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CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 

 On 11 September 2001, the world learned of the great lengths to which terrorists are 

now prepared to go to attack their enemies.  Attacks using aircraft, land- or water-based 

forces, vehicle bombs, and even chemical, biological, or radiological weapons, once believed 

to be only remotely possible, are now considered realistic threats.  Today, attacks on the U.S. 

commercial nuclear power industry are also considered a realistic threat.  A successful attack, 

or sabotage, at a nuclear facility would potentially cause a devastating release of radioactive 

material into potentially heavily populated or major agricultural areas.  While many people 

focus their concerns on the vulnerability of reactors themselves, an increasing number of 

experts are concerned with the spent fuel storage facilities, or spent fuel pools (SFPs).  SFPs 

are a cause for concern because they are more vulnerable than the reactor containment 

vessels and contain much more radioactive material than the reactor core. 

 The purpose of this study is to analyze the potential consequences of an incident in 

which a SFP is targeted for terrorist activity and significant quantities of radioactive 

materials were released into the environment based on a worst-case scenario.  Utilizing the 

HPAC and RESRAD modeling codes, radioactive contamination levels are generated and 

resulting dose/risk projections were obtained, for an attack on a rural and urban SFP which 

results in a zirconium fire.  The environmental impacts are studied in comparison with the 

levels of contamination measured in the latest 30-km exclusion zone characterization at 

Chernobyl.  Additionally, radiation dose levels for personnel remaining in the contaminated 
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areas are analyzed to estimate the radiation health effects that may be experienced prior to 

the institution of countermeasures or other protective measures.  Lastly, U.S. regulatory 

standards, as they may apply to a terrorist attack on a SFP, are reviewed to analyze the 

differences between NRC and EPA approaches to determining environmental cleanup goals.        
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CHAPTER II 

 

BACKGROUND 

 

The U.S. Commercial Nuclear Reactor Complex 

 As of 2003, there were 103 commercial nuclear reactors operating in 31 states (Figure 

2-1), all of which are classified as light-water reactors.  Of these, 34 are BWRs and 69 are 

PWRs (Alvarez, 2003).  

  

 
 
 
 

 

 

 

 

 

 
Figure 2-1: Locations of nuclear power plants in the United States.  Circles represent sites with one reactor, 
squares represent plants with two, and stars represent three.  Open symbols represent sites with at least one 
shutdown reactor (Alvarez, 2003). 
 
 
 
 In fossil-fueled power plants, water is heated by the burning of coal, oil, or natural 

gas and is converted to steam which drives a turbine-generator to produce electricity.  In a 

nuclear power plant, fission energy released in the reactor produces steam, either directly in 



4 

the reactor or in auxiliary heat exchangers called steam generators, that drives the turbine-

generator to produce electricity. 

 Figure 2-2 presents a generic drawing of the principle components of a nuclear 

reactor vessel, along with corresponding radiation shield and containment.  The central 

region of the reactor vessel is called the core and contains the fuel, the moderator, and the 

coolant.  The fuel includes the fissile isotope 235U and the fissionable isotope 238U 

responsible for both the criticality of the reactor and the release of fission energy.     

 
 

 
Figure 2-2: Nuclear reactor vessel (Lamarsh, 2001). 
 
 
 

Fissioning occurs when a nucleus of a large mass number atom (referred to as a 

“heavy nucleus”) obtains enough energy to split in two, thus becoming more stable.  For this 

to occur, the additional energy introduced to a nucleus by a neutron causes an altering of the 

attractive forces between the protons and neutrons and thus deforms the nucleus to the point 

where the system begins to split in two.  In a reactor, energy must be supplied rapidly enough 

to sustain a chain reaction.  This is accomplished through neutron production and absorption.  

When a neutron is absorbed in a heavy nucleus, the resulting isotope is formed in an excited 
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state at an energy level equal to the kinetic energy of the incident neutron plus the binding 

energy of the neutron in the isotope.  If this binding energy alone is greater than the critical 

energy of fission (i.e. the energy required to produce a fission event) of the isotope, then 

fission can occur with neutrons having little or no kinetic energy.  For example, when a 235U 

isotope absorbs a neutron, it becomes a 236U isotope.  The binding energy of this neutron in 

236U is 6.4 MeV while the critical energy of fission is only 5.3 MeV.  Therefore, a neutron 

with no kinetic energy absorbed in 235U will induce a fission event, making 235U a fissile 

isotope.  However, when a 238U isotope absorbs a neutron with no kinetic energy, the 

resulting isotope has a binding energy of 4.9 MeV.  With a critical energy of fission of 5.5 

MeV, this isotope will not undergo fission.  Thus, 238U is considered fissionable, and not 

fissile, because a neutron with kinetic energy greater than 0.6 MeV is required to induce a 

fission event (Lamarsh, 2001).     

The moderator is used to “slow down” fast neutrons to thermal energies and the 

coolant is used to remove heat energy from the core and other parts of the reactor where heat 

energy may be produced.  In light-water reactors, water is utilized as both the moderator and 

coolant.  Water is ideal because it is readily available at low cost and has thermodynamic 

properties that are well understood.     

A “blanket” surrounds the core as shown in Figure 2-2.  The blanket is used in 

breeder reactors for conversion of fissionable material to fissile material.  As this study 

focuses on light-water reactors currently employed in the U.S., aspects of the breeder or 

converter reactors are beyond the scope of this report.     
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Also surrounding the core, the reflector performs a function as its name implies.  A 

wall of moderating material is placed around the core to return neutrons to the core after one 

or more collisions.   

Control rods are movable pieces of neutron-absorbing material and are used to control 

the rate of reaction in reactors.  Since they absorb neutrons, any movement of the rods affects 

the multiplication factor of the system.  The multiplication factor is defined as the measure of 

the rate of neutron production compared to the rate of loss in the system (Cember, 1996).  A 

multiplication factor of 1.0 ensures a system is critical.  When this factor increases, the 

system will become supercritical.  When the factor decreases, the system will become 

subcritical and eventually die out.  

As stated previously, most of the fission energy released in a reactor is used to 

produce steam, either directly in the reactor or in steam generators.  The reactor or reactor-

steam generator combination is called the NSSS.  The NSSS serves the same function as the 

steam boiler in a conventional fossil-fuel plant. 

Figure 2-3 illustrates the process of how steam generated in the reactor drives steam 

turbines, coupled to generators, to produce electricity.  Turbines consist of a series of bladed 

wheels affixed to an axle, which rotates at high speed as steam at high temperature and 

pressure strikes the blades (Lamarsh, 2001).  Spent steam passes into a condenser where it is 

cooled and condensed to water.  From there, the condensed water is eventually returned back 

to the NSSS as feedwater. 
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Figure 2-3: Power-producing side of a NSSS (Lamarsh, 2001).   

     

Today, light-water reactors are the most widely used reactors in the world for 

producing electric power and are used exclusively for U.S. commercial reactors as either 

PWRs or BWRs. 

Figure 2-4 provides a cross-sectional view of a PWR.  As illustrated, water enters the 

vessel at a temperature of approximately 290oC (554oF), flows down around the outside of 

the core where it serves as a reflector, passes upward through the core where it is heated, and 

then exits from the vessel with a temperature of approximately 325oC (617oF).  This water is 

maintained at a high pressure (approximately 2250 psi) and will not boil (Lamarsh, 2001).     
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Figure 2-4: Cross-sectional view of a PWR (Lamarsh, 2001). 
 
 
 

Because the water does not boil in the reactor, steam must be produced in steam 

generators (see Figure 2-5).  High temperature and pressure water is passed through several 

thousand tubes in “U” shapes.  The outer surfaces of these tubes are in contact with lower 

pressure and cooler water, causing it to boil and produce “wet” steam in the evaporator 

section of the generator.  The wet steam passes into the steam drum section where it is dried 

before exiting to the turbines. 
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Figure 2-5: PWR steam generator (Lamarsh, 2001). 
 
 
 

A cross-sectional view of a BWR is included in Figure 2-6.  As depicted, water 

passes upward through the reactor core where a portion of the coolant becomes vaporized.  

The mixture of steam and liquid water is separated in the steam separator.  The steam is 

further separated in the dryer.  All wet liquid from the steam separator and dryer mix with 
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feedwater returning from the condenser to the core.  The dry steam exits the reactor via the 

steam line to the turbines as discussed previously.   

 

 
Figure 2-6: Cross-sectional view of a BWR (Lamarsh, 2001). 
 
 
 

Due to the design differences of PWRs and BWRs, there are a variety of advantages 

and disadvantages of each.  For instance, less water is pumped through a BWR per unit time 

because more heat can be absorbed as latent heat (i.e. heat necessary to vaporize a liquid) in a 

BWR than as sensible heat (i.e. heat only changes the temperature of a fluid) in a PWR.  

Secondly, the water passing through a BWR core becomes slightly radioactive and thus all 

components of the steam utilization system must be shielded.  The pressure necessary in a 

BWR is only one-half the value required in a PWR so reactor vessel walls are not required to 
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be as thick.  Lastly, the power density is smaller in a BWR so the overall dimensions of the 

reactor vessel must be larger than required in a PWR.              

In all reactors, the nuclear fuel elements must be periodically removed from the core 

and replenished with new fuel so that criticality will be sustained, due to the fissioning of 

uranium during reactor operations.  When this occurs, a reactor is shut down to transfer fuel 

to spent fuel pools.  About one-third of the fuel in the core is replaced during each refueling 

cycle although some operations commonly offload the entire core into the SFP (NAS, 2006).   

Although SFPs have a variety of designs, almost all are located outside of the 

containment structure holding the reactor vessel.    Figures 2-7 and 2-8 illustrate SFP layouts 

for PWRs outside the reactor vessel.  Figure 2-9 illustrates a layout for a SFP located outside 

the reactor vessel in a BWR while Figure 2-10 illustrates a SFP located inside a reactor 

vessel.   

 

 

 

 

 

 

 

 

 
Figure 2-7: Layout of spent fuel pool and transfer system for a typical PWR (Alvarez, 2003). 
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Figure 2-8: Schematic section through a PWR reactor (NAS, 2006). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9: Layout of spent fuel pool and transfer system for a typical BWR (Alvarez, 2003). 
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Figure 2-10: Schematic section through a G.E. Mark I BWR reactor (NAS, 2006). 
 
 
 

Whether located inside or outside the containment facility, SFPs are designed to 

withstand a variety of insults, mostly naturally occurring events such as earthquakes and 

tornado-propelled debris.  Nearly all are constructed as a “pool within a pool” with a stainless 

steel inner pool situated within a steel-reinforced concrete outer pool but are open to the 

surrounding structure at its surface (see Figure 2-11).  SFPs within the reactor building are 

typically constructed with about 2 feet of reinforced concrete.  For SFPs located outside the 

containment structure (see Figure 2-8), one or more walls may be located on the exterior wall 

of an auxiliary building that is located adjacent to the containment building.  The enclosing 

superstructure above the pool are typically steel, industrial-type buildings designed to house 

cranes used to move reactor components, spent fuel and spent fuel casks (NAS, 2006).   For 
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added safety, there are no drains or low-level pathways to allow water to exit the pool.  

Typical pool depths are between 12 and 15 meters with a total volume of 4,000 to 5,000 m3.  

  

 

 

 

 

 

 

Figure 2-11: Spent fuel pool (NRC, 2003). 

 

Spent fuel is stored in 4-meter high racks near the bottom of the pool which results in 

approximately 30 feet of water above.  Racks have feet to provide space between their 

bottoms and the pool floor.  There is also space between the sides of racks and the steel pool 

liners for circulation of water. 

As depicted specifically in Figures 2-8 and 2-10 above, the general elevation of the 

spent fuel pool matches that of the vessel containing the reactor core.  PWR designs use 

comparatively shorter reactor vessels that are closer to ground level.  In contrast, BWR 

vessels are taller, resulting in a more elevated SFP.  

All of these factors (i.e. location with respect to ground level, presence of surrounding 

shielding structures, etc.) contribute to the general vulnerability of the SFP to terrorist attack.     

Over the past four decades, approximately 50,000 MTU of spent fuel have been 

generated.  A typical nuclear power plant generates about 20 MTU per year with the entire 

industry generating approximately 2000 MTU per year.  Of all the spent fuel generated to 
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date, approximately 87% is stored in SFPs with the remaining stored in dry storage.  SFPs 

exist at all sites with operating nuclear power reactors and at 8 sites where reactors are no 

longer operating (i.e. reactors that have been shut down or decommissioned) (NAS, 2006). 

 Each year, about one third of the core fuel is discharged into the SFP.  A 

hypothetical one GWt PWR core contains about 80 tU fuel.  A pool with a 15-year storage 

capacity will hold about 300 tons of spent fuel.  Assuming a 137Cs inventory at shutdown of 

3.70E6 GBq tU-1 (0.1 MCi tU-1) and a burn-up of 50,000 MWt-day tU-1 (INESAP, 2005), a 

pool with 300 tons of 10 year old spent nuclear fuel would hold about 1.11E9 GBq (30 MCi) 

137Cs.  To put this activity into perspective, the Chernobyl accident, discussed in detail 

below, released approximately 8.5E7 GBq (2.3 MCi) of 137Cs into the atmosphere.   

 One alternative to long-term storage in SFPs, and ultimately disposal in a repository, 

is fuel reprocessing.  Principally, fuel reprocessing (or recycling) is used to recover unused 

uranium and plutonium in the spent fuel for use in future fuel elements (i.e. closing the fuel 

cycle).  Other applications, most notably past nuclear weapons production, utilize the 

reprocessed fuel as well.  It is estimated that approximately 30% of the natural uranium 

otherwise required for fuel elements will be saved by utilizing reprocessed fuel (WNA, 

2005b.).  A secondary reason is to reduce the volume of material that requires disposal.  With 

the removal of long-lived isotopes such as 235U, 238U and 239Pu, the level of radioactivity will 

be significantly reduced after the fission products decay.   

 Fuel reprocessing has occurred since the 1940s.  In the U.S., no commercial 

reprocessing plants are now in operation.  Although a total of three have been built at West 

Valley, N.Y., Morris, IL., and Barnwell, S.C., only the West Valley plant was ever put into 
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operation.  France, India, and Russia however, have all maintained active reprocessing plants 

to support their nuclear power programs.    

 Today, all commercial reprocessing plants use the PUREX process (WNA, 2005b.).  

The PUREX process is based on the fact that uranium and plutonium can exist in a number 

of valence (oxidation) states.  Because of differences in their oxidation and reduction 

potentials, it is possible to oxidize or reduce one of these elements without disturbing the 

other (Lamarsh, 2001).   

 Figure 2-12 illustrates a simplified flow diagram of a PUREX reprocessing plant.  In 

this process, the fuel rods are first cut into short lengths in the mechanical head-end portion 

of the plant.  These pieces are then heated to remove tritium, krypton-85, and other fission 

product gases trapped within the fuel.  The fuel is then dissolved in a concentrated solution of 

boiling nitric acid (HNO3), passes through a filter to remove undissolved components and 

enters the middle of the first extraction column.  In this column, uranium and plutonium are 

extracted via an organic solvent and flow up the column.  At the same time, nitric acid scrubs 

the solvent of any fission products and is removed at the bottom of the column.  The organic 

solution passes to a second column where plutonium is reduced and separated from the 

uranium.  The uranium is moved into a third column where it is stripped from the solution via 

HNO3 and moved to a recovery plant for purification and reuse.  Each can be further purified 

by processing through additional extraction columns or in the case of plutonium, passing 

through ion exchange resins (Lamarsh, 2001). 

 
 



17 

     
Figure 2-12: PUREX reprocessing plant (Lamarsh, 2001). 

 
 
 

Probability of a Spent Fuel Attack 

It is generally accepted that the possibility of a serious accident or a successful 

terrorist attack at a nuclear power reactor, which could release large quantities of radioactive 

fission products to the environment, is remote.  In the United States, reactor sites are some of 

the most guarded facilities in the country.  Reactors are also designed with multiple barriers 

which all must fail in order for a large fission product release.  In essence, the reactor fuel 

core must melt, the primary reactor components must be breached, and containment 

structures must be open to the environment.  Additionally, safety systems such as reactor 

core flooding, containment building cooling and pressure suppression systems must all be 

inoperable to cause a release.  With these multiple layers of safety, it would take a 

tremendous effort to cause a large release of fission products from the reactor vessel itself. 

The TMI accident in 1979 demonstrates the requirement that many or all of the safety 

barriers must fail in order for a large fission product release to the environment.  On March 

28 in TMI Unit 2, the main feedwater pumps stopped, caused by either a mechanical or 
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electrical failure, preventing the steam generators from removing heat from the reactor core.  

When this occurred, the turbine and reactor automatically shut down causing a pressure 

increase in the core.  In order to decrease the rising pressure, a relief valve automatically 

opened at the top of the pressure vessel.  After sufficient pressure decrease occurred, the 

valve should have closed but did not.  Additionally, signals at the operator station failed to 

show that the valve was still open.  As a result, cooling water poured out through the valve 

causing the core to overheat.  Conflicting information led operators to believe the level of 

water in the core to be sufficient when in fact, a loss-of-coolant event was initiating.  Because 

adequate cooling was not available, the nuclear fuel overheated to the point where the 

zirconium cladding ruptured and the fuel began to melt.  By the evening of March 28, the 

core appeared to be adequately cooled and the reactor stable.  

Over the next few days, the presence of a large hydrogen bubble in the dome of the 

pressure vessel created concerns of an explosion or rupture, in turn leading to a breach of 

containment.  Due to efforts to reduce the size of the bubble and a lack of oxygen, this did 

not occur.   

After the TMI accident, small quantities of radioactive gases were measured off-site 

but no other radioactive materials were released from the containment facility as many 

previously feared would occur.  Estimates are that the average dose to about 2 million people 

in the area was only about 0.01 mSv (1 mrem) (NRC, 2005). 

The TMI event demonstrated the design safety of the nuclear reactor containment 

facility.  Although some of the built-in safety features failed, causing the reactor core to melt, 

the overlapping safety measures ensured a major release of fission products to the 

environment did not occur.          
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 Because of the safety features afforded to reactor vessels, most experts agree that the 

focus of concerns should be directed toward the SFP.  The probability of an accidental or 

intentional event resulting in a substantial release of fission products however, has generated 

considerable controversy over the past few years.   

In 2001, the NRC published NUREG 1738 in which the agency documented a study 

of SFP accident risk at decommissioned nuclear power plants.  In this study, the agency 

confirmed that the most severe accident potential is associated with the loss of water from the 

pool.  Depending on a number of factors (i.e. density of fuel configurations, time since spent 

fuel discharge from the reactor, and fuel burn up), the authors concluded that the decay heat 

may be sufficient enough for the fuel cladding to heat up, swell, and burst after loss of pool 

water.  NUREG 1738 states, “The breach in the clad releases radioactive gases present in the 

gap between the fuel and clad (i.e. a gap release).  If the fuel continues to heat up, the 

zirconium clad will reach the point of rapid oxidation in air.  This reaction of zirconium and 

air, or zirconium and steam, is exothermic.  The energy released from the radiation, 

combined with the fuel’s decay energy, can cause the reaction to become self-sustaining and 

ignite the zirconium.  The increase in heat from the oxidation reaction can also raise the 

temperature in adjacent fuel assemblies and propagate the oxidation reaction.  The zirconium 

fire would result in a significant release of the spent fuel fission products that would be 

dispersed from the site in the thermal plume from the zirconium fire” (NRC, 2001). 

