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CHAPTER 1 

 

INTRODUCTION 

 

Overview of Peripheral Arterial Disease 

 

Introduction 

 As many as 8 million American adults are affected by peripheral arterial disease 

(PAD) which is associated with significant morbidity and mortality (1). PAD is an 

occlusive arterial disease affecting non-coronary arteries, and it is most often used to 

describe disease of the arteries supplying the lower extremities. Symptoms include 

intermittent claudication, non-healing ulcers, ischemic rest pain and critical limb 

ischemia (2). PAD is also associated with increased risk of myocardial infarction and 

stroke (3, 4). Therapy for PAD patients consists of modification of risk factors, exercise, 

pharmacotherapy, and surgical revascularization (5). However, some patients may have 

prior revascularization procedures or diffuse atherosclerosis and therefore be poor 

candidates for surgical intervention (6). Therapeutic angiogenesis has been investigated 

as an adjunct approach to managing PAD through delivery of angiogenic growth factors 

such as vascular endothelial growth factor (VEGF) in recombinant protein or gene 

delivery form. This strategy aims to increase blood flow to ischemic tissue by inducing 

formation of a collateral vessel network (6, 7). Some of the early clinical trials have 

shown mildly promising results, but quantitative analysis of the efficacy of new 

therapeutics is lacking (6).   
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Risk factors and diagnosis 

 Peripheral arterial disease is most commonly caused by atherosclerosis, but it may 

also be a secondary disease to cardiac or vascular embolism, vasculitis, hypercoagulopathy, 

vascular dissection, vascular compression syndromes, and other disorders (2). The classical 

risk factors that are associated with more than 50% of PAD cases in the population include 

smoking, diabetes mellitus, dyslipidemia and hypertension, and prevalence increases with 

age (8). Diabetes is a particularly potent risk factor, as patients with diabetes have a risk of 

developing PAD that is four times the general population. Patients that smoke and have 

diabetes further increase that risk by 2.5 fold (5). After accounting for the classical risk 

factors, nearly 50% of PAD cases are caused by unmeasured factors that likely result from 

hundreds of genes interacting with each other and the environment (2). Several studies have 

been conducted in which inherited factors were concluded to contribute to the manifestation 

of PAD, and genetic variations have been discovered that are predictive of coronary artery 

disease and PAD (8-10). However, genetic variations that are more specific for PAD are 

unlikely to be found (2). 

 Despite having known risk factors, PAD is underdiagnosed since only 10% to 30% 

of PAD patients present with the classic symptom of intermittent claudication (2). Clinical 

studies have determined that asymptomatic patients are more likely to be diagnosed by non-

invasive testing with the ankle-brachial index (ABI) test, but since many clinicians rely on 

claudication symptoms alone to detect PAD, 85% to 90% of PAD diagnoses may be missed 

(11). To measure the ABI, a Doppler ultrasound probe is used to measure the systolic blood 

pressures in the upper extremities at the brachial arteries and in the lower extremities at the 
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dorsalis pedis and posterior tibial arteries (8, 11). The ABI is defined as the higher of the 

two ankle systolic pressures divided by the higher brachial systolic pressure. An ABI less 

than or equal to 0.9 is the criterion for diagnosis of PAD (8, 11). Once ABI testing is 

adopted by more clinicians as a simple, non-invasive way to diagnosis PAD in 

asymptomatic patients with known risk factors, the next step will be to improve upon long 

term treatment of those affected by this disease.   

 

Prognosis and treatment 

 Even with its history of being underdiagnosed, PAD is a significant problem 

resulting in approximately half a million hospitalizations annually. Additionally, these 

patients receive less intensive treatment than patients with coronary artery disease due to 

lack of familiarity with PAD in the primary care setting (2, 11). Patients diagnosed with 

peripheral arterial disease face several symptoms that significantly affect quality of life in 

addition to the increased risk of heart attack and stroke, including intermittent claudication 

reducing mobility, morbidity due to non-healing ulcers and ischemic rest pain, and mortality 

through association with coronary and carotid artery disease (2).  

 Treatment options for PAD patients include management of risk factors, supervised 

exercise programs, pharmacotherapy, and surgical intervention (5, 12). Some risk factors, 

such as smoking, are relatively straightforward to address. Smoking is the dominant 

modifiable risk factor for PAD, and a dose-dependent relationship has been observed 

between smoking and severity of PAD (12). Poor wound healing, increased risk of 

amputation, and increased mortality are all linked to smoking, especially in diabetic patients. 

With smoking cessation the 10 year survival rate in diabetic PAD patients was 82%, a 
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significant improvement over the 46% survival rate of those who did not stop smoking (5). 

Exercise is another life-style change that can have an impact on symptoms for PAD patients. 

It significantly improves maximal walking time and overall walking ability in patients with 

stable intermittent claudication, and is more effective than both antiplatelet therapy and 

angioplasty (12). Other risk factors can be addressed with pharmacotherapy such as statin 

drugs, antihypertensive drugs and antiplatelet therapy which may reduce the incidence of 

claudication and increase maximum walking distance (12). Diabetes can be more 

complicated to address as a risk factor for PAD, since diabetic patients tend to have more 

diffuse vascular disease. Control of blood glucose levels has been shown to reduce 

microvascular complications of diabetic PAD, but there were no significant reductions in 

stroke, myocardial infarction or amputation due to PAD. Instead, blood pressure and blood 

cholesterol levels should be rigorously controlled with pharmacotherapy and life-style 

changes to prevent serious vascular events in diabetic PAD patients (12). 

 Surgical revascularization procedures are an option for patients that fail to improve 

with risk factor management and pharmacotherapy, have non-healing ulcerations, gangrene, 

or critical limb ischemia (5). These procedures include percutaneous transluminal 

angioplasty (PTA) and bypass surgery. PTA has been shown to restore adequate blood flow 

in patients with critical limb ischemia, and bypass grafts have been performed effectively on 

more distal arteries in the limb (6). Both types of revascularization have reduced rates of 

early major amputation in comparison with patients without revascularization (6).  

 Some patients, particularly those with diabetes or prior revascularization procedures, 

are poor candidates for surgical interventions. Diffuse atherosclerosis in multiple anatomical 

regions is common in diabetic PAD patients and difficult to treat, and repeat surgeries are 
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technically prohibitive (6, 13). Thus, there is a significant, unmet need for alternative 

treatment strategies for patients with critical limb ischemia. Efforts to meet this need started 

as early as 1994 with a human clinical trial in which vascular endothelial growth factor 

(VEGF) was delivered as a naked plasmid intramuscularly by Baumgartner et al. This phase 

1 clinical trial sought to test the concept of therapeutic angiogenesis in patients with critical 

limb ischemia after preclinical studies showed that angiogenic growth factors can stimulate 

collateral artery development. While the sample size of this study was small, they observed 

significant improvements in the ABI, evidence of improved distal blood flow, and 

improvement in ischemic ulcers (14). Figure 1.1 illustrates the concept of therapeutic 

angiogenesis in which growth factors are delivered to promote remodeling and growth of 

collateral vessels to compensate for the reduced blood flow caused by PAD. 

 

 

Figure 1.1: Concept of therapeutic angiogenesis using DNA of growth factors (13). 

