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CHAPTER I 

INTRODUCTION 

 

1.1 Goal 

 The overall goal of this dissertation is to develop a durability and uncertainty 

assessment framework for cementitious materials exposed to external sulfate solution 

using probabilistic methods by incorporating various sources of uncertainty. Furthermore, 

evaluation of sulfate attack on cementitious materials is used to illustrate a general 

approach to uncertainty analysis when coupling chemical and mechanical processes to 

evaluate performance of cementitious materials. In this context, contributions of 

uncertainty from chemical equilibrium, mass transfer and mechanical strength models are 

considered.  

 

1.2 Overview 

Low activity nuclear waste is being disposed by mixing with cementitious materials 

and then being placed in above ground reinforced concrete vaults which are to be covered 

with soil and a final cap to achieve a shallow burial scenario for final disposition. One 

example of this practice is the disposal of “saltstone” at the Department of Energy 

Savannah River Site near Aiken, SC [1]. A significant amount of sulfate ions 

(approximately 24000 mg/L [2]) initially are present in the pore solution of the solidified 

waste form that can potentially leach out of the waste and diffuse into the concrete vault 

walls. The resulting reaction of sulfate ions with the concrete solid phases, and 
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subsequent and cracking of the concrete has been identified as one of the potentially 

important degradation processes for these concrete vaults [3]. Cementitious materials 

under external sulfate attack expand in volume due to the formation of expansive 

products, e.g. ettringite [4, 5] and gypsum [6, 7], leading to cracking and lose strength 

due to calcium leaching and decalcification of the main cement hydration product (i.e. 

calcium silicate hydrate) [8]. If the structure is cracked, the radioactive materials in the 

waste form then may migrate (by diffusion or percolation) through the cracks and be 

transported to the soil or the groundwater. Thus it is important to assess the durability of 

such structures subjected to aggressive conditions so that (1) engineered systems can be 

designed to minimize long-term degradation of contaminant retention structures, and (2) 

contaminant release rates and extents do not exceed acceptable levels.  

 

1.2.1 Numerical model development 

When sulfate ions diffuse through a cementitious structure, they react with cement 

hydration products. Several mineral phases dissolve or precipitate to maintain the 

equilibrium condition of the pore solution. Some ions (e.g., calcium) also start leaching 

out of the structure resulting in changes in porosity. As some or all of the pores within the 

cement are filled with expansive solid phases, precipitated due to the reactions between 

sulfate ions and the cement hydration products, strain develops which leads to stress and 

cracking. This in turn accelerates further diffusion of the ions. The mineralogical 

composition of the microstructure changes with time because of formation and 

dissolution of several mineral phases, with these chemical changes leading to changes in 

strength of the specimen. Ettringite and gypsum form as sulfate ions react with the 
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cement hydration products, while calcium hydroxide and calcium silicate hydrate 

dissolve to replenish the concentration of calcium ions in the pore solution which 

eventually leach out of the structure. These phenomena affect the strength of the structure 

in addition to cracking. Thus the essential components in the degradation of cementitious 

materials due to the ingress of sulfate and leaching of primary material constituents are 

diffusion of ions, chemical reaction, structural damage due to cracking, and change of 

strength due to chemical reactions. Some numerical models available in the literature 

simulate diffusion using detailed partial differential equations and include a detailed 

chemical reaction model, but do not include structural damage accumulation [9]. Some 

models include a continuum damage mechanics based approach to assess the damage of 

the structure, but do not include detailed diffusion and chemical reaction models [10, 11]. 

A few numerical models simulate the effects of calcium leaching [12-15]. Very few 

models are available for simulating the combined effect of calcium leaching and sulfate 

attack [16].  Among the models available in the literature, some models do not include 

structural damage due to cracking [9, 17] and/or strength loss due to calcium leaching [6, 

9-11, 17-19]. Some models assume that calcium and sulfur are the only two species that 

diffuse in and out of the structure [10, 11, 16] whereas exchange of various ions between 

the pore solution and the external environment may also affect the strength of the 

structure. Furthermore, most models do not explicitly consider the impact of pH and 

multi-constituent chemical composition of the external solution, as well as the multi-

constituent evolution of pH and pore solution composition within the material. Thus it is 

important to incorporate all the essential components of the degradation mechanism into 
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a single model framework to accurately simulate the behavior of the structures under 

sulfate attack.  

The most common measure of sulfate resistance of cementitious materials is length 

change of the specimen [20]. Many researchers have attributed the change in length to the 

amount of ettringite formation [10, 11, 21-23]. But there may not be any direct 

relationship between the amount of ettringite formed and the bulk expansion of the 

specimen [24] as assumed by the previous researchers. Also, the structure fails due to 

cracking and loss of strength, which may not have any direct relationship to the bulk 

expansion of the specimen. Thus it is essential to evaluate the mineralogical features of 

the specimen with time, as well as damage of the specimen due to 

precipitation/dissolution of the solids. 

In this dissertation, a numerical modeling framework is developed to evaluate 

behavior of the structure as a function of time integrating all the essential components of 

the degradation process of cementitious materials under external sulfate attack – (1) 

diffusion of ions, (2) chemical reactions of diffused species with the cement hydration 

products, (3) structural damage accumulation due to cracking, and (4) change in strength 

of the structure due to mineralogical changes as a result of chemical reactions.  The 

model uses LeachXS/ORCHESTRA [25] for modeling coupled mass transfer, chemical 

reactions, and processes that result in change in material strength and cracking, and 

MATLAB [26] for evaluating changes in strength of the structure due to cracking and 

chemical reactions. The model is calibrated and validated using experimental results 

available from the literature. The usefulness of the model to evaluate structural damage 

progression and mineralogical evolution is also demonstrated.  
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1.2.2 Identification of influential parameters 

Most experimental studies in the literature regarding degradation of cementitious 

materials under sulfate attack consist of immersing specimens in a sulfate solution under 

a controlled or uncontrolled environment [27-30]. Variations of some of the 

environmental conditions affect the response of the structure more than the others. 

Evaluation of the effects of these factors is important in order to understand the 

implications of these changes in field conditions. Some experimental studies are available 

in the literature that evaluate the effects of external and internal factors on the 

degradation of cementitious materials [27, 30-32]. But very few studies are available that 

evaluate the effects of these factors using a numerical model [33] that includes robust 

representation of chemical and physical processes with being both cost and time 

effective. The numerical model developed in this research is used to study the sensitivity 

of the damage process to the changes in the environmental conditions and material 

properties e.g., pH of the external solution, external solution concentration, cement type, 

porosity or tortuosity of the material. The results are then used to interpret the 

implications of such changes under field conditions. 

 

1.2.3 Calibration of chemical equilibrium model 

One of the most important parts of the probabilistic durability assessment of 

cementitious materials under chemical attack (e.g., sulfate attack in this dissertation) is 

uncertainty quantification for the chemical equilibrium speciation, which has not received 

significant attention in the literature. However, a considerable amount of research has 

been done on the propagation of uncertainty in the chemical equilibrium models in 
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geochemistry and geophysics [34, 35]; but the inverse problem (i.e. uncertainty 

quantification) has not been performed in the past. Numerical simulation of chemical 

degradation of cementitious materials exposed to an aggressive environment has also 

been a focus of research interest for a long time [16, 36-40] as mentioned before. The 

most challenging parts in this regard, are - (1) determining the cement hydration products 

present in a hardened structure, and (2) selecting potential chemical reactions that may 

take place when the structure is exposed to aggressive environment. Several numerical 

models are available in the literature for simulating cement hydration [41-44] that provide 

useful information on the type of solid phases likely to be present in a matured structure. 

Some numerical models developed for simulating concrete degradation consider a limited 

set of chemical reactions that can possibly take place under chemical attack [10, 16, 22]. 

Very few numerical models include flexible platforms that incorporate thermodynamic 

information for simulating chemical reactions [9, 45]. The thermodynamic data required 

for chemical equilibrium modeling is generally obtained from the literature without 

consideration of the laboratory conditions under which these values are determined and 

the human error. It is also important to acknowledge the fact that the mineral phases are 

most likely present as an assemblage rather than pure phases which further introduces 

uncertainty in the structural response. Variability in the material parameters and 

experimental errors also add to the overall uncertainty in the model response. Thus 

treating equilibrium constants deterministically may not represent the system behavior 

appropriately. Also, various approximations and assumptions during the modeling 

process contribute to the uncertainty in the model prediction. Therefore, a numerical 

framework is developed in this research for calibrating the equilibrium constants of a 
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geochemical speciation model for cementitious materials under uncertainty in the 

material properties and experimental conditions. The uncertainty quantification in the 

equilibrium constants are performed using the Bayesian statistical method in conjunction 

with adaptive Markov Chain Monte Carlo simulation techniques.  

 

1.2.4 Probabilistic durability analysis 

The assessment period for the low activity nuclear waste containment structures is 

generally 10,000 years [46] and is therefore dependent on the long-term durability of 

such structures. It is not feasible to perform experiments to evaluate performance of these 

structures at this time scale. Thus the mechanistic model developed in this research can 

be useful in assessing the durability of these structures. If long term structural response is 

of interest, it is important to consider the uncertainty due to variability of the system 

parameters and the fluctuations in the initial and the boundary conditions over time. 

Several service life assessment models available in the literature include variability of the 

parameters [47-50], but assess resistance to degradation using empirical relations. In 

addition to physical variability of the parameters, data uncertainty due to sparse or 

interval data, and model uncertainty due to various assumptions and approximations, 

introduce additional uncertainty in the model predictions. Thus a probabilistic framework 

is developed in this dissertation to assess the durability of such structures under the 

combined effects of sulfate attack and calcium leaching, incorporating various sources of 

uncertainty. Finally, the framework is applied on a one dimensional representation of a 

concrete structure to evaluate the time to complete damage under sulfate attack by 
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separating and then combining various sources of uncertainty in different parts of the 

model.   

Water saturation is assumed as a conservative simplifying assumption for all cases in 

this dissertation. Actual field conditions typically are unsaturated which result in slower 

diffusion and degradation processes than predicted for saturated conditions.  

 

1.3 Research Objectives 

The specific objectives of this research are: 

1. Develop a numerical methodology for assessing degradation of cementitious 

materials under external sulfate attack by integrating various stages of the degradation 

process – diffusion of ions, chemical reactions, and structural damage due to 

cracking. 

2. Extend the model developed in objective 1 to assess the change in strength of the 

cementitious materials exposed to aggressive environment due to changes in the 

mineralogical compositions as a result of chemical reactions. 

3. Perform sensitivity analysis to study the effects of the changes in the environmental 

conditions and material properties on the damage progression and interpret the 

implications of such changes under field conditions. 

4. Develop a methodology for quantifying uncertainty in the chemical equilibrium 

model using experimental results of the leaching behavior of the cementitious 

materials. 

5. Develop a framework for durability assessment of cementitious materials exposed to 

aggressive environment using probabilistic methods incorporating various sources of 
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uncertainty and evaluate the effects of uncertainty in different parts of the model on 

the durability of the structure.  

 

1.3 Dissertation Organization 

 The dissertation is organized as follows: 

Chapter II provides a detailed description of the numerical modeling framework 

developed for assessing degradation of cementitious materials under external sulfate 

attack by integrating various stages of the degradation process – diffusion of ions, 

chemical reactions and structural damage due to cracking. The model is calibrated and 

validated using experimental results obtained from the literature. The usefulness of the 

model in evaluating the mineralogical evolution and mechanical deterioration of the 

structure with time is demonstrated. 

Chapter III extends the model described in Chapter II by incorporating a continuum 

micromechanics based approach for assessing changes in the elastic properties and the 

strength of the structure due to chemical reactions. Two homogenization schemes 

combined with Eshelby’s equivalent inclusion method are used to estimate the 

mechanical properties of the structure that change with time due to dissolution and 

precipitation of the solids. The extended model is then calibrated and validated for (1) 

calcium leaching only, and (2) combined calcium leaching and external sulfate attack 

using experimental results obtained from the literature. 

Sensitivity analysis is performed in Chapter IV using the numerical model to evaluate 

the effects of several external and internal factors (e.g., pH and concentration of the 
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external solution, and porosity and tortuosity of the material) on the degradation of the 

structure.  

Chapter V gives detailed description of a numerical framework for assessing 

uncertainty in the chemical equilibrium module used in the durability assessment 

framework using a Bayesian statistical method combined with adaptive Markov Chain 

Monte Carlo simulation techniques. The method is demonstrated for an example case 

obtained from a database/expert decision support system.  

The ultimate objective of this dissertation is development of a methodology for 

computing the probability of reaching a particular degradation measure as a function of 

time. Various approaches for statistical representation of the uncertainties – (1) physical 

variability due to inherent randomness of physical processes and material parameters, (2) 

data uncertainty due to sparse or interval data, and (3) model uncertainty due to 

assumptions and approximations in modeling a physical process are discussed in chapter 

VI. The methodology for assessing the durability of the structure is implemented using 

nested and single-loop Monte Carlo Simulation techniques. Different sources of 

uncertainty in the particular numerical model developed in this dissertation are identified. 

The effects of these uncertainties on the durability assessment of the structure are also 

demonstrated in this chapter.  

Finally, the dissertation is concluded in Chapter VII by summarizing the contributions 

of this research and recommending possible future work. 
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CHAPTER II 

NUMERICAL SIMULATION OF CEMENTITIOUS MATERIALS DEGRADATION 
UNDER EXTERNAL SULFATE ATTACK 

 

2.1 Introduction 

 Cementitious materials exposed to sulfate rich environment degrade with time due to 

formation of expansive products leading to cracking and eventually to the failure of the 

structure. The degradation mechanism due to sulfate ingress through the structure is 

discussed in this chapter. The numerical approaches developed in the literature for 

simulating degradation along with their shortcomings are also described. A new 

methodology is proposed in this chapter by incorporating all the essential components of 

the degradation mechanism. The numerical model is calibrated and validated using 

experimental data available from the literature. The usefulness of the model in simulating 

the damage propagation through the structure is also demonstrated.  

 

2.2 Mechanism of Sulfate Attack 

 The main components of Portland cement are tricalcium and dicalcium silicates, 

tricalcium aluminate and tetracalcium aluminoferrite. The cement components react with 

water and externally added gypsum to form several cement hydration products. In cement 

chemistry notation, these components are represented as 

C: ,ܱܽܥ ܵ: ܱܵ݅ଶ, :ܣ ,ଶܱଷ݈ܣ ܵҧ: ܱܵଷ, :ܪ ,ଶܱܪ :ܨ  ଶܱଷ etc. [51]. If the hydration is not݁ܨ

complete, some of the cement components remain unreacted. Some of the main hydration 
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products are calcium silicate hydrate (ܪܵܥ), calcium hydroxide or Portlandite (ܪܥ), 

ettringite (ܥ଺ܵܣҧଷܪଷଶ), calcium monosulfoaluminate (ܥସܵܣҧܪଵଶ), hydrogarnet (ܥଷܪܣ଺), 

etc. When sulfate ions penetrate a cement-based structure, a series of reactions take place 

as shown in Eqs. (1) - (7). The sequential process of reactions is shown in Figure 2.1. 

Sulfate ions react with Portlandite to form gypsum and some calcium aluminate phases to 

form ettringite (as shown by the light arrows in Fig. 2.1). Then gypsum reacts with 

calcium aluminate phases (as shown in the box in Fig. 2.1), if present, to form ettringite 

(as shown by bold arrows in Fig. 2.1).  Initially the calcium ions are supplied by 

Portlandite. When Portlandite is not available, calcium silicate hydrate dissociates into 

calcium hydroxide (as shown by the dashed arrow in Fig. 2.1) and silica gel, supplying 

calcium ions for ettringite formation [24]. This dissolution process is controlled by 

chemical equilibria between the solid phases and pore solution and solution conditions 

controlling calcium saturation in pore solution. 

 

 

Figure 2.1 : Schematic diagram of the chemical reactions due to sulfate ingression. 
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The main expansive products formed as a result of the reactions are ettringite and 

gypsum. The changes in volume (∆ ௥ܸ) as a consequence of the chemical reactions with 

respect to the original volume of the reactants ( ௥ܸ) are given in Table 2.1. Reactions 

involved in sulfate attack assuming the source of sulfate ions to be sodium sulfate are as 

follows [3, 10]:  

• Portlandite ܰܽଶܵ ସܱ ൅ ܪܥ ൅ ܪ2 ՜ ଶܪҧܵܥ ൅ (1) ܪ2ܱܰܽ

 

• Monosulfate ܥସܵܣҧܪଵଶ ൅ ଶܪҧܵܥ2 ൅ ܪ16 ՜ ଵଶܪҧܵܣସܥଷଶ (2)3ܪҧଷܵܣ଺ܥ ൅ 3ܰܽଶܵ ସܱ ՜ ܪ6ܱܰܽ ൅ ሻଷܪሺܱ݈ܣ2 ൅ ܪ21 ൅ ଷଶ (3)ܪҧܵܣ଺ܥ2

• Tricalcium aluminate ܥଷܣ ൅ ଶܪҧܵܥ3 ൅ ܪ26 ՜ ܣଷܥଷଶ (4)ܪҧଷܵܣ଺ܥ ൅ 3ܰܽଶܵ ସܱ ൅ ܪܥ3 ൅ ܪ32 ՜ ܪ6ܱܰܽ ൅ ଷଶ (5)ܪҧܵܣ଺ܥ

• Tetracalcium aluminate hydrate 

ଵଷܪܣସܥ ൅ ଶܪҧܵܥ3 ൅ ܪ14 ՜ ଷଶܪҧଷܵܣ଺ܥ ൅ (6) ܪܥ

• Hydrogarnet 

଺ܪܣଷܥ ൅ ଶܪҧܵܥ3 ൅ ܪ20 ՜ ଷଶ (7)ܪҧଷܵܣ଺ܥ

The change in volume due to the chemical reactions is obtained by subtracting the 

total volume of the products from the total volume of the reactants. The change in volume 

leads to volumetric strain if the volume of the products is greater than the volume of the 

reactants (as shown in Table 2.1). The strain developed exerts pressure on the 

surrounding cement matrix. The structure starts cracking when the strain exceeds the 
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strength of the material. Also, the calcium silicate hydrate dissociation into calcium 

hydroxide and silica gel results in loss of strength because silica gel is not adhesive. 

Thus, the net effects of sulfate attack are expansion, cracking and strength loss.  

 

Table 2.1 : Relative volume change in reactions involved in sulfate attack. 

 

 

 

Several hypotheses have been proposed in the past to explain the mechanism of 

expansion [24, 52]. Two prominent hypotheses are – (i) crystal growth pressure 

hypothesis, where it is proposed that the expansion is caused by the growth of large 

ettringite crystals at the cement-aggregate interfaces and cracks; and, (ii) homogeneous 

paste expansion hypothesis where it is proposed that the expansion is caused by the 

growth of small ettringite crystals throughout the paste [53, 54]. But neither of the 

hypotheses is unanimously agreed upon. The model developed in this research is based 

on simplifying assumptions required for computational homogenization. It is assumed 

Reaction Relative volume change (
࢘ࢂ࢘ࢂ∆ )

Eq. (1) 1.24 [3] 

Eq. (2) 0.55 [3] 

Eq. (3) 0.52 [3] 

Eq. (4) 1.31 [3] 

Eq. (5) 2.83 [3] 

Eq. (6) 0.48 [10] 

Eq. (7) 0.92 [3] 
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that the cement hydration products are homogeneously distributed throughout the 

structure. When sulfate ions diffuse through the structure (Figure 2.2a), they react with 

the cement hydration products. The reaction products are also distributed homogeneously 

throughout the cement matrix. If the volume of the products is more than the volume of 

the reactants, the extra volume can only be accommodated in the pore space. The shaded 

area in Figure 2.2b shows the deposited solid product in pore space. The solid product 

grows in volume as the reaction progresses. When it touches the pore wall, it starts 

exerting pressure which leads to stress in the material. If the stress is more than the 

strength of the material, cracks start to form. The solid product does not need to fill up 

the total pore volume in order to start exerting pressure due to the difference in shape of 

the deposited solid and the pore as shown in Figure 2.2c. Thus it is assumed that a 

fraction of the pore volume is available for solid product deposition before strain 

develops and cracking starts. 

 

 

Figure 2.2 : Strain and crack development mechanism. 
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2.3 Numerical Modeling of Sulfate Attack 

 Different models have been developed in the past to numerically simulate the 

phenomenon of sulfate attack. One of the earliest models was developed by Atkinson and 

Hearne [21]. This model was based on an empirical relation between volumetric 

expansion of the structure and the total amount of ettringite formed, developed using 

experimental results. Following Atkinson and Hearne, Clifton and Pommersheim [3] 

developed a model from the assumption that volume change in the reaction gives rise to 

paste expansion which is linearly dependent on the amount of ettringite formed.  

A simple micromechanical model developed by Krajcinovic et al. [11], was based on 

homogenization of microscopic responses on a macroscale for evaluation of the macro 

response of the structure. This model was refined recently by Basista and Weglewski 

[22]. Tixier and Mobasher [10, 33] developed a model similar to that developed by 

Clifton and Pommersheim with a different analytical expression assumed for expansion. 

The model included a continuum damage mechanics approach to evaluate structural 

damage and modified the diffusivity assuming that it increases linearly with increasing 

damage. Bary [16] developed another numerical model incorporating structural damage 

due to cracking; but only calcium and sulfate concentrations were considered to be the 

dominant species in the model.  

Saetta et al. [18] developed a general framework for evaluation of mechanical 

behavior under physical/chemical attacks. This model evaluated the coupled effects of 

moisture, heat and chemical species. Evaluation of expansion and cracking due to 

chemical attack was not included in the model. Another general framework was 

developed by Schmidt-Dohl and Rostasy [19] which was based on thermodynamic and 
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kinetic considerations for evaluation of degradation of structures under chemical attack. 

This model can only be used for chemical reactions with known kinetic rates. Also, it is 

assumed in this model that cause of expansion and cracking of the structure is caused by 

ettringite formation only. Another general framework was developed by Shazali et al. [6] 

to evaluate degradation of concrete under sulfate attack but in relation to gypsum 

formation only. Damage was quantified by a chemical damage parameter (similar to 

Saetta et al.) and was incorporated to evaluate strength of the specimen. 

Samson, Marchand and associates [9, 55-57] developed a numerical model for 

describing the mechanism of ionic transport in unsaturated cement systems. It included 

ionic diffusion through the use of extended Nernst-Planck equation, moisture transport 

and chemical reactions. The model also incorporated the effects of micro-structural 

changes on the transport properties of chemical species in the cementitious materials 

using empirical relations based on experimental results. But this model did not consider 

the changes in the mechanical properties due to cracking and consequent effects on the 

transport (e.g., diffusive) properties. Gospodinov et al. [17] developed a model which 

included diffusion of chemical species into cement and the effects of simplified chemical 

reactions on the changes in porosity. But this model did not include the effects of 

cracking on the material parameters. 

