
  

Studies Toward the Chemical Synthesis of Lacto-N-neotetraose 

 

By 

John Philip Hayes 

 

Thesis 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements  

for the degree of 

MASTER OF SCIENCE 

in 

Chemistry 

 

August, 2016 

Nashville, Tennessee 

 

Approved: 

Steven D. Townsend, Ph.D. 

Gary A. Sulikowski, Ph.D.

 



ii 
 

 

 

 

 

 

 

 

 

 

To my loving wife, Kate 



iii 
 

ACKNOWLEDGEMENTS  

 

 I would like to express my gratitude to my advisor, Prof. Steven Townsend, for the 

education and support he has provided me.  Throughout my graduate career, I knew I could 

depend on him to provide guidance when necessary and cryptic hints when I needed to branch 

out on my own.  Steve did a great job teaching me how to not be “a hack” and I hope to hold on 

to that ability for the entirety of my career.  I am honored to have been one of Steve’s first 

graduate students and I can’t wait to hear about the lab’s successes in the future. 

  I am incredibly grateful for all of my lab mates and friends while working in the 

Townsend lab.  I want to first acknowledge Dorothy Ackerman.  Working with her and Steve 

made starting a new lab an unforgettable experience.  I also want to acknowledge Caroline 

Braun, Kelly Craft, Jamin Keith, and Eric Huseman.  Each of them offered a different set of skills 

and insights that made our lab a really strong team.  I wish the whole lab good luck as they 

finish their graduate education and move on to their future careers. 

 This work was supported by the VICB Fellowship and the CBI Training Grant.  I am 

thankful to have been selected for those awards and for the chemical biology training I have 

received through them.  Because of their support, I have a greater appreciation for the 

biological questions that drive innovation in the field of chemistry. 

 My highest thanks go to my wife, Kate.  She is my best friend and greatest supporter.  

She has given of herself in countless ways to help me achieve my dreams.  She has helped me 

through the hardest of times even when I had all but given up.  I cannot thank her enough for 



iv 
 

everything she has done for me and for our family.  For her love, patience, and sacrifice, I am 

forever grateful. 



v 
 

TABLE OF CONTENTS 

 

Page 

DEDICATION ..................................................................................................................................... ii 

ACKNOWLEDGEMENTS ................................................................................................................... iii 

LIST OF FIGURES ............................................................................................................................. vii 

LIST OF SCHEMES ............................................................................................................................ ix 

LIST OF ABBREVIATIONS ................................................................................................................. xi 

Chapter 

I. BACKGROUND AND SIGNIFICANCE ........................................................................................... 1 

  Introduction ........................................................................................................................ 1 
  Structure ............................................................................................................................. 2 
  Beneficial Effects of Human Milk Oligosaccharides ............................................................ 3 
   Prebiotic effects ............................................................................................................ 3 
   Antiadhesive antimicrobial effects ............................................................................... 4 
   Other associated benefits ............................................................................................. 6 
  References .......................................................................................................................... 8 
 
II.  CHEMICAL SYNTHESIS OF  
 HUMAN MILK OLIGOSACCHARIDES ........................................................................................ 11 
 
  Introduction ...................................................................................................................... 11 
  The Glycosylation Reaction ............................................................................................... 12 
  Glycosyl Donors................................................................................................................. 14 
   Trichloroacetimidate Donors ...................................................................................... 15 
   Thioglycoside Donors .................................................................................................. 16 
  Armed/Disarmed Principles .............................................................................................. 18 
   Protecting Group Orthogonality ................................................................................. 19 
  Strategies in the Synthesis of HMOs ................................................................................. 20 
  Conclusion ......................................................................................................................... 27 
  References ........................................................................................................................ 28 
 
III. INVESTIGATIONS IN THE SYNTHESIS OF 
 LACTO-N-NEOTETRAOSE ......................................................................................................... 35 



vi 
 

 
  Synthetic Analysis and Early Investigations ...................................................................... 35 
  Contemporary Investigations ........................................................................................... 41 
  Future Directions .............................................................................................................. 44 
  Conclusion ......................................................................................................................... 48 
  Experimental Methods ..................................................................................................... 49 
  Preparative Procedures .................................................................................................... 50 
  References ........................................................................................................................ 83 
 
Appendix A1:  Spectra Relevant to Chapter III ............................................................................. 88



vii 
 

LIST OF FIGURES 
 

Figure Page 

1.1 HMO Constituents .............................................................................................................. 2 

1.2 Comparative structures of lacto-N-tetraose and lacto-N-neotetraose .............................. 4 

1.3 Comparative structures of H-antigen and 2’FL ................................................................... 5 

2.1 Glycosylation mechanism ................................................................................................. 13 

2.2 Neighboring group participation and orthoester formation ............................................ 14 

2.3 Representative glycosyl donors ........................................................................................ 15 

2.4 Activation of trichloroacetimidates and the Chapman rearrangement ........................... 16 

2.5 Solvent participatory effects ............................................................................................. 18 

2.6 LNT, LNnT, and higher-order HMOs.................................................................................. 21 

3.1 Initial target donors and acceptors ................................................................................... 35  

A1.1 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.5 ....................... 89 

A1.2 1H NMR (400 MHz, MeOD-d4) and 13C NMR (100 Mhz, MeOD-d4) spectra of 3.6 ........... 90 

A1.3 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.1 ....................... 91 

A1.4 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.2 ....................... 92 

A1.5 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.12 ..................... 93 

A1.6 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.13 ..................... 94 

A1.7 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.3 ....................... 95 

A1.8 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.15 ..................... 96 

A1.9 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of S2 ........................ 97 

A1.10 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.14 ..................... 98 



viii 
 

A1.11 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of S3 ........................ 99 

A1.12 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.18 ................... 100 

A1.13 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of S4 ...................... 101 

A1.14 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.19 ................... 102 

A1.15 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.22 ................... 103 

A1.16 1H NMR (400 MHz, MeOD-d4) and 13C NMR (100 MHz, MeOD-d4) spectra of S5 .......... 104 

A1.17 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.24 ................... 105 

A1.18 1H NMR (400 MHz, CDCl3) and 13C NMR (100 Mhz, CDCl3) spectra of 3.26.................... 106 

A1.19 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.27 ................... 107 

A1.20 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.28 ................... 108 

A1.21 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.29 ................... 109 

A1.22 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.30 ................... 110 

A1.23 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 2.18 ................... 111 

A1.24 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.31 ................... 112 

A1.25 1H NMR (600 MHz, CDCl3) and 13C NMR (150 MHz, CDCl3) spectra of 3.32 ................... 113 

A1.26 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra of 3.33 ................... 114 



ix 
 

LIST OF SCHEMES 

 

Scheme Page 

2.1 Schmidt’s lactosamine synthesis ...................................................................................... 22  

2.2 Schmidt’s completion of LNnT .......................................................................................... 23 

2.3 Schmidt’s synthesis of LNT ................................................................................................ 24 

2.4 Schmidt’s synthesis of tetrasaccharide donor 2.39 .......................................................... 25 

2.5 Schmidt’s completion of LNnH ......................................................................................... 26 

2.6 Schmidt’s completion of LNnO ......................................................................................... 27 

3.1 Synthesis of lactose acceptor 3.1 ..................................................................................... 36 

3.2 Synthesis of donor 3.2 ...................................................................................................... 37 

3.3 Synthesis of acceptor 3.3. ................................................................................................. 37 

3.4 Glycosylation attempts toward lactosamine 3.14 ............................................................ 38 

3.5 Synthesis of acceptor 3.16 and its use in glycosylation .................................................... 39 

3.6 Synthesis of donor 3.20 .................................................................................................... 39 

3.7 Glycosylation attempts using donor 3.20 ......................................................................... 40 

3.8 Synthesis of donor 3.25 .................................................................................................... 41 

3.9 Synthesis of acceptor 3.29 ................................................................................................ 42 

3.10 Synthesis of donor 2.18 .................................................................................................... 43 

3.11 Lactosamine and LNnT glycosylations .............................................................................. 43 

3.12 LNnT glycosylation using TMSOTf ..................................................................................... 44 

3.13 Proposed silylated acceptor 3.35...................................................................................... 45 



x 
 

3.14 Proposed LNnT deprotection sequence ........................................................................... 46 

3.15 Proposed synthesis of LS-tetrasaccharide C ..................................................................... 47 

3.16 Proposed synthesis of LS-tetrasaccharide D ..................................................................... 48 

S1 Synthesis of thioglycoside 3.18 ......................................................................................... 63  

  



xi 
 

LIST OF ABBREVIATIONS 

 

2'FL 2’-fucosyllactose 

Å angstrom 

Ac acetyl 

Ac2O acetic anhydride 

AcOH acetic acid 

AgOTf silver trifluoromethanesulfonate 

AlCl3 aluminum chloride 

app apparent 

aq. aqueous 

BF3∙Et2O boron trifluoride diethyl etherate 

BH3∙N(CH3)3 borane trimethylamine 

Bn benzyl 

BnBr benzyl bromide 

BnOH benzyl alcohol 

br broad 

Bu2SnO dibutyltin oxide 

°C degrees Celsius 

C. jejuni Campylobacter jejuni 

calcd. calculated 

CDCl3 chloroform-d 

CH2Cl2 dichloromethane 

(CH3)2C(OCH3)2 2,2-dimethoxypropane 

(CH3)2N(CH2)3NH2 N,N-dimethylaminopropylamine 

CH3CN acetonitrile 



xii 
 

CH3OH methanol 

Cl3CCN trichloroacetonitrile 

ClAc2O chloroacetic anhydride 

CuSO4 copper (II) sulfate 

δ chemical shift in ppm 

d doublet 

DBU 1,8-diazobicyclo[5.4.0]undec-7-ene 

DC-SIGN dendritic cell-specific ICAM3-grabbing non-integrin 

dd doublet of doublets 

ddd doublet of doublet of doublets 

DEPT distortionless enhancement by polarization transfer 

DMAP 4-dimethylaminopyridine 

DMAPA N,N-dimethylaminopropylamine 

DMF dimethylformamide 

DMM dimethylmaleoyl 

DMTST dimethyl(methylthio)sulfonium trifluoromethanesulfonate 

dt doublet of triplets 

E. coli Escherichia coli 

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

Et ethyl 

Et2O diethyl ether 

Et3N triethylamine 

EtOAc ethyl acetate 

EtOH ethanol 

EtSH ethanethiol 

FT-IR Fourier transform infrared spectroscopy 



xiii 
 

Fuc fucose 

g gram(s) 

Gal galactose 

Glc glucose 

GlcNAc N-acetylglucosamine 

Gnd∙Cl guanidinium chloride 

h hour(s) 

H2O water 

HBr hydrobromic acid 

HCl hydrochloric acid 

Hg(OAc)2 mercury (II) acetate 

HIV human immunodeficiency virus 

HMBC heteronuclear multiple bond correlation 

HMO human milk oligosaccharide 

Hz Hertz 

IDCP iodine dicollidine perchlorate 

ImH imidazole 

J coupling constant 

K2CO3 potassium carbonate 

L liter(s) 

Lac lactose 

Lev levulinyl 

Lex Lewis X 

LG leaving group 

LNnH lacto-N-neohexaose 

LNnO lacto-N-neooctaose 



xiv 
 

LNnT lacto-N-neotetraose 

LNT lacto-N-tetraose 

LRMS low-resolution mass spectrum 

LST sialyl Lewis tetrasaccharide 

µ micro 

m milli, multiplet (NMR) 

M moles per liter 

MeCN acetonitrile 

MeOD-d4 methanol-d 

MeOH methanol 

MeOTf methyl trifluoromethanesulfonate 

MgSO4 magnesium sulfate 

MHz megahertz 

mol mole(s) 

MS molecular sieves 

ν wavenumber 

NaH sodium hydride 

NaHCO3 sodium bicarbonate 

NaOCH3 sodium methoxide 

NaOH sodium hydroxide 

NaOMe sodium methoxide 

NEC necrotizing enterocolitis 

Neu5Ac N-acetylneuraminic acid 

NH2NH2∙AcOH hydrazine acetate 

NH3 ammonia 

NIS N-iodosuccinimide 



xv 
 

NMR nuclear magnetic resonance spectroscopy 

obsd. observed 

OH hydroxyl 

P protecting group 

p pentet 

Ph phenyl 

Ph2SO phenyl sulfoxide 

PhCH(OCH3)2 benzaldehyde dimethylacetal 

PhSeOTf phenylselenyl trifluoromethanesulfonate 

Phth phthalimido 

PMB p-methoxybenzyl 

ppm parts per million 

p-TsOH p-toluenesulfonic acid 

pyr pyridine 

q quartet 

RT room temperature 

SnCl4 tin (IV) chloride 

t triplet 

TBAB tetra-n-butylammonium bromide 

TBAF tetra-n-butylammonium fluoride 

TBS tert-butyldimethylsilyl 

TBSCl tert-butyldimethylsilyl chloride 

TESH triethylsilane 

Tf2O trifluoromethanesulfonic anhydride 

TFA trifluoroacetic acid 

TfOH trifluoromethanesulfonic acid 



xvi 
 

THF tetrahydrofuran 

TiCl4 titanium (IV) chloride 

TIPS triisopropylsilyl 

TIPS-Cl triisopropylsilyl chloride 

TLC thin-layer chromatography 

TMSOTf trimethylsilyl trifluoromethanesulfonate 

Troc 2,2,2-trichloroethoxycarbonyl 

Troc-Cl 2,2,2-trichloroethyl chloroformate 

UV ultraviolet 

wt weight 

 



1 
 

 

 

CHAPTER I 

 

BACKGROUND AND SIGNIFICANCE 

 

Introduction 

 

 Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates that are 

unique to human milk.  Their original discovery in the late 19th century occurred at a crossroad 

between pediatric findings of the benefits associated with breastfeeding and the drive for 

chemists to understand the roles of the abundant carbohydrates found in human milk.  

Pediatricians found that breast-fed infants had lower mortality rates and lower occurrences of 

infectious diarrhea than bottle-fed infants.1  Furthermore, with the knowledge that intestinal 

bacteria affect digestion in infants, Moro2 and Tissier3 each independently observed differences 

in fecal bacterial composition between breast-fed and bottle-fed infants. 

 At the same time as the discoveries in microbiology and pediatrics, chemists isolated “a 

different type of lactose” from human milk that was not present in bovine milk.1  Refinement of 

the characterization process by Polonowski and Lespagnol identified the “different lactose” as 

complex oligosaccharides with unknown functions.4  Research conducted in the 1920s by 

Schönfeld demonstrated that the whey fraction of human milk contained a factor that 

promoted the growth of Bifidobacterium bifidus.5  Schönfeld’s findings started a renaissance in 
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HMO research when collaborative studies between chemist Richard Kuhn and pediatrician Paul 

György conclusively identified HMOs as the “bifidus factor” and thereby demonstrated that 

HMOs contribute to the benefits of breastfeeding.6 

 

Structure 

 

 HMOs are comprised of five monosaccharide building blocks: D-galactose (Gal, 1.1), D-

glucose (Glc, 1.2), N-acetylglucosamine (GlcNAc, 1.3), L-fucose (Fuc, 1.4), and N-

acetylneuraminic acid (Neu5Ac, 1.5).  Structurally, HMOs contain lactose (Lac; Galβ1-4Glc, 1.6) 

at the reducing end and can be elongated by the ß1-3 or ß1-6 addition of lacto-N-biose (Galß1-

3GlcNAc, 1.7) or N-acetyllactosamine (Galß1-4GlcNAc, 1.8).  Lactose and elongated 

oligosaccharides can be fucosylated in α1-2, α1-3, or α1-4 linkages and/or sialylated in α2-3 or 

α2-6 linkages. 

 

 

Figure 1.1.  HMO constituents. 
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Beneficial Effects of Human Milk Oligosaccharides 

 

Prebiotic effects 

 

 The pioneering studies by Kuhn and György established the precedent for HMOs as 

prebiotics.  By definition, a prebiotic is an ingredient that allows specific changes in the 

composition or activity in the gastrointestinal microflora that provides benefits to the host’s 

health.7  To serve as such, the ingredient must satisfy three criteria: 

1. Resistance to gastric acidity, hydrolysis by mammalian enzymes, and gastrointestinal 

absorption 

2. Fermentation by intestinal microflora 

3. Selective stimulation of the growth and/or activity of intestinal bacteria associated with 

health and wellbeing 

HMOs satisfy each of these criteria and serve to stimulate the growth of certain species of 

bifidobacteria and lactobacilli.6a  There is substantial specificity for bacteria’s ability to use 

HMOs as some strains, such as Bifidobacterium longum subspecies infantis, can thrive with 

HMOs as the singular carbohydrate source whereas others, such as Bifidobacterium bifidum, 

grow slower in their presence and produce degradation side products.8  Furthermore, strain 

specificity for HMO metabolism extends even to HMO isomer variations.  For example, 

Bifidobacterium longum and Bifidobacterium breve selectively metabolize lacto-N-tetraose 

(LNT; Galß1-3GlcNAcß1-3Galß1-4Glc, 1.9) but not its isomer lacto-N-neotetraose (LNnT; Galß1-

4GlcNAcß1-3Lac, 1.10).8b 
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Figure 1.2.  Comparative structures of lacto-N-tetraose and lacto-N-neotetraose. 