 

Since this study, many other angiogenic growth factors have been tested in clinical trials 

including various forms of VEGF, fibroblast growth factor (FGF), and hepatocyte growth 
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factor (HGF) (15, 16). As shown in Table 1.1, some of the early clinical trials have produced 

mildly promising results, but quantitative analysis of the efficacy of new treatments is 

lacking due to the challenges of choosing patients and measuring a true signal of bioactivity 

among the background noise of variability between patients with chronic critical limb 

ischemia (17). This is particularly true for patients with diabetes, a population in which 

therapeutic angiogenesis has not been studied enough. There is also a concern about the 

safety of growth factor administration in diabetic PAD patients, because they have a greater 

risk of widespread vascular disease including retinopathy which might be exacerbated by 

proangiogenic growth factors (6, 17). In non-diabetic patients with PAD, some adverse 

effects have been observed with therapeutic angiogenesis treatment, including hypotension, 

vascular leakage, and transient tissue edema (17). 
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Table 1.1: Gene therapy in peripheral arterial disease: bioactivity data (17). 
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 Despite the lack of a clinical breakthrough in therapeutic angiogenesis treatment to 

date, there are several reasons why researchers continue to pursue this problem so that 

quality of life can be improved for patients who do not respond to risk factor management or 

qualify for surgical intervention. Work in this field is motivated by the fact that single genes 

appear to activate potent angiogenic mechanisms, and these effects may be magnified by 

activating specific targets and pathways with therapeutic agents. Additionally, novel 

delivery methods can be designed to direct therapeutic agents to the disease locus and 

potentially reduce the side effects observed in previous studies. These novel delivery 

strategies, along with a search for the most efficient and safe combination of proangiogenic 

genes and/or proteins, are currently being pursued in preclinical studies (17).  

 

Preclinical Models and Methods 

 

Introduction 

 The mouse hind limb ischemia (HLI) model (18) has been used to study postnatal 

blood vessel formation and plays a vital role in testing new therapeutic angiogenesis 

approaches before they can be advanced to clinical trials. Typically, the femoral artery 

and vein are isolated from the femoral nerve after making a small incision in the hind 

limb. The artery and vein are then ligated with sutures at one or two locations. Depending 

on the severity of ischemia desired for the experiment, a segment of the vessels between 

the ligation points may be excised. These studies generally use a combination of several 

techniques to obtain information about the morphological and functional responses of the 

vasculature after induction of ischemia. In addition to studying the effect of therapeutic 
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angiogenesis treatments on wild type mice, mouse models of diabetes and genetically 

modified strains can be included in these studies to better understand the mechanisms of 

vascular recovery in the context of conditions believed to impair angiogenesis and 

increase the severity of PAD (19-21).   

 

Current techniques for evaluating vascular recovery 

Despite the widespread use of the mouse hind limb ischemia model, current 

techniques for evaluating vascular recovery suffer from several limitations. 

Microcomputed tomography (micro-CT) permits global analysis of the vascular network 

in the entire limb and provides highly quantitative 3D data; however, it requires post-

mortem perfusion with contrast agents making it inefficient for longitudinal studies (22-

24). Similarly, x-ray angiography provides visualization of collateral arteries but it too is 

a post-mortem technique (25). Histology can be used to study microvessel density, but it 

is post-mortem, 2D and subject to sampling error. Laser Doppler perfusion imaging 

(LDPI) provides a non-invasive, functional measure of blood flow, but it is superficial 

and provides a relative rather than absolute measurement (18). A similar relative measure 

of recovery can be acquired with optical spectroscopy, which provides a point-based 

measurement of the oxygen saturation of hemoglobin based on the differing absorption 

spectra of oxyhemoglobin and deoxyhemoglobin at specific wavelengths (19, 25). Other 

methods for measuring tissue oxygenation at the microvascular level are more 

quantitative and include polarographic electrodes and fluorescence lifetime needle-based 

sensors, but these devices have several limitations including small sampling area, long 

stabilization periods, and invasiveness (26). Measurements of pO2 can also be obtained 



10 

 

less invasively with the electron paramagnetic resonance (EPR) oximetry method, but 

this requires injection of an exogenous material (27). While each of these techniques 

provides important endpoints for hind limb ischemia studies, access to multiple 

instruments and multiple cohorts of mice are required to study the effect of novel 

therapeutic treatments over time. A complete picture of the structure-function 

relationships involved in the vascular response to ischemia is not currently attainable 

since robust quantitative endpoints cannot be obtained intravitally from a given mouse 

over time. 

 

Motivation 

 The limitations of current methodologies used to study the mouse hind limb 

ischemia model highlight a significant need for an improved tool for researchers in this field. 

Experimentation with post-mortem methods is expensive, time consuming, and subject to 

inter-animal variability that exists even within the same strain (28). An intravital, non-

invasive imaging technique would be advantageous for developing novel therapeutic 

treatments for PAD, as it would accelerate throughput and decrease costs of basic studies. In 

addition to being non-invasive, this new technique should provide quantitative, absolute 

measures of recovery which may lead to new insight into the physiological processes of 

arteriogenesis and angiogenesis. Ultimately, this intravital data could lead to the 

development of more effective treatments for PAD by enabling a more robust analysis of the 

response to regenerative therapies. 
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Hyperspectral Imaging 

 

Non-invasive optical imaging methods have the potential to provide longitudinal 

data on vascular structure, oxygenation and hemodynamics. Hyperspectral imaging has been 

used to quantify hemoglobin oxygen saturation in vivo by collecting absorption images at 

multiple wavelengths and fitting the resulting absorption curve at each pixel using a 

modified version of Beer’s Law (29, 30). This technique is quantitative and can provide 2-D 

spatial maps of blood oxygenation in terms of hemoglobin oxygen saturation with relative 

technical ease compared to polarographic electrodes and other needle-based pO2 sensors 

(29).  

Hyperspectral imaging has been successfully applied to studies on tumors, brain 

imaging, and diabetic foot ulcers (29, 31-33). Previous studies have used a liquid crystal 

tunable filter (LCTF)-based system for collection of the specific wavelengths in a 

hyperspectral data set (29, 33, 34). The collection leg of an LCTF-based hyperspectral 

system generally consists of the filter, a collection lens, and a CCD camera. The 

hyperspectral data is constructed by acquiring a CCD frame for each wavelength of interest 

as the filter tuning wavelength is swept across the range of interest. To determine 

hemoglobin saturation from hyperspectral images, absorption images are collected at 

multiple wavelengths, typically from 500 nm to 620 nm in 5 or 10-nm increments, and used 

to generate an absorption curve for each pixel in the image. The excitation source for this 

wavelength range can be a simple halogen lamp providing white light that includes the 

wavelengths of interest. The wavelength range of 500-620 nm is used to measure 
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hemoglobin absorption because this wavelength range contains important features unique to 

the absorption spectra of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb-R) (Fig. 1.2). 

 

 

Figure 1.2: Absorbance spectra of oxy- and deoxyhemoglobin (29). 

 

After the absorption spectrum for each pixel has been generated from the 

hyperspectral images, the spectrum is fit to a model equation (Eq. 1.1) derived from a 

modified version of Beer’s Law (31): 

 

      (
  

 
)     

     [    ]       
    [   ]             (1.1) 

 

where Aλ is the absorbance at wavelength λ, I is the pixel value, I0 is the pixel value of 

reference light, ελ
HbO2

 and ελ
HbR

 are the extinction coefficients for HbO2 and HbR and 
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wavelength λ, respectively, [HbO2] and [HbR] are the concentrations of oxy- and 

deoxyhemoglobin, respectively, L is the path length, and S is a path length-dependent 

scattering term (29). Tissue absorption in the absence of blood is computed as an estimate of 

I0 (35). In this model, oxy- and deoxyhemoglobin are assumed to be the dominant absorbers 

in blood which is reasonable in the wavelength range selected. The model equation is solved 

using linear least squares regression to determine the relative concentrations of 

oxyhemoglobin and deoxyhemoglobin in each pixel, and hemoglobin saturation is 

computed as defined by Equation 1.2 after the path length terms cancel out: 

 

       
[    ]

[        ]
                   (1.2) 

 

The end result is a two dimensional map of hemoglobin oxygen saturation which can be 

visualized with a pseudocolor scale. 

 

Optical Coherence Tomography 

 

 Optical coherence tomography (OCT) is a high resolution, three dimensional optical 

imaging technique that can resolve structures in tissue at depths around 2 mm (36-38). Cross 

sectional images are acquired in OCT by resolving the difference in path lengths between 

reflecting and scattering sites in the sample and that of a reference arm using a Michelson 

interferometer. OCT is used in a wide variety of applications, including imaging the retinal 

vasculature (39) and characterizing plaques in the coronary artery (40). Doppler OCT, a 

functional extension of OCT, is capable of imaging microvessel networks and blood flow 
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velocities in three dimensions. Doppler shifts arise from motion in the sample (such as 

flowing red blood cells), and Doppler OCT detects this motion through phase-sensitive 

detection of interference between the probe and reference beam (37). Quantification of flow 

velocity and a vascular index from Doppler OCT data is described in Chapter 2. 