Ping and Beaudoin [58] developed a theoretical model based on the chemical-

thermodynamic principles. It was assumed that the expansion results from conversion of 

chemical energy in the form of crystallization pressure to mechanical energy which 

overcomes the cohesion of the system. The theory was qualitatively validated using 

experimental results; but it was not quantitatively implemented.   
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From the perspective of this research, Tixier’s model and Krajcinovic-Basista’s 

model are particularly important as these models evaluate cracking of the structure under 

sulfate attack using continuum damage mechanics. The general framework of these 

models is presented in Figure 2.3. 

 

 

 

Figure 2.3 : Components of Tixier’s and Krajcinovic-Basista’s models. 
 

As shown in Figure 2.3, diffusion of only sulfate ions was considered in Tixier’s and 

Krajcinovic-Basista’s models. Leaching out of the ions from inside of the structure and 

diffusion coupled with chemical equilibrium of other ions present in the external solution 

were not considered. Expansion of the specimen was assumed to occur due to ettringite 

formation only; gypsum formation, which is also seen to be expansive [6, 7], was not 

taken into account. Calcium leaching out of the specimen while in contact with water also 

was not considered in the aforementioned models. This increases the porosity of the 
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structure [59], hence accommodating more ettringite before strain can develop. Thus, 

improved diffusion and chemical reaction models are needed to accurately simulate the 

behavior of the cementitious materials under chemical attack that are robust enough to 

consider a broader range of cementitious material formulation and composition of 

solutions at the external boundary (i.e., contacting water composition).  

The proposed framework of the model incorporating diffusion of additional species, 

responses to changes in pore structure and more extensive chemical reactions is shown in 

Figure 2.4.  

 

 

Figure 2.4 : Overview of the framework developed in this research. 

 

In the proposed framework, diffusion of all ions from the external solution and 

simultaneous leaching out of the ions from inside of the structure are considered. 
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processes are assumed to change the porosity of the structure. Volume change of solid 

phases due to the chemical reactions leads to change in porosity and strain. Strain leads to 

cracking of the structure which is reflected in the damage parameter. Change in porosity 

and cracking are assumed to modify the diffusivity which affects further diffusion of the 

ions. Thus the developed framework integrates the needed parts for more robust 

assessment of degradation of cementitious materials under sulfate attack in a unified 

framework. The specific approaches used for each phenomenon are described below. 

 

2.3.1 Diffusion of ions  

Diffusion of an ion through a saturated porous material under isothermal condition is 

modeled by taking into account diffusion of ions under concentration gradient as well as 

under chemical activity gradient, assuming diffusion under electrical potential is 

negligible [9, 60, 61]. This is expressed as ߲ሺ߮ܿ௜ሻ߲ݐ ൌ divሺܦ௜଴߮߬ ሺgradሺܿ௜ሻ ൅ ܿ௜gradሺln ௜ሻሻ (8)ߛ

where ܿ௜ is the concentration of the ݅௧௛ ion, ܦ௜଴ is the free solution diffusivity of the ion, ߮ is the porosity, ߬ is the tortuosity and ߛ௜ is the chemical activity coefficient of the ion. 

The first term on the right hand side is the rate of diffusion due to the concentration 

gradient. The second term is the rate of diffusion due to the interactions of ions among 

each other. If there are ܰ ions present in the system e.g. ܽܥଶା, ܰܽା, ܵ ସܱଶି,  ,.ଶା etc݃ܯ

then ܰ equations are formed for diffusion of all the ions using Eq. (8). These ܰ equations 

are solved simultaneously in order to obtain diffusion profiles of all the ions. The 

modified Davies equation [62] is used to calculate the chemical activity of the ions which 

produces better results for highly concentrated ionic solutions (application range 0-1500 
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mmol/L) such as concrete pore solutions [63] than other formulations of activity 

coefficient [64] and is given as  

ln ௜ߛ ൌ െ 1ܫ√௜ଶݖܣ ൅ ܽ௜ܫ√ܤ ൅ ሺ0.2 െ 4.17 ൈ 10ିହܫሻݖܣ௜ଶ1000√ܫ  (9)

 

where ݖ௜ is the valence of the ion, and  is the ionic strength of the solution expressed as  

ܫ ൌ 12 ෍ ௜ଶܿ௜ேݖ
௜ୀଵ  (10)

and A and B are temperature dependent parameters given as 

ܣ ൌ ௞ܴܶሻଷଶ (11)ߝሺߨ௥ଶ݁଴8ܨ2√

ܤ ൌ ඨ ௞ܴܶ (12)ߝ௥ଶܨ2

 

where  is the electrical charge of one electron (1.602 ൈ 10ିଵଽ C) and  is a 

parameter dependent on the species (assumed to be 3 ൈ 10ିଵ଴ m as an average value for 

all the species [62]), ܨ௥ is the Faraday’s constant (96488.46 C/mol), ܴ is the universal 

gas constant (8.3143 J/mol/K), ܶ is the temperature and ߝ௞ is the permittivity of the 

medium (i.e. water in this case) given as ߝ௞ ൌ ௥ (13)ߝ଴ߝ

where ߝ଴ is the permittivity of the vacuum (8.854 ൈ 10ିଵଶ F/m) and ߝ௥ is the dielectric 

constant of water (80).  The temperature is assumed to be 298 ܭ for the simulations 

presented in this chapter. However, it is important to verify the ionic strength of the pore 

solution before application of the Davies equation as pore solution ionic strength may 

I

0e ia
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exceed the equation’s application range as can be found in [65]. The appropriate activity 

coefficient is then applied to each ion in solution based on the actual speciation of 

individual ionic forms for each element in solution as calculated as part of the Orchestra 

equilibrium speciation calculations at each node and time step. The activity coefficients 

are used in Eq. (8) for the calculation of diffusion profiles of the ions and in the chemical 

equilibrium calculations as discussed in the next subsection.  

  

2.3.2 Chemical reactions  

When the ions diffuse through the cementitious material, they react with the cement 

hydration products. Some solids dissolve or precipitate to maintain the equilibrium state 

of the pore solution which leads to changes in porosity of the structure. Diffusivity 

changes due to the changes in porosity as shown in Figure 2.4. The approach adopted for 

chemical equilibrium calculations, changes in porosity and changes in diffusivity are 

discussed in this subsection.  

Several researchers have used partial differential equations with empirical reaction 

rate constants combined with Fick’s law to simulate diffusion and chemical reactions [6, 

10, 11, 16, 36, 66]. Alternatively, some researchers have used an uncoupled approach to 

model diffusion and chemical reactions [55] which is computationally more efficient than 

the coupled approaches [9]. An explicit finite difference scheme is applied to solve the 

diffusion equations. Then, a sequential noniterative approach is used to couple diffusion 

and chemical reactions where transport equations are solved first followed by chemical 

equilibrium calculations. Iterations between these two modules are avoided by using a 

variable time stepping scheme. The criterion for choosing a time step is restricting the 
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change in mass between two adjacent cells to within 1% of the total quantities of all the 

ions present in the cells. The minimum of all the time steps calculated using this method 

is adopted for the next time step.  

A built-in chemical reaction module in a geochemical speciation and transport code, 

ORCHESTRA [25], is used here to calculate the equilibrium phases of the solids 

formed/dissolved as a result of the chemical reactions within each unit cell. Consider two 

species A and B that react to form another species C, with the formation reaction as 

follows : ܽܣ ൅ ܤܾ ՜ (14) ܥܿ

At equilibrium, the relation among A, B and C can be expressed as [34] ሺܥሻ௖ ൌ ሻ௕ (15)ܤሻ௔ሺܣ௘௤ሺܭ

where ܭ௘௤ is the equilibrium constant and ሺ… ሻ is the activity of the corresponding 

species and is expressed as ሺܣሻ ൌ ஺ߛ ஺ܿ (16)

 where ߛ஺ is the activity coefficient as calculated from Eq. (9) and ஺ܿ is the concentration 

of A. If N number of species are considered, there will be N simultaneous equations 

which will need to be solved to determine the amount of each species in the system at 

equilibrium. The resulting system of simultaneous equations along with charge and mass 

balance equations are solved at each time step. The chemical reaction module used here 

is flexible which allows any number of ions and mineral phases to be considered in the 

equilibrium calculations, thus making it an efficient platform for modeling a system as 

complicated as concrete. The solid phases and their equilibrium constants considered for 

simulations in this chapter are given in Table 2.2. The equilibrium constant values are 



24 
 

calculated with respect to the primary species ݈ܣଷା, ܽܥଶା, ݁ܨଷା, ݃ܯଶା, ܪସܵ݅ ସܱ, ܰܽାand ܵ ସܱଶି using ORCHESTRA database.    

Table 2.2 : Equilibrium constants of solid phases. 

Chemical formula Common name log K 2ܱܽܥ. .ଶܱଷ݈ܣ ܱܵ݅ଶ. ଶܱܪ8 Stratlingite -49.44 [25]2ܱܽܥ. .ଶܱଷ݁ܨ ܱܵ݅ଶ. .ܱܽܥଶܱ Fe-Stratlingite -42.33 [25]3ܪ8 .ଶܱଷ݈ܣ .ܱܽܥଶܱ Hydrogarnet -79.53 [25]3ܪ6 .ଶܱଷ݈ܣ ܵܽܥ ସܱ. ଶܱܪ12 Calcium monosulfoaluminate -74.29 [25]3ܱܽܥ. .ଶܱଷ݁ܨ ଶܱܪ6 Fe-Hydrogarnet -72.41 [25]݃ܯሺܱܪሻଶ Brucite -16.84 [25]3ܱܽܥ. .ଶܱଷ݈ܣ ܵܽܥ3 ସܱ. ଶܱܪ32 Ettringite -56.90 [25]3ܱܽܥ. .ଶܱଷ݁ܨ ܵܽܥ3 ସܱ. ଶܱܪ32 Fe-Ettringite -49.78 [25]݁ܨሺܱܪሻଷ Iron hydroxide -3.00 [25] ݈ܣሺܱܪሻଷ Gibbsite -7.76 [25] ܵܽܥ ସܱ. ଶܱܪ2 Gypsum 4.60 [25] ܽܥሺܱܪሻଶ Portlandite -22.80 [25]݈ܰܽ݅ܵܣଷ଼ܱ Analbite -3.51 [25] ܰܽଶܵ ସܱ. .ܱܽܥଶܱ Mirabilite 1.11 [25] ܱܵ݅ଶ Silica gel 2.71 [41] 2ܪ10 2.4ܱܵ݅ଶ. ଶܱܪ3.2 Tobermorite-I -28.03 [41]0.83ܱܽܥ. ܱܵ݅ଶ. .ܱܽܥଶܱ Tobermorite-II -11.17 [41]1.67ܪ1.3 ܱܵ݅ଶ. ଶܱ Jennite -29.52 [41]ܪ2.1
 

At each time step, material properties change as chemical reactions alter the 

composition of the structure. Porosity increases or decreases due to the precipitation and 

dissolution of the solid phases. The change in porosity is calculated as  

߮ ൌ ߮଴ െ ∆ ௦ܸܸ  (17)

where  and  are the current and the initial porosities respectively, ܸ is the volume of 

the representative volume element and ∆ ௦ܸ is the change in solid volume expressed as 

∆ ௦ܸ ൌ ෍൫ܸ݉ െ ܯ൯ݐܸ݅݊݅݉
݉ൌ1  (18)

ϕ 0ϕ
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where  is the number of solid phases,  and  are the initial and current volume 

of the  solid. The change in volume is negative (or positive) if the final volume of 

solids is less (or more) than the initial volume as a result of dissolution (or precipitation) 

of solids. The pore volume increases (or decreases) as can be calculated from Eq. (17). 

Diffusivity increases (or decreases) with increase (or decrease) in pore volume. The 

change in diffusivity due to the change in porosity is calculated using an empirical 

equation given as [9] 

஽ሺ߮ሻܪ ൌ ݁ସ.ଷఝ௏೛݁ସ.ଷఝబ௏೛  (19)

where ௣ܸ is the volume of the paste. Eq. (19) is a correction factor which is multiplied 

with the diffusivity (
஽೔బఛ ) in Eq. (8) and is used as the changed diffusivity for the next time 

step. 

The ions present in the pore solution can only react with the species in contact with 

them through the pore wall. Thus only a fraction of the total amount of the species will be 

available to the ions in the pore water. The available quantities are obtained from a 

database/expert decision support system, LeachXS [67]. The database contains results of 

a large number of experiments performed on a range of cement and mortar compositions. 

Specimens are crushed to simulate a completely degraded state (95% of the material < 2 

mm in size resembling completely cracked specimen) and are allowed to leach while in 

contact with water under different pH conditions until solid-solution chemical 

equilibrium is approximated. It is assumed that the maximum leached amount as well as 

the maximum amount capable of reacting with the pore solution for a particular specimen 

(i.e. the available quantities) cannot exceed the amount obtained from the experiments. 

M init
mV mV

thm
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The LeachXS database in conjunction with ORCHESTRA also provides information 

regarding the mineral phases most likely to be present in the system and required to 

produce good agreement between the experimental results and model representation for 

solution concentration of the set of dissolved species (e.g., ܱିܪ, ,ଶାܽܥ ܵ ସܱଶି, etc.) as a 

function of pH and liquid-to-solid ratio of the extractions.  

The chemical reaction module used in this research is flexible, and allows any 

number of ions and mineral phases to be included in the numerical framework provided 

the thermodynamic data for the mineral phases are known (i.e. equilibrium constants as 

in Eq. (15)). 

 

2.3.3 Damage accumulation 

The change in solid volume due to the chemical reactions and the leaching is 

calculated as in Eq. (18) where the volume of each solid is calculated by multiplying 

number of moles of the solid with its molar volume. The molar volumes of the solids 

considered in this study are shown in Table 2.3 [41, 68]. The change in solid volume 

leads to development of strain and cracking which changes the diffusivity of the ions as 

shown in Figure 2.4. The approach adopted to relate the changes in solid volume to the 

formation of cracks is described in this subsection. 
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Table 2.3 : Molar volumes of the mineral phases [41]. 

Mineral Phase Molar Volume (cm3/mol) ܥ଺ܵܣҧܪଷଶ ଼ܪܵܨଶܥ 216 ଼ܪܵܣଶܥ ଺ 155ܪܨଷܥ ଺ 150ܪܣଷܥ 707 ଶ.ଵܪଵ.଺଻ܵܥ 227 ଶܪҧܵܥ 29 (amorphous) ܵ 33 ܪܥ ଵ.ଷ 59ܪ଴.଼ଷܵܥ 78 ଵଶܪҧܵܣସܥ 75 309 
Al(OH)3 (amorphous) 32 ܥଶܵଶ.ସܪଷ.ଶ 59*

Fe(OH)3 (microcrystalline) 34 ܰܽଶܵ ସܱ 220 
* It is assumed that the molar volume of Tobermorite-I (ܥଶܵଶ.ସܪଷ.ଶ) is the same as 

Tobermorite-II (ܥ଴.଼ଷܵܪଵ.ଷ) due to lack of data. 
 

The solid products formed as a result of chemical reactions will precipitate in the 

capillary pores. It is assumed that a fraction of the pore volume will be filled before strain 

starts to develop. This accounts for the fact that ettringite (one of the main expansive 

products formed as a result of sulfate attack) is a needle shaped structure and it can 

generate stress as soon as its ends touch the pore wall [69] even if the pore is not 

completely filled. In general, it accounts for the differences in morphologies of the pore 

and the precipitated solids. It also accounts for the effect of pore size distribution on solid 

deposition and does not require distinction amongst pore size domains. Essentially this 

feature is a model parameter which needs to be calibrated using experimental results. A 

first estimate of this parameter can be obtained by assuming a fraction of the capillary 

porosity as ions diffuse mainly through capillary pores and diffused ions interact with the 
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solids surrounding the capillary pores. Let us assume the fraction of porosity to be ܾ. The 

net solid volume change contributing to strain development is then calculated as ∆ ௦ܸതതതത ൌ ∆ ௦ܸ െ ܾܸ߮ (20)

Clifton and Pommersheim [3] assumed that expansion and cracking will not start until all 

of the pore volume is filled up by reaction products which leads to ܾ ൌ 1. Tixier and 

Mobasher [33] estimated the value of ܾ to be between 0.05 to 0.45 by calibrating the 

model response using experimental results, Basista and Wegnewski [36] assumed it to be 

0.5. Denham [70] estimated the maximum porosity loss under different scenarios to be 34% by performing numerical simulations and it was concluded that fracture will only 

start occurring if the amount of porosity available is ൑ 34%. More pore volume is 

available for solid product deposition if ܾ is greater, leading to delayed initiation of 

cracking. Similarly, initiation and rate of crack progression is faster if ܾ is smaller.   

If ∆ ௦ܸതതതത ൐ 0, volumetric strain can be calculated as 

ҧߝ ൌ ∆ ௦ܸതതതതܸ  (21)

Otherwise, strain is zero. Assuming that the material is isotropic, uniaxial strain is 

calculated as 

ߝ ൌ ҧ3 (22)ߝ

Cracks start to form once the developed strain exceeds the strength of the material. A 

continuum damage mechanics based model is used to relate the cracked state of the 

structure to the strain calculated from Eq. (22). The cracked state of the structure is 

manifested in a scalar quantity known as damage parameter.  Conceptually, the damage 

parameter used here can be interpreted as the surface density of material defects [18] and 

it can be expressed as the ratio of the damaged area (area of the crack) to the original area 
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[18, 71] as shown in Figure 2.5. Several formulations are available in the literature which 

relates strain/stress to the damage parameter [72-76]. The approach used in this research 

is described in the following paragraphs. 

 

 

Figure 2.5 : Schematic diagram depicting concept of damage parameter. 

 

A qualitative stress-strain diagram for cementitious materials under tensile stress is 

shown in Figure 2.6. 

 

Cracked area: A c

Undamaged area: A Damaged area: Ac

Damage parameter :
A

Ac=ω
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Figure 2.6 : Stress-strain diagram of concrete under tension [6]. 

 

Cementitious materials contain pores and micro-cracks which do not affect the strength 

of the structure in the elastic region (segment OA in Figure 2.6). In the nonlinear 

ascending region (segment AB in Figure 2.6), new micro-cracks form which finally 

coalesce at B to form macro-cracks leading the structure to failure defined by the 

nonlinear descending curve. In the nonlinear ascending region, the damage parameter  

is related to the Poisson’s ratio (If a load is applied in the longitudinal direction of a 

specimen, then the Poisson’s ratio can be expressed as ߥ ൌ െ Lateral strain

Longitudinal strain
) of the 

damaged structure for a three-dimensional case and the density of the nucleated cracks ܥௗ 

 ௗ combines the information about the number and the size distribution of theܥ .[71]

cracks per unit volume of the material and can be expressed as [71] 

ௗܥ ൌ ݇ሺ1 െ ߝ௧௛ߝ ሻ௠ for ߝ ൐ ௧௛ (23)ߝ
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where ߝ is the strain, ߝ௧௛  is the threshold strain at which the micro-cracks start forming, 

and ݇ and ݉ are model parameters that need to be calibrated from the experimental 

stress-strain diagram following the procedure given below. 

In the nonlinear ascending region of the stress strain diagram, an equivalent Young’s 

modulus (ܧ) can be expressed as ܧ ൌ ଴ሺ1ܧ െ ߱ሻ (24)

where ܧ଴ is the Young’s modulus obtained as the initial tangent or the slope of the linear 

part of the curve (segment OA in Figure 2.6) and ߱ is the damage parameter. For the 

uniaxial case, stress  and strain (ε) in the nonlinear region can be related as  ߪ ൌ ଴ሺ1ܧ െ ߱ሻ(25) ߝ

Assuming that the damage parameter is not affected by the Poisson’s ratio of the 

damaged structure for a one-dimensional simulation,  can be expressed as [71, 77] 

߱ ൎ 169 ௗ (26)ܥ

Combining Eqs. (23), (24), (25) and (26) the following expression can be obtained as  

ߪ ൌ ଴ሾ1ܧ െ 169 ݇ ቆ1 െ ߝ௧௛ߝ ቇ௠ሿ(27) ߝ

From Eq. (27) and the stress strain diagram obtained from the experimental data, ݇ and 

 can be calibrated using a least squares curve fitting method.  

The post-peak stress and deformation of the structure (segment BC in Figure 2.6) are 

modeled by using the relations proposed by Nemat-Nasser and Hori [10, 78]. based on 

fracture mechanics and are given as  

௧ᇱߪ݂ ൌ ඩtan ቀ߱ߨ଴2 ቁtanሺ2߱ߨ ሻ  (28)

( )σ

ω

m
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଴ݓݓ ൌ ௧ᇱߪ݂ logሾsecሺ2߱ߨ ሻሿlogሾsecሺ߱ߨ଴2 ሻሿ െ 1 (29)

where ௧݂ᇱ is the maximum tensile stress, ߱଴ is the damage parameter corresponding to the 

peak stress, ݓ is the post-peak deformation (ൌ ൫ߝ െ  is the thickness of ݔ݀ where ݔ௣൯݀ߝ

the cell) and ݓ଴ is the deformation corresponding to the peak stress (ൌ  A relation .(ݔ௣݀ߝ

between the damage parameter and the deformation of the structure can be obtained by 

combining Eqs. (28) and (29).  

 

2.3.4 Change in mechanical and diffusion properties due to cracking 

Mechanical and diffusion properties change due to the presence of the cracks. In the 

literature, the effect of the cracks on the material properties has been studied using 

effective continua or mean field models when the density of the cracks is sparse [79] 

(referred to as mean field regime). The modified relation between the diffusivity and the 

crack density parameter in this regime can be expressed as [11, 36] 

ܦ ൌ ௜଴߬ܦ ሺ1 ൅ 329 ௗሻ (30)ܥ

Similar linear relations between the elastic moduli (Young’s modulus and Poisson’s 

ratio) and the damage parameter are also derived as [11, 36] 

ܧ ൌ ଴ሺ1ܧ െ 169 ௗሻ (31)ܥ

ߥ ൌ ଴ሺ1ߥ െ 169 ௗሻ (32)ܥ

where ܧ଴ and ߥ଴ are the initial Young’s modulus and Poisson’s ratio. Eqs. (30), (31) and 

(32) are derived based on a self-consistent method which is not valid once macro-cracks 
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start forming and propagating through the structure (referred to as percolation regime). In 

this region, the scaling law for diffusivity is given as [11, 36, 80] ܦ௣ ן ሺܥௗ െ ௗ௖ሻఓ (33)ܥ

where ܥௗ௖ is the conduction percolation threshold below which concentration of cracks is 

sparse and ߤ is a universal exponent (= 2 for three dimensional cases). The percolation 

threshold was determined to be 0.182 using numerical simulation for a specimen with 

randomly oriented penny shaped cracks by Charlaix [81]. It is assumed by Krajcinovic et 

al. [11] that a parallel connection exists between the nonintersecting microcracks still 

present in the system and the growing macrocracks. Thus the overall diffusivity is 

calculated as [11, 36] 

ܦ ൌ ௜଴߬ܦ ሾ൬1 ൅ 329 ௗ൰ܥ ൅ ሺܥௗ െ ௗ௘௖ܥௗ௖ሻଶሺܥ െ ௗሻሿ (34)ܥ

where ܥௗ௘௖ is the rigidity percolation threshold at which the cluster of cracks transects the 

volume. At the rigidity percolation threshold, the strength of the structure vanishes. The 

rigidity percolation threshold was determined to be 0.712 using numerical simulation by 

Sornette [82]. The effect of damage on the elastic moduli in this regime is not well 

investigated in the literature. Thus Eqs. (31) and (32) are assumed to be valid in the 

percolation regime as well which modifies the rigidity percolation threshold to 9/16 at 

which ܧ and ߥ become zero [11, 36]. 