 

 Selective stimulation of gut-associated microbes creates a competitive environment 

wherein bacteria that benefit from HMO supplementation out-compete potentially harmful 

bacteria, such as Escherichia coli (E. coli) for nutrients.  HMO fermentation by bifidobacteria and 

lactobacilli also results in the production of short-chain fatty acids which inhibit pathogen 

colonization by acidifying the intestinal environment.9   

 

Antiadhesive antimicrobial effects 

 

 The selective metabolism of only approximately 10% of all HMOs suggests that HMOs 

have roles apart from their prebiotic effects.10  The ability of many gut-associated pathogens, 

such as E. coli, Campylobacter jejuni (C. jejuni), and Salmonella strains, to cause illness is often 

dependent upon the microbes’ ability to adhere to the epithelial surface of their host.  

Adherence is often mediated by lectin-glycan interactions wherein microbial lectins bind to 

glycans expressed on the host epithelium.11  Because HMOs can have similar structures to 

epithelial glycans, they are able to deter pathogenic adhesion by serving as soluble, competitive 

ligands for the binding proteins.  With no epithelial binding event, the bacteria are safely 

expelled from the body through the feces.  The prevention of infection due to adhesion 
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deterrence is exemplified in C. jejuni, one of the world’s major causes of diarrheal infection.  C. 

jejuni binds to type 2 H-antigens (1.11), which are α1-2 fucosylated lactosamine residues.  The 

presence of α1-2 fucosylated HMOs such as 2’-fucosyllactose (2’FL; Fucα1-2Galß1-4Glc, 1.12) 

has been shown to inhibit C. jejuni binding to human epithelial mucosa ex vivo and an inverse 

correlation has been shown to exist between the concentration of 2’FL in breastmilk with the 

incidence of infant diarrhea.12 

 

 

Figure 1.3.  Comparative structure of H-antigen and 2’FL. 

 

 Instead of expressing lectins to bind to epithelial glycans, some microorganisms, such as 

viruses, express glycans to bind to host lectins.  This glycan expression is true in the case of HIV.  

For HIV transmission across a mucosal membrane, the viral envelope glycoprotein gp120 must 

bind to DC-SIGN on human dendritic cells.13  Although DC-SIGN binds high-mannose type 

glycans on gp120, it has a higher affinity for Lewis blood group antigens.14  HMO expression 

mirrors the blood group antigen expression of the mother and, as a result, the high effective 

concentration of blood group antigens from HMOs can saturate DC-SIGN and inhibit mother-to-

child HIV transmission.1, 15 
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Other associated benefits 

 

 HMOs have been associated with additional benefits that contribute to an infant’s 

overall wellness and development.  These include the abilities to modulate the immune system, 

alter surface glycan expression, and potentially supplement brain development.  Immune 

system modulation is postulated to occur through multiple mechanisms.  In 2004, in vitro 

experiments demonstrated that cord blood-derived T cell exposure to sialylated HMOs caused a 

shift from Th2 cytokine production to Th1 cytokines.16  These observations, and the fact that 

approximately 1% of HMOs reach systemic circulation, provide evidence that HMOs may help 

balance T-cell differentiation and regulate low-level immunity.1, 17 

 Similar to their ability to inhibit pathogen adhesion, HMOs can reduce rolling leukocyte 

adhesion by binding to selectins—epithelial lectins that bind sialylated Lewis antigens.18  

Although leukocyte adhesion is critical for innate immunity, these findings may have 

implications in preventing or deterring the onset of necrotizing enterocolitis (NEC).  NEC is an 

often fatal disorder among preterm infants and is partially characterized by significant increases 

in neutrophil activation and infiltration.19  It has been observed that breast-fed infants have a 

lower risk of developing NEC and studies in rat models have provided evidence that HMOs may 

be the cause of these preventative effects.20 

 Apart from directly binding lectins to alter adhesion, HMOs can indirectly regulate 

microbe-host interactions by altering the expression of cell surface glycans.  In a 2005 study by 

Angeloni and coworkers, it was found that exposure of Caco-2 intestinal cells to 3’sialyllactose 

resulted in the reduced expression of cell surface α2-3- and α2-6-linked sialylated glycans.  
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Further studies demonstrated that the reduced glycan expression was translatable to a 

reduction in pathogen adhesion and provided an observable 90% reduction of 

enteropathogenic E. coli.21 

 Evidence suggests that HMOs may provide dietary sialic acid in the form of Neu5Ac as 

an essential nutrient in brain development.1, 22  It is understood that brain development 

depends on sialic acid-containing gangliosides and glycoproteins and that concentrations of 

sialic acid more than double within the first few years of life.23  Though it remains generally 

unknown, because human milk contains a high concentration of sialylated oligosaccharides, it is 

possible that HMOs serve as the sialic acid source rather than glycolipids or glycoproteins.24 

 HMOs offer a myriad of benefits for infants, some of which may still need discovery.  

The difficulty in isolating appreciable amounts of single-entity oligosaccharides limits the depth 

of which their roles can be understood.  It has therefore become necessary, and the aim of 

several research groups, to access these complex oligosaccharides through chemoenzymatic 

and synthetic means. 
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CHAPTER II 

 

CHEMICAL SYNTHESIS OF HUMAN MILK OLIGOSACCHARIDES 

 

Introduction 

 

 Until groundbreaking discoveries in the 1970s, carbohydrates were considered a class of 

biomolecules of minimal importance and were viewed primarily as an energy source.1  

Following the discovery of sugar-nucleotide compounds and the increased understanding of 

polysaccharide biosynthesis, the importance of glycoconjugates and their oligosaccharide 

components were realized.2  While glycoconjugate functions include facilitation of immune 

responses3 and cellular recognition4, glyconjugates are also associated with disease states such 

as tumor progression and metastasis.4-5   The drive to understand these associations has 

compelled chemists toward the structure elucidation and preparation of oligosaccharides. 

 The chemical synthesis of carbohydrates is notably complex and the complexity is 

exacerbated by the necessity to join glycosidic units in both regio- and stereoselective 

manners.6  Although no general reaction conditions exist for comprehensive oligosaccharide 

synthesis, contemporary methods allow for high-yielding production of oligosaccharides.  Many 

of the oligosaccharides, as will be later reviewed, are HMOs. 
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The Glycosylation Reaction 

 

 The glycosylation reaction is the most fundamental, and often most experimentally 

challenging, reaction in carbohydrate chemistry.  In the reaction, a glycosidic bond is formed 

between the anomeric center of a glycosyl donor and a nucleophilic moiety of a glycosyl 

acceptor.  To ensure high levels of regio- and stereoselectivity, extensive protecting group 

manipulations are often employed to yield an acceptor with a single deprotected nucleophilic 

site, most commonly a free alcohol.6 

 The mechanism for a glycosylation reaction most generally favors a unimolecular SN1 

mechanism.  A glycosyl donor bearing a latent leaving group (2.1) is activated in the first step of 

the reaction and displacement of the group results in the formation of an oxocarbenium ion 

(2.2).  As the intermediate oxocarbenium ion is sp2 hybridized, a potential problem arises in 

achieving stereoselectivity.  The geometry of the intermediate makes nucleophilic attack 

theoretically possible from both the top (trans, ß- for the D-gluco series, 2.3a) and bottom (cis, 

α-, 2.3b) faces.7 
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Figure 2.1.  Glycosylation mechanism. 

 

 Stereoselectivity to yield a 1,2-trans glycosidic linkage is most often imparted via 

neighboring participation, generally by an acyl moiety (2.6).8  These glycosylations proceed 

through an acyloxonium ion (2.7) formed by intramolecular stabilization of the oxocarbenium 

ion.  The bicyclic intermediate blocks nucleophilic attack from the bottom face, giving rise to 

the 1,2-trans product (2.7a).  In glycosylations using a C-2 acetyl participating group, potentially 

undesirable orthoester formation is observed occasionally as the result of nucleophilic attack 

on the acyloxonium species (2.7b).  Formation of this product may be attributed to several 

causes including the use of strongly acidic conditions, non-polar solvents, and sterically 

hindered acceptors.9  Isolation of orthoacetates (2.9) is generally inconsequential as subjection 

of the orthoacetate to acidic conditions can  effect rearrangement to the glycosidic product10 or 

hydrolysis to recoverable starting materials.9b 
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Figure 2.2.  Neighboring group participation and orthoester formation. 

 

Glycosyl Donors 

 

 Achieving high yields and good anomeric selectivity depends greatly on glycosyl donor 

selection.  Traditionally, glycosylation methods used anomeric halides (2.10) as donors.1, 11  The 

instability of these compounds and the harsh reaction conditions required for their preparation, 

however, lead to the development of newer methodologies in the 1970s and 1980s.  Those 

methods lead to some of the most commonly used donors today7: trichloroacetimidates 

(2.11),12 thioglycosides (2.12),13 and glycosyl fluorides (2.13).14  The glycosylations featured in 

this work used trichloroacetimidate and thioglycoside donors.  These donors, therefore, will be 

discussed in greater depth. 
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Figure 2.3.  Representative glycosyl donors. 

 

Trichloroacetimidate Donors 

 

 Imidates were among the first donors developed as alternatives to glycosyl halides.6, 15  

The trichloroacetimidate, as developed by Schmidt and coworkers, was introduced as a facile 

method to synthesize α or ß donors from unprotected lactols.16  Their preparation is facilitated 

by base-catalyzed addition of trichloroacetonitrile to the free anomeric alcohol.  Base selection 

is key in determining the yield of α or ß products.17  The use of sodium hydride or cesium 

carbonate favors formation of the thermodynamic α-glycosyl imidate whereas potassium 

carbonate favors the kinetic ß-product.  DBU is also a frequently used base in the production of 

trichloroacetimidates and generally favors α-products.18 

 Activation of trichloroacetimidates (Figure 2.4a) occurs in the presence of catalytic 

amounts of Brønsted or Lewis acid, with the most common Lewis acids being TMSOTf and 

BF3∙Et2O.18  Anomeric selectivity is influenced by the anomeric configuration of the donor, 

neighboring group participation, solvent effects, and thermodynamic or kinetic effects.  The 

relatively high reactivity of trichloroacetimidates in glycosylation reactions can lead to side 

reactions or donor decomposition.  In the presence of a weakly nucleophilic acceptor, 
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trichloroacetimidates can undergo a Chapman rearrangement (Figure 2.4b) to yield the 

corresponding trichloroacetamide (2.19).19  The trichloroacetamide is not reactive under 

glycosylation conditions, but its formation may be circumvented by the use of N-phenyl 

trifluoroacetimidates.20 

 

 

Figure 2.4.  Activation of trichloroacetimidates (a) and the Chapman rearrangement (b). 

 

Thioglycoside Donors 

 

 Due to their high chemical stability and facile activation in glycosylations, thioglycosides 

are another commonly used donor.13a  Several methods exist for the formation of 

thioglycosides with the most frequently employed route being the Lewis acid-mediated 

thiolysis of peracetylated sugars.21  Multiple Lewis acid catalysts have been reported for this 

method including BF3∙Et2O,22 SnCl4,23 TMSOTf,22a and TiCl4.24  Thioglycosides are activated in 
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glycosylations through a variety of electrophilic promotors.  The first report to use 

thioglycosides directly in glycosylations was by Ferrier and coworkers using Hg(OAc)2 to form 

methyl glycosides from the corresponding phenyl thioglycosides.25  Because of inconsistent 

yields when using heavy metal salts,21 newer promoter systems were devised.  Some of the 

most commonly used reagents include DMTST,26 NIS/TfOH, NIS/TMSOTf,27 MeOTf,24a IDCP,28 

PhSeOTf,29 and Ph2SO/Tf2O.30 

 Anomeric control with thioglycosides generally depends on the presence of a C-2 

participating group or solvent selection.  In the presence of a participating group, 1,2-trans 

linkages will be favored while, in their absence, a mixture of anomers typically results.  

Participating solvents can also assist in directing anomeric selectivity (Figure 2.6).  Diethyl ether 

favors formation of α-glycosides, because a ß-diethyl oxonium ion (2.21) is formed in 

complexation with the anomeric oxocarbenium ion.21  In contrast, acetonitrile favors ß-product 

formation and proceeds through an α-nitrilium ion intermediate (2.22).31  Thioglycosides, in 

addition to being tunable towards stereoselectivity, are amenable to reactivity and 

chemoselectivity tuning through application of arming and disarming principles. 
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Figure 2.5.  Solvent participatory effects. 

 

Armed/Disarmed Principles 

 

 As alluded to in his 1982 review, “Advances in Selective Chemical Syntheses of Complex 

Oligosaccharides”, Hans Paulsen first recognized that chemical glycosylations were a challenge 

that could not be met with universal conditions.1  Though his original reported observations 

were cryptic, he later clarified that glycosylation reactions require a “match” between the 

coupling donor and acceptor to facilitate success.  This concept, having been observed 

experimentally by Fraser-Reid and coworkers, was elaborated on and refined to develop the 

theory of “armed” and “disarmed” in glycoside synthesis.32 

 The initial theories relied on the observations that electron-withdrawing and electron-

donating substituents on carbohydrates had a substantial effect on the rate and success of a 

glycosylation.  In particular, electron-withdrawing acyl groups slowed, or even ceased, the 

progression of a reaction, whereas electron-donating alkyl groups increased the success of 
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reaction.33  The electronic arming and disarming effects were compounded in 1991 when the 

Fraser-Reid group reported the ability of acetal protecting groups to exert torsional disarming 

effects.34  These effects were attributed to the increased ring strain incurred when forming an 

oxocarbenium ion. 

 Armed and disarmed strategies are often used in the optimization of donors and 

acceptors.  The judicious choice of protecting groups works to ensure proper reactivity and 

efficiency throughout multi-step syntheses.  It is important to bear in mind while selecting 

protecting groups that the groups remain compatible throughout the continuing 

transformations.  This compatibility signifies the importance of protecting group orthogonality. 

 

Protecting Group Orthogonality 

 

 Orthogonal protection is commonly employed in organic syntheses to ensure that 

protecting groups can be selectively modified without affecting other functionalities.35  

Orthogonality is imparted through the use of protecting groups that are labile under differing 

conditions.  For example, acetyl groups are base-labile and exhibit orthogonality to acetals 

which are hydrolyzed under acidic conditions.  Benzyl ethers, on the other hand, are stable to 

both acidic and basic conditions and serve as a more permanent protecting group which can be 

removed toward the end of a synthesis via hydrogenolysis. 
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 Orthogonal protecting groups in oligosaccharide synthesis allow for regioselective 

glycosylations by masking functional groups to prevent undesired products.  When designing a 

synthesis, it is also important to consider the properties of the protecting group to promote the 

desired level of arming or disarming.  Electronic and strain effects can be exploited to promote 

active-latent36 and sequential one-pot glycosylations37 but can also severely attenuate 

reactivity leading to minimal product formation.  This project sought to apply an orthogonal 

protection approach in the synthesis of HMOs.  The orthogonal design of the target 

tetrasaccharide, lacto-N-neotetraose, enables the future production of pentasaccharides and 

higher-order HMOs. 

 

Strategies in the Synthesis of HMOs 

 

 The chemical synthesis of HMOs has garnered a noteworthy level of attention.  As the 

most abundant tetrasaccharide structures in human milk, several research groups have 

synthesized LNT (1.9) and LNnT (1.10) as deprotected saccharides through chemical37c, 38 and 

chemoenzymatic39 means.  LNnT has also served as a key intermediate in the syntheses of the 

Lewis pentasaccharides,40 LeX glycosphingolipids,41 and higher-order oligosaccharides.42 

 A notable synthesis of LNnT was conducted in 1999 by Schmidt and coworkers38d to 

demonstrate the practical use of the dimethylmaleoyl (DMM)43 protecting group.  The synthetic 

procedure was furthered in 2000 in their syntheses of lacto-N-neohexaose (LNnH, 2.23) and 
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lacto-N-neooctaose (LNnO, 2.24).42a  To demonstrate synthetic strategies in HMO synthesis, 

these syntheses will be discussed in greater detail. 

 

 

Figure 2.6.  LNT, LNnT, & higher-order HMOs. 

 

 Syntheses of LNnT and its derivatives prior to 1999 were consistent in the glycosylation 

strategy of joining two disaccharides, an N-acetyllactosamine derivative and a lactose 

derivative.44  Correspondingly, Schmidt’s analysis envisioned a final linkage of DMM-protected 

lactosamine to a known perbenzylated lactosyl acceptor.45  Synthetic studies toward 

lactosamine residue 2.27 were initiated through the glycosylation between galactosyl imidate17 

2.18 and DMM-protected acceptor43 2.25 under catalytic treatment with TMSOTf to yield the ß-

linked disaccharide in 84% yield.  Subsequent TBS cleavage with TBAF46 gave the anomeric 

alcohol, which was then converted to trichloroacetimidate donor 2.27. 
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Scheme 2.1.  Schmidt’s lactosamine synthesis. 

 

 Synthesis continued with the glycosylation of donor 2.27and acceptor 2.28 to yield 

tetrasaccharide 2.29 in 83% yield.  13C NMR analysis confirmed the structure and ß-anomeric 

configurations by the presence of four signals at δ 100.2, 100.7, 102.7, and 102.8.  Deprotection 

of 2.29 began by removal of the DMM group with NaOH followed by treatment with HCl to 

cleave the presumed butenolide intermediate.  Acetylation of the liberated amine gave 2.30 in 

71% yield.  Sequential hydrogenolysis and acetylation yielded peracetylated compound 2.31 as 

a 3:2 α:ß mixture of anomers.  The synthesis was completed by deacetylation11b to give 1.10 in 

91% yield. 
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Scheme 2.2.  Schmidt’s completion of LNnT. 