 The NRC identified nine initiating event categories in the assessment of SFP risk: 

1. Loss of offsite power from plant-centered and grid-related events 

2. Loss of offsite power from events initiated by severe weather 

3. Internal fire 
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4. Loss of pool cooling 

5. Loss of coolant inventory 

6. Seismic event 

7. Cask drop 

8. Aircraft impact 

9. Tornado missile 

The results of this study indicated that the risks at SFP were low because of the very 

low likelihood of a zirconium fire even though the consequences from a zirconium fire could 

be serious.  Of the nine initiating events analyzed, only large earthquakes and cask drop 

events were found to be important to risk, neither of which would likely be caused by 

terrorist activities. 

In 2003, Alvarez, et al. performed a similar analysis to investigate alternatives to 

densely-packed storage in SFPs.  Due to the severe consequences of such a release and the 

inability to predict the actions of terrorists, the authors surmise the existing risk to be very 

real and proposed actions to minimize it.  In the study, they propose physical change to SFP 

storage arrangements, among other things, that would correct the most obvious 

vulnerabilities of pools to loss of coolant and fire.  The most costly of their proposals, 

shifting fuel to dry cask storage about five years after discharge from a reactor, would cost an 

estimated $3.5 - $7 billion for dry storage of approximately 35,000 tons of older spent fuel 

that would otherwise be stored in pools in 2010.  For comparison, they determined property 

losses from the deposition downwind of the 137Cs released by a SFP fire would likely be 

hundreds of billions of dollars.  
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Recognizing the importance of this issue, the U.S. Congress asked the National 

Academies in Fiscal Year 2004 to provide independent scientific and technical advice on the 

safety and security of commercial spent nuclear fuel storage in the U.S.  Specific charges to 

the National Academies committee set up for this task included analyzing potential safety 

and security risks of spent fuel currently stored in SFPs, potential advantages of storing fuel 

in dry casks and risks of terrorist attacks or theft of these materials.  Congress requested a 

classified report addressing these charges within 6 months.  The National Academies 

committee fulfilled this request in July 2004.  In 2006, a public version of the classified 

report was released for public review, representing the latest views on the safety and security 

of commercial SFPs.   

In their study, the National Academies committee reaffirmed the need for SFPs to 

store recently discharged fuel and that successful attacks by terrorists, though difficult, are 

possible.  Furthermore, they indicated additional analyses are needed to more fully 

understand the vulnerabilities and consequences of a propagating zirconium cladding fire.   

Determination of risk and severity of consequences for such an event remains a topic 

of debate.  Within the past few years, the NRC has maintained that the likelihood of an 

accident (or terrorist event) leading to the critical loss of water in a SFP is very low (less than 

one in 100,000 per pool per year).   Previously in NUREG 1738, the NRC estimated a 

probability for an accidental spent fuel fire as 0.6 – 2.4 x 10-6 per pool per year.  In their 

analysis, Alvarez, et. al., multiplied the accident probability from NUREG 1738 by the 

existing 103 SFP to calculate the probability of occurrence to be 0.2 – 0.7 percent in 30 

years.  To estimate the increased risk due to terrorist events, they performed their analysis 

using the upper limit of 0.7 derived for an accident scenario.  Although not reviewed for this 
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study, Sandia National Laboratory has recently completed a classified study relating to the 

probability of a successful attack at a SFP.      

Similarly to the NRC and Alvarez group, the National Academies committee realized 

the difficulty in addressing the charge concerning risk of terrorist attacks on SFPs.  They 

concluded that it could not address its charge using quantitative and comparative risk 

assessments.  The committee decided instead to examine a range of possible terrorist attack 

scenarios in terms of their potential for damaging SFPs and dry storage casks and their 

potential for radioactive material releases (NAS, 2006).  This allowed the committee to make 

qualitative judgments about the vulnerability of SFPs and the potential measures that could 

be taken to mitigate them. 

The NRC has continually rejected the severe implications of the Alvarez report and 

has asserted that the possibility of a terrorist attack on a nuclear reactor complex is 

speculative and simply too far removed from the natural or expected consequences of agency 

action.  Not all countries agree with the NRC stance however.  France, for example, has 

installed anti-aircraft missiles around its SFP at its reprocessing facilities (INESAP, 2005) 

and German officials require dry storage casks to be stored inside a shielded building 

(Alvarez et al., 2003). 

Many other agencies and groups have taken either side of this ongoing debate.  

Proponents of the nuclear industry and the NRC still maintain that the probability of such an 

event is extremely remote and that critics have “overestimated the likely consequence of a 

spent fuel fire and underestimated the ability of plant operators to cool the spent fuel in a 

damaged pool” (CRS, 2005).  As stated previously, the latest National Academies report 
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stating a successful attack is possible lends credence to the counter arguments of such a 

probability.   

The National Academies committee considered air attacks using large civilian aircraft 

or smaller aircraft laden with explosives, ground attacks by well-armed and well-trained 

individuals, attacks involving combined air and ground attacks, and thefts of spent fuel for 

use in a RDD.   

Despite the improved security measures involving commercial air travel, the 

committee feels that attacks with civilian aircraft remain a credible threat.  Assaults by large 

aircraft would impart tremendous energy impulses into targeted facilities.  Additionally, the 

general destruction and fires created would complicate efforts to reduce the consequences of 

a successful attack.  From the information presented during their study, the committee feels 

the U.S. government should implement security measures to prevent air attacks. 

Ground attack scenarios investigated in this report include direct assaults by armed 

groups and assaults having both air and ground components.  Nuclear plants are required by 

the NRC to maintain a professional guard force at each plant to defend against a 

Commission-developed design basis threat.  For this study, the NRC did not provide a formal 

briefing to the National Academies committee for a radiological sabotage scenario.  Because 

of this, the National Academies committee did not have enough information to judge whether 

the security measures taken at nuclear power plants are sufficient to defend against direct 

assault attacks.  For attack scenarios that combine ground and air components (i.e. infiltration 

by ground troops followed by attacks from the air), the National Academies committee felt 

that some scenarios were feasible.  For security reasons however, these scenarios are only 

discussed in the classified report. 
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The National Academies committee reports that theft of large quantity of spent fuel 

for use in a RDD is unlikely.  Spent fuel would require heavy shielding to handle and heavy 

equipment to remove despite the controls in place to deter and detect thefts.  Although theft 

and removal of individual fuel rods may be easier, the amount of material would be relatively 

small and might not be an attractive target.   

The nuclear industry and the NRC have asserted that the robust construction and 

stringent security requirements at nuclear power plants make them less vulnerable to terrorist 

attack than softer targets such as chemical plants and refineries.  Briefings from the 

Department of Homeland Security however suggested that al-Qaida initially included 

unidentified nuclear plants among the list of September 11, 2001 targets but eliminated them 

when the number of planned attacks were scaled back (NAS, 2006). 

 In this report, the consequences of these attacks are described as either “maximum 

credible releases” or “best-estimate releases.”  Maximum credible releases describe the 

largest releases of radioactive material following an successful terrorist attack.  The 

estimated releases described in NUREG-1738 and Alvarez et al. are considered by the 

committee as maximum credible releases.  Best-estimate releases describe the median 

estimates of release and are used by the committee to describe the latest NRC analyses 

reviewed in preparation of their report.  The difference between these scenarios are modeled 

and analyzed in this study. 

In summary, the committee judged in their report that the plausibility of an attack on 

a SFP, coupled with the public fear associated with radiation in general, makes this an issue 

in which the possibility cannot be dismissed  Both sides of the argument have generated 

compelling arguments for their particular stance.  Regardless of the position one favors in 
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this debate however, the severe consequences of such an event and the complex planning 

already demonstrated by well-funded terrorists make an attack on a SFP an event that should 

be fully investigated and understood. 

 
 

Radionuclides of Concern in Spent Fuel Accidents 

 As discussed previously, fission produces a very large number of fission products, 

ranging from atomic number 30 (zinc) to 65 (terbium) and from atomic mass number 72 to 

161.  Splitting of the nucleus into two equal fragments however is not the most probably 

mode observed.  In fact, asymmetric modes are much more favorable.  Maximum fission 

product yields for both 235U and 239Pu are depicted in Figure 2-13. 

For 235U, the maximum fission product yields occur around atomic mass numbers 95 

and 138.  The 239Pu curve has a similar shape but the maximum yields are slightly different 

than 235U.   

Table 2-1 below lists the major fission products formed, along with half-lives and 

yield percentages, following the fissioning of 235U and 239Pu. 
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Figure 2-13: Fission product curve (NAS, 1996) 
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Table 2-1: Fission products formed in nuclear reactor core (NAS, 1996). 

Nuclide Half-life     Fission Yield (%)
235U 239Pu

84Br 31.80 m 0.967 0.444
85mKr 4.48 h 1.300 0.565
85Kr 10.72 y 0.285 0.128
87Kr 1.37 h 2.520 0.990
88Kr 2.84 h 3.550 1.320
89Kr 3.15 m 4.600 1.440
90Kr 32.30 s 4.860 1.400
88Rb 17.70 m 3.570 1.360
89Rb 15.40 m 4.770 1.680
90Rb 2.60 m 4.500 1.390

90mRb 4.30 m 1.240 0.680
91Rb 58.00 s 5.670 2.160
89Sr 50.50 d 4.780 1.690
90Sr 29.10 y 5.910 2.110
91Sr 9.51 h 5.930 2.490
92Sr 2.71 h 5.910 3.040
93Sr 7.40 m 6.370 3.920
90Y 2.67 d 5.920 2.110
91Y 58.50 d 5.930 2.490
92Y 3.54 h 5.980 3.060
93Y 10.20 h 6.370 3.920
95Zr 64.00 d 6.490 4.890
97Zr 16.80 h 5.930 5.320
95Nb 34.97 d 6.490 4.890
97Nb 1.23 h 5.950 5.370
99Mo 2.79 d 6.120 6.160

101Mo 14.60 m 5.180 5.940
98mTc 6.02 h 5.380 5.420
101Tc 14.20 m 5.180 5.950
104Tc 18.00 m 1.920 5.960  
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Table 2-1 (cont.): Fission products formed in nuclear reactor core (NAS, 1996). 

Nuclide Half-life    Fission Yield (%)
235U 239Pu

103Ru 39.27 d 3.040 6.950
105Ru 4.44 h 0.972 5.360
106Ru 1.02 y 0.403 4.280
105Rh 35.40 h 0.972 5.360
125Sb 2.76 y 0.029 0.115

129mTe 33.60 d 0.127 0.270
132Te 3.26 d 4.280 5.230

131I 8.04 d 2.880 3.850
132I 2.28 h 6.320 5.390
133I 20.80 h 6.690 6.930
134I 52.60 m 7.710 7.270
135I 6.57 h 6.300 6.450
136I 1.39 m 2.970 1.740

133Xe 5.24 d 6.700 6.980
133mXe 2.23 d 0.189 0.232
135mXe 15.30 m 1.000 1.680
135Xe 9.10 h 6.540 7.600
137Xe 3.82 m 6.060 6.040
138Xe 14.20 m 6.420 5.120
139Xe 39.70 s 5.040 3.050
140Xe 13.70 s 3.620 1.600
137Cs 30.17 y 6.220 6.690
138Cs 32.20 m 6.640 5.910
139Cs 9.30 m 6.280 5.350
139Ba 83.70 m 6.350 5.600
140Ba 12.75 d 6.270 5.540
141Ba 18.30 m 5.790 5.230
142Ba 10.70 m 5.730 4.600
140La 40.27 h 6.280 5.550
141La 3.90 h 5.810 5.310
142La 92.50 m 5.830 4.910
141Ce 32.50 d 5.800 5.260
143Ce 33.00 h 5.940 4.430
144Ce 284.60 d 5.470 3.740
147Nd 10.99 d 2.250 2.040  
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Besides 137Cs, long-lived, and biologically-significant, radioisotopes of potential 

concern in spent fuel include: 90Sr, 99Tc, 129I 237Np, 239Np, 238Pu, 239Pu, 241Pu, 241Am, and 

242Cu (ORNL, 1994). 

Although all radioactive materials listed above would be considered at an incident 

involving a release at a SFP, depending on the age of the spent fuel involved, this research 

will specifically study the two most prevalent radionuclides which contribute to downwind 

contamination and ultimately human exposure: 137Cs and 90Sr.  As discussed below, 131I was 

a major contributor to dose at Chernobyl but is not considered in this study because of its 

short half-life.     

 
 

Cesium-137 

137Cs is considered one of the most important fission products because of its relatively 

high yield (about 6 atoms per hundred fissions, regardless of the type of fission involved), 

long physical half-life (30 years), and its well documented mobility in biological systems 

(NCRP, 1977).  137Cs also accounts for about half of the fission product activity in 10-year-

old fuel (Alvarez, 2003).  As depicted in the radioactive decay scheme in Figure 2-14, 137Cs 

decays to 137mBa and then to stable 137Ba via internal conversion, or directly to 137Ba 

(RADAR, 2006). 

Prior to 1986, the principal source of 137Cs released to the environment had been from 

atmospheric testing of nuclear weapons.  Nuclear devices with a total fission yield equivalent 

to 194 megatons of TNT have been exploded and have produced approximately 1.26E9 GBq 

(34 MCi) (National, 1971).  Most of this 137Cs released into the environment was injected 

into the stratosphere and resulted in a relatively uniform worldwide deposition.  In 1986 
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however, the Chernobyl accident resulted in the single greatest release of 137Cs in history and 

is discussed in depth below. 
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Figure 2-14: 137Cs decay scheme (RADAR, 2006) 

 

Cesium is generally one of the less mobile radioactive metals in the environment.  It 

preferentially adheres quite well to soil and is generally not a major contaminant in 

groundwater but exhibits appreciable reconcentration in both terrestrial and aquatic 

ecosystems.  In terrestrial vegetation, 137Cs originates from both direct deposition on plant 

surfaces and accumulation from the soil in which the plants grow.  Generally, direct foliar 

absorption is the predominant mode of plant contamination when the deposition rate is 

relatively high and is transferred throughout the food chain.  In freshwater environments 
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however, the total accumulation of 137Cs in the system may be relatively more important than 

the deposition rate (NCRP, 1977).    

When taken into the body either by inhalation or ingestion, cesium behaves similarly 

to potassium and is distributed uniformly throughout the body.  The primary source of 

internally deposited cesium is gastrointestinal absorption from food and water.  The absorbed 

cesium tends to concentrate in the muscles because of their large mass.  With biological half-

lives of 2 and 110 days (Argonne, 2005a.), 137Cs, like potassium, is excreted from the body 

fairly quickly.  While in the body, cesium delivers a radiation dose to body tissues from both 

beta radiation from 137Cs decay and gamma radiation from 137mBa decay (see Figure 2-14) 

with the main health concern an increased likelihood for inducing cancer.  

To determine the rate and concentrations in which 137Cs is transferred through the 

food chain, Gustafson, et al., performed a study illustrating the average annual 137Cs 

deposition measured in the midwestern U.S. for the years 1960 through 1970 due to 137Cs 

fallout.  This, and the average daily intake (pCi 137Cs/g 40K) by adults and infants in the 

Chicago area for the same period, is plotted in Figure 2-15.   

For determination of the annual daily intake, the standard adult diet used consisted of 

16 components: bread, eggs, fresh leaf vegetables, fresh root vegetables, milk, poultry, fresh 

fish, flour, macaroni, meat, dried beans, fresh fruit, potatoes, canned fruit, canned fruit juices, 

and canned vegetables.  Combined into five major categories (milk, grain products, meat, 

fruits, and vegetables), these foods account for more than 90% of the adult 137Cs intake for 

the study.  The average annual content was based on four quarterly samplings per year.  
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The infant diet consisted of evaporated and formula milk, cereals, canned baby fruits, 

meats, and vegetables.  For this diet, 70-90% of the infant 137Cs intake was found to come 

from milk at a ratio of 137Cs to 40K similar to those for the adult case listed in Figure 2-15.       

 Illustrated in Figure 2-15 is a one-year delay between maximum deposition rate and 

the occurrence of a maximum level of 137Cs in the adult diet.  The authors postulate that this 

trend was mainly due to variable time lags in production and marketing, with the result that 

some foodstuffs contaminated by the relatively heavy deposition in 1958-59 were still 

available for consumption in 1961.  A similar delay accounts for the slower decrease after 

1964.  Even though the increase and subsequent decrease in 137Cs content is delayed, it is 

apparent that the concentration in the adult diet coincides with the rate of deposition. 

 Maximum deposition rates were reached in 1963, one year after maximum 

atmospheric testing.  The majority of all atmospheric tests concluded in 1963 with the 

signing of the atmospheric test ban.  This is evident in this study as deposition rates steadily 

begin to fall in 1964.  Slight increases in deposition are seen during 1968-1970 due to 

continued atmospheric testing by France and China. 

 The authors continued 137Cs measurements after the test ban in an attempt to identify 

the importance of root uptake and/or recycling of the radionuclide in the diet, as well as 

carry-over of 137Cs in grains.  As evident in Figure 2-15, one or more of these parameters are 

the probable cause of the continued dietary average of 0.222 – 0.296 Bq (6.0 – 8.0 pCi) 

137Cs/g 40K measured after 1968.   

 Although many subsequent studies of 137Cs behavior in the environment have been 

performed, to date this study by Gustafson, et al. is relevant in that it shows how pathway 
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analysis contributes to the understanding of human exposure.  Pathway analysis will be used 

extensively in this study to help illustrate the effects of an incident at a spent fuel pool. 

 

 

 

 

 

 

 

 

 

 

Figure 2-15: Annual average 137Cs deposition in the midwestern U.S. and average annual 137Cs level in the 
Chicago adult diet (NCRP, 1977). 
 
 
 

In studies following the Chernobyl accident, the reindeer-herding groups of central 

Norway have been found to have some of the highest 137Cs exposure levels of any monitored 

group.  Whole-body contents and dietary habits have been investigated regularly in this 

population since 1987 due to the vulnerability of the lichen-reindeer-human food chain to 

cesium deposition.  In 2000, Mehli et al published a study investigating the impact of 

Chernobyl fallout to this population.  In 1986, activity concentrations up to 105 kBq kg-1 

(2.84 μCi kg-1) were measured in reindeer meat from this area. Studies showed that reindeer 

herders in the central parts of the country were the most exposed population group.  The 

highest whole-body contents of cesium in the group were found in the spring of 1988 with 
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concentrations of 220 Bq kg-1 (5.95 nCi kg-1) and 580 Bq kg-1 (15.68 nCi kg-1) for women 

and men, respectively (see Figure 2-16 below).  Consumption of reindeer meat at this time 

was estimated to contribute up to 90% of the total intake of cesium. 

Following the accident in 1986, Norwegian authorities recommended that the 

individual effective dose should not exceed 5 mSv (500 mrem) in the first year after the 

accident and 1 mSv in the following years.  With a dose conversion factor of 2.5 μSv y-1 per 

Bq kg-1, adapted from the 1988 United Nations Scientific Committee on the Effects of 

Atomic Radiation report to the General Assembly, 1 mSv (100 mrem) committed dose results 

from a whole body cesium concentration of 400 Bq kg-1 (10.81 nCi kg-1) (Mehli et al, 2000). 