In summary, the model described here combines multi-ionic diffusion with chemical 

equilibrium calculations and continuum damage mechanics. The model can be used to 

predict distribution profiles of the various ions in solution and solid phases. Also, the 

progression of damage in space and time can be simulated, which then can be used to 

assess the durability of the structure. 
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2.4 Simulation Results 

2.4.1 Model calibration and validation 

Data on a test specimen was obtained from the literature [9, 83].  The specimen 

consisted of CSA Type 10 cement with water cement ratio 0.6 and density 1742 kg/m3. 

Porosity of the specimen is experimentally found to be 0.52 by [9] and this value is used 

in the simulations. The specimen was a 7 cm diameter disk of height 20 mm which was 

immersed in 30 L of 50 mmol/L Na2SO4 solution at pH 10.3 for a year. All the faces of 

the sample were sealed except for one circular face so that diffusion can be simplified as 

a net 1-dimensional phenomenon. The external solution was renewed every 7 days. The 

initial pH of the pore solution is calculated to match the initial ܱିܪ concentration as 

given in [9] and is used in the simulation. The comparison between the initial pore 

solution composition as computed by the proposed model and that experimentally 

determined by [9] is given in Table 2.4. 

 

Table 2.4 : Comparison of pore solution compositions. 

Ions Computational results of proposed 
model 

(mmoles/L) 

Experimental results by Samson and 
Marchand [7] 
(mmoles/L) ܱ429.3 465.0 ିܪ ܰܽା 215.4 111.1 ܭା 273.1 327.0 ܵ ସܱଶି 3.45 5.6 ܽܥଶା 1.03 1.3 ݈ܣሺܱܪሻସି  0.17 0.2 

 

The calcium and sulfur profiles were measured at the end of 3 months, 6 months and 1 

year. Model calibration parameters are the fraction of porosity available for solid product 
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deposition, i.e. ܾ in Eq. (20), and tortuosity. The calibrated values were found to be 0.3 

and 35 for b and tortuosity, respectively, to fit the experimental results of 3 months. The 

total available concentrations of the different species are obtained for a Portland cement 

paste of similar composition from the LeachXS database. 15 minerals are considered for 

dissolution/precipitation as shown in Table 2.2. The CSH phase is modeled using the 

‘solid solution model’ developed by Kulik and Kersten [41, 84]. The model is based on 

the assumption that the CSH phase can be described by two concurrent solid solution 

systems – (i) mixture of amorphous silicon dioxide (ܱܵ݅ଶ) and Tobermorite-I 

.ܱܽܥ2) 2.4ܱܵ݅ଶ. .ܱܽܥଶܱ) and (ii) mixture of Jennite (1.67ܪ3.2 ܱܵ݅ଶ.  ଶܱ) andܪ2.1

Tobermorite-II (0.83ܱܽܥ. ܱܵ݅ଶ.   .ଶܱ). The calibration results are shown in Figure 2.7ܪ1.3

 

 

(a) Total calcium profile 
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(b) Total sulfur profile 

Figure 2.7 : Total calcium and sulfur profiles in solid phases at the end of three 
months after Samson and Marchand [7]. 

 

Experimental profiles (solid lines) for calcium and sulfur and the simulation results 

(solid-dotted lines) shown in Figures 2.7 and 2.8 were obtained from Samson and 

Marchand [9]. The experimental results performed by SIMCO technologies, Canada were 

scaled to match the simulation results performed using STADIUM software by Samson 

and Marchand [9]. The simulations performed using the model developed in this research 

(shown as dashed lines) are seen to qualitatively match with the experimental results. The 

initial mineral composition used in Samson and Marchand are based on the mass 

conservation law (equating amount of each species in the cement with that in the 

probable solid phases) whereas the initial mineral composition for the current simulations 

is obtained by attaining thermodynamic equilibrium along with the conservation of mass 

of each species in the cement and in the potential solid phases (mass conservation law as 

described above). The calibrated model as developed here then was used to validate the 
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model responses at the end of 6 months and 1 year using the experimental results as 

shown in Figure 8. The experimental results are the total concentrations of calcium and 

sulfur present as solid phases in the system. The model uses the available quantities (i.e. 

readily leachable) of the species to calculate the solid compositions in the system as 

mentioned earlier. Thus the total quantities are calculated by adding the unavailable 

quantities (= total quantity – available quantity) to the simulation results. The 

concentrations of the species are calculated at each node. As the concentration at a very 

small distance inside the structure (ݔ ൌ  i.e. in between the first node (boundary (ߜ

corresponding to the external solution) and second node (inside the structure) is not 

known, the unavailable quantities are plotted at ݔ ൌ 0. In Figures 2.7 and 2.8, the calcium 

profiles show a decrease in concentration near the boundary due to leaching of calcium to 

the outside solution. The peaks in the sulfur profiles occur due to the formation of 

gypsum which are followed by ettringite formation, which can be identified as a further 

reduction in sulfur concentration in Figures 2.7b, 2.8b and 2.8d. Thus, the mineralogical 

evolution can be predicted from the numerical simulations, as well as the damage 

progression as presented below.   
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(a) Total calcium profile 

 

(b) Total sulfur profile 
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(c) Total calcium profile 

 

(d) Total sulfur profile 

Figure 2.8 : (a), (b) – Total calcium and sulfur profiles in solid phases at the end of 
six months after Samson and Marchand [7]; (c), (d) – Total calcium and sulfur 
profiles in solid phases at the end of one year after Samson and Marchand [7]. 

 

The maximum value of the damage parameter for the purpose of the above simulations is 

assumed to be 0.9 instead of 1 to allow for the additional system uncertainties and 
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adequate margin in ‘design’ performance. The damage front progression for the 

experimental case simulated is estimated by the depth up to which all the elements are 

calculated to be cracked (i.e. damage parameter reaching its maximum value of 0.9) at 

the simulation time corresponding to the experimental results.  The calculated damage 

front is calculated to be at 1.4 mm and 2.4 mm from the specimen boundary based on the 

numerical simulation after 6 months and 1 year, respectively as shown in Figure 2.9.  

 

Figure 2.9 : Progression of damage parameter in time and space. 

 

The drop in the damage parameter at approximately 1.2 mm as seen in the damage 

parameters profiles at the end of 6 months and 1 year is due to the fact that calcium 

leaching (which occurs simultaneously with cracking due to expansive product 

formation) increases porosity before the element is completely cracked. It is important to 

note that damage occurs not at the structure surface, but rather at some depth from the 

surface as a combined result of calcium leaching and sulfate attack. The indicated depth 
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of the initial damage is suggestive of the spalling depth generally observed in the 

literature, but this needs to be experimentally verified. The sample used in the reported 

experiment had a large porosity value (= 0.52) which allows for more solid product 

deposition before strain develops. Cement mortar and concrete samples generally have 

much smaller porosities (0.1 – 0.3). Thus strain develops more easily in the case of 

cement mortar and concrete samples than in cement paste samples.  

 

2.4.2 Damage progression 

Damage may not be a significant factor for short term performance, but it can affect 

the long term durability of the structures and therefore needs to be considered through 

numerical simulations. A structure fails under sulfate attack due to cracking, thus 

requiring consideration of the cracking progression as a function of initial conditions (i.e., 

formulation) and external conditions. The usefulness of the numerical modeling 

framework developed in this research in evaluating damage progression and subsequent 

failure of a structure is illustrated next.  

A numerical simulation is performed on an example case to demonstrate the 

progression of damage in space and time. The simulated specimen is a US Type I cement 

mortar with porosity 0.3, cement:water:sand mass ratio 1:0.5:3, tortuosity 36, density 

1800 kg/m3. The fraction of available porosity is assumed to be 0.2. The specimen is 

immersed in a 0.35 M Na2SO4 solution (0.35 moles/L) and the solution is renewed every 

7 days. The specimen is a 25 mm x 25 mm x 285 mm prism and the volume of the 

external solution is 1.78 L assuming liquid to solid volume ratio to be 10. All the six 

faces of the specimen are exposed to the external solution. This three-dimensional 



42 
 

problem is chosen to represent real life cases. In most of the experiments found in the 

literature, a specimen is immersed in an aggressive solution where all the faces of the 

specimen are exposed to the solution. Also, all the real life cases are three-dimensional. 

The numerical model proposed in this dissertation is one-dimensional. If simulations are 

needed for such real cases, it is essential to idealize them as one-dimensional problems. 

Thus the actual three dimensional problem is idealized to represent a one-dimensional 

problem as shown in Figure 2.10. For simplicity of demonstration, the structure is 

assumed to be a cube having each side to be of length L. The structure is divided into N 

hollow cubes (or shells) of thickness dx starting from outside towards the center of the 

specimen. The hollow cubes are labelled as A, B, C and D in Figure 2.10a. The three-

dimensional structure is idealized as a one-dimensional structure as shown in Figure 10b. 

The area in contact with the external solution for the first element is  and volume 

is . This constitutes the first element of the one dimensional idealized structure 

which is labelled as A. The area of the second element is  and volume is

. This constitutes the second element of the idealized structure which 

is labelled as B. In this way, all the elements of the three dimensional structure can be 

idealized to represent one-dimensional elements. The three-dimensional structure is 

exposed to the external solution on all sides whereas the idealized structure is exposed to 

the external solution only on one side as shown by the arrows in the figure. This process 

can be modified to idealize a prismatic shape as is used in this example problem.  

 

26LA =

AdxV =

26 )(' dxLA −=

dxdxLV 26 )(' −=
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(a) Three dimensional structure (b) One dimensional idealization 

Figure 2.10 : One dimensional idealization of a three dimensional structure. 
 

Similar to the previous numerical simulation, the total available (i.e. readily 

leachable) concentrations of the different species were obtained for a Portland cement 

mortar from the LeachXS database. The available concentrations are lesser than the total 

concentrations of the species present in the system. The initial solid phase distribution 

along 25 mm dimension using the available concentrations of the ions is shown in Figure 

2.11a, where the Y-axis is the amount of the indicated minerals in g/kg of the total 

material and X-axis is the depth within the material from the face in mm. Since the solid 

phase distribution is symmetrical about the center of the specimen, only a half-width is 

shown in the figures. It is important to note that the available concentration of Portlandite 

is more than that of CSH in Figure 2.11a. Portlandite reacts/leaches more easily than 

CSH which starts reacting only when Portlandite is depleted from the system. Therefore, 

the available quantity of Portlandite as shown in Figure 2.11a is most of the total quantity 

whereas the available concentration of CSH is a small fraction of the total quantity 

(available silicon concentration is 20% of the total quantity for this example problem).  

A B C D L

dx

A B C D

dx
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The final solid phase distribution after one year of simulation is shown in Figure 

2.11b. The complete dissolution of hydrogarnet combined with sulfate ion ingression 

contribute to the increase in ettringite concentration. It is also evident from Figure 2.11b 

that gypsum forms from Portlandite (calcium hydroxide) and sulfate ions (as shown in 

Eq. (1)) as the Portlandite dissolution front coincides with the gypsum formation front. 

Also, decalcification of CSH is seen by the dissolution of the Jennite-Tobermorite-II 

mixture as is expected when the structure is exposed to aggressive water [13, 31, 85]. 

Figure 2.11b also shows that at a depth up to approximately 0.5 mm ettringite is 

completely depleted. This is found to be due to the low pH value near the surface (below 

8), which also corresponds with the literature reports [8]. Thus, the mineralogical features 

of the cementitious materials under sulfate attack are reasonably simulated using the 

numerical model developed in this research. The change in porosity due to the change in 

volume as a result of the chemical reactions is shown in Figure 2.12. The initial decrease 

in porosity is due to the formation of gypsum and ettringite. As soon as the available 

porosity is filled up, strain starts to develop which leads to cracking of the structure. After 

a while, porosity increases when calcium starts to leach out to the surrounding solution.  
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(a) Solid phase distribution of undamaged structure (initial condition) 

 

 
(b) Solid phase distribution after one year of simulation 

Figure 2.11 : Distribution of the solid phases. 
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Figure 2.12 : Porosity profile with time and space. 

 

Figure 2.13 shows the progression of damage with time and space. Figure 2.14 shows 

the damage front has progressed up to approximately 6 mm after one year. It is evident 

from Figures 2.11b and 2.12 that the damage front is coincident with the gypsum 

progression front (end of the peak of Gypsum is approximately at 6 mm). The calcium 

aluminate phase (for this case hydrogarnet phase) is completely consumed by sulfate to 

produce ettringite as can be observed in Figure 2.11b. If ettringite had initiated damage, 

the front would have moved to the end of the structure which is not the case as can be 

seen in Figure 2.12. As calcium hydroxide was available in the system, gypsum 

continued to form as sulfate ions continued to diffuse (refer to Eq. (1)). This corresponds 

to an increase in solid volume as can be seen from Table 2.1. This increase in volume 

leads to strain and cracking. This indicates that gypsum in addition to ettringite is a 

prominent contributor of volumetric expansion which was not included in the prior 

models as can be seen from Figure 2.3.  
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Figure 2.13 : Progression of damage parameter in time and space. 

 

 

Figure 2.14 : Damage progression front at the end of one year. 

 

As time progresses, the damage parameter increases with the increase in strain until it 

reaches the maximum value. The element is assumed to have failed when it reaches the 

completely cracked state characterized by the maximum damage parameter. More sulfate 

ions then diffuse in more rapidly through the cracks and more ettringite and gypsum are 

formed due to the chemical reactions, leading to failure of more elements. This increases 
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the rate at which damage front progresses. A failure criterion of the structure can be 

defined as the failure of all or some of the elements reaching the maximum damaged 

state. Finally, a time to failure of the structure can be obtained from the simulation. This 

type of simulation is especially useful in design for durability as well as for inspection 

and maintenance scheduling. 

 

2.5 Conclusions 

A numerical model for assessing the degradation of cementitious materials under 

sulfate attack is developed in this chapter. The model combines detailed approaches for 

the three essential components of degradation under sulfate attack: (1) multi-ionic 

diffusion under concentration gradient and chemical activity gradient, (2) chemical 

equilibrium calculation to determine the amounts of dissolution and precipitation of solid 

products, and (3) assessment of the cracked state of the structure that affects further 

diffusion of the sulfate ions using a continuum damage mechanics model. The model is 

calibrated and validated using experimental results obtained from the literature. This 

model can be used to determine the profiles of the ions and the minerals as well as the 

progression of structural damage in time and space. Thus this model can potentially be 

applied for the assessment of long-term durability of cementitious structures.  
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CHAPTER III 

NUMERICAL SIMULATION OF CHANGE IN STRENGTH AND STIFFNESS OF 
CEMENTITIOUS MATERIALS DUE TO CHEMICAL REACTIONS 

 

3.1 Introduction 

 Various chemical reactions take place between cement hydration products and the 

diffusing sulfate ions when a cementitious structure is exposed to aggressive sulfate 

containing environment as is mentioned in Chapters I and II. The chemical reactions alter 

the mineralogical compositions leading to changes in the mechanical properties of the 

structure.  The numerical model described in Chapter II is extended in this chapter by 

incorporating changes in the mechanical properties of the structure due to changes in the 

mineralogical composition under exposure to aggressive sulfate rich environment. This 

extension of the previous model is shown as the damage assessment box in Figure 3.1.  

 The concrete structure is idealized as a homogeneous matrix by applying 

homogenization schemes at different length scales. The changes in the mechanical 

properties are obtained by using the compositions of the mineral phases at different time 

steps. Finally, the damage due to cracking and mineralogical evolutions are combined to 

obtain overall damage state of the structure. The numerical simulation framework 

developed for evaluating changes in the mechanical properties of the structures due to 

chemical reactions is described in this chapter. The improved model is calibrated and 

validated with the experimental results available from the literature. 
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Figure 3.1 : Overview of the extended modeling framework. 

 

3.2 Numerical Simulation Framework 

 Concrete can be viewed as a composite material where various phases at different 

length scales control its mechanical properties (see Figure 3.2).  
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Figure 3.2 : Homogenization stages of concrete. 

 

Various homogenization schemes have been used in the literature to estimate the 

mechanical properties at different stages of hydration of cementitious materials [44, 45, 

86]. Yang and Huang [87] estimated the mechanical properties of concrete structures 

using the properties of cement pastes and aggregates obtained from the experiments. 

Guillon et al. [88] evaluated the effects of complete dissolution of various phases on the 

stiffness of the material using a homogenization scheme applied to a finite element code; 

but diffusion of various ions and the evolution of the mineralogical features  as a function 

of time were not considered. Constantinides and Ulm [89] used another homogenization 

scheme to estimate mechanical properties of sound and leached pastes using volume 

fraction of various phases from the experiments. Bary [16] used a numerical model 

combined with a homogenization scheme to evaluate the effect of sulfate ingress and 

calcium leaching on degradation of cementitious materials. However, this model 

considers calcium and sulfur to be the only diffusing species and gypsum and ettringite to 

be the only products that form as a result of chemical reactions. Also, this model does not 
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consider the changes in the mineralogical characteristics of C-S-H as a result of calcium 

leaching. In this research, two homogenization schemes combined with Eshelby’s 

equivalent inclusion method are used at different length scales to homogenize the multi-

phase system to an equivalent homogeneous system at the macro-scale. Following 

Constantinides and Ulm [89], four homogenization stages (i.e. length scales) are 

considered as shown in Figure 3.2. 

Stage I :  This stage is composed of C-S-H which is the main cement hydration product. 

This phase is modeled as a combination of two concurrent solid solution systems [41] – 

(i) mixture of amorphous silicon dioxide (ܱܵ݅ଶ) and Tobermorite-I 

.ܱܽܥ2) 2.4ܱܵ݅ଶ. .ܱܽܥଶܱ) and (ii) mixture of Jennite (1.67ܪ3.2 ܱܵ݅ଶ.  ଶܱ) andܪ2.1

Tobermorite-II (0.83ܱܽܥ. ܱܵ݅ଶ.  ଶܱ). According to Taylor’s C-S-H model, Jenniteܪ1.3

comprises the majority of the C-S-H phase in an undegraded structure [90]. However, the 

composition of C-S-H changes as the chemical reactions progress when the structure is 

exposed to aggressive environment.  

Stage II : This is composed of various cement hydration products, e.g., homogenized C-

S-H (from stage I), Portlandite, ettringite, hydrogarnet, gypsum. Application of a 

homogenization scheme at this stage results in a homogeneous cement paste phase. The 

composition of this phase also changes with time as a result of chemical reactions. 

 Stage III : Sand particles and capillary pores embedded in a homogenized cement paste 

phase (from stage II) comprise stage III. This is referred to as cement mortar. The 

interfacial transition zone is not considered to keep the formulation simple. This phase 

loses complete strength if all of the cement paste leaches out.  
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Stage IV : This stage is modeled as a cement mortar matrix with coarse aggregates 

embedded in it. This describes the macro-scale concrete structure. 

The above mentioned stages are separated by at least one order of length magnitude. 

This condition is necessary to satisfy the separation of scales condition [91]. There is a 

discrete difference in modeling stages I/II and stages III/IV. Stages I/II are composed of 

various phases where the composition changes during the degradation process in a way 

that any phase may become dominant. However, a dominant phase can easily be 

identified throughout the degradation process for stages III (cement paste) and IV 

(cement mortar). Complete degradation of the dominant phases in stages III and IV 

signify complete loss of strength due to the loss of the binding material. Thus two 

different modeling approaches are used to simulate stages I/II and stages III/IV. A self-

consistent approach is applied to model stages I/II where the elastic properties are 

estimated by solving simultaneous nonlinear coupled equations and Mori-Tanaka scheme 

is applied to model stages III/IV where the elastic properties are estimated by solving 

nonlinear simultaneous uncoupled equations. The general homogenization scheme is 

described below [44, 89, 92]. 

The macroscopic strain is assumed to be the volumetric average of the microscopic 

strains and is expressed as 

ҧߝ ൌ 1ܸ න ሻܸ݀࢞ሺߝ ൌ ௏ (35)ۄ௥ߝۃ

where ࢞ is the position vector, ߝ௥ is the strain in phase ݎ, ܸ is the volume of the 

representative volume element and ۄܲۃ௏ represents volume average of the quantity ܲ. 

The microscopic strain is related to the externally applied strain (ߝ଴) as 
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௥ߝ ൌ :௥ܣ ଴ (36)ߝ

where ܣ௥ is a fourth order tensor called the ‘concentration factor’ and is expressed as  ܣ௥ ൌ ሾܫ ൅ ܵ: ଴ିܥ ଵ: ሺܥ௥ െ ଴ሻሿିଵ (37)ܥ

where ܫ is a fourth order identity tensor, ܵ is a fourth order Eshelby tensor and ܥ଴ and ܥ௥ 

are stiffness tensors of the reference phase and phase ݎ. The stiffness matrices are defined 

as ܥ௥ ൌ 3݇௥ ܭ ൅ ଴ܥ(38) ܬ௥ߤ2 ൌ 3݇଴ܭ ൅ (39) ܬ଴ߤ2

where ݇ and ߤ are the bulk and the shear moduli, ܭ ൌ ଵଷ  ௜௝ is the Kroneckerߜ ௞௟ whereߜ௜௝ߜ

delta function, and ܬ ൌ ܫ െ ܵ The Eshelby tensor is expressed as .ܭ ൌ ܭߙ ൅ (40) ܬߚ

where for a spherical inclusion in a homogeneous matrix, the expressions for ߙ and ߚ 

reduce to 

ߙ ൌ 3݇଴3݇଴ ൅ ଴ߤ4 and ߚ ൌ 6ሺ݇଴ ൅ ଴ሻ5ሺ3݇଴ߤ2 ൅ ଴ሻ (41)ߤ4

Using Eqs. (35) and (36), the relation between macroscopic strain and the applied strain 

is expressed as ߝҧ ൌ :௏ۄ௥ܣۃ ଴ (42)ߝ

The macroscopic stress (ߪത) and the macroscopic strain are related as ߪത ൌ :ҧܥ ߝ ҧ (43)

where ܥҧ is the homogenized stiffness tensor. Assuming that the macroscopic stress can 

be calculated as the volumetric average of the microscopic stresses, the homogenized 

stiffness tensor can be expressed as ܥҧ ൌ :௥ܥۃ :௏ۄ௥ܣ ௏ିଵۄ௥ܣۃ ൌ 3ത݇ܭ ൅ (44) ܬҧߤ2
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where ത݇ and ߤҧ are the homogenized bulk and shear moduli which can be expressed as 

[44] ത݇ ൌ ෍ ௥݂݇௥ሺ1 ൅ ߙ ൬݇௥݇଴ െ 1൰ሻିଵ ൈ ሾ෍ ௥݂ሺ1 ൅ ߙ ൬݇௥݇଴ െ 1൰ሻିଵ௥ ሿିଵ௥  (45)

ҧߤ ൌ ෍ ௥݂ߤ௥ሺ1 ൅ ߚ ൬ߤ௥ߤ଴ െ 1൰ሻିଵ ൈ ሾ෍ ௥݂ሺ1 ൅ ߚ ൬ߤ௥ߤ଴ െ 1൰ሻିଵ௥ ሿିଵ௥  (46)

where ௥݂ is the volume fraction of phase ݎ. The elatic moduli of various phases (i.e., ݇௥ 

and ߤ௥ values) are obtained from the literature [45, 88, 93] and are given in Table 3.1. 
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Table 3.1 : Mechanical properties of various phases [45, 88, 93]. 

