use by investigators, both of these supports are representative 

of strategies discussed in the literature on education and in cognition. Gesturing as a support for 

the growth and maturity of language and cognition has been examined among typically- and non-

typically-developing children. Among typically-developing children, “gesturing provides 

children with a tool to expand their communicative repertoire, and children use this tool to 

convey increasingly complex ideas” (Özҫalişkan & Goldin-Meadow, 2005, p. B110). Further, 

because children from disadvantaged homes show less competence than more advantaged 

children in performing verbal tasks of reasoning (Jordan et al., 1992) and metacognitive skills 

(Pappas, Ginsburg, & Jiang, 2003), some early childhood experts recommend a greater focus on 

developing these skills in early childhood. The doublecheck described above is a type of support 

for developing children’s metacognition. By asking children to use language to express and 

justify mathematical relationships, we are asking them to think about their thinking. 

 

Conclusion and Hypotheses 

The mathematics performance gap between students from economically advantaged and 

disadvantaged backgrounds is large and has proven to be persistent over decades. This gap has 

long-term academic and economic consequences, disadvantaging individuals who perform on the 

lower end of this performance gap. Because of the relationship between having poor early math 

skills and later mathematics achievement, greater emphasis is being placed on early childhood 

education as a means of closing that gap early before formal schooling begins. 
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Research on early childhood mathematics instruction and environments finds critical 

elements of mathematics learning from the later grades absent from the typical preschool 

classroom. For example, the amount of time spent in instruction and the math content covered 

are important elements of math achievement among students in K-12. However, preschools 

generally allocate little time to math and few math topics are covered. Teacher’s knowledge and 

attitudes about mathematics are also important to student math achievement; yet, early childhood 

practitioners often report feeling uncomfortable with and inadequately prepared to teach 

mathematics. Many national organizations and early childhood educators are concerned that the 

greater emphasis for academic outcomes in preschool could potentially lead to an inappropriate 

push down of the math curriculum. Instead, developmentally appropriate methods for engaging 

young children in meaningful experiences and interactions about mathematics should be 

researched. 

To help guide ECME instruction it is important to consider the ways in which school is 

failing to connect children’s informal ideas about mathematics with the formal curriculum 

introduced in school. Informal mathematics involve the ideas and strategies children invent in 

their daily activities. Formal mathematics relate to the symbols and representations taught in 

school and are not spontaneously acquired by children. There are several challenges specific to 

early math learning. There are several plausible theories used to explain why these challenges 

differentially affect children from economically advantaged and disadvantaged backgrounds. 

One theory is based in children’s experience with using language to reason mathematically. 

There is evidence that facilitating preschool children’s talk in mathematics has a great 

number of benefits. Mathematical language and the use of language for reasoning and 

argumentation are not spontaneously acquired by children, rather they are fostered. These might 
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be fostered in children’s homes or schools – anywhere people practice mathematics. However, 

children from homes that do not use mathematical language or who have less experience in using 

language for collective reasoning are disadvantaged in school. Providing explicit instruction in 

the ways to use language for reasoning mathematically would help children bridge the divide 

between informal and formal mathematics.  

Fostering environments that promote math talk requires that teachers consider the 

intellectual content, the social activity involved in developing new knowledge, and the teachers’ 

role in constructing these interactions. Findings from research reported in this review suggest 

that mathematics instruction, particularly in programs serving children from economically 

disadvantaged backgrounds, focus the intellectual content on developing children’s number 

skills. Additional research reviewed recommends using games to establish a context for the 

social interaction that optimized learning. To maximize learning opportunities for interactions 

that lead to language and conceptual development, there is much support for guiding children’s 

participation in a math talk learning activity. Math talk is guiding children’s participation in 

games focused on number sense with the goal of developing children’s math language and 

reasoning skills. Research from the field informed the design of a math talk learning activity. 

The data collected from the field highlights specific challenges to engaging young children in 

discussion about mathematics and recommends strategies for successfully engaging children in 

social interactions about mathematical activity.  

The present study was designed to examine the effect of implementing an early 

mathematics learning activity on preschool children’s early math skills. More specifically, the 

purpose of this study was to compare the effects on children’s early math skills of participating 
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in math games to the effects of participating in math games enhanced by a math talk learning 

activity.   

The two main hypotheses of this study were:  

1. Children who participate in math games will gain more early math and reasoning 

skills than children who do not play these games.  

2. Children who participate in math games and who are encouraged to engage in 

math-talk will gain more early math and reasoning skills than those who 

participate in the same games without that encouragement to engage in math talk. 
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CHAPTER III 

 

RESEARCH DESIGN AND PROCEDURES 

 

The Math Talk Intervention 

 

The Math Talk Intervention had two components. The first component was playing 

games that involved number. The games allowed children to count, subitize, practice one-to-one 

correspondence, state the cardinal number, compare magnitude, learn numerals and the number 

line. The second component was establishing a math talk learning environment whereby children 

learned their roles as a part of that environment. This section describes how interventionists 

engaged children in the first component, facilitating the math games, and then how 

interventionists engaged children in the added component, facilitating the math talk learning 

environment. 

 

Facilitating the Math Games  

The first component of the intervention involved facilitating math games; this component 

did not include math talk. The three games – Hi-Hi-Cherry-O, Walk-the-Line, and Card Wars – 

all used materials found in a typical preschool classroom or could be easily acquired. Table 1 

displays a summary of the math games – the number of sessions children would play each game, 

the learning objectives and rules for play at each level. For a more detailed account of the game 

materials and rules of play of each game, see Appendix A. 
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Table 1   

Summary of Math Games to Be Played in Intervention. 

SESSION 
MATH 
GAME 

LEARNING 
OBJECTIVES 

HOW THE GAME IS PLAYED 

1 - 3 
Hi Ho Cherry 
O 

Counting 1-3 
1:1 Correspondence 
Cardinality 
Reasoning 

Children spin the spinner that can land on the numbers 1, 
2, 3, a bird, a dog, or a basket. If children land on a 
number, they remove that same number of fruit from their 
tree and place into the bucket that corresponds to that tree. 
If children land on the bird or dog, they must put one piece 
of fruit from their bucket back on the tree. If they land on 
the basket, they put all of the fruit that had been placed in 
their bucket back on the tree. 

4 - 6 
Walk-the-Line 
Level 1 

Counting 1-10 
1:1 Correspondence 
Subitizing 1-3 
Numerals 
Number-line 
Composing numbers 
Reasoning 

Children are placed into two teams. Each group has a 
number line on the floor with the numbers 1 -10 displayed. 
The teams share a large red foam die with dots ranging 
from 1-3 on two sides each. Each team rolls the die to 
determine who goes first. The teams then take turns: 1 
player rolls the die and 1 player physically moves along 
number line. First team to move off the number line wins. 
Team members should switch roles between rolling die 
and moving along number line. 

7 - 9 
Walk-the-Line 
Level 2 

Counting 1-20 
1:1 Correspondence 
Subitizing 1-6 
Numerals 
Number-line 
Composing numbers 
Reasoning 

Level 2 is played identically to Level 1; however, the 
number line is extended to 20 and a large yellow foam die 
with dots ranging from 1-6 is used. If children become 
adept at this Level, the game can be made more difficult to 
include subtraction. Children roll one yellow die and one 
red die to “move forward” the number the yellow die is 
rolled and “move backward” the number the red die is 
rolled.  

10 - 12 
Card Wars 
Level  1 

Counting 1-10 
Subitizing 
Numerals 
Magnitude Comparison 
Reasoning 

Children play in twos so that there are actually two games 
being played simultaneously. Each child has a shuffled 
deck of cards with a numeral from 0 -10 at the top, a grid 
with 10 spaces on the bottom, and the same number of 
dots in the grids as the numeral on the top. Children each 
turn over one card and determine who, between the two of 
them, has more. The child with the card of greater value 
wins the pair of cards and places them aside in his or her 
card holder. When children turn over cards of an equal 
value, a second set of cards is turned over and placed 
directly on top of the first set. When the children have 
used all the cards, they determine who has more cards.  

13 - 16 
Card Wars 
Level 2 

Counting 1-10 
Subitizing 
Numerals  
Composing Numbers 
Magnitude Comparison 
Reasoning 

Level 2 is played similarly to Level 1, but now requires 
children to use addition. Children play in teams of two so 
that there is one game being played by all of them. 
Children each have a truncated set of cards (each deck 
includes cards 0 -5) that have been shuffled. Children each 
turn over one card and determine which team has more. 
The team with the higher sum then wins the four cards and 
places them aside in their team’s card holder. When the 
sum of cards is of an equal value, a second set of cards is 
turned over and placed directly on top of the first set. 
When the children have used all the cards, they determine 
which team has more cards. 
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Hi-Ho-Cherry-O is a children’s board game first published in 1960 where players race to 

fill their basket with cherries from the tree. Walk-the-Line is a simple game in which players roll 

a die and walk that many spaces along a number line mat on the floor. Card Wars is a simple 

version of the regular card game, War. Children turn over cards and the highest card wins the 

pair. Both Walk-the-Line and Card Wars were played at two levels of difficulty. Level one 

introduced children to the rules and expectations of each game and was less cognitively 

demanding. The second level of play used all of the same materials, but was played using greater 

numbers or by asking children to perform more cognitively demanding tasks. 

 

Facilitating the Math Talk Learning Environment  

The second component of the intervention involved facilitating math talk. Establishing 

the small group math games as a time to use math talk required that interventionists employ 

several different strategies. Teachers had to model and scaffold how to play group games, use 

math words, identify math concepts, engage one with another, respond appropriately to a peer’s 

mistake or corrective actions, and attend to the game without losing focus. To do these required 

interventionists offering specific supports for math talk, asking open-ended questions, modeling 

appropriate types of responses, and maintaining certain expectations of children. 

Scaffolding math talk. In the beginning of the intervention, as is true for many 

classroom activities, there were both verbal and physical cues established early on to help 

children know what to do and what to expect. In this intervention, the term “Let’s talk math 

talk!” was the first such cue. This expression was meant to remind children that, during small 

group math games, we could talk and challenge each other in ways we might not otherwise in the 

regular classroom. Another such cue taught to children as the intervention progressed was the 
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doublecheck as described earlier. This expression meant it was time to take a moment and 

consider if a peer played the game as he or she was supposed to, removed the right number of 

fruit, moved the correct number of spaces, etc. For example, the interventionist would model on 

Taylor’s turn, “I will doublecheck. One, two. Yep. Taylor rolled a two and moved two spaces.” 

Later on Ellis’ turn, the interventionist reminded Taylor to doublecheck for Ellis. 

In addition, interventionists needed to establish the ways in which members engaged in 

mathematical activity. Interventionists would model and ask children to explain what they were 

doing as they counted objects or moved a game piece (e.g., I am on the number two and rolled a 

two, so I move two spaces and now I am on four; two and two more is four.).  Interventionists 

asked children to revoice what other children said (e.g., Can you tell me what Karen just said?) 

or whether they agreed with another child’s calculation (e.g., Kurt, is that right? Do you agree 

that Cathy’s piece should be on four and not three?). Interventionists asked children to justify 

their thinking (e.g., how do you think Kerry knew that her piece should be on the four after she 

rolled a two?) and narrate one’s actions (e.g., Let’s see I was here on the three and rolled a two 

and now I am on five.).  

In addition to the aforementioned direct strategies of scaffolding children’s math talk, 

there were instructional strategies used for facilitating talk in general. Interventionists provided 

ample wait-time to allow children to respond, listened carefully when children were speaking, 

and provided positive reinforcement (e.g., Oh, Carol! I like the way you described your thinking 

out loud for us!).  

Asking open-ended questions. Through open-ended questioning, interventionists taught 

children to extend their own thinking as well as that of their peers (e.g., Jackie, do you have 

another way of explaining Ron’s answer?). When children did not respond to these types of 
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questions appropriately, interventionists provided examples of appropriate responses through 

explicit instruction and direct modeling (e.g., Kim, you can say: if we add one more we would 

have five because five is one more than four. Now you say it). 

In playing preschool games it would be impossible not to ask children typical closed-

ended questions like, “How many is that?” However, interventionists made great efforts to also 

ask open-ended questions like:  

 “How do you know it is five?” 

 “Is there another way you can make five?” 

 “Can you tell me about what you are doing right now?” 

 “What do you notice about that?” 

 “What's the same (different)?” 

 “What do you think might happen if...?” 

Transferring responsibility. Children were expected to participate in the small group 

math games where they would perform the mathematical tasks as outlined in the activities. In 

addition, children were expected to learn the rules of play and come to monitor the other 

children’s play. In a sense then, children were being held accountable for their independent play, 

not just to do what the teacher or other children told them to do when it was their turn. This 

strategy could lead to contention between children at times and so it was important for 

interventionists to use such opportunities to help children understand the rules of the community 

as described in the scaffolding math talk section. For example, the teacher might say, “Good job, 

Mark, for noticing that Manya moved one too many spaces. Way to pay attention! Manya, do 

you agree that you moved one too many? You can doublecheck if you like. If you do not agree, 

you can say so. We’ll just have to explain our thinking.” 
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Children were also expected to interact with both the interventionist and their peers 

through verbal and physical communication when they recognized a mathematical idea. For 

example, two children turn over cards that are equal in value and they both use the hand gesture 

for “equals.” This is different than what occurs in the typical classroom whereby children are 

expected to withhold random observations as to avoid verbal outbursts, or at the least, raise their 

hand when they want to share a thought or observation. Interventionists had to be cautious that 

children not overgeneralize the social nature of the small group activity time to include any 

interesting conversation or interaction. The social activity had to focus on mathematical 

observations the small group math games generated. Interventionists redirected wayward 

children’s attention to the game by asking children to narrate what another player was doing. 

To summarize, the TAMS intervention included facilitating math games and a math talk 

learning environment. Facilitators played three games with small groups of children. The games 

were Hi-Ho Cherry-O, Walk-the-Line, and Card Wars. Walk-the-Line and Card Wars were 

played at two levels of difficulty. A small group of children played these games outside the 

classroom with a trained facilitator. Facilitators scaffolded children’s math talk by modeling 

math talk, asking open ended questions, expecting children to participate in play, modeling and 

asking children to talk about observations they made about mathematics. 

 

Research Site and Participants 

 

Research Sites 

A Head Start Community Action Agency (CAA) partnered with the author in this study. 

This CAA serves several urban/suburban and suburban/rural counties in Middle Tennessee. To 
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enroll a child in any Head Start, families must be at 100% of the poverty level and therefore all 

of the children were from economically disadvantaged backgrounds. From within this CAA, 

three sites located in three counties were selected to participate by the Director of the CAA. To 

be eligible for selection, the site had to contain classrooms with an English-speaking majority of 

children who were three-years and ten months of age or older. 

1. One center is predominately suburban and is located in a county with a poverty rate 

of 9% and 12% minorities. This center serves approximately 100 children in five 

classrooms, only four classrooms met the criteria of this project. 

2. A second center is predominately rural and is located in a county with a poverty rate 

of 11% and 14% minorities. This center serves approximately 60 children in three 

classrooms, only two met the criteria of this project. 

3. A third center is both urban and rural; its county has a poverty rate of 10% and 17% 

minorities. This center serves approximately 80 children in four classrooms, only 

three met the criteria of this project. 

 

Research Participants 

To recruit children into the study, the author and seven researchers working for the 

project visited the nine eligible classrooms within these three sites during the first week of school 

to deliver consent forms to teachers and parents. As parent consents were returned, children who 

were younger than three years and ten months were excluded from the study. As children were 

assessed, those who were unable to complete an assessment in English were also excluded from 

the study. These criteria were established so that identifying intervention effects would not be 

confounded with age or children’s inability to speak English, both of which might hinder a 
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child’s willingness to participate in the math talk intervention. Children had not yet been 

identified by the schools for Individual Education Plans or as having behavioral issues, but these 

were not characteristics expected to interfere with the intervention. For this reason, those who 

were expected to meet qualifications for these special services were not excluded. Up to the first 

15 consented and eligible students per classroom were assessed, after which no more children in 

that classroom were considered for the study. 

While 99 children were initially included in the study, 9 children were withdrawn from 

their schools after a week long fall break and not present at the time of post-testing. Five of those 

seven children were able to be located by the author and post-tested in a location outside of the 

initial setting of the intervention, either in their current school or in their home. The final analytic 

sample included 95 children: 46 children in four classrooms located in the first center, 21 

children in two classrooms from the second center, and 28 children in three classrooms from the 

third center. Of the 95 children, 44 were female (46%) and 51 were male (54%).  The children 

were a mean of four years, three months of age at the time of pretest (with a range of three years, 

ten months to four years, 11 months). The race/ethnicity of the participants were 32 white (34%), 

30 black (32%), 11 Hispanic (12%), and 22 other or unknown (22%).  

 

Research Design 

As described above, the research sample was drawn from nine classrooms located in 

three centers serving children from economically disadvantaged backgrounds. The sample 

represented a range of urban, suburban, and rural locations serving demographically diverse 

children. Children were the unit of randomization and blocked by classroom. Within each block, 

at least nine children were randomly assigned to one of three conditions. The randomization was 
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conducted independently from their pretest scores. Children were assigned identification 

numbers that were then entered into a computer program; the program randomized ID numbers 

per classroom. The first three numbers listed by the program were assigned to Treatment Group 

A, the next three numbers were assigned to Treatment Group B, and all remaining numbers were 

assigned to Control Group C. The number of children in this last group ranged from three to 

eight children depending on the number of consented and eligible children in each classroom. 

Randomization of children into three experimental conditions resulted in an equal representation 

of gender, age, and race/ethnicity. Figure 2 presents a visual representation of the randomized 

block design and the resulting numbers of students per condition by classroom and by center. 