 In order to apply OCT techniques to a study of the mouse hind limb ischemia model, 

several challenges must be addressed. One significant challenge is imaging through the skin 

and obtaining repeatable measurements throughout a time course. Until recently, OCT had 

not been utilized to image skeletal muscle vasculature. However, when Jia et al. 

demonstrated the feasibility of using OCT to study the vasculature in the mouse hind limb 

they exposed the muscle with a skin incision during imaging (41). Ideally, this invasive step 

would be avoided in time course experiments so that repeat incisions would not be made 

and a wound response would not be evoked upon healing of the incision. In Chapter 2, 

images of the hind limb vasculature were obtained using OCT without a skin incision and 

fiducial markers were used to register images between time points over a three week time 

course. 

 Another challenge associated with imaging the hind limb vasculature is bulk motion 

artifact. This artifact is due to the animal’s breathing and heartbeat, and it can significantly 

affect the ability to resolve vessels in a Doppler phase shift image. Several groups have 

established image processing techniques to address this problem and significantly reduce the 

bulk motion artifact in Doppler images. One such method is a histogram-based algorithm in 

which a histogram of the phase shift in all of the pixels of an A-scan is plotted. It is assumed 

that the blood vessels are small relative to the entire scan depth, and the bin with the largest 

pixel count will be from stationary tissue that may have a bulk shift due to motion artifact. 
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The phase shift value for the bin with the largest pixel count is then subtracted from the rest 

of the image so that the phase shift for the stationary tissue is 0 (42, 43). This method is 

employed in the Doppler OCT image processing in Chapter 2. 

 In order to acquire both functional and morphological endpoints using OCT, 

multiple image acquisition and processing techniques can be used. Speckle variance OCT is 

advantageous for visualizing the morphology of blood vessels in volume scans collected 

with OCT since it is independent of the angle of blood flow relative to the imaging beam 

(unlike Doppler OCT). To generate speckle variance images, repeated images of the same 

location are acquired and the variance between repeated scans is computed. Fluid motion, 

i.e. blood flow, causes the speckle variance to be greater within blood vessels than in the 

surrounding stationary tissue, making it straightforward to visualize the vascular 

morphology in three dimensions or as a two dimensional projection of all of the vessels 

contained within a volume. Functional endpoints can be acquired using Doppler OCT, 

although Doppler OCT is sensitive to the angle between the direction of blood flow and the 

imaging beam. Therefore, several parameters must be optimized depending on the speed of 

blood flow in the vessels of interest. These parameters include the Doppler number (the 

number of phase shift differences averaged to produce a Doppler image), the angle of the 

hind limb, and the integration time for each A-scan. After optimization of image acquisition 

parameters, several quantitative endpoints can be extracted from a Doppler OCT image. 

These endpoints include the velocity profile across the center of a vessel of interest, the 

blood flow rate (a function of the mean velocity and the vessel diameter), the shear rate at 

the vessel wall, and a vascular index in which the fraction of pixels with a Doppler signal 

greater than a designated threshold is computed. Validation of the Doppler OCT 
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measurement of fluid flow rate and some of these in vivo endpoints are discussed in Chapter 

2. 

In the work presented in Chapter 2, Doppler OCT and hyperspectral imaging 

techniques have been applied to a study of the vascular response in the mouse hind limb 

ischemia model. The results in Chapter 2 demonstrate the ability to acquire quantitative, 

intravital endpoints using these optical imaging modalities, validating further 

development of these methods as a new tool for evaluating novel therapeutic treatment 

strategies for peripheral arterial disease. 
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CHAPTER 2 

 

QUANTITATIVE, INTRAVITAL OPTICAL IMAGING OF VASCULAR 

STRUCTURE AND FUNCTION IN A MODEL OF PERIPHERAL ARTERIAL 

DISEASE  

 

Introduction  

 

An estimated 8 million American adults are affected by peripheral arterial disease 

(PAD) which is associated with significant morbidity and mortality (1). PAD is an 

occlusive arterial disease of the lower extremities and is associated with increased risk of 

myocardial infarction and stroke and reduced quality of life (3, 4). Therapy for PAD 

patients consists of modification of risk factors, exercise, pharmacotherapy, and surgical 

revascularization (5). However, some patients may have prior revascularization 

procedures or diffuse atherosclerosis and therefore be poor candidates for surgical 

intervention (6).  

Development of collateral vessels can functionally compensate for obstructed 

arteries in patients with PAD, providing motivation for vascular biologists to intensely 

study the mechanisms that control formation and remodeling of vasculature. 

Complementary research on “therapeutic angiogenesis” seeks to develop clinical 

approaches for manipulating these mechanisms to stimulate formation of new blood 

vessels that will “naturally” bypass diseased arteries and abrogate the symptomatic 

effects of PAD (44). Animal models of peripheral limb ischemia play a vital role in the 

preclinical research efforts to test the efficacy of growth factor, gene, or cell based 
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therapeutic angiogenesis approaches. In particular, the mouse hind limb ischemia (HLI) 

model (18) is used extensively both in basic science efforts to define the mechanisms 

involved in postnatal blood vessel formation and in testing of new therapeutic strategies. 

While the utility of the hind limb ischemia model is well-established, no single 

available methodology currently used to assess vascular growth in this model allows 

acquisition of multi-functional, quantitative information from the living mouse. Current 

techniques used to characterize vessel remodeling and restoration of perfusion include 

histology, laser Doppler perfusion imaging (LDPI) and microcomputed tomography 

(micro-CT). Histology enables high resolution quantification of collaterals and 

capillaries, but this method is post-mortem, 2-D, and subject to sampling error. LDPI 

provides a non-invasive measure of functional recovery in terms of blood perfusion, but it 

is semi-quantitative and superficial. The micro-CT strategy produces high resolution, 

quantitative morphological data in 3-D, but it requires contrast agents and post-mortem 

analysis. Multiple cohorts of mice and access to multiple instruments are required to 

complete time-course analyses and obtain a complete picture of the vascular response 

using these methods, making experimentation both expensive and time-consuming. This 

fact highlights the significant, unmet need for an improved methodological toolbox for 

angiogenesis researchers. New techniques should enable quantification of absolute 

parameters of recovery and be non-invasive, thus allowing for individual animals to be 

longitudinally tracked for more robust analysis of the response to regenerative therapies. 

Hyperspectral imaging is an optical imaging technique that has been successfully 

applied to the study of hemodynamics in several models including tumor angiogenesis 

(29), brain imaging (31), and diabetes mellitus (32). This technique is a method of 
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scanning spectroscopy that quantifies hemoglobin oxygen saturation in vivo by collecting 

absorption images at multiple wavelengths (500 – 620 nm in 10-nm increments) and 

fitting the resulting absorption curve at each pixel using a modified version of Beer’s 

Law (29). Point-based optical spectroscopy methods have long been employed to probe 

hemoglobin oxygen saturation in vivo, although these methods do not provide spatial 

registration or absolute quantification of data (25). Optical coherence tomography (OCT) 

is another optical method that is ideal for obtaining structural and functional endpoints 

for changes in microvasculature. OCT is a three dimensional optical imaging technique 

that can non-destructively visualize structural features in tissue at cellular-level 

resolution, with imaging depths (~2-3 mm) that exceed current limits of microscopy. The 

speed of OCT has increased greatly in recent years, which allows for image volumes to 

be collected quickly (~2x2x2 mm volume in 12 seconds (45)). Doppler OCT is a 

functional extension of OCT that images microvessel networks and blood flow velocities 

in 3-D (37, 38). Doppler shifts arise from motion in the sample (such as flowing red 

blood cells), and Doppler OCT detects this motion through phase-sensitive detection of 

interference between the sample and reference arms. The phase in the interferogram is 

especially sensitive to changes in optical path length, with typical sensitivities of ~45 

picometers (33, 46, 47). OCT has been used a wide variety of applications including 

human retinal circulation (48), dermatology (49), and tumor models (33), but it has more 

recently been applied to studies in skeletal muscles (41).  