 

 In the same report as their synthesis of LNnT, the Schmidt group reported using the 

DMM in the synthesis of LNT.  Again coupling two disaccharides, known donor43 2.32 and 

acceptor 2.28 were treated with TMSOTf to give protected tetrasaccharide 2.33 in 76% yield.  

The benzylidene acetal was cleaved with p-TsOH and EtSH47 to give 2.34.  Conversion of the 

DMM group to an acetyl was achieved via saponification and acidification followed by 

acetylation, yielding 2.35 in 76%.  Catalytic hydrogenation of 2.35, followed by peracetylation 

gave 2.36 as a 1:2 α:ß mixture of anomers.  Deacetylation with sodium methoxide gave 1.9 in 

78% yield. 
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Scheme 2.3.  Schmidt’s synthesis of LNT. 

 

 Slight modification of lactosamine donor 2.27 permitted the Schmidt group to continue 

their syntheses of HMOs in the production of LNnH and LNnO.42a  Lactosamine38d 2.26 was 

treated with sodium methoxide and the resulting tetraol was converted to benzylidene acetal 

2.37.  TMSOTf-mediated glycosylation of 2.37 with trichloroacetimidate donor 2.27 

regioselectively yielded tetrasaccharide 2.38.  The C-2’ alcohol was acetylated and subsequent 

desilylation with TBAF in AcOH and reaction with Cl3CCN and DBU gave donor 2.39. 
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Scheme 2.4.  Schmidt’s synthesis of tetrasaccharide donor 2.39. 

 

 Tetrasaccharide 2.39 and lactosyl acceptor 2.28 were glycosylated to yield 

hexasaccharide 2.40 in 70% yield.  Treatment of 2.40 with EtSH and p-TsOH cleaved the 

benzylidene acetal to give diol 2.41.  The DMM groups were removed and the amines were 

acetylated to give 2.42 in 81% yield.  Deacetylation and hydrogenolysis gave LNnH 2.23, which 

was then peracetylated for structural assignment. 
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Scheme 2.5.  Schmidt’s completion of LNnH. 

 

 Synthesis of 2.23 provided the requisite intermediates for the facile synthesis of LNnO 

(2.24).  Beginning with protected tetrasaccharide48 2.29, sequential deacetylation and 

benzylidene acetal formation gave acceptor 2.43.  2.43 was glycosylated with tetrasaccharide 

donor 2.39, to yield octasaccharide 2.44 in 55%.  Deprotection proceeded via cleavage of the 

benzylidene acetal and DMM groups, N-acetylation, deacetylation, and hydrogenolysis to give 

2.24.  The octasaccharide was peracetylated in 83% yield for structural characterization. 
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Scheme 2.6.  Schmidt’s completion of LNnO. 

 

Conclusion 

 

 Oligosaccharide syntheses are complex problems for which there is no single solution.  

Several factors must be considered when planning a synthesis to minimize synthetic 

transformations and control reactivity and selectivity.  With all aspects well-accounted for, a 

well-executed carbohydrate synthesis can exemplify elegance and promote future studies 

within the field. 
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CHAPTER III 

 

INVESTIGATIONS IN THE SYNTHESIS OF LACTO-N-NEOTETRAOSE 

 

Synthetic Analysis and Early Investigations 

 

 Consistent with earlier syntheses,1 our synthesis of LNnT involved the joining of two 

disaccharide units: a protected lactosamine donor and known lactose acceptor 3.1.2  We 

envisioned the lactosamine donor to be the glycosylation product of a galactosyl donor and a 

selectively protected glucosamine acceptor.  The glucosamine acceptor was designed to 

incorporate an anomeric group amenable to conversion into a donor.  Our initial synthetic 

strategy used known galactosyl thioglycoside3 3.2 featuring a 3,4-acetonide which could be 

selectively hydrolyzed to ensure access to the C3 position.  We also sought to use an 

orthogonally protected glucosamine acceptor4 3.3 to further facilitate modification at the 

glucosamine C3 upon removal of the Lev group.5 

 

 

Figure 3.1.  Initial target donors and acceptors. 
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 Synthetic efforts towards LNnT began with the production of lactose acceptor 3.1.2  

Beginning with lactose octaacetate 3.4, Lewis acid mediated glycosylation with benzyl alcohol 

yielded benzyl lactoside 3.5.6  Lactoside 3.5 was then deacetylated and subjected to acetonide-

forming conditions, primarily resulting in the thermodynamic 3’,4’-acetonide 3.6.  

Perbenzylation of 3.6 followed by acidic hydrolysis of the acetonide gave lactose acceptor 

3.1.2b, 7 

 

 

Scheme 3.1.  Synthesis of lactose acceptor 3.1. 

 

 Following completion of acceptor 3.1, focus was shifted towards the synthesis of donor 

3.2.3  Galactose petaacetate 3.7 was converted to ethyl thiogalactoside 3.8 by treatment with 

BF3∙Et2O and ethanethiol.8  Deacetylation9 followed by 3,4-acetonide formation using 2,2-

dimethoxypropane gave diol 3.9.  Final acetylation of 3.9 yielded donor 3.2. 
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Scheme 3.2.  Synthesis of donor 3.2. 

 

 Finally, acceptor 3.3 was synthesized in eight steps starting from glucosamine 

hydrochloride 3.10.5  Aqueous Troc protection followed by peracetylation gave tetraacetate 

3.11,10 which was then anomerically deacetylated11 and silylated12 to give TIPS glycoside 3.12.  

3.12 was then deacetylated13 and protected as a benzylidene acetal14 to yield 3.13.  

Esterification with levulinic acid15 and regioselective triethylsilane-mediated cleavage of the 

acetal16 yielded acceptor 3.3. 

 

 

Scheme 3.3.  Synthesis of acceptor 3.3. 
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 Glycosylation attempts to yield lactosamine 3.14 were largely unsuccessful and resulted 

in donor hydrolysis and acceptor recovery.  We attributed these unsuccessful glycosylations to 

the weak nucleophilicity of the C4 alcohol on acceptor 3.3.  It was deemed possible that the Lev 

ester contributed an electron withdrawing effect, thereby decreasing the molecule’s strength 

as an acceptor.  To overcome this challenge, a PMB group was substituted at C3 to enhance 

nucleophilicity through electron donation. 

 

 

Scheme 3.4.  Glycosylation attempts toward lactosamine 3.14. 

 

 To synthesize acceptor 3.16, 3.13 was PMB protected17 and the benzylidene acetal was 

regioselectively cleaved.18  Acidic sensitivity of the PMB ether resulted in only moderate yields 

of the desired acceptor.  Glycosylations with this new acceptor did prove, however, to be 

slightly more successful, though yielding only the undesired orthoester (Scheme 3.5b). 
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Scheme 3.5.  Synthesis of acceptor 3.16 (a) and its use in glycosylation (b). 

 

 Because orthoester formation could be a solvable problem when sufficient quantities of 

material were obtained,19 the low yields of the glycosylation were first addressed.  Analysis of 

donor 3.2 revealed a potential disarming effect due to the acetonide.20  To address this issue, a 

similar phenyl thioglycoside (3.18) was first prepared.  Thioglycoside 3.18 was acetylated and 

the acetonide was hydrolyzed, revealing diol 3.19.  A two-step protocol involving orthoester 

formation followed by acidic hydrolysis gave selective acetylation at C4.  Chloroacetylation at 

C3 gave donor 3.20 in high yields. 

 

 

Scheme 3.6.  Synthesis of donor 3.20. 
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 Glycosylation was attempted with donor 3.20 and acceptor 3.16.  Disappointingly, 

though not entirely unexpected, the modifications made to donor 3.2 decreased its reactivity 

due to electron withdrawing effects in spite of the decrease in torsional strain. 

 

 

Scheme 3.7.  Glycosylation attempts using donor 3.20. 

 

 The galactosyl donor was redesigned to incorporate functionalities promoting electronic 

arming and neighboring group participation.  Drawing inspiration from Fraser-Reid’s work with 

n-pentenyl orthoesters21 and previously demonstrated research in the formation and 

rearrangement of orthothioesters,22 a synthetic scheme was devised through which a 

neighboring participating group could be maintained at C2 while permitting selective 

modification at C3, C4, and C6. 

 Beginning with 3.7, conversion to the glycosyl bromide23 and subsequent treatment 

with ethanethiol, TBAB, and 2,6-lutidine22a, 22c gave orthothioacetate 3.22.  3.22 was 

deacetylated and the resulting triol was rearranged under Lewis acidic conditions22b, 24 to yield 

intermediate 3.23, which was converted in situ to the corresponding benzylidene acetal 3.23.  

Low yielding production of 3.24 revealed that the synthesis of 3.25 would prove unfeasible.  

Though discouraging, this realization was concurrent with another critical finding. 
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Scheme 3.8.  Synthesis of donor 3.25. 

 

Contemporary Investigations 

 

  It has long been understood that the C4 alcohol of N-acetylglucosamine suffers from 

poor nucleophilicity.25  This lack of reactivity has hampered the synthesis of biologically 

important glycoconjugates in which glycosidic linkages involve the C4-OH of N-

acetylglucosamine are of critical importance.26  Numerous strategies have been developed to 

overcome this low reactivity with the most successful being the use of 2-azido-2-

deoxyglucopyranosides and N-phthalamidoglucosaminopyranosides.  Reactivity studies 

conducted by David Crich and coworkers in 2001 investigated glycosylations with differentially 

protected glucosamine derivatives.27  NMR investigations revealed that partially protected 

glucosamine derivatives containing an N-H bond contributed to an intramolecular hydrogen 

bond with the C4 oxygen atom.  Despite reported success with Troc-protected glucosamine 

acceptors,4c, 5 acceptor 3.16 was redesigned to incorporate phthalimide protection. 
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 Starting from 3.10, a three step protocol afforded phenyl thioglycoside 3.26.28  3.26 was 

deacetylated and converted to benzylidene acetal 3.27 followed by PMB protection of the 

remaining alcohol to give 3.28.  Lastly, reductive acetal cleavage of PMB glycoside 3.28 yielded 

acceptor 3.29. 

 

 

Scheme 3.9.  Synthesis of acceptor 3.29. 

 

 With access to a potentially more reactive acceptor, the galactosyl donor sequence was 

revised to minimize synthetic transformations by using known trichloroacetimidate donor 

2.18.29  2.18 was synthesized in two steps starting from 3.7.  Anomeric deacetylation of 3.7 

using DMAPA30 afforded lactol 3.30, which was readily converted to 2.18 upon treatment with 

DBU and Cl3CCN.29 
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Scheme 3.10.  Synthesis of donor 2.18. 

 

 Upon completion of intermediates 2.18, 3.29, and 3.1, synthesis was continued with the 

glycosylation of 2.18 and 3.29 to yield lactosamine donor 3.31.  Activation of imidate 2.18 with 

BF3∙Et2O in the presence of acceptor 3.29 gave the desired disaccharide in moderately low 

yields.  Glycosylations to yield protected tetrasaccharide 3.32 gave minimal results.  Treatment 

of 3.1 and 3.31 with NIS and AgOTf yielded tetrasaccharide 3.32. 

 

 

Scheme 3.11.  Lactosamine and LNnT glycosylations. 
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Future Directions 

 

 Glycosylations leading to the production of 3.32 were generally low yielding.  Analysis of 

the side products revealed that the major side reaction was acidic hydrolysis of the PMB.  As a 

result, we speculated that we could employ stronger Lewis acids in glycosylations to force PMB 

cleavage while increasing overall yields.  Indeed, when catalytic amounts of TMSOTf were used, 

the yield was improved to 23%. 

 

 

Scheme 3.12.  LNnT glycosylation using TMSOTf. 

 

 The forcing conditions required to activate thioglycoside 3.31 left much to be optimized 

for promotion.  The results were promising, though, that purposeful cleavage of the PMB could 

result in desirable product formation without side reactions at C3.  Literature evidence suggests 

it may also be possible to selectively glycosylate at C4 of glucosamine in the absence of a 

protecting group on C3 because of lessened steric hindrance.  In their studies toward one-pot 

glycosylations of HMOs, Madsen and coworkers found that their glycosylation protocol 

proceeded more efficiently in the absence of a C3 protecting group on glucosamine.1a  
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Regioselectivity remained unaffected and HMBC NMR data demonstrated a correlation 

between C1’’’ and H4’’ on their target tetrasaccharide. 

 Moving forward, it may prove beneficial to eliminate the use of a C3 protecting group, 

thereby leaving an acceptor that can be synthesized as shown in Scheme 3.13.  Thioglycoside 

3.26 can be deacetylated to give triol 3.34, which can then be silylated using Corey’s 

conditions12 to yield diol acceptor 3.35. 

 

 

Scheme 3.13.  Proposed silylated acceptor 3.35. 

 

 Previously described glycosylations should hopefully yield protected tetrasaccharide 

3.33.  3.33 is a flexible intermediate that can be globally deprotected to arrive at 1.10 or 

selectively deprotected to further glycosylate toward human milk pentasaccharides.  The 

anticipated scheme for global deprotection will incorporate phthalimide cleavage,31 acetamide 

formation, deacetylation, and hydrogenolysis.32 
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Scheme 3.14.  Proposed LNnT deprotection sequence. 

 

 Synthesis of protected tetrasaccharide 3.33 allows for diversification through selective 

deprotection and glycosylation.  For instance, deacetylation and sialylation can lead to the 

production of LS-tetrasaccharides C and D.  Post-deacetylation, regioselective glycosylation can 

be achieved with the revealed tetraol through the use of stannylene and boronate acetals.  The 

nucleophilicity of the primary C6’’’ alcohol is enhanced through the use of an intermediate 

stannylene acetal,33 which, upon treatment with an appropriate sialyl donor such as 3.37,34 can 

yield protected LS-tetrasaccharide C 3.38.  Deprotection as previously described would yield 

pentasaccharide 3.39. 

 

 



47 
 

 

Scheme 3.15.  Proposed synthesis of LS-tetrasaccharide C. 

 

 Glycosylation to yield protected LS-tetrasaccharide D 3.41 would require selective 

sialylation at C3’’’.  Both stannylene and boronate acetals have been demonstrated to give 

selective 3-O-glycosylation.35  Formation of the thermodynamically favored 3’’’,4’’’-stannylene 

acetal enhances nucleophilicity of the 4’’’ alcohol.  Alternatively, boronate acetals act as in situ 

protecting groups and prevent undesired reactions.  Through application of these methods, it is 

anticipated that selectivity can be imparted to allow for the synthesis of LST D (3.42). 
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Scheme 3.16.  Proposed synthesis of LS-tetrasaccharide D. 

 

Conclusion 

 

 This chapter has detailed the progress our lab has made toward the synthesis of lacto-N-

neotetraose (1.10).  Several routes were employed throughout the synthesis and, though most 

of them proved only marginally successful, each attempt provided greater direction for the next 

step.  It is our hope that continuation of the synthesis described herein will soon result in the 

completion of LNnT. 
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Experimental Methods 

 

General Procedure:  All moisture-sensitive reactions were performed in flame- or oven-dried 

round bottom flasks under an argon atmosphere.  All air- and moisture-sensitive liquids were 

transferred via oven-dried stainless steel syringes or cannula.  Reaction temperatures were 

monitored and controlled via thermocouple thermometer and corresponding hot plate stirrer.  

Flash column chromatography was performed as described by Still et. Al. using silica gel 230-

400 mesh.  Analytical thin-layer chromatography (TLC) was performed on Sorbtech Silica XHL 

UV254, glass backed, 250 µm plates and were visualized using UV, potassium permanganate 

stain, cerium ammonium molybdate stain, and anisaldehyde stain. 

Materials:  Solvents were obtained from Fischer Chemical or Sigma Alrich and dried as needed 

over 4Å or 3Å molecular sieves.  N-iodosuccinimide was recrystallized from carbon tetrachloride 

and 1,4-dioxane.  All other commercial reagents were used as received. 

Instrumentation:  1H NMR spectra were obtained on a Bruker 400 MHz or Bruker 600 MHz 

spectrometer with reporting relative to deuterated solvent signals.  1H NMR spectral data are 

presented as follows: chemical shifts (δ ppm), multiplicity (s=singlet, d=doublet, t=triplet, 

q=quartet, p=pentet, dd=doublet of doublets, dt=doublet of triplets, ddd=doublet of doublet of 

doublets, m=multiplet, br=broad, app=apparent), coupling constants (Hz), integration, 

assignment.  Deuterated chloroform was calibrated to 7.26 ppm.  Deuterated methanol was 

calibrated to 3.31 ppm.  13C NMR spectra were obtained on a Bruker 100 or 150 MHz 

spectrometer with reporting relative to deuterated solvent signals.  Deuterated chloroform was 
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calibrated to 77.16 ppm.  Deuterated methanol was calibrated to 49.0 ppm.  Assignments were 

based on homonuclear correlation measurements and DEPT measurements.  Infrared 

spectroscopy was performed on a Nicolet IR 100 (Thermo Scientific, FT-IR).  Low resolution 

mass spectrometry was performed with a Surveyor MSQ spectrometer (Thermo Scientific). 