 
Figure 2.  Randomized Block Design 

 
 

The Experimental Groups 

To test the effect of the math talk intervention, an 8-week intervention was implemented. 

The author trained the co-investigators from the pilot study to work as two additional 
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interventionists so that there were three individuals facilitating small group math games with 

children. Each classroom had three experimental groups (two treatment groups and one control 

group). Each interventionist was responsible for three classrooms, conducting small group math 

games with the two treatment groups per classroom. The groups participated in small group math 

games, outside of the classroom, during free-play time so that no child missed his or her regular 

classroom instruction. Children in the treatment groups met in these small groups for 15- to 25-

minutes of game time on two days each week. Therefore, children in Treatment Group A and 

children in Treatment Group B met with their interventionist for a total of 16 sessions and a total 

of 240 – 400 minutes of small group math games over the 8-week period.  

Treatment group A: Math games with a focus on talk. Children in Treatment Group A 

participated in the full intervention as has been described. Interventionists facilitated math games 

and also facilitated a math talk learning environment. In order to test the benefit of focusing on 

math talk, and eliminate the benefits of simply doing more math, two treatment groups were 

necessary. Thus, a Math Games with a Talk Focus group (Math Games/Talk Focus) was 

compared to children who only played the math games (Math Games). 

Treatment group B: Math games. Children in Treatment Group B participated in the 

small group math games as did the children in Treatment Group A; however, interventionists did 

not facilitate the math talk learning environment. In other words, interventionists did not scaffold 

the children’s math talk nor provide similar supports in establishing a math talk learning 

environment. Children were not restricted from talking; interventionists guided the game being 

played through direct instruction. For example, interventionists might say, “Roll the die. That’s 

two so move your game piece two spaces. One, two – now you are on four.” Thus, the same 

language was heard by children in both Treatment Groups A and B; however, children in 
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Treatment Group B were not prompted to use the language themselves. Children in this group 

were not expected to add more talk than was required to play the games. They were not expected 

to support or correct their peers during play. They were not expected to share independent 

observations about mathematical ideas in either verbal or physical communication. It was 

anticipated that children in this group could spontaneously engage with one another concerning 

the mathematics at play, but this was not encouraged, or restricted by the interventionist. If 

children asked questions, interventionists answered them directly in order to continue with the 

game. Figure 3 shows the expected differences in interventionists’ facilitation of the two 

treatment groups. For a more detailed account of expected differences between treatment groups 

by each game played, see Appendix B. 

 

 
Math Games + Focus on Talk 

 

  
Math Games 

 

 Children hear facilitator model math-talk and 
children are encouraged to use math talk 

  Children hear facilitator 
model math-talk 

 Children are asked closed-ended questions and 
open-ended questions 

  Children are asked 
closed-ended questions 

 Interactions are between teacher and student and 
interactions among peers are encouraged and 
supported 

  Interactions are between 
teacher and student 

 Children are expected to participate and take 
responsibility for game play (e.g., doublecheck for 
peers and explain why response was right or 
wrong)  

  Children are expected to 
participate in the game 

Figure 3. Expected Differences in Facilitation of the Two Treatment Conditions 
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Control group C: Practice as usual. Children in this Control Group C were the 

“practice as usual” group. These children did not leave their regular classroom activities to 

participate in small group math games. They acted as the counterfactual condition in order to 

compare the math performance of playing math games or playing math games with math talk to 

the math performance of children who remained with their teachers during this time and engaged 

in all regular classroom activities.   

 

Statistical Power 

To determine the number of classrooms needed to detect statistically significant effects 

by the intervention, a power analysis was conducted using the Optimal Design software program 

(Liu, Spybrook, Congdon, Martinez, & Raudenbush, 2006). A justification for the estimates used 

in this analysis follows. With a randomized blocks design, each classroom is a block; within each 

block students are randomly assigned to conditions. To compare any two of those conditions, it 

was assumed that six children in a classroom would be randomly assigned to two different 

conditions (rather than nine children to three conditions). Therefore the number of children per 

classroom was estimated at n = 6. The blocks were treated as a fixed effect; that is to say, the 

classroom effect was not expected to vary significantly from classroom to classroom. The 

Intraclass Correlation Coefficient (ICC) values for similar outcome variables in other studies of 

pre-k curriculum effects generally range between .05 – .10. Because both classroom and school-

level variance were assumed, an ICC value of .10 was used. In addition, it was assumed there 

would be an equal number of children per condition and no attrition. A school level pretest 

covariate that correlated at least .70 with the respective posttest was assumed; this is a figure 

consistent with prior pre-k studies with similar outcome variables. Therefore, with an alpha level 
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of .10 and power of .80, the minimum detectable effect size was estimated to be .389. With a 

small sample, it was not realistic to suppose that inferences from the statistical results from this 

study could be generalized to the population of Head Start Centers in the U.S. or even to those in 

Tennessee. Thus, inferences about the efficacy of the intervention would be limited to this 

particular set of classrooms.  

 

Measures 

This study is interested in children’s outcomes on five measures; four measures of 

children’s early math skills and one measure of children’s fluid reasoning. Three of the early 

math measures are standardized; the fourth is a non-standard measure created to closely align 

with the targeted skills of the intervention. The fifth is a standardized measure of children’s fluid 

reasoning. These are each described in detail along with an account of the children’s individual 

characteristics to be collected. 

 

Math Outcomes 

The Test of Early Mathematics Ability (TEMA) (Ginsburg, Baroody, & Pro 1983) 

measures the mathematics performance of children between the ages of three and nine. The test 

measures both informal and formal concepts and skills in the following domains: numbering 

skills, number-comparison facility, numeral literacy, mastery of number facts, calculation skills, 

and understanding of concepts. The TEMA has many items that do not require children obtain 

the correct answer to be counted correct if they apply the correct procedure or show evidence 

that they understand the concept. This is very useful in detecting small changes in children’s 
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informal mathematical knowledge and understandings. Descriptive results from the TEMA are 

presented using standardized scores while raw scores were used in all analyses. 

The Woodcock-Johnson III Tests of Achievement (Woodcock, McGrew, & Mather 2001) 

is a more global measure of mathematical knowledge. There are two tests of math knowledge: 

Applied Problems (WJ-AP) and Quantitative Concepts (WJ-QC). Applied Problems requires 

children listen to the problem, recognize the procedure to be followed and then perform 

relatively simple calculations. Children’s performance on these subtests is possibly related to 

their attention to mathematical language and so might detect differences between condition 

effects. Quantitative Concepts consists of two parts A and B; part A measures knowledge of 

mathematical concepts and symbols while part B measures understanding of the number line, 

which the TEMA does not measure. Another reason to include this assessment is because of the 

wide usage of WJIII in research on children’s mathematical knowledge, thus allowing for 

comparison of results with other studies. Descriptive results from the WJIII subtests are 

presented using standardized scores; the IRT scaled W scores were used in all analyses. 

Because the activities and games to be used in this study targeted specific number sense 

skills, it was important to have a more proximal measure of children’s development than what 

the two global measures of math knowledge (TEMA and WJIII) might be able to capture. In 

addition, there were some targeted math skills that were not adequately represented by items on 

those two global measures. The Number Sense Assessment (NSA) was developed, therefore, to 

capture small changes in children’s math skills and provide additional items to measure specific 

skills that were expected to improve as a result of the intervention.  

Siegler (2009) defined number sense as the ability to approximate numerical magnitudes; 

for example, “estimating how many people can fit in a car, how much a car might weigh, and 
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eventually, the product of 76 and 240.” Siegler’s (2009) description of the Number Knowledge 

Test used in his earlier studies included a magnitude comparison task and number line estimation 

task. However, Siegler reported that many preschoolers, even ones who could count perfectly 

from 1 to 10, were not able to estimate magnitudes accurately. For this reason, some of the tasks 

from his assessment were adapted to better suit the number sense abilities of preschool children. 

The NSA asks children to complete four tasks. The first task measures children’s ability 

to produce a set of objects and state the cardinal number of that set. This task was pilot tested in 

the exploratory phase of this project and found to be very effective in estimating children’s 

ability to count and use one-to-one correspondence. The second and third tasks, taken directly 

from Siegler’s test, measure children’s ability to subitize (How many dots did you see?”) and 

magnitude comparison (“Which side has more?” and “Which number is more?”). The fourth task 

is an adaptation of Siegler’s number line task and was also piloted in the exploratory phase of the 

project. The zero and ten card are placed on the number line first. Then, children are prompted to 

place the 1-card where it belongs. If they cannot place it independently, the test administrator 

places the card where it belongs and says, “When we count we start with 1, so the 1 goes here. 

Can you now put the 1 where it belongs?” If the child is still unable to place the 1 on the number 

line in the correct location, the assessment ends. If, however, the child is able to place the 1 on 

the correct location on the number line then the child is given one card at a time with a numeral 

between 2 and 9 in a set random order.  

A total raw score of 38 is possible on the NSA. Children’s total raw scores are presented 

in descriptive results and were used in all analyses. The NSA instructions, scoring sheet, and 

testing booklet can be found in Appendix C. A detailed analysis of anticipated learning outcomes 

and corresponding test items can be found in Appendix D. 
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Reasoning Outcome  

The Leiter International Performance Scale-Revised (Leiter-R) (Leiter, 1948) is a 

standardized, nonverbal measure of children’s reasoning, visualization, attention, and memory. 

Neither the examiner nor the child is required to speak, and the child does not need to read or 

write and so this assessment is especially suitable for disadvantaged, nonverbal or non-English 

speaking preschoolers. Scores obtained by the Leiter-R have not been found to be significantly 

influenced by the child's educational, social, and family experiences (Leiter, 1948) and so was 

selected as an outcome to detect intervention effects on the reasoning skills of children that 

might not be identifiable by those measures that are language dependent. Two subtests of the 

Leiter-R were administered for this study, Repeated Patterns and Sequential Ordering. Together 

these subtests create a Fluid Reasoning Composite Score (LR-FR) (Leiter, 1948) that is strongly 

correlated with children’s later school achievement. As instructed by the Leiter-R, this composite 

is calculated by doubling the scaled score on the Repeated Patterns subtest and adding the total 

to the scaled score received on the Sequential Ordering subtest. Descriptive results are presented 

using the standardized scores, although the Fluid Reasoning Composite Score (LR-FR) was used 

in primary analyses. 

 

Covariates 

The Woodcock-Johnson III Tests of Achievement also contains The Picture Vocabulary 

subtest. This subtest measures children’s word knowledge; it is primarily an expressive language 

task.  Because the intervention sought to use language to influence children’s math and reasoning 

skills, their ability to express themselves might be correlated with growth in math knowledge. 

For this reason, it was important to collect baseline data on children’s language and word 
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knowledge. This assessment was also used at post-test in order to provide data for future 

exploratory analyses not to be included in this study. As with the other WJIII subtests, 

descriptive results are presented using standardized scores while IRT scaled W scores were used 

in all analyses. 

The demographic characteristics of children are their gender, race/ethnicity, and age at 

time of testing. These variables provided descriptive information about the sample and for future 

exploratory analyses not to be included in this study.  

 

Data Collection Procedure 

Information from parental consent forms provided descriptive information for each child 

on gender, race/ethnicity, and date of birth. Assessors administrating pretests determined 

children’s English Language Learning (ELL) status. Interventionists facilitating small group 

math games noted children who were emotionally or behaviorally challenged and likely to 

receive an Individualized Education Plan.  

Assessors working for the project had to pass certification to administer assessments to 

consented children on the measures already described. Children who consented to go with the 

assessor outside of the classroom were then individually tested on two measures (The Leiter-R 

and all subtests of the WJIII) on one day and on the other two measures (TEMA and NSA) 

another day so that no single assessment period lasted for longer than 15-30 minutes. All 

assessments were conducted within 14 working days of the first day pretests began. After 

assignment to condition, the intervention began. During the eight-week intervention phase, video 

and audio recordings of sessions were collected for further exploratory analyses not to be 
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included in this study. After the intervention ended, all participating children in the study were 

assessed within 14 working days of the first day post-testing began.  

 

Statistical Analyses   

The hypotheses of this study were: 

1. Children who participate in Treatment Groups A and B will learn more math than 

children in Control Group C. 

2. Children who participate in Treatment Group A will learn more math and 

reasoning skills than children in Treatment Group B. 

 

Primary Analyses 

Data analyses focused on the effects of the intervention on the child outcomes. Children 

were nested within classrooms, so all analyses were done using linear mixed modeling in SPSS. 

The first step was to examine the equivalence between the treatment and control groups on the 

pretests and other key descriptive variables.  

To answer the two hypotheses, each analysis examined the intervention effects on each of 

the outcome variables. There were five outcome measures of interest (four measures of early 

math skills and one measure of fluid reasoning). The three standardized math measures were the 

Test of Early Mathematics Ability (TEMA), WJIII Applied Problems (WJ-AP), and WJIII 

Quantitative Concepts (WJ-QC). The fourth outcome of early math skills, The Number Sense 

Assessment (NSA), was a non-standard measure created as a proximal measure of the 

intervention effects. The standardized measure of children’s fluid reasoning, the Leiter-R Fluid 
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Reasoning (LR-FR), was a composite score created from the Repeated Patterns and Sequential 

Order subtests (Leiter, 1948). 

To test the first hypothesis, children in the Treatment Groups were compared to children 

in the Control Group; thus, children in Treatment Groups A and B are compared to children in 

the Control Group C. To test the second hypothesis, children in Treatment Group A were 

compared to children in Treatment Group B; thus, children in Control Group C were not 

included in these analyses. So there were a total of 10 independent models analyzed for the two 

hypotheses. An additional two models were conducted in order to test the effects of condition on 

WJIII Picture Vocabulary (WJ-PV); one tested the effects of being in the Treatment Groups as 

compared to the Control and the other compared the effects of being in Treatment Group A as 

compared to Treatment Group B. Each model was analyzed at the child-level using the 

respective pretest as a covariate in the model, making these residualized gain analyses. Besides 

pretest scores, children’s personal characteristics were examined as child level covariates. The 

classroom blocking factor was included as a classroom level covariate for both hypotheses.  

Effect sizes are often calculated to determine the magnitude of the difference in the mean 

scores of two groups on some measure. One advantage of examining effect sizes is they are 

expressed in standard deviation units and therefore allow for comparison of different measures 

within a study having different scales. A relatively large and educationally meaningful effect size 

can be achieved that does not reach statistical significance. Thus, in addition to the models 

described above, effect sizes were calculated to determine the magnitude of intervention effects 

on all outcome measures (TEMA, WJ-AP, WJ-QC, NSA, LR-FR, and WJ-PV). 
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Secondary Analyses 

While standardized measures provide global and distal measures of children’s growth 

that allow for comparisons to national norms and other similar studies, they often do not capture 

small but important changes targeted by an intervention. To capture changes in children’s 

number sense not detected by the standardized measures, the individual items from all math 

measures (TEMA, WJ-AP, WJ-QC, and NSA) were conceptually grouped into 10 categories 

called early numeracy skills. Nine of the 10 early numeracy skills were skills targeted by the 

intervention; the 10th category was composed of test items measuring skills not expected to 

change as a result of the intervention. To test the practical significance of intervention effects, 

linear mixed models regressing early numeracy skills posttest scores on condition were 

conducted. Covariates included in the models were children’s pretest score on the respective 

early numeracy skill, age at the time of pretest, and the blocking factor. Table 2 displays the 10 

early numeracy skills, the total number of test items grouped into each skill, and examples of test 

items used to measure that skill. For a detailed analysis of the test items grouped into each skill, 

see Appendix D. 
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 Table 2   

 Early Numeracy Skills. 

Skill 
No. of Test 

Items 
Examples of Test Items 

Counting 29 
1, 2, 3, now you count by yourself and keep 
going until I tell you to stop; How many 
apples are in this picture? 

One-to-One 
Correspondence 

5 
(Child has a mat and tokens in a cup. 
Assessor puts 3 tokens on her mat.) Make 
yours just like mine. 

Producing Groups 12 Give me __ cubes. 

Cardinality 9 
How many stars did you count? How many 
cubes did you put in the cup? 

Subitizing 14 
(Child is shown a paper with __ number of 
dots on it for a count of 2 seconds and then it 
is covered). How many did you see? 

Magnitude Comparison 15 
(Child is shown a paper with two sets of dots 
on either side, divided by a vertical line) 
Which side has more? 

Numeral Recognition 30 What number is this? 

Number Line  25 
What number comes after 2? What number 
comes between 5 and 7? What number comes 
before 3? 

Adding/Composing 
Number 

13 
If you had two books and got two more 
books, how many books would you have? 

Items not related to a 
TAMS learning objective 

11 
What is this called (circle)? Tell me the days 
of the week. 

Overall  163  
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CHAPTER IV 

 

RESULTS 

 

Initial Analyses 

 

Ninety-nine children were originally consented and eligible to participate in this study. 

These 99 children had pretest scores and participated in one of three experimental conditions of 

the TAMS intervention. However, nine of the 99 children were withdrawn from Head Start 

following a weeklong break from school when posttesting began. One-way ANOVAs confirmed 

no identifiable differences in the personal characteristics (i.e., age, gender, race/ethnicity) or 

pretest scores of the nine children who were withdrawn and the rest of the original sample. Five 

of the nine withdrawn children were located and subsequently tested in their homes within four 

days following the testing of the ninety children still enrolled in Head Start. Four of the nine 

withdrawn children could not be located to collect posttest data and were excluded from further 

analyses. The original sample of 99 children was therefore reduced to 95 (one child was lost 

from the Math Games group and three were lost from the Control group). The following results 

are reported for the final analytic sample of 95 children who participated in the study and had 

valid pretest and posttest data. 