In the present study, our objectives were to use a liquid crystal tunable filter-based 

hyperspectral imaging system to obtain two dimensional images of hemoglobin oxygen 

saturation and study hypoxic recovery in the mouse hind limb ischemia model over time. 
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Here, a distal site (the paw) was used in order to measure a region with the most 

pronounced hypoxia. This technique was compared with two current “gold standard” 

techniques: LDPI and tissue oxygen tension. Additionally, spectral domain Doppler OCT 

techniques were applied to obtain both functional and morphological data intravitally at 

the resolution of individual vessels in the hind limb. The combined application of these 

non-invasive optical imaging modalities provides researchers using the HLI model to test 

novel treatments for PAD with a new quantitative toolset for evaluating important, 

functional measures of arteriogenesis and hypoxic recovery intravitally.   

 

Materials and Methods 

 

Animals 

Male A/J mice were purchased from Jackson Laboratories (Bar Harbor, ME). 

This strain was selected because of its ischemic limb collateralization phenotype (50). All 

mice were between 8 and 10 weeks of age. The animals were fed a standard chow diet ad 

libitum and had free access to water. All protocols were approved by the Institutional 

Animal Care and Use Committee of Vanderbilt University and done in accordance with 

the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

 

Hind limb ischemia model 

Hind limb ischemia was surgically induced in n=12 mice according to the well-

established model of femoral artery ligation and transection (18, 50). Surgery was carried 
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out under 1.5-2.5% isoflurane anesthesia with the mice maintained at normal body 

temperature. After administration of pre-operative analgesia (ketoprofen, 10 mg/kg) and 

removal of hair, the surgical site was thoroughly cleansed with alternating iodine and 

chlorhexidine scrubs. A 5-mm unilateral incision was then made over the right medial 

thigh of the mouse. The femoral artery and vein were dissected away from the femoral 

nerve and were ligated with 6-0 silk sutures at two locations: immediately distal to the 

origins of the superficial epigastric artery and deep branch of the femoral artery, and 

proximal to the origin of a caudally branching vessel approximately 2 mm distal to the 

first ligation. The artery and vein were transected between the two ligations leaving a gap 

of 1-2 mm. The wound was irrigated with sterile saline and the incision was closed with 

interrupted 5-0 nylon sutures. The contralateral limb served as the control for each 

animal. Analgesia (ketoprofen, 5-10 mg/kg) was administered every 18-24 hours post-

operatively for 72 hours or until animals exhibited normal appearance and behavior. 

 

Hyperspectral imaging 

Two dimensional diffuse reflectance images were collected with a 200 W halogen 

lamp coupled into a 10-mm core diameter liquid light guide for epi-illumination 

(schematic in Fig. 2.1). The light guide was mounted onto a Wild Heerbrugg M690 

operating microscope (Leica). The collection head, also mounted on  the operating 

microscope, consisted of a Varispec VIS-20 liquid-crystal tunable filter (LCTF) for 

bandlimited optical filtering (CRI, Inc.), a variable focal length (f = 28-80 mm) camera 

lens (Nikon), and a  512 x 512 pixel PhotonMax CCD camera (Princeton Instruments) 

cooled to -70°C, resulting in a sampling density of 58 μm. The LCTF bandwidth is 10 nm 
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when tuned to 550 nm, but is narrower and wider at shorter and longer wavelengths, 

respectively. The transmission of the LCTF also increases at longer wavelengths. The 

LCTF tuning, CCD camera communication, shutter control and data handling were 

controlled with a custom computer program that enabled automated image acquisition 

with specifications of camera exposure time and gain. Images were saved as raw text files 

and converted to 16-bit grayscale uncompressed TIF files using Matlab software (The 

Mathworks, Incorporated).  

 

 
Figure 2.1: Schematic of hyperspectral system for diffuse reflectance imaging. White 

light from the halogen lamp is coupled into a liquid light guide for illumination of the 

footpads. Specific wavelengths are collected with a liquid crystal tunable filter (LCTF) 

mounted on the end of a variable focal length (f = 28-80 mm) camera lens and a 512 x 512 

pixel CCD camera. 

 
 

For validation of hemoglobin saturation mapping with this system, the spectra for 

pure oxyhemoglobin and deoxyhemoglobin solutions were measured with images 

acquired from 500 to 620 nm in 5-nm intervals. Hemoglobin saturation images were 

calculated from calibrated hyperspectral data (corrected for dark offset and system 

response) using an extension of the Beer-Lambert law that solves for the hemoglobin 

saturation in each pixel using linear least-squares regression (29, 30). Oxygenated and 

deoxygenated hemoglobin were assumed to be the only factors contributing to absorption 
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in this model. Quantification of hemoglobin oxygen saturation using the measured oxy- 

and deoxyhemoglobin spectra to fit the data was validated with mouse whole blood in 

vitro at 100% and 0% oxygenation. Oxygenated blood samples were prepared by 

repeatedly inverting the sample in room air for several seconds. Deoxygenated blood 

samples were prepared with 5% wt/vol sodium dithionite (29). Glass capillary tubes with 

an inner diameter of 1 mm were filled with the blood samples, sealed on the ends, and 

submerged in index-matching immersion oil on a glass slide. A diffuse reflectance 

standard was placed below the glass slide to provide total reflection in areas where light 

was not absorbed by hemoglobin. The saturation of oxygenated blood measured by the 

system was 99.9% ± 0.3%, and the saturation of deoxygenated blood was measured to be 

6.7% ± 3.5% (Fig. 2.2). 

 

 
Figure 2.2: Validation of hemoglobin oxygen saturation measurement. Quantification 

of hemoglobin oxygen saturation was validated in vitro in glass capillary tubes with 

whole blood diluted with phosphate-buffered saline at pH 7.4.  

 

 

Immediately following surgery (day 0) and at 7, 14 and 21 days post-surgery, 

control and ischemic footpads were imaged non-invasively through the skin with 
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hyperspectral imaging. All imaging was carried out under 1-2% isoflurane anesthesia 

with the mice maintained at normal body temperature. Anesthesia was delivered with 

21% oxygen rather than 100% oxygen to avoid artificial elevation of normal hemoglobin 

saturation. Images of the control and ischemic footpads were acquired for wavelengths 

from 500 to 620 nm in 10-nm increments. Measurements of the dark offset and 

reflectance from a diffuse reflectance standard (Spectralon) were made before each 

imaging session for calibration. Hemoglobin saturation images of the footpads were 

calculated from hyperspectral data using Beer’s Law as described for the validation 

experiment.  

For quantitative analysis of hemoglobin saturation images, the regions of interest 

(ROI) in each image were defined by outlining the footpads using ImageJ software. 

Hemoglobin saturation values were quantified for each footpad by averaging the values 

for all pixels contained with the ROI. Hemoglobin saturation was analyzed as both an 

absolute value determined from the amounts of oxyhemoglobin and deoxyhemoglobin in 

each pixel and as a ratio of the ischemic footpad to the control footpad.  

 

Laser Doppler perfusion imaging 

Following hyperspectral imaging, perfusion in the footpads was measured by 

laser Doppler perfusion imaging (LDPI) (Perimed PSI) at 0, 7, 14 and 21 days post-

surgery under isoflurane anesthesia and normal body temperature. The ambient light was 

consistent across all imaging days. At each time point, perfusion images were acquired 

with Perimed software at a rate of 4 frames per second, and 10 frames were averaged to 

provide perfusion values for the control and ischemic footpads. 
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For analysis of perfusion data sets, the regions of interest (ROI) in each image 

were defined by outlining the footpads using Perimed software. Perfusion values were 

obtained for each footpad by averaging the values for all pixels contained with the ROI. 