 

 
Figure 2-16: Average whole body 137Cs activity in Norwegian reindeer herders (Mehli et al., 2000). 
 
 
 
 In their study, the authors focused on total household consumption of reindeer meat 

and wild foods like freshwater fish, game, berries, and mushrooms, as well as changes in diet 

due to fallout.  In total, 110 persons (44 women and 66 men) from 63 of the 102 households 

participated in the whole-body measurements and dietary surveys.  Their results showed the 

mean whole body dose in 1996 had reduced to 88 + 7 Bq kg-1 (2.38 + 0.19 nCi kg-1) for 
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women and 164 + 11 Bq kg-1 (4.43 + 0.30 nCi kg-1) for men (see Figure 2-16).  Utilizing the 

same dose conversion factor as above, these values correspond to annual doses of 

approximately 0.22 mSv y-1 (22 mrem y-1) for women and 0.41 mSv y-1 (41 mrem y-1) for 

men - well below the recommended maximum acceptable dose of 1 mSv y-1 (100 mrem y-1) 

for exposure to the general public. 

All participants in the study still maintained a considerable intake of reindeer meat, 

with median annual intakes estimated to be 50 kg for women and 53 kg for men.  About 30% 

reported consumption of less reindeer meat and freshwater fish in 1995-1996 but about 50% 

had resumed higher meat and fish consumptions due to less concern for cesium 

contamination in selected foods.  It is also reported in this study that although the median 

intakes were similar, women generally consumed reindeer meat with lesser contamination 

than that consumed by men.  This accounts for the differences in whole body dose observed 

in the study.    

 Common countermeasures employed for reducing the intake of cesium into the diet 

involved selection of reindeer from lesser-contaminated grazing areas to live-monitoring of 

animals prior to consumption to use of clean fodder prior to slaughter.  The majority of 

households participating in the survey believed that use of countermeasures gave them the 

possibility of influencing possible health effects.   

In addition to reduced intake by some and application of countermeasures, the authors 

felt the reduction in whole body 137Cs activity was also due in part to physical decay and 

lower transfer of cesium contamination to reindeer.  

These studies are included to demonstrate how cesium migrates through the food 

chain and ultimately into the human body.  As this study illustrates below, external exposure 
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to 137Cs provides the largest contribution to human dose.  Although not insignificant, this 

internal dose component does contribute a fraction to the expected overall dose.  Preventing 

(or limiting) uptake of 137Cs must be a major goal in any large-scale response to an incident 

at a SFP.  For persons who uptake significant amounts of 137Cs, remedial measures exist to 

prevent retention of this radionuclide and ultimately reduce the body burden.  

 Ferric hexacyanoferrate, Fe4[Fe(CN)6]3, the decorporation agent commonly referred 

to as “insoluble Prussian Blue (PB),” is utilized for personnel with internal contamination of 

medically-significant amounts of cesium and thallium.  In the U.S., the Oak Ridge Institute 

for Science and Education is the sole distributor of PB.  PB has a very high affinity for 

cesium and thallium and enhances excretion of these isotopes from the body by means of ion 

exchange.  These ions are ordinarily excreted into the intestine, reabsorbed from the gut into 

the bile, and then excreted again into the gastrointestinal (GI) tract.  Orally administered PB 

readily binds to these isotopes in the gut, thus interrupting its re-absorption from the GI tract 

and thereby increases fecal excretion (REAC/TS, 2002).      

 To date, the use of PB for cesium decorporation has been verified by a variety of 

studies.  Initially, PB was found to dramatically reduce the internal cesium on animals in 

laboratory studies and by human volunteers.  In one case, two adult male subjects ingested 37 

kBq (1 μCi) of carrier-free 137Cs.  Each subject experienced normal biological half-lives of 

110-115 days over 6 months’ time after ingestion.  Ten months after ingestion however, each 

subject took several daily oral doses of PB.  In both cases, the biological half-life was 

reduced to about 40 days, with no detectable change in the potassium content in the body 

(NCRP, 1977).  
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 The most dramatic accident in which PB was administered occurred in Goiania, 

Brazil in September of 1987.  Approximately 250 persons received external or internal 

cesium-137 contamination as a result of a radiological accident after two scavengers 

dismantled a teletherapy unit at an abandoned cancer treatment facility in search for valuable 

recyclable materials.  After failing to pry open the lead container containing over 5.18E4 

GBq (1400 Ci) of 137Cs (Argonne, 2005c.), the scavengers sold it to a junkyard owner.  In the 

days that followed, the junkyard owner opened the container to reveal the luminous blue 

powder which family and friends were exposed to in numerous ways, including external 

exposure, direct ingestion, and application to the surfaces of their bodies.  The resulting 

medical symptoms experienced by those in contact with the powder were not initially 

recognized as being due to radiation exposure.  One of the irradiated individuals connected 

the illnesses with the container and took it to the local Public Health Department where a 

physicist identified the radioactive material and took measures to assess the extent of 

contamination and evacuate two areas.  Shortly thereafter, additional physicists and 

physicians were dispatched to Goiania where upon arrival found that a stadium had been 

designated as a triage area.  During triage, 20 patients were determined to need hospital 

treatment.  Of these patients, 4 died due to hemorrhagic and septic complications associated 

with acute radiation exposure (IAEA, 1988).  In all, 46 patients between the ages of 4 and 38 

years were treated with PB for up to 150 days.  Adult doses of PB generally ranged from 1 to 

10 grams daily while four adults received 20 grams daily in divided doses.  Children were 

given 1 to 1.5 grams daily in 2 to 3 divided doses.  In this accident, PB was found to 

significantly expedite cesium decorporation in all cases.  Other than gastritis, constipation 
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and other relatively minor gastrointestinal symptoms in a few patients, no significant adverse 

effects of increased PB administration were observed (REAC/TS, 2002).     

 

Strontium-90 

90Sr is also considered one of the most important fission products in spent fuel.  

Similar to 137Cs, it has a high yield (3-4 atoms per 100 fissions) and relatively long half-life 

(~29 years) (NCRP, 1991).  Unlike 137Cs however, 90Sr is relatively mobile in the 

environment and can move down with percolating water to underlying layers of soil and into 

groundwater even though it preferentially adheres to soil particles (Argonne, 2005b.).  As it 

undergoes radioactive decay, 90Sr emits a fairly low energy beta particle in decay to yttrium-

90 (90Y).  With a much shorter half-life of approximately 64 hours, 90Y also undergoes beta 

decay but releases a much more energetic beta particle and becomes stable 90Zr (RADAR, 

2006).  Figure 2-17 illustrates the significant decay properties of 90Sr and 90Y (NOTE: the 

decay scheme is simplified to omit any transition that does not contribute more than 0.1% to 

the total energy per transition).  It is important to note that the 90Y contributions to dose will 

be greater than the 90Sr contribution individually due to the higher beta energy and is 

assumed to be reflected in all 90Sr dose conversion factors as reported in EPA Federal 

Guidance Report 11.   

Strontium can be taken into the body by eating contaminated food, drinking 

contaminated water, or breathing contaminated air.  In the body, strontium behaves similarly 

to calcium.  Approximately 20% to 30% of all intake is absorbed from the gastrointestinal 

tract.  This quantity of strontium is distributed in three ways: a) deposition in the bone 

volume; b) distributed in an exchangeable pool that is considered to be comprised of the 
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plasma, extracellular fluid, soft tissue, and bone surfaces; or c) removed from the body by 

urinary or fecal excretion (NCRP, 1991). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Radiation Particles/  
Transition 

Energy/   
Particle 
(MeV) 

β-
1 1.0000 0.1958 

β-
2 0.9999 0.9337 

Figure 2-17: 90Sr decay scheme (RADAR, 2006) 
 
 
 
 Published by the ICRP in 1972, and reproduced in summary in NCRP Report 84 in 

1985, a quantitative metabolic model (referred to as the “ICRP Model” herein) was 

developed to calculate radiation dose to various parts of the bone tissue for the alkaline earth 

metals (calcium, radium, strontium and barium).  The ICRP Model is based on accumulated 

knowledge of the mechanisms of skeletal distribution and metabolism of fallout 90Sr in 

humans and radionuclide retention as a result of animal experiments at a variety of research 

laboratories (NCRP, 1991).  Although beyond the scope of this report, the specific findings 

of these studies provide important background to the conclusions presented in this study and 

are discussed in depth in NCRP Report No. 110.  
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 Since its development, the ICRP Model has been subsequently extended and modified 

as knowledge of alkaline earth metals behavior has increased.  Animal experiments indicate 

that bone sarcoma, hematopoietic dyscrasia and neoplasia, and tumors of soft tissue near 

bone may be important endpoints in the exposure of humans to high doses of 90Sr.  The 

incidence of bone sarcoma and other malignant diseases have only been seen at average 

skeletal doses of the highest dose levels (i.e. tens of Gy).  Research results indicate a 

curvilinear dose-response relationship similar to the experience with the nonlinear dose-

response relationship curve seen in radium dial painters.  Comparison with radium-226 

(226Ra) effects in humans using the relative effectiveness ratios of 90Sr/226Ra developed from 

animal studies for predicted bone sarcoma induction in humans and with external radiation 

experience for leukemia induction in humans has yielded the following estimates: 1) 1 bone 

sarcoma per 104 person Gy; and 2) 3 leukemias per 104 person Gy for populations exposed to 

radiostrontium below 10 Gy (NCRP, 1991).   

 As discussed in the next section, 137Cs and 90Sr still remain the radionuclides of 

concern in the environment many years after the Chernobyl accident.  

   

Chernobyl Accident 
 

On 26 April 1986, the single greatest release of man-made radioactive materials in 

history occurred at the Chernobyl nuclear power plant in the former Soviet Union (present 

day Ukraine), approximately 80 miles north of Kiev.  This accident revealed that the RBMK 

reactors in the Soviet Union (i.e. Chernobyl-4 reactor, Figure 2-18) suffered from an 

extraordinary mixture of bad design, bad regulation and bad operation.  Table 2-2 lists 

various design, management and regulatory problems that contributed to this accident.   
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Due to a dramatic power surge, the reactor fuel elements ruptured and the resultant 

explosive force of steam lifted off the 2000-ton cover plate (Shlyakhter and Wilson, 1992) of 

the reactor, releasing fission products to the atmosphere.  A second explosion expelled 

fragments of burning fuel and graphite from the core and allowed air to rush in, causing the 

graphite moderator to burst into flames.  The graphite burned for nine days and caused the 

main release of radioactivity into the environment.  The total estimated activity released after 

the Chernobyl accident was 2 x 1010 GBq, of which approximately 3 x 109 GBq came from 

short-lived 131I, 4 x 108 GBq came from 134Cs and 137Cs, and 7 x 109 GBq came from noble 

gases (Gonzalez, 2005).  Based on the latest assessments by the NEA, Table 2-3 updates the 

estimated radionuclide release for select isotopes (NEA, 2002).  It is also estimated that at 

least 5% of the remaining radioactive material in the core was released in the accident 

(WNA, 2005). 

Both professional and non-professional personnel participated in the response to the 

accident.  During the first few months after the accident, approximately 200,000 workers, 

later called “liquidators,” worked in the region when radiation exposures were highest.  In 

all, over 600,000 liquidators were registered as involved in stabilization and clean-up 

activities, including clean up around the reactor, construction of the sarcophagus, 

decontamination, building of roads, and destruction and burial of contaminated buildings, 

forests, and equipment. 
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Table 2-2: Causes of the Chernobyl Accident (Adapted from Shlyakhter and Wilson, 1992). 
Design Failures 
Positive void coefficient that left more neutrons available 
for chain reactions. 
Control rod design which added reactivity for a few 
seconds. 
Ability of plant operators to override safety features. 
Emergency cooling system designed to only protect 
against a break in one coolant pipe at a time. 
Management Shortcomings 
Failure of plant personnel to study other reactor 
accidents. 
Failure to communicate the existence of other accidents 
to engineers and operators. 
Failure to inform engineers and operators about the 
design weaknesses of the reactor. 
Operating with only seven control rods in the core. 
Carrying out a test under unstable conditions. 
Refusal to listen to criticism regarding procedures. 
Regulatory Problems 
Failure to demand a clear set of operating rules. 
Failure to ensure that unusual procedures be discussed 
and checked in advance. 
Failure to perform a full safety analysis. 

 
 
 
Table 2-3: Current estimate of Chernobyl radionuclide release (Source: NEA, 2002). 

Radionuclide 

Core 
Activity 

on 26 Apr 
1986 
(GBq) 

Total 
Release 
(GBq) 

% 
Release

131I 3.20E+09 1.76E+09 55% 
134Cs 1.80E+08 5.40E+07 30% 
137Cs 2.80E+08 8.50E+07 30% 
89Sr 2.30E+09 1.15E+08 5% 
90Sr 2.00E+08 1.00E+07 5% 
33Xe 6.50E+09 6.50E+09 100% 
103Ru 4.80E+09 1.68E+08 4% 
106Ru 2.10E+09 7.30E+07 3% 
238Pu 1.00E+06 3.50E+04 4% 
239Pu 8.50E+05 3.00E+04 4% 
240Pu 1.20E+06 4.20E+04 4% 
241Pu 1.70E+08 6.00E+06 4% 
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Figure 2-18: Chernobyl-4 Reactor (InfoUkes, 1997). 

 
 
 

Environmental Effects 

 The release of radioactive material into the atmosphere consisted of gases, aerosols 

and finely fragmented fuel.  During the first 10 days of the accident when important releases 

of radioactivity occurred, meteorological conditions changed frequently, causing significant 

variations in release direction and dispersion parameters.  The composition and 

characteristics of the radioactive material in the plume changed during its passage due to wet 

and dry deposition, decay, chemical transformations and alterations in particle size.  The 

larger particles, particularly fuel particles, were deposited close to the reactor.  Smaller 

particles were more widely dispersed by the wind and deposited primarily by rainfall.  

Three main areas of contamination, which were defined as those with 137Cs 

deposition density greater than 37 kBq m-2 (1 Ci km-2), are in Belarus, Russia, and Ukraine.  

The three areas have been designated the Central, Homyel’-Mabilyow-Bryansk, and Kaluga-
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Tula-Orel areas.  The Central area (see Figure 2-19) is within ~ 100 km of the reactor, 

predominantly to the west and northwest of the reactor, in Ukraine.  The Homyel’-

Mabilyow-Bryansk area (see Figure 2-19) is centered 200 km to the north-northeast in 

Belarus and Russia.  The Kaluga-Tula-Orel area (not pictured in Figure 2-19) is located ~ 

500 km to the northeast in Russia. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-19: Radioactive contamination in areas around Chernobyl reactor (Wikipedia, 2005).   
 
 
 

Beyond these areas in the former Soviet Union, many areas in northern and eastern 

Europe experienced 137Cs deposition in the range of 37 – 200 kBq m-2 as well and represent 

about one-third of the contamination found in the three areas discussed previously (Gonzalez, 
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2005).  Deposition of radioactive materials of significantly less activity was fairly evenly 

distributed throughout all of the Northern Hemisphere. 

 

Human Exposure Effects 

 The accident caused the deaths of 31 power plant employees and firemen 

within a few days or weeks, 28 of which were due to radiation exposure.  Acute radiation 

sickness was confirmed for 134 liquidators; 41 receiving whole-body doses from external 

irradiation of less than 2.1 Gy and 93 receiving higher doses and had more severe acute 

radiation sickness.  Of these 93 liquidators receiving doses higher than 2.1 Gy, 50 were 

between 2.2 and 4.1 Gy, 22 were between 4.2 and 6.4 Gy, and 21 were between 6.5 and 16 

Gy (Gonzalez, 2005).  The skin doses from beta exposures, evaluated for eight patients with 

acute radiation sickness, were in the range of 400-500 Gy.  Average doses for the liquidators 

were about 100 mSv (UNSCEAR, 2000a.). 

Acute radiation effects can occur if personnel receive high doses of radiation over a 

short time.  Table 2-4 lists the acute radiation effects, or “syndromes,” along with their 

respective thresholds and characteristics.   

 
 
Table 2-4: Acute Radiation Syndromes (Hall, 2000). 

Syndrome 

Range 
of Dose   

(Gy) Characteristics 

Hematopoietic 3-8 
radiation damage to blood 
forming system 

Gastrointestinal > 10 

radiation damage to 
epithelial lining of 
gastrointestinal system 

Cerebrovascular >100 

neurologic and 
cardiovascular breakdown 
occurs 
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With whole-body doses received between 3-8 Gy, or 3-8 Sv for external exposures to 

gamma radiation, effects of the hematopoietic syndrome occur.  At these doses, mitotically 

active precursor cells are sterilized by the radiation, and subsequent supply of mature red 

blood cells, white blood cells and platelets are subsequently diminished.  The full effect of 

this action is delayed until the mature circulating cells begin to die off and the supply of new 

cells from the depleted precursor population is inadequate to replace them.  After this delay 

(i.e. latency period), the depression of blood elements leads to an onset of chills, fatigue, 

petechial hemorrhages in the skin and ulcerations of the mouth.  Granulocyte depression 

leads to infections and fever, while platelet depression results in bleeding, impairment of 

immune mechanisms and possibly anemia caused by hemorrhage.  Death occurs in this 

syndrome unless the bone marrow has begun to regenerate in time.  Infection is an important 

cause of death but may be controlled by antibiotic therapy (Hall, 2000). 

 A common term used to determine the rate of death is the “LD50.”  Defined as the 

dose that causes a mortality rate of 50% in an experimental group within a specified period of 

time, the estimated dose to cause this occurrence in humans is between 3 and 4 Gy (300 and 

400 rad) for young adults without medical intervention.  Humans develop signs of 

hematological damage and recover from it much more slowly than most other mammals.  

The peak incidence of human deaths from hematological damage occurs at about 30 days 

after exposure but continues for up to 60 days.  Therefore, the LD50 for humans is expressed 

as LD50/60 (Hall, 2000). 

 At whole body doses greater than 10 Gy (1000 rad), but less than 100 Gy (10,000 

rad), death usually occurs between 3 and 10 days due primarily to the depopulation of the 

epithelial lining of the gastrointestinal tract.  In the gastrointestinal tract, stem cells confined 
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to crypts provide a continuous supply of new cells which move up the villi, differentiate, and 

become functioning cells.  The cells at the top of the villi are continuously sloughed off 

slowly and replaced by the new cells.  At doses of this magnitude, a large portion of the stem 

cells are sterilized without much affect on the differentiated or functioning cells.  As these 

cells are sloughed off, there are no replacement cells produced to take their place.  

Consequently, the villi begin to shorten and shrink, and eventually the surface lining of the 

intestine is completely flat.  Prolonged diarrhea, extending for several days, is usually an 

indicator of doses > 10 Gy (1000 rad).  After a few days, a person will show signs of 

dehydration, loss of weight, emaciation and complete exhaustion with death occurring within 

a few days (Hall, 2000). 

 A whole body dose of 100 Gy (10,000 rad) or more results in serious damage 

to all organ systems.  Because the level of exposure is so great, cerebrovascular damage 

causes death quicker than the time required to express damage to the hematopoietic or 

gastrointestinal systems.  The exact and immediate cause of death is not fully understood.  It 

has been suggested that the increase in the fluid content of the brain, due to leakage from 

small vessels, results in a buildup of pressure within the confines of the skull and results in 

central nervous system shutdown.  After severe nausea and vomiting occurs, usually in a 

matter of minutes, manifestations of disorientation, loss of coordination of muscular 

movements, respiratory distress, diarrhea, convulsive seizures and coma occur prior to death 

(Hall, 2000). 