Mineral/Aggregates Formula Bulk 
modulus, ݇௥ 

(GPa) 

Shear 
modulus, ߤ௥ 

(GPa) 
Calcium hydroxide ܱܽܥ.  ଶܱ 40 16ܪ

Calcium monosulfate ܱܽܥ. .ଶܱଷ݈ܣ ܵܽܥ ସܱ. ଶܱܪ12 40 16 
Gibbsite* ݈ܣሺܱܪሻଷ 14.9 9 

Ettringite and Fe-
Ettringite* 

.ܱܽܥ3 .ଶܱଷ݈ܣ ܵܽܥ3 ସܱ.  ଶܱܪ32
and 3ܱܽܥ. .ଶܱଷ݁ܨ ܵܽܥ3 ସܱ. ଶܱܪ32 14.9 9 

Hydrogarnet and Fe-
Hydrogarnet* 

.ܱܽܥ3 .ଶܱଷ݈ܣ  ଶܱܪ6
and 3ܱܽܥ. .ଶܱଷ݁ܨ  ଶܱܪ6

14.9 9 

Stratlingite* and Fe-
Stratlingite* 

.ܱܽܥ2 .ଶܱଷ݈ܣ ܱܵ݅ଶ.  ଶܱܪ8

and 2ܱܽܥ. .ଶܱଷ݁ܨ ܱܵ݅ଶ.  ଶܱܪ8

14.9 9 

Gypsum ܱܽܥ. ܱܵଷ.  ଶܱ 42.5 15.7ܪ2

Iron hydroxide ݁ܨሺܱܪሻଷ 14.9 9 
Jennite 1.67ܱܽܥ. ܱܵ݅ଶ.  ଶܱ 18.9 11.9ܪ2.1

Tobermorite-II 0.83ܱܽܥ. ܱܵ݅ଶ.  ଶܱ 13.9 8.8ܪ1.3

Tobermorite-I 2ܱܽܥ. 2.4ܱܵ݅ଶ.  ଶܱ 18.9 11.9ܪ3.2

Silica gel ܱܵ݅ଶ 0.4 0.5 

Gravel - 69 0.23 
Sand - 80 0.21 

* Assumed to be same as that given for C-S-H in Haecker et al. due to the lack of data. 

 

This approach is known as the self consistent scheme if ܥ଴ ൌ  ҧ in Eq. (39) and theܥ

Mori-Tanaka scheme if ܥ଴ ൌ  .௠ where ݉ represents the matrix or the dominant phaseܥ

Finally, the homogenized Young’s modulus can be calculated as 

തܧ ൌ 9ത݇ߤҧ3ത݇ ൅ ҧ (47)ߤ
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A structure fails as a result of cracking and loss of strength due to sulfate attack and 

calcium leaching. Thus it is important to evaluate the interaction of these two failure 

modes. When calcium in the pore solution decreases, calcium silicate hydrate dissociates 

into silica gel releasing calcium in the pore solution. This leads to an increase in porosity 

that creates more space for solid product deposition before strain can develop; hence the 

process of cracking under tension is delayed. Thus calcium leaching acts as a beneficial 

process with respect to cracking. On the other hand, when sulfate starts diffusing into the 

structure, gypsum and ettringite form that may lead to cracking and hence increased 

leaching and diffusion. Thus cracking aggravates both calcium leaching and sulfate 

attack. The numerical model is capable of representing these effects as shown in chapter 

II. Additionally, formation and deposition of additional products in the pore increases the 

compressive strength as more material is present to resist the compression. But the same 

argument may not be true in case of tensile strength as the newly deposited material may 

not be perfectly bonded so that it can resist the tensile stress. Thus it is assumed in this 

dissertation that the deposition of additional solids in the pore will increase the 

compressive strength, but not the tensile strength. 

As mentioned earlier, the structure experiences tensile stress due to the formation of 

expansive products under sulfate attack. The three dimensional volumetric expansion 

results in three dimensional tensile strain which may lead to cracks in three axial 

directions. In a compressive strength assessment experiment, the specimens at various 

stages of their degradation are taken out of the aggressive solution and a uniaxial 

compressive load is applied on them to evaluate their compressive strength. When a three 

dimensional structure is subjected to uniaxial compressive load, it experiences a tensile 
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stress in the directions perpendicular to the axis of application of the compressive load. A 

preexisting crack perpendicular to the axis of load application closes due to load reversal 

(tensile to compressive), but the cracks perpendicular to the other axes open up under 

tensile load that ultimately leads the structure to failure. Detailed analysis of this 

phenomenon requires three dimensional numerical modeling of the damage mechanics. 

This could be achieved by extending the present one-dimensional model to three-

dimensions. In order to simplify the problem, it is assumed in this chapter that the relative 

change in the effective Young’s modulus is equivalent to the relative change in the 

compressive strength of the structure. In this regard, alternative relations between the 

Young’s modulus and the compressive strength available from the literature [51] can also 

be used. It is also assumed that the effect of the changes in chemical composition of the 

structure due to the exposure to an aggressive environment and cracking can be obtained 

by superimposing the effect of one factor (e.g., changes in chemical composition which 

results in ܧത) on another (e.g., cracking which is manifested in ܥௗ). This approach has 

been used previously by many researchers to evaluate the effects of various factors on 

material properties [6, 94-99] and it is commonly known as the multifactor law [100]. 

The effective Young’s modulus in compression at the macroscale is then calculated as 

effܧ ൌ തሺ1ܧ െ 169 ௗሻ (48)ܥ

 

3.3 Model Calibration and Validation 

Experimental results are gathered from the literature for the purpose of calibrating 

and validating the model presented in the previous section. This is achieved in two steps 

– (a) calibration and validation of the model for evaluating strength loss due to calcium 
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leaching only and (b) calibration and validation of the model for evaluating strength loss 

due to combined calcium leaching and sulfate attack. 

 

3.3.1 Strength loss due to calcium leaching 

The experimental data for strength loss due to calcium leaching are obtained from 

Nguyen et al. [101]. A concrete cylinder of 110 mm diameter and 220 mm height is 

immersed in 6 moles/L of ammonium nitrate solution for a period of approximately 700 

days after curing the sample for five months in water. Ammonium nitrate solution creates 

a more aggressive environment for leaching than deionized water [101, 102]. The 

specimen is composed of ordinary Portland cement, sand and gravel with a mass ratio of 

1:1.82:2.8 and water-cement ratio of 0.6. Both ends of the specimen are sealed so that 

diffusion only occurs through the curved area of the specimen. The volume of the 

external solution is chosen in the experiment in such a way that renewal of the solution 

can be avoided if pH is less than 8.2. Thus the pH is fixed at 8 in the numerical 

simulation. The structure is divided into 80 elements and concentration and pH of the 

external solution at the boundary is kept fixed throughout the simulation. Initial solid 

composition as calculated by the chemical reaction module (ORCHESTRA) is given in 

Table 3.2. 
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Table 3.2 : Initial solid composition. 

Solid phases Quantity 
(moles/m3) 

Portlandite 1.3 ൈ 10ଷ
Ettringite 49.63 

Hydrogarnet 1.3 ൈ 10ଶ 
Tobermorite-II 1.63 ൈ 10ଶ

Jennite 1.04 ൈ 10ଶ
Fe-Hydrogarnet 75.68

 

Porosity and tortuosity of the specimen are calibrated to satisfy two conditions – (i) 

the sum of the volumes of the aggregates, minerals and pores is equal to the volume of 

the representative volume element; and (ii) the error between the experimental results and 

the model responses is minimal. The calibrated values are 0.15 and 120 for porosity and 

tortuosity, respectively. Figure 3.3 shows a comparison of the model response and the 

experimental results of mean stiffness as a function of time.  

 

 

Figure 3.3 : Mean stiffness as a function of time. 
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The difference between the model response and the experimental results is mainly 

due to the assumed values of the porosity, tortuosity, the elastic moduli of different 

phases. It is important to acknowledge that the model similar to all available numerical 

models is based on various assumptions and approximations which may also contribute to 

the difference between model predictions and experimental observations. It is also 

important to note that calibration of the necessary parameters requires much more than 

the available data. Nguyen et al. determined the extent of the degradation by adding 

phenolphthalein that turns from colorless to pink around pH 9. Thus the depth up to 

which pH < 10 is plotted as a function of the square root of time using the calibrated 

parameters and compared to the experimental results as shown in Figure 3.4. The figure 

shows an acceptable agreement between the experimental results and the numerical 

simulation results given the fact that there are numerous parameters not available for this 

particular experiment (e.g., pH and renewal rate of the external solution, volume of the 

external tank and elastic moduli of sand and gravel) that need to be assumed for the 

simulation. 

 



62 
 

 

Figure 3.4 : Degradation depth as a function of square root of time. 

 

 3.3.2 Strength loss due to combined effect of calcium leaching and sulfate attack 

The experimental data for compressive strength of an ordinary Portland cement 

mortar sample under the combined effect of calcium leaching and sulfate attack are 

obtained from Akoz et al. [103]. The oxide composition of the Portland cement is 

obtained from Akoz et al. The specimens of size 40 ൈ 40 ൈ 160 mm are cured in lime 

saturated water at 20଴C for 27 days. Then they are immersed in ܰܽଶܵ ସܱ solution of 2700 mg/L (Exp 1), 18000 mg/L (Exp 2) and 72000 mg/L (Exp 3) except for some 

control specimens. Cement-sand mass ratio is 1:3 and water-cement ratio is 0.5. The 

experiment is performed for 300 days. The structure is divided into 50 elements for 

simulation purposes. The concentration of external solution is renewed every 14 days and 

pH of the solution is restored to 7 (assumed value due to the lack of data). The volume of 

the immersion tank is assumed to be 10 times the volume of the specimen as no 
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information is available on the size of the tank. The initial solid composition as calculated 

by the chemical reaction module is given in Table 3.3. 

 

Table 3.3 : Initial solid composition. 

Solid phases Quantity 
(moles/m3) 

Portlandite 1.28 ൈ 10ଷ
Ettringite 37.25 

Hydrogarnet 2.01 ൈ 10ଶ
Tobermorite-II 1.77 ൈ 10ଶ

Jennite 1.13 ൈ 10ଷ
Fe-Hydrogarnet 85.95

Brucite 1.23 ൈ 10ଶ
 

The model parameters are calibrated using the results of Exp 3  (Figure 3.5) and 

validated  with the results of Exp 1 and 2 (Figures 3.6 and 3.7). The calibration 

parameters are porosity (0.25) and tortuosity (50) and the fraction of porosity available 

for solid product deposition (0.55). It is evident from Figure 3.5 that there is a significant 

decrease in the strength of the specimen under 72000 mg/L of ܰܽଶܵ ସܱ solution. Figure 

3.6 shows that there is very little increase in strength followed by a very small decrease in 

strength under 18000 mg/L of ܰܽଶܵ ସܱ solution. But the change in strength of the 

specimen under 2700 mg/L of ܰܽଶܵ ସܱ solution is not significant as shown in Figure 3.7. 

The increase in strength is due to the precipitation of ettringite and gypsum if no cracks 

form. Strength starts decreasing as soon as cracks form. Increase in concentration of 

sulfate solution increases the amounts of gypsum and ettringite formation that results in 

crack formation and finally loss of strength. Figure 3.8 shows the damage parameter 

profiles under three different concentrations of sulfate solution at the end of 300 days. 
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The maximum value of the damage parameter is assumed to be 0.9 instead of 1 to allow 

for additional system uncertainties and adequate margin in design performance. It can be 

seen from the figure that there is no crack development in the structure exposed to 2700 

mg/L of sulfate solution. Sulfate attack and calcium leaching are simultaneous and 

competing processes. Calcium leaching increases porosity which in turn delays the 

cracking process under sulfate attack. The effects of these simultaneous processes are 

manifested in the damage profile for 18000 mg/L of sulfate solution. The damage 

parameter rises to approximately 0.56 near the boundary (1st element) and then decreases 

to approximately 0.1 (2nd element) and then rises back up to 0.35 (3rd element). Figure 3.9 

shows higher porosity at approximately 1.4 mm at the end of 300 days for the specimen 

under 18000 mg/L of sulfate solution than that under 72000 mg/L of sulfate solution. The 

higher porosity prevented cracks to grow further as shown in Figure 3.8. Crack formation 

was most prominent for the specimen exposed to 72000 mg/L of sulfate that resulted in 

significant loss of strength of the specimen as shown in Figure 3.5. It is important to note 

that strength loss under sulfate attack is mostly governed by the crack formation, and 

effect of calcium leaching and C-S-H deterioration on strength loss is not very 

significant.    
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Figure 3.5 : Changes in compressive strength under 72000 mg/L of sodium sulfate 

solution. 

 

Figure 3.6 : Changes in compressive strength under 18000 mg/L of sodium sulfate 
solution. 
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Figure 3.7 : Changes in compressive strength under 2700 mg/L of sodium sulfate 
solution. 

 

 

Figure 3.8 : Damage parameter profile at the end of 300 days for various 
concentrations of sodium sulfate solution. 
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Figure 3.9 : Porosity profile at the end of 300 days for various concentrations of 
sodium sulfate solution. 

 

3.4 Conclusions 

A numerical model for assessing the degradation of cementitious materials exposed to 

sulfate solution is described in Chapter II and it is extended in this chapter. The previous 

model combined detailed approaches for three essential components of degradation: (1) 

multi-ionic diffusion under concentration and chemical activity gradients, (2) chemical 

equilibrium calculation to determine the amounts of dissolved and precipitated solid 

products, and (3) assessment of the cracked state of the structure using continuum 

damage mechanics. In this chapter, the model is extended by incorporating a continuum 

micromechanics based approach for the assessment of changes in the strength of the 

structure due to changes in its mineralogical composition during degradation e.g. 

formation of expansive phases such as ettringite and gypsum and dissolution of solid 

phases such as calcium hydroxide and calcium silicate hydrate (i.e. commonly known as 

calcium leaching). The improved model can be used to evaluate the elastic properties and 
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the strength of the structure as a function of time in addition to the profiles of the ions and 

the minerals as well as progression of cracking in time and space. 
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CHAPTER IV 

SENSITIVITY ANALYSIS 
 

4.1 Introduction 

Identification of influential parameters is helpful in designing and maintenance 

scheduling of a structure for long-term durability. Use of a reliable numerical model can 

save time and cost when used judiciously in conjunction with experimental validation. In 

this regard, very few numerical studies are available in the literature that evaluate the 

effects of external and internal factors using a numerical model [33] that includes robust 

representation of chemical and physical processes. The numerical model that has been 

shown to be able to reproduce the trends in the experimental results with reasonable 

accuracy in the Chapters II and III, is used in this chapter to evaluate the effects of 

various factors on the response of the structure. The results of the numerical sensitivity 

analysis are then used to interpret implications of such changes in the field conditions.  

 

4.2 Sensitivity Analysis Framework 

Seven parameters are selected for sensitivity analysis – pH, concentration and 

renewal rate of external solution, initial porosity and tortuosity of the structure, available 

fraction of porosity (b in Eq. (20) in Chapter II), and cement type. A base test case, about 

which specific variables are varied as part of sensitivity analysis, is defined using a 50 mm ൈ 50 mm ൈ 50 mm US Type I cement mortar sample immersed in a tank. All 

faces are exposed to a 350 mmol/L of Na2SO4 solution. The initial pH value for external 
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solution is 7 and volume of the tank is chosen to be 30 L. The volume of the tank is 

chosen to be large (as opposed to 4 ൈvolume of the solid as recommended in ASTM 

C1012 [20]) so that the changes in the external solution do not influence the results from 

other factors. Initial porosity and tortuosity are assumed to be 0.25 and 100. The mass 

ratio of cement to water to sand is assumed to be 1:0.5:3. A 2 year period is simulated 

with these basic values unless otherwise specified and one factor is varied at a time while 

fixing the other factors at their basic values. A one-dimensional idealization scheme is 

adopted as shown in Figure 2.10 of Chapter II. Half of the structure is divided into 51 

elements where the first cell represents the external solution.  

 

4.2.1 External solution pH 

The external solution pH is fixed at values of 3, 5, 7, 9 and 12. The external solution 

concentration and pH are restored to the starting values at every renewal occurrence, 

which is 7 days in the base case. The simulations are performed for 10 years to magnify 

the effects of pH on the degradation of cement-based structures. Stability of solids in the 

cement matrix is dependent on the pore solution pH which is affected by the pH of the 

surrounding solution. Figure 4.1 shows the pH profiles of the pore solutions after 10 

years. It is evident from Figures 4.1 and 4.2 that the calcium-leached depth increases with 

decreasing pH. This phenomenon was also observed by Cao et al. [31]. He investigated 

the effect of three pH values i.e. 3, 7 and 12 on the strength of the structure. It is 

important to note that calcium profiles for pH – 5, 7, and 9 are close while the calcium 

profiles for pH = 3, 7 (or 5 or 9) and 12 are widely separated. It is also important to note 

that complete dissolution of calcium phases near the boundary is seen in the simulations 
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(Figure 4.2). This may not reflect the real situation as kinetic aspect of the reactions is not 

included in the present model and external solution pHs of 3 and 12 are considered 

extreme environmental conditions. Thus a certain amount of calcium will probably be 

present even if the structure is exposed to aggressive environment for a long time. 

Porosity increases due to calcium leaching which enhances further diffusion. Diffusion of 

more sulfate increases the formation of more ettringite and gypsum that may lead to more 

cracking. In contrast, the increase in porosity (pore space) for solid product deposition as 

a result of calcium leaching delays cracking. Thus the degradation of structures is 

dependent on the relative rates of diffusion of sulfate ions and calcium leaching. These 

competing processes result in damage front progression rates that are not significantly 

different from each other as shown in Figure 4.3. The decrease in pH increases calcium 

leached depth, but it may not increase the rate of damage progression significantly. In this 

respect, the use of a numerical model can provide important insights to the mineralogical 

characteristics and degradation of the structure and provide a useful basis for further 

experimental verification. 
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Figure 4.1 : Effect of external solution pH on pore solution pH profiles after 10 
years of simulated immersion. 

 

 

Figure 4.2 : Effect of external solution pH on calcium profiles after 10 years of 
simulated immersion. 
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Figure 4.3 : Effect of external solution pH on damage progression after 10 years of 
simulated immersion. 

 

4.2.2 External solution concentration 

The concentration of external sulfate solution is fixed at five different values – 0.15, 

0.25, 0.35, 0.45, and 0.55 moles/L. Higher concentration of sulfate in the external 

solution induces a higher concentration gradient which enhances diffusion of more 

sulfate ions. This leads to formation of more ettringite and gypsum which can be 

observed as progressively broader peaks of sulfur in solid phases in Figure 4.4. 

Formation of more ettringite and gypsum leads to more cracking which enhances further 

diffusion of sulfate ions which in turn induces more damage. Figure 4.5 shows the rate at 

which the damage progresses that is more rapid for higher concentrations of sulfate 

solution. Thus the model described in this research can be used to estimate the rate of 

damage progression and hence service life of the structure exposed to a particular 

concentration of sulfate.  
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Figure 4.4 : Effect of external solution concentration on sulfur profiles after 2 years 
of simulated immersion. 

 

Figure 4.5 : Effect of external solution concentration on rate of damage 
progression after 2 years of simulated immersion. 
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4.2.3 Renewal rate of external solution 

Ions can diffuse into an underground structure from the surrounding soil. The 

saturation level and the amount of ions in the soil are dependent on the fluctuating level 

of groundwater and percolation from the surface due to precipitation. The pH and 

concentration of the external solution in contact with the structure change in response to 

soil pore water flow. In many case the surrounding soil is not a significant source of 

sulfate. Immersion tests are generally performed to assess the degradation of the vault 

concrete materials. In this case, the renewal rate of the external solution also plays an 

important role on leaching of various species from the structure. Thus numerical 

simulations are performed to evaluate the effect of renewal rate of external solution on 

the response of the structure. Six renewal rates are chosen for this purpose – 1 day, 7 

days, 14 days, 30 days, 180 days and no renewal for 2 years. 1day, 7 days and 14 days 

renewal rates represent frequent rain incident in the field; 30 days represents moderately 

humid area where rain and groundwater fluctuation are common; 180 days and 2 years 

represent relatively and extremely dry areas respectively. The volume of the external 

solution is fixed at 0.5 L (4 times the volume of the solid) for this particular simulation to 

magnify the effect of the renewal rate. Increasing frequency in renewal rate results in 

more aggressive conditions than less frequent renewal rates. Figure 4.6 shows that the 

calcium leached depth is more for frequent renewal rate than that for rare renewal rate. 

Calcium leaching increases porosity of the structure which in turn increases further 

diffusion of sulfate; but it also increases the available pore space for solid product 

delaying cracking. Thus the competing processes of calcium leaching and diffusion of 

sulfate result in similar rates of damage progressions for renewal rates up to 1 month, but 
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then it becomes progressively slower for renewal rates of 6 months and no renewal as 

shown in Figure 4.7. The behavior of the structure as seen in Figure 4.7 would be 

impossible to predict from intuitive reasoning without performing experiments or 

numerical simulations.  

 

 

Figure 4.6 : Effect of renewal rate of external solution on calcium profiles after 2 
years of simulated immersion. 
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Figure 4.7 : Effect of renewal rate of external solution on rate of damage front 
progression after 2 years of simulated immersion. 

4.2.4  Initial Porosity 

The initial porosity is fixed at 0.15, 0.2, 0.25, 0.3 and 0.35 to evaluate the effect of the 

initial porosity on the response of the structure. Ions diffuse faster if porosity is more 

which leads to faster formation and dissolution of solids. In contrast, the available solid 

volume is less if porosity is greater in a fixed representative volume element, which 

results in the availability of less solid phases for reaction. As the available fraction of 

porosity (b) is fixed in the simulations, less solid volume is needed to initiate strain in a 

less porous structure resulting in faster formation of cracks. Thus a linear empirical 

relation cannot be established between the initial porosity and the loss of strength because 

of the aforementioned competing processes. Figure 4.8 shows that the movement of 

sulfur peaks does not have any direct relationship to the initial porosity. Figure 4.9 shows 

the lack of a direct relationship between the rate of damage front progression to the initial 

porosity. The figure also shows that with the increase in porosity, rate of damage 
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progression increases initially and then it starts to decrease. Thus an upper limit on the 

rate of damage progression can be found for a particular exposure condition and for a 

range of porosity values that a structure can have due to uncertainties arising from 

various sources. This limit can be estimated by performing numerical simulations for use 

in designing a structure for a particular purpose.  