 

Preparative Procedures 

 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R,6R)-4,5-diacetoxy-2-

(acetoxymethyl)-6-(benzyloxy)tetrahydro-2H-pyran-3-yl)oxy) tetrahydro-

2H-pyran-3,4,5-triyl triacetate (3.5).  To a solution of lactose octaacetate (1.0 eq, 30 g, 44.2 

mmol) in CH2Cl2 (221 mL) was added benzyl alcohol (2.3 eq, 10.6 mL, 102 mmol).  The resulting 

solution was cooled to 0°C and to it was added BF3·Et2O (3 eq, 16.8 mL, 133 mmol).  The 

reaction was allowed to warm to room temperature and stir for 16h.  The reaction was 

quenched by the addition of NaHCO3.  The mixture was extracted and the organics were 

washed with water (2 x 200 mL), brine (1 x 200 mL), dried over MgSO4, filtered, and 

concentrated in vacuo.  The crude oil was crystallized from EtOH yielding 3.5 (15.46 g, 21.27 

mmol, 48%) as a white solid: Rf 0.54 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.37-7.26 

(m, 5H, OBn), 5.34 (d, J=2.90 Hz, 1H, H-4’), 5.16 (t, J=9.28 Hz, 1H, H-2), 5.10 (dd, J=7.92, 10.40 

Hz, 1H, H-2’), 4.97 (t, J=7.92 Hz, 1H, H-3), 4.95 (dd, J=1.96, 8.32 Hz, 1H, H-3’), 4.86 (d, J=12.30 

Hz, 1H, CH2Ph), 4.60 (d, J=12.30 Hz, 1H, CH2Ph), 4.52 (dd, J=2.00, 11.33 Hz, 1H, H-6), 4.51 (d, 

J=7.90 Hz, 1H, H-1), 4.48 (d, J=7.90 Hz, 1H, H-1’), 4.15-4.04 (m, 3H, H-6, H-6’, H-6’), 3.86 (t, 
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J=6.60 Hz, 1H, H-5’), 3.82 (t, J=9.60 Hz, 1H, H-4), 3.58 (ddd, J=2.00, 5.00, 9.90 Hz, 1H, H-5), 2.144 

(s, 3H), 2.139 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.035 (s, 3H), 2.00 (s, 3H), 1.96 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 170.53, 170.49, 170.29, 170.20, 169.92, 169.76, 169.19, 136.79, 128.61, 

128.19, 127.90, 101.21 (C-1’), 99.17 (C-1), 76.41 (C-4), 72.94 (C-2), 72.81 (C-5), 71.81 (C-3), 

71.14 (C-3’), 70.87 (CH2Ph), 70.84 (C-5’), 69.25 (C-2’), 66.75 (C-4’), 62.14 (C-6), 60.95 (C-6’), 

21.04, 20.95, 20.83, 20.78, 20.66; LRMS [M+H]+ C33H43O18 calcd. 727.25, obsd. 727.26; IR (thin 

film) ν 1751, 1432, 1369, 1223, 1055 cm-1.  Characterization corresponded to literature data.36 

 

(2R,3R,4R,5S,6R)-2-(benzyloxy)-5-(((3aS,4R,6S,7R,7aR)-7-hydroxy-4-

(hydroxymethyl)-2,2-dimethyltetrahydro-4H-[1,3]dioxolo[4,5-c]pyran-6-

yl)oxy)-6-(hydroxymethyl) tetrahydro-2H-pyran-3,4-diol (3.6).  To a solution of 3.5 (1.0 eq, 4.2 

g, 5.78 mmol) in MeOH (58 mL) was added NaOMe (0.54 eq, 2 mL, 1.57 M, 3.14 mmol).  The 

resulting solution was allowed to stir for 1.5h and was then neutralized by the addition of 

Dowex 50WX8 resin to neutral pH, filtered, and concentrated in vacuo yielding a crude oil (2.4 

g, 5.55 mmol, 96%).  The crude material was used without further purification or 

characterization.  To a suspension of the polyol (1.0 eq, 1.0 g, 2.313 mmol) in acetone (23 mL) 

was added 2,2-dimethoxypropane (9.0 eq, 2.6 mL, 20.81 mmol) and p-toluenesulfonic acid (0.1 

eq, 44 mg, 0.231 mmol), sequentially.  The resulting slurry stirred for 16h and was then 

neutralized by the addition of Et3N (50 µL).  The solution was concentrated onto Celite and the 

crude material was purified by flash chromatography (1:0-9:1 CH2Cl2/MeOH) yielding acetonide 

3.6 (699.5 mg, 1.48 mmol, 64%) as a white solid: Rf 0.31 (9:1 CH2Cl2/MeOH); 1H NMR (400 MHz, 
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MeOD-d4) δ 7.44-7.24 (m, 5H, OBn), 4.92 (d, J=11.8 Hz, 1H, CH2Ph), 4.67 (d, J=11.8 Hz, 1H, 

CH2Ph), 4.39 (d, J=7.8 Hz, 1H, H-1), 4.37 (d, J=8.2 Hz, 1H, H-1’), 4.19 (dd, J=2.12, 5.52 Hz, 1H, H-

4’), 4.05 (dd, J=5.56, 7.24 Hz, 1H, H-3’), 3.95 (dd, J=2.08, 4.68 Hz, 1H, H-5’), 3.91 (dd, J=2.40, 

9.70 Hz, 1H, H-6), 3.84 (dd, J=4.28, 12.12 Hz, 1H, H-6), 3.78 (dd, J=4.00, 11.64 Hz, 1H, H-6’), 3.75 

(dd, J=4.60, 11.60 Hz, 1H, H-6’), 3.585 (t, J=8.88 Hz, 1H, H-4), 3.52 (t, J=8.88 Hz, 1H, H-3), 3.45 (t, 

J=7.8 Hz, 1H, H-2’), 3.40 (ddd, J=2.50, 4.20, 9.50 Hz, 1H, H-5), 3.315 (m, H-2, MeOD), 1.47 (s, 

3H), 1.32 (s, 3H); 13C NMR (100 MHz, MeOD-d4) δ 139.00, 129.28, 129.17, 128.72, 111.11 

(C(CH3)2), 104.17 (C-1’), 103.14 (C-1), 80.98 (C-4), 80.86 (C-3’), 76.47 (C-5), 76.37 (C-3), 75.36 (C-

5’), 75.06 (C-4), 74.89 (C-2), 74.46 (C-2’), 71.80 (CH2Ph), 62.41 (C-6’), 61.90 (C-6), 28.40, 26.49; 

LRMS [M+H]+ C22H33O11 calcd. 473.20, obsd. 473.35; IR (thin film) ν 3354, 1379, 1280, 1068, 

1040 cm-1.  Characterization corresponded to literature data.37 

 

(2R,3R,4S,5R,6S)-5-(benzyloxy)-2-((benzyloxy)methyl)-6-

(((2R,3R,4S,5R,6R)-4,5,6-tris(benzyloxy)-2-((benzyloxy)methyl)tetrahydro-

2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4-diol (3.1).   A suspension of NaH (5.5 eq, 281 mg, 

60% wt, 7.02 mmol) in DMF (10 mL) was cooled to 0°C.  To the suspension was added a solution 

of 3.6 (1.0 eq, 600 mg, 1.28 mmol) in DMF (2 mL).  The resulting solution was allowed to stir at 

0°C for 45 minutes, after which benzyl bromide (6 eq, 0.92 mL, 7.66 mmol) was added.  The 

reaction was warmed to room temperature and stirred for 1h.   The reaction was quenched by 

the addition of MeOH and diluted with EtOAc (5 mL) and water (20 mL).  The organics were 

extracted and washed with water (5 x 100 mL), brine (1 x 50 mL), dried over MgSO4, filtered, 
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and concentrated in vacuo.  The crude oil was purified by flash chromatography (9:1-2:1 

hexanes/EtOAc) yielding the perbenzylated acetonide (763 mg, 0.826 mmol, 65%) as a clear oil.  

A solution of the perbenzylated acetonide (1 eq, 762 mg, 0.825 mmol) in 80% aq. AcOH (8.25 

mL) was heated to 75°C for 3h.  Upon completion, the reaction was cooled to room 

temperature and was quenched by the addition of NaHCO3.  The solution was extracted with 

EtOAc (2 x 50 mL) and the organics were washed with water (2 x 50 mL), brined (1 x 50 mL), 

dried over MgSO4, filtered, and concentrated in vacuo.  The crude residue was purified by flash 

chromatography (4:1-1:1 hexanes/EtOAc) giving acceptor 3.1 (603.4 mg, 0.683 mmol, 83%) as a 

white solid: Rf 0.13 (2:1 hexanes/EtOAc); 1H NMR (400MHz, CDCl3) δ 7.40-7.20 (m, 30H, 6 x 

OBn), 4.98 (d, J=10.80 Hz, 1H, CH2Ph), 4.95 (d, J=11.80 Hz, 1H, CH2Ph), 4.91 (d, J=10.90 Hz, 1H, 

CH2Ph), 4.81 (d, J=11.60 Hz, 1H, CH2Ph), 4.77 (d, J=11.00 Hz, 1H, CH2Ph), 4.73 (d, J=10.90 Hz, 1H, 

CH2Ph), 4.67 (d, J=11.60 Hz, 1H, CH2Ph), 4.66 (d, J=12.10 Hz, 1H, CH2Ph), 4.62 (d, J=12.10 Hz, 1H, 

CH2Ph), 4.50 (d, J=7.70 Hz, 1H, H-1), 4.46 (d, J=12.00 Hz, 1H, CH2Ph), 4.45 (d, J=11.80 Hz, 1H, 

CH2Ph), 4.44 (d, J=7.10 Hz, 1H, H-1’), 4.39 (d, J=12.00 Hz, 1H, CH2Ph), 4.02 (t, J=9.24 Hz, 1H, H-

4), 3.95 (t, J=5.32 Hz, 1H, H-4’), 3.83 (dd, J=4.08, 10.92 Hz, 1H, H-6), 3.77 (dd, J=1.56, 10.80 Hz, 

1H, H-6), 3.61 (dd, J=6.68, 10.08 Hz, 1H, H-6’), 3.59 (t, J=8.88 Hz, 1H, H-3), 3.50 (t, J=7.20 Hz, 1H, 

H-2), 3.49 (m, 1H, H-6’), 3.44 (m, 1H, H-3’), 3.42 (m, 1H, H-2’), 3.39 (ddd, J=1.60, 4.10, 9.60 Hz, 

1H, H-5), 3.37 (dd, J=5.75, 5.88 Hz, 1H, H-5’), 2.46 (d, J=3.60 Hz, 1H, C4’-OH), 2.38 (d, J=4.70 Hz, 

1H, C3’-OH); 13C NMR (100 MHz, CDCl3) δ 139.29, 138.70, 138.50, 138.40, 138.13, 137.66, 

128.67, 128.57, 128.53, 128.47, 128.42, 128.25, 128.21, 128.11, 128.06, 128.00, 127.87, 127.85, 

127.75, 127.70, 127.41, 102.73 (C-1), 102.65 (C-1’), 83.01 (C-3), 81.97 (C-2), 80.18 (C-2’), 76.75 

(C-4), 75.44 (CH2Ph), 75.30 (CH2Ph), 75.14 (CH2Ph), 75.14 (CH2Ph), 75.03 (CH2Ph), 73.67 (C-3’), 
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73.63 (CH2Ph), 73.37 (CH2Ph), 73.00 (C-5’), 71.12 (CH2Ph), 68.93 (C-4’), 68.81 (C-6’), 68.43 (C-6); 

LRMS [M+H]+ C54H59O11 calcd. 883.41, obsd. 883.53; IR (thin film) ν 3465, 3062, 3029, 2870, 

1496, 1453, 1363, 1093, 1061, 736, 697 cm-1.  Characterization corresponded to literature 

data.2b 

 

((3aS,4R,6S,7R,7aS)-7-acetoxy-6-(ethylthio)-2,2-dimethyltetrahydro-4H-

[1,3]dioxolo[4,5-c]pyran-4-yl)methyl acetate (3.2).  To a solution of 3.7 (1.0 eq, 

1.0 g, 2.56 mmol) in CH2Cl2 (8.54 mL) was added ethanethiol (1.4 eq, 0.26 mL, 3.59 mmol).  The 

resulting solution was cooled to 0°C and to it was added BF3∙Et2O (1.66 eq, 0.54 mL, 4.25 

mmol).  The reaction was allowed to warm to room temperature and stir for 2h.  It was 

quenched by the addition of NaHCO3 and diluted with water (10 mL).  The organics were 

extracted and washed with water (2 x 10 mL), brine (1 x 10 mL), dried over MgSO4, and 

concentrated in vacuo.  The crude residue was purified by flash chromatography (1:4-2:3 

hexanes/EtOAc) to yield thioglycoside 3.8 (752 mg, 1.92 mmol, 74.8%) as a clear oil.  To a 

solution of 3.8 (1 eq, 655 mg, 1.67 mmol) in MeOH (16 mL) was added NaOMe (2 mL).  The 

resulting solution stirred for 3h and was then neutralized by the addition of Dowex 50WX8 

resin, filtered, and concentrated in vacuo.  To a suspension of the corresponding tetraol residue 

(1.0 eq, 285 mg, 1.27 mmol) in 2,2-dimethoxypropane (6.4 mL) was added p-toluenesulfonic 

acid (0.03 eq, 7 mg, 0.04 mmol) and the resulting suspension stirred for 24h.  Water (5 mL) was 

added to the solution and stirring continued for 15 minutes.  The solution was cooled to 0°C for 

20 minutes, followed by the addition of Et3N (0.1 mL).  The reaction mixture was returned to 
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room temperature and diluted with water (5 mL) and EtOAc (5 mL).  The aqueous solution was 

extracted with EtOAc (5 x 5 mL) and the organics were dried over MgSO4 and concentrated in 

vacuo.  The crude residue was purified by flash chromatography (1:1-3:7 toluene:EtOAc) to give 

acetonide S3 (174 mg, 0.518 mmol, 52%) as a white solid.  To a solution of 3.9 (1 eq, 1.0 g, 3.78 

mmol) in pyridine (19 mL) was added a catalytic amount of N,N-dimethylaminopyridine (1 

crystal) and acetic anhydride (3.0 eq, 1.1 mL, 11.34 mmol), sequentially.  The resulting solution 

stirred at room temperature for 16h and was then diluted with saturated CuSO4 solution (10 

mL), water (30 mL), and EtOAc (20 mL).  The resulting mixture was extracted with EtOAc (3 x 20 

mL), washed with water until blue color no longer remained, brined (1 x 20 mL), dried over 

MgSO4, filtered, and concentrated in vacuo.  The crude residue was purified by flash 

chromatography (3:2 hexanes/EtOAc) yielding 3.2 (1.3 g, 3.73 mmol, 99%) as a clear oil: Rf 0.65 

(1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 5.00 (dd, J=6.56, 10.00 Hz, 1H, H-2), 4.34 (dd, 

J=4.92, 6.84 Hz, 1H, H-6), 4.33 (d, J=7.00 Hz, 1H, H-1), 4.19 (m, 1H, H-3), 4.18 (dd, J=5.36, 13.76 

Hz, 1H, H-4), 3.98 (ddd, J=1.88, 5.12, 6.96 Hz, 1H, H-5), 2.69 (m, 2H, CH2CH3), 2.10 (s, 3H), 2.08 

(s, 3H), 1.54 (s, 3H), 1.33 (s, 3H), 1.265 (t, J=7.48 Hz, 3H, CH2CH3); 13C NMR (100 MHz, CDCl3) δ 

170.95, 169.84, 110.88 (C(CH3)2), 82.93 (C-1), 76.88 (C-4), 74.41 (C-5), 73.76 (C-3), 71.47 (C-2), 

63.77 (C-6), 27.80, 26.48, 24.48 (CH2CH3), 21.16, 20.99, 15.05 (CH2CH3); LRMS [M+Na]+ 

C15H24O7SNa calcd. 371.11, obsd. 371.26; IR (thin film) ν 2985, 2935, 1745, 1373, 1226, 1084, 

1048, 871, 838 cm-1.  Characterization corresponded to literature data.38 
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(2R,3S,4R,5R,6S)-2-(acetoxymethyl)-5-(((2,2,2-trichloroethoxy)carbonyl)amino)-

6-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-3,4-diyl diacetate (3.12).  To a solution of 3.10 

(1.0 eq, 10 g, 46.4 mmol) in water (93 mL) was added NaHCO3 (3.0 eq, 11.7 g, 139 mmol) and 

stirring proceeded at room temperature for 1h.  Trichloroethyl chloroformate (1.2 eq, 7.66 mL, 

55.7 mmol) was added dropwise to the solution and the reaction continued stirring for 4h, after 

which a voluminous white solid had precipitated.  The solid was filtered and dried for 16h.  To a 

solution of the white solid in pyridine (155 mL) was added a catalytic amount of N,N-

dimethylaminopyridine and the resulting solution was cooled to 0°C.  Acetic anhydride (5.0 eq, 

22 mL, 232 mmol) was added dropwise to the solution at 0°C and the reaction was returned to 

room temperature.  The reaction stirred at room temperature for 4h and was then quenched 

by the addition of 1N HCl (100 mL).  The mixture was diluted with EtOAc (300 mL) and the 

organics were extracted and washed with 1N HCl (5 x 100 mL), water (2 x 100 mL), brine (1 x 

100 mL), dried over MgSO4, and concentrated in vacuo to give 3.11 (19.5 g, 37.3 mmol, 80%) as 

a white foam.  A solution of 3.11 (1.0 eq, 66.2 g, 126.65 mmol) in DMF (125 mL) was cooled to 

0°C.  Hydrazine acetate (1.1 eq, 12.8 g, 139.3 mmol) was added to the solution at 0°C and it was 

returned to room temperature.  The reaction stirred at room temperature for 16h and was then 

diluted with EtOAc (100 mL).  The mixture was washed with water (5 x 300 mL), brine (1 x 100 

mL), dried over MgSO4, filtered, and concentrated in vacuo.  The crude residue was purified by 

flash chromatography (2:1-1:1 hexanes/EtOAc) to yield the corresponding anomeric alcohol 

(40.7 g, 84.67 mmol, 67%, 2.2:1 α:β) as a white solid.  The anomeric alcohol (1 eq, 7.04 g, 14.65 

mmol) was dissolved in DMF (15 mL) and to it was added imidazole (2.0 eq, 2.0 g, 29.3 mmol) 
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TIPS-Cl (1.2 eq, 3.77 mL, 17.58 mmol), sequentially.  The resulting solution was allowed to stir 

for 16h and was then poured into cold water, resulting in the formation of a white precipitate.  