Initial explorations of all variables of interest showed the assessment data to be normally 

distributed at both time points. Using linear mixed models, no statistically significant differences 

between condition groups were found on any of the pre-intervention measures. Therefore, the 

groups were assumed to be equivalent at time of pretest. One outlier was identified within the 
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sample; this child (who was in the Math Games group) scored above the inter-quartile range on 

all math measures. Analyses using linear mixed models to detect treatment effects were run 

excluding this child’s scores, yet the pattern of significance did not change from the pattern in 

analyses including this potential outlier. Therefore, data from this child were included in 

reporting results. 

Using linear mixed models, a dummy-coded variable for interventionist was included in 

analyses to test for any significant association with outcome measures. This variable was not 

related to any of the outcomes, so there was no reason to believe that the effect of the 

intervention on children’s outcomes would differ according to the effectiveness of one or two 

interventionists. As the inclusion of the interventionist variable did not change the overall pattern 

of significance, it was not included in any of the models. 

The entire sample was from economically disadvantaged backgrounds; without variation 

in economic status, there was no variation in outcomes that might be explained by the inclusion 

of this variable in the final models. Neither gender nor race/ethnicity was significantly correlated 

with outcomes, so these were not included in subsequent models. The exclusion of gender from 

analyses was supported by prior research reviewed in this paper that has not found gender to be 

associated with math performance in early childhood (Bodovski & Farkas, 2007; Entwisle & 

Alexander, 1993; Jordan et al., 1992). Likewise, prior research has found that kindergarten 

children of different races do not differ on mathematics tasks when socioeconomic status is taken 

into account (Ginsburg & Russell, 1981).  
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Primary Analyses 

Primary analyses sought to test the effects of condition on four main math outcomes and 

one fluid reasoning outcome. Before estimating the models, correlations were conducted in order 

to investigate covariation among the five outcomes hypothesized to be affected by the TAMS 

intervention. The scores on the outcomes to be correlated and used in statistical analyses were 

children’s (a) raw scores on the TEMA, (b) W scores on the WJ-AP subtest, (c) W scores on the 

WJ-QC subtest, (d) raw scores on NSA, and (e) composite scores on the LR-FR. Results in Table 

3 show medium strength intercorrelations among the math measures at the time of pretest 

ranging from r = .57 to .75, but LR-FR was related only to WJ-QC.  

Table 3 

Two-tailed Pearson Correlations Among Math and Reasoning Outcomes at Pretest 
 
 
 

WJ-AP WJ-QC NSA LR-FR 

TEMA .67** .69** .75** .15 

WJ-AP ____ .64** .57** .06 

WJ-QC  ____ .65** .21** 

NSA   ____ .08 

* p < .05    ** p < .01 

 

In addition, the covariation between age at pretesting, expressive language ability (as 

measured by the WJ-PV), and the math outcomes were investigated. Results in Table 4 indicated 

the need to control for age in subsequent analyses and warranted further exploration of language 

as a moderator of the effect of condition on math outcomes.  
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Table 4 

Two-tailed Pearson Correlations Among Outcomes at Pretest and Selected Variables 
 
 
 

TEMA WJ-AP WJ-QC NSA LR-FR 

Age .32** .31** .23** .30** -.31** 

WJ-PV .26*  .46** .34** .23* -.05 

* p < .05    ** p < .01 

 
 

Hypothesis I 

To test the first hypothesis, children who participate in small group math games will gain 

more early math and reasoning skills than children who do not play these games, descriptive and 

statistical results are presented for children who received math games intervention (treatment 

group) compared to children in the control group. The treatment group is comprised of children 

from both the Math Games/Talk Focus group and the Math Games group. The control group is 

comprised of children who did not participate in any TAMS activities.  

Descriptive results. Table 5 presents the means, standard deviations, and ranges of 

children’s scores on the four main math outcomes (TEMA, WJ-AP, WJ-QC, and the NSA). 

Standard scores are presented for the standardized measures (TEMA, WJ-AP, and WJ-QC) and 

raw scores are presented in the descriptive table for the non-standard NSA. The advantage of 

using standardized measures is the ability to compare the relative performance of the 

experimental groups with the population on which the tests were normed. A standard score 

indicates how a child performed relative to the population mean.  
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Table 5 
 
Descriptive Statistics for the Main Math Measures: Treatment (N=53) and Control (N=42) 

 
Source 
 

Mean 
Standard 
Deviation 

Minimum Maximum 

TEMA     
Treatment Pretest 82.60 12.60   63   127 

Treatment Posttest 86.68 13.67   64   133 

Control Pretest 77.98 9.48 63 107 

Control Posttest 78.19 9.94 62 104 

WJ-AP     
Treatment Pretest 97.32 10.62   74   130 

Treatment Posttest 101.81 9.93   80   124 

Control Pretest 93.05 8.90 74 111 

Control Posttest 94.36 10.67 74 117 

WJ-QC     
Treatment Pretest 90.23 8.31   69   118 

Treatment Posttest 96.85 12.34   72   141 

Control Pretest 87.83 7.41 76 110 

Control Posttest 90.43 10.97 74 126 

NSA     

Treatment Pretest 10.30 5.86 0 26 

Treatment Posttest 15.38 8.01 3 41 

Control Pretest 9.52 6.08 0 28 

Control Posttest 11.24 6.51 3 28 

Note. Standard scores are reported for the TEMA, WJ-AP, and WJ-QC. Raw scores are reported 
for the NSA. 

 

Table 6 presents the means, standard deviations, and ranges of children’s scores on the 

fluid reasoning outcome (LR-FR) and children’s expressive language (WJ-PV). The standard 

scores are presented for both the LR-FR and WJ-PV. 
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Table 6 
 
Descriptive Statistics for the Leiter-R Fluid Reasoning and WJ-Picture Vocabulary: Treatment 
(N=53) and Control (N=42) 

 
Source 
 

Mean 
Standard 
Deviation 

Minimum Maximum 

LR-FR     

Treatment Pretest 92.30 14.77 56 127 

Treatment Posttest 93.57 14.08 63 143 

Control Pretest 89.76 15.21 56 114 

Control Posttest 89.00 14.26 56 116 

WJ-PV 
    

Treatment Pretest 97.02 18.34 35 131 

Treatment Posttest 99.23 17.43   42   128 

Control Pretest 94.93 16.77 45 128 

Control Posttest 95.98 16.84 45 126 

 

Estimates of main effects. To estimate the fixed effects of the TAMS intervention on 

children’s outcomes, six linear mixed model analyses were conducted regressing posttest scores 

on condition. Two-level models, nesting children within classrooms, were conducted separately 

for each outcome. The raw or W scores were employed for each analysis, not the standard scores 

that were used for illustrative purposes in the descriptive tables. Covariates included in the 

models were children’s pretest scores on each respective measure and age at the time of pretest. 

Estimated marginal means were generated for pairwise comparisons between children in the 

treatment group and children in the control group, then analyzed for statistical significance. In 

addition, Cohen’s d effect sizes were calculated using the covariate adjusted mean difference 

between the two groups’ scores on any outcome of interest divided by the unadjusted pooled 
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standard deviation of those two groups. Table 7 displays the unstandardized beta coefficients, 

standard errors, and significance values for the treatment group compared to the control group.  

Table 7 
 
Effects of Condition on Main Outcomes: Treatment (N=53) Compared to Control (N=42) 

 Treatment 

Source b SE p 

TEMA Total Score 1.74 0.60 .005 

 (Effect size) 0.33   

WJ Applied Problems 9.24 3.09 .004 

 (Effect size) 0.46   

WJ Quantitative Concepts 4.97 2.01 .015 

 (Effect size) 0.39   

Number Sense Assessment 3.54 1.14 .002 

 (Effect size) 0.48   

Leiter-R Fluid Reasoning 1.70 1.35 .210 

 (Effect size) 0.24   

WJ Picture Vocabulary 1.28 1.49 .394 

 (Effect size) 0.29   

 
 

Children in the treatment group made significantly greater gains than children in the 

control group on all of the main math measures. The effect sizes for all math measures were 

moderate, ranging from d = .33 for the TEMA to d = .48 for the NSA. There was no significant 

condition effect on the LR-FR. Therefore, Hypothesis I was partially supported; children who 

played the small group math games gained more early math skills; however, there were no 

effects on children’s fluid reasoning skills.  
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Both the LR-FR and WJ-PV were first tested as outcomes and then as moderators of the 

effect of condition on math outcomes. No main condition effects were found for either outcome; 

the math intervention had effects only on children’s math outcomes. To test whether the effect of 

condition on children’s math outcomes differed by either their expressive language skills or their 

fluid reasoning skills, 10 additional linear mixed models were conducted. Each math outcome 

was regressed on condition with the respective math pretest, moderator pretest, and interaction 

term (i.e., Condition x LR-FR or Condition x WJ-PV) included in the model. No moderating 

effects were found; the effects of math games on math outcomes were not affected by children’s 

initial fluid reasoning or expressive language skills.  

 

Hypothesis II 

To test the second hypothesis, children who participate in small group math games and 

who are encouraged to engage in math-talk will gain more early math and reasoning skills than 

those who participate in the same games without that encouragement to talk about math, 

descriptive and statistical results are presented for children in the Math Games/Talk Focus group 

as compared to the Math Games group. Children in the control group were not included in the 

following analyses. 

Descriptive results. Table 8 presents the means, standard deviations, and ranges of 

children’s scores on the four main math outcomes (TEMA, WJ-AP, WJ-QC, and the NSA). 

Standard scores are presented on the standardized measures (TEMA, WJ-AP, and WJ-QC) and 

raw scores are presented for the non-standard NSA. 
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Table 8 

Descriptive Statistics for Main Math Measures: Math Games/Talk Focus (N=27) and Math 
Games (N=26) 

 
Source 
 

Mean 
Standard 
Deviation 

Minimum Maximum 

TEMA     

Math Games/Talk Focus Pretest   81.59     10.55   63   107 

Math Games/Talk Focus Posttest   86.44     11.49   66   109 

Math Games Pretest 83.65 14.57 63 127 

Math Games Posttest 86.92 15.86 64 133 

WJ-AP     

Math Games/Talk Focus Pretest     95.15      8.98   74   113 

Math Games/Talk Focus Posttest   101.59      9.24   85   121 

Math Games Pretest   97.50 12.27 74 130 

Math Games Posttest 102.04 10.77 80 124 

WJ-QC     

Math Games/Talk Focus Pretest   88.41     7.69   69   103 

Math Games/Talk Focus Posttest   96.37   11.69   72   118 

Math Games Pretest 92.12 8.66 80 118 

Math Games Posttest 97.35 13.20 78 141 

NSA     

Math Games/Talk Focus Pretest   10.41    4.73   0   19 

Math Games/Talk Focus Posttest   16.00    7.06   5   41 

Math Games Pretest 10.19 6.94 1 26 

Math Games Posttest 14.73 8.97 3 37 
Note. Standard scores are reported for the TEMA, WJ-AP, and WJ-QC. Raw scores are reported 
for the NSA. 
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Table 9 presents the means, standard deviations, and ranges of children’s scores on the 

LR-FR and WJ-PV. Standard scores are presented for both measures. 

Table 9 
 
Descriptive Statistics for the Leiter-R Fluid Reasoning and WJ-Picture Vocabulary: Math 
Games/Talk Focus (N=27) and Math Games (N=26) 

 
Source 
 

Mean 
Standard 
Deviation 

Minimum Maximum 

LR-FR     

Math Games/Talk Focus Pretest 90.78 14.97 56 110 

Math Games/Talk Focus Posttest 91.63 13.37 63 112 

Math Games Pretest 93.88 14.67 65 127 

Math Games Posttest 95.58 14.77 75 143 

WJ-PV     

Math Games/Talk Focus Pretest 98.00 18.53 53 131 

Math Games/Talk Focus Posttest 99.41 17.82 58 128 

Math Games Pretest 96.00 18.45 35 121 

Math Games Posttest 99.04 17.37 42 124 

 

Estimates of main effects. To estimate the fixed effects of playing math games with a 

focus on math talk on children’s outcomes, six linear mixed model analyses were conducted 

regressing the posttest scores on condition. Two-level models, nesting children within 

classrooms, were conducted separately for each outcome. The raw or W scores, not the standard 

scores, were used for each outcome. Covariates included in the models were children’s pretest 

scores on each respective measure and age at the time of pretest. Estimated marginal means were 

generated for pairwise comparisons between children in the Math Games/Talk Focus group and 

children in the Math Games group, then analyzed for statistical significance. In addition, Cohen’s 

d effect sizes were calculated using the adjusted mean difference between the two groups’ scores 
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on any outcome of interest divided by the unadjusted pooled standard deviation of those two 

groups. Table 10 displays the unstandardized beta coefficients, standard errors, and significance 

values for the Math Games/Talk Focus group compared to the Math Games group. 

Table 10 
 
Effects of Condition on Main Outcomes: Math Games/Talk Focus (N=27) Compared to Math 
Games (26) 

 Math Games/Talk Focus 

Source b SE p 

TEMA Total Score 1.00 0.82 .228 

 (Effect size) 0.17   

WJ Applied Problems 1.49 3.50 .672 

 (Effect size) 0.09   

WJ Quantitative Concepts 3.52 2.49 .165 

 (Effect size) 0.28   

Number Sense Assessment 0.51 1.78 .775 

 (Effect size) 0.06   

Leiter-R Fluid Reasoning -0.72 1.73 .679 

 (Effect size) -0.10   

WJ Picture Vocabulary -1.91 2.21 .392 

 (Effect size) -0.18   

 
 

There were no statistically significant differences between the Math Games/Talk Focus 

group and the Math Games group. However, the effect sizes of being in the Math Games/Talk 

Focus group on children’s gains on all four of the math measures were small to moderate, 

ranging from d = .06 for the NSA to d = .28 for the WJ-QC. Although not statistically 

significant, there was a greater effect on the LR-FR and WJ-PV by children in the Math Games 
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group than children in the Math Games/Talk Focus group. Hypothesis II was not fully supported 

as it fails the test of statistical significance. Yet, the consistently larger effects on the Math 

Games/Talk Focus group over the Math Games group on all of the math measures warrants 

further investigation.  

 

Secondary Analyses 

Two analyses were conducted following the primary analyses. The first of these analyses 

sought to examine the effects of condition on children’s specific early numeracy skills. The 

second of these analyses sought to examine treatment effects on children’s learning gains by the 

number of days they participated in the small group math gains.  

 

Early Numeracy Skills 

The early numeracy skills were the 10 categories created by regrouping items from all the 

math measures (TEMA, WJ-AP, WJ-QC, and the NSA). Nine of the 10 early numeracy skills 

were skills targeted by the TAMS intervention; the 10th category was comprised of test items 

measuring knowledge not expected to be affected by the intervention (see Appendix D). The 10 

categories (and number of test items included in each category) were: counting (29), one-to-one 

correspondence (5), producing groups (12), cardinality (9), subitizing (14), magnitude 

comparison (15), numeral recognition (30), number line (25), adding/composing number (13), 

and Not a TAMS Focus (11). This section presents descriptive and statistical results using the 

raw scores (the number of items answered correctly per skill) of children in all three 

experimental conditions (Math Games/Talk Focus group, Math Games group, and Control 

group).  
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Descriptive statistics. Table 11 presents the means, standard deviations, and ranges of 

scores on the 10 early numeracy skills for children in the three experimental conditions.  