 

Figure 4.8 : Effect of initial porosity on sulfur profiles after 2 years of simulated 
immersion. 
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Figure 4.9 : Effect of initial porosity on rate of damage front progression after 2 
years of simulated immersion. 

 

 4.2.5 Available fraction of porosity 

As mentioned before, strain starts to develop once the pore volume is partly or 

completely filled. The fraction of the pore volume which is available for solid product 

deposition (b) before strain starts to develop is a model parameter that depends on the 

shape of the solid deposited and the pore size distribution of the structure. Numerical 

simulations are performed for 30%, 40%, 50%, 60% and 70% of initial porosity to 

evaluate the effect of the factor on the behavior of the specimen after 2 years. Increase in 

available porosity increases the amount of solid that must be deposited before strain can 

develop. Thus, an increase in b delays the initiation and progression of cracking. Figure 

4.10 shows the rate of damage front progression with increasing b. It is evident from the 

figure that the structure experiences more damage if the available pore space is less. As 
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damage increases, diffusion of ions in and out of the structure also increases leading to 

faster damage as shown in Figure 4.10. 

 

Figure 4.10 : Effect of available fraction of porosity on rate of damage front 
progression after 2 years of simulated immersion. 

 

4.2.6 Initial tortuosity 

Tortuosity is defined as the ratio of the length of the actual path between two points 

travelled by species to the linear distance between them. Diffusion of ions will take 

longer if the structure has a higher tortuosity value. This results in faster damage 

accumulation for less tortuous structures and a higher rate of strength loss as shown in 

Figure 4.11. A structure with a low water-cement ratio has a higher tortuosity value that 

results in a slower diffusion rate and a slower rate of damage progression, thus making it 

preferable to a structure with a high water-cement ratio.   
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Figure 4.11 : Effect of initial tortuosity on rate of damage front progression after 2 
years of simulated immersion. 

 

 4.2.7 Cement type 

Type I cement is commonly used in construction whereas if the structure can be 

potentially exposed to sulfate solutions, Type V cement or a sulfate resistant cement is 

used. The compositions of the cements used in the simulation are taken from Al-Dulaijan 

et al. [32]. Table 4.1 shows the initial solid compositions for the two cement types as 

calculated using the chemical reaction module. It is important to note that the use of 

different cements result in different material characteristics e.g. porosity and tortuosity. 

But in the numerical simulations all the parameters (e.g., porosity and tortuosity) are kept 

at their base values as the effect of only cement composition on the damage progression 

is of interest in this subsection.  
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Table 4.1 : Comparison of initial solid phases. 

Solid phases Type I 
(moles/m3) 

Type V 
(moles/m3) 

Portlandite 1.19 ൈ 10ଷ 1.18 ൈ 10ଷ
Ettringite 29.27 27.34 

Hydrogarnet 1.57 ൈ 10ଶ 1.08 ൈ 10ଶ
Tobermorite-II 1.56 ൈ 10ଶ 1.67 ൈ 10ଶ

Jennite 9.97 ൈ 10ଶ 1.07 ൈ 10ଷ
Fe-Hydrogarnet 80.33 89.57

Brucite 1.77 ൈ 10ଶ 1.85 ൈ 10ଶ
 

Figure 4.12 shows the concentration profiles of ettringite and gypsum in Type I and V 

cements. The amount of ettringite formed in Type I cement is more than that in Type V 

cement. However the progression of the damage front is dependent on the amount of 

gypsum formed, which is similar for both the cements and the position of gypsum fronts, 

which are almost coincident, as shown in Figures 4.12 and 4.13. The behavior of the two 

types of cements is not significantly different in this particular exposure condition. Thus 

it can be concluded that the Type V cement which is expected to be more sulfate resistant 

than Type I in a sulfate rich environment, is not necessarily more efficient in a particular 

exposure condition. Thus the numerical simulations can be used in assessing the behavior 

of a particular structure that may not be apparent from common sense for a given 

exposure condition.  
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Figure 4.12 : Effect of cement type on ettringite and gypsum profiles after 2 years of 
simulated immersion. 

 

 

Figure 4.13 : Effect of cement type on damage progression after 2 years of simulated 
immersion. 

 

As mentioned before, the sulfate concentration in the saltstone pore solution is 

considered to be significant (24000 mg/L). The sulfate concentration chosen for 
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illustration purposes in this chapter (35000 mg/L) is even higher than that in the saltstone. 

Thus the extent of damage observed here is high even in the case of sulfate resistant 

cement. But the damage will be less for a structure in a moderate to high sulfate 

environment than that predicted in the example here. 

 

4.3 Conclusions 

Sensitivity analyses are performed using the numerical model developed in this 

dissertation to evaluate the effects of various factors on the mineralogical features and the 

progression of damage. It is found that the effect of the relative rates of sulfate ingress 

and calcium leaching on damage is most significant. The relation between some 

external/internal factors and the damage progression rate is observed to be mostly 

nonlinear. The results of the sensitivity analysis provide quantitative information on the 

mineralogical features and damage state of the structure. After validating the model 

across a broader range of materials and experiments, the results of the sensitivity analysis 

can be used for design and life cycle management decision making.  
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CHAPTER V 

UNCERTAINTY QUANTIFICATION OF A GEOCHEMICAL SPECIATION MODEL 
FOR CEMENTITIOUS MATERIALS 

 

5.1 Introduction 

 The numerical model developed in this research comprises of three essential 

components of degradation of cementitious materials under external sulfate attack – (1) 

diffusion of ions, (2) chemical reactions, and (3) structural damage accumulation. There 

are several input and model parameters in each component of the model (e.g. porosity, 

tortuosity, equilibrium constants, Young’s modulus etc.) that have certain amounts of 

uncertainty associated with them leading to uncertainty in the model prediction. 

Additionally, there are various assumptions and approximations in each component of the 

model that add to the overall uncertainty. Thus it is important to quantify uncertainty in 

different parts of the model so that the total uncertainty in the model prediction can be 

quantified. The focus of this chapter is to quantify uncertainty in the model parameters 

(i.e. the equilibrium constants) of the chemical equilibrium module (i.e. ORCHESTRA) 

using experimental results on the leaching behavior of cementitious materials as obtained 

from the LeachXS database [104]. It is important to note that the general methodology 

can also be applied for uncertainty quantification of the other two components provided 

that the experimental results of (1) the diffusion of nonreactive ions (to isolate it from the 

other components) and (2) the structural damage accumulation (cannot be isolated) are 

available for a particular material.   

Simulation of the chemical equilibrium requires (1) thermodynamic information of 
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the potential chemical reactions that are generally obtained from the literature, which 

vary considerably across the available databases [105-109]; and (2) total availability of 

the species that can be obtained from the experiments. The thermodynamic constants are 

generally determined in the laboratory under controlled conditions. But the mineralogical 

behavior of the cementitious materials under field conditions can be considerably 

different from that observed in the laboratory environment and experimental results have 

inherent uncertainty. Additionally, the material characteristics have inherent variability 

that contribute to the overall uncertainty in the numerical simulation. Also, there are 

several assumptions and approximations in the model (e.g. local equilibrium assumption 

and ignoring the kinetic component of the reactions) that increase the uncertainty in the 

model predictions. Therefore it is important to quantify uncertainty in the model 

parameters of the chemical equilibrium module. This is performed in this chapter by 

calibrating the model parameters (i.e. the equilibrium constants of the checmical 

reactions) using experimental results incorporating various sources of uncertainty in the 

input parameters and experimental errors. The application of the framework is 

demonstrated using experimental data on the leaching behavior of a cement mortar 

sample and a concrete sample.  

 

5.2 Numerical Simulation Framework 

A numerical model essentially represents a set of mathematical equations that need to 

be solved to determine the response of a system under certain conditions. The set of 

equations may contain several unknown coefficients that are referred to as model 

parameters. Figure 5.1 shows the numerical model expressed as ܩሺߠ,  is an ߠ ሻ whereݏ
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array of model parameters and ݏ is an array of inputs, and an array or a matrix of output 

variables, ݕ. For example, the solution of a set of coupled diffusion equations provides 

concentrations ሺݕሻ of one or more species in space and time. Here, the model parameters 

are the diffusion coefficients of the species ሺߠሻ and input parameters ሺݏሻ are the 

concentrations of the species at the boundaries and/or at time ݐ ൌ  is a one ݕ .0

dimensional array if the solution comprises of concentrations of one species at the end of 

the simulation in space only; it is a two dimensional array if the solution comprises of the 

concentrations of one species over space and time; and it is a multidimensional array if 

the solution gives the concentrations of more than one species over space and time. If 

experimental observations are available ሺ݀ሻ, the model can be calibrated to obtain 

information about the unobservable model parameters, ߠ.  

 

 

Figure 5.1 : Model calibration framework. 
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There are mainly three ways of calibrating a model – (1) a least squares method 

where the sum of the squared errors is minimized assuming that the input parameters are 

deterministic or the errors associated with the inputs are negligible, (2) maximum 

likelihood estimation where the probability of observing the model parameters is 

maximized assuming that the input parameters are deterministic and the associated errors 

are negligible, and (3) Bayesian method where the input parameters can be treated as 

random variables and the errors associated with the observations can also be treated as 

random variables. The Bayesian model calibration method is adopted in this research due 

to its simplicity, flexibility and ease of use.   

The Bayesian calibration method is based on Bayes’ theorem [110] expressed as 

݂ሺߠ|݀ሻ ൌ ݂ሺߠሻ݂ሺ݀|ߠሻ׬ ݂ሺߠሻ݂ሺ݀|ߠሻ݀(49) ߠ

where ߠ and ݀ are the calibration parameters and the experimental observations 

respectively where ߠ and ݀ can be scalars or vectors, ݂ሺߠ|݀ሻ is the probability of 

observing ߠ given ݀ (also known as posterior distribution of ߠ), ݂ሺߠሻ is the prior 

knowledge of ߠ which may be extremely poor (also known as prior distribution of ߠ) and ݂ሺ݀|ߠሻ is the probability of observing ݀ given ߠ (also termed as the Likelihood function 

of ߠ i.e. ܮሺߠሻሻ. The relation between the experimental observations and the model 

response is expressed as ݀ ൌ ,ߠሺܩ ሻݏ ൅ (50) ߝ

where ߝ is the overall error due to both error in experimental observations and various 

assumptions and approximations made during the modeling process. ߝ is generally 
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assumed to have a normal distribution with zero mean and a variance ߪଶ where the 

variance could be assumed or given. The likelihood function, ܮሺߠሻ, is expressed as  

ሻߠሺܮ ൌ ݂ሺ݀|ߠሻ ൌ ߪߨ2√1 exp ሾെ ሺ݀ െ ,ߠሺܩ ଶߪሻሻଶ2ݏ ሿ (51)

For a multivariate model output, Eq. (50) transforms into ݀௜ ൌ ,ߠሺܩ ሻݏ ൅ ௜ (52)ߝ

where ݀௜ is a multi-element array of observations of ݅௧௛ observable parameter and ߝ௜ is 

the corresponding error array. The likelihood function is then given by 

ሻߠሺܮ ൌ ෑ ݂ሺ݀௜|ߠሻ௡
௜ୀଵ  (53)

The process of evaluating the posterior distribution from Eq. (49), ݂ሺߠ|݀ሻ, becomes 

challenging if the model is a computer code where no analytical form is available for ݂ሺߠ|݀ሻ. This has been one of the biggest challenges in implementing Bayesian method in 

parameter updating [111]. In such cases, the Markov Chain Monte Carlo sampling 

method is used to generate the posterior distributions of the parameters. It is important to 

note that the denominator on the right hand side of Eq. (49) is a constant and therefore the 

expression reduces to ݂ሺߠ|݀ሻ ן ݂ሺߠሻ݂ሺ݀|ߠሻ (54)

The method of generating samples from a complex and often unknown distribution as 

given in Eq. (54) by Markov Chain Monte Carlo method is described in the next section.  

 

5.3 Markov Chain Monte Carlo Simulation  

The focus of this section is to describe a method for constructing an arbitrary 

distribution ߨሺܺሻ, by drawing samples from it e.g. Eq. (54) (i.e. ߨሺܺሻ ൌ ݂ሺߠሻ݂ሺ݀|ߠሻ). In 
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this respect, the Markov Chain Monte Carlo method provides an easy way of solving this 

problem. In any time dependent process, the state of the system at time ݐ is dependent on 

the previous states up to time ݐ െ 1. The basic characteristic of a Markov process is that 

the state of a system at the current time is only dependent on the previous time step. 

There are several algorithms available for generating samples from an unknown 

distribution using the concept of a Markov process e.g. Metropolis algorithm [112], 

Metropolis-Hastings algorithm [113], Gibbs sampling [114], adaptive Metropolis 

algorithm [115], delayed rejection method [116] etc. In this research, the adaptive 

Metropolis algorithm combined with delayed rejection method is used for calibrating the 

model parameters.  

In the original Metropolis algorithm [112], samples are generated from a symmetric 

proposal distribution, ݍሺܺሻ such as uniform, normal, symmetric triangular etc. If ݍሺܺሻ is 

a multivariate distribution, the components of ܺ can be generated sequentially (this is 

known as the single component Metropolis algorithm) or all of them together (this is 

known as the random walk Metropolis algorithm) [117]. The general framework of the 

Metropolis algorithm which can be assumed to be a special case of the more general 

Metropolis-Hastings algorithm [113] is shown in Figure 5.2. 
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Figure 5.2 : General framework of Metropolis algorithm. 

 

The algorithm is initialized with a sample, ݔ௧ at ݐ ൌ 0. Then, the next sample, ݕ, is 

generated from a symmetric proposal distribution, ݍሺݔ|ݕ௧ሻ, centered at the current state. 

The following expression is evaluated for the candidate sample 

,௧ݔሺݎ ሻݕ ൌ ሻ (55)ݕ|௧ݔሺݍ௧ሻݔሺߨ௧ሻݔ|ݕሺݍሻݕሺߨ

with the condition that the proposal distribution be symmetric, i.e. ݍሺݔ|ݕ௧ሻ ൌ  .ሻݕ|௧ݔሺݍ

The sample, ݕ, is accepted if the ratio, ݎሺݔ௧, ሻݕ ൐ 1. If ݎሺݔ௧, ሻݕ ൏ 1, the sample is 

accepted with probability ݎሺݔ௧,  ሻ. The method for imposing this condition is to generateݕ

a random sample,ߙ, from a uniform distribution between 0 and 1 and if ݎሺݔ௧, ሻݕ ൐  ,ߙ

then the sample is accepted and if ݎሺݔ௧, ሻݕ ൏  the sample is rejected and the process is ,ߙ

repeated till sufficient number of samples are obtained.  
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The most common ways of checking the efficiency of the algorithm are by visually 

inspecting the trace plot of the samples i.e. generated samples plotted against the number 

of iterations and the plot of statistical parameters against the number of iterations. The 

distribution constructed from the generated samples is said to have converged to the 

target distribution if the samples manifest stationary behavior, i.e. have a constant mean 

and a constant standard deviation.  

The two most important aspects of efficiently executing the algorithm are a good 

initial value and a good proposal distribution. The most commonly used proposal 

distribution for Metropolis algorithm is a normal distribution with mean at the current 

sample point and an assumed variance. Rigorous manual tuning is often needed for 

finding an optimum variance [117] so that the algorithm performs efficiently. There are 

several methods proposed in the literature that offer efficient sampling techniques to 

optimize the performance of the algorithm, e.g. adaptive direction sampling [118], 

adaptive Metropolis algorithm [115], adaptive Random Walk method [119], delayed 

rejection method [120]. The adaptive Metropolis algorithm combined with the delayed 

rejection method [121] is used in this research to circumvent the problem of manual 

tuning of the proposal distribution. The general methodology for generating samples from 

an unknown target distribution is the same as shown in Figure 5.2 with the modifications 

being applied for generating the candidate samples using the algorithms. The methods are 

described in the following subsections.  

 



93 
 

5.3.1 Adaptive Metropolis algorithm      

In the adaptive Metropolis algorithm the proposal distribution adapts itself 

automatically using the samples generated during the sampling process. Sample 

generation and acceptance/rejection are first performed as in the original Metropolis 

algorithm for a certain number of iterations (ݐ଴) decided by the analyst. Then, the samples 

are generated from a ݇ dimensional Gaussian proposal distribution, ܰሺݔ௧,   ௧ calculated asܥ ௧ and covarianceݔ ௧ሻ with meanܥ

௧ܥ ൌ ൜  ܥ଴ ݐ ൑ ,଴ݔሺݒ݋ௗܿݏ଴ݐ ,ଵݔ … . , ௧ିଵሻݔ ൅ ௞ܫௗ߳ݏ ݐ ൐ ଴ݐ  (56)

where ܥ଴ is the initial covariance matrix, ݏௗ is a scaling parameter which is taken to be 2.4ଶ/݇ [115, 122] as this value is shown to optimize the performance of Metropolis 

algorithm for Gaussian targets and Gaussian proposals, ߳ is a very small positive number 

that prevents the covariance from being zero (in case of rejection of all samples) and ܫ௞ is 

a ݇ dimensional identity matrix. The steps for calculation of the acceptance ratio and the 

scheme following which the samples are accepted or rejected are the same as in the 

original Metropolis algorithm as shown in Figure 5.2. This scheme can be applied both in 

single component and in random walk (i.e. sequential and simultaneous sample 

generation for multi dimensional problems) methods of sample generation. The single 

component adaptive Metropolis scheme is used in Subsection 5.4.1 for calibration of the 

model parameters. It is shown in the subsection that the algorithm performed better than 

the basic Metropolis algorithm by inspecting the trace plot of the samples. But it takes 

considerable computational time for high dimensional problems (> 15) as considered in 

this research. 
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 The random walk Metropolis algorithm is faster than the single component 

Metropolis algorithm. ܰ number of samples (accepted + rejected) are generated in ܰ 

steps in the random walk scheme whereas the same number of samples are generated in ܰ ൈ ݇ steps in the single component scheme for ݇ dimensional problems. As mentioned 

before, the performance of the algorithm, i.e. the acceptance rate, is dependent upon the 

optimum choice of the proposal distribution. The adaptive Metropolis algorithm as 

described in this subsection circumvents the problem of manual selection of proposal 

distribution by adapting automatically using a certain number of generated samples. But 

this method is useful only when at least some samples can be generated from the untuned 

proposal distribution. In this respect, choosing a multivariate proposal distribution is 

more challenging for the random walk scheme than the single component scheme. Thus 

the delayed rejection scheme is used in conjunction with the adaptive Metropolis method 

in Subsection 5.4.2 to further enhance the performance of the random walk scheme as 

well as gain computational speed. The delayed rejection method is described in the next 

subsection. 

 

5.3.2 Delayed rejection method 

 The basic strategy of the delayed rejection method is that if the newly generated 

sample is rejected, instead of staying at the previous sample point, a second stage 

proposal distribution is used for generation of the next sample. This process can be 

repeated as many times as desired. Following is a description of a ݊ stage delayed 

rejection method. 
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Let the first stage proposal distribution be ݍଵሺݕଵ|ݔ௧ሻ that is symmetric and centered at 

the previous sample ݔ௧. The probability with which the sample is accepted is expressed as 

,௧ݔଵሺݎ ଵሻݕ ൌ min ሺ1, ଵሻሻ (57)ݕ|௧ݔଵሺݍ௧ሻݔሺߨ௧ሻݔ|ଵݕଵሺݍଵሻݕሺߨ

that is similar to Eq. (55). If the sample is rejected, another sample, ݕଶ is generated from 

a second stage proposal distribution, ݍଶሺݕଶ|ݔ௧,  ଵሻ. The acceptance ratio is calculated asݕ

,௧ݔଶሺݎ ,ଵݕ ଶሻݕ ൌ min ሺ1, ,ଵݕ|ଶݕଶሺݍଵሻݕ|ଶݕଵሺݍଶሻݕሺߨ ௧ሻሾ1ݔ െ ,ଶݕଵሺݎ ,ଵݕ|௧ݔଶሺݍଵሻݕ|௧ݔଵሺݍ௧ሻݔሺߨଵሻሿݕ ଶሻሾ1ݕ െ ,௧ݔଵሺݎ ଵሻሿݕ ሻ (58)

Similarly, the ݊-th stage acceptance ratio is calculated as ݎ௡ሺݔ௧, ,ଵݕ ,ଶݕ … . , ௡ሻൌݕ min ሺ1, ,௡ିଵݕ|௡ݕଶሺݍ௡ିଵሻݕ|௡ݕଵሺݍ௡ሻݕሺߨ ௡ିଶሻݕ … ,௡ିଵݕ|௡ݕ௡ሺݍ … , ,ଵݕ|௧ݔଶሺݍଵሻݕ|௧ݔଵሺݍ௧ሻݔሺߨ௧ሻݔ ଶሻݕ … ,ଵݕ|௧ݔ௡ሺݍ ,ଶݕ … , ௡ሻݕ  ሾ1 െ ,௡ݕଵሺݎ ௡ିଵሻሿሾ1ݕ െ ,௡ݕଶሺݎ ,௡ିଵݕ ௡ିଶሻሿݕ … ሾ1 െ ,௡ݕ௡ିଵሺݎ … , ଵሿሾ1ݕ െ ,௧ݔଵሺݎ ଵሻሿሾ1ݕ െ ,௧ݔଶሺݎ ,ଵݕ ଶሻሿݕ … ሾ1 െ ,௧ݔ௡ିଵሺݎ ,ଵݕ … , ௡ିଵሻሿݕ ሻ 

(59)

 

Following Haario et al. [121], the first stage proposal distribution can be assumed to be a 

multivariate normal distribution ܰሺݔ௧,  ௧ is the covariance matrix as defined inܥ ௧ሻ whereܥ

Eq. (56) and the proposal distributions in the following stages can be assumed to be a 

multivariate normal distribution ܰሺݔ௧, ௧ᇱܥ ௧ᇱሻ whereܥ ൌ  is any positive number ߛ ௧ andܥߛ

less than 1. Haario et al. [121] assumed ߛ to be 0.01 for a two stage delayed rejection 

adaptive Metropolis method. The acceptance/rejection scheme of generated samples is 

the same as that in the basic Metropolis algorithm as shown in Figure 5.2.  

 The adaptive Metropolis and delayed rejection adaptive Metropolis schemes are 

implemented in MATLAB in conjunction with ORCHESTRA. The approximate 

computational time required for executing single component and a three stage delayed 

rejection adaptive Metropolis algorithm to generate 10000 samples of 18 parameters are 
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11 days and 1.5-3.5 days respectively in a 8 processor windows computer. The model 

parameters of the chemical equilibrium module are calibrated for a cement mortar and a 

concrete sample, and the results are shown in the next section. Also, the calibration 

results are validated by comparing the model predictions for a similar concrete sample 

using the calibrated parameters with the experimental results. 