The solid was filtered and dissolved in EtOAc (100 mL).  The solution was washed with water (2 

x 100 mL), brine (1 x 100 mL), dried over MgSO4, filtered, and concentrated onto Celite.  The 

crude material was purified by flash chromatography (9:1-3:1 hexanes/EtOAc) to give 3.12 (7.5 

g, 11.77 mmol, 80%) as a white solid: Rf 0.62 (2:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 

5.235 (t, J=9.64 Hz, 1H, H-3), 5.04 (t, J=9.72 Hz, 1H, H-4), 5.02 (d, J=9.61 Hz, 1H, NH), 4.89 (d, 

J=7.80 Hz, 1H, H-1), 4.76 (d, J=11.88 Hz, 1H, troc CH2), 4.61 (d, J=11.88 Hz, 1H, troc CH2), 4.156 

(d, J=4.10 Hz, 2H, H-6), 3.70 (dd, J=4.24, 9.80 Hz, 1H, H-5), 3.64 (dd, J=8.10, 9.20 Hz, 1H, H-2), 

2.06 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.15-1.01 (m, 21H, TIPS); 13C NMR (100 MHz, CDCl3) δ 

170.95, 170.74, 169.65, 154.14, 96.06 (C-1), 95.42 (troc CCl3), 74.72 (troc CH2), 72.14 (C-3), 

71.88 (C-5), 69.18 (C-4), 62.63 (C-6), 58.59 (C-2), 20.77, 17.86, 17.82, 17.79, 12.25; LRMS [M+H]+ 

C24H41Cl3NO10Si calcd. 636.16, obsd. 636.67; IR (thin film) ν 3291, 1747, 1706, 1557, 1234, 1036 

cm-1. 

 

2,2,2-trichloroethyl ((2R,4aR,6S,7R,8R,8aS)-8-hydroxy-2-phenyl-6-

((triisopropylsilyl) oxy)hexahydropyrano[3,2-d][1,3]dioxin-7-yl)carbamate 

(3.13).  To a solution of 3.12 (1.0 eq, 10 g, 15.7 mmol) in 1:1 CH2Cl2:MeOH (156 mL) was added 

guanidine hydrochloride (5.0 eq, 7.5 g, 78 mmol), followed by 7N NH3/MeOH (5.5 eq, 12.33 

mL).  The resulting solution was allowed to stir at room temperature for 18h, after which an 

additional 4.5 mL 7N NH3/MeOH was added.  Stirring continued at room temperature for 4h, 
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then the reaction was neutralized by the addition of Dowex 50WX8 resin, filtered, and 

concentrated in vacuo.  The crude oil was purified by flash chromatography (99:1-19:1 

CH2Cl2/MeOH) to yield the intermediate triol (5.7 g, 11.16 mmol, 71%) as a white foam.  The 

triol (1.0 eq, 5.7 g, 11.16 mmol) was dissolved in MeCN (37 mL) and to the resulting solution 

was added camphorsulfonic acid (0.1 eq, 260 mg, 1.116 mmol) and benzaldehyde 

dimethylacetal (1.25 eq, 2.1 mL, 13.9 mmol), sequentially.  The reaction stirred at room 

temperature for 16h and was then quenched by the addition of Et3N (0.3 mL).  The solution was 

concentrated in vacuo and the crude oil was suspended in EtOAc (100 mL), washed with water 

(3 x 75 mL), brined (1 x 50 mL), dried over MgSO4, filtered, and concentrated.  The crude 

residue was purified by flash chromatography (9:1-4:1 hexanes/EtOAc) to yield 3.13 (5.9 g, 9.85 

mmol, 88%) as a white foam: Rf 0.7 (2:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.51-7.47 

(m, 2H, benzylidene Ph), 7.41-7.35 (m, 3H, benzylidene Ph), 5.55 (s, 1H, benzylidene CHPh), 5.16 

(d, J=6.10 Hz, 1H, NH), 4.94 (d, J=7.80 Hz, 1H, H-1), 4.74 (d, J=7.40 Hz, 1H, troc CH2), 4.67 (d, 

J=7.40 Hz, 1H, troc CH2), 4.295 (dd, J=3.10, 6.55 Hz, 1H, H-6), 4.07 (t, J=9.24 Hz, 1H, H-3), 3.79 (t, 

J=10.52 Hz, 1H, H-6), 3.58 (t, J=9.28 Hz, 1H, H-4), 3.475 (td, J=5.00, 9.80, 9.80 Hz, 1H, H-5), 3.40 

(q, J=8.58 Hz, 1H, H-2), 2.93 (br, 1H, C3-OH), 1.15-0.98 (m, 21H, TIPS); 13C NMR (100 MHz, CDCl3) 

δ 154.64, 137.16, 129.49, 128.52, 126.49, 102.13 (benzylidene CHPh), 96.13 (C-1), 95.33 (troc 

CCl3), 81.75 (C-4), 75.00 (troc CH2), 71.00 (C-3), 68.71 (C-6), 66.32 (C-5), 61.38 (C-2), 29.86, 

17.94, 17.88, 12.30; LRMS [M+H]+ C25H39Cl3NO7Si calcd. 598.16, obsd. 598.62; IR (thin film) ν 

3330, 2942, 2866, 1717, 1548, 1463, 1385, 1100, 820, 698 cm-1.  Characterization corresponded 

to literature data.4b 
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(2R,4aR,6S,7R,8R,8aS)-2-phenyl-7-(((2,2,2-trichloroethoxy)carbonyl)amino)-6-

((triisopropylsilyl)oxy)hexahydropyrano[3,2-d][1,3]dioxin-8-yl 4-

oxopentanoate (S1).  To a solution of 3.13 (1.0 eq, 100 mg, 0.167 mmol) in CH2Cl2 (1.7 mL) was 

added levulinic acid (3.0 eq, 58 mg, 0.501 mmol), Et3N (4.5 eq, 0.1 mL, 0.751 mmol), and a 

catalytic amount of N,N-dimethylaminopyridine.  The resulting mixture was cooled to 0°C and 

to it was added EDC (3.0 eq, 96 mg, 0.501 mmol).  The reaction stirred at 0°C for 2h, was 

warmed to room temperature, and stirred at room temperature for 1h.  The reaction was 

diluted with CH2Cl2 (2 mL), washed with water (3 x 2 mL), brine (1 x 2 mL), dried over MgSO4, 

filtered, and concentrated.  The crude residue was purified by flash chromatography (1:0-7:3 

hexanes/EtOAc) to yield ester S1 (85.3 mg, 0.125 mmol, 75%) as a clear oil: Rf 0.7 (2:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.47-7.42 (m, 2H, benzylidene Ph), 7.37-7.32 (m, 

3H, benzylidene Ph), 5.50 (s, 1H, benzylidene CHPh), 5.30 (t, J=10.00 Hz, 1H, H-3), 5.28 (br, 1H, 

NH), 4.89 (d, J=7.80 Hz, 1H, H-1), 4.72 (s, 2H, troc CH2), 4.26 (dd, J=4.96, 10.48 Hz, 1H, H-4), 3.78 

(t, J=10.28 Hz, 1H, H-6), 3.71 (t, J=9.36 Hz, 1H, H-6), 3.66 (m, 1H, H-2), 3.47 (td, J=5.00, 9.70 Hz, 

1H, H-5), 2.80-2.66 (m, 2H, lev CH2CH2COCH3), 2.65-2.49 (m, 2H, lev CH2COCH3), 2.125 (s, 3H, 

lev CH3), 1.13-0.97 (m, 21H, TIPS); 13C NMR (100 MHz, CDCl3) δ 206.15, 172.82, 154.5, 137.11, 

129.18, 128.31, 126.33, 101.55 (benzylidene CHPh), 96.76 (C-1), 95.84 (troc CCl3), 78.97 (C-4), 

74.88 (troc CH2), 71.59 (C-3), 68.65 (C-6), 66.44 (C-5), 59.36 (C-2), 38.10 (lev CH2CH2COCH3), 

29.84 (lev CH2COCH3), 28.13 (lev CH3), 17.86, 17.80, 12.21; LRMS [M+H]+ C30H45Cl3NO9Si calcd. 

696.20, obsd. 696.40; IR (thin film) ν 3354, 2944, 2866, 1721, 1544, 1102, 821, 735, 699 cm-1.  

Characterization corresponded to literature data.4c 
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(2R,3S,4R,5R,6S)-2-((benzyloxy)methyl)-3-hydroxy-5-(((2,2,2-

trichloroethoxy)carbonyl)amino)-6-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-

4-yl 4-oxopentanoate (3.3).  A solution of S1 (1.0 eq, 500 mg, 0.717 mmol) in CH2Cl2 (7.2 mL) 

was cooled to 0°C and to it was added triethylsilane (5.0 eq, 0.57 mL, 3.585 mmol) and TFA (5.0 

eq, 0.27 mL, 3.585 mmol), sequentially.  The resulting solution was warmed to room 

temperature and stirred for 2.5h.  The reaction was quenched by the addition of NaHCO3 

solution, washed with water (2 x 10 mL), brined (1 x 10 mL), dried over MgSO4, filtered, and 

concentrated.  The crude mixture was purified by flash chromatography (4:1-1:1 

hexanes/EtOAc) to yield acceptor 3.3 (328 mg, 0.469 mmol, 65%) as a clear oil: Rf 0.36 (2:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.36-7.27 (m, 5H, OBn), 5.21 (d, J=9.50 Hz, 1H, 

NH), 5.04 (dd, J=9.08, 10.80 Hz, 1H, H-3), 4.785 (d, J=9.50 Hz, 1H, H-1), 4.73 (d, J=11.96 Hz, 1H, 

troc CH2), 4.65 (d, J=11.96 Hz, 1H, troc CH2), 4.57 (dd, J=11.96, 16.00 Hz, 2H, CH2Ph), 3.80-3.72 

(m, 3H, H-4, H-6), 3.64 (ddd, J=8.00, 9.70, 18.50 Hz, 1H, H-2), 3.53 (dt, J=4.24, 9.60 Hz, 1H, H-5), 

3.31 (d, J=2.50 Hz, 1H, C4-OH), 2.80-2.75 (m, 2H, lev CH2CH2COCH3), 2.62-2.48 (m, 2H, lev 

CH2COCH3), 2.16 (s, 3H, lev CH3), 1.14-1.00 (m, 21H, TIPS); 13C NMR (100 MHz, CDCl3) δ 207.45, 

173.54, 154.37, 138.20, 128.51, 127.81, 127.71, 96.38 (C-1), 95.59 (troc CCl3), 75.76, 74.78, 

74.33, 73.82, 70.56 (C-4), 70.21 (C-6), 58.14 (C-2), 38.41 (lev CH2CH2COCH3), 29.88, 29.82, 

28.36, 17.92, 17.86, 12.56, 12.27, 12.10; LRMS [M+Na]+ C30H46Cl3NO9SiNa calcd. 720.19, obsd. 

720.57; IR (thin film) ν 3464, 3349, 2944, 1721, 1544, 1066, 817, 735 cm-1.  Characterization 

corresponded to literature data.4c 
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4-methoxybenzyl 2,2,2-trichloroacetimidate (3.15).  A suspension of NaH (0.1 

eq, 87 mg, 2.17 mmol, 60 % wt) in diethyl ether (6.8 mL) was cooled to 0°C.  To 

the suspension was added 4-methoxybenzyl alcohol (1.0 eq, 2.7 mL, 21.7 mmol) and the 

resulting solution stirred for 20 minutes.  Trichloroacetonitrile (1.2 eq, 2.6 mL, 26.1 mmol) was 

added to the solution and it was slowly returned to room temperature.  The reaction stirred at 

room temperature for 2h and was then concentrated in vacuo.  The crude oil was suspended in 

hexanes.  A drop of methanol was added to the suspension and the solution stirred until salts 

precipitated.  The solution was filtered through Celite and the resulting solution was 

concentrated in vacuo to yield imidate 3.15 (4.62 g, 21.7 mmol, 75%) as an orange liquid.  The 

liquid was used in subsequent reactions without further purification.  Rf 0.7 (2:1 

hexanes/EtOAc); 1H NMR (600 MHz, CDCl3) δ 8.36 (s, 1H, NH), 7.375 (d, J=8.70 Hz, 2H, aromatic 

CH), 6.91 (d, J=8.70 Hz, 2H, aromatic CH), 5.275 (s, 2H, CH2Ar), 3.82 (s, 3H, CH3); 13C NMR (150 

MHz, CDCl3) δ 162.75 (OC(NH)CCl3), 159.83, 129.84, 127.63, 114.03, 91.61 (CCl3), 70.82 (CH2Ar), 

55.40 (CH3).  Characterization corresponded to reported literature data.17 

 

2,2,2-trichloroethyl ((2R,4aR,6S,7R,8R,8aS)-8-((4-methoxybenzyl)oxy)-2-

phenyl-6-((triisopropylsilyl)oxy)hexahydropyrano[3,2-d][1,3]dioxin-7-

yl)carbamate (S2).  3.13 (1.0 eq, 600 mg, 1.0 mmol) and 3.15 (1.2 eq, 339 mg, 1.2 mmol) were 

combined and coevaporated from benzene (2 x 2 mL).  The compounds were dried under 

vacuum for 10 minutes and were then dissolved in diethyl ether (5 mL).  TMSOTf (0.01 eq, 1.8 

µL, 0.01 mmol) was added to the solution at room temperature and the reaction stirred for 20 
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minutes.  The reaction was quenched by the addition of Et3N (10 µL) and was concentrated in 

vacuo.  The crude residue was purified by flash chromatography (1:0-4:1 hexanes/EtOAc) to 

yield S2 (505.3 mg, 0.703 mmol, 70%) as a white foam: Rf 0.68 (4:1 hexanes/EtOAc); 1H NMR 

(400 MHz, CDCl3) δ 7.53-7.48 (m, 2H, benzylidene Ph), 7.43-7.36 (m, 3H, benzylidene Ph), 7.24 

(d, J=8.60 Hz, 2H, PMB aromatic CH), 6.845 (d, J=8.60 Hz, 2H, PMB aromatic CH), 5.59 (s, 1H, 

benzylidene CHPh), 4.98 (br d, J=7.50 Hz, 2H, H-1, PMB CH2Ar), 4.82 (d, J=11.4 Hz, 1H, troc CH2), 

4.72-4.60 (m, 2H, NH, PMB CH2Ar), 4.64 (d, J=11.40 Hz, 1H, PMB CH2Ar), 4.29 (dd, J=5.00, 10.44 

Hz, 1H, H-6), 3.95 (t, J=8.36 Hz, 1H, H-3), 3.80 (dd, J=5.98, 14.59 Hz, 1H, H-6), 3.79 (s, 3H, PMB 

CH3), 3.73 (t, J=9.09 Hz, 1H, H-4), 3.44 (td, J=4.90, 9.56 Hz, 1H, H-5), 3.315 (q, J=8.16 Hz, 1H, H-

2), 1.12-1.00 (m, 21H, TIPS); 13C NMR (100 MHz, CDCl3) δ 159.45, 137.55, 130.40, 130.10, 

129.16, 128.44, 126.20, 113.93, 101.40 (benzylidene CHPh), 82.91 (C-1), 77.38 (C-4), 74.78 (C-

3), 73.99 (troc CH2), 68.84 (C-6), 66.14 (C-5), 60.68 (C-2), 55.40 (PMB CH3), 17.895, 17.85, 12.30; 

LRMS [M+H]+ C33H47Cl3NO8Si calcd. 718.22, obsd. 718.35; IR (thin film) ν 3341, 2944, 2866, 

1722, 1513, 1246, 1100, 820 cm-1. 