Estimate of fixed effects. To estimate the fixed effects of the TAMS intervention, 10 

linear mixed model analyses were conducted regressing children’s early numeracy skills posttest 

scores on condition. Two-level models, nesting children within classrooms, were conducted 

separately for each skill. Covariates included in the models were children’s pretest scores on 

each respective skill and age at the time of pretest. Table 12 displays the unstandardized beta 

coefficients, standard errors, and significance values for the Math Games/Talk Focus group and 

Math Games group compared to the Control group.
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Table 11 

Descriptive Statistics for the Early Numeracy Skills 
Math Games/Talk Focus  Math Games  Control  

Source 
 M SD Min Max  M SD Min Max  M SD Min Max 

Counting at Pretest 18.67 6.88 6 28  17.54 7.33 6 36  15.10 7.23 4 30 

Counting at Posttest 24.19 6.01 10 34  23.73 6.81 9 40  17.76 7.77 5 35 

1:1 Correspondence at Pretest   1.00 1.21 0 4  1.15 1.66 0 6  0.67 1.14 0 5 

1:1 Correspondence at Posttest   2.19 1.64 0 5  1.88 1.97 0 6  1.21 1.51 0 5 

Producing Groups at Pretest 10.22 5.37 2 20  9.04 5.02 2 21  8.14 4.66 0 20 

Producing Groups at Posttest 12.89 4.41 5 21  11.85 4.86 4 21  8.62 4.60 1 19 

Cardinality at Pretest   5.07 2.27 1 9  5.62 2.47 1 10  3.88 2.59 0 9 

Cardinality at Posttest   6.70 2.00 4 10  6.38 2.40 2 10  4.83 2.78 0 10 

Subitizing at Pretest 4.70 2.69 0 9  4.42 2.82 0 10  3.64 2.53 0 10 

Subitizing at Posttest 6.74 3.39 1 21  6.42 3.36 2 14  4.07 2.36 0 9 

Magnitude Comparison at Pretest 8.44 4.84 0 17  8.77 6.23 0 23  7.90 5.49 0 23 

Magnitude Comparison at Posttest 13.26 5.22 1 23  11.27 6.18 1 25  9.50 5.18 1 23 

Numeral Recognition at Pretest   4.96 3.67 0 13  5.54 6.40 0 23  5.05 4.88 0 19 

Numeral Recognition at Posttest 10.04 5.55 1 25  8.85 8.95 0 32  6.01 6.69 0 31 

Number Line at Pretest 1.78 2.44 0 8  3.62 7.57 0 28  2.31 4.56 0 22 

Number Line at Posttest 6.15 6.05 0 25  6.27 9.38 0 34  3.00 5.94 0 27 

Addition/Composing at Pretest 2.44 2.56 0 8  2.35 2.48 0 11  1.64 2.07 0 8 

Addition/Composing at Posttest 4.44 3.04 0 12  3.31 3.29 0 12  2.02 2.332 0 10 

Not a TAMS Focus at Pretest 2.41 2.29 0 8  3.00 3.30 0 14  1.74 2.53 0 11 

Not a TAMS Focus at Posttest 4.52 4.01 0 14  4.46 3.86 1 14  2.71 2.89 0 13 
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Table 12 

Effects of Condition on Early Numeracy Skills: Math Games/Talk Focus (N=27) and Math 
Games (N=26) Compared to Control (N=42) 

Math Games/Talk Focus  Math Games 
Source 

b SE p  b SE p 

Counting 3.88 1.13 .001 4.41 1.14 .000 

 (Effect size) 0.54   0.58   

One to One Correspondence 0.67   0.32  .038 0.31 0.33 .347 

 (Effect size) 0.43   0.18   

Producing Groups 2.99   0.89  .001 2.80  0.90 .002 

 (Effect size) 0.66   0.60   

Cardinality 1.15   0.49  .021 0.63  0.51 .224 

 (Effect size) 0.46   0.24   

Subitizing 2.14   0.68  .002 2.02  0.68 .004 

 (Effect size) 0.76   0.72   

Magnitude Comparison 3.32   0.99  .001 1.42 1.01 .161 

 (Effect size) 0.64   0.26   

Numeral Recognition 4.19   1.07  .000 2.62 1.08 .017 

 (Effect size) 0.67   0.34   

Number Line 3.64   1.02  .001 2.20 1.04 .037 

 (Effect size) 0.61   0.30   

Addition/Composing 1.88   0.59  .002 1.01 0.60 .095 

 (Effect size) 0.72   0.37   

Not a TAMS Focus 1.04 0.56  .069 0.61 0.58 .296 

 (Effect size) 0.31   0.19   
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Results show that children in the two treatment groups gained significantly more early 

numeracy skills than did children in the Control group. The Math Games/Talk Focus group 

gained significantly more than the Control group on all nine of the early numeracy skills targeted 

by the TAMS intervention. The Math Games group gained significantly more than the Control 

group on five of the nine early numeracy skills (counting, producing groups, subitizing, numeral 

recognition, and number line), but not significantly more on four of the skills (one to one 

correspondence, cardinality, magnitude comparison, and addition/composing). The magnitude of 

the TAMS intervention effect on children in both treatment groups (Math Games/Talk Focus 

group and Math Games group) was moderately large and positive for all 10 early numeracy 

skills. Although there were no statistically significant differences identified between the two 

treatment groups, the effect sizes for the Math Games/Talk Focus group were almost twice as 

large as those for the Math Games group on six of the nine early numeracy skills. The gains 

made by the two treatment groups were similar in magnitude on producing groups and 

subitizing. The gains made by the Math Games group were slightly larger than the Math 

Games/Talk Focus group on counting.  

 

The Effect of Dosage 

All prior analyses were conducted using the Intent-to-Treat principle in which 

participants’ data are not excluded based on their compliance to the study. In other words, the 

previously presented results included all children assigned to condition and with complete pre- 

and posttest data, regardless of the number of days they were absent from school. The following 

analyses examine the effect of the treatment according to how much of the treatment was 

received. 
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The treatment was conducted two days per week over eight weeks; children in the two 

treatment groups had the opportunity to participate in 16 small group math game sessions. The 

mean (standard deviation, range) number of days children participated in the Math Games/Talk 

Focus group was 10.11 (2.65, 2 – 13). The mean (standard deviation, range) number of days 

children participated in the Math Games/Talk Focus group was 10.46 (2.32, 4 – 13). Attendance 

was not known for the children in the Control group; for this reason, their data were excluded 

from this analysis. A one-way ANOVA showed the mean number of days children participated 

in small group math games did not differ between the Math Games/Talk Focus group and the 

Math Games group (F = .262, p = .61). 

Fifteen two-level models, nesting children within classrooms, were conducted regressing 

the number of days participated on outcomes. Covariates included in the models were children’s 

pretest scores on each respective measure or skill and age at the time of pretest. Results are 

presented in Table 13. Results show the number of days participated is a significant predictor of 

the outcomes on the TEMA (p < .05) and NSA (p < .10), but not the WJ-AP or WJ-QC. Of the 

early numeracy skills, the number of days participated is a significant predictor (p < .05) of three 

early numeracy skills (counting, one to one correspondence, producing groups) and approaches 

significance (p < .10) on another five skills (subitizing, magnitude comparison, number line, 

addition/composing, and not a TAMS focus). 
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Table 13 
 
The Effect of Dosage on Outcomes for Children in the Treatment Condition (N=53) 

Source b SE p 

Main math outcomes 
   

 TEMA Total Score 0.40 0.16 .014 

 WJ Applied Problems 0.09 0.74 .900 

 WJ Quantitative Concepts 0.61 0.52 .245 

 Number Sense Assessment 0.55 0.31 .100 

     

Early numeracy skills    

 Counting 0.48 0.23 .047 

 One to One Correspondence 0.06 0.24 .014 

 Producing Groups 0.38 0.18 .048 

 Cardinality 0.03 0.11 .803 

 Subitizing 0.27 0.17 .124 

 Magnitude Comparison 0.39 0.26 .132 

 Numeral Recognition 0.33 0.26 .199 

 Number Line 0.42 0.22 .066 

 Addition/Composing 0.24 0.16 .136 

 Not a TAMS Focus 0.25 0.15 .103 

 
 

Summary 

To test the two hypotheses of the TAMS intervention, primary analyses examined the 

effect of condition on four main math outcomes and one fluid reasoning outcome. As 

hypothesized, children who participated in the treatment group gained significantly more on all 

four main math measures than children who did not participate in the TAMS intervention; 
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however, no significant differences were made on fluid reasoning skills. The magnitudes of the 

intervention’s effects on the treatment group as compared to the control group were small to 

moderate, ranging from d =.33 to .48. It was also hypothesized that, within the treatment group, 

children who participated in the Math Games/Talk Focus group would gain more math and 

reasoning skills than children in the Math Games group. However, no statistically significant 

differences between gains made by children in either treatment group were detected, thus this 

hypothesis was not supported. The magnitudes of the intervention’s effects on all of the main 

math measures, however, were larger for the Math Games/Talk Focus group than for the Math 

Games group, ranging from d =.06 to .28. 

Secondary analyses examined the effect of condition on children’s early numeracy skills, 

10 categories composed of test items from the four main math measures. Results showed 

children in the Math Games/Talk Focus group gained significantly more than children in the 

Control group on all of the early numeracy skills. Children in the Math Games/Talk Focus group 

gained significantly more early numeracy skills than children in the Control group on five of the 

early numeracy skills. While there were no statistically significant differences between gains 

made by the two treatment groups, the effects on the Math Games/Talk Focus group were larger 

than those on the Math Games group on two early numeracy skills and almost twice as large on 

six more skills. 

Another secondary analysis was conducted to examine the effect of dosage on children’s 

gains in math knowledge. This analysis considered how the number of days children participated 

in the TAMS intervention affected gains. Regardless of treatment group, the number of days 

children participated in small group math games had a significant effect on children’s outcomes 

on the TEMA and NSA. When considering children’s early numeracy skills, the number of days 
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children participated in either treatment group significantly predicted three skills: counting, one-

to-one correspondence, and producing groups. 

In conclusion, results from statistical analyses show strong evidence in support of the 

TAMS intervention. Effect sizes for participating in the small group math games were positively 

and significantly related to children’s gains in math knowledge. In addition, the magnitude of the 

effects on the Math Games/Talk Focus group consistently superseded those for participating in 

the Math Games group. 
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CHAPTER V 

 

SUMMARY, DISCUSSION, AND CONCLUSIONS 

 

This study examined the effect of a math talk intervention on the early math and 

reasoning skills of children from economically disadvantaged backgrounds. After being pretested 

on four math measures and one fluid reasoning measure, 99 children were independently and 

randomly assigned to one of three experimental conditions within their classrooms. Two of the 

three conditions participated in an 8-week intervention in which children played math games 

with a trained interventionist. In addition to playing math games, one of the two groups was 

engaged in a math talk learning environment. The third group carried on business as usual in 

their classrooms, serving as the counterfactual condition. When the intervention ended, 95 

children were posttested on the same five measures used for the pretests (four children were 

withdrawn and unable to be located). The primary analyses used child-level residualized gain 

scores on the five measures as indicators of change in children’s mathematical and reasoning 

competencies. Secondary analyses used child-level residualized gain scores on ten early 

numeracy skills derived from the testing measures to judge the intervention’s practical 

significance. This chapter presents a summary of the analytical results, a discussion of the 

findings, and a review of the study’s strengths and limitations.  
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Summary of Results 

 

Primary Analyses 

The first hypothesis of this study predicted that children who participated in the 

intervention by playing math games focused on number would gain more math and reasoning 

skills than would children who did not participate in these activities. To test this hypothesis, five 

linear mixed models were conducted to regress four math outcomes and one fluid reasoning 

outcome on experimental condition. Children were nested in classrooms and covariates included 

in the model were children’s age at the time of pretest, their pretest score on the respective 

measure, and the blocking factor. Pairwise comparisons between children in the treatment group 

and children in the control group indicated this hypothesis was partially supported: children who 

participated in the intervention gained more math skills than children who did not participate; 

however, there were no changes in the fluid reasoning scores among children in any condition. 

The effect sizes for being in the treatment group as compared to the control group ranged from   

d = .33 - .48 on the math measures.  

The second hypothesis of this study predicted that children who played math games with 

a focus on math talk would gain more math and reasoning skills than children who only played 

the math games. To test this hypothesis, five linear mixed models were conducted to regress four 

math outcomes and one fluid reasoning outcome on experimental condition, excluding those who 

were in the Control group. Children were nested in classrooms and covariates included in the 

model were children’s age at the time of pretest, their pretest score on the respective measure, 

and the blocking factor. Pairwise comparisons between the two treatment groups indicated this 

hypothesis was not supported; there were no statistically significant differences found between 
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children in the two treatment groups on gains made on math or reasoning skills. Despite the lack 

of statistical significance, the effects of being in the intervention group that played math games 

with a focus on talk were consistently larger on all math measures, ranging from d =  .06 - .28, 

than they were for being in the group that only played math games. 

 

Secondary Analyses 

When items from the four math measures were regrouped into ten categories, it was 

possible to compare the three experimental groups’ gains on specific early numeracy skills 

targeted by the intervention. The early numeracy skills on which students were being compared 

were count, cardinality, numeral recognition, one-to-one correspondence, producing a group, 

magnitude comparison, number line, addition, subtraction, and those items that were not targeted 

by the intervention (e.g., shape names, days of the week).  Linear mixed models were conducted 

to regress outcomes from ten early numeracy skills on experimental condition, each in an 

independent analysis. Children were nested in classrooms and covariates included in the model 

were children’s age at the time of pretest, their pretest score on the respective early numeracy 

skill, and the blocking factor.  

Pairwise comparisons among the three conditions showed children in the group that 

played math games with a focus on talk gained significantly more than children in the Control 

group on all nine early numeracy skills targeted by the intervention. Children in the group that 

played math games gained significantly more than children in the Control group on five of the 

nine early numeracy skills (counting, producing groups, subitizing, numeral recognition, and 

number line). The effect sizes on the nine early numeracy skills targeted by the intervention 

ranged from d = .43 - .76 for being in the group that played math games with a focus on talk as 
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compared to the control group and ranged from d = .18 - .72 for being in the group that played 

math games as compared to the control group. There was no statistically significant condition 

effect on the 10th early numeracy category, items that were not a focus of the intervention, 

although the direction of effects favored children in either treatment group (d = .31 for those in 

the math games with a talk focus group and d = .19 for those in the math games group). 

To examine the effect of dosage, another 15 linear mixed models were conducted 

regressing outcomes on the number of days children participated in small group math games. 

Dosage had a significant effect on children’s outcomes on the TEMA (at p < .05) and NSA (at p 

< .10), but not the WJ-AP or WJ-QC. When considering children’s early numeracy skills, the 

number of days children participated in either treatment group significantly predicted three skills: 

counting, one-to-one correspondence, and producing groups. 

In summary, results from this study indicate that playing math games with preschool 

children from economically disadvantaged backgrounds leads to significant improvements in 

early math skills over not playing such games. There was not sufficient evidence to conclude that 

employing the strategies to engage children in the math talk learning environment as defined by 

this study leads to significantly greater results than just playing the math games. However, the 

greater gains made by the children who engaged in the math talk learning environment and larger 

effect sizes of being in this condition over children who only played the math games was a 

consistent trend across the math measures. Possible reasons for and implications of these 

findings are discussed in the next section. 
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Discussion 

This study offers several important findings that might be used to inform early childhood 

educators and researchers on improving math outcomes among programs serving children from 

economically disadvantaged homes. To be discussed in this section are the degree to which 

playing math games improves children’s early math skills, the consistency with which children 

who were included in the math talk learning environment made the greatest gains, and the 

implications these findings have for future research. 

 

Playing Math Games Improves Children’s Early Math Skills 

Results from statistical analyses showed that the two groups who played math games 

learned significantly more than children who did not play these games, regardless of employing 

the math talk learning environment. Possible reasons for this finding include the intentional 

selection of games played, modifications made to those games, modifications made to group 

processes when playing games, and/or children’s increased interaction with mathematical 

content.  

Intentional selection of games.  The games used in this intervention were selected 

because children had to use beginning counting and numeracy skills in order to play. To play Hi-

Ho-Cherry-O, children had to count the fruit, use one-to-one correspondence when removing the 

fruit from the board into their hand, state the cardinal number of fruit in their own or their peer’s 

hand, and count how many of their fruit remained to be removed from the board. To play Walk-

the-Line, children had to subitize or count how many dots were on the top side of the die, count 

the number of spaces to move along the number line, and recognize the numeral they were 

standing on after moving the correct number of spaces. To play Card Wars, children had to 
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recognize the numeral on the card or count the number of dots on the card then determine which 

of two numbers was greater. These games played over the 8-week intervention provided a 

context for focusing on count, number, and quantity as well as encouraged practice using many 

math skills across different contexts. 

As has already been demonstrated by several early childhood mathematics interventions, 

children construct mathematical understandings through multiple modes of practice with 

mathematical concepts and materials (Clements & Sarama, 2007b; Griffin et al., 1994; Howell & 

Kemp, 2010). According to Howell and Kemp (2010), reinforcing the principles of count and 

number (i.e., how numbers represent quantity and relate to one another) leads to a more flexible 

number sense than just reinforcing counting skills (i.e., rote counting). The present study 

provides additional evidence in support of that claim. 

Besides using skills in multiple contexts, the games used in the intervention also provided 

children with multimodal cues to experience number. The Walk-the-Line game was a physical 

embodiment of the game played by Siegler and colleagues that led to greater number sense 

among study participants (Booth & Siegler, 2006; Ramani & Siegler, 2008; Siegler & Opfer, 

2003). When playing this game, children associated the number name with the numerical 

symbol; recognized the longer the game continued, the further distance traveled on along the 

line, and the more time passed since the game began (Siegler, 2009). The present study also 

supports Siegler’s claim that through kinesthetic, auditory, visuospatial, and temporal cues, 

children develop a more robust understanding and flexible use of quantity and magnitude 

(Siegler, 2009).  

Modifications to games.  In addition to selecting games that provided practice in using 

count and number sense, games were also modified so that they started at the most basic level 
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and were made more challenging over time as mathematical understandings developed. When 

children first learned to play Hi-Ho-Cherry-O, the mathematical learning objectives were to say 

the count words in the correct order, assign one number name to each fruit removed, and cease 

removing fruit from the board once the correct number of fruit was in the child’s hand. Later, the 

learning objectives included recognizing when they had more than, less than, or the same number 

as one or more of their peers. Another level of difficulty included stating how many fruit were on 

their tree or bush at the start of the turn, how many fruit were removed, and how many were left 

on the tree or bush.  

Walk-the-Line was modified so that children used small numbers and simple processes 

when learning the game, then larger numbers as children mastered the easier objectives. When 

children first learned to play Walk-the-Line, they used a die that had been painted so that there 

were two sides with one dot, two sides with two dots, and two sides with three dots, so that a 

child never rolled higher than a three. Learning objectives began with associating number names 

with numerical symbols and moving the correct number of spaces along the number line from 1 

– 10. After playing the game in this fashion on two occasions, the painted die was replaced with 

a standard die with dots ranging from one to six. On the last day playing this game, children were 

to state the number on which they began, the number of spaces they moved, and on what number 

they landed. For example, a child might say, “I am on three now, I move one (moves a space), 

two (moves another space), and now I am on five.” 

The Card War game was also modified in similar ways so that learning objectives began 

simple and were made more difficult as children mastered the more simple processes. When 

learning to play the game, children were given a truncated set of cards ranging from one to five 

before being given the full set of cards ranging from one to ten. The learning objectives were 
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first to place the cards side by side with the numeral situated at the top of the card, count the dots 

on the cards, and determine which card had more dots. The objectives were made more 

challenging by again removing cards with values greater than five and having children work in 

pairs (e.g., two children versus one child and interventionist) to determine which team’s cards 

had the greater sum. 