  

5.4 Numerical Simulation 

For the purpose of demonstration, experimental data on the leaching behavior of the 

cement-based samples are obtained from the LeachXS database [67]. The experimental 

data comprises of the leached concentrations of the species (e.g. ܽܥାଶ, ܰܽା etc.) for a 

particular sample at different pH values. The general description of the experiment is 

given in Subsection 2.3.2 in Chapter II. The inputs to the model are the initial total 

concentrations of the species and the pH of the solution in which the samples are 

immersed. The model calculates the solid-liquid equilibrium phases by assuming a set of 

minerals to be present in the system and predicts the total dissolved amounts of the 

species at different pH conditions. The equilibrium constants of the mineral phases are 

then calibrated using the methodology described in the previous section given the 

experimentally observed leached concentrations of the species. The simulation details 

and the results are given in the following subsections. 

 

5.4.1 Cement mortar sample 

The cement mortar sample used for the demonstration of the calibration framework is 

composed of CEM V/A 32.5 N cement mixed with 32% (by mass) granular blast furnace 
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slag and 20% (by mass) fly ash and 1:3 (by mass) cement to sand ratio with a water-

cement ratio of 0.5 (by mass) subjected to pH dependence test [104]. The test data 

comprises of the concentrations of species leached in 24 h from a cementitious material 

with a liquid to solid ratio of 10 (liter/kg) at predetermined pH values [104]. The 

geochemical speciation code, ORCHESTRA [25] is used in this chapter to numerically 

model the leaching behavior of the material. The experimental data comprise of 

concentrations of 6 species (e.g. ݈ܣ, ,ܽܥ ,݃ܯ ݁ܨ ܵ݅ and ܵ) at 9 pH values (i.e. 3.50, 4.25, 

6.70, 7.84, 9.28, 10.34, 11.37, 12.22 and 12.34). A set of 18 minerals are chosen after 

several preliminary trial runs that ensures a good initial guess for the calibration 

algorithm. The mineral set is given in Table 5.1. The equilibrium constants of the 18 

minerals are the model parameters ሺߠሻ that are calibrated using the single component 

adaptive Metropolis algorithm as described before. 
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Table 5.1 : Mineral set chosen for calibration of equilibrium constants. 

Mineral Phase Expanded Formula Common Name ܥ଺ܵܣҧܪଷଶ .ܱܽܥ6 .ଶܱଷ݈ܣ .ܱܽܥ଺ 3ܪܣଷܥ ଶܱ Ettringiteܪ32 .ଶܱଷ݈ܣ .ܱܽܥ଺ 3ܪܨଷܥ ଶܱ Hydrogarnetܪ6 .ଶܱଷ݁ܨ .ܱܽܥ2 ଼ܪܵܣଶܥ ଶܱ Fe-Hydrogarnetܪ6 .ଶܱଷ݈ܣ ܱܵ݅ଶ. ଶܱܪ8 Stratlingite ܥଶܱܽܥ2 ଼ܪܵܨ. .ଶܱଷ݁ܨ ܱܵ݅ଶ. ଶܱܪ8 Fe-Stratlingite ܥଵ.଺଻ܵܪଶ.ଵ .ܱܽܥ1.67 ܱܵ݅ଶ. ଶܱܪ2.1 Jennite ܱܽܥ ܪܥ. .ܱܽܥ ଶܪҧܵܥ ଶܱ Portlanditeܪ ܱܵଷ.  ଶܱ Gypsumܪ2
Al(OH)3 (amorphous) - Gibbsite ܥଶܵଶ.ସܪଷ.ଶ 2ܱܽܥ. 2.4ܱܵ݅ଶ.  ଶܱ Tobermorite-Iܪ3.2

Fe(OH)3 (microcrystalline) - Ferric Hydroxide ܥ଺ܵܨҧܪଷଶ .ܱܽܥ6 .ଶܱଷ݁ܨ .ܱܽܥ ଷ଼ܱ - Analbite݈݅ܵܣܽܰ ሻଶ - Bruciteܪሺܱ݃ܯ ଶܱ Fe-Ettringiteܪ32 .ܱܽܥ2 ଼ܪܨଶܥ ଶ - Calciteܱܥ .ଶܱଷ݁ܨ ଶܱܪ8 ଼ܪܥܣସܯ - .ܱ݃ܯ4 .ଶܱଷ݈ܣ .ଶܱܥ ଶܱܪ8 CO3-Hydrotalciteܱ݃ܯ ܥܯ.  ଶ Magnesiteܱܥ
 

The input parameters of the model are the specified pH values and the total leachable 

concentrations of the species obtained from the LeachXS database. It is assumed that the 

total leachable concentrations are normally distributed with specified mean value and 

10% coefficient of variation. The process of adjusting pH values by adding acid/base is 

very sensitive and difficult to control, specifically at lower and higher pH ranges. Thus 

the error associated to pH is assumed to have variable error structure expressed as 

ߝ ൌ ൞0.2              if pH ൏ 4.50.1 if 4.5 ൏ pH ൏ 10.50.2 if 10.5 ൏ pH൏130.3 if pH ൐13  (60)

In this chapter, the errors associated with the pH values and the concentrations of the 

leached species are combined and ߝ௜s in Eq. (52) are expressed as error envelopes as 

shown in Figure 5.3. As the experimental points have uncertainty along both the axes, the 
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error between the model prediction and the experimental data is calculated as the 

orthogonal distance between the experimental point and the model prediction curve 

instead of the conventional vertical distance between the data and the model prediction. It 

is important to acknowledge that this method of error estimation is one of the many ways 

that the error can be represented. Any other error scheme can also be employed in this 

framework. Henceforth, the particular error measure adopted in this dissertation will be 

referred as orthogonal error. Figure 5.3 shows the model response and experimental 

results for aluminum. It also shows the error envelopes associated with the experimental 

data and the orthogonal error between the experimental point and the model prediction 

curve. The prior distributions of the model parameters are assumed to be independent and 

normally distributed with the mean values obtained from the literature and 50% 

coefficient of variation. A large coefficient of variation is chosen so that the prior is not 

completely non-informative, it covers a large range of values, and puts more emphasis on 

the value obtained from the literature. The joint prior distribution of the independent 

model parameters can be expressed as the product of the prior distributions. Thus Eq. 

(54) transforms into 

݂ሺߠ|݀ሻ ן ෑ ݂ሺߠ௝ሻ ෑ ݂ሺ݀௜|ߠሻ௡
௜ୀଵ

௠
௝ୀଵ  (61)
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Figure 5.3 : Error envelope associated with the experimental data. 

 

The applicability of the adaptive Metropolis algorithm is tested with a reduced 

problem where only 5 mineral phases are chosen from the 18 phases given in Table 5.1. 

Figures 5.4 and 5.5 show the trace plots of the samples generated using the basic single 

component Metropolis algorithm and the single component adaptive Metropolis 

algorithm respectively. It is evident from the plots that the single component adaptive 

Metropolis algorithm shows better mixing of samples and a satisfactory acceptance rate. 

Gelman et al. [122] showed that the acceptance rate asymptotically approaches 23% for 

basic Metropolis algorithm as the number of dimensions approaches infinity if the 

proposal distribution size is approximately similar to the target distribution.  
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Figure 5.4 : Trace plot of samples using basic Metropolis algorithm – example of 
slow mixing. 
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Figure 5.5 : Trace plot of samples using adaptive Metropolis algorithm – example of 
good mixing.  

 
 

The full model calibration is performed with the single component adaptive 

Metropolis algorithm described in the previous section. Figure 5.6 shows the prior and 

the posterior distributions of the model parameters. 5000 Monte Carlo simulations are 

then performed using the posterior distributions of the model parameters with positivity 

constraints (as equilibrium constants are always positive) to obtain the best fit model 

response. The other input parameters are kept constant so that the best set of equilibrium 

constants can be obtained without the influence of the other uncertainties, and the results 

can be compared with the model responses using the prior mean values of the model 

parameters. Therefore, the error between the model prediction and the experimental data 
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is estimated as the vertical distance between the data and the model prediction curve. 

Figure 5.6 also shows the shift in the best fit model parameters from the values obtained 

from the literature i.e. the mean values of the prior distributions. Table 5.2 gives the prior 

mean values, the calibrated best fit values and the percentage shift in the parameters. The 

comparisons between the model predictions using the model parameters obtained from 

the literature, model predictions using the calibrated best fit model parameters, and the 

experimental data are shown in Figure 5.7.  
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(r) 
Figure 5.6 : Prior and posterior distributions of the model parameters. 

 
Table 5.2 : Model parameter values – prior mean vs. calibrated best fit. 

Solid Phase Prior Mean Calibrated Best Fit % Shift 
Startlingite 2.74 ൈ 10ସଽ 2.56 ൈ 10ସଽ  6.45 

C2FH8 2.07 ൈ 10ହଷ 4.51 ൈ 10ହଶ  78.19 
Fe-Stratlingite 2.13 ൈ 10ସଶ 9.09 ൈ 10ସଵ 57.29 
Hydrogarnet 3.40 ൈ 10଻ଽ 7.75 ൈ 10଻଼  77.24 

Fe-Hydrogarnet 2.58 ൈ 10଻ଶ 1.24 ൈ 10଻ଶ  51.81 
Gibbsite 1.75 ൈ 10ଽ 1.48 ൈ 10ଽ  15.37 
Brucite 6.92 ൈ 10ଵ଺ 9.77 ൈ 10ଵ଺  -41.22 

CO3-Hydrotalcite 3.41 ൈ 10଺଻ 2.68 ൈ 10଺଻  21.60 
Calcite 1.58 ൈ 10଻ 8.03 ൈ 10଺ 49.35 

Ettringite 7.98 ൈ 10ହ଺ 1.04 ൈ 10ହ଻  -30.53 
Fe-Ettringite 6.05 ൈ 10ସଽ 5.48 ൈ 10ସଽ 9.53 

Iron Hydroxide 1.00 ൈ 10ହ 7.89 ൈ 10ସ  21.10 
Gypsum 2.51 ൈ 10ିହ 1.53 ൈ 10ିହ  39.25 
Jennite 3.04 ൈ 10ଶ଺ 3.8 ൈ 10ଶହ  87.50 

Magnesite 2.10 ൈ 10଻ 1.16 ൈ 10଺  94.49 
Portlandite 6.27 ൈ 10ଶଶ 1.18 ൈ 10ଶଶ  81.14 

Tobermorite-I 1.07 ൈ 10ଶ଼ 1.46 ൈ 10ଶ଼  -36.47 
Analbite 3.21 ൈ 10ଷ 4.22 ൈ 10ଶ  86.84 
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Figure 5.7 : Comparison of model responses using the best fit and the prior mean 

model parameters with the experimental results. 
 

The errors for each species using the prior mean values and the calibrated best fit values 

are shown in Figure 5.8. It is evident from the figure that the errors after calibration in all 

the species are less than the errors obtained using the prior mean values for the model 

parameters.   
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Figure 5.8 : Errors in model responses using prior mean and calibrated best fit 
model parameters. 

 

The shifts in the best fit model parameters from the prior mean values are essentially 

due to the shifts in the precipitation domains of the minerals. Figure 5.9 shows the 

changes in the mineral precipitation domains using the prior mean values and the 

calibrated best fit values. The most noticeable features in the plots are: 

(i) Figures 5.9a and b – Stratlingite, Hydrogarnet and Ettringite have changed 

their domains of precipitation. 

(ii) Figures 5.9c and d – Gypsum precipitation domain has increased. 

(iii) Figures 5.9e and f – Fe-Ettringite, Fe-Hydrogarnet and Fe-Stratlingite have 

changed their domains of precipitation. 

(iv) Figures 5.9g and h – Magnesite has precipitated in the simulation with the best 

fit calibrated values.  
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(v)  Figures 5.9i and j – Stratlingite, Jennite and Tobermorite-I have changed their 

domains of precipitation. 

(vi) Figures 5.9k and l – All the minerals have changed their domains of 

precipitation, but the most prominent of all is gypsum precipitation in the 

simulation using best fit calibrated values. 

 

(a) (b) 

(c) (d) 
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(k) (l) 

Figure 5.9 : (a), (c), (e), (g), (i), (k) - Mineral precipitation domains using prior mean 
values; (b), (d), (f), (h), (j), (l) – Mineral precipitation domains using calibrated best 

fit values. 
 

5.4.2 Concrete Sample 

The delayed rejection adaptive Metropolis algorithm is used in this subsection to 

calibrate the model parameters of the chemical equilibrium module for a concrete sample 

[123, 124]. The sample is composed of Type V cement (ASTM C 150) mixed with grade 

100 blast furnace slag (ASTM C 989), Type F fly ash (ASTM C618) and silica fume. The 

mass ratio of cement, slag, fly ash and silica fume is 1:1.34:0.79:0.22. The mass ratio of 

binder, sand and gravel is 1:1.35:2.74 and the water-binder mass ratio is 0.38. The sample 

is subjected to pH dependence test [104] as in the last subsection and the experimental 

observations comprise of concentrations of six species (e.g. ݈ܣ, ,ܽܥ ,݃ܯ ݁ܨ ܵ݅ and ܵ) at 

specific pH values. A set of 17 minerals are chosen after several preliminary trial runs 

and the mineral set is given in Table 5.3.  
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Table 5.3 : Mineral set chosen for calibration of equilibrium constants. 

Mineral Phase Expanded Formula Common Name ܥଵ.଺଻ܵܪଶ.ଵ .ܱܽܥ1.67 ܱܵ݅ଶ. ଶܱܪ2.1 Jennite ܥ଴.଼ଷܵܪଵ.ଷ 2ܱܽܥ. 2.4ܱܵ݅ଶ. .ܱܽܥ2 ଼ܪܵܣଶܥ ଶܱ Tobermorite-IIܪ3.2 .ଶܱଷ݈ܣ ܱܵ݅ଶ. ଶܱܪ8 Stratlingite ܥଶܱܽܥ2 ଼ܪܵܨ. .ଶܱଷ݁ܨ ܱܵ݅ଶ. ଶܱܪ8 Fe-Stratlingite ܥଷܪܣ଺ 3ܱܽܥ. .ଶܱଷ݈ܣ ଶܱܪ6 Hydrogarnet ܥଷܪܨ଺ 3ܱܽܥ. .ଶܱଷ݁ܨ ଶܱܪ6 Fe-Hydrogarnet 
Al(OH)3 (amorphous) - Gibbsite ݃ܯሺܱܪሻଶ - Brucite ܯସ଼ܪܥܣ .ܱ݃ܯ4 .ଶܱଷ݈ܣ .ଶܱܥ ଶܱܪ8 CO3-Hydrotalciteܱܽܥ. .ܱܽܥଷଶ 6ܪҧܵܣ଺ܥ ଶ - Calciteܱܥ .ଶܱଷ݈ܣ .ܱܽܥଷଶ 6ܪҧܵܨ଺ܥ ଶܱ Ettringiteܪ32 .ଶܱଷ݁ܨ  ଶܱ Fe-Ettringiteܪ32

Fe(OH)3 (microcrystalline) - Ferric Hydroxide ܵܥҧܪଶ ܱܽܥ. ܱܵଷ. .ܱܽܥ ܪܥ ଶܱ Gypsumܪ2 ଶܱ Portlandite ܵ ܱܵ݅ଶܪ Silica ݈ܰܽ݅ܵܣଷ଼ܱ - Albite 
 

The equilibrium constants of the 17 minerals are calibrated using a three stage 

delayed rejection random walk adaptive Metropolis algorithm as described before. The 

scaling factors (ߛ) for the proposal covariance matrix in the three stages of the delayed 

rejection scheme are 0.04, 2.5 ൈ 10ିଷ and 6.25 ൈ 10ିସ. The error envelope approach in 

conjunction with the orthogonal error is also used in this subsection. The total initial 

concentrations of the species are assumed to be normal with the mean values obtained 

from the LeachXS database and 10% COV. The prior distributions of the model 

parameters are assumed to be Gaussian with mean values obtained from the literature and 

50% COV, as before. Figure 5.10 shows the trace plot of one of the model parameters 

using the basic Metropolis algorithm, the adaptive Metropolis algorithm and the delayed 

rejection adaptive Metropolis algorithm. It is evident from the figure that the acceptance 

rate is much greater for the case of the delayed rejection adaptive Metropolis than the 
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other two schemes. Figure 5.10c also shows that the sample generation approximately 

converged to a particular mean with a constant standard deviation.  

 

 
(a)  

 
(b) 
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(c) 

Figure 5.10 : (a) – Trace plot with basic Metropolis algorithm; (b) - Trace plot 
with adaptive Metropolis algorithm; (c) - Trace plot with delayed rejection adaptive 

Metropolis algorithm. 
 

The prior and the posterior distributions are given in Figure 5.11. 3000 Monte Carlo 

simulations are performed to obtain the values of the model parameters that minimize the 

difference between the model predictions and the experimental observations while 

keeping the other input parameters constant. Figure 5.11 also shows the prior mean 

values and the calibrated best fit values. The prior mean values and the calibrated best fit 

values are given in Table 5.4 along with the % shift of the best fit values from the prior 

mean values. Figure 5.12 shows the comparison between the model predictions using the 

prior mean values and the calibrated best fit values. Finally, Figure 5.13 shows the 

comparison between the errors in model predictions using the prior mean values and the 

calibrated best fit values along with the reduction in the errors. 
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Figure 5.11 : Prior and posterior distributions of the model parameters. 
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Figure 5.12 : Comparison of model responses using prior mean and calibrated best 

fit model parameters with the experimental results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



119 
 

Table 5.4 : Model parameter values – prior mean vs. calibrated best fit. 
Solid Phase Prior Mean Calibrated Best Fit % Shift 

Jennite 2.64 ൈ 10ଶଽ 3.17 ൈ 10ଶ଼ 87.99 
Tobermorite-II 1.83 ൈ 10ଵଵ 3.76 ൈ 10ଵଵ -105.61 

Stratlingite 2.74 ൈ 10ସଽ 3.63 ൈ 10ସଽ -32.36 
Fe-Stratlingite 2.13 ൈ 10ସଶ 1.19 ൈ 10ସଵ 94.41 
Hydrogarnet 3.40 ൈ 10଻ଽ 1.89 ൈ 10଻ଽ 44.54 

Fe-Hydrogarnet 2.58 ൈ 10଻ଶ 3.61 ൈ 10଻ଶ -39.66 
Gibbsite 1.75 ൈ 10ଽ 1.05 ൈ 10ଽ  39.68 
Brucite 6.92 ൈ 10ଵ଺ 1.17 ൈ 10ଵ଺  83.16 

CO3-Hydrotalcite 3.41 ൈ 10଺଻ 3.67 ൈ 10଺଻  -7.46 
Calcite 1.58 ൈ 10଻ 1.56 ൈ 10଻ 1.57 

Ettringite 7.98 ൈ 10ହ଺ 2.20 ൈ 10ହ଺  72.39 
Fe-Ettringite 6.05 ൈ 10ସଽ 6.62 ൈ 10ସଽ -9.42 

Ferric Hydroxide 1.00 ൈ 10ହ 8.34 ൈ 10ସ  16.63 
Gypsum 2.51 ൈ 10ିହ 4.71 ൈ 10ିହ  -87.63 

Portlandite 6.27 ൈ 10ଶଶ 3.71 ൈ 10ଶଶ  40.83 
Silica 1.94 ൈ 10ିଷ 1.04 ൈ 10ିଷ  46.06 
Albite 3.91 ൈ 10ଷ 4.22 ൈ 10ଶ  -8.03 

 

 
Figure 5.13 : Errors in model responses using prior mean and best fit calibrated 

model parameters. 
 
 

5.4.3 Comparison with a similar concrete sample 

  The calibration results from Subsection 5.4.2 are used in this subsection on a similar 

concrete sample and the model predictions are compared with the experimental results. 
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The pH dependence test results for the concrete sample are obtained from the LeachXS 

database. The sample has cement and blast furnace slag mass ratio of 1:0.66, cement, 

sand and gravel mass ratio of 1:1.63:2.59 and water-binder mass ratio 0.38. The leaching 

test data provides concentrations of six species (e.g. ݈ܣ, ,ܽܥ ,݃ܯ ݁ܨ ܵ݅ and ܵ) at specific 

pH values. The posterior distributions of the same set of minerals as given in Table 5.3 

are used to perform 5000 Monte Carlo simulations assuming that the total concentrations 

of the species have normal distributions with specified mean and 10% COV. Figure 5.14 

shows the comparison of the mean model predictions and the 95% prediction intervals 

with the experimental results. The prediction intervals are calculated as [125] 

ଵିఈۄߤۃ ൌ ҧݔ േ ҧඨ1ݏఈଶ,௡ିଵݐ ൅ 1݊
 (62)

where ߤ is the true mean of the population, ݔҧ is the mean estimated from the model 

predictions, ߙ is the prediction interval (= 95% in this case), ݊ is the number of samples 

(= 5000 in this case), ݐమഀ,௡ିଵ is the value obtained from student’s t distribution at 

probability level of 2/ߙ and for ݊ െ 1 degrees of freedom, and ݏҧ is the standard deviation 

estimated from the model predictions. It is important to note that there are uncertainties 

associated with the pH measurements. Thus it can be said from the plots that the trends in 

the model predictions are approximately matching with the experimental results with the 

exception of Si concentrations in the pH range below 6. The difference between the 

model predictions and the experimental observations in that pH domain is mainly due to 

the fact that the kinetic aspect of the chemical reactions is neglected in the chemical 

equilibrium calculations. But the model predictions for Si match well in the pH range 

above 6 that is the more relevant pH range for cementitious materials. Overall, it can be 
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concluded that the model prediction intervals provide information on the overall 

uncertainty in the model predictions due to the uncertainties in the input and the model 

parameters, experimental errors and model errors arising from various assumptions and 

approximations in the model. 

 

 

Figure 5.14 : Comparison between the model predictions and the experimental 
results. 

 

5.5 Conclusion 

 A method is developed in this chapter for uncertainty quantification of model 

parameters of a chemical equilibrium model for cement-based materials. The chemical 
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equilibrium constants for the potential mineral phases are calibrated using a Bayesian 

approach. In the implementation it is shown that the delayed rejection adaptive 

Metropolis algorithm performs better with respect to speed and acceptance rate than the 

original Metropolis algorithm. The applicability of the method is demonstrated using the 

experimental results on the leaching behavior of a cement mortar sample and a concrete 

sample. The calibration results for the concrete sample are then used to compare the 

model predictions with the experimental results for a similar concrete sample. The 

calibrated model is shown to produce good agreement in the most relevant pH domain for 

the cementitious structures. 
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CHAPTER VI 

PROBABILISTIC DURABILITY ANALYSIS OF CEMENTITIOUS MATERIALS 
UNDER EXTERNAL SULFATE ATTACK 

 

6.1 Introduction 

The numerical model developed in the previous chapters for assessing damage 

progression through a cementitious structure under external sulfate attack requires several 

input and model parameters for performing simulations. These parameters can be 

obtained from the experiments or from the literature. In either case, the values of the 

parameters will have some uncertainty associated with them, leading to uncertainty in the 

model response. Various methods are available in the literature for quantifying the 

uncertainty in the parameters and propagating it through the model, leading to the 

quantification of uncertainty in the model prediction. A numerical framework is 

developed in this chapter to incorporate the various sources of uncertainty in assessing 

the probability of reaching a particular degradation measure as a function of time. The 

approaches for quantifying and propagating uncertainty using a numerical model are 

described in the following sections. Later, the application of the framework is 

demonstrated for the concrete wall of a low activity nuclear waste containment structure 

exposed to sulfate containing pore solution of the waste material (i.e. saltstone). Water 

saturation is assumed as a conservative simplifying assumption for all cases in this 

dissertation. Actual field conditions typically are unsaturated which result in slower 

diffusion and degradation processes than predicted for saturated conditions.  
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6.2 Uncertainty Quantification 

There are mainly three sources of uncertainty – (i) physical variability due to the 

inherent randomness of the variables, (ii) data uncertainty due to sparse or imprecise data, 

and (iii) model uncertainty and errors due to assumptions and approximations used during 

the modeling process. The approaches for quantification of different sources of 

uncertainty are described in this section. 