 

2,2,2-trichloroethyl ((2S,3R,4R,5S,6R)-6-((benzyloxy)methyl)-5-hydroxy-4-((4-

methoxybenzyl)oxy)-2-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-3-

yl)carbamate (3.14).  To a solution of S2 (1.0 eq, 250 mg, 0.348 mmol) and BH3∙NMe3 (4.67 eq, 

119 mg, 1.625 mmol) in THF (4 mL) was added a suspension of AlCl3 (5.0 eq, 232 mg, 1.74 

mmol) in THF (2 mL).  The resulting solution stirred at room temperature for 15h, then water 

(10 µL) was added.  The reaction continued stirring for 1h and was then quenched by the 
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addition of Rochelle’s salt.  The mixture was diluted with EtOAc (10 mL), washed with water (2 x 

10 mL), brined (1 x 10 mL), dried over MgSO4, filtered, and concentrated.  The crude material 

was purified by flash chromatography (9:1-3:2 hexanes/EtOAc) to give 3.14 (16.9 mg, 7% 

recovery) and S12 (159.4 mg, 0.221 mmol, 64%, 68% BRSM) as a clear oil: Rf 0.125 (4:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.39-7.29 (m, 5H, OBn), 7.28 (d, J=8.80 Hz, 2H, 

PMB aromatic CH), 6.88 (d, J=8.80 Hz, 2H, PMB aromatic CH), 5.00 (d, J=6.60 Hz, 1H, NH), 4.89 

(d, J=7.40 Hz, 1H, H-1), 4.72 (s, 2H, CH2Ar), 4.69 (s, 2H, troc CH2), 4.60 (d, J=11.90 Hz, 1H, 

CH2Ph), 4.55 (d, J=11.90 Hz, 1H, CH2Ph), 3.80 (s, 3H, PMB CH3), 3.79-3.68 (m, 4H, H-3, H-5, H-6), 

3.46 (p, J=4.60 Hz, 1H, H-4), 3.32 (br d, J=8.40 Hz, 1H, H-2), 2.77 (s, 1H, C4-OH), 2.69 (s, 1H), 

1.15-0.98 (m, 21H, TIPS); 13C NMR (100 MHz, CDCl3) δ 159.495, 154.05, 137.86, 130.56, 129.91, 

128.59, 127.935, 127.79, 114.08, 95.55 (C-1), 79.91 (C-5), 74.71 (troc CH2), 73.92 (CH2Ph), 73.80 

(PMB CH2Ar), 73.625 (C-4), 73.51 (C-3), 70.99 (C-6), 59.77 (C-2), 55.405 (PMB CH3), 50.44, 17.96, 

17.91, 12.33; LRMS [M+Na]+ C33H48Cl3NO8SiNa calcd. 742.21, obsd. 742.44; IR (thin film) ν 3352, 

2943, 2865, 1728, 1612, 1514, 1066, 818, 735, 694 cm-1. 

 

 

Scheme S1.  Synthesis of thioglycoside 3.18. a) PhSH, SnCl4, CH2Cl2, rt, 45 min.; b) NaOCH3, CH3OH, rt, 4h; c) 

(CH3)2C(OCH3)2, p-TsOH, acetone, rt, 24h. 
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(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-(phenylthio)tetrahydro-2H-pyran-3,4,5-triyl 

triacetate (S3).  To a solution of 3.7 (1.0 eq, 20.0 g, 51.2 mmol) in CH2Cl2 (256 mL) 

was added thiophenol (1.2 eq, 6.33 mL, 61.5 mmol) and the resulting solution was cooled to 

0°C.  SnCl4 (2.0 eq, 12 mL, 102 mmol) was added to the solution at 0°C.  The mixture was 

warmed to room temperature and stirred for 45 minutes.  The reaction was quenched by the 

addition of saturated NaHCO3 solution and saturated Rochelle’s salt solution.  The organics 

were extracted and washed with water (2 x 200 mL), brined (1 x 200 mL), dried over MgSO4, 

filtered, and concentrated in vacuo.  The crude residue was purified by flash chromatography 

(4:1-3:2 hexanes/EtOAc) to yield S3 (18.7 g, 51.2 mmol, 83%) as a clear oil: Rf 0.71 (1:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.54-7.48 (m, 2H, SPh), 7.33-7.28 (m, 3H, SPh), 

5.41 (dd, J=0.68, 3.28 Hz, 1H H-4), 5.235 (t, J=9.96 Hz, 1H, H-2), 5.05 (dd, J=3.32, 9.96 Hz, 1H, H-

3), 4.71 (d, J=9.96 Hz, 1H, H-1), 4.19 (dd, J=7.00, 11.32 Hz, 1H, H-6), 4.11 (dd, J=6.16, 11.36 Hz, 

1H, H-6), 3.93 (dt, J=0.72, 7.00, 7.00 Hz, 1H, H-5), 2.11 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 1.97 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ 170.49, 170.31, 170.17, 169.55, 132.68, 132.58, 129.02, 

128.28, 86.74 (C-1), 74.54 (C-5), 72.18 (C-3), 67.38 (C-4), 67.34 (C-2), 61.75 (C-6), 20.97, 20.79, 

20.76, 20.71; LRMS [M+Na]+ C20H24O5SNa calcd. 463.09, obsd. 463.46; IR (thin film) ν 1751, 

1480, 1439, 1369, 1224, 1083, 1055, 917, 747, 693 cm-1.  Characterization corresponded to 

literature data.39 

 

(3aS,4R,6S,7R,7aR)-4-(hydroxymethyl)-2,2-dimethyl-6-(phenylthio)tetrahydro-

4H-[1,3]dioxolo[4,5-c]pyran-7-ol (3.18).  To a solution of S3 (1.0 eq, 18.7 g, 42.5 
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mmol) in MeOH (212 mL) was added NaOMe (5 mL).  The resulting solution stirred at room 

temperature for 4h and was then neutralized by the addition of Dowex 50WX8 resin.  The 

suspension was filtered and concentrated.  The crude residue was suspended in acetone (211 

mL) and to it was added 2,2-dimethoxypropane (1.6 eq, 8.38 mL, 67.6 mmol) and p-

toluenesulfonic acid (0.1 eq, 800 mg, 4.2 mmol), sequentially.  The resulting suspension stirred 

at room temperature for 24h and was then neutralized by the addition of Et3N (1 mL).  The 

crude residue was purified by flash chromatography (4:1-1:1 hexanes/EtOAc) to yield 3,4-

acetonide 3.18 (7.4 g, 23.7 mmol, 56%) and undesired 4,6-acetonide (2.05 g, 6.56 mmol, 16%) 

as white foams. 3.18: Rf 0.16 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.56-7.51 (m, 

2H, SPh), 7.35-7.29 (m, 3H, SPh), 4.74 (d, J=10.20 Hz, 1H, H-1), 4.19 (dd, J=2.16, 5.48 Hz, 1H, H-

4), 4.11 (dd, J=5.64, 6.84 Hz, 1H, H-3), 3.99 (ddd, J=3.32, 7.00, 10.80 Hz, 1H, H-6), 3.88 (ddd, 

J=2.20, 3.92, 6.20 Hz, 1H, H-5), 3.81 (ddd, J=3.96, 9.36, 13.28 Hz, 1H, H-6), 3.57 (ddd, J=2.40, 

6.92, 9.64 Hz, 1H, H-2), 2.48 (d, J=2.40 Hz, 1H, C2-OH), 2.14 (dd, J=3.60, 9.48 Hz, 1H, C6-OH), 

1.42 (s, 3H), 1.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 132.72, 131.96, 129.25, 128.34, 110.68 

(C(CH3)2), 87.98 (C-1), 79.29 (C-3), 77.20 (C-5), 74.04 (C-4), 71.66 (C-2), 62.80 (C-6), 28.17, 26.51; 

LRMS [M+H]+ C15H21O5S calcd. 313.10, obsd. 313.19; IR (thin film) ν 3434, 3057, 2986, 2935, 

2882, 1380, 1220, 1077, 1026, 871, 741, 693 cm-1.  Characterization corresponded to literature 

data.40 

4,6-acetonide: Rf 0.06 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.68-7.63 (m, 2H, SPh), 

7.35-7.28 (m, 3H, SPh), 4.46 (d, J=9.00 Hz, 1H, H-1), 4.18 (dd, J=1.04, 3.32 Hz, 1H, H-4), 4.025 

(ddd, J=2.08, 12.84, 18.96 Hz, 2H, H-6), 3.65 (ddd, J=1.84, 9.12, 10.92 Hz, 1H, H-2), 3.61 (ddd, 

J=3.48, 9.08, 12.48 Hz, 1H, H-3), 3.43 (dd, J=1.60, 2.92 Hz, 1H, H-5), 2.54-2.51 (m, 2H, C2-OH, C3-
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OH), 1.445 (s, 3H), 1.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 133.35, 131.16, 128.99, 128.21, 

99.18 (C(CH3)2), 87.26 (C-1), 73.80 (C-3), 70.11 (C-5), 69.14 (C-2), 68.33 (C-4), 62.94 (C-6), 29.26, 

18.81; LRMS [M+H]+ C15H21O5S calcd. 313.10, obsd. 313.19; IR (thin film) ν 3424, 3057, 2991, 

2939, 2881, 1380, 1197, 1092, 1067, 883, 826, 745, 693 cm-1. 

 

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(phenylthio)-4-hydroxytetrahydro-2H-

pyran-3,5-diyl diacetate (S4).  To a solution of 3.18 (1.0 eq, 5.3 g, 14.87 mmol) in 

MeCN (149 mL) was added trimethyl orthoacetate (3.0 eq, 5.68 mL, 44.6 mmol) and p-

toluenesulfonic acid (0.1 eq, 283 mg, 1.487 mmol), sequentially.  The resulting solution stirred 

at room temperature for 45 minutes and was then quenched by the addition of NaHCO3.  The 

solution was extracted with CH2Cl2 (3 x 50 mL) and the organics were washed with water (2 x 50 

mL), brined (1 x 50 mL), dried over MgSO4, filtered, and concentrated.  The crude oil was 

dissolved in MeCN (149 mL) and to the solution was added 90% aq. TFA (6.1 mL).  The reaction 

stirred for 5 minutes and was then quenched by the addition of NaHCO3.  The aqueous solution 

was extracted with CH2Cl2 (3 x 50 mL) and the organics were washed with water (1 x 100 mL), 

brined (1 x 50 mL), dried over MgSO4, filtered, and concentrated to give a crude white solid.  

The crude solid was recrystallized from petroleum ether/EtOAc to yield S4 (4.17 g, 10.46 mmol, 

71%) as a fluffy white solid: Rf 0.38 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.53-7.49 

(m, 2H, SPh), 7.33-7.28 (m, 3H, SPh), 5.345 (dd, J=0.72, 3.65 Hz, 1H, H-4), 5.01 (t, J=9.76 Hz, 1H, 

H-2), 4.68 (d, J=9.96 Hz, 1H, H-1), 4.175 (dd, J=6.12, 11.52 Hz, 1H, H-6), 4.14 (dd, J=2.80, 7.48 

Hz, 1H, H-6), 3.875 (ddd, J=0.76, 6.32, 6.84 Hz, 1H, H-5), 3.86 (dd, J=6.68, 15.4 Hz, 1H, H-3), 2.43 
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(d, J=5.92 Hz, 1H, C3-OH), 2.17 (s, 3H), 2.15 (s, 3H), 2.05 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 

171.09, 171.05, 170.61, 132.73, 132.65, 129.01, 128.23, 86.26 (C-1), 74.95 (C-5), 72.59 (C-3), 

70.94 (C-2), 70.02 (C-4), 62.36 (C-6), 21.16, 20.90, 20.86; LRMS [M+Na]+ C18H22O8SNa calcd. 

421.09, obsd. 421.15; IR (thin film) ν 3473, 1746, 1372, 1229, 1092, 1057, 744 cm-1. 

 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-4-(2-chloroacetoxy)-6-

(phenylthio)tetrahydro-2H-pyran-3,5-diyl diacetate (3.19).  A solution of S4 (1.0 

eq, 4.13 g, 10.37 mmol) in CH2Cl2 (104 mL) was cooled to 0°C and to it were sequentially added 

Et3N (1.0 eq, 1.45 mL, 10.37 mmol), a catalytic amount of N,N-dimethylaminopyridine, and 

chloroacetic anhydride (1.5 eq, 2.66 g, 15.55 mmol).  The resulting solution stirred at 0°C for 5 

minutes and was then diluted with water (100 mL).  The organics were extracted, washed with 

water (2 x 80 mL), brined (1 x 80 mL), dried over MgSO4, filtered, and concentrated to yield 3.19 

(4.9 g, 10.3 mmol, >98%) as a sticky white foam.  The crude material was used without further 

purification.  Rf 0.78 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.54-7.49 (m, 2H, SPh), 

7.34-7.30 (m, 3H, SPh), 5.415 (dd, J=0.64, 3.20 Hz, 1H, H-4), 5.26 (t, J=9.92 Hz, 1H, H-2), 5.11 

(dd, J=3.32, 9.92 Hz, 1H, H-3), 4.72 (d, J=9.96 Hz, 1H, H-1), 4.20 (dd, J=6.96, 11.36 Hz, 1H, H-6), 

4.125 (dd, J=6.32, 11.36 Hz, 1H, H-6), 3.98-3.93 (m, 3H, H-5, chloroacetate CH2Cl), 2.115 (s, 3H), 

2.10 (s, 3H), 2.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.51, 170.47, 169.48, 166.74, 132.83, 

132.32, 129.05, 128.415, 86.64 (C-1), 74.42 (C-5), 73.89 (C-3), 67.13 (C-4), 67.07 (C-2), 61.58 (C-

6), 40.505 (chloroacetate CH2Cl), 20.94, 20.77; LRMS [M+Na]+ C20H23ClO9SNa calcd. 497.07, 

obsd. 497.44; IR (thin film) ν 1749, 1371, 1225, 1080, 1053, 747, 693 cm-1. 
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(3aR,5R,6S,7S,7aR)-5-(acetoxymethyl)-2-(ethylthio)-2-methyltetrahydro-5H-

[1,3]dioxolo[4,5-b]pyran-6,7-diyl diacetate (3.22).  To a solution of 3.7 (1.0 eq, 30 g, 

77 mmol) in CH2Cl2 (30 mL) was added 33% HBr/AcOH (30 mL), dropwise.  The 

resulting solution stirred at room temperature for 30 minutes and was then poured over ice 

and diluted with water (100 mL).  The solution was quenched by the addition of NaHCO3 and 

diluted with CH2Cl2 (50 mL).  The organics were extracted and washed with NaHCO3 solution (2 

x 50 mL), water (1 x 50 mL), and brine (1 x 50 mL).  The solution was dried over MgSO4, filtered, 

and concentrated.  The crude product was crystallized from petroleum ether/diethyl ether to 

yield the anomeric bromide (30.3 g, 73.7 mmol, 96%) as a white solid.  The galactosyl bromide 

(1.0 eq, 1.0 g, 2.43 mmol) and tetrabutylammonium bromide (0.1 eq, 78 mg, 0.243 mmol) were 

combined in a flask containing activated 4Å powdered molecular sieves (200 mg) and were 

suspended in MeCN (2.4 mL).  To the suspension was added 2,6-lutidine (1.3 eq, 0.37 mL, 3.16 

mmol) and the resulting suspension stirred at room temperature for 1h.  Ethanethiol (2.0 eq, 

0.36 mL, 4.86 mmol) was added to the solution and the reaction stirred at room temperature 

for 16h.  The solution was diluted with water (2 mL) and EtOAc (2 mL).  The organics were 

extracted and washed with water (2 x 5 mL), brined (1 x 5 mL), dried over MgSO4, filtered, and 

concentrated.  The crude residue was purified by flash chromatography (9:1-3:2 

hexanes/EtOAc, 99:1 Et3N) to yield orthothioacetate 3.22 (630 mg, 1.61 mmol, 66%) as a clear 

oil: Rf 0.63 (2:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 5.89 (d, J=5.00 Hz, 1H, H-1), 5.39 

(dd, J=2.52, 3.60 Hz, 1H, H-3), 5.07 (dd, J=3.72, 6.52 Hz, 1H, H-2), 4.34-4.28 (m, 2H, H-4, H-5), 

4.16-4.09 (m, 2H, H-6), 2.64 (qd, J=4.96, 7.08 Hz, 2H, CH2CH3), 2.10 (s, 3H), 2.06 (s, 3H), 2.056 (s, 
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3H), 1.90 (s, 3H, orthothioacetate CH3), 1.25 (t, J=7.44 Hz, 3H, CH2CH3); 13C NMR (100 MHz, 

CDCl3) δ 170.61, 170.15, 169.93, 115.49 (orthothioacetate C(CH3)SCH2CH3), 98.39 (C-1), 72.59 

(C-5), 71.18 (C-2), 69.22 (C-4), 65.76 (C-3), 61.74 (C-6), 28.99 (orthothioacetate CH3), 24.95 

(orthothioacetate CH2CH3), 20.85, 20.68, 15.11 (orthothioacetate CH2CH3); IR (thin film) ν 2969, 

2935, 1752, 1436, 1372, 1229, 1157, 1051, 915, 854 cm-1.  Characterization corresponded to 

literature data.22a 

 

(3aR,5R,6R,7S,7aR)-2-(ethylthio)-5-(hydroxymethyl)-2-methyltetrahydro-5H-

[1,3]dioxolo[4,5-b]pyran-6,7-diol (S5).  To a solution of 3.32 (1.0 eq, 416.5 mg, 1.06 

mmol) in MeOH (5.3 mL) was added K2CO3 (0.1 eq, 15 mg, 0.106 mmol) and the 

resulting solution stirred at room temperature for 40 minutes.  The reaction was concentrated 

in vacuo and the crude residue was purified by flash chromatography (7:3-9:1 CH2Cl2/MeOH, 

99:1 Et3N) to yield triol S5 (172.4 mg, 0.647 mmol, 61%, 1:2 endo:exo) as a clear oil: Rf 0.45 (9:1 

CH2Cl2/MeOH); 1H NMR (400 MHz, MeOD-d4) δ 5.78 (d, J=5.20 Hz, 1H, H-1), 4.18 (t, J=5.60 Hz, 

1H, H-2), 3.90-3.84 (m, 2H, H-4, H-5), 3.78-3.68 (m, 3H, H-3, H-6), 2.77 (q, 2H, endo 

orthothioacetate CH2CH3), 2.64 (dq, J=1.36, 7.56 Hz, 2H, exo orthothioacetate CH2CH3), 1.86 (s, 

3H, orthothioacetate CH3), 1.24 (t, J=7.44 Hz, 3H, exo orthothioacetate CH2CH3), 1.13 (t, J=7.24 

Hz, 3H, endo orthothioacetate CH2CH3); 13C NMR (100 MHz, MeOD-d4) δ 115.81 

(orthothioacetate C(CH3)SCH2CH3), 99.95 (C-1), 77.79 (C-2), 75.11 (C-5), 72.73 (C-3), 68.22 (C-4), 

62.26 (C-6), 47.22 (endo orthothioacetate CH2CH3), 29.43 (orthothioacetate CH3), 25.46 (exo 

orthothioacetate CH2CH3), 15.58 (exo orthothioacetate CH2CH3), 10.48 (endo orthothioacetate 
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CH2CH3); IR (thin film) ν 3406, 2932, 1447, 1378, 1152, 1095, 1043, 971, 921, 861 cm-1.  