The large effects observed from scaffolding math games in this fashion, even without 

encouraging math talk, support the Cognitive Load Theory (CLT) (Paas et al., 2003). CLT is a 

major theory that considers both the cognitive processes involved in learning and the 

implications these processes have on instructional designs and procedures. Mathematical 

competencies are closely associated with working memory, which is “the ability to hold mental 

representation of information in mind while simultaneously engaged in other mental processes” 

(Geary, Hoard, Nugent, & Byrd-Craven, 2007, p. 88). Working memory can handle only a very 

limited number of novel elements; when too much information is presented at one time, there are 

not sufficient resources available to link the new information with existing schemas (Paas et al., 

2003). To avoid cognitive overload, Van Merriënboer, Kirschner, and Kester (2003) suggest 

learners be presented with general, overarching principles when introduced to novel elements 

and then to more specific procedural information at the point when it is required.  

The manner in which information is presented to learners and the activities in which they 

are expected to engage affect cognitive load and the learners’ ability to construct more complex 

mathematical representations. The modifications made to selected games permitted 

interventionists to focus children’s attention on those concepts of number requisite for playing 

the game. Once children were able to actively participate in the game, interventionists and 

children were in a better position to make mathematical observations and arguments. As game 
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play progressed over sessions, children were able to perform those mathematical tasks they could 

do alone and the interventionists were able to suggest mathematical ideas just beyond what 

children could perceive alone. By starting the games with general principles for play and 

introducing more difficult processes as necessary, mathematical relationships were made 

accessible to children without overwhelming them.  

Modifications to group processes. The use of group processes to engage children in 

mathematical activity was yet another possible explanation for the large gains made by children 

in the treatment groups. The use of (a) games, (b) small group instruction, and (c) peer 

interactions all likely contributed to increased interest and motivation among students. Research 

theorizes such increases in interest and motivation lead to greater effort towards and cognitive 

resources devoted to a task (Paas et al., 2003).  

The mode of instruction used in the intervention was the use of games; instruction is 

rarely delivered in such a format. Children in the study were asked if they were familiar with Hi-

Ho-Cherry-O as it was the first game played and the only commercial game they might have 

recognized. One child out of 99 children reported having played the game before, and all 

appeared to be unfamiliar with game playing in general, although they did appear to be excited 

when told that they would be leaving the classroom to go play games with their friends. Children 

recognized games are fun and so the primary goal of the children was to play; learning math 

skills was not the primary goal but instead a necessary part of learning how to play the game. 

Another modification to typical classroom processes was the use of small group 

instruction to deliver the math content. According to the NCEDL’s Multi-State Pre-K Study, on 

average, small groups are utilized only 6% of the total time spent in learning activities (Early et 

al., 2010), although they have been found to be positively related with math achievement in both 
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elementary and secondary school (Webb, 1991) and language development in preschool (Smith, 

2001). Children may have been excited to go play the math games because they were allowed to 

talk and share an adult’s attention with only two peers as compared to sharing the teacher’s 

attention with the entire class. 

The game that Siegler and colleagues used in their studies was played between one child 

and one researcher (Booth & Siegler, 2006; Ramani & Siegler, 2008; Siegler & Opfer, 2003); the 

games used in the present study were played among three children and an interventionist. This 

study extends Siegler’s work to show that strong intervention effects can be achieved for small 

groups of children as well as those realized by one-on-one activity. In addition, the present work 

extends research on the positive effects of playing games on math learning in elementary and 

secondary school (Randel et al., 1992) to include preschool-aged children. 

Increased interaction with mathematical content.  One more consideration concerning 

the greater math gains made by children in both treatment groups over the children in the control 

group is the increased interaction with mathematical content. Children in the treatment groups 

were doing more than just playing games; they were engaged in mathematical content. As has 

been demonstrated by Bodovski and Farkas (2007), time spent in learning activities does have a 

positive effect on primary school-aged children’s math achievement. While this study did not 

collect any data pertaining to the presence or absence of classroom math instruction, classrooms 

did differ in their effect on the children in the control group. A few of the teachers of children in 

the study commented that they had not begun any math instruction to date. The present study ran 

concurrently with the first semester of the preschool year and some teachers stated that they 

would not introduce mathematical content until the second semester. It is likely that children in 

the treatment groups were exposed to more mathematical content than were children in the 
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control groups. However, it is important to note that, even among classrooms that did engage in 

math instruction in the first semester, the pattern for math gains still held true: children in the 

Math Games/Talk Focus group had the greatest gains, children in the Math Games group had the 

second largest gains, and children in the controls had far fewer gains.  

In summary, selecting games in which children had to use mathematics in order to play, 

modifying those games to children’s ability levels, playing games in small groups with an adult, 

and the repeated exposure to mathematical content were all characteristics likely to have 

contributed to the very large effects on children’s math gains on all measures, whether or not 

they were encouraged to use math talk. 

 

Greater Gains Made by Children in Group with Focus on Talk 

Children who were encouraged to use math talk consistently made greater gains on all 

math measures than did children who only played the math games, although these gains were not 

statistically significant. In fact, on all of the standardized measures, children in the Math Games 

group had the highest mean performance at pretest (no statistically significant differences from 

the other two groups); yet, children in the Math Games/Talk Focus group exhibited greater 

residualized gains than children in the Math Games group. This pattern suggests that the 

strategies employed to encourage the use of math talk during game play warrant further 

investigation. 

Gestures to scaffold language.  To encourage the use of math talk in the present study, 

interventionists used gestures to scaffold targeted mathematical language (same as or equal to, 

more than, less than, and zero). Goldin-Meadow and colleagues have written extensively about 

the role that gesture plays in language development. One purpose gestures fulfill is allowing 
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children to communicate information they cannot yet express verbally (Özҫalişkan & Goldin-

Meadow, 2005). In addition, research demonstrates that the mismatch between children’s 

gestures and verbal speech is a marker of conceptual understanding (Perry, Church, & Goldin-

Meadow, 1988).  

Once children learned how to play the first game, Hi-Ho-Cherry-O, interventionists 

began using signs to represent mathematical ideas when they arose. For example, when a child in 

the Math Games/Talk Focus group spun the arrow and landed on the same number as did the 

child whose turn was before, the interventionist would have said, “Oh! You are going to take the 

same number of fruit from your tree as (the child before) did.” While saying this, the 

interventionist would have made the hand gesture that meant same or equal to. The 

interventionists used hand gestures consistently and asked children to do the same when they 

made similar observations.  

Children in the Math Games/Talk Focus group appeared to sincerely enjoy learning and 

using the hand gestures. They employed these hand symbols whenever appropriate and rarely 

when they were not. Take for example one occasion when one child stated that he had two fruit 

left on his tree and the next child spun a two on the spinner followed by making the sign for “the 

same as/equal to.”  The interventionist had to think why the child was making this sign before 

determining the child made the sign erroneously then realized, “Oh, I see. (Child 1) had two fruit 

left on his tree and you spun a two on the spinner. Two and two – those are the same number, 

yes.” Despite this rare occurrence when odd connections had to be made, children came to 

understand and use the gestures regularly and accurately during the course of the intervention. 

It is also noteworthy that, like learning any kind of new vocabulary, it was important that 

teachers probed children’s conceptual understanding of the words the gestures represented.  
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There was an occasion when playing Card Wars that two children each turned over a six card 

and simultaneously made the same as/equal to gesture. It was obvious to the interventionist that 

the children knew the circumstances of this symbol’s use, but chose to explore their 

understanding by asking, “So, who has more?” At this point, both children raised their hands and 

said, “Me.”  The interventionist addressed this dilemma by asking, “If you each had six cookies, 

who would have more? Or is it fair and you got the same number of cookies?”  After some 

discussion between the children, they both seemed to come to a better understanding of the 

concept having the same or an equal amount. Upon future instances where these two children 

used the equal to gesture, they were able to accurately reason that neither had more because if 

they each had the same number of cookies then it was fair.  Thus, it is possible that gesturing 

helped children remember the vocabulary and when to use that word, but fully linking the 

concept the word represented with children’s existing knowledge still required verbal discussion 

between learner and teacher.  

Although none of the children used the targeted mathematical language in the beginning 

of the intervention, after time several children dropped the gestures entirely and used only the 

appropriate verbal language while others continued to use the gestures with and without 

verbalizing the words the gestures represented. It is possible that children knew the words for 

these concepts and/or used these expressions under normal circumstances and prior to being 

taught the gestures; however, this was not apparent to the interventionists. Further, the concepts 

of equality, greater/less than, and zero were assessed on the math measures; children in the Math 

Games/Talk Focus group had greater gains on items measuring these concepts. Gesturing did 

appear to support children’s use of mathematical language as well as a very basic understanding 

of the conditions under which that vocabulary should be used, although it was also apparent that 
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children accurately used gestures to represent language even when their conceptual 

understanding was still developing. 

Press to engage in talk.  Children in the Math Games/Talk Focus group were pressed to 

engage in the math talk learning environment. In the present study, to press children meant that 

the interventionists exerted an intense level of energy towards employing strategies theorized to 

foster children’s talk. The strategies included asking open-ended questions, modeling appropriate 

responses, facilitating peer interactions, and expecting children to assume increasing 

responsibility in the game activity. All of the aforementioned strategies provided important 

supports for children that likely explain their greater gains over the other treatment group, 

despite the finding that they proved challenging for both instructors and children. 

At the start of the intervention, children appeared reluctant to answer open-ended 

questions, so teachers modeled responses and asked children to repeat them. For example, when 

asked “How did you figure out that these two cards are more than these two?” the interventionist 

would wait for the child to respond. It was necessary for the interventionist to pay close attention 

to children in order to determine the point at which they were no longer attempting to organize 

their ideas, but were beginning to mentally wander from the question. Only then would the 

interventionist offer assistance by repeating the question or providing a possible response such 

as, “Show me how you counted the dots to know that there were 9 altogether. Did you know this 

was 5 and then start counting here (pointing to the first dot on the second card)?” Usually 

children would agree with the adult by a nod of the head. The interventionist might ask children, 

“So, you say what you did. Say, ‘I knew this was 5 (because the group had already discussed 

when one side of the grid was filled with dots, that was five) and so I counted from here 
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(pointing to the first dot on the next card) 6, 7, 8, 9.” Then the interventionist would wait in 

anticipation of children’s imitation of this response, assisting as necessary. 

There is much research that demonstrates the positive effects of generating explanations 

to learning outcomes. In line with Carey’s Bootstrapping Theory (2004), generating an 

explanation encourages a reorganization or clarification of the ideas to be communicated by 

challenging the learner to put words with their intuitive number sense. Further, the benefits to 

preschool children generating explanations are maximized when an adult caregiver is actively 

listening, perhaps because generating explanations for a listener may press more upon children’s 

cognitive abilities than generating explanations to self or just being told the correct answer 

(Rittle-Johnson et al., 2007). Despite the difficulty in eliciting clear verbal explanations from 

young children, Rittle-Johnson et al. found that children’s attempts to explain to a listener led to 

greater learning outcomes than children who generated explanations to self. 

While children in the present study were ineffective in generating explanations at the start 

of the intervention, modeling explanations for the children appeared to have, at the least, 

established an expectation by the children to do so. The press employed by the interventionists 

for children to generate explanations appeared to help them stay on track and make sincere 

attempts at generating explanations. By the end of the intervention, children understood the 

expectation of providing explanations although they still did not demonstrate skill at doing so.  

For children who are not used to generating explanations and/or who are unfamiliar with 

the content to be explained, asking them to “explain how you know” or “tell how you got that 

answer” is a difficult expectation. In fact, there was a general consensus among the 

interventionists that this press irritated some children, possibly because children felt that this type 

of talk was awkward, artificial, and/or contrived. In addition, interventionists agreed that 
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cultivating this math talk learning environment was extremely challenging and required far more 

effort than did directing game activities in the Math Games group. At first interventionists 

thought there might have been a glitch in the randomization process; children in the Math Games 

group appeared to be better self-regulated. However, analyses indicated these groups were the 

same at baseline. It became evident that the challenge of the Math Games/Talk Focus group was 

a product of the intervention; the press to engage children in talk slowed the speed of the games, 

required children develop a new way of talking and thinking, and changed the overarching goal 

of the activity (e.g., win the game). 

In addition to asking open-ended questions, the press to engage in talk also included 

collaboration in structuring children’s roles during game play. In the beginning of the 

intervention, the responsibility of directing game activities was carried by the adult; however, as 

children gained understanding and skill, children were able to assume increasing responsibility. 

In order to promote this transfer of responsibility, interventionists used the doublecheck. After 

the first child completed his or her turn, the interventionist checked to make sure that he or she 

had removed the correct number of fruit, moved the correct number of spaces on the number 

line, or accurately determined which card (or set of cards) was greater. This action was taken by 

interventionists for all children in the Math Games group. In the Math Games/Talk Focus group, 

however, interventionists facilitated this action among peers. After the second player completed 

his or her turn, the first player was expected to doublecheck for the second player, the second 

player doublechecked for the third, and so on. Thus, children were expected to follow the game 

even when it was not their turn to play, catch other children’s mistakes or make interesting 

mathematical observations, and explain their reasoning when they challenged another student.  
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The press to engage children in talk about math was challenging to and demanding on 

interventionists and possibly depressed children’s excitement in playing games to a degree. 

Nonetheless, the large effect sizes on children’s mathematical development by the Math 

Games/Talk Focus group over the Math Games group indicate these strategies were effective and 

benefited children’s development even over a relatively short period of time. Less was demanded 

from children in the Math Games group and less was gained. The present work to improve 

children’s math skills included fostering their use of language for reasoning by generating 

explanations, promoting the use of metacognitive skills through peer interactions, and increasing 

their attention span by asking children to assume responsibility for the doublecheck. Prior to the 

current study, it was unknown whether teachers did not know how to engage children in math 

talk, did not judge math talk to be relevant, or possibly did not consider it to be a skill that 

preschool children could perform. The present study demonstrates that children who are not used 

to using language in the ways demanded by this intervention can be resistant, making game 

activities challenging for practitioners. 

 

Future Directions  

This study investigated the quantitative effects of an early math intervention on children’s 

math development. Future research extending the current work might replicate this study with a 

larger sample size, extend the duration of the intervention, modify the games to include more 

levels of play, disentangle individual components of the intervention, and/or ascertain the level 

of support required for practitioners to implement the current strategies in their classrooms.  

Other things being equal, effects are harder to detect in smaller samples. Increasing 

sample size is often the easiest way to boost the statistical power of a test. The effective sample 
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size calculated was 150 students in 11 classrooms to obtain the power to detect effects. Although 

this study used a sample size large enough to detect the effects of being in either of the treatment 

groups as compared to the control group, there was likely not enough statistical power to detect 

any potential effects of being in the Math Games/Talk Focus group as compared to the Math 

Games group. An important line of research necessary to extend the present work would be to 

replicate the current study with a larger sample. 

Another important extension to this work would be to test the effects of prolonged 

exposure to the math talk learning environment. Despite encouraging results from the present 

study, eight weeks might not have been a long enough period of time for children to become 

accustomed to the expectations of the math talk learning environment. It is possible that a longer 

duration of the Math Games/Talk Focus group would show significant benefits above those 

achieved in the Math Games group. It would important to learn if the effects of engaging 

children in a math talk learning environment for the entire preschool year, or across multiple 

years, has continuously increasing learning benefits or if there is a point when benefits are 

maximized before there are diminishing returns.   

Another direction for future research might test the effects of a greater number of 

incremental levels of difficulty per game than was used during the TAMS intervention and how 

this might influence interactions during free-play in the classroom. The present study employed 

three math games over an eight week intervention period whereby the simplest rules were used 

for three sessions and then slightly more difficult rules were used for three additional sessions. 

However, any one of the games could have been played for all eight weeks at ever increasing 

levels of difficulty. For example, additional sessions of the Walk-the-Line game could have been 

played by extending the line to 20, using a pair of dice where one die indicated how many spaces 
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to move forward and the other die indicated how many to move backwards, playing the same 

game moving from 20 to 1, and so on. This is also true for the Card Wars game; children could 

learn to put the cards out and put them in order along a number line, use regular playing cards 

whereby black cards are added together and red cards are subtracted from the total. As children 

learn to play each new level of a game, it is possible they might select to play together during 

free-play time, which would increase the time children are engaging in mathematical activity and 

math talk. 

The findings in this study should not be interpreted to mean that the TAMS intervention 

successfully identified all of the critical elements of developing children’s math talk. There may 

be components to developing children’s talk and reasoning skills that were not included in this 

intervention. Likewise, there may be components that were included that are not critical to the 

goals of the intervention. Another direction for future research might consider explicating the 

effects of individual elements, such as the effects of gesturing separate from the effects of the 

doublecheck. Also, it would be helpful to early childhood practitioners to have concrete 

examples of the individual elements along with typical and atypical responses from children. 

Providing video of archetypal interactions would be a valuable resource for those interested in 

replicating the intervention strategies. 

Finally, future research is needed to identify the type of training and subsequent support 

preservice and in-service teachers need to implement the intervention in their classrooms. As has 

already been discussed, gestures proved to be enjoyable and successful in aiding children’s 

language development, although it remained necessary for the interventionists to explore 

children’s conceptual understanding verbally. It was also necessary for interventionists to 

consider possible explanations for children’s use of gestures at seemingly inappropriate times. 
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Interventionists had to be patient to wait for children’s responses and also perceptive of when to 

interject additional support. Altogether, this press to engage children in talk required three 

equally important attributes: knowledge of children’s math development, willingness to take the 

perspective of children, and a sincere and intense commitment to the goals of the activity.  