 For exposures to the public, 131I and 137Cs were the only significant radionuclides 

contributing to dose in human populations.  131I, being the main contributor to thyroid doses, 

was received mainly by internal exposures within a few weeks after the accident.  External 
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exposures from 137Cs have been the main contributor to dose for all organs and tissues other 

than the thyroid.  To a lesser degree, consumption of foods contaminated with 90Sr 

contributed to internal exposures mainly to bone and bone marrow.   

For the 116,000 persons evacuated from the most contaminated regions, the average 

dose was determined to be 30 mSv (3 rem) (UNSCEAR, 2000a.).  For those who continued 

to reside in contaminated areas, a dose of 10 mSv (1 rem) was determined during the first 

decade after the accident with maximum values of the doses possibly an order of magnitude 

higher.  Outside the three countries primarily affected, doses were estimated to reach a 

maximum of 1 mSv (0.1 rem) in the first year and progressively decreasing doses in 

subsequent years.  The estimated lifetime dose was determined to be 2-5 times greater 

(UNSCEAR, 2000a.).  These doses are well below the annual dose from natural background 

of 2.4 mSv (0.24 rem) (UNSCEAR, 2000b.) and are, therefore, of little radiological 

significance. 

 In their 2000 report to the General Assembly, the UNSCEAR reported that about 

1,800 cases of thyroid cancer have developed in children exposed at the time of the accident.  

Apart from this, there is no evidence of a major public health impact attributable to radiation 

exposure as of 2000.  Furthermore, they found that there is “no scientific evidence of 

increases in overall cancer incidence or mortality or in non-malignant disorders that could be 

related to radiation exposure.  The risk of leukemia, one of the main concerns owing to its 

short latency time, does not appear to be elevated, not even among the recovery operation 

workers.  Although those most highly exposed individuals are at an increased risk of 

radiation-associated effects, the great majority of the population is not likely to experience 

serious health consequences” (UNSCEAR, 2000a.).    
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 Under the auspices of the United Nations Chernobyl Forum’s Expert Group “Health,” 

three WHO committees convened to provide an updated assessment of the UNSCEAR 

human health consequences utilizing extensive epidemiological studies and other data 

available after the UNSCEAR report.  The WHO determined the epidemiological studies 

relating to thyroid disease and solid cancers in the exposed population available after the 

UNSCEAR 2000 report support the conclusions made above of no increases in cancer 

induction.  For increased risk of leukemia, the WHO found neither strong evidence for nor 

against the association between in utero exposure and Chernobyl fallout.  Likewise, even 

though an increase in leukemia rates among children was seen after 1996, there was no 

evidence that these excesses were more pronounced in areas of contamination.  For adults in 

exposed general populations, no convincing evidence was found for increased incidence of 

leukemia.  Recent studies of Russian liquidators exposed to greater than 150 mGy  (15 rad) 

suggest a possible two-fold increase in non-chronic lymphocytic leukemia.  At this time, the 

WHO states there is “clearly a need to clarify the existing observations…indicating a 

possible relationship.”  In summary, except for the possible increase in leukemia of 

liquidators, the WHO and UNSCEAR findings appear to agree with one another (WHO, 

2005a.).  

 In September 2005, the Chernobyl Forum released, “Chernobyl: The True Scale of 

the Accident,” a three-volume, 600 page report to assess the 20-year impact of the Chernobyl 

accident.  The Forum, made up of 8 UN specialized agencies, compiled the latest research to 

help settle the outstanding questions about how much death, disease and economic fallout 

really resulted from the accident.   
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 Many important findings included in this report confirm the information previously 

presented.  Others are presented to provide a clear understanding of the true scale of the 

accident consequences and also to suggest ways for the countries affected to address major 

economic and social problems.  Some of these findings include (WHO, 2005b.): 

 1.  Approximately 1000 on-site reactor staff and emergency workers were heavily 

exposed to high-level radiation on the first day of the accident.  Among the 200,000 or more 

workers exposed within the first year, an estimated 2200 radiation-induced deaths can be 

expected during their lifetime.   

 2.  An estimated 100,000 people live in areas previously considered areas of “strict 

control”.  This report suggests the definitions of these zones be revisited and relaxed in light 

of the new findings. 

 3.  About 4000 cases of thyroid cancer have resulted and at least 9 children have died.  

As reported previously, the survival rate among these victims has been approximately 99%. 

 4.  Most emergency workers and people living in contaminated areas received 

relatively low doses as comparable to natural background levels. 

 5.  Poverty, “lifestyle” diseases and mental health problems pose a far greater threat 

to local communities than radiation exposure. 

 6.  Relocation of residential populations proved to be a deeply traumatic experience 

for the more than 350,000 people affected. 

 7.  Structural elements of the sarcophagus have degraded and pose a risk of collapse 

that would release large quantities of radioactive dust. 

 8.  A comprehensive plan to dispose of tons of high-level waste must still be 

developed. 
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 9.  Ambitious rehabilitation and social benefit programs, started by the former Soviet 

Union and continued by Belarus, Russia and Ukraine, need reformulation due to changes in 

radiation controls, poor targeting and funding shortages.   

 In agreement with the UNSCEAR 2000 report, this report found no evidence for any 

increased incidence of leukemia and cancer above the 4000 cases of thyroid cancer 

previously discussed.  Dr. Michael Repacholi, manager of WHO’s Radiation Program, states, 

“the health effects of the accident were potentially horrific, but when you add them up using 

validated conclusions from good science, the public health effects were not nearly as 

substantial as had at first been feared” (WHO, 2005b.).   

It is estimated that a total of up to 4,000 of the approximately 600,000 people 

(200,000 emergency workers, 116,000 evacuees and 270,000 residents of the most 

contaminated areas) affected by the higher radiation exposure could eventually die.  As about 

one quarter of them will eventually die from spontaneous cancer not caused by radiation 

exposure from the Chernobyl accident, the increase of about 3% will be difficult to observe 

(WHO, 2005b.).   

 

Exclusion Zone 
 

During the four months after the accident, approximately 116,000 members of the 

public were evacuated from their homes in the region around the reactor.  A “exclusion zone” 

was established (Figure 2-20) within 30 km of the reactor, in modern Ukraine and Belarus, to 

prohibit public access to the highest dose rates and contamination levels.  The exclusion zone 

covers an area of 2044 km2 and encompasses 2 towns (Pripyat and Chernobyl) and 74 

villages (UIAR, 2001).    
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Today, the exclusion zone is governed by a special Ukrainian State Department, the 

Administration of the Exclusion Zone and of the Zone of Obligatory Resettlement (UIAR, 

2001).  Under authority from this department, the UIAR performed an extensive 

characterization of the exclusion zone beginning in 1997 and released the data in 2001.  

UIAR’s work included extensive soil sampling and measurements to develop the most 

detailed contamination maps of the exclusion zone to date.  The characterization methods and 

results are included in this study to help validate the dispersion modeling results obtained 

from HPAC.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-20: Chernobyl Exclusion Zone (Mycio). 
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Dispersion Modeling 
 

 Dispersion models are used in conjunction with an event of this nature to determine if 

the surrounding population will be exposed to the radioactive materials released to the 

environment.  The degree of exposure will be a function of the mixing of radioactive 

materials in the horizontal or vertical axis of the plume, how close the receptor is to the 

centerline of the plume and how long the receptor is in the plume.   

 Dispersion (or diffusion) is a random process which ultimately dilutes the 

radionuclides in the plume.  The radioactive particles tend to move in different directions at 

different rates and are strongly influenced by wind direction and wind speed.  Dispersion is 

primarily governed by turbulence.  Three types of turbulence that act to disperse a plume are 

mechanical turbulence (i.e. air flowing over rough features), shear turbulence (i.e. differences 

in wind speed between the plume and ambient atmosphere) and buoyancy turbulence (i.e. 

atmospheric stability).  Over time, the dispersion process will create a Gaussian distribution 

in both the horizontal and vertical directions (see Figure 2-21). 

 “Plume rise” is one of the most important parameters in determining the dispersion of 

radionuclides following a release.  As the name implies, it is a measure of the plume rise into 

the atmosphere (above the stack height) during a release and is important in determining the 

direction of dispersion and behavior of the particles in the plume.  Plume rise is directly 

proportional to the vertical ejection velocity and the temperature of the plume while inversely 

proportional to wind speed and buoyancy turbulence.  Increases in vertical ejection velocity 

forces the plume higher into the air but also causes an increase in dilution to occur.  Plumes 

will continue to rise if the temperature of the plume is greater than ambient temperature.  

Light winds allow a plume to stay intact as it rises while stronger winds tend to bend the 
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plume and quickly mix it with the ambient air.  Plume rise varies depending on the source.  

For example, spills from pressurized containers may have an ejection velocity but not 

necessarily in the vertical direction, fires have no ejection velocity but are very buoyant and 

dense gases act as liquids and tend to move downhill regardless of wind.    

   

 

Figure 2-21: Plume dispersion showing Gaussian distributions in horizontal and vertical directions (Turner, 
1970). 
  
 
 
 The downwind shape of the plume is dependent on the adiabatic lapse rate and the 

environmental lapse rate.  The adiabatic lapse rate is defined as the rate of temperature 

change that occurs in the atmosphere as a function of elevation.  The environmental lapse 

rate refers to the change of temperature with altitude for the stationary atmosphere and can 
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vary during the day.  Six traditional plume shapes include: fanning plumes, lofting plumes, 

looping plumes, coning plumes, fumigating plumes and trapping plumes.   

 Fanning plumes form under very stable conditions.  These plumes, dispersed at the 

stack height, tend to be narrow in the vertical direction due to confinements in both upward 

and downward directions but disperse greatly in the horizontal directions.  When viewed 

from above, they have a characteristic fan shape.   

Lofting plumes form when there is a stable layer beneath an unstable layer.  

Downward dispersion is inhibited by the stable layer, but the unstable layer above allows the 

plume to loft upwards.  Resultant plumes have a flat bottom and a rising top.  

Looping plumes form within unstable surface layers, with super-adiabatic lapse rates 

from the ground up to the plume height.  A super-adiabatic lapse rate occurs when the 

temperature decreases with height at a rate of greater than 10oC km-1.  These plumes rise and 

sink rapidly as they pass through thermal layers and tend to have high ground level 

concentrations occurring close to the stack.   

Coning plumes occur when there is a deep, nearly neutral lapse rate extending from 

the surface upward past the plume height (i.e. the environmental lapse rate is equal to the 

adiabatic lapse rate).  Neutral conditions allow the plume to spread evenly in both vertical 

and horizontal directions, resulting in a cone shape. 

Fumigating plumes occur when an inversion layer above the plume inhibits upward 

dispersion but unstable conditions below allow rapid downward mixing.  This rapid mixing 

usually results in sudden increases in pollutant concentrations at ground levels. 
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Trapping plumes are formed when released in an unstable layer situated between 

stable layers above and below.  The stable, or inversion, layers trap the plume at a particular 

height by acting as a barrier which prevents atmospheric mixing in the vertical directions.   

To determine concentrations at downwind locations, “Gaussian Plume Dispersion 

Models” and “Puff Models” are commonly utilized.  Gaussian Plume Dispersion Models 

assume constant meteorological conditions and produce straight line trajectories to determine 

downwind concentrations.  Utilized in conjunction with the Pasquill-Gifford Stability 

Categories, horizontal and vertical concentration profiles at downwind points are assumed to 

be normally distributed about the plume center line along the downwind direction.  Lateral 

and vertical dispersion coefficients describe the standard deviations of the corresponding 

distribution at each location downwind from the source.  Puff models use puffs to represent 

instantaneous sources or simulation of emissions over a period of time.  Each puff is treated 

as a separate entity by the model and is transported at a speed and direction determined at its 

center of mass.  Puff models incorporate changes in wind speed, direction, and stability by 

utilizing gridded weather data over the area of release (NWS, 2005).   

To simulate incidents at SFP in the U.S., the HPAC software tool suite is utilized.  

Primarily developed by the Titan Corporation for the DTRA, HPAC simulates the 

transport/dispersion of hazardous materials throughout the atmosphere and has become the 

DoD primary CBRNE operational modeling and simulation tool suite. Originally developed 

to meet the needs of the military, HPAC has evolved into peacetime applications by 

providing estimates of effects on the physical environment and the resultant effects on the 

exposed population for a variety of incidents (HPAC, 2004).   
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HPAC is an integrated package of software modules and legacy codes. Source term 

modules estimate the amount, rate, form, and physical configuration of hazard material 

releases.  Existing source term capabilities from HPAC 4.03 included CBRNE incidents 

involving: chemical/biological facilities; nuclear facilities; chemical/biological weapons; 

nuclear weapons accidents; nuclear weapons use; enemy missile intercept; and radiological 

weapon incident.  The latest source term capabilities added to HPAC 4.04 include: explosive 

incidents, predicting hazards from toxic materials in a three dimensional urban environment, 

releases of toxic materials inside buildings and the venting to the outside for subsequent 

transport, release of toxic materials from industrial facility incidents and release of toxic 

chemicals from road, rail and water transport vehicle accidents.    

Hazardous materials are transported and dispersed into the atmosphere using Titan’s 

SCIPUFF model.  SCIPUFF is a puff dispersion model that uses a collection of Gaussian 

puffs to predict three-dimensional, time-dependent pollutant concentrations.  In addition to 

the average concentration value, SCIPUFF predicts the statistical variance in the 

concentrations resulting from the random fluctuations of the wind (Wikipedia, 2006a.).  

SCIPUFF was initially developed under Electric Power Research Institute sponsorship in the 

mid-1980's.  The DNA, predecessor of DTRA, adopted the model and applied it to nuclear 

dust cloud transport problems in the late-1980's and early-1990's.  SCIPUFF was ported to 

Microsoft Windows for DNA starting in 1993.  Later, it was joined with elements of the 

NRC Radiological Assessment for Consequence Analysis, commonly referred to as 

RASCAL, model and a climatology database, to provide an end-to-end capability to analyze 

potential radiological releases from nuclear reactor facilities. Under DoD counterproliferation 
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sponsorship, this combined end-to-end capability was integrated with the ability to analyze 

chemical and biological hazards to form HPAC (HPAC, 2004). 

  The release environment is specified using high-resolution weather, terrain, and land 

cover data.  This allows HPAC to address the impact of spatially and temporally varying 

weather and the effects of local terrain features on transport/dispersion patterns.  Two 

datasets are available to cover two scenarios: surface climatology and upper air climatology.  

Surface climatology is utilized for near-surface, short duration releases and is based on 20 

years of observation data from 500 sites worldwide.  Most sites are near major cities or 

nuclear facilities. Upper air climatology is utilized for worldwide coverage following long 

duration releases and are based on a 2.5 x 2.5 degree gridded model up to 16 km in altitude.  

Historical, real-time and forecast weather can be utilized for many areas of the world.  HPAC 

has built-in logic to select the appropriate datasets based on the criteria listed above.    

All HPAC results are probabilistic as total uncertainty is estimated based on 

turbulence model uncertainty, weather data uncertainty, and event location uncertainty.  

Resolution and accuracy to a radius of 1 km can be achieved and be overlaid onto high-

resolution maps.   

 

Radiation Exposure Modeling 

RESRAD was developed by Argonne National Laboratory for the DOE.  Unlike 

HPAC which determines a dose to a general area, RESRAD is used primarily to calculate 

site-specific residual radioactive material guidelines as well as radiation dose and excess 

lifetime cancer risks to chronically exposed on-site residents by completing pathway analyses 

of the hazards.  
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RESRAD (version 6.3 used in this analysis) is the forerunner of a family of codes for 

more specific evaluations of environmental pollutants.  These codes (see Table 2-5) were 

generally developed on the basis of the fundamental algorithms used in RESRAD (Yu, 

2001).  

 

Table 2-5: RESRAD family of codes (Yu, 2001). 
CODE DESCRIPTION 
RESRAD-BUILD Calculates doses to persons inside structures from 

radioactive materials on or in the walls, ceiling, or floors. 
RESRAD-CHEM Performs environmental transport and risk analyses of 

hazardous chemicals similar to those performed by 
RESRAD. 

RESRAD-BASELINE Calculates doses and risks from radionuclide and chemical 
concentrations measured in environmental media. 

RESRAD-OFFSITE Couples an atmospheric dispersion model and a 
groundwater transport model with RESRAD, thereby 
permitting calculation of doses to persons beyond the 
boundary of a site. 

RESRAD-RECYCLE Calculates doses to workers and members of the general 
public from the recycle of materials containing traces of 
radioactive materials. 

RESRAD-ECORISK Calculates risks to ecological receptors from exposure to 
hazardous chemicals. 

 
 

The latest code to be introduced, RESRAD-BIOTA, provides a complete spectrum of 

biota dose evaluation capabilities.  From methods for general screening to comprehensive 

receptor-specific dose estimations, RESRAD-BIOTA has become one of the more prominent 

models endorsed by the ICRP for assessing the impact of ionizing radiation to non-human 

populations. 

RESRAD has become popular because of its adaptability to specific exposure 

situations.  Default dose conversion factors for ingestion and inhalation are derived from the 

EPA’s Federal Guidance Report No. 13.  User-specific factors also can be specified in lieu of 
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the default parameters for most bioaccumulation and transfer factors and for ingestion and 

inhalation dose factors.  

As illustrated in Figure 2-22, nine environmental pathways are considered in 

RESRAD: direct exposure, inhalation of dust particles and radon, and ingestion of foods, 

meat, milk, aquatic foods, water, and soil. 

 

 
 
 
 
 

 

 

 

 

 

Figure 2-22: RESRAD environmental pathways (Yu, 2001).  
 

 
 
A schematical representation of the major pathways used to derive the site-specific 

guidelines is illustrated in Figure 2-23.  Minor pathways (i.e. external radiation from 

contaminated water) for on-site exposures are not taken into account in deriving soil 

guidelines because the dose contribution is expected to be insignificant. 

As illustrated in Figure 2-23, the pathway analysis for deriving guidelines from a dose 

limit has four parts: source analysis, environmental transport analysis, dose/exposure analysis 

and scenario analysis. 
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Figure 2-23: RESRAD pathway model (Yu, 2001). 

 
 

Source analysis addresses the problem of deriving the source terms that determine the 

rate at which residual radioactivity is released into the environment.  The geometry of the 

contaminated zone, the concentrations of the radionuclides present, the ingrowth and decay 

rates of the radionuclides, and the removal rate by erosion and leaching determine this 

release rate. 

Environmental transport analysis addresses the problems of both identifying 

environmental pathways by which radionuclides can migrate from a source to a human 

exposure location and determining the migration rate along these pathways.  

Exposure/dose analysis addresses the problem of the derivation of DCFs for the 

radiation dose that will be incurred by exposure to ionizing radiation. 
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 RESRAD output can be displayed in the form of five textual reports and a multitude 

of graphical options.  Textual reports include: summary (input parameters, dose summary, 

etc.), detailed (source factors, pathway summary, etc.), concentration (concentrations in all 

media), risk (risk slope factors, excess cancer risks, etc.), and progeny (dose contributions 

from progeny).  Graphical outputs include: dosage contributions of selected nuclides, 

radionuclide concentrations in various media, ratios of individual radionuclides dose 

contribution per concentration, soil guidelines, and excess cancer risk. 