 

6.2.1 Physical variability 

In probabilistic analysis, the physical variations in the parameters are incorporated by 

defining them as random variables with probability density functions (PDFs). For a 

homogeneous structure modeled at the resolution of macro-scale, initial material and 

geometrical properties can be modeled as random variables. For example, bulk density of 

the material, mortar-water ratio, total open porosity, external sulfate concentration etc. 

are modeled as normal random variables by Rigo et al., 2005 [37]. But some parameters 

may vary not only from sample to sample (as is the case for random variables), but also 

in space and/or time within the same sample. In these cases, they can be modeled as 

random fields or processes [126, 127]. Some of the well known methods for simulating 

random fields/processes are spectral representation (SR) [128], Karhunen-Loeve 

expansion (KLE) [129-131], polynomial chaos expansion (PCE) [127, 130-132] etc. 

Some boundary conditions generally exhibit a recurring pattern over shorter periods and 

also a trend over longer periods. These can be numerically represented by a seasonal 

model [133] using an autoregressive integrated moving average method generally used 

for linear processes (i.e. current observation is dependent on past observations) and 
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nonstationary processes (if the probability structure of the process varies with arbitrary 

translation of indexing parameter [134]). For example, this method can be used to 

simulate temperature patterns over the years which will affect the diffusivity and 

chemical activity coefficients. Rainfall can also be simulated using this method. The 

degree of soil saturation depends on the amount of rainfall. Diffusion of ions in and out 

of the underground concrete vaults containing nuclear wastes will depend on the soil 

saturation levels. Thus this method can be applied to simulate the time dependent 

environmental conditions which will affect the durability of the structure.  

 

6.2.2 Data uncertainty 

In a numerical simulation, data uncertainty comes from complete or partial lack of 

knowledge of some input parameters. For example, data for the threshold strain (ߝ௧௛) and 

the calibration parameters (݇ and ݉) in Eq. (28) may not be available in sufficient 

quantity to justify the assumption of a particular type of distribution. 

If the available data set is small, an empirical distribution function can be constructed 

by ranking the observations and assigning a probability value to each observation. An 

alternative approach in this regard is to use a flexible family of distributions such as the 

Johnson family to fit a data set [135]. In either case, the parameters of the chosen 

distribution will have uncertainty due to sparseness of the data, which will lead to 

uncertainty in the model prediction. One approach to represent the uncertainty in the 

distribution parameters is through probability distributions of the distribution parameters 

themselves. Several approaches are available in the literature for constructing statistical 

distributions of the distribution parameters [110, 136, 137]. One approach for 
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constructing distributions of distribution parameters having an underlying normal 

population is as follows: let ܺ be a sample set of size ݊ that is assumed to have an 

underlying normal distribution with true but unknown mean and variance ߤ and ߪଶ  

respectively. The sample mean and variance calculated from ܺ are ݔҧ and ݏҧଶ respectively. 

Then, 
௫ҧିఓ௦ҧ/√௡ and 

ሺ௡ିଵሻ௦ҧమఙమ  are observed to have the student’s t distribution and chi-square 

distribution with ݊ െ 1 degrees of freedom respectively [110]. This approach is used in 

Section 6.5 for constructing distributions of distribution parameters to incorporate 

uncertainty due to small sample size. 

The available data set may be composed of interval values. For example, upper and 

lower bounds of the Young’s modulus of the concrete sample may be obtained from 

several experts or from the literature. In such cases, statistical distributions can again be 

constructed using the Johnson family of distributions [135, 138] resulting in distributions 

with uncertain parameters. This will result in a family of CDFs from which upper and 

lower bounds of the CDFs can be obtained. The statistical distributions constructed in this 

manner can be propagated through a numerical model by using a nested or a single loop 

MCS that will result in an ensemble of durability curves. The specific approaches for 

uncertainty propagation will be described in Section 6.3. Finally, the bounds on the 

probability of reaching a particular degradation measure as a function of time can be 

estimated from the ensemble of the durability curves. 

 

6.2.3 Model uncertainty 

Model uncertainty can come from various approximations and assumptions made 

during the modeling process such as incomplete knowledge of the physics of the 
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phenomenon, and analysis approximations. Verification, validation, calibration, and error 

quantification are different steps to address model uncertainty. The sulfate attack model 

described in this dissertation is also based on several assumptions. For example, the 

uncertainty in the chemical equilibrium model is the combined effect of (1) the 

uncertainty in the model parameters, and (2) model error due to the assumptions and 

approximations inherent in the underlying conceptual model and mathematical 

representation thereof, e.g., local equilibrium assumption in the chemical reaction module 

and ignoring the kinetic component of the chemical reactions. Thus it is essential to 

quantify the model uncertainty and incorporate that into the uncertainty analysis when 

assessing the durability of the structure. Therefore, the uncertainty in the model 

parameters of the chemical equilibrium module is quantified by performing calibration 

using the Bayesian calibration method in Chapter V. 

   One of the approaches used in the literature for assessing validity of a model is to 

calculate a validation metric to accept or reject the particular model. The statistical 

parameters of the model predictions and experimental observations can be compared 

using classical hypothesis testing. Alternatively, Bayesian hypothesis testing is also used 

by some researchers [127, 139, 140] to assess model validity, and used to quantify 

confidence in the model prediction.  

One approach for quantifying the model error is by comparing the difference between 

the model prediction and the experimental observation, and incorporating various sources 

of errors through their variances [141]. Recently, a method was developed to quantify 

model error by combining errors due to model form, numerical discretization, uncertainty 

analysis method and input and output measurements [127].  
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The numerical model developed in this research uses a finite difference method for the 

solution of the diffusion equations. Thus it is essential to evaluate the numerical 

discretization error in the simulations. This error is generally evaluated by using a priori 

error norms e.g. ܮଶ norm and energy norm or a posteriori error measures such as the 

Richardson extrapolation technique [142, 143]. The Richardson extrapolation technique 

is simple and the method is described in this section. The discretization error is expressed 

as [144] ܧܦ௞ ൌ ௞݂ െ e݂xact (63)

where ܧܦ௞ is the discretization error for ݇௧௛ mesh, ௞݂ is the numerical solution for mesh ݇ and e݂xact is the exact or true solution. Assuming that the discretization error can be 

expressed as a Taylor series expansion, the numerical solution for mesh size ݇ can be 

written as 

௞݂ ൌ e݂xact ൅ ݃௣݄௞௣ ൅ ࣩሺ݄௞௣ାଵሻ (64)

where ݃௣ is the ݌௧௛ order error term coefficient, ݄௞ is the element size for mesh ݇, ݌ is 

the order of convergence and ࣩሺ. ሻ represents the higher order error terms that can be 

neglected. The value of ݌ can be easily calculated for well known differential equations 

of which the exact analytical solutions are available. Alternatively, it can be calculated if 

the value is not known for complex and coupled problems such as the one considered 

here. In such cases, three numerical solutions with different mesh sizes are used that are 

expressed as 

ଵ݂ ൌ e݂xact ൅ ݃௣݄ଵ௣ (65)

ଶ݂ ൌ e݂xact ൅ ݃௣݄ଶ௣ (66)

ଷ݂ ൌ e݂xact ൅ ݃௣݄ଷ௣ (67)
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where ݄ଵ ൏ ݄ଶ ൏ ݄ଷ. The three unknowns e݂axct, ݃௣ and ݌ are solved by rearranging the 

Eqs. (65)-(67) as ݎଵଶ௣ െ ଵଶ௣ݎ1 ଶଷ௣ݎ െ 1 ൌ ଶଵߝଶଵߝ ൅ ଷଶ (68)ߝ

݃௣ ൌ ଶଷ௣ݎଷଶߝ െ 1 1݄ଶ௣ (69)

e݂xact ൌ ଷ݂ െ ଶଷ௣ݎଷଶߝ െ 1 ଶଷ௣ݎ  (70)

where ݎଵଶ ൌ ݄ଶ ݄ଵ⁄ ଶଷݎ , ൌ ݄ଷ ݄ଶ⁄ ଶଵߝ , ൌ ଶ݂ െ ଵ݂ and ߝଷଶ ൌ ଷ݂ െ ଶ݂. The error associated 

with the coarse mesh solution can be approximated as 

ଷܧܦ ൌ ଷ݂ െ e݂xact ൌ ଶଷ௣ݎଷଶߝ െ 1 ଶଷ௣ݎ  (71)

Application of this method is contingent upon fulfillment of some conditions such as 

[142, 143, 145, 146]: (1) the exact solution must be smooth so that the Taylor series 

expansion is justified for expanding the discretization error as done in Eq. (64), (2) the 

mesh size must be sufficiently small so that the numerical solution is in the asymptotic 

monotone grid convergence range, and (3) the local error order is the same as the global 

error order. If these conditions are not satisfied, application of the Richardson 

extrapolation method may result in divergence in model prediction [142, 143, 146]. Thus 

the Richardson extrapolation technique should not be applied without consideration of 

the basic assumptions. Also, the grid refinement does not necessarily mean improvement 

in solution; refining grids may sometimes lead to accumulation of machine rounding 

error and incomplete iteration error [145, 147].  

 In this section, different approaches for quantifying three main sources of uncertainty 

– physical variability, data uncertainty and model uncertainty, are discussed. The input 
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and the model parameters of a numerical model can be simulated using the above 

mentioned approaches. The numerical model developed in the previous chapters is 

composed of three essential components – diffusion of ions, chemical reactions and 

damage accumulation. Various physical and chemical parameters in these components 

are simulated in Section 6.5 using the approaches discussed in this section. Several 

methods are available in the literature for propagating these uncertainties through the 

numerical model so that the uncertainty in the model response can be quantified. The 

uncertainty propagation methods are described in the next section.   

 

6.3 Uncertainty Propagation 

 The ultimate goal of this dissertation is durability assessment including uncertainty 

evaluation of cementitious materials under external sulfate attack as a function of time. A 

numerical model is developed for this purpose as described in the previous chapters. 

Uncertainty in various parts of the model arising from different sources affects the model 

prediction. These uncertainties can be quantified using the methods described in the 

previous section. Then, the problem of durability assessment can be formulated as a time-

dependent reliability analysis to assess the evolution of the probability of reaching a 

specified level of degradation with time [47, 48, 50, 148-150] by Monte Carlo Simulation 

(MCS) [110], First Order Reliability Method [110], etc. MCS is the most commonly used 

method in the literature which can be time consuming. Various efficient sampling 

techniques can be used to minimize the computer time or storage requirement, e.g., Latin 

hypercube sampling, importance sampling, etc.  
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 The statistical descriptions of the input and model parameters are essentially of two 

types – (1) PDFs (probability density functions) having constant parameters, e.g. 

parameters having physical variability and model parameters calibrated using 

experimental results, and (2) PDF’s having parameters that are themselves expressed as 

PDFs with constant parameters, e.g. parameters having data uncertainty. Two approaches 

are explored in this section for uncertainty quantification in the durability assessment 

incorporating the abovementioned two types of statistical descriptions of the parameters. 

The first method incorporates a nested Monte Carlo simulation where the outer loop 

generates samples of the distribution parameters of the variables having data uncertainty 

and the inner loop generates samples of all the parameters. As shown in Figure 6.1, ଶܰ 

samples of distribution parameters of variables having data uncertainty are generated. For 

each of ଶܰ samples, ଵܰ samples of the variables having physical variability and data 

uncertainty are generated, and the simulations are performed. The model errors (if 

available) can be added to the simulation results at this stage. Thus a total of ଵܰ ൈ ଶܰ 

simulations are performed. A single durability curve can be constructed using all of the 

ଵܰ model responses from the inner loop Monte Carlo simulations by comparing the 

model responses with a particular performance requirement, e.g., the maximum allowable 

stress or strain in the structure. Thus, ଶܰ durability curves are obtained from the nested 

Monte Carlo simulations, leading to probability bound calculation using the generated 

durability curves and the number of samples. An example of the nested MCS is shown in 

Figure 6.3. This method is computationally expensive for a large finite element 

multiphysics time dependent problem. A surrogate model, e.g., Gaussian process model 

[151], can be used in such cases to reduce the computational time. The Gaussian process 
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model is essentially a nonparametric way of representing the relation between the inputs 

and the outputs of the model. This method is flexible and easy to use as it does not 

require any functional relation between the inputs and the outputs [152].  

The second method incorporates the aforementioned uncertainties in the input and the 

model parameters in a single loop Monte Carlo simulation by consolidating the nested 

simulations into one loop. In this case, ܰ samples are generated for variables having 

physical variability and data uncertainty as shown in Figure 6.2. Simulations are 

performed for each set of samples generated and probability of reaching a particular 

degradation measure as a function of time is calculated. Thus a single durability curve is 

obtained as a result of the simulations in this case. An example of the durability curve 

generated using the single loop MCS is shown in Figure 6.4. The main difference 

between the single loop and the nested loop MCS is that the former produces 

unconditional durability curves whereas the later produces durability curves conditioned 

on the values of distribution parameters of the parameters having data uncertainty. 

Alternatively, the single loop MCS can be viewed as the integrated durability curve of the 

ensemble of the curves generated using the nested loop MCS.   
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Figure 6.1: Probabilistic durability assessment using nested Monte Carlo 
simulation. 

 

 

Figure 6.2 : Probabilistic durability assessment using single loop Monte Carlo 
simulation. 
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6.4 Application of Nested and Single Loop Monte Carlo Simulation 

 The application of the nested and single loop Monte Carlo simulation for the 

durability assessment of the structure is demonstrated in this section. A U.S. Type I 

cement mortar sample of size 25 mm ൈ 25 mm ൈ 285 mm immersed in a tank of ܰܽଶܵ ସܱ solution is considered for illustration purposes. The liquid volume to solid 

volume ratio is 10. The cement, water and sand mass ratio is 1: 0.5: 3. A one-dimensional 

idealization of the three dimensional structure is simulated using the method described in 

Chapter II. The simulations are performed for 2 years for each set of random variables 

generated for the Monte Carlo simulation. The statistical descriptions of the parameters 

are given in Table 6.1. ܰሺߤ,  and standard ߤ ሻ represents a normal distribution with meanߪ

deviation ߪ. ܷሺܤܮ,  as the upper bound. The model error is not considered in this example due to the lack ܤܷ as the lower bound and ܤܮ ሻ represents a uniform distribution withܤܷ

of experimental results.  

 

Table 6.1 : Statistical descriptions of the parameters. 
Input Type Distribution 
Physical variability  
Initial porosity ܰሺ0.3, 0.03ሻ 
Initial tortuosity ܰሺ36, 3.6ሻ 
pH of the external solution ܰሺ7, 1.4ሻ 
Solution concentration (moles/L) ܰሺ0.35, 0.07ሻ 
Renewal rate of solution (day) ܷሺ5, 15ሻ 
Data uncertainty  
Fraction of porosity available (࢈) ܷሺܤܮ, ,ሺ0.05ܷ~ܤܮ ሻܤܷ 0.15ሻ ܷܤ~ܷሺܷሺ0.25, 0.35ሻ 
Peak stress (MPa) ܰሺ ௧݂, 0.5ሻ ௧݂~ܰሺ3, 0.3ሻ 
Initial Young’s modulus (GPa) ܰሺܧ଴, 5ሻ ܧ଴~ܰሺ20, 2ሻ 
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The structure is assumed to have failed if 50% of the thickness of the structure 

reaches the maximum damage level. An element in the structure reaches the maximum 

damage level when the damage parameter associated with that element reaches the 

maximum value (assumed to be 0.9 as mentioned in Chapter II). The durability analysis 

is performed using the nested and the single loop MCS methods as explained in the 

previous section. A Gaussian process surrogate model is built trained on 50 numerical 

simulations of the full multiphysics model to reduce the computational time. Then 500 

samples in the outer and the inner loops are generated for parameters having data 

uncertainty and physical variability and the nested Monte Carlo simulation is performed. 

It is important to acknowledge the fact that additional uncertainty is introduced in the 

simulation due to the use of the surrogate model which is not included in this 

demonstration case. Figure 6.3 shows the ensemble of durability curves from the nested 

loop MCS. Also, the 50 numerical simulations of the full multiphysics model are used in 

a single loop Monte Carlo simulation to generate a single durability curve as shown in 

Figure 6.4. 

 



136 
 

 

Figure 6.3: Cumulative probability of time to failure curves using nested Monte 
Carlo simulation. 

 
 

 

Figure 6.4: Cumulative probability of time to failure curve using single loop Monte 
Carlo simulation. 

As mentioned before, the durability curve in Figure 6.4 is the unconditional cumulative 

distribution function, whereas the curve in Figure 6.3 is conditioned on the values of the 

distribution parameters. Figure 6.3 explicitly shows the contribution of data uncertainty, 
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whereas Figure 6.4 integrates all the sources of uncertainty into a single cumulative 

distribution function curve.    

 

6.5 Probabilistic Durability Assessment 

6.5.1 Overview of the problem 

 The effects of uncertainty from different parts of the model on the durability 

assessment of the structure are demonstrated in this section. A concrete wall of a low 

activity nuclear waste (i.e. saltstone) containment structure is considered for 

demonstration purposes. The wall is exposed to 24000 mg/L of sulfate solution as is 

present in the saltstone pore solution as mentioned in Chapters I and IV [2]. Water 

saturation is assumed as a conservative simplifying assumption for all cases. Actual field 

conditions typically are unsaturated which result in slower diffusion and degradation 

processes than predicted for saturated conditions.  

The material characteristics of the concrete mix are given in Table 6.2.  

 

Table 6.2 : Characteristics of the concrete sample [123, 124]. 
Properties Quantities 

Cement type V 
Water-cement ratio 0.38 

Cement (kg/m3) 121 
Granular blast furnace slag (kg/m3) 162 

Fly Ash (kg/m3) 95 
Silica Fume (kg/m3) 27 

Fine aggregate (kg/m3) 548 
Coarse aggregate (kg/m3) 1111 

Porosity 10 
Tortuosity 430 

Compressive strength (MPa) 70 
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Figure 6.5 : Concrete wall exposed to sulfate solution.  

 

The total leachable concentrations of the species are obtained from the LeachXS 

database and used in the numerical simulations. The thickness of the concrete wall is 200 

mm as shown in Figure 6.5. The structure is divided into 100 nodes with no flux 

boundary condition at ݔ ൌ 200 mm and exposed to 24000 mg/L of sulfate solution at ݔ ൌ 0. The sulfate solution is refreshed every 3 months so that the concentration of 

sulfate at ݔ ൌ 0 remains approximately at 24000 mg/L. The simulations are performed 

for 100 years. The mineral set chosen for the simulations is the same as the one calibrated 

in Chapter V. The fraction of porosity that needs to be filled before strain can develop (b 

in Eq. (20)) is assumed to be 0.3 due to the lack of experimental data. 

The evaluation of structural damage due to cracking using the method as described in 

Chapter II requires several material parameters that need to be extracted from the 

experimental stress-strain diagram. In the absence of a stress-strain diagram for the 

reference material, empirical formulas are applied to obtain the parameters that are 

required to generate the stress-strain diagram for the material. Five parameters are needed 

to reproduce the stress-strain diagram as shown in Figure 2.6 of Chapter II – initial 

Young’s modulus (ܧ଴), ultimate tensile strength ( ௧݂), threshold strain (ߝ௧௛) and two model 

parameters (i.e. ݇ and ݉ሻ. The two model parameters are assumed to be 0.16 and 2.3 
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from the literature [10]. Calculations for the remaining three parameters are described 

below.   

The initial Young’s modulus is related to the compressive cube strength of concrete 

(as obtained from Table 6.2) according to the British Code of Practice (CP110, Part 1) 

and can be expressed as [51] ܧ଴ ൌ 9.1ሺ ௖݂ᇱሻଵ/ଷGPa (72)

with a standard deviation of 4 GPa (reported as േ 4 GPa variability in [51]) for concretes 

having a density of 2300 kg/mଷ and ௖݂ᇱ is the compressive strength of concrete in MPa. 

According to the European Concrete Committee, the axial tensile strength can be 

calculated as [51] 

௧݂ ൌ 0.3ሺ ௖݂ᇱሻଶ/ଷ (73)

with COV of 30% (reported as variability of േ 30% in [51]). Finally, the threshold strain 

is assumed to be at the 40% of the peak stress [153]. It can also be assumed to be up to 50 

or 60% of the peak stress [154, 155].  

 

6.5.2 Various sources of uncertainty 

The numerical framework for degradation modeling of cementitious materials under 

external sulfate attack consists of three components – (1) diffusion of ions, (2) chemical 

reactions, and (3) structural damage due to cracking. Various sources of uncertainty and 

errors in these three components of the model that contribute to the overall uncertainty in 

the model prediction are described below. 

1. Diffusion of ions   

a. Physical variability comes from the inherent randomness in the input 
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parameters that are observable/measureable quantities, e.g. porosity and 

tortuosity, inherent randomness in the boundary condition, e.g. sulfate 

concentration at the boundary. 

b. Data uncertainty comes from sparse or interval data, i.e. due to small number 

of samples used for porosity and tortuosity determination.  

c. Model uncertainty arises due to the various assumptions and approximations 

in the model, e.g. neglecting electrical potential in the diffusion equation, and 

uncertainty associated with the empirical relations used in the model, e.g. Eq. 

(19) for changing diffusivity due to change in porosity. Also, conservative 

assumptions of saturated conditions and constant sulfate concentartion at the 

boundary as opposed to the actual field condition add to the model 

uncertainty. These asusmptions result in estimates of diffusion and cracking 

rates that are faster (i.e. conservative) than actual field conditions. Model error 

also comes from the discretization error in time and space in the finite 

difference method that is used to solve the equations. 

d. Experimental error is present in any measurement of any parameter of the 

model. 