Lacking one or two of the aforementioned attributes would likely fail to produce similar 

results to those obtained in this study; the presence of all three attributes was necessary to be 

sufficient. For example, a teacher with knowledge of children’s math development, but without a 

willingness to take the perspective of the child, might make the common mistake of simply 

providing children with correct answers rather than helping the child link his or her intuitive 

understandings with the present mathematical activity. Conversely, a teacher who is willing to 

take the perspective of the child and committed to attaining the goals of the activity but who 

lacks understanding of children’s math development will not likely be able to help the learner 

build bridges between their intuitive understandings and the mathematical activity. Finally, 

teachers who possess one or two of the aforementioned attributes but do not have the intensity 

and commitment to the goals of the activity will not likely maintain the motivation to persist in 

the game when children demonstrate irritation or discontentment with the mathematical activity. 

 

Issues 

 

Measuring Children’s Math Skills 

One issue that arose from this study is the large difference between children’s 

standardized rankings on the TEMA and their standardized rankings on the Woodcock Johnson 

III Applied Problems and Quantitative Concepts. While the large majority of children ranked 
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below the 25th percentile on the TEMA at pretest, the same children ranked between the 20th and 

60th percentile on the WJ-AP and between the 5th and 45th percentile on the WJ-QC. This result 

not only demonstrates the wide variation in children’s math knowledge upon entering preschool, 

it also demonstrates inherent limitations in measuring children’s early skills associated with later 

school success. These divergent findings are likely due to one or both of two possibilities: the 

TEMA may underestimate children’s performance and/or the WJIII may overestimate their 

performance. 

There are differences between the TEMA and the WJIII subtests that can explain the 

differences in relative performance among children in a single sample. On both measures, a raw 

score of 90 places a child in the 25th percentile and a raw score of 100 places a child in the 50th 

percentile; however, it is harder to obtain a raw score of 90 on the TEMA and relatively easier to 

score a 90 on the WJIII. The TEMA is a measure of children’s informal and formal mathematical 

knowledge. There are items on this assessment in which an incorrect response by children is 

counted as a correct response because it exemplifies a general understanding of a concept. For 

example, three chips are placed under a mat, then one more chip is added to the three hidden 

chips, and a child is asked, “How many chips did I place under the mat?” The child’s response 

can be the number four or a number greater than four to be counted as correct because it 

demonstrates an understanding that addition leads to higher numbers. Although such responses 

are counted as being correct, it is often the case that a group of questions (such as three out of 

four) must be counted correctly for the group to receive a raw score of one. For this reason, 

children with poor informal skills will earn low raw scores and thereby fall into a low percentile 

ranking.  
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The WJIII subtests are very different from the TEMA; these assessments contain only a 

few items to measure early math skills before the test items become too difficult for preschool 

aged children. On the WJ-AP, the 10th test item involves subtraction and above the 20th test item 

involves manipulating money and mental representations (e.g., if you drew three more circles, 

how many circles would there be?). The 11th item on WJ-QC Part A asks children, “When you 

count, what number comes right before eight?” and Part B asks children to identify the number 

that goes in the blank space along a number line. Thus obtaining one more correct answer 

increases children’s raw scores on the WJIII more so than on the TEMA. Although performance 

on WJIII is highly associated with later school success, its sensitivity to detect varying levels of 

math competencies is limited and children’s raw scores yield higher rankings on a normed scale. 

 

Measuring Children’s Fluid Reasoning 

Another issue that arose from this study was the inability to detect any growth in 

children’s fluid reasoning skills as measured in this study. Fluid reasoning is the capacity to think 

logically and solve problems in novel situations, independent of acquired knowledge. It is 

necessary for all logical problem solving and includes inductive and deductive reasoning. There 

were a number of challenges to children’s success on the Leiter-R, including the non-verbal 

delivery of instructions and the expectation that children would reason how to complete the 

tasks. The Leiter-R was designed to require little to no verbal communication to administer and 

the tasks were designed to be self-evident to children; the tasks are game-like in nature, yet 

children likely had little to no experiences with playing games or deciphering patterns. Children 

seemed to be at a loss for what to do, continuously looked for guidance from assessors, and often 

appeared to make response selections at random. Just as generating verbal explanations for their 
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reasoning was challenging for children, so too was generating mental explanations for the tasks 

to be completed.  

Another possible explanation for the lack of effects on the Leiter-R is that math 

knowledge and fluid reasoning develop independently and are differentially affected by 

schooling. Blair, Gamson, Thorne, and Baker (2005) conducted research to investigate the 

increasing population mean scores observed on measures of fluid reasoning over the last century. 

They observed the early elementary school math curriculum has moved increasingly farther from 

the rote memorization of mathematical facts towards a greater emphasis on skills associated with 

fluid reasoning (e.g., categorization, pattern recognition, approximating values, etc.). They 

theorize that these skills taught in school have influenced student performance on measures of 

fluid reasoning, although there has been no corresponding increase on measures of math 

achievement. Likewise, the TAMS intervention significantly influenced preschool children’s 

math achievement without affecting their fluid reasoning. What is left unanswered are (a) 

whether these domains become more interdependent over the K-12 years, and (b) if affecting one 

domain is sufficient to improve children’s later academic outcomes or if affecting both domains 

is necessary. 

 

Fidelity of Implementation.  

Fidelity of implementation is characterized as the degree to which an intervention is 

implemented in comparison with the original program design (Lipsey, 1999). There were three 

interventionists, each facilitating two experimental groups per classroom. While introductions 

and closings to activities were semi-scripted, general intervention activities were not, posing a 

potential threat to internal validity. To address this, the team of interventionists met on a weekly 
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basis to discuss goals and strategies, review audiotapes for consistency, and attempt to anticipate 

children’s questions or actions along with corresponding responses from interventionists. On the 

rare occasion an unanticipated incident occurred, the other two interventionists were notified the 

same day. For example, on the day that the two children made the hand gesture for the same 

as/equal to, but then responded that they both had more than the other, the other two 

interventionists not present were notified. It was decided that the other two interventionists 

would ask their children the same question (i.e., when two children had the same number in Card 

Wars, they were to ask the children, “Who has more?”), then respond similarly to way the 

interventionist who initially experienced this did (i.e., “If you both had that number of cookies, 

who has more? Or is it fair?”). As was humanly possible, the interventionists attempted to ensure 

the teaching strategies of one condition did not spill into the other condition, and that strategies 

for each condition were similar across classrooms and interventionists. 

 

Student Absenteeism 

Many of the children in this Head Start sample were routinely absent from school 

resulting in children who were assigned to participate in the intervention not receiving the 

treatment as it was intended to be received. Failure to include these students’ data in the analyses 

could lead to biased estimates of the intervention effects. Intent-to-Treat (ITT) analyses do not 

exclude participants based on their compliance to the study. Rather, groups are compared based 

on the initial randomization scheme and thus provide estimates of the intervention’s 

effectiveness for children who receive the treatment as they would in real world circumstances.  

To consider the effect of the intervention based on how much of the intervention was 

received, analyses testing the effect of dosage on outcomes were conducted. Out of 16 possible 
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sessions children could have participated in the intervention activities, children in both treatment 

groups were present an average of 10 days, or 62.5% of the time. The number of days children 

participated in the intervention significantly predicted children’s outcomes on the TEMA (p < 

.05), the NSA (p < .10), and three early numeracy skills (counting, one to one correspondence, 

and producing groups) (p < .05). Thus, regardless of condition, the more intervention activities 

children participated in, the more math they learned. Moreover, the skills they most improved on 

were skills being practiced in the games: counting, one to one correspondence, and producing 

groups. It is likely that the number of days children participated in the intervention activities did 

not affect results on the WJIII subtests is because, as was discussed in the Measuring Children’s 

Math Skills section above, they are not as sensitive to small changes in children’s informal math 

skills as the TEMA and NSA. 

 

Strengths and Limitations 

This study’s major strength lay in the research design. First, the sample was randomized 

within a block (classrooms) making the three groups of students as homogeneous as possible. 

The intervention was administered by the same interventionist to the two treatment groups within 

blocks over the ten weeks. Thus, the variability within each block is less than the variability of 

the entire sample and therefore each estimate of the treatment effect within a block is more 

efficient than estimates across the entire sample. When these more efficient estimates are pooled 

across blocks, the overall estimate is more efficient than it would be without blocking. 

Another strength of this study was in its use of both standardized measures of 

achievement and the more proximal Number Sense Assessment (NSA), thus providing a more 

sensitive measure of children’s early numeracy skills. The NSA was designed by identifying the 
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math skills targeted by the intervention, categorizing items from the standardized measures 

according to the targeted skills, and selecting those skills that had an insufficient number of 

items. Going back to the literature, test items were adapted from Siegler and colleagues in order 

to increase the number of items measuring one-to-one correspondence, subitizing, and magnitude 

comparison. With a sufficient number of items measuring specific skills, this study was able to 

compare children’s performance on nine early numeracy skills targeted by the intervention and 

an additional 10th category of items measuring skills not targeted by the intervention. By using 

multiple modes to evaluate children’s math growth, small changes in their knowledge and/or 

understandings are more likely to be detected, and these changes can be compared to changes on 

nationally normed standardized tests as well as permit comparisons to other early childhood 

math interventions that may have also used these national measures. 

A limitation of this study was its limited focus on number sense. While there is general 

consensus that early childhood mathematics should include topics beyond numeracy, such as 

geometry and measurement (Clements, 2004; Cross et al., 2009; NCTM, 2006), this study 

focused only on developing children’s early number sense. The TAMS intervention was 

designed to test strategies for engaging children in meaningful mathematical activity and not as a 

curriculum for early childhood mathematics. Early childhood practitioners could implement 

these strategies to engage children in games focused on number; however, it remains unknown 

whether these strategies would have the same effect on children’s development of skills related 

to other mathematical topics. 

Another limitation of this study is the exclusivity of the population. All of the children in 

the study were from Head Start centers located in the surrounding counties of a major 

metropolitan city in Middle Tennessee. The results can not be generalized beyond this population 
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of students. It remains unknown whether similar results would be obtained among children 

located in preschools administered by school systems or other childcare settings, among children 

located in different regions of the state or country, or even among children from other economic 

backgrounds. 

 

Conclusion 

The present dissertation study was designed to test the effects of an early mathematics 

intervention on the early math and reasoning skills of preschool children from economically 

disadvantaged backgrounds. In particular, this dissertation study sought to compare the effects of 

playing games intentionally selected to develop children’s number sense to not participating in 

these games. An additional aim of this dissertation was to compare the effects of playing math 

games to the effects of participating in the same math games enhanced by a math talk learning 

environment. 

The final sample was composed of 95 children from nine Head Start classrooms located 

in the surrounding counties of a major metropolitan area in Middle Tennessee. Children were 

pretested and posttested on three standardized math measures, one non-standard math measure, 

and one standardized non-verbal measure of fluid reasoning. They were also independently and 

randomly assigned to one of three experimental conditions within their classrooms. Two of the 

conditions participated in the intervention with one of those two conditions only playing math 

games and the other of the two conditions playing the same games enhanced by the math talk 

learning environment. The third experimental condition was used as a counterfactual to 

participating in any intervention activities. The math talk learning environment included 
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strategies from the literature theorized to engage children in high quality interactions about 

mathematics. 

Linear mixed modeling regressing outcomes on condition and controlling for children’s 

pretest scores, age, and blocking factor were used to estimate effects. In addition, effect sizes 

were calculated and practical significance examined. Results indicated statistically significant 

gains made by children who participated in the math games over children who did not participate 

in the games. There were not statistically significant differences identified in the gains made by 

the two treatment groups. No changes in children’s fluid reasoning were found in any condition. 

The effect sizes of the intervention on the two treatment groups were of moderate size, with 

consistently larger effects on the condition that participated in the math talk learning 

environment. The investigation of the intervention’s practical significance showed children who 

played math games with a focus on talk learned more math than children who only played 

games, and both groups who played games learned more math than children who did not play the 

games. 

There were two major findings of this study, each with its own set of potential 

interpretations. The first major finding was the impressive results playing math games had on 

children’s early math development. It is likely this finding is a result of the intentional selection 

of games, the modifications made to those games, the modifications made to the group 

processes, and/or children’s increased interaction with mathematical content. The second major 

finding was the consistently larger effect sizes and greater gains made by children who played 

math games with a focus on talk over children who only played math games. This finding could 

have been a result of the enhanced teaching strategies used to support children’s mathematical 
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language development, such as the use of gestures and the press by interventionists to engage 

children in talk about mathematics. 

This study identified measuring children’s math knowledge, measuring children’s fluid 

reasoning, fidelity of implementation, and student absenteeism as major issues. The strengths of 

the study included its research design and the measures used to evaluate children’s achievement. 

The limitations of the study were the limited focus on number sense and exclusivity of the 

population sample.  

There are several directions future research might take to extend the present work. The 

study could be replicated with a larger sample size or for an extended period of time. Individual 

games could be adapted to include more levels of play. Individual elements of the intervention or 

potentially new elements could be tested to learn which are critical to developing children’s math 

talk. Also, future research should determine the professional development activities and 

classroom support necessary for practitioners to implement these strategies in their classrooms. 
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APPENDIX A 

INTERVENTION ACTIVITIES 

Activity 1: Hi Ho Cherry-O 

Materials 
 Gameboard with picture of two fruit trees and two bushes 

- Each tree or bush has 10 holes in which the fruit can be placed 
- Beside each tree or bush is a fruit bucket of the same color 

 10 pieces of fruit per tree/bush (10 oranges, 10 apples, 10 
cherries, 10 blueberries)  

 Spinner with arrow and base 
- The base is made of a cardboard square with a 

circle drawn in the center of the square.  
- The circle is divided into 7 equal sections by 7 

radial lines. Each section has a picture or pictures 
drawn on it. Four sections have a picture of one, 
two, three, or four fruit and the fruit are 
numbered. One section has a drawing of a bird, 
another a drawing of a squirrel with fruit, and the 
last has a drawing of a spilled basket of fruit.  

- From the center of the base, there is a plastic piece 
that extends from the base, through a white plastic 
arrow. A plastic cap snaps on top of this piece 
securing the arrow to the base, but allowing the 
arrow to spin around. 

 
Get Ready to Play 
 Place the 10 pieces of fruit on the matching tree/bush 

- 10 Orange oranges on the orange tree 
- 10 Green apples on the green tree 
- 10 Red cherries on the red bush 
- 10 Blueberries on the blue bush 

 Spinner placed beside board, beside the facilitator 
 Children sit in front of “their” tree or bush 
 Facilitator should clarify to children whose fruit and bucket belong to whom. 

 
Playing the Game 
 The child to the facilitator’s immediate left plays first. Play then passes to the left. This 

has been changed from the original game rules that call for the child with the next 
birthday to go first so that none of the 20-minute activity is wasted on explaining this 
concept to children. 

 Each child spins the arrow on the spinner and completes one of the following tasks: 
- Land on one fruit: Pick one fruit from your tree/bush 
- Land on two fruits: Pick two fruits from your tree/bush 

Spinner 

Gameboard 
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- Land on three fruits: Pick three fruits from your tree/bush 
- Land on four fruits: Pick four fruits from your tree/bush 
- Land on the bird or the squirrel – either is nibbling on the fruit in your bucket! 

Remove one fruit from your bucket. This has been changed from the original 
game rules that call for children to remove two fruit from their bucket. This 
change has been made for two reasons. The first reason is that the removal of two 
fruits is arbitrary while moving only one fruit from the bucket corresponds with 
the number of birds on the spinner. The second reason is that removing one fruit 
provides an opportunity for early learners to experience the relationship between 
consecutive numbers, for example, that three is one less than four and four is one 
more than three. 

- Land on the spilled basket of fruit, and oh no! Take all of the fruit out of your 
bucket.  

 Doublecheck: In condition A, the child in play (who pulled the fruit from his or her 
tree/bush) will be checked by another not in play (whose turn it is not currently) that the 
number of fruit in his or her hand is the same as the number on which the arrow landed 
and the cardinal number of that set will be stated. This is not a part of the original rules of 
this game, but has been added as a strategy for scaffolding mathematical development. 

 To win the game, the first child with all of his or her fruit in his or her basket says “Hi-
Ho-Cherry-O, I have zer-O fruit on my tree!” The latter part of that statement was not 
instructed in the original game rules, but was added to reinforce the concept of zero. 

- If time runs out before the game ends, then the child with the most fruit in his or 
her basket wins. 

 
Activity 2: Walk The Line 

 
Materials for Level I 
 Two number line floor mats with the numerals 1 – 10 visible  
 Four foam circles, 10 inches in diameter, ¼ inch in depth 

- Two circles, one red and one green, each have a zero on 
them 

- Two of the circles, one red and one green, each have 
“You Win!” on them 

 Two 6-inch cubes (dice) with dots ranging in value from one to 
three.  

- Each cube has two sides with the same number of dots 
on them. 

- There are two sides with 1 dot, two sides with 2 dots, 
and two sides with 3 dots. 

 
Materials for Level II 
 Extend the number line floor mats so that the numerals 1 – 20 

are visible  
 Four foam circles, 10 inches in diameter, ¼ inch in depth 

- Two circles, one red and one green, have a zero on 
them 

You 
Win!

0
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- Two of the circles, one red and one green, have “You Win!” on them 
 Two 6-inch cubes (dice). Each side of a cube has a different number of dots ranging in 

value from one to six similar to a typical die. 
 