Because LDPI is an intrinsically semi-quantitative and relative measurement, perfusion 

images were quantified as a ratio of the ischemic footpad to the control footpad. 

 

OxyLite pO2 measurements 

Tissue oxygen tension (pO2) was measured in the footpads of 5 mice at 0, 7, 14 

and 20 days post-surgery using the OxyLite (Oxford Optronix) tissue oxygenation sensor. 

To measure oxygen tension with this system, the probe tip was introduced into the 

footpad with a needle and pulses of LED light were transmitted along a fiber optic probe 

to excite a platinum-based fluorophore enclosed within a silicone matrix at the tip. The 

fluorescent light is quenched in the presence of oxygen and the instrument detects the 

fluorescence lifetime, which is inversely proportional to the concentration of dissolved 

oxygen. This value is used to calculate the absolute value of pO2 in mmHg. The OxyLite 

system is most sensitive at low pO2 and simultaneously corrects for temperature effects 

with an integrated temperature probe providing the mouse core temperature during 

measurements. For this study, measurements were taken in two locations on each 

footpad. After insertion of the probe, the pO2 reading was allowed to stabilize for 10-15 

minutes. Once the reading stabilized, seven measurements were recorded over 30 seconds 

to obtain an average pO2 value for each location, and the two locations were averaged to 

provide a single value for each footpad. The pO2 data were analyzed as both absolute 

values in mmHg and as ratios of the ischemic footpad to the control footpad. 
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Optical coherence tomography 

A spectral domain OCT system with a central wavelength of 860 nm, 51 nm 

bandwidth, 50 μs minimum integration time per A line, lateral resolution of 25 μm, 6.4 

μm axial resolution, and an imaging speed of about 20 frames/second with the selected 

imaging parameters was used in this study (Fig. 2.3). Prior to in vivo imaging of blood 

flow, measurement of flow rate with Doppler OCT was validated with an Intralipid 

phantom experiment for a range of flow rates controlled with a syringe pump. Briefly, 

1% Intralipid was pumped through a 1-mm inner diameter glass capillary tube at flow 

rates ranging from 30 to 70 μl/min. The OCT probe was aimed at the center of the tube 

and Doppler B-scans were collected for each flow rate. A three dimensional volume scan 

was collected to determine the angle of the tube relative to the imaging beam. The fluid 

velocity was computed from the measured Doppler phase shift using Equation 2.1:  

 

      
  

            
    (2.1) 

 

where Δφ is the Doppler phase shift, λo is the center wavelength, n is the refractive index, 

τ is the A-scan integration time, and α is the flow angle relative to the beam (measured 

from corresponding volume scan). Then, the flow rate was calculated using the peak of 

the second order polynomial curve fit to the velocity data and the cross sectional area of 

the capillary tube (Fig. 2.4). 
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Figure 2.3: Schematic of spectral domain OCT system. 

 

 

 
 

Figure 2.4: Doppler OCT validation. Measurement of flow rate with Doppler OCT was 

validated with an Intralipid phantom experiment for a range of flow rates. The measured 

flow rate was calculated using the peak of the curve fit and the cross sectional area of the 

capillary tube. 

 

For the hind limb ischemia study, two dimensional B-scans and three dimensional 

volumes of Doppler OCT data were collected from three locations on each hind limb 

(ischemic and contralateral) after surgery for n = 4 mice on days 0, 7, 14 and 21 under 
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isoflurane anesthesia and normal body temperature. The first area of interest crossed the 

femoral artery and vein distal to the ligation site and was selected to monitor restoration 

of blood flow to those vessels over time. The other two areas were located in the adductor 

muscle region medial to the incision site in order to monitor changes in the morphology 

and blood flow in collateral vessels. Repeated B-scans were collected in each area to 

allow for temporal averaging and reduction in noise. All OCT imaging was performed 

non-invasively through the skin of the hind limb. 

For quantitative analysis of Doppler OCT B-scans containing the femoral artery 

and vein, the images were processed to reduce speckle noise and motion artifact. Briefly, 

Doppler noise due to signal fall-off in depth was excluded by an intensity threshold in the 

corresponding structural image, followed by minimization of the bulk motion artifact due 

to respiration with a histogram-based correction method (42). Repeated B-scans from the 

same location were filtered temporally, and then a Doppler threshold was computed from 

a region of static tissue (skin) to further separate blood flow detection from background 

noise. Pixels with a Doppler signal greater than the threshold were summed across the 

cross-sectional images and divided by the total pixel area to define a vascular index for 

the detected vasculature (43). Doppler volumes from the adductor muscle region were 

processed with the structural intensity threshold and bulk motion artifact correction steps, 

followed by a maximum signal projection in depth to visualize all collateral vessels 

present in the volume. 
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Statistical analysis   

All data are presented as means ± SEM. Statistical analyses were performed with 

Minitab software. Wilcoxon Signed-Rank statistics were computed for comparisons 

between ischemic and control limb measurements for each time point. The effect of time 

post-surgery on the response variables was tested with the Wilcoxon Signed-Rank test 

followed by a Bonferroni correction for multiple comparisons. Spearman’s rank 

correlation coefficient was used to evaluate the hyperspectral imaging technique in 

relation to the gold standards of LDPI and OxyLite pO2. P < 0.05 was interpreted as 

significant in all analyses. 

 

Results 

 

Measures of vascular structure and function following induction of hind limb 

ischemia were obtained using optical imaging methods (hyperspectral imaging and 

optical coherence tomography) and compared to traditional methods of evaluating the 

mouse hind limb ischemia model (laser Doppler perfusion imaging and tissue oxygen 

tension).  

 

Perfusion measurements with LDPI 

Perfusion in the footpads was analyzed in the same animals whose hemoglobin 

saturation was measured. The ischemic-to-control perfusion ratio was severely reduced at 

day 0 as shown by a representative perfusion image (Fig. 2.5A) then increased each week 
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until perfusion was completely recovered in the ischemic limb (Fig. 2.5B). Significant 

increases in the ratio were observed between days 0 and 7 and between days 7 and 14 

post-surgery (p < 0.01). Between days 14 and 21, perfusion was recovered in the 

ischemic footpad although the increase was not significant.  

 

 

 

Figure 2.5: Measurements with LDPI and the OxyLite tissue oxygenation sensor 

confirm time course of recovery in ischemic limb. (A) Representative LDPI image of 

ischemic (bottom) and control (top) footpads post-surgery. (B) The normalized perfusion 

data demonstrate full recovery of perfusion in the ischemic footpad relative to the control 

footpad. (C) Absolute pO2 values from control and ischemic footpads measured with the 

OxyLite system (mean ± SEM with n=5). (D) Individual animal ratios (ischemic pO2 

normalized to overall control pO2) plotted with lines representing mean ratio ± SEM at 

each time point. Data presented as mean ± SEM with n=7. * corresponds to a one-sided 

p-value < 0.05 and ** corresponds to p < 0.01 as determined by a Wilcoxon Signed-Rank 

test (B-D) followed by a Bonferroni correction for multiple comparisons (B, D).  
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Tissue oxygen tension in the hind feet 

The partial pressure of oxygen in the footpads as measured with the OxyLite pO2 

sensor showed a significant difference between the control and ischemic footpads 

through day 7 (Fig. 2.5C). However, the ischemic-to-control footpad ratios were highly 

variable between animals (Fig. 2.5D). Figure 2.6 illustrates the high variation within 

control footpad measurements as a result of both location (two point measurements, C1 

and C2) and the tendency of the OxyLite system to be less precise at “normal” pO2 levels 

(greater than 10 mmHg). These examples of location-specific pO2 data at days 0 (Fig. 