Characterization corresponded to literature data.24 

 

(2S,4aR,6S,7R,8S,8aR)-6-(ethylthio)-8-hydroxy-2-phenylhexahydropyrano[3,2-

d][1,3]dioxin-7-yl acetate (3.24).  S5 (1.0 eq, 172 mg, 0.646 mmol) was dissolved in 

MeCN (10.8 mL) and transferred to a flask containing activated 4Å powdered 

molecular sieves (1 g).  The resulting suspension stirred at room temperature for 30 minutes, 

after which ethanethiol (0.21 eq, 10 µL, 0.135 mmol) was added and stirring continued for 30 

additional minutes.  TMSOTf (0.1 eq, 12 µL, 0.065 mmol) was added to the solution at room 

temperature and the reaction proceeded for 10 minutes.  The solution was filtered through 

Celite and concentrated in vacuo.  The crude thioglycoside was dissolved in MeCN (3.2 mL) and 

to the solution was added p-toluenesulfonic acid (0.25 eq, 31 mg, 0.161 mmol) and 

benzaldehyde dimethylacetal (1.25 eq, 0.121 mL, 0.807 mmol), sequentially.  The reaction 

stirred at room temperature for 2h and was then heated to 60°C for 2h.  The solution was 

returned to room temperature and was diluted with EtOAc (3 mL) and water (3 mL).  The 

organics were extracted and washed with water (1 x 5 mL), brined (1 x 5 mL), dried over MgSO4, 

filtered, and concentrated.  The crude residue was purified by flash chromatography (7:3-3:7 

hexanes/EtOAc) to yield benzylidene acetal 3.24 (64.9 mg, 0.183 mmol, 28%) as a white foam: 

Rf 0.43 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.52-7.47 (m, 2H, benzylidene Ph), 

7.42-7.37 (m, 3H, benzylidene Ph), 5.55 (s, 1H, benzylidene CHPh), 5.19 (t, J=9.68 Hz, 1H, H-2), 

4.41 (d, J=9.90 Hz, 1H, H-1), 4.37 (dd, J=1.52, 12.60 Hz, 1H, H-6), 4.27 (dd, J=0.68, 3.76 Hz, 1H, 
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H-4), 4.04 (dd, J=1.76, 12.52 Hz, 1H, H-6), 3.75 (ddd, J=3.80, 9.50, 13.30 Hz, 1H, H-3), 3.53 (dd, 

J=1.44, 1.72 Hz, 1H, H-5), 2.91-2.81 (m, 1H, CH2CH3), 2.77-2.66 (m, 1H, CH2CH3), 2.46 (d, J=12.00 

Hz, 1H, C3-OH), 2.14 (s, 3H), 1.305 (t, J=7.48 Hz, 3H, CH2CH3); 13C NMR (100 MHz, CDCl3) δ 

170.50, 137.19, 129.42, 128.38, 126.48, 101.58 (benzylidene CHPh), 82.59 (C-1), 75.77 (C-4), 

72.43 (C-3), 70.20 (C-2), 70.01 (C-5), 69.20 (C-6), 23.06 (CH2CH3), 21.11, 14.93 (CH2CH3); LRMS 

[M+NH4]+ C17H26NO6S calcd. 372.14, obsd. 372.16; IR (thin film) ν 3461, 2973, 2870, 1753, 1371, 

1233, 1166, 1099, 1064, 993, 817, 731, 699 cm-1. 

 

(2R,3S,4R,5R,6S)-2-(acetoxymethyl)-5-(1,3-dioxoisoindolin-2-yl)-6-

(phenylthio)tetra hydro-2H-pyran-3,4-diyl diacetate (3.26).  To a suspension of 

3.10 (1.0 eq, 30 g, 140 mmol) in MeOH (280 mL) was added NaOMe (1.0 eq, 100 mL, 1.4 M, 140 

mmol) and the resulting mixture was allowed to stir 10 minutes.  Phthalic anhydride (1.2 eq, 

24.8 g) was added to the solution and it was heated to 60°C.  The reaction proceeded at 60°C 

for 35 minutes, after which a white precipitate had formed.  The suspension was returned to 

room temperature and the solid was filtered via vacuum filtration, washed with MeOH (50 mL), 

and allowed to dry for 16h yielding the phthalate (32.1 g, 104 mmol, 74.3%) as a white solid.  

The compound was used in the next reaction without further purification or characterization.  

The solid was dissolved in pyridine (208 mL) and to it was added a catalytic amount N,N-

dimethylaminopyridine.  The resulting mixture was cooled to 0°C.  Acetic anhydride (5.0 eq, 

49.0 mL, 519 mmol) was added to the solution dropwise and it was returned to room 

temperature and stirred for 16h.  The reaction was diluted with water (300 mL) and EtOAc (200 
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mL), washed with 2N HCl (5 x 100 mL), water (2 x 200 mL), brine (1 x 100 mL), dried over 

MgSO4, filtered, and concentrated in vacuo.  The crude oil was coevaporated with toluene (3 x 

100 mL) to give the tetraacetate (20.4 g, 42.7 mmol, 41%, isomeric mixture) as a yellow foam.  

The foam was dissolved in CH2Cl2 (214 mL) and to it was added thiophenol (1.2 eq, 5.3 mL, 51.3 

mmol).  The resulting mixture was cooled to 0°C and SnCl4 (2.0 eq, 10.0 mL, 85 mmol) was 

added.  The reaction was allowed to warm to room temperature and stir for 3h.  The reaction 

was quenched by the addition of saturated NaHCO3 solution.  The resulting mixture was 

washed with Rochelle’s salt (1 x 100 mL), water (2 x 100 mL), brine (1 x 100 mL), dried over 

MgSO4, filtered, and concentrated in vacuo.  The crude mixture was crystallized from petroleum 

ether/EtOAc yielding thioglycoside 3.26 (22.54 g, 25.6 mmol, 60%) as a yellow solid: Rf 0.5 (1:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.83 (dd, J= 3.12, 5.48 Hz, 2H, NPhth), 7.76 (dd, 

J=3.04, 5.52 Hz, 2H, NPhth), 7.42 (dd, J=1.52, 7.36 Hz, 2H, SPh), 7.28 (m, 3H, SPh), 5.798 (dd, 

J=9.32, 10.04 Hz, 1H, H-3), 5.72 (d, J=10.60 Hz, 1H, H-1), 5.14 (dd, J=9.44, 9.96 Hz, 1H, H-4), 4.35 

(t, J=10.36 Hz, 1H, H-2), 4.29 (dd, J=5.08, 12.20 Hz, 1H, H-6), 4.21 (dd, J=2.32, 12.24 Hz, 1H, H-6), 

3.90 (ddd, J=2.30, 5.00, 10.20 Hz, 1H, H-5), 2.10 (s, 3H), 2.02 (s, 3H), 1.84 (s, 3H); 13C (100 MHz, 

CDCl3) δ 170.78, 170.25, 169.60, 133.44, 131.12, 129.05, 128.57, 123.87, 83.21 (C-1), 76.05 (C-

5), 71.77 (C-3), 68.87 (C-4), 62.38 (C-6), 53.72 (C-2), 20.91, 20.77, 20.56; LRMS [M+Na]+ 

C26H25NO9SNa calcd. 550.12, obsd. 550.29; IR (thin film) ν 1748, 1718, 1383, 1227, 1071, 1038, 

721, 691 cm-1.  Characterization corresponded to reported literature data.39 
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2-((2R,4aR,6S,7R,8R,8aS)-8-hydroxy-2-phenyl-6(phenylthio) 

hexahydropyrano[3,2-d][1,3]dioxin-7-yl)isoindoline-1,3-dione (3.27).  To a 

solution of 3.26 (1.0 eq, 13.4 g, 25.4 mmol) in MeOH (127 mL) was added NaOMe (1.0 eq, 19 

mL, 1.3 M, 25.4 mmol).  The resulting solution was allowed to stir 1.5h at room temperature.  

The reaction was neutralized by the addition of Dowex 50WX8 resin to neutral pH, filtered, and 

concentrated in vacuo.  The triol (10 g, 24.9 mmol, 98%) was isolated as a yellow foam.  To a 

solution of the glucosamine triol (1.0 eq, 5.07 g, 12.6 mmol) in CH3CN (42 mL) was added 

benzaldehyde dimethyl acetal (1.25 eq, 2.37 mL, 15.8 mmol) and p-toluenesulfonic acid (0.1 eq, 

0.24 g, 1.26 mmol), sequentially.  The resulting solution was heated to 65°C and allowed to stir 

for 19h.  The reaction was quenched by the addition of triethylamine (0.5 mL) and was returned 

to room temperature.  The solution was diluted with EtOAc (50 mL), washed with water (2 x 50 

mL), brine (1 x 50 mL), dried over MgSO4, filtered, and concentrated in vacuo.  The crude reside 

was purified by flash chromatography (17:3-0:1 hexanes/EtOAc) to yield acetal 3.27 (3.73 g, 

7.62 mmol, 60%) as a yellow foam: Rf 0.85 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 

7.90 (br, 1H, NPhth), 7.85 (br, 1H, NPhth), 7.75 (dd, J=2.48, 5.24 Hz, 2H, NPhth), 7.48 (m, 2H, 

SPh), 7.38 (m, 5H, benzylidene Ph), 7.27 (m, 3H, SPh), 5.70 (d, J=10.50 Hz, 1H, H-1), 5.57 (s, 1H, 

benzylidene CHPh), 4.65 (td, J=3.40, 9.88, 9.88 Hz, 1H, H-3), 4.41 (dd, J=4.80, 10.32 Hz, 1H, H-6), 

4.34 (t, J=9.52 Hz, 1H, H-2), 3.83 (t, J=10.08 Hz, 1H, H-6), 3.71 (td, J=4.80, 9.40, 9.40 Hz, 1H, H-

5), 3.61 (t, J=9.12 Hz, 1H, H-4), 2.45 (d, J=3.40 Hz, 1H, C3-OH); 13C (100 MHz, CDCl3) δ 137.03, 

134.41, 132.85, 131.87, 129.56, 129.12, 128.55, 128.29, 126.45, 124.04, 123.55, 102.15 (CHPh), 

84.44 (C-1), 82.06 (C-4), 70.45 (C-5), 69.92 (C-3), 68.74 (C-6), 55.64 (C-2); LRMS [M+H]+ 



74 
 

C27H24NO6S calcd. 490.13, obsd. 490.60; IR (thin film) ν 3478, 1774, 1713, 1387, 1091, 746, 719, 

699 cm-1.  Characterization corresponded to reported literature data.41 

 

2-((2R,4aR,6S,7R,8R,8aS)-8-((4-methoxybenzyl)oxy)-2-phenyl-6-(phenylthio) 

hexahydropyrano[3,2-d][1,3]dioxin-7-yl)isoindoline-1,3-dione (3.28).  3.27 (1.0 eq, 300 mg, 

0.613 mmol) and 3.15 (5.0 eq, 0.86 mg, 3.06 mmol) were combined and coevaporated from 

benzene (2 x 2 mL) and placed under vacuum for 45 minutes.  The compounds were dissolved 

in diethyl ether (3 mL) and the resulting solution was cooled to 0°C.  BF3·Et2O (10µL) was added 

to the solution at 0°C and the reaction proceeded for 5 minutes.  The reaction was quenched 

with NaHCO3 and diluted with diethyl ether (2 mL).  The ethereal layer was washed with water 

(2 x 2 mL), brine (1 x 2 mL), dried over MgSO4, filtered, and concentrated in vacuo.  The crude 

residue was purified by flash chromatography (9:1-7:3 hexanes/EtOAc) to yield 3.28 (295 mg, 

0.48 mmol, 79%) as a yellow solid: Rf 0.45 (2:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 

7.86 (d, J=7.10 Hz, 1H, NPhth), 7.79-7.68 (m, 3H, NPhth), 7.63 (d, J=6.90 Hz, 1H, NPhth), 7.54 

(dd, J=2.04, 7.92 Hz, 2H, SPh), 7.45-7.33 (m, 6H, SPh, benzylidene Ph), 7.28-7.23 (m, 3H, 

benzylidene Ph), 6.90 (d, J=8.60 Hz, 2H, OPMB), 6.37 (d, J=8.60 Hz, 2H, OPMB), 5.64 (s, 1H, 

benzylidene CHPh), 5.63 (d, J=10.6 Hz, 1H, H-1), 4.71 (d, J=12.20 Hz, 1H, CH2Ar), 4.46-4.40 (m, 

3H, CH2Ar, H-3, H-6), 4.26 (t, J=10.32 Hz, 1H, H-2), 3.89-3.68 (m, 3H, H-4, H-5, H-6), 3.62 (s, 3H, 

PhOCH3); 13C NMR (100 MHz, CDCl3) δ 167.84, 167.33, 163.655, 158.96, 137.395, 134.02, 

133.96, 132.84, 131.69, 129.95, 129.91, 129.24, 129.01, 128.40, 128.20, 126.16, 123.56, 123.28, 

113.475, 101.415 (CHPh), 84.13 (C-1), 82.89 (C-5), 75.12 (C-3), 73.90 (CH2Ar), 70.50 (C-4), 68.76 
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(C-6), 54.97 (C-2), 54.85 (PMB CH3); LRMS [M+H]+ C15H32NO7S calcd. 610.19, obsd. 610.37; IR 

(thin film) ν 3370, 3246, 1713, 1610, 1511, 1385, 1246, 1106, 831, 720, 648 cm-1.  

Characterization corresponded to reported literature data.42 

 

2-((2S,3R,4R,5S,6R)-6-((benzyloxy)methyl)-5-hydroxy-4-((4methoxybenzyl)oxy)-

2-(phenylthio)tetrahydro-2H-pyran-3-yl)isoindoline-1,3-dione (3.29).  To a 

solution of 3.28 (1.0 eq, 295 mg, 0.484 mmol) in THF (4 mL) was added BH3·NMe3 (4.67 eq, 165 

mg, 2.26 mmol).  A suspension of AlCl3 (5.0 eq, 323 mg, 2.42 mmol) in THF (4 mL) was added to 

the solution, followed by the addition of water (10 µL).  The reaction stirred at room 

temperature for 20h and was then quenched by the addition of water.  The solution was diluted 

with EtOAc (5 mL) and the mixture was washed with water (1 x 10 mL), saturated NaHCO3 

solution (1 x 10 mL), brine (1 x 10 mL), dried over MgSO4, filtered, and concentrated in vacuo.  