 
 

Determination of Environmental Cleanup Goals 
 
The NRC developed the LTR to govern decommissioning activities at NRC-regulated 

sites.  Under the CERCLA, the EPA could invoke more restrictive regulations.  At times, 

these sometimes-conflicting regulations have caused confusion as to which criteria drive the 

remediation or decommissioning process.   

A difference in the culture and regulatory history of these agencies has led to the 

adoption of different approaches to managing issues involving radioactive materials.  While 

the NRC uses an annual dose criterion to determine acceptable levels of residual 

contamination, the EPA uses a lifetime cancer risk criterion.  It is sometimes unclear if the 

remediation criteria in the LTR provide a level of protection of public health and the 

environment that is consistent with criteria established b EPA under CERCLA. 

 Potentially complicating this process even further is the recent ICRP proposal for 

assessing the impact of ionizing radiation to non-human populations.  The existing 

recommendations, published in 1990 as ICRP Publication 60, do not specifically address 

protection of non-human species from ionizing radiation.  The ICRP set up a Task Group in 
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2000 to consider a broader framework for radiation protection of the environment rather than 

just humans.  This decision was developed to fill a conceptual gap in radiological protection 

and to clarify how the proposed framework can contribute to the attainment of society’s goals 

of environmental protection (ICRP, 2003).  The ICRP does not intend to set regulatory 

standards for protecting the environment.  Instead, the Commissions intent is to recommend a 

framework that can be used as a practical tool to provide high-level advice and guidance to 

help regulators and operators demonstrate compliance with existing legislation.  At this point, 

the impacts of these new ICRP recommendations to NRC- or EPA-regulated sites are not 

fully understood.  Although not specifically addressed in this study, the ICRP proposals are 

included here for completeness. 

 

Regulations Pertaining To Remediation 

As previously stated, the NRC and the EPA each utilize unique sets of regulations 

when performing remediation and decommissioning activities at radioactively contaminated 

sites.  The NRC uses what is commonly referred to as a “top-down” approach.  This 

approach uses a radiation specific protection approach, based on dose, which focuses on 

human health protection.   Conversely, the EPA uses what is termed a “bottom-up” approach.  

This approach uses a radiation protection program, based on risk, which protects both human 

health and environmental resources.  Although the intent of each is to return a site that is safe 

from the harmful effects of ionizing radiation, the differing manner in which this is done can 

lead to confusion and frustration on the part of the site managers. 
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NRC Regulations 

NRC regulations are set forth in 10 CFR Part 20, Subpart E.  This regulation governs 

all NRC-regulated facilities with the exception of thorium mills and uranium recovery 

facilities (governed by 10 CFR Part 40, Appendix A).  Subpart E specifies two radiation 

criterion, one to permit the unrestricted use of a contaminated site after license termination 

and the other to permit the restricted use of a contaminated site after license termination. 

Under Subpart E, a site is acceptable for unrestricted use if (NCRP, 2004): 

1.  The annual TEDE of the average member of a critical group does not exceed 0.25 

mSv (25 mrem); and 

2.  The concentration of radioactive materials is reduced to levels that are consistent 

with ALARA.        

When an NRC licensee can demonstrate that compliance with the annual dose 

criterion of 0.25 mSv (25 mrem) for unrestricted use is not reasonably achievable or would 

result in net harm to the pubic or the environment, a site can be considered acceptable for 

license termination under restricted conditions if: 

1.  The licensee ensures legally enforceable institutional controls are in place that 

provides reasonable assurance that the annual TEDE will not exceed 0.25 mSv 

(25 mrem); and 

2. The residual radiation levels are reduced so that there is a reasonable assurance 

that the annual TEDE would remain ALARA if institutional controls ever failed.   

Furthermore, the NRC stipulates that these levels, although considered ALARA, must 

be below 1 mSv (100 mrem).  At times, the NRC will allow this threshold to be 5 mSv (500 

mrem) when the licensee demonstrates that further reductions to comply with the 1 mSv (100 
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mrem) criterion are not technically achievable, would be prohibitively expensive, or would 

result in net harm to the public or environment. 

 

EPA Regulations 

EPA regulations for decommissioning of radioactive sites were developed under 

CERCLA.  The principle regulation implementing this is the National Oil and Hazardous 

Substances Pollution Contingency Plan, or NCP, in 40 CFR Part 300 (NCRP, 2004).  Unlike 

the NRC guidelines above which set compliance limits, CERCLA only defines a process for 

determining acceptable remediation actions for a site and specifies goals for the remediation. 

CERCLA states that remediation goals at a site shall be protective of human health 

and the environment.  These goals should be developed taking into account (EPA, 1990): 

1.  ARARs established under other federal or state environmental laws; 

2.  For known or suspected carcinogens, an upper bound on lifetime cancer risk of 

between 10-6 and 10-4 from all substances and all exposure pathways combined at 

specific sites; and 

3.  For noncarcinogens, including uranium, a hazard index of one or less.  A hazard 

index of less than or equal to one means it is unlikely for even sensitive 

populations to experience adverse health effects.  A hazard index greater than one 

means there is a possibility for non-cancerous effects on humans. 

An emphasis on the use of ARARs in establishing protective remediation goals 

reflects the purpose of CERCLA, which is to address environmental contamination that is not 

adequately regulated under other laws.  For example, federal and state drinking water 

standards established under the SDWA are specified as ARARs for remediation of 
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groundwater or surface waters that are current or potential sources of drinking water.  Thus, 

compliance with regulations established under other laws would not normally result in a need 

for remediation under CERCLA.  

The EPA emphasizes the use of risk, rather than dose, in establishing remediation 

levels.  This allows the EPA to relate lifetime cancer risks to concentrations of radionuclides 

in environmental media and resulting exposures using cancer risk coefficients developed in 

Federal Guidance Report No. 13 and ICRP Publication 72.  These risk coefficients have been 

incorporated in EPA’s HEAST and gives risks of cancer incidence per unit concentration of 

radionuclides in environmental media (HEAST, 2001).   

 

Other Regulations 

Although outside the scope of this study, it must be recognized that states can play an 

important role in regulating remediation of sites licensed under NRC and are potentially 

subject to remediation under CERCLA.  If states are Agreement States, they may adopt the 

NRC’s LTR as written or impose more stringent dose limits.  States also engage in regulatory 

oversight, approve work plans, perform independent sampling and analysis, and promote 

public participation in remediation decisions. 

 
 

Approaches to Remediation 

As stated previously, the NRC uses criterion based on dose, widely considered the 

“dose approach” or “top-down” approach, for determining remediation or decommissioning 

efforts while the EPA criterion is based on risk, or commonly called the “risk approach” or 

“bottom-up” approach.   
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 By definition, the dose assigned by the “dose approach” is calculated by multiplying a 

dose conversion factor by the TEDE.  This approach is based on an annual exposure to 

radiation and follows the ICRP effective dose equivalent approach.  Given that radiation 

exposures are justified, two basic elements are established in this approach: (1) a limit is 

placed on radiation dose to individuals from all controllable sources, corresponding to a 

maximum allowable risk for any routine exposure situation; and (2) a reduction of all 

controllable exposures ALARA (NCRP, 2004).  Figure 2-24a further illustrates the elements 

of the dose approach.   

 Dose conversion factors were established by the ICRP in Publication 30 (ICRP, 1979) 

and are expressed as dose per unit exposure.  Revised dose conversion factors were published 

in Publication 72 (ICRP, 1996), but until recently, have been used sparingly at some sites as 

the new factors place more emphasis on the ingestion pathway, rather than the inhalation 

pathway, and are more applicable to the general public.  Each radionuclide has a unique dose 

conversion factor depending on the type of radiation emitted, relative strength of radiation, 

target organs and tissues and cancer induction rates.   

The “Risk Approach” is calculated directly by assigning a unit of risk (i.e. probability 

of an individual developing cancer) for every unit of exposure (or cancer slope factor) and 

multiplying it by the total exposure.  Expression of the risk factor varies depending on its 

application.  For example, for an intake of a particular radionuclide, it will be expressed as 

the probability of adverse effect for that radionuclide/pCi intake.  As with the NRC approach, 

the risk approach is also based on two basic elements, assuming radiation exposures are 

justified.  This approach establishes (1) a goal for acceptable risk; and (2) allowance for an 
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increase in risks above the goal, based primarily on considerations of technical feasibility and 

cost (NCRP, 2004).  Figure 2-24b. further illustrates the elements of the risk approach.  

 

 

Figure 2-24: Depiction of (a) radiation paradigm and (b) chemical paradigm for cancer risk management 
(NCRP, 2004). 
 
 

Slope factors are best estimates of the lifetime excess total cancer risk per unit intake 

or exposure.  Slope factors are similar to dose conversion factors but instead of assigning a 

unit of dose for every unit of exposure (i.e. Sv pCi-1), a unit of risk is assigned for every unit 

of exposure (i.e. probability of adverse effect pCi-1).  Current slope factors are based on 

updated and improved radiation risk coefficients in Federal Guidance Report No. 13 and 

ICRP Publication 72 and are published in HEAST (HEAST, 2001).  The EPA has generated 

inhalation and ingestion slope factors for most radionuclides and can be obtained at 

http://www.epa.gov/radiation/heast/. 

Also, dose values can be converted into risk, and vice versa, using conversion factors.  

A conversion factor of 7.0 x 10-2 Sv-1 is commonly utilized and agrees with a lifetime cancer 



69 

incidence risk of 3.0 x 10-4 from receiving 0.15 mSv y-1 (15 mrem y-1) over 30 years.  

Therefore, risk is calculated by using the following equation: 

Risk = total dose (Sv) x conversion factor (7.0 x 10-2 Sv-1)   

 
 
 

NRC/EPA Memorandum of Understanding 

In recognition of their mutual commitment to protect the public health and safety and 

the environment, the NRC and the EPA entered into a Memorandum of Understanding 

(MOU) in the fall of 2002.  This understanding was established to create the basic framework 

for the relationship of the agencies in the decommissioning and decontamination of NRC-

licensed sites in order to facilitate decision-making and not to establish any new requirements 

or rights on parties not subject to the agreement.  (EPA/NRC, 2002) 

 Under the MOU, the EPA would continue to defer to the NRC for decision-making in 

the decommissioning of NRC-licensed sites except in the following circumstances: 

1.  The NRC determines there is radioactive groundwater contamination in excess of 

EPA’s Maximum Contamination Limits (MCLs). 

2.  The NRC contemplates either restricted release or the use of alternate criteria for 

license termination. 

3. The radioactive contamination at the time of license termination exceeds the 

corresponding levels in Table 1 of the MOU (Table 2-6 below). 
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Table 2-6: Consultation Triggers for Residential and Commercial/Industrial Soil 
Contamination (Adapted from EPA/NRC, 2002). 

Radionuclide Residential          
Soil Concentration  

Industrial/Commercial 
Soil Concentration 

3H 228 pCi/g 423 pCi/g 
14C 46 pCi/g 123,000 pCi/g 
22Na 9 pCi/g 14 pCi/g 
35S 19,600 pCi/g 32,200,000 pCi/g 
36Cl 6 pCi/g 10,700 pCi/g 
45Ca 13,500 pCi/g 3,740,000 pCi/g 
46Sc 105 pCi/g 169 pCi/g 
54Mn 69 pCi/g 112 pCi/g 
55Fe 269,000 pCi/g 2,210,000 pCi/g 
57Co 873 pCi/g 1,420 pCi/g 
60Co 4 pCi/g 6 pCi/g 
59Ni 20,800 pCi/g 1,230,000 pCi/g 
63Ni 9,480 pCi/g 555,000 pCi/g 
90Sr + Decay 23 pCi/g 1,070 pCi/g 
94Nb 2 pCi/g 3 pCi/g 
99Tc 25 pCi/g 89,400 pCi/g 
129I 60 pCi/g 1,080 pCi/g 
134Cs 16 pCi/g 26 pCi/g 
137Cs + Decay 6 pCi/g 11 pCi/g 
152Eu 4 pCi/g 7 pCi/g 
154Eu 5 pCi/g 8 pCi/g 
192Ir 336 pCi/g 544 pCi/g 
210Pb + Decay 15 pCi/g 123 pCi/g 
226Ra 5 pCi/g 5 pCi/g 
227Ac + Decay 10 pCi/g 21 pCi/g 
228Th + Decay 15 pCi/g 25 pCi/g 
232Th 5 pCi/g 5 pCi/g 
234U 401 pCi/g 3,310 pCi/g 
235U + Decay 20 pCi/g 39 pCi/g 
238U + Decay 74 pCi/g 179 pCi/g 
total uranium 47 mg/kg 1230 mg/kg 
238Pu 297 pCi/g 1,640 pCi/g 
239Pu 259 pCi/g 1,430 pCi/g 
241Pu 40,600 pCi/g 172,000 pCi/g 
241Am 187 pCi/g 568 pCi/g 
242Cm 32,200 pCi/g 344,000 pCi/g 
243Cm 35 pCi/g 67 pCi/g 
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CHAPTER III 

 

METHODS AND MATERIALS 

 

Chernobyl Exclusion Zone Characterization  

 The UIAR characterization of the Chernobyl exclusion zone was performed 

through a combination of in situ monitoring and soil sampling for 137Cs and 90Sr.  The 

zone was divided into 10,000 m2 sampling sites.  Prior to soil sampling at each site, the 

gamma exposure rate (μR h-1) was measured at several positions utilizing certified 

dosimeters, DRG-01T, at a height of 1 m (UIAR, 2001). 

 To determine terrestrial density (kBq m-2) of cesium contamination in the soil, 

four parallel sub-samples were taken from each sample: one sub-sample of 1000 cm3 and 

three sub-samples of 100 cm3 each.  The specific activities of 134Cs and 137Cs were 

measured by gamma spectroscopy in each sub-sample.  If the relative deviation of the 

values of 137Cs specific activity, calculated by (Cmax-Cmin)/(Cmax+Cmin), exceeded 0.15, 

sub-samples had been mixed together again and then homogenized in order to satisfy the 

above criteria.  When the criterion was reached, one 100 cm3 sub-sample was selected for 

measurements of 90Sr specific activity.  

Terrestrial density of cesium soil contamination (kBq m-2) was calculated as: 

As = (M * Σi Cimi)/(S * Σi mi) 

    where  M = mass of complex sample (kg) 
     S = sampling area (m2) 
     mi = mass of i-th sub-sample measured (kg) 
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 Relative uncertainties of determination of these values (95% confidence level), 

expressed in percentages, include the measurement uncertainties and uncertainties caused 

by deviation of activities measured in parallel sub-samples (UIAR, 2001). 

 Preparation of soil samples for 90Sr analyses are first incinerated for 4 hours.  

After injection of a tracer element, 85Sr, the samples were treated with a 6 molar HNO3 

solution during 2 hours of permanent mixing and heating.  After filtration, hydroxides of 

high-valence metals (Fe, Al, Ti, Mn, Th, & U) are extracted by adding ammonia without 

carbon into the solution.  Then, after acidification, the solution was left for 3 weeks in 

order to for 90Sr and 90Y to come into secular equilibrium.  After this period, a stable 

isotope of yttrium is added into solution and extracted by ammonia without carbon.  

Obtained precipitate was incinerated to Y2O3 and analyzed after decay of radium 

progenies (UIAR, 2001).     

  Gamma spectroscopy measurements of the samples were carried out on a low-

background, high-resolution gamma spectrometer (GEM-30185) with passive shielding.  

Beta measurements were made on a low-background beta-radiometer (Canberra-2400).  

All equipment and associated calibration samples were properly certified (UIAR, 2001). 

 

Site Selection 

A successful incident at a predominantly urban SFP site will result in many more 

direct human heath effects than an incident at a predominantly rural SFP site due to 

higher population densities.  Conversely, a successful incident at a rural SFP site would 

more directly affect a substantial amount of agricultural production.  Every decision 

made after an incident, from initial response actions to long term recovery, will be driven 
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by the varying parameters at the specific sites.  Although it is not possible to create a 

specific health physics evaluation that would encompass both rural and urban SFP sites 

adequately, a thorough understanding of both scenarios will help identify the important 

pathways that significantly contribute to human dose for each and provide guidance for 

response.  

For this study, successful SFP incidents at both rural and urban sites were 

evaluated.  In order to select a SFP for each analysis, the population within a 30-km 

radius of each U.S. commercial power reactor sites was generated (based on 2002 

population data) to determine the potential population levels.  For purposes of this study, 

populations under 50,000 are considered predominantly rural while populations over 

500,000 are considered predominantly urban. 

 
 

Dispersion Modeling 
 

To estimate the radiological dispersion in a hypothetical scenario such as the one 

developed in this study, HPAC utilizes a spent fuel release computation based on air 

dropped munitions.  Specifically, this computation infers a situation in which one or more 

air dropped munitions impact a SFP, resulting in a “zircalloy” fire where radiological 

materials are dispersed.  A secondary option available for dispersion of spent fuel 

involves a fuel cladding failure.  By HPAC definition, a zircalloy fire occurs in a SFP 

when the fuel cladding material ignites as a result of the very high temperatures obtained 

after a loss of coolant occurs.  A “fuel cladding failure” involves a breach of the cladding 

material either from mechanical damage or damage caused during the fuel irradiation.  

HPAC only includes three fuel batches (i.e. 1 batch equals 1/3 of a reactor core) in the 
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zircalloy scenario with the remaining spent fuel assumed to be in a fuel cladding failure 

condition.  This is due to the fact that after approximately 5 years in a SFP, the fresh fuel 

from the reactor will decay enough to reduce the likelihood of zircalloy ignition by decay 

heat. 

The “historical weather option” in HPAC was utilized for this study.  The 

historical weather option incorporates the observed weather conditions for the 15th or 16th 

of the chosen month in 1990 for a typical day observation and 20-year averaged monthly 

statistics data for summary observations.  With the historical weather option, weather 

parameters for each scenario are obtained from the nearest observation point of the 

accident location where weather data is measured.  The rural and urban scenarios 

evaluated in this study were determined by performing one individual scenario for each 

calendar month.  Utilizing identical accident parameters, 12 individual scenarios were 

performed to identify the average and worst-case radionuclide deposition around the SFP, 

as well as determining the predominant dispersion direction of the resulting plume.  Upon 

evaluating the 12 individual scenarios, the month which represents the worst-case and/or 

representative conditions is selected as the scenario for evaluation of radiation exposure 

via RESRAD modeling.   

For the dispersion analysis, the settings of the appropriate HPAC accident 

parameters are selected to represent either worst-case and/or realistic conditions.  For 

example, the parameter “sprays” represents the availability of water sprays to cool the 

fuel elements in the absence of coolant in the pool.  To create worst-case conditions, this 

parameter is set to represent the absence of sprays.  Conversely, the “exhaust area” 

parameter selected represents the open area of a typical SFP as depicted in Figure 2-11 
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and thus represents a realistic parameter setting.  Table 3-1 provides a complete list and 

brief description of the HPAC parameters utilized in this study.  These parameters 

descriptions are included to demonstrate how HPAC calculates dispersion of 

radionuclides based on the previous discussion (i.e. plume rise).   

    

Table 3-1: HPAC parameter descriptions. 
 Parameter Description 

Batches 

Represents the number of fuel batches in the fuel at the time of 
the accident.  Each batch is assumed to be one third of the 
reactor core. 