Get Ready to Play at Level I or II 
 Lay the number lines parallel to one another approximately three feet apart. For level I 

play with only the numerals 1 – 10 showing (the number line is folded so that 11 – 20 are 
not visible). For level II play with the full number line extended. 

 Place a foam circle with the numeral 0 off the number line below the numeral one. Place 
the “You Win!” foam circle of matching color off the number line above the numeral 10 
(or 20 for level II). 

 Place the dice on the inside of the parallel number lines. 
 Children are paired into teams (e.g., Red team and Green team). 
 One red team member stands on the red zero, the other red team member is on the floor 

between the parallel lines with one die. 
 One green team member stands on the green zero, the other green team member is on the 

floor next to the red team member and between the parallel lines with one die.  
 
Playing the Game at Level I or II 
 The children with the dice roll to see which team goes first 
 The team with the higher number of dots goes first. If children get the same number, roll 

again.  
 The team member due to go first then moves the number of spaces along the number line 

as was rolled by his or her partner. The line-walker counts each step while moving from 
one number to the next. The child must say the numbers he or she is walking on and not 
count the number of spaces that he or she was instructed to move. For example, a child is 
standing on the number line on the numeral three. Her partner rolls a two on the die and 
instructs her to move two spaces.  

 Doublecheck: In condition A, children who are not in-play, meaning they are waiting for 
their turn, or the facilitator will check that those who are in-play (a) identified the correct 
number of dots and (b) moved the correct number of spaces. 

 The other team is now in-play. The child with the die rolls his or her die, then their 
partner moves that number of spaces along the other number line saying the numerals, 
not counting the number rolled.  

 The first team to move beyond the number line wins. That is to say, the first team to 
move past 10 and onto the “You Win!” wins the round. Landing on the 10 space does not 
end the round. 

 Continue playing rounds until time runs out. On each round, team members change roles 
between rolling the die and moving along the number line. 

 
 



 

124 

Activity 3: Card Wars 
 
 
 
Materials for Level I 
 Four sets of cards 

- Cards are 4 inches by 2 inches in height and 
length 

- Each set has 11 cards 
- The 11 cards are numbered from 0 – 10 with the 

corresponding number of dots in a grid below the 
numeral. 

- The cards are blank on the opposite side of the 
numerals and dots 

 
Get Ready to Play at Level I 
 The first time the cards are introduced to children, let the children play with a complete 

set of cards to get familiar with them. Point out the salient features of the cards (numerals 
should be on top; all cards have a grid; the number on the card represents how many dots 
are in the grid, etc.).  

 Pair children so that two children are playing against each other and the other two 
children are playing against each other. Children should be seated so that they are on the 
same side of the table. This way, children do not have to read cards upside-down. 

 Each child receives 11 cards (0-10 in random order). These cards are to be stacked 
together and placed in front of the child with the numerals and dots not visible. Remind 
them not to turn them over or look at them until you say “go!” 

 
Playing the Game at Level I 
 When you say “Ready, set, go!” all the children take the top card from his or her stack 

and place them on the table in front of them with the numeral at the top of the card. 
 The child with the highest card states the number that he or she has and then determines 

who has more. It is likely that some children will always say they have more. This 
provides an opportunity for discussion among the children and the facilitator. 

 In condition A, the other child must doublecheck. 
 When they agree, the one with the highest card wins the set of cards. These cards are set 

aside for the next round rather than added to the stack in play. 
 When two children have “the same” number on their cards, then there is a “war.” Those 

children turn over an additional card from their stack of cards and compare those two 
cards to determine who wins the war and all four cards in play. 

 Rounds continue until one child has won all of the cards or until time runs out. If time 
runs out, the child with the most cards wins. 

 At the end of the game, children should put the cards in order from least to greatest. 
 
Materials for Level II 
 Remove the cards 6 -10 from the 4 sets of cards. Use only the 0 – 5 cards. 
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 Pencil, paper, and/or tokens for children to use if they need to use representations to help 
with addition 

 
Get Ready to Play at Level II 
 Pair children into teams so that two children are playing against the other two children. 

Children should be seated so that they are on the same side of the table. This way, 
children do not have to read cards upside-down. 

 Each child receives 6 cards (0-5 in random order). These cards are to be stacked together 
and placed in front of the child with the numerals and dots not visible. Remind them not 
to turn them over or look at them until you say “go!” 

 
Playing the Game at Level II 
 When you say “Ready, set, go!” all the children take the top card from his or her stack 

and place them on the table in front of them with the numeral at the top of the card. 
 The facilitator will assist children in making and justifying claims about which team has 

more.  
 The team with the highest sum of cards wins the set of cards. These cards are set aside for 

the next round rather than added to the stack in play. 
 When teams have “the same” summation, there is a “war.” Teams turn over one 

additional card to determine which team wins the war and all six cards in play. 
 Rounds continue until one team has won all of the cards or until time runs out. If time 

runs out, the team with the most cards wins. 
 At the end of the game, children should put the cards in order from least to greatest. 
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APPENDIX B 

DIFFERENCES BETWEEN TREATMENT GROUPS’ PARTICIPATION  

IN SMALL GROUP MATH GAMES 

Activity 1: Hi Ho Cherry-O 
SPECIFIC LEARNING OBJECTIVES & EXAMPLES OF INSTRUCTIONAL APPROACHES  

FOR ACTIVITY 1 
 Condition A Condition B 

Numeral 
Recognition (1 – 4) 

Children count and say the number on the 
spinner; children will be assisted by a peer 
when they are incorrect. If the peer is 
unable to help, the facilitator will assist. 

Children count the number on the spinner as 
evidenced by their producing the set; children 
will be corrected by the facilitator when they 
are incorrect 

Count (1 – 10)  
Children will count out loud how many fruit 
they are supposed to remove on the spinner 
and the number of fruit left on the tree 

Children will count how many fruit they are 
supposed to remove on the spinner; the 
facilitator will ensure that the child is playing 
accurately and correct him or her as needed. 

One-to-One 
Correspondence      
(1 – 4)  

Children will count out loud and produce 
the set of fruit removed from their tree/bush 

Children will count and produce the set of 
fruit removed from their tree/bush 

Cardinality  (1 – 10) 
Children will state the cardinal number of 
the set produced by their peer 

Children will hear the facilitator state the 
cardinal number of the set produced 

Doublecheck,  
Sign Language, and     
Questions 

Children will be asked to attend to what the 
child in-play is doing during the game. For 
example, Child 2 who is not in play will 
check that Child 1 who is in play has the 
same number of fruit as was spun on the 
spinner.  
 
Children will learn sign language for more 
than, less than, equals, all, some, none and 
be encouraged to use and say them 
whenever those apply. 
 
Children will be asked closed-ended 
questions (e.g, how many is that?) and 
open-ended questions (e.g., what would 
happen if that bird ate more than one?). 
Children will be asked to narrate their 
actions during the game (e.g., I landed on 
two, so I am taking two apples off my tree. 
One, two.) 
 
These differences are meant to facilitate 
math-talk, peer-to-peer interactions, and 
engagement. These three actions should 
work in tandem to accelerate math 
development. 

 
 
 
 
 
 
 
Children will hear the teacher use math 
language for more than, less than, equals, all, 
some, none. 
 
 
 
Children will be asked closed-ended 
questions (e.g, how many is that?) only. 
 
 
 
 
 
 
 
Overall, the facilitator is to direct activities so 
that the interactions are teacher-student 
centered.  
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Activity 2: Walk-The-Line 
SPECIFIC LEARNING OBJECTIVES & EXAMPLES OF INSTRUCTIONAL APPROACHES  

FOR ACTIVITY 2 
 Condition A Condition B 

Counting      
(1 – 20) 

Children will count out loud the number of dots 
on the die, the spaces on the number line 

Children will count the number of dots on the 
die, the spaces on the number line 

Subitizing     
(1 – 6) 

Children have the opportunity to subitize the 
dots on the die and say the number it is.  

Children have the opportunity to subitize the 
dots on the die and say the number it is. 

One-to-One 
Corresponden
ce  (1 – 6)  

Children will move the same number of spaces 
as was rolled on the die  

Children will move the same number of spaces 
as was rolled on the die 

Numeral 
Recognition     
(1 – 20) 

Children will say the numerals on the number 
line 

Children will hear the facilitator say the 
numerals on the number line 

Number Line  
(1-20) 

The greater the number the child is standing on, 
the greater the distance the child has moved 
away from zero, the greater the number of 
discrete moves the child has made, the greater 
number of number names the child has spoken, 
and the longer the child has played. 

The greater the number the child is standing on, 
the greater the distance the child has moved 
away from zero, the greater the number of 
discrete moves the child has made, the greater 
number of number names the child has spoken, 
and the longer the child has played. 

Cardinality   
(1 – 6) 

Children make associations between numerals 
and the quantity they represent. Children state 
the cardinal number of spaces the child moves 
along the line. 

Children make associations between numerals 
and the quantity they represent. Facilitators 
state the cardinal number of spaces the child 
moves along the line. 

Addition Children must add the number rolled to their 
current position (e.g., a child is on 2 and rolls a 3 
so 2 + 3 = 5). Children will be asked to narrate 
this. 

Children must add the number rolled to their 
current position (e.g., a child is on 2 and rolls a 
3 so 2 + 3 = 5). Facilitators will narrate this. 

Doublecheck,    
Sign 
Language, 
and     
Questions 

Children check that the other team correctly 
identified the correct number on the die and 
moved the correct number of spaces. 
 
Children will use sign language for more than, 
less than, equals, all, some, none and be 
encouraged to use and say them whenever those 
apply. 
 
Children will be asked closed-ended questions 
(e.g, how many is that?) and open-ended 
questions (e.g., What would happen if you had 
to move back two spaces?). Children will be 
asked to narrate their actions during the game 
(e.g., I was standing on two, we rolled one, so I 
moved to the three). 
 
These differences are meant to facilitate math-
talk, peer-to-peer interactions, and engagement. 
These three actions should work in tandem to 
accelerate math development. 

 
 
 
 
Children will hear the teacher use math 
language for more than, less than, equals, all, 
some, none 
 
 
Children will be asked closed-ended questions 
(e.g, how many is that?) only. 
 
 
 
 
 
 
Overall, the facilitator is to direct activities so 
that the interactions are teacher-student 
centered. Children will not be restricted from 
talking. 
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Activity 3: Card Wars 
SPECIFIC LEARNING OBJECTIVES & EXAMPLES OF INSTRUCTIONAL APPROACHES  

FOR ACTIVITY 3 
 Condition A Condition B 

Counting  (0 – 10) 
Subitizing (0 – 10) 

Children count or subitize the number on the 
card.  

Children count or subitize the number on the 
card.  

Cardinality (0-10) 
Association of numerals with the quantity they 
represent; Children will state the cardinal 
number of the card. 

Association of numerals with the quantity 
they represent; Facilitators will state the 
cardinal number of the card. 

Comparing (0-10) 

Children reason together how they know that 
one is more than the other (e.g., you know this 
is 6 because this side of the grid is filled up 
and then there is one more on the other side) 

Children will determine which card is 
“more.” If they are unable to determine this 
independently, the facilitator will tell them. 

Addition (with 
numbers 0-5 to a 
possible sum of 
10) 

Children reason together the sum of the cards 
with the assistance of the facilitator as 
necessary 

Children determine the sum of the cards. If 
they are unable to determine this 
independently, the facilitator will tell them. 

Doublecheck,   
Sign Language, 
and Questions 

In the doublecheck, a child must give a reason 
how he or she knows that one card is more 
than the other (e.g., this one has more dots 
than that one). Only when the pair agrees can 
the cards in-play be taken off the table. 
 
Children will use sign language for more than, 
less than, equals, all, some, none and be 
encouraged to use and say them whenever 
those apply. 
 
Children will be asked closed-ended questions 
(e.g, how many is that?) and open-ended 
questions (e.g., How do you know which card 
has more?).  
 
These differences are meant to facilitate math-
talk, peer-to-peer interactions, and 
engagement. These three actions should work 
in tandem to accelerate math development. 

 
 
 
 
 
 
Children will hear the teacher use math 
language for more than, less than, equals, all, 
some, none. 
 
 
Children will be asked closed-ended 
questions (e.g, how many is that?) only. 
 
 
 
Overall, the facilitator is to direct activities so 
that the interactions are teacher-student 
centered.  
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APPENDIX C 
 

NUMBER SENSE ASSESSMENT 
 
 

INSTRUCTIONS FOR SCORING SHEET 
 
 
TASK 1:  One to One Correspondence, Producing a Set and Cardinality 
 
Materials 
 14 cubes and cup 
 Test Booklet 

 
Stop Rule 
If child is unable to produce 4 and in addition, can not state the cardinality of the set he or she 
did produce, then continue to Task 2. 
 
Procedure 
Place 14 cubes in a pile in front of the child 
Say: Here are some cubes. Can you give me 4? 
 
Place the set that the child gives you in a cup. Holding the cup so that the child can not count the 
cubes in the cup 
Say: How many cubes are in this cup? 
 
Take the cubes out and let the child see that you return those to his or her pile and that the cup is 
empty.  
Say: I’m going to put them all back. Now, can you give me 7? 
 
Place the set that the child gives you in a cup. Holding the cup so that the child can not count the 
cubes in the cup 
Say: How many cubes are in this cup? 
 
Take the cubes out and let the child see that you return those to his or her pile and that the cup is 
empty.  
Say: Can you give me 10? 
 
Place the set that the child gives you in a cup. Holding the cup so that the child can not count the 
cubes in the cup 
Say: How many cubes are in this cup? 
 
Scoring 
Children receive 1 point for each set that is produced correctly; Children receive 1 point for each 
cardinal number stated correctly; Total possible number of points: 6 
 



 

130 

TASK 2:   Subitizing 
 
Materials 
 Booklet 

- Child and assessor sit side-by-side at a table with the booklet in front of them 
both.  

- The pages each show a certain number of dots between 0 and 10 
- The order of the dot quantities are:  3, 1, 2, 5, 0, 4, 8, 6, 7, 10, 9 
- The dots are arranged like those on a die.  
- Between the pages with the dots on them are blank pages of color so that the child 

can not see the dots on the next page.  
- In a spiral bound booklet1 set of blue dot cards 0 – 10 

 
Stop Rule 
Cease this task after 3 incorrect responses or failures to respond (in a row). 
 
Procedure 
Before opening the booklet, say: When I turn this page, tell me how many dots there are as fast 
as you can. Ready? 
 
Turn the page so that the child can see the page with the dots on them for a count of 1 and then 
turn that page over to the next blank page. Do the same for all the dot pages, in the order given 
above. 
 
If the child at any time asks to see the page again or says, “where are the dots?” say: How many 
did you see? If the child still does not respond with an answer, say: Let’s do the next one. 
 
If the child shows fingers after the first try, stop at the blank page following the first trial and 
say: “How many was that?”  If no response, you can say: Use your words to tell me how many 
dots there are. However, if children accurately show you the same number of fingers as there 
were dots on the page, count these correct. 
 
If the child counts the dots, even mentally counting after the page has been turned, it is not 
counted correct. 
 
Scoring 
Children receive 1 point for each correct response; Total possible number of points: 11 
 
 
TASK 3: Numerical Magnitude Comparison (adapted from Ramani & Siegler) 
 
Materials 
 Booklet.  

- Each page has two sets of dots between 1 and 9 on it separated by a vertical line 
down the page. 

- The pairs are: (1, 9), (2, 6), (4, 1), (5, 3), (7, 8), (9, 9) 
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- Each page has two numbers between 1 and 9 on it separated by a vertical line 
down the page. 

- The pairs are: (1, 9), (2, 6), (4, 1), (5, 3), (7, 8), (3, 3) 
 
Stop Rule 
Cease this task if the child is unable to make a determination after having been asked the prompt. 
Cease this task after 3 incorrect responses or failures to respond (in a row). 
 
Procedure 
Part A:  With the booklet on a blank page, say: I am going to show you some dots. Tell me which 
side has more. 
 
Practice item: Open the booklet to the first pair (1, 9) 
If child responds correctly (i.e., 9), continue to the other items. 
If child does not respond, say: which side has more? 
If after being prompted, child does not respond or answer correctly, say: John(Jane) has one 
cookie, Andy(Sarah) has nine cookies. Which is more: one cookie or nine cookies? 
If the child still does not understand, move on to the next task.  
If the child is able to answer correctly, continue with the remaining items (On the remaining 
items, only ask the question, “Which side has more?” Do not prompt with the question, 
“John(Jane) has X cookie, Andy(Sarah) has Y cookies. Which is more?”). 
 
Part B:  With the booklet on a blank page, say: I am going to show you two numbers. Tell me 
which side is more. 
 
When you get to the numeral section of this task (1, 9), say: Which number is more? 
If child responds correctly (i.e., 9), continue to the other items. 
If child does not respond, say: which number is more? 
If after being prompted, child does not respond or answer correctly, say: John(Jane) has one 
cookie, Andy(Sarah) has nine cookies. Which is more: one cookie or nine cookies? 
If the child still does not understand, move on to the next task.  
If the child is able to answer correctly, continue with the remaining items (On the remaining 
items, only ask the question, “Which number is more?” Do not prompt with the question, 
“John(Jane) has X cookie, Andy(Sarah) has Y cookies. Which is more?”). 
 
On the pairs (9, 9) and (3, 3), if the child gives the equal sign, say: Do you remember the word 
for that? What does this (showing the sign that the child made) mean?  If the child says, “same” 
or “equal” or gives the sign for “equal” than the response is correct. 
 
Scoring 
1 point for each correct response; Total possible number of points: 12 
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TASK 4: Number Line  (adapted from Ramani & Siegler) 
 
Materials 
 Number Line 

- White strip of paper approximately two feet in length and three inches wide with a 
black line that extends the length of the paper.  