2.6A) and 7 (Fig. 2.6B) also show that hypoxic pO2 values are more precisely measured 

by the sensor and that there is little temporal variation within the measurements taken 

over a 30 second period at each location. 
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Figure 2.6: OxyLite tissue oxygenation sensor variability. Measurements are more 

precise at low tissue pO2 and show high spatial variability at normal pO2 levels. (A) pO2 

data from each animal at day 0 for two locations on each footpad. (B) pO2 data from each 

animal at day 7. Data presented as mean ± SDM of 7 readings in each location collected 

over 30 seconds. C1, C2: control footpad measurement 1 and 2; S1, S2: surgery footpad 

measurement 1 and 2.  

 

Measurement of hemoglobin oxygen saturation 

We used an LCTF-based hyperspectral imaging system to non-invasively acquire 

quantitative hemoglobin saturation measurements from the hind feet of mice after 

induction of ischemia in the right hind limb. Hemoglobin saturation was measured for the 
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same mice that were imaged with LDPI. This method provides a novel alternative to the 

invasive measurement of pO2 and the semi-quantitative nature of LDPI.  

Analysis of hemoglobin saturation images of the hind feet revealed a significant 

reduction in oxygenation of the ischemic footpad compared to the control footpad from 

day 0 (representative image in Fig. 2.7A) through day 14 post-surgery (p < 0.05) (Fig. 

2.7B). Hemoglobin saturation in the ischemic footpad was reduced to approximately 40% 

of the control value immediately following surgery as shown by the normalized data (Fig. 

2.7C), and the ratio increased significantly at each time point (p < 0.01). The hemoglobin 

saturation ratio (ischemic to control footpad) increased over time to surpass 100% by day 

21. In addition to quantification of the mean hemoglobin oxygen saturation value for each 

footpad, hyperspectral imaging provided an additional quantitative endpoint, the 

coefficient of variation across all of the pixels within the ROI, since it acquires a two 

dimensional image rather than a point-based measurement. The coefficient of variation 

was significantly greater in the ischemic footpad through day 14 of the time course (p < 

0.05), showing that hemoglobin oxygenation is more uniform across the entire control 

footpad than the ischemic footpad. 
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Figure 2.7: Hemoglobin oxygen saturation measured with hyperspectral imaging 

undergoes significant changes in the ischemic hind limb. (A) Representative 

hyperspectral image of the ischemic (top) and control (bottom) footpads after 

surgery.  (B) Absolute hemoglobin saturation was quantified as the mean of all pixels 

within each footpad. There are significant differences between the ischemic and control 

footpads at days 0, 7 and 14. (C) Data normalized to the control footpad demonstrate 

complete recovery from hypoxia in the ischemic footpad relative to the control footpad 

with significant increases in the ratio between successive time points. (D) The coefficient 

of variation is significantly greater in the ischemic footpad through day 14 of the time 

course. Data presented as mean ± SEM with n=7. * corresponds to p < 0.05 and ** 

corresponds to p < 0.01 as determined with a Wilcoxon Signed-Rank test (B-D) and a 

Bonferroni correction for multiple comparisons (C). P-values for (C) are one-sided as the 

ratio is expected to increase with time.  

 

In order to understand the underlying cause of the changes in hemoglobin 

saturation, we studied the changes in the relative amounts of oxygenated and 
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deoxygenated hemoglobin (Fig. 2.8). There was a significant decrease in oxyhemoglobin 

(p < 0.05) in the ischemic footpad compared to the control immediately after surgery 

which recovered to control levels by day 7 (Fig. 2.8A). Additionally, the concentration of 

oxyhemoglobin in the ischemic footpad surpassed that in the control footpad at day 21. 

Deoxyhemoglobin levels showed the opposite trend, with significantly higher amounts in 

the ischemic footpad relative to the control values from day 0 to day 14 (p < 0.05) (Fig. 

2.8B). By day 21, the amount of deoxyhemoglobin in the ischemic footpad is no longer 

significantly greater than that in the control. When the hemoglobin values in the ischemic 

footpad are normalized to the control values (Fig. 2.8C), significant increases in the 

oxyhemoglobin ratio occur between days 0 and 7 and days 14 and 21 (p < 0.05). Changes 

in deoxyhemoglobin are more delayed, with a significant change in the ratio occurring 

from day 7 to day 21 post-surgery (p < 0.05).  Additionally, total hemoglobin is greater in 

the ischemic footpad at days 14 and 21 (p < 0.05) (Fig. 2.8D), which agrees with 

previous results (19). Taken together, these data suggest that changes in both 

oxyhemoglobin and deoxyhemoglobin contribute to the observed changes in hemoglobin 

saturation in the ischemic hind limb.  
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Figure 2.8: Trends in oxyhemoglobin and deoxyhemoglobin content after surgery. 

(A) The concentration of oxyhemoglobin is significantly decreased in the ischemic 

footpad in comparison to the control footpad at day 0 but surpasses the control at day 21. 

(B) Deoxyhemoglobin is significantly higher in the ischemic footpad through day 14. (C) 

Relative oxyhemoglobin concentration in the ischemic footpad normalized to the control 

footpad shows significant increases in the first week and the last week of the time course. 

Deoxyhemoglobin concentration in the ischemic footpad normalized to the control shows 

a significant decrease from day 7 to day 21. (D) Total hemoglobin is significantly higher 

in the ischemic footpads at days 14 and 21. Values for each animal were obtained from 

the average of all pixels within each footpad. Data presented as mean ± SEM with n=7. * 

and ᵻ correspond to p < 0.05 as determined with a Wilcoxon Signed-Rank test (A-D) and 

a Bonferroni correction for multiple comparisons (C). In (C), * refers to oxyhemoglobin 

data points and ᵻ refers to deoxyhemoglobin data. 

 

Recovery of hemoglobin oxygen saturation in the footpads of the hind limbs 

followed a trend similar to that of the perfusion findings although the ischemic-to-control 

ratio measured by LDPI was reduced more severely at day 0 (Fig. 2.5A). The normalized 
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data (ischemic/control) obtained with these two techniques correlated well with a 

Spearman’s rank correlation coefficient of 0.81 (p < 0.001) (Fig. 2.9A). The OxyLite pO2 

measurements also indicated a trend toward recovery in the ischemic footpad, although 

the spatial variability and poor sensitivity at “normal” pO2 levels renders this 

measurement inconclusive in terms of showing complete recovery. Despite this 

variability, the mean ischemic-to-control ratios for hemoglobin oxygen saturation and 

tissue oxygenation follow a monotonically increasing function with a Spearman’s rank 

correlation coefficient of 1 (p < 0.1) (Fig. 2.9B).  

 

 
Figure 2.9: Hemoglobin oxygen saturation correlates with perfusion and tissue 

oxygenation measurements. (A) Hemoglobin saturation correlates with LDPI perfusion 

data with a Spearman’s rank correlation coefficient of 0.81 (p < 0.001). (B) Hemoglobin 

saturation ratios correlate with OxyLite pO2 ratios with a Spearman’s rank correlation 

coefficient of 1 and p < 0.1. Data from days 20 (OxyLite) and 21 (HbSat) were compared 

for the final time point for correlation. 

 

 

Comparison of the data for individual animals shows that in addition to correlating with 

current methods of evaluating the hind limb ischemia model, hyperspectral imaging 

measurements are less variable between animals than LDPI and OxyLite tissue 
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oxygenation measurements (Fig. 2.10). Hemoglobin saturation ratio data for n = 7 

animals over 21 days shows a consistent increasing trend (Fig. 2.10A). LDPI perfusion 

ratio data for the same n = 7 animals over 21 days shows an increasing trend with high 

inter-animal variation (Fig. 2.10B). OxyLite pO2 ratio data for n = 5 animals over 20 days 

is highly variable and lacks a consistent trend (Fig. 2.10C). 

 

 
Figure 2.10: Hyperspectral imaging of hemoglobin oxygen saturation is less variable 

than both LDPI perfusion and OxyLite pO2 measurements in this model. (A) 

Hemoglobin saturation ratio data for n = 7 animals over 21 days shows a consistent 

increasing trend. (B) LDPI perfusion ratio data for n = 7 animals over 21 days shows an 

increasing trend with high inter-animal variation. (C) OxyLite pO2 ratio data for n = 5 

animals over 20 days is highly variable and lacks a consistent trend. 