Sprays 

Settings: on or off.  Containment sprays are designed to 
remove airborne fission products and to condense steam to 
prevent over-pressurization following an accident.   

Release Path 

Settings: filtered or unfiltered.  Aerosol and particulate fission 
products released may encounter filter systems that can be 
very effective at reducing the amount of material released into 
the environment. 

Last Batch in Pool 

This date represents the most recent date and time of the 
latest batch placed in the SFP and is used to calculate the 
decay of the spent fuel.  HPAC assumes all batches to be two 
years older than the previous batch. 

Leak Rate 
This value represents the leak rate for the accident.  Leak 
rates range from 0.5%/hr to 100%/hr. 

Release Height 

The effective height of the material release (above ground 
level).  HPAC recommends a value of zero be used unless the 
release is through an isolated stack or vent that is at least two 
times the height of the facility structure.  The release height 
can also be used to account for an elevated release due to 
plume rise as an alternative to entering buoyancy parameters. 

Temperature above 
Ambient 

Buoyancy parameter that represents the release temperature 
in excess of ambient (20oC). 

Vertical Exhaust Velocity 
Buoyancy parameter that represents the vertical velocity of the 
release material. 

Exhaust Area 
Buoyancy parameter that represents the area through which 
the release is being exhausted. 

 
 

For this hypothetical study, the radionuclides that provide the greatest 

contributions to contamination are identified through the HPAC source term calculated 

for each scenario respectively.  The resulting radionuclide distribution in ground 

concentration for each contour is then calculated for input into RESRAD, assuming a soil 
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density of 1.5 g cm-3 and a depth of contamination of 0.1 m (i.e. all contamination 

remains at or near the surface).   

 

Radiation Exposure Modeling 
 

The parameters that control the rate of radionuclide release into the environment 

and the severity and duration of human exposure at a given location are determined by 

patterns of human activity referred to as exposure scenarios.  There are four generic 

exposure scenarios used in RESRAD.  The actual scenario of a site will depend on 

numerous factors, including the location of the site, zoning of the land, physical 

characteristics, etc.  Soil guidelines are usually based on a resident farmer exposure 

scenario and include all environmental pathways for on-site or near-site exposure.  This 

represents the most conservative scenario as it is expected to result in the highest 

predicted lifetime dose.  Other scenarios, such as the suburban resident, industrial worker, 

or recreationist, can be taken into account by adjusting the scenario parameters in 

formulas for calculating the transport of radionuclides through the pathways. 

 Table 3-2 identifies the pathways considered for the four scenarios (Yu, 2001).  

For the resident farmer scenario, water used for drinking, household purposes, irrigation, 

and livestock watering is considered to be from a local well in the contaminated area.  

For the suburban resident scenario, all drinking water, meat or milk consumption 

considered results from sources other than the contaminated area.  Ingestion of plant 

foods is considered however.  For the industrial worker, no consumption of water or 

foods from the contaminated area is considered.  For the recreationist, no water or food 

consumption, except for on-site fish or game, is considered in the scenario. 
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Table 3-2: RESRAD scenario pathways. 
Pathway Resident 

Farmer 
Suburban 
Resident 

Industrial 
Worker 

Recreationist 

External gamma exposure Yes Yes Yes Yes 
Inhalation of dust Yes Yes Yes Yes 
Radon inhalation Yes Yes Yes Yes 
Ingestion of plant foods Yes Yes No No 
Ingestion of meat Yes No No Yes 
Ingestion of milk Yes No No No 
Ingestion of fish Yes No No Yes 
Ingestion of soil Yes Yes Yes Yes 
Ingestion of water Yes No No No 
 

 
Table 3-3 compares key default parameters used in each of the scenarios.  All parameters 

are user-changeable should site-specific input parameters be determined locally.   

    

Table 3-3 RESRAD default parameters.  
Parameter Unit Resident 

Farmer 
Suburban 
Resident 

Industrial 
Worker 

Recreationist 

Exposure duration yr 30 30 25 30 
Inhalation rate m3/yr 8400 8400 11400 14000 
Fraction of time indoors N/A 0.5 0.5 0.17 N/A 
Fraction of time outdoors N/A 0.25 0.25 0.06 0.006 
Contaminated fractions of 
plant food 

N/A 0.5 0.1 Not Used Not Used 

Contaminated fractions of 
milk 

N/A 1 Not Used Not Used Not Used 

Contaminated fractions of 
meat 

N/A 1 Not Used Not Used 1 

Contaminated fractions of 
aquatic food 

N/A 0.5 Not Used Not Used 0.5 

Soil ingestion g/yr 36.5 36.5 36.5 36.5 
Drinking water intake L/yr 510 Not Used Not Used Not Used 
 
 
 For purposes of this study, the rural scenario will utilize the resident farmer 

default parameters and the urban scenario will utilize the suburban resident default 
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parameters.  The basic dose limit of 0.25 mSv y-1 (25 mrem y-1) was selected for use in 

this study to conform to the NRC regulations set forth in 10 CFR Part 20, Subpart E.   
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CHAPTER IV 

 

RESULTS 

 

Chernobyl Exclusion Zone Characterization 

The UIAR results presented in this study represent the first time extensive and 

representative soil sampling occurred on a regular grid in the exclusion zone.  The 

terrestrial density of 137Cs contamination determined in the Chernobyl exclusion zone 

during the UIAR study is shown in Figure 4-1, the terrestrial density of 90Sr is shown in 

Figure 4-2 and the ratio of 137Cs to 90Sr is illustrated in Figure 4-3. 

The estimate of the 137Cs content in the exclusion zone is approximately 4000 

TBq (~ 0.11 MCi), which corresponds to the estimates determined in the years directly 

after the accident. 

At the conclusion of this characterization, greater than 95% of 90Sr was found to 

be located in the upper 30 cm of soil at most sites.  Only a few sites, less than 0.1% of all 

sites, had more than 20% of the 90Sr activity migrating below 30 cm.  The total inventory 

of 90Sr was found to be about 810 TBq (~ 0.022 MCi), which corresponds to 0.4-0.5% of 

its inventory in the reactor at the time of the accident.  This value suggests the 90Sr 

contamination determined previously had been overestimated by a factor of 3-4 times 

(Kasparov).    
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Figure 4-1: Terrestrial density of 137Cs contamination at Chernobyl (kBq m-2) (UIAR, 2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-2: Terrestrial density of 90Sr contamination at Chernobyl (kBq m-2) (UIAR, 2001). 
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Figure 4-3: 137Cs/90Sr activity (kBq m-2) ratio in soil at Chernobyl (UIAR, 2001). 
 

 
 

Site Selection 
 

A map of the 30-km zones around each reactor site is illustrated in Figure 4-4.  

Based on the criteria discussed previously, the five lowest populations within the 30-km 

zones are listed in ascending order in Table 4-1.  Conversely, the five highest populations 

are listed in descending order in Table 4-2. 
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Figure 4-4: 30-km zones around U.S. reactor sites. 

 

Table 4-1: Five smallest populations within 30-km of U.S. reactor sites. 
Plant Name Reactor 

Type 
Location Pop. at Risk 

(30 km) 
Owner/Operator 

Palo Verde  PWR 36 MI W of 
Phoenix,  AZ 

11,468 Arizona Public 
Service Co. 

Wolf Creek  PWR 3.5 MI NE of 
Burlington,  

KS 

14,781 Wolf Creek Nuclear 
Operating Corp. 

Cooper BWR 23 MI S of 
Nebraska 
City,  NE 

24,648 Nebraska Public 
Power District 

Grand Gulf  BWR 25 MI S of 
Vicksburg,  

MS 

29,367 Entergy Operations, 
Inc. 

South Texas PWR 12 MI SSW 
of Bay 

City,  TX 

30,301 STP Nuclear 
Operating Co. 
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Table 4-2: Five largest populations within 30-km of U.S. reactor sites. 
Plant Name Reactor 

Type 
Location Pop. at Risk 

(30 km) 
Owner/Operator 

Indian Point  PWR 24 MI N of 
New York 
City,  NY 

1,507,029 Entergy Nuclear IP2 
LLC 

Limerick  BWR 21 MI NW 
of 

Philadelphi
a,  PA 

1,098,870 Exelon Generation 
Co., LLC 

Three Mile 
Island  

PWR 10 MI SE of 
Harrisburg,

  PA 

790,177 AmerGen Energy 
Co., LLC 

McGuire  PWR 17 MI N of 
Charlotte,  

NC 

759,622 Duke Energy Corp. 

Catawba  PWR 6 MI NW of 
Rock 

Hill,  SC 

668,932 Duke Energy Corp. 

 
 

 
 

Dispersion Modeling 
 

 Based on estimated worst-case and/or realistic values as discussed in Chapter 3 

above, the HPAC dispersion parameters selected for both rural and urban scenarios are 

presented in Table 4-3.     

Table 4-3: HPAC parameter values utilized in rural and urban scenarios. 

Parameter 
Scenario 

Value Units 
Batches 9 N/A 
Sprays Off N/A 
Release Path Unfiltered N/A 
Last Batch in Pool 1 year prior N/A 
Leak Rate 1 %/hr 
Release Height 0 m 
Temp above Ambient 900 oC 
Vertical Exhaust Velocity 5 m/sec 
Exhaust Area 333 m2 
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Rural Scenario 
 

 Based on the criteria discussed previously and the population within the 30-km 

zone around each reactor site (see Table 4-1), the Wolf Creek power reactor, located 

approximately 3.5 miles NE of Burlington, Kansas, was the commercial nuclear reactor 

site chosen to analyze the effects of a rurally located SFP incident.  As listed in Table 4-

1, the population within 30-km of the Wolf Creek SFP is less than 15,000 and is the 

second-lowest at-risk population among all the U.S. reactor sites.  Despite having a 

population density larger than the Palo Verde reactor, the Wolf Creek reactor site was 

selected because of the greater land use for agriculture in the region surrounding this site.   

Table 4-4 lists the areas of contamination, generated monthly by HPAC, for the 

rural scenario utilizing the parameters listed in Table 4-3.  These contaminated areas 

(km2), resulting from the dispersion of spent fuel, are shown in four activity contours of 

37, 3.7, 0.37 and 0.037 GBq m-2 (1.0, 0.1, 0.01 and 0.001 Ci m-2, respectively).  The 

average annual ground deposition for each contour is also presented in Table 4-4.   

For this scenario, the radionuclide dispersion from a successful event in April 

generally represents the worst-case dispersion and was chosen as the incident for 

conducting RESRAD modeling.  As listed in Table 4-4, the contaminated areas in April 

are greatest in the three highest concentration contours as compared to the other 11 

months.  In the lowest concentration contour, a May event produces a slightly higher 

contaminated area but both are generally comparable.  Additionally, the area of 

contamination in all April contours is significantly higher than the mean.  Furthermore, 

greater than 60% of the annual dispersion was found to be released in a direction within 

45o of North as illustrated in the April dispersion plot (Figure 4-5).  Due to these factors, 



85 

the April event is selected because it summarily represents the worst-case HPAC 

dispersion based on the input parameters selected.  

The total activity release calculated by HPAC for this scenario is 4.81E+08 GBq 

(13 MCi).  The major radionuclides that are released and contribute to ground deposition 

(i.e. greater than 0.02% of the total activity released) are listed in Table 4-5.  As this table 

shows, the percentage of total release is calculated for each radionuclide, along with the 

estimated ground concentrations within the 3.7, 0.37 and 0.037 GBq m-2 (0.1, 0.01, and 

0.001 Ci m-2, respectively) contours, assuming a soil density of 1.5 g/cm3 and a depth of 

contamination of 0.1 m.  These three activity contours, along with the respective areas of 

contamination, are utilized in RESRAD to determine dose/risk to the public.  Since the 37 

GBq m-2 (1.0 Ci m-2) contour is located within the immediate area of the SFP where 

access to the public would be restricted, it is not included in the RESRAD analysis.  For 

purposes of this study (i.e. both rural and urban scenario), the distribution of radionuclide 

contamination within each contour is limited to these 7 major nuclides based on the 

individual percentages of total release.   

Although noble gases do not contribute to ground deposition, the total noble gas 

activity released is included in Table 4-5 as they contribute to the resulting dose rate due 

to external exposures from airborne concentrations.  Figures 4-6 and 4-7 are included to 

illustrate the total effective dose equivalent (TEDE) levels calculated by HPAC at 2 and 6 

days after the SFP incident occurs.  The estimated populations affected within the 

respective contours are also illustrated on each dispersion plot. 
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Table 4-4: Monthly dispersion results in rural scenario. 
                                  Area of Ground Deposition (km2)           

Month  

37 GBq m-2 
(1 Ci m-2) 
Contour 

3.7 GBq m-2 
(0.1 Ci m-2) 

Contour 

0.37 GBq m-2 
(0.01 Ci m-2) 

Contour 

0.037 GBq m-2 
(0.001 Ci m-2) 

Contour 
January 0.028 0.706 13.983 238.782 
February 0.014 0.394 9.476 186.136 
March 0.017 0.444 9.342 207.008 
April 0.105 2.734 55.368 542.370 
May 0.058 1.272 25.519 580.604 
June 0.027 0.319 4.208 63.733 
July 0.030 0.361 5.748 101.463 
August 0.039 0.639 10.382 155.360 
September 0.047 1.024 19.806 255.565 
October 0.033 0.425 7.051 110.148 
November 0.007 0.544 12.241 224.837 
December 0.080 1.934 37.954 539.288 

Mean 0.040 0.900 17.590 267.108 
 
 
 

 
Figure 4-5: HPAC dispersion in rural scenario.  
 
 
 

N 
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Table 4-5: Radiological dispersion results in rural scenario. 

Radionuclides 

Nuclide 
Released 

(GBq) 

Total 
Activity 

Released 
(GBq) 

% of 
release

Radionuclide 
Concentration 

3.7 GBq m-2 
contour 
(Bq/g) 

Radionuclide 
Concentration 
0.37 GBq m-2 

contour  
(Bq/g) 

Radionuclide 
Concentration 
0.037 GBq m-2 

contour  
(Bq/g) 

144Ce 4.07E+05 4.81E+08 0.08% 2.09E+01 2.09E+00 2.09E-01 
134Cs 8.51E+07 4.81E+08 17.69% 4.37E+03 4.37E+02 4.37E+01 
137Cs 1.59E+08 4.81E+08 33.08% 8.18E+03 8.18E+02 8.18E+01 
147Pm 1.07E+05 4.81E+08 0.02% 5.51E+00 5.51E-01 5.51E-02 
106Ru 1.26E+06 4.81E+08 0.26% 6.44E+01 6.44E+00 6.44E-01 
125Sb 1.07E+06 4.81E+08 0.22% 5.51E+01 5.51E+00 5.51E-01 
90Sr 7.40E+06 4.81E+08 0.22% 3.81E+02 3.81E+01 3.81E+00 

Noble Gases 5.92E+07 4.81E+08 12.31% N/A N/A N/A 
 
 
 

 
Figure 4-6: Estimates of TEDE at 2 days, rural scenario.  
 
 

N 
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Figure 4-7: Estimates of TEDE at 6 days, rural scenario. 

 
 
 

Urban Scenario 
 

Based on the population data in Table 4-2, the Indian Point power reactor site was 

chosen to analyze the effects of a SFP located in a predominantly urban area.  At 

1,507,029, the population within 30-km of the Indian Point reactor site makes it the 

largest at-risk population available for this study. 

Similarly to the rural scenario, Table 4-6 lists the areas of contamination 

generated monthly by HPAC for the urban scenario.  These contaminated areas (km2) 

resulting from the dispersion of spent fuel are shown in the same four activity contours of 

37, 3.7, 0.37 and 0.037 GBq m-2 (1.0, 0.1, 0.01 and 0.001 Ci m-2, respectively).  The 

average annual ground deposition for each contour is also presented in Table 4-6.   

N
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Evaluation of these results shows that a successful event in January represents the 

greatest areas of contamination as compared to the other months.  Similarly to the rural 

scenario, the area of contamination in this month is shown to be significantly higher than 

the mean areas.  Further examination of Table 4-6 shows that contamination contours 

were not generated for several months.  In addition, greater than 70% of the annual 

dispersion was released in a generally North-Eastern direction as illustrated in the 

January dispersion plot in Figure 4-8.    

The total activity release calculated by HPAC for this scenario is 4.07E+08 GBq 

(11 MCi).  The major radionuclides that are released and contribute to ground deposition, 

identical to the radionuclides in the rural scenario, are listed in Table 4-7.  As this table 

shows, the percentage of total release is calculated for each radionuclide, along with the 

estimated ground concentrations within the 3.7, 0.37 and 0.037 GBq m-2 (0.1, 0.01, and 

0.001 Ci m-2, respectively) contours.  Similarly, these three activity contours, along with 

the respective areas of contamination, are utilized in RESRAD to determine dose/risk to 

the chronically exposed populations surrounding the urban SFP.    

To demonstrate the additional contributions of the noble gases in the urban 

scenario, Figures 4-9 and 4-10 are included to quantify the total effective dose equivalent 

(TEDE) levels calculated by HPAC at 2 and 6 days after the SFP incident occurs.  The 

estimated populations affected within the respective contours are also illustrated on each 

dispersion plot. 
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Table 4-6: Monthly dispersion results in urban scenario. 
                                  Area of Ground Deposition (km2)           

Month  

37 GBq m-2 
(1 Ci m-2) 
Contour 

3.7 GBq m-2 
(0.1 Ci m-2) 

Contour 

0.37 GBq m-2 
(0.01 Ci m-2) 

Contour 

0.037 GBq m-2 
(0.001 Ci m-2) 

Contour 
January - - 8.065 159.734 
February - - - 124.940 

March 0.005 0.114 1.749 33.945 
April - - 5.384 134.813 
May 0.010 0.143 2.767 43.228 
June 0.017 0.375 7.982 162.191 
July 0.009 0.073 1.036 17.072 

August 0.017 0.318 6.007 120.677 
September 0.021 0.394 6.795 186.544 

October - 0.054 2.692 61.609 
November 0.012 0.112 1.794 34.383 
December - - - 22.850 

Mean 0.013 0.251 5.007 95.373 
 
 
 

 
Figure 4-8: HPAC dispersion in urban scenario. 
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Table 4-7: Radiological dispersion results in urban scenario. 

Radionuclides 

Nuclide 
Released 

(GBq) 

Total 
Activity 

Released 
(GBq) 

% of 
release 

Radionuclide 
Concentration 

3.7 GBq m-2 
contour 
(Bq/g) 

Radionuclide 
Concentration 
0.37 GBq m-2 

contour 
(Bq/g) 

Radionuclide 
Concentration 
0.037 GBq m-2 

contour  
(Bq/g) 

144Ce 3.48E+05 4.07E+08 0.09% 2.11E+01 2.11E+00 2.11E-01 
134Cs 7.40E+07 4.07E+08 18.18% 4.48E+03 4.48E+02 4.47E+01 
137Cs 1.37E+08 4.07E+08 33.64% 8.29E+03 8.29E+02 8.29E+01 
147Pm 9.25E+04 4.07E+08 0.02% 5.62E+00 5.62E-01 5.62E-02 
106Ru 1.11E+06 4.07E+08 0.27% 6.73E+01 6.73E+00 6.73E-01 
125Sb 9.25E+05 4.07E+08 0.23% 5.62E+01 5.62E+00 5.62E-01 
90Sr 6.66E+06 4.07E+08 1.64% 4.03E+02 4.03E+01 4.03E+00 

Noble Gases 5.18E+07 4.07E+08 12.73% N/A N/A N/A 
 
 
 

 
Figure 4-9: Estimates of TEDE at 2 days, urban scenario. 
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Figure 4-10: Estimates of TEDE at 6 days, urban scenario. 
 