- Along the black line there are 11 Velcro circles spaced two inches apart.  
- The number line strip is folded so that only the first six Velcro circles are 

accessible. When unfolded, all 11 Velcro circles are accessible.  
 Numeral cards 0 – 10  

- Each card has a Velcro dot on the back so that it can be attached to the number 
line. 

 
Stop Rule 
If the child was unable to complete Tasks 1 -3 of this assessment, do not administer Task 4. If 
the child is administered Task 4, but is unable to place the 1-card on the number-line after having 
to be prompted where to place it, cease the assessment. If the child places the 1-card correctly on 
the number line before or after being prompted, cease the assessment after the child misplaces 
three numbers in a row. 
 
Procedure 
Child should be seated with the number line in front of them so that 11 Velcro circles are 
accessible. Lay the following numbers on the table, above the number line, in this order: 0, 1, 10. 
Place the 0 on the first Velcro dot to the child’s left. Place the 10 on the last Velcro dot, furthest 
from the 0.  
Say: Look at this number line (run your finger along the number line). This is zero and this is 10 
(pointing to each). Can you put the 1 where it belongs on this line? 
If the child responds by placing the one on the number line in the correct or incorrect place, 
continue with the assessment. Remove the last number placed on the number line by the child 
before asking him or her to place the next number. Ask the child to place the following numbers 
in this order: 
Say: Can you put the 5 where it belongs? 
Say: Can you put the 3 where it belongs? 
Say: Can you put the 2 where it belongs? 
Say: Can you put the 4 where it belongs?  
Say: Can you put the 6 where it belongs?  
Say: Can you put the 9 where it belongs?  
Say: Can you put the 7 where it belongs?  
Say: Can you put the 8 where it belongs? 
If the child is unable to place the one on the line the first time being asked, say: When we count, 
we start with one, so the one goes here. Remove the one and ask the child to place the one where 
it belongs. If the child is unable to complete this task, do not continue with the assessment. Do 
not give the child the point if the child requires a prompt to place the one. 
 
Scoring 
1 point for each correct response; Total possible number of points: 9 
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THE NUMBER SENSE ASSESSMENT SCORE SHEET 
 
 
Child’s Name ___________________________ 
Assessor’s ID      ___________________________ 
Date      ___________________________ 
 
 PROMPT RESPONSE SCORE 

Here are some cubes. Can you give me 
__?How many cubes are in this cup? 

  

Produce 4 
  

State cardinal #4 
  

Produce 7 
  

State cardinal #7 
  

Produce 10 
  

State cardinal #10 
  

TASK 1:   
One to One 
Correspondence, 
Producing a Set 
and Cardinality 

 
  

When I turn this page, tell me how many 
dots there are as fast as you can. Ready 

  

3 
  

1 
  

2 
  

5 
  

0 
  

4 
  

8 
  

6 
  

7 
  

10 
  

9 
  

TASK 2:   
Subitizing 
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I am going to show you two numbers. Tell 
me which is the number is more. 

(1, 9)   

(2, 6)   

(4, 1)   

(5, 3)   

(7, 8)   

(9, 9)   

(1, 9)   

(2, 6)   

(4, 1)   

(5, 3)   

(7, 8)   

(3, 3)   

TASK 3: 
Numerical 
Magnitude 
Comparison 

 

  

Look at this number line (run your finger 
along the number line). This is zero and 
this is 10 (pointing to each). Can you put 
the 1 where it belongs on this line? 

  

1   

5   

3   

2   

4   

6   

9   

7   

TASK 4: Number 
Line   

8   

 

 

  

 
TOTAL POSSIBLE POINTS ON THIS ASSESSMENT: 38 
 

 
Total for tasks 1 - 4 
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ASSESSOR’S GUIDE FOR USING THE TEST BOOKLET 
 
To prepare the booklet, a blank page should be between each of the subitizing tasks. The entire 
booklet can be bounded in a spiral notebook. When ready to assess children follow these 
guidelines:  
 
SUBITIZING TASK: Before opening the booklet, say:  
 
When I turn this page, tell me how many dots there are as fast as you can. Ready? 
 

 Open the booklet to the first dot, then turn to the blank page following. 
 If the child uses sign to express how many, prompt child to use words 
 The correct number of fingers held up to represent the number of dots are still counted as 

correct 
 Stop Rule: 3 consecutive incorrect answers. 

 
MAGNITUDE COMPARISON PART A:  With the booklet on a blank page, say:  
 
I am going to show you some dots. Tell me which side has more. 
 

 Practice item: Open the booklet to the first pair (1, 9) 
o If child responds correctly (i.e., 9), continue to the next page. 
o If child does not respond, say: which side has more? 
o If after being prompted, child does not respond or answer correctly, say: 

John(Jane) has one cookie, Andy(Sarah) has nine cookies. Which is more: one 
cookie or nine cookies? 

 If the child still does not understand, move on to PART B.  
 If the child is able to answer correctly, continue with the remaining items (On the 

remaining items, only ask the question, “Which side has more?” 
 Stop Rule: 3 consecutive incorrect answers. 

 
MAGNITUDE COMPARISON PART B:  With the booklet on a blank page, say:  
 
I am going to show you two numbers. Tell me which number is more. 
 

 Use same procedure as PART A. 
 
NUMBER LINE TASK:  Say: Look at this number line (run your finger along the number line). 
This is zero and this is 10 (pointing to each). Can you put the 1 where it belongs on this line? 
 

 If they do it correctly, say: “That’s right. When we count one comes first, so we place it 
first on the number line.” 

 If incorrect,  
o Say “When we count one comes first, so we place it first on the number line.” 
o Remove the 1 card from its incorrect place and ask the child to place the 1 where 

it belongs 
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o If the child is unable to complete the task, do not continue 
 If the child places the 1 correctly, continue. 
 Stop Rule: 3 consecutive incorrect answers. 
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MATH OUTCOMES DEFINED & MEASURED 
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 Definition Demonstrated By 

Rote Counting           Knowing the number words; Reciting numbers in the correct 
sequence (up to how many?) 

Being able to say the numbers in the correct order. Being able to count 
backwards in the correct order. 

One-to-one Correspondence 
 

Understanding that each object in a set should be counted 
only once (small sets?). 

Being able to count objects, spaces on a number line, or dots on a die by 
touching each one only once and assigning one number name with each 
touch 

Cardinality 
 

Understanding that numbers tell how many are in a set; 
Understanding that the last number counted can represent the 
set, which includes all the objects counted before; Associating 
numerals with the quantity they represent. 

Being able to answer the question “how many” without recounting the set 
of objects.  

Subitizing 
 

Knowing how many objects are in a group without counting. 
Perceptual subitizing is recognizing small groups of up to 5; 
Conceptual subitizing begins when children can determine 
how many were in a group by subitizing smaller groups and 
then combining the groups. 

Being able to instantly know “how many” when a small number of objects 
or dots on a die are seen 

Numeral recognition 
 

Recognizing the written symbols for the spoken number Being able to look at the symbol “1” or “4” and say the word “one” or 
“four” 

Number line Knowing the order of numbers (Arabic symbols or dots on a 
card) on the number line. 

Being able to place numbers in order of magnitude. Being able to name the 
number that is before, after, or between two other numbers. For example, 
knowing that three comes before four, five comes after four, and that six is 
between five and seven. Being able to say that 5 is closer to 7 than 3 is. 

Addition of Small Sets  
(Composing Number) 

Combining two ore more collections of objects to form a 
larger group;  

Being able to find the sum of two small groups. At first, children learn to 
combine small collections nonverbally. For example, a child is shown two 
objects that are then covered by a napkin. Afterwards, a third object is 
placed under the napkin and the child can produce a set of 3 objects “to 
match.” At a higher level of ability, children can count on. For example, to 
add 2 and 3, a child might say, “3… 4, 5.” 

Magnitude comparison Determining which set is larger, greater, or more than 
another, or that two sets are the same (equal). 

At first, children are able to perceptually determine which group has more 
when there is a noticeable difference. Later this skill develops and children 
learn to put objects into one-to-one correspondence and say that the set 
with additional objects in it has more. When children have a developed 
number sense, they know that 8 is one more than 7. 

Reasoning (Verbal and Non-verbal) Generating conclusions from assumptions or premises. Verbal 
reasoning includes argumentation and negotiating. Non-
verbal reasoning includes understanding the meaning of 
visual information and recognizing relationships between 
visual concepts.  

In verbal reasoning, children are able to explain why and how or determine 
which is the tallest tree. In non-verbal reasoning, children can look at 
perceptual cues, such as a pattern, and decide how to complete the pattern 
or look at a sequence of pictures and determine what comes next.  
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TEMA  
Item Number (3 = the child must answer 3 out of 3 trials correctly for item to be counted as correct; 
4/5 means a child must answer 4 out of 5 trials correctly to be counted as correct) 

C
ount 

O
ne to one 
C

rspnd. 

C
ardinality 

S
ubitizing 

N
um

eral 
R

ecognition 

N
um

ber 
L

ine 

A
dding 

M
agnitude 

C
om

parison 

P
roducing a 

group

R
easoning 

N
ot a 

T
A

M
S

 focus 

A1 (3) How many cats do you see? Why is this not cardinality?  If a child counts, 1,2,3, doesn’t 
the examiner ask how many is that? 

X        
  

 

A2 (3) Show me __ fingers X        X   
A3 (1) Count (your fingers) for me. X        X   
A4 (4) Which side has more?        X    
A5 (3) Make yours just like mine (adult puts 3 tokens on table, covers them) X        X   
A6 (2) Count the stars X           
A7 (2) How many stars did you count?   X         
A8 (4/5) Make yours just like mine. (adult places two tokens, then adds 1 more)       X  X   
A9 (3) How many tokens are there? (conservation of number)           X 
A10 (2) Give me __ tokens  X       X   
A11 (3) Hold up __ fingers         X   
A12 (1)  1, 2, 3, now you count by yourself… X           
A13 (3) What number comes next? ___ and then…? X     X      
A14 (3) What number is this?     X       
A15 (3) Write the number. (symbolic representation)     X      X 
A16 (2/3) Word problems: How many altogether?       X     
A17 (4/4) Word problems: __ + 3 = 5, etc.       X     
A18 (3/4) Show me how many there are. (symbolic repres)           X 
A19 (5) Which is more? ___ or ___ ?  (1 to 5)      X  X    
A20 (5) Which is more? ___ or ___ ?  (5 to 10)      X  X    
A21 (1) Count as high as you can (to 21) X           
A22 (2) What number comes next; __ and then…? X     X      
A23 (2) Count these dots with your fingers. X           
A24 (1) Count backwards starting from 10           X 
A25 (2) Share 12 between 2           X 
A26 (2/3) How much are __ and __       X     
A27 (4/6) Which is closer to __, __ or __?      X      
A28 (1) Give me exactly 19 tokens.  X       X   
A29 (3) What number is this?     X       

Total 10 2 1 0 3 5 4 3 7 0 5 
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WJ-III  Applied Problems 

C
ount 

O
ne to one 
C

rspnd. 

C
ardinality 

S
ubitizing 

N
um

eral 
R

ecognition 

N
um
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L

ine 

A
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M
agnitude 

C
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parison 

P
roducing a 

group 

R
easoning 

N
ot a T

A
M

S
 

focus 

AP1 Show me one finger X        X   
AP2 Show me two fingers X        X   
AP3 How many apples are there in this picture (if child counts, we ask for 
cardinal) 

X  X         

AP4 How many boats are there (if child counts, we ask for cardinal) X  X         
AP5 How many birds are there (if child counts, we ask for cardinal) X  X         
AP6 Put your finger on the box with two kittens/ the box with three kittens 
(If they have to count to get the answer, do not count as subitizing.) 

X   X        

AP7 How many children do not have balloons X           
AP8 How many flowers are there (if child counts, we ask for cardinal) X  X         
AP9 Put your finger on the flower with one bee/ three bees (If they have to 
count to get the answer, do not count as subitizing.) 

X   X        

AP10 If you take away two cans, how many would be left       X    X 
AP11 Show me the number that tells how many dogs there are X    X       
AP12 Point to the group with 5 dots X   X        
AP13 If the top man jumped off, how many men would be left       X     
AP14 If you took away two buttons, how many would be left       X     
AP15 If Jessica ate three, how many would be left       X     
AP16 If you take away three crayons, how many would be left       X     
AP17 If you had two books and got two more, how many would you have       X     
AP18  If the top two boxes were pushed off, how many would be left in the 
stack 

      X    X 

AP19 If you had these balloons and someone gave you two more, how 
many would you have 

      X     

AP20 What time does this clock say           X 
AP21 Point to 2 things you could buy with 50 cents           X 
AP22 If you drew 5 more circles, how many would there be       X     

Total 11 0 4 3 1 0 9 0 2 0 4 
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WJ-III  Quantitative Concepts C

ount 

O
ne to one 
C

rspnd. 

C
ardinality 

S
ubitizing 

N
um

eral 
R

ecognition 

N
um

ber L
ine 

A
dding 

M
agnitude 

C
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parison 

P
roducing a 

group 

R
easoning 

N
ot a T

A
M

S
 

focus 

QC-A1 How many dogs are there (if child counts, we ask for cardinal) X  X         
QC-A2 What number is this     X       
QC-A3 Count for me; start with one… X           
QC-A4 How many chairs are there X           
QC-A5 What is this called (circle)           X 
QC-A6 What number is this     X       
QC-A7 Point to the highest building/ lowest building            
QC-A8 Point to the tallest tree/ shortest tree            
QC-A9 This is the last tree. Point to the first tree/ middle tree            
QC-A10 What number comes between three and five X     X      
QC-A11 What comes right before eight X     X      
QC-A12 Tell me the days of the week           X 
 
QC-B1   1   2   3   __ 

     
X 

 
X 

     

QC-B2   1  __  3    4     X X      
QC-B3   5   6   7   __     X X      
QC-B4   7   8  __  10     X X      
QC-B5   15  16  17  __     X X      
QC-B6   18  19  20  __     X X      
QC-B7    5   __    3   2     X X      
QC-B8    2   4    6    __     X X      
QC-B9    6   5    4    __       X X      

Total 5 0 1 0 11 11 0 0 0 0 2 
 
 



 

164 

 
 
Number Sense Assessment C

ount 

O
ne to one 
C

rspnd. 

C
ardinality 

S
ubitizing 

N
um

eral 
R

ecognition 

N
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M
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P
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R
easoning 

N
ot a T

A
M

S
 

focus 

Task 1: Can you hand me 4 cubes? X X       X   
Task 1: Now tell me how many cubes are in the cup?   X         
Task 1: Can you hand me 7 cubes? X X       X   
Task 1: Now tell me how many cubes are in the cup?   X         
Task 1: Can you hand me 10 cubes? X X       X   
Task 1: Now tell me how many cubes are in the cup?   X         
Task 2: How many dots did you see?  (3)    X        
Task 2: How many dots did you see?  (1)     X        
Task 2: How many dots did you see?  (2)    X        
Task 2: How many dots did you see?  (5)     X        
Task 2: How many dots did you see?  (0)    X        
Task 2: How many dots did you see?  (4)    X        
Task 2: How many dots did you see?  (8)    X        
Task 2: How many dots did you see?  (6)    X        
Task 2: How many dots did you see?  (7)    X        
Task 2: How many dots did you see?  (10)    X        
Task 2: How many dots did you see?  (9)    X        
Task 3: Tell me which side has more dots? (1, 9)        X    
Task 3: Tell me which side has more dots? (2, 6)        X    
Task 3: Tell me which side has more dots? (4, 1)        X    
Task 3: Tell me which side has more dots? (5, 3)        X    
Task 3: Tell me which side has more dots? (7, 8)        X    
Task 3: Tell me which side has more dots? (9, 9)        X    
Task 3: Tell me which number is more? (1, 9)     X   X    
Task 3: Tell me which number is more? (2, 6)     X   X    
Task 3: Tell me which number is more? (4, 1)     X   X    
Task 3: Tell me which number is more? (5, 3)     X   X    
Task 3: Tell me which number is more? (7, 8)     X   X    
Task 3: Tell me which number is more? (3, 3)     X   X    
Task 4: Can you put the one where it belongs?     X X      
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Task 4: Can you put the five where it belongs?     X X      
Task 4: Can you put the three where it belongs?     X X      
Task 4: Can you put the two where it belongs?     X X      
Task 4: Can you put the four where it belongs?     X X      
Task 4: Can you put the six where it belongs?     X X      
Task 4: Can you put the nine where it belongs?     X X      
Task 4: Can you put the seven where it belongs?     X X      
Task 4: Can you put the eight where it belongs?     X X      
 3 3 3 11 15 9 0 12 3 0 0 

 
 
Leiter-R C

ount 
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ne to one 
C
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focus 

Fluid Reasoning Tasks          21  
 
 

Total number of MATH items grouped from each 
assessment to measure each skill 

C
ou

n
t 

O
n

e to on
e 

C
rsp

nd
. 

C
ard

in
ality 

S
u

b
itizing 

N
u

m
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R
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N
u

m
b

er 
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e 

A
d

d
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M
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itu
d

e 
C
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p
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P
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p

 

R
easoning 

N
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A
M

S
 

focus 

TEMA 10 2 1 0 3 5 4 3 7   
WJ III- Applied Problems 11 0 4 3 1 0 9 0 2   
WJ III– Quantitative Concepts 5 0 1 0 11 11 0 0 0   
Number Sense Assessment 3 3 3 11 15 9 0 12 3   

 29 5 9 14 30 25 13 15 12   
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