 

 

Doppler optical coherence tomography imaging of morphology and blood flow 

Both morphological and functional images of the hind limb vasculature were 

acquired non-invasively through the skin with Doppler OCT. The OCT technique 

provides quantitative structure-function information intravitally using a single instrument 

rather than the combination of semi-quantitative and post-mortem methods that are 

currently used to study the hind limb ischemia model. 

Two dimensional B-scans oriented perpendicular to the direction of flow in the 

femoral artery and vein show that flow in these vessels is completely obstructed in the 
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ischemic limb immediately after surgery. Representative color-coded Doppler images at 

day 0 clearly illustrate the presence of flow in the femoral artery (red) and vein (blue) in 

the control limb (Fig. 2.11A), while there is no Doppler signal from these vessels in the 

ischemic limb (Fig. 2.11B). Since the vessels turned dark blue after ligation and were 

visible by eye through the skin, it was known that the vessels were present at the location 

where the B-scans were acquired in the ischemic limb. By day 7, flow in the femoral 

artery and vein was being restored in the ischemic limb (Fig. 2.11C), although the 

magnitude of this response was not consistent across all animals. Quantification of the B-

scans in terms of the vascular index as described in Methods resulted in a decrease in the 

Doppler signal in the ischemic limb that persisted throughout the time course (Fig. 

2.11D). A Wilcoxon Signed-Rank test between the control value and the ischemic value 

at each time point results in a one-sided p-value of 0.0625, the lowest possible p-value for 

n=4 animals. The Doppler signal in the femoral artery and vein of the ischemic limb does 

not correlate well with hemoglobin oxygen saturation or perfusion measurements, 

indicating that other vessels are compensating for the lack of flow in these major vessels, 

thus restoring blood flow distally in the footpad. 
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Figure 2.11: Doppler OCT reveals changes in flow through the femoral artery and 

vein in the ischemic limb after surgery. Representative Doppler OCT B-scans showing 

the presence or absence of flow in the femoral artery (red) and vein (blue) from the 

control (A) and ischemic (B) limbs, respectively, at day 0. (C) The Doppler signal in 

these vessels increases by day 7 in the ischemic limb in one animal. (D) Quantification of 

the Doppler data shows reduction in flow in the femoral artery region distal to the vessel 

ligation point. Data presented as mean ± SEM with n=4 animals. Scale bars: 100 μm. 

 

 

Maximum intensity projections of Doppler volume data sets from the adductor 

muscle region of the hind limb revealed changes in flow signal and morphology in the 

collateral arteries over time (Fig. 2.12). Representative images at day 0 from the control 

(Fig. 2.12A) and ischemic (Fig. 2.12B) limbs show relatively small vessels with flow 

appearing to be diverted through a branching vessel in the ischemic limb. A 

representative volume projection from the adductor at day 7 shows the enlargement and 

increase in flow in a collateral vessel with the corkscrew morphology that is typical of 

these remodeling arteries (Fig. 2.12C). At day 21, there is an increase in the number of 
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branches coming from a collateral vessel in the adductor muscle region of the ischemic 

limb indicating that sustained remodeling has occurred in response to the occlusion of the 

femoral artery and vein (Fig. 2.12D). 

 

 
Figure 2.12: Representative maximum intensity projections of Doppler volume data 

sets from the adductor muscle region of the hind limb. (A) Representative image from 

a contralateral limb shows a small vessel without the corkscrew characteristic of 

collateral vessels. (B) In the ischemic limb immediately after surgery, flow is being 

diverted through a branched vessel. (C) By day 7, both flow and size have increased in a 

collateral vessel with the expected corkscrew morphology that has been described in 

previous studies [cite]. (D) At day 21, there is increased collateral vessel signal and 

remodeling in the ischemic limb as shown by the increase in branching points in this 

vessel. Scale bars: 200 μm. 
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Discussion 

 

This study was designed to test the feasibility of applying non-invasive, 

quantitative optical imaging techniques to the mouse hind limb ischemia model of 

peripheral arterial disease. Quantification of hemoglobin oxygen saturation with 

hyperspectral imaging was shown to be sensitive to changes in the oxygenation of distal 

tissue in the ischemic hind limb over a time course of 21 days. This quantitative 

measurement correlated well with two standard parameters used to track recovery: 

perfusion ratio and tissue pO2. Additionally, changes in blood flow in the femoral artery 

and vein distal to the site of vessel occlusion were monitored non-invasively with 

Doppler OCT. However, recovery of blood flow immediately distal to the ligation site 

was variable between animals and did not return to control levels, suggesting that a more 

distal location along the femoral artery may be more suitable for observing vascular 

recovery with OCT in future studies. Doppler OCT volumes revealed changes in 

collateral vessel morphology consistent with post-mortem analyses in previous studies 

(23, 25). Doppler OCT enabled acquisition of both functional and morphological data 

under a single dose of anesthesia with a single instrument. 

 

Limitations of standard techniques for hind limb ischemia studies 

LDPI perfusion ratios, pO2 measurements, and post-mortem techniques such as 

histology, angiography and micro-CT have long been used to study the vascular response 

in the mouse hind limb ischemia model (18, 23, 25, 27), These methods have enabled 

valuable insights into the processes of angiogenesis and arteriogenesis, but they are 
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limited by a lack of intravital, quantitative data and the need for multiple cohorts of mice 

for longitudinal studies that rely on post-mortem analyses for quantitative endpoints. 

While the LDPI perfusion ratio provides a non-invasive, functional endpoint, it is semi-

quantitative, superficial, and does not provide any information about morphological 

changes in vasculature. Measurements of pO2 are more quantitative and can be achieved 

with methods other than the fiber optic sensor-based system used in this study, but even 

the noninvasive electron paramagnetic resonance (EPR) oximetry method requires 

injection of an exogenous material (27). The OxyLite sensor measurements acquired in 

this study were highly variable due to the small sampling volume and decreased 

sensitivity at normal pO2 levels, but control values were within the range measured by 

Matsumoto et al. in the femoral muscle with EPR (51). This variability in measurements 

of normal pO2 makes comparisons more difficult and requires a greater number of mice 

to establish a control value. Additionally, the animals that underwent pO2 measurements 

had to be excluded from the hemoglobin saturation and LDPI data sets after it was 

discovered that the needle-guided insertion of the probe invoked a local expansion of the 

cutaneous vessels of the footpad, causing changes in hemoglobin saturation and perfusion 

measurements unrelated to the hind limb ischemia surgery. Post-mortem methods used in 

hind limb ischemia studies, such as histology, angiography and micro-CT, provide high 

resolution data for quantifying morphological endpoints, but individual animals cannot be 

tracked longitudinally and increased numbers of mice must be used to reduce the effects 

of inter-animal variability that exist even within inbred strains (28).  
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Hemoglobin oxygen saturation in hind limb ischemia 

The use of hyperspectral imaging to quantify hemoglobin oxygen saturation in the 

hind limb ischemia model was validated in this study and shows promise as an intravital 

endpoint for preclinical testing of new therapeutic treatments for PAD. Hyperspectral 

imaging is non-invasive, and an absolute value can be quantified for a functional measure 

of recovery in the ischemic footpad over time. Recovery from hypoxia is arguably a more 

meaningful endpoint than cutaneous blood flow measurements acquired with LDPI, and 

hyperspectral imaging data are less variable than single point measurements of pO2 (Fig. 

2.10). Our system acquires a 2-D image of hemoglobin saturation in the entire footpad 

(Fig. 2.7A), which is an improvement over previous studies that obtained hemoglobin 

saturation measurements with probe based-systems for optical spectroscopy (19, 25, 27). 