 

 
Radiation Exposure Modeling 

 Utilizing the RESRAD resident farmer scenario for the rural scenario and the 

suburban scenario for the urban scenario, along with the default parameters discussed in 

Chapter 3, the total radionuclide contributions to dose are presented below.  

 
 

Rural Scenario 
 
 Figure 4-11 illustrates the radionuclide contributions to annual dose of the 

exposed population in the 2.734 km2 contour with a concentration of 3.7 GBq m-2 (0.1 Ci 

m-2).  Individual dose components for 134Cs, 137Cs, 90Sr, 106Ru and 135Sb by component 

pathway are illustrated in Figures 4-12 through 4-16, respectively.    

 

N 
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Figure 4-11: Annual dose from radionuclide contamination within 3.7 GBq m-2 contour, rural scenario.  
 
 
 

 
Figure 4-12: 134Cs dose contribution within 3.7 GBq m-2 contour, rural scenario. 
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Figure 4-13: 137Cs dose contribution within 3.7 GBq m-2 contour, rural scenario. 
 
 
 

 
Figure 4-14: 90Sr dose contribution within 3.7 GBq m-2 contour, rural scenario. 
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Figure 4-15: 106Ru dose contribution within 3.7 GBq m-2 contour, rural scenario. 
 
 
 

 
Figure 4-16: 125Sb dose contribution within 3.7 GBq m-2 contour, rural scenario. 
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Figure 4-17 illustrates the radionuclide contributions to annual dose of the 

exposed population in the 55.37 km2 contour with a concentration of 0.37 GBq m-2 (0.01 

Ci m-2).  Individual dose components for 134Cs, 137Cs, 90Sr, 106Ru and 135Sb by component 

pathway are illustrated in Figures 4-18 through 4-22, respectively.   

 

 
Figure 4-17: Annual dose from radionuclide contamination within 0.37 GBq m-2 contour, rural scenario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



97 

 
 
 

 
Figure 4-18: 134Cs dose contribution within 0.37 GBq m-2 contour, rural scenario. 
 
 
 

 
Figure 4-19: 137Cs dose contribution within 0.37 GBq m-2 contour, rural scenario. 
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Figure 4-20: 90Sr dose contribution within 0.37 GBq m-2 contour, rural scenario. 
 
 
 

 
Figure 4-21: 106Ru dose contribution within 0.37 GBq m-2 contour, rural scenario. 
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Figure 4-22: 125Sb dose contribution within 0.37 GBq m-2 contour, rural scenario. 
 
 
 

Figure 4-23 illustrates the radionuclide contributions to annual dose of the 

exposed population in the 542.4 km2 contour with a concentration of 0.037 GBq m-2 

(0.001 Ci m-2).  Individual dose components for 134Cs, 137Cs, 90Sr, 106Ru and 135Sb by 

component pathway are illustrated in Figures 4-24 through 4-28, respectively.   

 
 

 
Figure 4-23: Annual dose from radionuclide contamination within 0.037 GBq m-2 contour, rural scenario. 
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Figure 4-24: 134Cs dose contribution within 0.037 GBq m-2 contour, rural scenario. 
 
 
 

 
Figure 4-25: 137Cs dose contribution within 0.037 GBq m-2 contour, rural scenario. 
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Figure 4-26: 90Sr dose contribution within 0.037 GBq m-2 contour, rural scenario. 
 
 
 

 
Figure 4-27: 106Ru dose contribution within 0.037 GBq m-2 contour, rural scenario. 
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Figure 4-28: 125Sb dose contribution within 0.037 GBq m-2 contour, rural scenario. 
 
 
 
Urban Scenario 

Figure 4-29 illustrates the radionuclide contributions to annual dose of the 

exposed population in the 0.673 km2 contour with a concentration of 3.7 GBq m-2 (0.1 Ci 

m-2).  Individual dose components for 134Cs, 137Cs, and 90Sr by component pathway are 

illustrated in Figures 4-30 through 4-32, respectively.  NOTE: For the comparatively 

minor contributions to dose from 106Ru and 125Sb, the major pathways to human exposure 

(i.e. fish and drinking water) as determined in the rural scenario are easily controllable in 

an urban environment and are thus excluded from in depth analysis in this section of the 

study.     
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Figure 4-29: Annual dose from radionuclide contamination within 3.7 GBq m-2 contour, urban scenario.  
 
 
 
 

 
Figure 4-30: 134Cs dose contribution within 3.7 GBq m-2 contour, urban scenario. 
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Figure 4-31: 137Cs dose contribution within 3.7 GBq m-2 contour, urban scenario. 
 
 
 

 
Figure 4-32: 90Sr dose contribution within 3.7 GBq m-2 contour, urban scenario. 
 
 
 

Figure 4-33 illustrates the radionuclide contributions to annual dose of the 

exposed population in the 13.87 km2 contour with a concentration of 0.37 GBq m-2 (0.01 
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Ci m-2).  Individual dose components for 134Cs, 137Cs, and 90Sr by component pathway are 

illustrated in Figures 4-34 through 4-36, respectively.   

 
 

 
Figure 4-33: Annual dose from radionuclide contamination within 0.37 GBq m-2 contour, urban scenario. 
 
 
 

 
Figure 4-34: 134Cs dose contribution within 0.37 GBq m-2 contour, urban scenario. 
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Figure 4-35: 137Cs dose contribution within 0.37 GBq m-2 contour, urban scenario. 
 
 
 

 
Figure 4-36: 90Sr dose contribution within 0.37 GBq m-2 contour, urban scenario. 
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Figure 4-37 illustrates the radionuclide contributions to annual dose of the 

exposed population in the 202.2 km2 contour with a concentration of 0.037 GBq m-2 

(0.001 Ci m-2).  Individual dose components for 134Cs, 137Cs and 90Sr by component 

pathway are illustrated in Figures 4-38 through 4-40, respectively.   

 

 
Figure 4-37: Annual dose from radionuclide contamination within 0.037 GBq m-2 contour, urban scenario. 
 
 
 

 
Figure 4-38: 134Cs dose contribution within 0.037 GBq m-2 contour, urban scenario. 
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Figure 4-39: 137Cs dose contribution within 0.037 GBq m-2 contour, urban scenario. 
 
 
 

 
Figure 4-40: 90Sr dose contribution within 0.037 GBq m-2 contour, urban scenario. 
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CHAPTER V 
 
 
 

DISCUSSION 
 
 
 

 A terrorist attack resulting in a dispersal of radioactive materials is fundamentally 

different from terrorist attacks employing conventional tactics.  In a conventional attack 

such as the September 11 attacks, the event occurs, casualties are suffered, and survivors 

are rescued and treated.  Those not killed or injured are usually free from further physical 

danger but are susceptible to psychological effects after the incident (i.e. post-traumatic 

stress disorder).  The immediate area of the event can be secured as a crime scene and 

forensic investigation can be conducted in the usual manner employed in other crime 

scenes.  In most cases, normal government services are continued with only minor or 

temporary interruptions.    

 In an unconventional terrorist attack (i.e. attacks on a SFP or attacks utilizing 

RDDs or improvised nuclear devices), the traditional aftermath discussed above will be 

complicated by many confounding factors.  Treatment of casualties will be more difficult 

because of possible radioactive contamination.  Of those not wounded by the terrorist 

attack, injuries and deaths could still occur from exposure to radiation.  The debris from 

the event and other normally harmless materials may also be contaminated.  As shown in 

this study, the affected area may be significantly larger than the immediate scene of the 

attack.  Public fear and concern over exposure to radiation will cause a strain on normal 

government services.  Forensic investigation of the crime scene will be complicated by 

the need to protect individuals from radiation exposure.  Although only a partial list of 
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factors, these differences will significantly hamper the abilities of responders to restore 

order and return the affected areas to pre-incident conditions.  

Radioactive materials released in a successful attack on a SFP may present both 

an immediate and long-term threat to public health and safety.  In the time immediately 

following an incident (i.e. the early phase), decision makers will have to be concerned 

with protection of the responders and the general public to acute radiation effects and the 

decontamination and treatment of casualties.  Although the basic tenets of radiation 

protection (i.e. increasing the distance from the source, limiting the time of exposure and 

utilizing intervening shielding) are more effective at reducing exposures, several 

countermeasures are also available to further reduce these subsequent exposures to 

personnel.  The ability to enforce recommendations for sheltering or evacuations will 

depend on public participation as well as local and state laws.  Restrictions on food and 

water will have both public health and economic implications.  The immediate 

availability of radiation safety expertise, specialized equipment and supplies may also be 

limiting factors.  Long-term considerations include public health, environmental, 

psychosocial and economic effects (NCRP, 2001). 

  

Human Health Effects 

 Routine practices and constraints will not be adequate in dealing with the human 

health effects in the aftermath of a terrorist attack.  In the U.S., the EPA has derived 

projected dose level recommendations, called Protective Action Guidelines (PAGs), 

based on IAEA intervention levels to protect against acute (i.e. deterministic) effects and 

reduce the risk of chronic (i.e. stochastic) effects.  These levels are intended to serve as a 
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threshold for initiating pathway-specific countermeasures.  Table 5-1 illustrates the 

current PAG levels utilized in the U.S. (DHS, 2006). 

 
 
Table 5-1: Protective Action Guidelines (DHS, 2006). 

Phase Protective Action PAG 

Early - Limit Emergency Worker Exposure 0.05 Sv (5 rem) 

  - Sheltering of Public 0.01-0.05 Sv (1-5 rem) projected dose 
  - Evacuation of Public 0.01-0.05 Sv (1-5 rem) projected dose 

Intermediate - Limit Worker Exposure 0.05 Sv (5 rem) y-1 
  - Relocation of General Public 0.02 Sv (2 rem) projected dose 1st year 

Late - Final Cleanup Actions Based on “Optimization” 
 
 
 
 For emergency response personnel, the likelihood that the PAG listed in Table 5-1 

will be met or exceeded in the early phase is exceptionally high.  The NCRP has provided 

broad guidance for emergency responders in that only life saving actions justifies acute 

exposures that are significantly in excess of the PAG levels in Table 5-1.  When this 

cannot be accomplished, the NCRP recommends that a limit of 0.5 Sv (50 rem) effective 

dose and an equivalent dose of 5 Sv (500 rem) to the skin be applied.  For life saving or 

equivalent purposes, the equivalent dose may approach or exceed 0.5 Sv (50 rem) to a 

large portion of the body in a short time if the worker volunteers for the dose with full 

understanding of the possibility of acute effects  and potential increase in lifetime risk of 

cancer (NCRP, 1993). 

 Results of this study indicate the area immediately around the SFP could produce 

dose levels in excess of the PAGs and the recommendations of the NCRP.  In Figure 4-6, 

HPAC calculates a dose rate of 0.1-1 Sv h-1 (10-100 rem h-1) in the vicinity of the SFP for 
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the rural scenario.  Likewise, HPAC calculates a dose rate of > 0.1 Sv h-1 (10 rem h-1) for 

the urban scenario (see Figure 4-9).  Without the application of countermeasures or other 

restrictions, the acute radiation effects discussed in Chapter II could be possible in these 

areas.   

 There are many practical ways to help minimize exposures to emergency workers, 

especially during the early phases.  Some of these include: worker selection based on 

their experience in performing the required emergency tasks to reduce the exposure time, 

reducing the number of workers involved in a task as low as possible, use of older 

workers with low lifetime accumulated effective doses, etc.  Pre-planning and training are 

key elements in ensuring emergency workers are equipped to respond to an incident of 

this nature.   

Protection of the general public will require some form of “intervention” to regain 

control during and after the terrorist attack.  In this case, an intervention consists of a set 

of pathway-specific countermeasures designed to avert as much of a projected exposure 

to the public as is practicable (NCRP, 2001).  The pathways of importance include 

external exposure and internal contamination.  External exposures can be received by 

persons located in the plume or persons exposed to surface or personal contamination as a 

result of the event.  Internal exposures occur due to inhalation of particles in the plume or 

resuspended contamination, inhalation or ingestion of personal contamination, ingestion 

of contaminated foodstuffs, absorption through the skin or injection of contaminated 

material.  Table 5-2 lists common countermeasures that can be employed to reduce 

external and internal exposures. 
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Table 5-2: Countermeasures to reduce external and internal exposures (NCRP, 2001). 

Exposure Pathway 
Available 
Countermeasures 

External radiation 
exposure from nuclides in 
the plume 

Sheltering, evacuation, 
control of access 

Internal contamination due 
to nuclides in the plume 

Sheltering, ad hoc 
respiratory protection, 
evacuation, control of 
access 

External contamination 
from surface deposited 
contamination 

Sheltering, evacuation, 
control of access, 
decontamination 

External radiation from 
surface deposited 
contamination 

Sheltering, evacuation, 
relocation, control of 
access, decontamination 

Internal contamination due 
to resuspension 

Evacuation, relocation, 
control of access, 
decontamination 

Internal contamination due 
to personal contamination 

Control of access, 
decontamination 

Internal exposure due to 
ingestion of contaminated 
water and foods 

Control of food and water 
and use of stored animal 
feeds 

 
 

 
All countermeasures have associated risks that may supersede the risks from 

radiation exposure (i.e. evacuation of large populations could result in more casualties 

due to vehicle accidents than would be caused by radiation exposure).  The use of 

countermeasures must involve consideration of the risks and benefits.  Commonly, the 

upper end of the dose limit range, as listed in Table 5-1, is viewed as a value where a 

countermeasure is always justified.  Conversely, the lower end of the dose limit range can 

be thought of as a value at which the countermeasure is not likely to be justified. 

In the early phase (i.e. hours to days after the release), a projected dose of 0.01-

0.05 Sv (1-5 rem) warrants the employment of countermeasures (see Table 5-1).  Figure 

4-6, for the rural scenario, and Figure 4-9, for the urban scenario, shows that either 
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external or internal exposure from nuclides in the plume could result in exposures in 

excess of the PAGs.  As listed in Table 5-2, sheltering, evacuation, ad hoc respiratory 

protection and control of access are potentially suitable countermeasures for this mode of 

exposure. 

 RESRAD analysis of the surface contamination concentrations in both scenarios 

(Figures 4-11 – 4-40) shows that the PAGs in Table 5-1 could be exceeded in all contours 

during all phases (i.e. early, intermediate and late phases).   

In the 3.7 GBq m-2 contour (i.e. areas nearest the SFP) of both scenarios, 

RESRAD analysis indicates dose levels tremendously higher than the PAGs listed in 

Table 5-1.  Figure 4-11 illustrates an initial annual dose rate of 7000 mSv y-1, due mainly 

from exposures to 134Cs and 137Cs.  This equates to a dose rate of 0.8 mSv h-1 with no 

countermeasures employed.  Figures 4-12 and 4-13 show that the external pathway 

contributes the majority of the dose from the cesium radionuclides.  Sheltering, 

evacuation, relocation, control of access and decontamination are all common 

countermeasures in dealing with external exposures.  Analysis of Figures 4-14 – 4-16 

reveals that the internal pathways could be controlled for 90Sr, 106Ru and 125Sb, 

respectively, through employment of the common countermeasures listed in Table 5-2.  

However, the reduction in total dose rate would be relatively insignificant compared to 

the external contribution from 134Cs and 137Cs in this contour.  Therefore, the only 

suitable countermeasure to employ in these areas would be a temporary evacuation of the 

public in the early phase and possible relocation in the intermediate and late phases.  This 

recommendation would also apply to the urban scenario, as the total dose rate within the 

first year is essentially the same as the rural scenario (see Figures 4-29 – 4-32).   
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In the 0.37 GBq m-2 contour of both scenarios, a dose rate of 0.08 mSv h-1 is 

calculated before employment of countermeasures (see Figures 4-17 and 4-33).  During 

the early phase, significant employment of in-place countermeasures (i.e. sheltering, ad 

hoc respiratory protection, decontamination and control of food and water use) to combat 

both external and internal exposures may reduce the projected dose to levels within, or 

slightly above, the PAGs listed in Table 5-1.  Figures 4-18 – 4-22 (rural scenario) and 

Figures 4-34 - 4-36 (urban scenario) document the potential reduction of annual dose 

when employing internal exposure countermeasures.  As shown in Figures 4-21 and 4-22, 

dose from 106Ru and 125Sb could be virtually eliminated by controlling food and water 

uses, as the doses are principally due to intake pathways.  Similarly, dose from 90Sr 

would also be reduced by employing this countermeasure.  Since the external exposure 

from the cesium radionuclides still constitutes the majority of the total dose expected, 

evacuation, and temporary relocation, may be required in some areas but should only be 

determined after risk/benefit analysis is performed as discussed previously. 

The largest contour for both scenarios, and thus largest populations which will be 

affected, is the 0.037 GBq m-2 contour.  With a dose rate of 8 μSv hr-1, the affected 

population would require continued exposure of over 6 hours without employment of 

controls or countermeasures to receive the 0.05 Sv PAG dose limit for sheltering or 

evacuation in the early phase.  Therefore, employment of countermeasures already 

discussed would decrease the exposure rate to levels that may not require evacuation or 

temporary relocations for affected populations during the early phase.  During the 

intermediate phase (i.e. days to months after the release), a projected dose of 0.02 Sv (2 

rem) during the first year is the threshold for relocation of the general public.  Once 
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again, a risk/benefit analysis would be required to determine if this action would be 

required.  Long-term employment of controls may be adequate to protect the public in 

this area during the late phase (i.e. months to years after the release) until sufficient 

remediation efforts are undertaken. 

To calculate the potential risk of developing cancer or severe genetic effects from 

continuous exposure within the contamination contours in this study, ICRP 60 risk 

coefficients (see Table 5-3) were utilized.   

 
 
Table 5-3: ICRP Risk Coefficients (ICRP, 1991). 

Exposed 
Population 

Fatal 
Cancer 

Non-fatal 
Cancer 

Severe 
Hereditary 

Effects Total 
Adult Workers 0.040 Sv-1 0.008 Sv-1 0.008 Sv-1 0.056 Sv-1 
Whole Population 0.050 Sv-1 0.010 Sv-1 0.013 Sv-1 0.073 Sv-1 

 
 
 
 An estimation of the risk to workers and emergency personnel cannot be 

performed in this study because uncertainties regarding the specific response to any given 

incident.  In this case, risk calculations would be greatly affected by the factors discussed 

previously concerning minimizing exposures in the early phase.  Regardless, based on the 

observed effects of Chernobyl responders, the estimation of risk in this case would 

probably coincide with published risk calculations discussed in Chapter II of this study. 

 Risk to the public however, can be estimated based on the population data 

incorporated in HPAC.  Within each contour, the dose received by the affected 

population within the first year after the incident is multiplied by the risk coefficients in 

Table 5-3.  The dose levels employed assume countermeasures would be employed to 
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reduce consumption of contaminated food and water and therefore correspond to external 

exposure only from the ground contamination.   