The crude residue was purified by flash chromatography (4:1-1:1 hexanes/EtOAc) yielding 3.29 

(63.5 mg, 104 mmol, 21%) as a clear oil:  Rf 0.57 (1:1 hexanes/EtOAc); 1H NMR (600 MHz, CDCl3) 

δ 7.83 (d, J=7.40 Hz, 1H, NPhth), 7.74-7.64 (m, 3H, NPhth), 7.38-7.29 (m, 7H, OBn, SPh), 7.22-

7.16 (m, 3H, SPh), 6.95 (d, J=8.6 Hz, 2H, OPMB), 6.45. (d, J=8.6 Hz, 2H, OPMB), 5.55 (d, J=10.00 

Hz, 1H, H-1), 4.64 (d, J=12.00 Hz, 1H, OCH2Ar), 4.62 (d, J=11.36 Hz, 1H, CH2Ph), 4.575 (d, J=11.96 

Hz, 1H, CH2Ph), 4.46 (d, J=12.00 Hz, 1H, OCH2Ar), 4.26-4.18 (m, 2H, H-2, H-4), 3.85 (dd, J=5.00, 

10.24 Hz, 1H, H-6), 3.83-3.74 (m, 2H, H-3, H-6), 3.70 (dd, J=4.80, 9.60 Hz, 1H, H-5), 3.62 (s, 3H, 

PhOCH3), 2.81 (d, J=2.60 Hz, 1H, C4-OH); 13C NMR (100 MHz, CDCl3) δ 168.11, 167.39, 158.95, 

137.81, 133.94, 132.49, 131.66, 130.25, 129.70, 128.89, 128.56, 127.92, 127.85, 123.50, 123.24, 
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113.60, 83.65 (C-1), 79.43 (C-4), 78.05 (C-5), 74.22 (C-3), 74.07 (CH2Ph), 73.82 (PMB CH2Ar), 

70.68 (C-6), 54.96 (PMB CH3), 54.57 (C-2); LRMS [M+H]+ C35H34NO7S calcd. 612.21, obsd. 612.37; 

IR (thin film) ν 3473, 1774, 1713, 1611, 1512, 1386, 1248, 1081, 720 cm-1.  Characterization 

corresponded to reported literature data.42 

 

(2R,3S,4S,5R)-2-(acetoxymethyl)-6-hydroxytetrahydro-2H-pyran-3,4,5-triyl 

triacetate (3.30).  To a solution of 3.7(1.0 eq, 1.0 g, 2.6 mmol) in THF (13 mL) was 

added N,N-dimethylaminopropylamine (5.0 eq, 1.6 mL, 12.8 mmol) at room temperature and 

the resulting solution was allowed to stir 1.5h.  The reaction was quenched by the addition of 

1N HCl.  The resulting mixture was diluted with EtOAc (20 mL), washed with 1N HCl (2 x 20 mL), 

water (2 x 50 mL), and brine (1 x 50 mL).  The organics were dried over MgSO4, filtered, and 

concentrated in vacuo.  The crude oil was purified by flash chromatography (2:1-1:1 

hexanes/EtOAc) to yield 3.30 (451 mg, 1.3 mmol, 51%, 5:1 α:β) as a white foam: Rf 0.3 (1:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 5.53 (t, J=3.52 Hz, 1H, H-1α), 5.48 (dd, J=1.0, 3.28 

Hz, 1H, H-4α), 5.41 (dd, J=3.36, 10.8 Hz, 1.2H, H-3α, H-3β), 5.17 (ddd, J=1.0, 3.56, 10.8 Hz, 1H, 

H-2), 5.07 (m, 0.4H, H-2β, H-4β), 4.69 (ddd, J=3.04, 4.56, 9.0 Hz, 0.2H, H-1β), 4.47 (td, J=0.8, 

6.56, 6.56 Hz, 1H, H-5α), 4.14 (t, J=6.76 Hz, 0.4H, H-6β), 4.10 (ddd, J=6.76, 11.28, 18.12 Hz, 2H, 

H-6α), 3.95 (dt, J=0.92, 6.6, 6.6 Hz, 0.2H, H-5β), 3.54 (d, J=9.08 Hz, 0.2H, C1-OHβ) 2.97 (dd, 

J=1.16, 3.52 Hz, 1H, C1-OHα), 2.16 (s, 0.6H), 2.15 (s, 3H), 2.11 (s, 0.6H), 2.10 (s, 3H), 2.05 (s, 

3.6H), 2.00 (s, 0.6H), 1.99 (s, 3H); 13C (100 MHz, CDCl3) δ 170.66, 170.49, 170.37, 170.19, 96.21 

(C-1β), 90.88 (C-1α), 71.28 (C-5β), 70.42 (C-2β), 68.40 (C-2α), 68.33 (C-4α), 67.34 (C-3α), 67.26 
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(C-3β), 66.49 (C-5α), 61.97 (C-6α), 61.60 (C-6β); LRMS: [M+Na]+ C14H20O10Na calcd. 371.10, 

obsd. 371.61; IR (thin film) ν 3461, 1747, 1372, 1231, 1052, 736, 601 cm-1.  Characterization 

corresponded to reported literature data.43 

 

(2R,3S,4S,5R,6R)-2-(acetoxymethyl)-6-(2,2,2-trichloro-1-

iminoethoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (2.18).  To a solution of 

3.30 (1.0 eq, 0.1 g, 0.3 mmol) in CH2Cl2 (1.4 mL) was added trichloroacetonitrile 

(5.0 eq, 0.3 mL, 1.4 mmol) followed by 1,8-diazabicyclo[5.4.0]undec-7-ene (0.25 eq, 11 µL, 0.07 

mmol).  The resulting mixture was stirred at room temperature for 1h.  The reaction was 

diluted with CH2Cl2 (2 mL), washed with water (2 x 5 mL), brine (1 x 5 mL), dried over MgSO4, 

filtered, and concentrated in vacuo.  The crude residue was purified by flash chromatography 

(17:3-7:3 hexanes/EtOAc, 99:1 Et3N) yielding 2.18 (85 mg, 0.29 mmol, 60%) as a yellow foam: Rf 

0.7 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 8.66 (s, 1H, NH), 6.60 (d, J=3.48 Hz, 1H, H-

1), 5.56 (dd, J=1.16, 3.08 Hz, 1H, H-4), 5.42 (dd, J=3.12, 10.88 Hz, 1H, H-3), 5.36 (dd, J=3.48, 7.36 

Hz, 1H, H-2), 4.43 (dt, J=0.88, 6.80, 6.80 Hz, 1H, H-5), 4.12 (ddd, J=6.60, 11.32, 33.76 Hz, 2H, H-

6), 2.16 (s, 3H), 2.02 (s, 3H), 2.014 (s, 3H), 2.009 (s, 3H); 13C (100 MHz, CDCl3) δ 170.43, 170.23, 

170.21, 170.10, 161.08 (OC(NH)), 93.67 (C-1), 90.91 (CCl3), 69.13 (C-5), 67.64 (C-3), 67.51 (C-4), 

67.04 (C-2), 61.39 (C-6), 20.80, 20.77, 20.74, 20.68; IR (thin film) ν 3341, 1751, 1677, 1371, 

1226, 1073, 797, 643 cm-1.  Characterization corresponded to reported literature data.43 
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(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3S,4R,5R,6S)-2-((benzyloxy) 

methyl)-5-(1,3-dioxoisoindolin-2-yl)-4-((4-methoxybenzyl)oxy)-6-

(phenylthio)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3.31).  

2.18 (1.5 eq, 76 mg, 0.154 mmol) and 3.29 (1.0 eq, 63 mg, 0.103 mmol) were coevaporated 

with benzene (3 x 2 mL) and placed under vacuum for 16h.  The compounds were dissolved in 

CH2Cl2 (1 mL) and were transferred to a flask containing activated 4Å powdered molecular 

sieves (100 mg).  The resulting suspension stirred at room temperature for 1h under argon 

atmosphere.  The solution was then cooled to -40°C and a drop of BF3·Et2O was added.  The 

reaction slowly returned to room temperature and stirred for 1.5h.  The reaction was then 

quenched by the addition of triethylamine (3 drops) and was filtered through a plug of cotton.  

The organics were washed with water (2 x 2 mL), brine (1 x 2 mL), dried over MgSO4, filtered, 

and concentrated in vacuo.  The crude oil was purified by flash chromatography (4:1-1:1 

hexanes/EtOAc) to yield recovered 3.29 (14.4 mg, 23%) as a clear oil and disaccharide 3.31 

(25.5 mg, 0.027 mmol, 26%) as a clear oil: Rf 0.7 (2:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) 

δ 7.79 (d, J=7.00 Hz, 1H, NPhth), 7.73-7.64 (m, 2H, NPhth), 7.60 (d, J=6.80 Hz, 1H, NPhth), 7.44-

7.30 (m, 7H, OBn, SPh), 7.22-7.16 (m, 3H, SPh), 6.92 (d, J=8.60 Hz, 2H, OPMB), 6.36 (d, J=8.60 

Hz, 2H, OPMB), 5.49 (d, J=10.20 Hz, 1H, H-1), 5.30 (dd, J=0.64, 3.40 Hz, 1H, H-4’), 5.155 (dd, 

J=8.00, 10.40 Hz, 1H, H-2’), 4.88 (dd, J=3.48, 10.40 Hz, 1H, H-3’), 4.76 (d, J=12.00 Hz, 1H, CH2Ar), 

4.67 (d, J=12.30 Hz, 1H, CH2Ph), 4.625 (d, J=8.00 Hz, 1H, H-1’), 4.52 (d, J=12.10 Hz, 1H, CH2Ar), 

4.39 (d, J=12.30 Hz, 1H, CH2Ph), 4.24 (t, J=8.06 Hz, 1H, H-3), 4.21-3.98 (m, 5H, H-2, H-4, H-5’, H-

6’), 3.81-3.74 (m, 2H, H-6), 3.69 (t, J=6.69 Hz, 1H, H-5), 3.59 (s, 3H, PhOCH3), 2.07 (s, 3H), 2.04 

(s, 3H), 2.03 (s, 3H), 1.98 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.39, 170.24, 170.16, 169.975, 
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169.10, 158.53, 137.85, 133.57, 132.54, 132.05, 131.49, 130.51, 129.60, 128.70, 128.49, 127.88, 

127.75, 123.23, 123.00, 113.15, 100.33 (C-1’), 90.65, 83.38 (C-1), 78.995, 77.89 (C-4), 77.15 (C-

3), 74.15 (CH2Ar), 73.51, 70.93 (C-3’), 70.47 (C-5), 69.42 (C-2’), 67.65 (C-6), 66.82 (C-4’), 60.63 

(C-6’), 54.71 (C-2), 54.67 (PMB CH3), 20.73, 20.59, 20.56, 20.49; LRMS [M+Na]+ C49H51NO16SNa 

calcd. 964.28, obsd.964.57; IR (thin film) ν 3482, 1751, 1715, 1611, 1512, 1386, 1225, 1078, 721 

cm-1. 

 

 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3S,4R,5R,6S)-6-

(((2S,3R,4S,5S,6R)-3-(benzyloxy)-6-((benzyloxy)methyl)-5-

hydroxy-2-(((2R,3R,4S,5R,6R)-4,5,6-tris(benzyloxy)-2-((benzyloxy)methyl)tetrahydro-2H-

pyran-3-yl)oxy)tetrahydro-2H-pyran-4-yl)oxy)-2-((benzyloxy)methyl)-5-(1,3-dioxoisoindolin-2-

yl)-4-((4-methoxybenzyl)oxy)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl 

triacetate (19).  3.31 (1.0 eq, 25 mg, 0.027 mmol) and 3.1 (1.1 eq, 26 mg, 0.029 mmol) were 

combined and coevaporated from benzene (3 x 1 mL).  The compounds were dried in a vacuum 

desiccator for 16h in the presence of phosphorus pentoxide.  They were then dissolved in 

CH2Cl2 (0.26 mL) and transferred to a round bottom flask containing activated 4Å powdered 

molecular sieves (30 mg).  The resulting suspension was allowed to stir at room temperature for 

1.5 H and was then cooled to -40°C.  NIS (1.5 eq, 7.2 mg, 0.032 mmol) and AgOTf (0.5 eq, 3.4 

mg, 0.013 mmol) were sequentially added to the suspension at -40°C.  The reaction was 

allowed to stir at -40°C for 2h and was then warmed to room temperature for 24h.  Upon 
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completion, the reaction was quenched by the addition of Et3N (10 µL).  The solution was 

diluted with CH2Cl2 (1 mL).  The reaction mixture was filtered through a cotton plug and was 

diluted with water (1 mL). The organics were extracted and washed with water (2 x 1 mL), 

brined (1 x 1 mL), dried over MgSO4, and concentrated in vacuo.  The crude material was 

purified twice by preparatory TLC (20:1 CH2Cl2/CH3OH; 1:1 hexanes/EtOAc) and flash 

chromatography (2:1-1:1 hexanes/EtOAc) to yield 3.32 (1.9 mg, 4%) as a residue: Rf 0.52 (1:1 

hexanes/EtOAc); 1H NMR (600 MHz, CDCl3) δ 6.88 (d, J=8.5 Hz, 2H, OPMB), 6.33 (d, J=8.6 Hz, 2H, 

OPMB), 5.18 (H-2’’’), 5.35 (m, H-1’’), 5.32 (H-4’’’), 4.92(H-3’’’), 4.59 (d, J=8.0 Hz, 1H, H-1’’’), 4.34 

(d, J=7.5 Hz, 1H, H-1), 4.26 (m, H-1’), 4.24 (H-2’’), 4.09 (H-6’’’), 4.04 (H-6’’’), 4.03(H-3’’, H-4’), 

3.61(H-4’’), 3.86 (H-4), 3.75 (H-5’’’), 3.74 (H-5’’), 3.69 (H-6, H-6’’), 3.57 (s, 3H, PhOCH3), 3.49 (H-

6’), 3.41 (H-3’), 3.40 (H-2’, H-3), 3.39 (H-2), 3.38 (H-6’), 3.37 (H-6), 3.03 (H-5), 2.07 (s, 3H), 2.03 

(s, 3H), 2.01 (s, 3H), 1.98 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 102.3 (C-1), 101.8 (C-1’), 100.5 (C-

1’’’), 98.7 (C-1’’), 83.6 (C-3), 83.0 (C-3’), 81.8 (C-2’), 81.7 (C-2), 78.1 (C-3’’, C-4’), 76.5 (C-2’’), 75.9 

(C-4), 74.8 (C-5), 74.6 (C-4’’), 71.0 (C-3’’’), 70.6 (C-5’’, C-5’’’), 69.4 (C-2’’’), 68.1 (C-6), 67.8 (C-6’, 

C-6’’), 66.9 (C-4’’’), 60.8 (C-6’’’), 54.8 (PhOCH3); LRMS [M+Na]+ C97H103NO27Na calcd. 1736.66, 

obsd. 1736.86; IR (thin film) ν 2920, 2850, 1752, 1715, 1454, 1390, 1367, 1250, 1218, 1072, 741, 

699 cm-1. 
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(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3S,4R,5R,6S)-6-

(((2S,3R,4S,5S,6R)-3-(benzyloxy)-6-((benzyloxy)methyl)-5-

hydroxy-2-(((2R,3R,4S,5R,6R)-4,5,6-tris(benzyloxy)-2-((benzyloxy)methyl)tetrahydro-2H-pyran-3-

yl)oxy)tetrahydro-2H-pyran-4-yl)oxy)-2-((benzyloxy)methyl)-5-(1,3-dioxoisoindolin-2-yl)-4-

hydroxytetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3.33)  3.31 (1.0 eq, 

300 mg, 0.318 mmol) and 3.1 (1.1 eq, 309 mg, 0.309 mmol) were combined and coevaporated 

from benzene (3 x 1 mL).  The compounds were dried in a vacuum desiccator for 16h in the 

presence of phosphorus pentoxide.  They were then dissolved in CH2Cl2 (3.2 mL) and 

transferred to a round bottom flask containing activated 4Å powdered molecular sieves (300 

mg).  The resulting suspension was allowed to stir at room temperature for 2 H and was then 

cooled to -40°C.  NIS (1.2 eq, 86 mg, 0.382 mmol) and a drop of TMSOTf were sequentially 

added to the suspension at -40°C.  The reaction was allowed to stir at -40°C for 2h and was then 

warmed to room temperature for 4h.  An additional drop of TMSOTf was added and stirring 

continued for 1h, after which an additional 4 drops of TMSOTf were added and the reaction 

proceeded for 21h.  AgOTf (0.5 eq, 41 mg, 0.159 mmol) and NIS (0.8 eq, 57 mg, 0.255 mmol) 

were added and stirring continued for 48h. Upon completion, the reaction was quenched by 

the addition of Et3N (10 µL).  The solution was diluted with CH2Cl2 (1 mL).  The reaction mixture 

was filtered through a cotton plug and was diluted with water (5 mL). The organics were 

extracted and washed with water (2 x 5 mL), brined (1 x 5 mL), dried over MgSO4, and 

concentrated in vacuo.  The crude oil was purified by flash chromatography (9:1 

acetone/toluene) to yield 3.33 (118.3 mg, 23%) as a yellow oil: Rf 0.56 (9:1 acetone/toluene); 

1H NMR (400 MHz, CDCl3) δ 5.45 (d, J=9.03 Hz, 1H, H-1’’), 4.51 (d, J=7.46 Hz, 1H, H-1’’’), 4.37 (d, 
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J=7.46 Hz, 1H, H-1), 4.31 (d, J=8.71 Hz, 1H, H-1’); 13C NMR (100 MHz, CDCl3) δ 101.9 (C-1), 101.6 

(C-1’), 101.1 (C-1’’’), 98.4 (C-1’’). 
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Appendix A1: 

 

Spectra Relevant to Chapter III. 
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Figure A1.1.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.5. 
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Figure A1.2.  
1
H NMR (400 MHz, MeOD-d4) and 

13
C NMR (100 Mhz, MeOD-d4) spectra of 3.6. 
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Figure A1.3.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.1. 
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Figure A1.4.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.2. 
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Figure A1.5.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.12. 

  



94 
 

 

 

 

 

Figure A1.6.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.13. 
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Figure A1.7.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.3. 
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Figure A1.8.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.15. 
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Figure A1.9.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of S2. 
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Figure A1.10.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.14. 
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Figure A1.11.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of S3. 
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Figure A1.12.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.18. 
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Figure A1.13.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of S4. 
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Figure A1.14.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.19. 

  



103 
 

 

 

 

 

Figure A1.15.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.22. 
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Figure A1.16.  
1
H NMR (400 MHz, MeOD-d4) and 

13
C NMR (100 MHz, MeOD-d4) spectra of S5. 
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Figure A1.17.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.24. 
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Figure A.18.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 Mhz, CDCl3) spectra of 3.26. 
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Figure A1.19.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.27. 
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Figure A1.20.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.28. 
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Figure A1.21.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.29. 
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Figure A1.22.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.30. 
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Figure A1.23.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 2.18. 
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Figure A1.24.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.31. 
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Figure A1.25.  
1
H NMR (600 MHz, CDCl3) and 

13
C NMR (150 MHz, CDCl3) spectra of 3.32. 
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Figure A1.26.  
1
H NMR (400 MHz, CDCl3) and 

13
C NMR (100 MHz, CDCl3) spectra of 3.33. 

 