2. Chemical reactions 

a. Physical variability in this component of the model comes from the inherent 

randomness in the input parameters that are observable/measureable 

quantities, e.g. total concentrations of the species available for reaction. 

b. Data uncertainty arises from sparse or interval data, e.g. small number of 

samples used for measurement of the total concentrations of the ions. 
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c. Uncertainty in the model parameters that are not directly 

observable/measureable contribute to the model uncertainty, e.g. equilibrium 

constants of the chemical reactions. Additionally, uncertainty due to various 

assumptions and approximations affect the model response, e.g. the 

assumption of local equilibrium and not incorporating kinetic aspect of the 

chemical reactions. Also, uncertainty due to the incomplete knowledge of the 

physics of the problem increases the model uncertainty, e.g. omitting potential 

solid phases in the chemical reactions. Numerical error due to incomplete 

iteration also affect the simulation results. 

d. Experimental measurement error affect any experimentally determined 

parameter.   

3. Structural damage due to cracking 

a. Inherent randomness in the input parameters that are observable/measureable 

quantities, e.g. Young’s modulus and peak strength of the structure. 

b. Incomplete knowledge on some of the parameters contribute to data 

uncertainty, e.g. complete lack of knowledge on the fraction of porosity that 

needs to be filled before strain can develop due to the lack of experiments. 

c. Uncertainty associated with the empirical relations contribute to model 

uncertainty, e.g. Young’s modulus and peak stress as in Eqs. (72) and (73), 

effect of cracking on diffusivity and Young’s modulus. Various assumptions 

and approximation in the damage model, i.e. the realtion between the strain 

and the crack state of the structure, also add to the uncertainty in the model 

prediction. 
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d. Experimental measurement errors also add to the overall uncertainty of the 

model. 

Some simplifying assumptions are made in the numerical simulation to keep the 

problem tractable. The statistical descriptions of the parameters are given in Table 6.3. 

The Young’s modulus and the peak stress of the material are simulated as random 

variables having normal distributions with the mean as obtained from Eqs. (72) and (73), 

and standard deviation and COV specified as the variability (absolute value for the 

Young’s modulus and % for the peak stress) in the values obtained from these equations. 

The porosity and tortuosity are expressed as normal distributions with mean and standard 

deviations obtained from the experiments given in the literature for a similar material. 

The initial concentrations of species are also expressed as normally distributed random 

variables with mean values obtained from the LeachXS database and an assumed 10% 

COV. The porosity, tortuosity and the total concentration of species are estimated from 

limited number of samples (assumed to be 5 in this section). Thus, the parameters of the 

distribution will have some uncertainty associated with them. Therefore, the mean and 

the variance of the distributions are assumed to have the student’s t and the chi-square 

distributions respectively as described in Subsection 6.2.2 assuming that the underlying 

distributions for these parameters are normal. The external sulfate concentration is 

expressed as random variable having normal distribution with mean value as obtained 

from the literature and an assumed 10% COV. The fraction of porosity that needs to be 

filled for strain development is generally calibrated using experimental data. It is 

assumed to have normal distribution with 0.3 mean and 10% COV due to the lack of 

experimental observations. The uncertainty in the chemical equilibrium model parameters 
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as calibrated in Chapter V represents uncertainty in the model parameters as well as the 

model form error in the chemical equilibrium module. A preliminary stability analysis of 

the model using 100, 200 and 300 nodes showed that the most stable solution is obtained 

using 100 nodes. The instability in the solutions using 200 and 300 nodes may be the 

result of accumulation of machine error, incomplete iteration and discontinuity in the 

solution due to formation of cracks. Further investigation is needed to evaluate the cause 

of the instability. Therefore, the following simulations are performed using 100 nodes.  

 

6.5.3 Design of numerical experiment 

 The statistical descriptions of the model and the input parameters are given in Table 

6.3. The parameters are divided into two broad categories in order to isolate the effect of 

uncertainty in the chemical equilibrium model parameters from the uncertainty in the 

other input and model parameters of the model. The categories are – (T1) input 

parameters to the various parts of the model except the chemical equilibrium model 

parameters (i.e. the physical parameter uncertainty), and (T2) the model parameters in the 

chemical equilibrium module (i.e. the chemical parameter uncertainty). Effects of 

uncertainty in these two categories on the durability assessment of the cementitious 

structure are evaluated by considering three cases – (1) T1 probabilistic and T2 

deterministic, (2) T1 deterministic and T2 probabilistic, and (3) both T1 and T2 

probabilistic. 50 simulations are performed for each of the three cases using the single 

loop MCS as described in Section 6.3 and the damage progression rates as a function of 

time are obtained for each simulation. The damage progression rates are then 
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extrapolated to estimate the time required for the structure to crack completely under the 

exposure of sulfate solution as shown in Figure 6.6. 

 

 

 

Table 6.3 : Statistical descriptions of the model and input parameters. 

Parameter  Statistical Description  
Porosity of concrete wall  ܰሺߤଵ, ଵሻ 0.1ߪ െ ଵሺ5ߤ ൈ 10ିଷሻ/√5 ~Student's t with 4 degrees of freedom 4 כ ሺ5 ൈ 10ିଷሻଶߪଵଶ ~Chi‐square with 4 degrees of freedom

Tortuosity of concrete wall  ܰሺߤଶ, ଶሻ 430ߪ െ ଶሺ64.5ሻ/√5ߤ ~Student's t with 4 degrees of freedom 4 כ ሺ64.5ሻଶߪଶଶ ~Chi‐square with 4 degrees of freedom 

Initial Young’s Modulus 
(MPa)  

ܰሺ37.5 ൈ 3, 4 ൈ 10ଷሻ  
Ultimate Tensile Strength 

(MPa) 
ܰሺ5.1, 0.3 כ 5.1ሻ  

Fraction of available 
porosity 

ܰሺ0.3, 0.1 כ 0.3ሻ 

External sulfate 
concentration (moles/L)  

ܰሺ0.25, 0.1 כ 0.25ሻ 

Total concentrations of 
species (moles/kg)  

ܰሺߤ௜, ҧ௜ݔ ௜ሻߪ െ ௜/√5ݏ௜ߤ ~Student's t with 4 degrees of freedom ସכሺ௦೔ሻమఙ೔మ ~Chi‐square with 4 degrees of freedom  ݔҧ௜ : LeachXS database ݏ௜ : 0.1*ݔҧ௜ 
Equilibrium constants  As calibrated in Chapter V 
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Figure 6.6 : Example of progression of damage. 

 

The times required for complete cracking/damage are calculated from each of the 50 

simulations for the three cases and are shown as diamond signs in Figure 6.7. Then, the 

probability densities and cumulative probabilities of complete cracking are estimated for 

the three cases as shown in Figures 6.8 and 6.9. The times to complete damage at selected 

percentile values for the three cases are given in Table 6.4. Cases 1 and 2 provide 

information on the effect of variability of input parameters and data uncertainty, and the 

effect of uncertainty in the model parameters of the chemical equilibrium model on the 

damage progression rate respectively. The probability of time to complete damage as 

evaluated from case 3 provides the complete information on the effect of both types of 

uncertainties on the damage progression of the structure. It is interesting to note that the 

total effect of cases 1 and 2 is not a linear combination of the individual effects and it 

reflects complex relationships among the various input and the model parameters. It is 

also important to note that the probability distribution of time to complete damage 



146 
 

becomes wider due to chemical parameter uncertainty in addition to physical parameter 

uncertainty. The service life assessment models [47-50] for the cementitious structure 

under chemical attack available in the literature mainly consider physical parameter 

uncertainty as mentioned in Chapter I. But it is evident from Figure 6.8 that the 

contribution of the chemical parameter uncertainty on the durability assessment is 

critically important and hence needs to be considered. However, it is also important to 

acknowledge that the numerical simulations performed in this section are for a saturated 

structure under constant boundary condition. This condition is more aggressive than that 

experienced in the field i.e. unsaturated structure under fluctuating boundary condition. 

Also, the results are based on only 50 Monte Carlo simulations for each case which do 

not represent an exhaustive set. Therefore the results obtained here should be considered 

as a conservative estimate.  

 

 
(a) 
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(b) 

 

(c) 

Figure 6.7 : Progression of damage and projected time to complete damage for the 
three cases. 
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Figure 6.8 : Probability density of time to complete damage. 

 

 

Figure 6.9 : Cumulative probability of time to complete damage. 
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Table 6.4 : Time (years) to complete damage at selected percentiles. 

Cases 
 
 

Percentiles 

Case 1 
Physical parameter 

uncertainty  

Case 2 
Chemical 
parameter 
uncertainty 

Case 3 
physical and 

chemical 
parameter 
uncertainty 

5th 91 135 77 
10th 108 156 103 
25th 139 195 154 
50th 173 254 233 
75th 211 404 420 
90th 272 511 913 
95th 356 555 1364 

 

6.6 Conclusion 

 A methodology is developed in this chapter for the durability assessment of the 

cementitious structure under external sulfate attack, by incorporating various sources of 

uncertainty. Different approaches are discussed for the quantification of uncertainty in the 

numerical model for – (1) inherent randomness in the parameters, (2) incomplete 

knowledge of the data, and (3) assumptions and approximations in the model. Different 

approaches for uncertainty propagation through a numerical model for uncertainty 

quantification in the model response using nested and single loop Monte Carlo simulation 

are discussed. The methodology for evaluating degradation of cementitious structures due 

to physical variability and data uncertainty in the input parameters is demonstrated.  

 Various sources of uncertainty in the numerical model developed in this dissertation 

are identified. The input and the model parameters are broadly classified into (1) input 

and model parameters in the various parts of the model except the chemical equilibrium 

module (i.e. the physical parameter uncertainty), and (2) the model parameters in the 

chemical equilibrium module (i.e. the chemical parameter uncertainty). The effects of 
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uncertainty in these two types of categories on the degradation of a concrete vault wall 

exposed to sulfate containing waste material (i.e. saltstone) are demonstrated by isolating 

and then combining these sources using Monte Carlo simulation. It is observed that the 

simulation results reflect nonlinear relationships among uncertain parameters. It is also 

evident from the simulation results that the contributions of both the physical and 

chemical parameter uncertainties are significant and need to be considered in the 

durability assessment of cementitious structures under chemical attack.   
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CHAPTER VII 

SUMMARY AND FUTURE WORK 

 

7.1 Summary 

 Cementitious materials in contact with sulfate containing water degrade with time 

due to the formation of expansive mineral phases leading to cracking and spalling of the 

structure. This has been identified as a potentially important degradation mechanism for 

underground containment structures containing solidified low activity nuclear waste 

material (e.g., saltstone). A numerical framework is developed in this dissertation for the 

durability assessment of such structures under exposure to sulfate rich environments.  

The four essential components of the degradation mechanism incorporated in the 

numerical model in Chapters II and III are – (1) diffusion of ions in and out of the 

structure, (2) chemical reactions of the diffused species with the cement hydration 

products, (3) cracking due to expansive product formation, and (4) changes in the 

mechanical properties of the structure due to mineralogical changes as a result of 

chemical reactions. Diffusion of ions is assumed to occur under concentration as well as 

under chemical activity gradients. The diffused species react with the solid phases present 

in the cement matrix altering the mineralogical and pore structure features of the 

structure. The equilibrium solid phases are calculated using a geochemical speciation 

model assuming that the chemical reactions occur under local equilibrium. The expansive 

solid products formed as a result of chemical reactions deposit in the pores that may lead 

to cracking. A continuum damage mechanics approach is used in this research to evaluate 
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the crack state of the structure. The diffusion and mechanical properties are modified due 

to the presence of cracks and the changes in the parameters are incorporated in the 

framework using empirical relations. Finally, the effect of the mineralogical changes on 

the mechanical properties is estimated using a continuum micromechanics approach. The 

numerical model is calibrated and validated using experimental results available in the 

literature. Thus this improved mechanistic model can potentially be used to evaluate 

damage of the structure over time under external sulfate attack. 

The numerical simulation of the degradation behavior of the structure varies with 

fluctuations in the external and internal factors. The changes in some of these factors 

affect the model response more than the others. A sensitivity analysis is performed in 

Chapter IV in order to identify the parameters that have significant influence on the 

model response. Additionally, the results of the sensitivity analysis can also be used for 

designing or maintenance scheduling of the structure.  

An important aspect of numerical simulation of external sulfate attack is simulating 

chemical reactions and calculating the equilibrium solid phases that can potentially be 

present or form in the cementitious structure. Numerical simulation of chemical 

equilibrium requires thermodynamic information that is generally obtained from the 

literature. This information may not accurately represent the true behavior of the system 

due to imprecision in the experimental data, variability in the data across the literature, 

incomplete knowledge of the real system etc. A method is developed in Chapter V to 

quantify model parameter uncertainty in the chemical equilibrium module that did not 

receive significant attention in the literature. This methodology incorporates the 
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aforementioned uncertainties in the input parameters of the model and the experimental 

data obtained from a database/expert decision support system.  

In Chapter VI, uncertainty quantification methods for incorporating – (1) physical 

variability, (2) data uncertainty, and (3) model uncertainty are discussed. Different 

approaches for propagating the uncertainties through a numerical model are also 

described. Application of the methods is demonstrated using nested and single loop 

Monte Carlo simulation techniques incorporating physical variability and data 

uncertainty. The input and model parameters for the particular model developed in this 

dissertation are broadly classified into two groups – (1) input and model parameters in the 

various parts of the model except the model parameters in the chemical equilibrium 

module (i.e. the physical parameter uncertainty), and (2) the model parameters in the 

chemical equilibrium module (i.e. the chemical parameter uncertainty). The effects of 

uncertainty in these two types of parameters on the progression of damage are evaluated 

separately and then collectively using single loop Monte Carlo simulation. It is observed 

that the contribution of the chemical parameter uncertainty on the durability of the 

structure is significant and should therefore be included along with physical parameter 

uncertainty for durability assessment of the structure.    

In summary, a generalized approach for performance assessment of cementitious 

materials under aggressive chemical attack is developed and demonstrated in this 

dissertation. The numerical methodology includes coupled reactive transport, continuum 

damage mechanics and continuum micromechanics models for damage assessment of 

structures under external sulfate attack. This improved mechanistic model can be used to 

realistically simulate degradation of the structure exposed to aggressive sulfate rich 
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environment over time. Whenever long term simulation of structural response is of 

interest, it is important to incorporate various sources of uncertainty that can potentially 

affect the response of the structure. The probabilistic framework developed in this 

dissertation incorporates these sources of uncertainty and thus it can be used to assess 

long term durability of cementitious structures under chemical attack. It can also be 

applied to evaluate various designs for life extension of existing and future containment 

structure.  

 

7.2 Future Work  

 The numerical methodology developed in this dissertation can be improved in many 

ways. Various aspects of the degradation of cementitious materials exposed to aggressive 

environment need to be investigated in detail. Some of these aspects are discussed in this 

subsection. 

(1) Model scalability – In the current approach three dimensional problems are idealized 

as one dimensional. The model can be improved to include two and three dimensional 

problems so that corner effects (inability of a one dimensional model to evaluate singular 

regions such as corners) can be reduced, and different boundary conditions can be 

accommodated such as the concrete vault walls exposed to surrounding soils on five 

faces and the waste material on one face. Additionally, a three dimensional (or at least a 

two dimensional) model will be capable of manifesting the effects of porosity, tortuosity 

and cracking in different directions as is observed in a real structure. Also, concrete is 

heterogeneous material with nonreactive aggregates dispersed in a reactive cement 
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matrix. This aspect of the problem can also be realistically simulated as a three 

dimensional structure.  

(2) Chemical equilibrium modeling – The chemical equilibrium model in its present form 

calculates the composition of the equilibrium solid phases based on the local equilibrium 

assumption whereas the kinetic effects of chemical reactions may prove to be significant 

if long term durability of the structure is desired. Therefore secondary effects such as 

kinetic aspects of chemical reactions need to be incorporated to improve the model 

prediction capability.  

(3) Damage modeling – As mentioned in Chapter I, the mechanism of sulfate attack is not 

unanimously agreed upon. There are mainly two schools of thought – (1) paste expansion 

hypothesis and (2) crystal growth pressure hypothesis. The numerical model presented in 

this dissertation is mainly based on a simplified paste expansion hypothesis. Thus the 

smeared cracking approach on the macro structure was applied to assess cracking state of 

the structure. On the other hand, application of crystal growth pressure requires 

knowledge of shape, size and location of the deposited mineral. Thus a detailed two or 

three dimensional diffusion and chemical reaction simulation coupled with fracture 

mechanics based approach is needed to simulate cracking of the structure using the 

hypothesis. Comparison between the simulation and the experimental results may provide 

significant insight on the actual sulfate attack mechanism. 

(4) Different sulfate salts – The behavior of the structure changes considerably depending 

on the cations associated with the sulfate ions (e.g., ܰܽା, ,ାଶ݃ܯ  ାଶ etc.)[156]. Theܽܥ

main focus of researchers in this respect has been on sodium sulfate attack. Magnesium 

sulfate is generally considered to be the most detrimental among all sulfates [157-159]. 
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But numerical simulation of magnesium sulfate attack is not investigated in the literature 

as the nature of the attack is complex and is not well understood [160]. A numerical 

simulation methodology needs to be developed for assessing the degradation of the 

structure under ܵ݃ܯ ସܱ attack, by including issues such as formation of “double layer” of 

brucite and gypsum [158, 159], and formation of magnesium silicate hydrate gels that do 

not have any adhesive properties [161, 162]. 

(5) Multiple degradation processes – A real structure is generally exposed to multiple 

processes that degrade the structure over time. For example, bridge piers, building 

foundations, pavement subgrades and underground structures are exposed to groundwater 

and seawater compositions (i.e. mixture of salts of ି݈ܥ, ܵ ସܱି ଶ and ܱܥଷି ଶ). In addition to 

chemical attack, these structures are also exposed to physical processes e.g. temperature 

fluctuation, infiltration and mechanical loads. Several studies have explored durability 

assessment of structures under coupled chemical, mechanical and physical processes [94, 

163, 164]. The simulation methods for chemical reactions in these models are simplified 

and limited to few potential reactions. The numerical methodology developed in this 

dissertation can be integrated with the coupling approaches available in the literature to 

evaluate durability under realistic environmental conditions. In addition, experiments 

need to be conducted for assessing individual and interactive effects of various 

degradation mechanisms e.g. chemical, physical and mechanical. These experiments can 

be used for validation of the numerical framework. 

(6) Controlled experiments – In this research, various input parameters of the model are 

assumed or obtained from the literature. Experimental determination of these parameters 

based on a statistically significant sample size can increase the confidence in the 
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durability prediction. Thus controlled experimental studies are needed to determine the 

statistical distributions of the input parameters of the model. 
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APPENDIX 

NUMERICAL SIMULATION PARAMETERS 

 

Chapter II 

Subsection 2.4.1 

Input parameters Geometry : 7 cm diameter, 20 mm thickness 
Porosity : 0.52 
Sulfate concentration (mmol/L) : 50 
Renewal rate (days) : 7 
External solution pH : 10.3 
Tank volume (L) : 30 

Calibration parameters b : 0.3 
Tortuosity : 35 

 

Subsection 2.4.2 

Input parameters Geometry : 25 mm x 25 mm x 285 mm 
Porosity : 0.3 
Tortuosity : 36 
b : 0.2 
Sulfate concentration (mmol/L) : 350  
Renewal rate (days) : 7  
External solution pH : 7 
Tank volume (L) : 1.78  

 

Chapter III 

Subsection 3.3.1 

Input parameters Geometry : 110 mm diameter, 220 mm height
Ammonium nitrate concentration (mol/L) : 6  
Boundary condition : fixed 
External solution pH : 8 

Calibration parameters Porosity : 0.15 
Tortuosity : 120 

  

 



172 
 

Subsection 3.3.2 

Input parameters Geometry : 40 mm x 40 mm x 160 mm 
Sulfate concentrations (mg/L) : 2700, 18000, 72000 
Renewal rate (days) : 14  
External solution pH : 7 
Tank volume (L) : 2.56 

Calibration parameters Porosity : 0.25 
Tortuosity : 50 
b : 0.55 

  

Chapter IV 

Subsection 4.2.1 

Input parameters Cement type : I  
Geometry : 50 mm x 50 mm x 50 mm 
Sulfate concentrations (mmol/L) : 350  
Renewal rate (days) : 7  
External solution pH : 3, 5, 7, 9, 12 
Tank volume (L) : 30  
Porosity : 0.25 
Tortuosity : 100 
b : 0.5 

 

Subsection 4.2.2 

Input parameters Cement type : I  
Geometry : 50 mm x 50 mm x 50 mm 
Sulfate concentrations (mmol/L) : 150, 250, 350, 450, 550 
Renewal rate (days) : 7 
External solution pH : 7 
Tank volume (L) : 30 
Porosity : 0.25 
Tortuosity : 100 
b : 0.5 
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 Subsection 4.2.3 

Input parameters Cement type : I  
Geometry : 50 mm x 50 mm x 50 mm 
Sulfate concentrations (mmol/L) : 350  
Renewal rate (days) : 1, 7, 14, 30, 180, 720 
External solution pH : 7 
Tank volume (L) : 30 
Porosity : 0.25 
Tortuosity : 100 
b : 0.5 

 

Subsection 4.2.4 

Input parameters Cement type : I  
Geometry : 50 mm x 50 mm x 50 mm 
Sulfate concentrations (mmol/L) : 350  
Renewal rate (days) : 7 
External solution pH : 7 
Tank volume (L) : 30 
Porosity : 0.15, 0.2, 0.25, 0.3, 0.35 
Tortuosity : 100 
b : 0.5 

 

Subsection 4.2.5 

Input parameters Cement type : I  
Geometry : 50 mm x 50 mm x 50 mm 
Sulfate concentrations (mmol/L) : 350  
Renewal rate (days) : 7 
External solution pH : 7 
Tank volume (L) : 30 
Porosity : 0.25 
Tortuosity : 100 
b : 0.3, 0.4, 0.5, 0.6, 0.7 

 

 

 

 

 



174 
 

Subsection 4.2.6 

Input parameters Cement type : I  
Geometry : 50 mm x 50 mm x 50 mm 
Sulfate concentrations (mmol/L) : 350  
Renewal rate (days) : 7 
External solution pH : 7 
Tank volume (L) : 30 
Porosity : 0.25 
Tortuosity : 60, 80, 100, 120, 140 
b : 0.5 

 

Subsection 4.2.7 

Input parameters Cement type : I and V 
Geometry : 50 mm x 50 mm x 50 mm 
Sulfate concentrations (mmol/L) : 350  
Renewal rate (days) : 7 
External solution pH : 7 
Tank volume (L) : 30 
Porosity : 0.25 
Tortuosity : 100 
b : 0.5 

 

Chapter V 

Subsection 5.4.1 

Input parameters Cement type : CEM V/A 32.5 N  

Calibration parameters Equilibrium constants 

 

Subsection 5.4.2 

Input parameters Cement type : V (ASTM C150)  

Calibration parameters Equilibrium constants 
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Chapter VI 

Section 6.4 

Input parameters Cement type : I  
Geometry : 25 mm x 25 mm x 285 mm 
Distribution of parameters : see Table 6.1 

 

Section 6.5 

Input parameters Cement type : V 
Geometry : 200 mm 
Distribution of parameters :  see Table 6.3  

 