In the rural scenario, an estimated total population of approximately 3500 people 

would be affected by the contamination.  Based on the ICRP risk coefficients and the 

assumptions discussed above, a total of 18 fatal cancers, 3 non-fatal cancers and 6 severe 

hereditary effects are estimated.  In the urban scenario, where the total population 

affected by the ground contamination is significantly higher (approximately 100,000), a 

total of 974 fatal cancers, 195 non-fatal cancers and 253 severe hereditary effects are 

estimated.   

Considering the high degree of uncertainty in these calculations, the calculated 

fatal cancers in these scenarios, although lower, are roughly comparable to the 2200 

calculated fatal cancers estimated as a result of the Chernobyl accident as discussed in 

Chapter II.  Due to the nature of stochastic effects it will be impossible to discern the 

origin of an induced cancer.  Radiation exposure is only one mode of cancer induction 

and all modes are indistinguishable from one another.  Because these are theoretically 

calculated fatalities, the conclusion from these levels should be used as a guide to 

institution of countermeasures and other controls rather than determining the number of 

cancer patients to expect in the future. 

The process of multiplying a chronic dose rate by a cancer risk factor and an 

exposed population, as done in this study, has been found to vastly overestimate the 

number of resulting cancers.  Following the Chernobyl accident, one such study 

estimated that over 53,000 people in the US would die after exposure to low dose rates 

(i.e. 4.6 μSv per person) from fallout material (Jaworowski, 1999).  Not only has there 
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not been an observable increase of cancer induction in the US from this source over the 

past 20 years, there has been no evidence of a major public health impact, increase in 

overall cancer incidence or increase in non-malignant disorders, attributable to radiation 

exposure in populations around Chernobyl.  Additionally, the risk of leukemia, one of the 

main concerns owing to its short latency time, does not appear to be elevated, not even 

among the recovery operation workers (UNSCEAR, 2000a.). 

Also, attempts to quantify the lifetime cancer mortality risks resulting from 

medical procedures have generated similar overestimates.  A study performed at 

Columbia University determined the potential risks of low radiation doses from 

computed tomography (CT) scans will result in cancers proportional to those experienced 

in the atomic bomb populations (i.e. the theory of LNT).  The theory of LNT presumes 

that the detrimental effects of radiation are proportional to dose.  In this report, the 

authors applied this theory to their study and estimated the lifetime cancer mortality risk 

from a single abdominal CT examination in a 1 year old child to be approximately 1 in 

550 and 1 in 1500 for a head CT examination (Brenner et al., 2001).  In fact, similar 

lifetime cancer mortality risk estimates, based on this Columbia University study, have 

been published in national papers.  Overestimates such as these have been found to 

significantly contribute to the public misconception about the hazards of radiation.  To 

date, no measurable increases in cancers in children undergoing CT procedures have been 

measured in the US, and it is likely that some truly needed CT images were refused by 

parents worried about the associated radiation exposures.   

Certainly, the study of the human health effects resulting after an event of this 

nature is critical to evaluations involving the health and safety of the public.  Similarly, 
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the environmental concerns must be analyzed and understood in order to restore the 

affected areas to conditions at or similar to those present before the incident.   

 

Environmental Effects 

The environmental concerns resulting from a dispersal of spent fuel will result in 

substantial decontamination and remediation as well as possible long-term monitoring.  

Similarly to the human exposure effects, actions taken in the early and mid phases of the 

response are likely to have a profound impact on site restoration.  Additionally, 

responsible officials will have to take into consideration the restoration of confidence of 

local residence, potential economic partners, and customers upon whom their future 

economy will depend.     

As listed in Table 5-4, the mean 134Cs and 137Cs release activity generated in this 

study exceeds the Chernobyl release by approximately 47% and 74%, respectively.  

Conversely, the mean 90Sr activity estimated in these scenarios is approximately 30% less 

than the activity released after the Chernobyl accident.    

 

Table 5-4: Comparison of released activities for select radionuclides. 

Radionuclides 

Rural 
Scenario 

Radionuclide 
Released 

(GBq) 

Urban 
Scenario 

Radionuclide 
Released 

(GBq) 

Mean     
HPAC 

Radionuclide 
Release 
(GBq) 

Chernobyl 
Radionuclide 

Released 
(GBq) 

Percent 
Difference 
(HPAC vs 
Chernobyl)

134Cs 8.51E+07 7.40E+07 7.96E+07 5.40E+07 147.31% 
137Cs 1.59E+08 1.37E+08 1.48E+08 8.50E+07 174.12% 
90Sr 7.40E+06 6.66E+06 7.03E+06 1.00E+07 70.30% 
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A comparison of the contamination contours generated in this study and the 

Chernobyl exclusion zone characterization by UIAR also highlights the potential 

magnitude of contamination requiring remediation.   

As a result of the UIAR characterization as stated previously, approximately 4000 

TBq (~ 0.11 MCi) of 137Cs contamination and 810 TBq (~ 0.022 MCi) of 90Sr 

contamination were measured in the exclusion area around Chernobyl approximately 12 

years after the accident.  Corrected for physical decay only, these results increase to 5278 

TBq (~ 0.14 MCi) and 1082 TBq (~ 0.029 MCi), respectively and is an estimate of the 

activity of each radionuclide in the contaminated area within the first year following the 

accident.  Based on these results and the current estimates of the total radionuclides 

released as a result of the accident (see Table 2-3), only approximately 6% of the 137Cs 

and 11% of the 90Sr released was deposited within the exclusion area.   

Within the exclusion zone, the average density of 137Cs contamination ranges 

between 0.75 and > 20.0 MBq m-2 (see Table 4-1).  Correcting for physical decay of each 

isotope over the subsequent 12 years, the original density of contamination in 1986 can 

be estimated at between 1.0 and 26 MBq m-2.  Assuming a similar soil density as used in 

this study (1.5 g cm-3), along with the majority of contamination remaining within the top 

30 cm of soil (Kasparov, 2001), the 137Cs soil concentration after the accident is 

estimated to be between 2.2 and 59 Bq g-1.  The upper limit of this range is slightly below 

the 137Cs soil concentrations estimated in the 0.037 GBq m-2 (0.001 Ci m-2) contour in 

this study (81.8 and 82.9 Bq g-1 respectively) as listed in Table 4-5 for the rural scenario 

and Table 4-7 for the urban scenario.  
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Similarly, the 90Sr contamination range in the immediate vicinity of Chernobyl 

(see Table 4-2) is shown to be approximately between 0.75 and 7.50 MBq m-2.  After 

decay correction, this activity range increases to between 1.0 and 10 MBq m-2.  Under the 

same assumptions used in the previous paragraph, the 90Sr soil concentration directly 

after the Chernobyl accident is estimated to be between 2.2 and 22 Bq g-1.  As listed in 

Table 4-5 and Table 4-7, the 90Sr soil concentration estimated in the 0.037 GBq m-2 

(0.001 Ci m-2) contour in this study (3.81 and 4.03 Bq g-1 respectively) are within this 

range. 

Although the contamination in this study results from a NRC-regulated site, the 

question of which agency (NRC or EPA) has final decision-making authority in 

determining remediation levels would be an important concern in the intermediate and 

late phases of the incident.  The NRC/EPA MOU (see Chapter 2) suggests that the EPA 

would probably enforce its decision-making rights at this site because of the three 

conditions in the agreement.  Even with this MOU, the nature and size of this incident 

would probably cause these agreed-upon procedures to be re-evaluated.  Also, the MOU 

refers to the decommissioning and decontamination of NRC-licensed sites.  An argument 

could be made that the situations suggested in this study do not constitute traditional 

NRC-licensed sites and thus the MOU would not be applicable.   

Assuming this to be the case and each agency applies their own criteria for 

remediation of the affected areas, the increases in cancer risk is minimal as determined by 

the RESRAD modeling parameters utilized in this study.  This is illustrated in Figure 5-1 

as the total cancer risk estimated in this study differs only slightly within the first years 

after an incident when both criteria are applied. 
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Figure 5-1: Comparison of NRC and EPA Remediation Criteria. 
 
 
 

Without question, the various contaminated areas will require differing levels of 

remediation.  The results of this study, and the example discussed below, suggest that 

determination of a final approach should not be a limiting factor in the intermediate or 

late response. 

In 2002, the ITRC Radionuclides Team released a document summarizing the 

various regulatory standards used to develop cleanup levels, as well as 12 case studies 

that demonstrate these standards.  This document, entitled “Determining Cleanup Goals 

at Radioactively Contaminated Sites: Case Studies,” examines the context in which 

cleanup levels have been developed at various radioactively contaminated sites and 

identifies common themes and lessons that could improve future decision making.   

 As described previously, calculation of cleanup levels vary due to site authority 

(i.e. NRC or EPA) and subsequent methodology.  Under both criteria, many parameters 

are utilized to ultimately determine the remediation goal applied to a site.  Although use 
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of parameters may differ, both approaches require selecting appropriate scenarios, 

models/equations, and site-specific input parameters.  

Of the case studies presented by ITRC, a majority utilized EPA methodologies for 

determining site remediation goals which is commonly believed to result in lower 

radiation exposures to affected populations.  At the Rocky Flats site, summarized below, 

it was shown that the dose approach resulted in the lowest exposures.   

 The Rocky Flats Environmental Technology Site, about 16 miles northwest of 

Denver, was previously a fabrication site for nuclear weapons components and involved 

the use of plutonium, uranium and tritium.  Large releases of radioactive materials to the 

environment occurred because of fires and storage leaks during the time of site operation.   

 In 1972, the Colorado Board of Health was asked to determine levels of 

plutonium in soil below which construction activities could safely occur.  In response, the 

board approved a standard that required “special techniques of construction” in areas 

where plutonium contamination exceeded 0.033 Bq g-1 (0.9 pCi g-1).  By approving this 

standard, they created an ARAR for this site.     

 In 1996, the DOE, EPA, and the Colorado Department of Public Health and 

Environment signed the Rocky Flats Cleanup Agreement (RFCA).  Within the RFCA, an 

enforceable attachment, the Action Levels and Standards Framework (ALF), included a 

list of soil contaminant levels that trigger remedial or managerial actions.  Risk based 

PRGs were calculated for nonradioactive hazards and radiation dose-based values were 

considered more appropriate and useful for radionuclides.  For determining remediation 

levels for radionuclides, the RFCA prescribed two future land users: an office worker to 

represent potential reuse of the industrial area and an open-space user.  The soil activity 
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equivalent to a 0.15 mSv (15-mrem) annual dose was back calculated for both scenarios 

using the latest RESRAD code at the time, version 5.61.  To comply with the then-

proposed Radiation Site Cleanup Regulations (40 CFR 196), these levels were then 

compared to an activity level calculated for a 0.85 mSv (85 mrem) annual dose to a 

resident.  As Table 5-5 illustrates, a 0.15 mSv (15 mrem) dose to an office worker was 

calculated to be more conservative than the 0.85 mSv (85 mrem) dose to a suburban 

resident.  For the open-space user however, the 0.85 mSv (85 mrem) dose to a suburban 

resident was more restrictive.  Therefore, these respective activities were adopted as 

upper level, or Tier 1, values corresponding to 10-4 risk and values exceeding these levels 

generally required remedial actions.  The 0.15 mSv (15 mrem) annual dose to residents 

was adopted as lower level, or Tier 2, values corresponding to 10-6 risk and required an 

evaluation to determine whether potential impacts to surface water or ecological 

resources would require an action.     

 

Table 5-5. Radionuclide Surface Soil Action Levels for Rocky Flats, in pCi/g (ITRC, 2002) 

 
 
 
 This example presented illustrates that direct comparisons of NRC’s annual dose 

criterion with EPA’s lifetime cancer risk criterion for the purposes of determining which 

criterion would be more protective of the public can be misleading.  The level of health 
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protection that is achieved by applying either criterion depends on many site specific 

assumptions and not simply the general assumption that a lower dose criterion provides 

greater protection. 

Further complicating this overall process is the designation of the “Lead Federal 

Agency” (LFA).  The LFA is defined as the agency designated by the President to lead 

and coordinate the overall federal response (NCRP, 2001).  The designated agency may 

change over time as the FBI typically assumes this role in large scale incidents during the 

“crisis management” phase (i.e. addressing the causes of a terrorist event) and many 

agencies, including the NRC and EPA, assume this role during the “consequence 

management” phase (i.e. addressing how the incident will affect public health, safety, and 

the environment).  

Even with a clear line of authority, organizations in a supporting role will respond 

pursuant to their own responsibilities and authorities.  Organizations with similar 

responsibilities will inevitably clash over authority or procedures.  For example, the EPA 

has independent statutory authority to respond to threats to humans and the environment.  

Similar statutory authority exists as state and local levels.  With multiple authorities 

responding independently, great efforts must be taken to facilitate effective coordination 

between these agencies to ensure overall command and control is not affected. 

Psychosocial and Economic Impacts 

Although beyond the scope of this study, it is essential to recognize the 

psychosocial and economic impacts of a successful attack at a SFP as they may be turn 

out to be more important to the overall well-being of the public than the human health 

effects from radiation exposure. 
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Acts of conventional terrorism have been found to produce especially high levels 

of psychosocial morbidity.  Based on recent studies, civilian terrorist attacks have been 

found to produce high rates of post traumatic stress disorder as well as elevated risks of 

depression, self-medication and substance abuse (NCRP, 2001).  Acts of terrorism 

resulting in radiation exposure may cause to increase these effects as many in the general 

public are exceptionally fearful of radiation.    

 Additionally, as witnessed after the Chernobyl accident, the relocation of 

residential populations proved to be a deeply traumatic experience in itself.  Furthermore, 

poverty, “lifestyle” diseases (i.e. alcoholism, sexually transmitted diseases, etc.) and 

mental health problems pose a far greater threat to local communities than radiation 

exposure.  As previously discussed, the results of the radiation exposure analysis in this 

study also suggest temporary relocations could be required if the benefit of such an act 

outweighs the corresponding risk.   

The economic impacts of a SFP incident in the U.S. and the Chernobyl accident in 

the former Soviet Union would be vastly different.  The economic foundations of the 

respective areas, along with the economic changes over the past 20 years, prevent a direct 

comparison of events for the purposes of this study.  There is no question that the costs of 

responding to, operating in and restoring the affected area would be tremendous.  Some 

reports estimate the property losses from the deposition downwind of the 137Cs released 

by a spent-fuel-pool fire would likely be hundreds of billions of dollars (Alvarez, 2003).           

This level of economic loss has been experienced in the U.S. as recently as 2005 

after hurricane Katrina.  There has been tremendous criticism of the Federal 

Government’s immediate response to this disaster.  Although many people worked hard 
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to help mitigate the disaster in its aftermath, as a whole, the government was criticized 

for not being prepared for the events.  The economic impacts have been far-reaching.  As 

of April 2006, the Bush Administration has sought $105 Billion for repairs and 

reconstruction in the region, making it the costliest natural disaster in US history.  

Current estimates have determined the total cost could approach $200 billion (Wikipedia, 

2006). 

Utilizing the models employed in this study, the movement of older spent fuel out 

of SFPs to alternative storage, as suggested by Alvarez et al., was studied to determine 

the magnitude of ground contamination resulting.  By simply reducing the spent fuel 

inventory to the 3 batches that produce adequate decay heat to ignite zirconium while 

maintaining all other parameters, areas of contamination are significantly reduced.  In the 

rural scenario, the area of contamination for the 0.037 GBq m-2 (0.001 Ci m-2) contour is 

reduced from 555 km2 to 2.5 km2.  In the 0.370 GBq m-2 (0.01 Ci m-2) contour, this area 

is reduced from 55 km2 to 0.11 km2.  Similarly, the areas of contamination in the urban 

scenario are reduced from 160 km2 to 38 km2 and 8 km2 to 2 km2, respectively.  

Furthermore, the number of people that would be located within the contamination 

contours of the urban scenario reduces from approximately 100,000 to 20,000.  

Economically, this reduction of possible victims would be substantial.  Although further 

analysis of this must be completed, these preliminary results provide an encourageing 

means of protecting people and property from the effects of a successful spent fuel attack. 
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CHAPTER VI 
 
 
 

CONCLUSION 
 
 
 

 Utilizing the HPAC model, under the estimated worst-case conditions presented 

in this study, dispersal of radionuclides as a result of a zirconium fire in a SFP result in 

contamination levels similar to those measured after the Chernobyl accident in 1986.  As 

this is a general study with many assumptions taken, careful analysis of individual SFPs 

using site-specific parameters (i.e. SFP inventory, weather, etc.) could easily be 

accomplished to better determine a potential dispersion of radionuclides. 

This study does not endorse either point of view in regards to the controversies 

regarding the probability of a successful SFP incident.  At this time, there are groups 

performing intricate studies to help answer this question.  These, and other studies, 

should provide considerable insight into the likelihood of a successful SFP attack.  This 

study does provide analysis as to the potential magnitude of a successful SFP incident 

however.  Although some studies have suggested that a zirconium fire in a SFP could 

release up to 20 times the amount of 137Cs than released from the Chernobyl accident or 

that areas up to 75% the size of New York State could be rendered inhabitable 

(Riverkeeper, 2004), the results of this study suggest that these predictions are perhaps 

overstated.  As discussed previously, comparison of 137Cs and 90Sr releases from 

Chernobyl and this study show the levels to be generally similar.  Additionally, HPAC 

results demonstrate that the size of an exclusion zone may be relatively small. 
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 The RESRAD analysis performed here shows that areas close to the SFP would 

require at least a temporary relocation of the residential population, but the areas included 

may not be as large as the Chernobyl exclusion zone.  In these contaminated areas, the 

potential for receiving exposures at levels that could produce deterministic effects is 

possible, but would be manageable with strict adherence to access control and other 

safety procedures.   

In areas further from the SFP, a risk/benefit analysis on the use of 

countermeasures and other controls, especially in the early phases, is needed to determine 

whether or not the affected populations would be better protected by remaining in place.  

The long-term health effects expected would be similar to those measured after the 

Chernobyl accident as presented in this study.  Similarly, a site-specific analysis at each 

SFP to better determine the environmental parameters utilized in the model would 

significantly reduce the uncertainty in the results presented in the study. 

The list of documents addressing response to RDDs or similar radiological and 

nuclear devices, many of which are utilized in this study, is growing.  Although the 

actions required in the aftermath of each event are similar in many ways, few documents 

exist that specifically address large releases of spent fuel.  The Federal, State, and local 

governments, and their many agencies, must ensure a response to a terrorist attack of this 

nature does not suffer from the failures witnessed after Hurricane Katrina.  In all phases 

of response, the lines of authority must be clearly drawn so that all agencies know their 

roles and responsibilities.  Careful planning should be accomplished to ensure conflicts 

and duplication of resources is minimized while standardizing decision-making 

thresholds (i.e. PAGs) so there are no questions or debates at the time of a crisis.  The 
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levels of training and equipping of responders since 9/11 must continue to ensure an ever-

ready core of competence. 

Psychosocial and economical issues arising from a large-scale terrorist attack of 

this nature are not fully understood and must be analyzed further.  Many lessons have 

been learned from various natural and man-made disasters regarding psychosocial issues 

that arise in their aftermath.  Continued research in both short-term and long-term effects 

will help responders mitigate such consequences.  A thorough study of the economic 

considerations of shifting to alternate storage should be accomplished, as discussed 

previously, to determine the economic costs of finding alternative storage solutions 

outweigh the economic costs of a potential incident.      
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