Prior to a recent study by Mesquita et al. that used probe-based diffuse optical 

spectroscopy (19), hemoglobin saturation in hind limb ischemia studies was expressed 

only as a ratio of the ischemic to control limb rather than an absolute value. The absolute 

values we measured in the control and ischemic limb are similar to those reported by 

Mequita et al., although some differences exist in the recovery time course due to 

differences in the depth and anatomical location of the probed tissue and the severity of 

the ischemia as determined by the vessel ligation sites. Additionally, while we observed 

significant improvements in hemoglobin saturation in the ischemic limb between time 

points, their animals did not experience significant improvements over four weeks which 

highlights the differences due to surgical procedures. 

In addition to reporting the absolute hemoglobin oxygen saturation in the footpad 

where the most severe ischemia is expected to occur, we were interested in the trends in 
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the relative amounts of oxyhemoglobin and deoxyhemoglobin that contribute to the 

changes in saturation over time. We observed that oxyhemoglobin is significantly 

decreased and deoxyhemoglobin is significantly increased in the ischemic footpad 

immediately after surgery as expected (Fig. 2.8). However, oxyhemoglobin levels in the 

ischemic footpad return to control levels by day 7 and surpassed the control levels at day 

21, while deoxyhemoglobin remains elevated through day 14 and a significant decrease 

in the ischemic to control ratio between time points does not occur until day 21. The 

increased oxyhemoglobin content in the ischemic footpad at day 21 supports the 

hypothesis that smaller vessels have remodeled and increased in number to compensate 

for the surgically induced obstruction of the large femoral artery. The longer time 

required for deoxyhemoglobin to return to control levels in the ischemic footpad suggests 

that tissue demand for and consumption of oxygen is still exceeding the capacity of the 

remodeling vasculature to deliver oxygenated blood. As perfusion increases and more 

oxygenated blood is available in the ischemic limb at day 21, consumption of oxygen no 

longer outpaces supply. It should be noted that total hemoglobin in the control limb is not 

constant over time (Fig. 2.8D). This is possibly due to the effects of post-surgery 

analgesia and decreased activity levels in the mice on circulation. For this reason we did 

not compare absolute values in the ischemic limb between time points; rather, the 

ischemic values were first normalized to the control values at each time point.  

Previous studies that observed hemoglobin oxygen saturation in the mouse hind 

limb ischemia model have not discussed the contributing trends in oxyhemoglobin and 

deoxyhemoglobin. However, clinical studies measuring hemoglobin saturation for human 

PAD and diabetes patients have recently begun to seek insight into these parameters. 
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Chin et al. tested a commercial hyperspectral imaging system to evaluate this technology 

for assessing PAD in humans (52) and found that there were no trends in oxyhemoglobin 

that correlated with other measures of PAD such as the ankle-brachial index and Doppler 

waveforms. Instead, they observed that deoxyhemoglobin content was reduced in the 

plantar angiosomes affected by PAD and that deoxyhemoglobin decreased with 

increasing severity of disease. In contrast, other studies of hyperspectral technology 

report decreases in oxyhemoglobin in diseased and ischemic states such as diabetic foot 

ulcers (32). Wounds require greater oxygen delivery and extraction in order to heal, and 

if the vasculature is incapable of meeting the oxygen supply requirements a decrease in 

oxyhemoglobin at the site would occur as expected. A possible explanation for the 

contradicting trends observed in these different models is that human PAD is a chronic 

process which may increase skin blood flow in dependent positions while impairing 

oxygen extraction (52). The trends observed in this mouse hind limb ischemia study 

agree more closely with the diabetic wound case and with studies of hemodynamics in 

acute ischemic events. Nagaoka et al. compressed the brachial artery of a healthy human 

subject while hemodynamics were measured in the middle finger for one minute (53). 

Kim et al. measured hemodynamic changes in rat leg muscles during tourniquet-induced 

ischemia followed by reperfusion (54). In both studies, oxyhemoglobin content was 

decreased and deoxyhemoglobin content was increased upon induction of ischemia. 

These trends indicate that the mouse hind limb ischemia model more closely resembles 

acute ischemic events than chronic human PAD, at least in the early time period after 

surgery when tissue demand for oxygen exceeds supply. This new insight into the 



47 

 

hemodynamics of mouse hind limb ischemia should be considered when novel 

therapeutic treatments for PAD are tested in this preclinical model. 

 

OCT imaging of vessel function and morphology 

The feasibility of obtaining both functional and morphological data in the mouse 

hind limb noninvasively through the skin with OCT has been successfully demonstrated 

in this study. Doppler OCT can provide a quantitative measure of blood flow at the 

resolution level of individual vessels as well as volumetric images of collateral vessel 

morphology while imaging through the skin without contrast agents or invasive 

procedures. Here, we detected significant differences in femoral artery blood flow in the 

ischemic limb relative to the contralateral limb after surgery (Fig. 2.11). Although blood 

flow was not restored in the femoral artery and vein immediately distal to the ligation site 

in all of the animals, the functional recovery observed in the footpad (hemoglobin oxygen 

saturation and perfusion) indicates that more distal locations along the femoral artery may 

be better regions of interest for future OCT studies. The collateral vessels that 

compensate for the loss of flow in the proximal femoral artery likely reconnect to and 

supply the femoral artery at a more distal location than where the OCT scans were 

collected in this work. In addition to femoral blood flow as a promising functional 

measure of recovery, we observed changes in collateral vessel morphology (Fig. 2.12) 

consistent with the tortuous, corkscrew morphology detected in previous studies that used 

post-mortem techniques to study the phenomenon of arteriogenesis in this model (23, 25, 

27). The ability to visualize these morphological changes intravitally and track individual 

animals over time is a significant addition to the tools available to researchers working to 
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understand the physiological mechanisms of arteriogenesis in basic research as well as 

those testing novel therapeutic treatments intended to induce collateral vessel formation. 

Recently, feasibility of obtaining depth-resolved microvascular images in skeletal 

muscle with ultrahigh sensitive optical microangiography, an extension of OCT, was 

demonstrated by Jia et al. (41). In this study, tissue perfusion in the exposed 

gastrocnemius muscle (via skin incision) was assessed over time following a single 

ligation of the femoral artery. They observed pronounced reduction in blood supply 

within one hour of ligation, followed by collateral perfusion at two days and significant 

perfusion restoration at one week post-ligation. The detection of newly developed 

collateral vessels and apparent increases in arteriole blood flow at one week agree with 

the present study in which tortuous, enlarged collateral vessels were observed at the one 

week time point (Fig. 2.12C). The differences between the perfusion response observed 

by Jia et al. and that observed in the present study during the early time points are likely 

due to the differences in the surgical procedure (single ligation versus double ligation and 

excision of vessel segment) and in the anatomical locations imaged. We selected the 

adductor muscle as the region of interest to detect collateral vessel remodeling based on 

previous work demonstrating the diversion of blood flow to the collateral arteries in this 

muscle (55). 

The OCT techniques employed in this study provide insight into both restoration 

of flow in major vessels (the femoral artery and vein) distal to the ligation sites and 

changes in vessel function and morphology in the compensatory collateral circulation. 

The restoration of flow in the distal femoral artery and vein indicates that flow is 

successfully redirected through collateral arteries that later reconnect to and reperfuse the 
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major vessels (Fig. 2.11). These data, along with the functional recovery demonstrated by 

hyperspectral imaging, also suggest that the collateral arteries undergo remodeling to the 

extent that they are able to supply blood to the distal tissues at the level of pre-ligation 

blood flow. The tortuosity of the vessels imaged in the adductor muscle supports the 

hypothesis that we are in fact detecting arteriogenesis, the process that is thought to be 

more important than angiogenesis in preventing morbidity and mortality due to arterial 

obstructive diseases (56). The changes in shear stress which induce arteriogenesis are 

expected to occur in the pre-existing collateral arterioles in the thigh near the ligation site, 

while angiogenesis is likely occurring in the distal muscles where hypoxia is more 

pronounced (25, 50, 56). Thus, the imaging location in the adductor muscle of the thigh is 

especially relevant to the study of arteriogenesis in this model. The ability to observe the 

arteriogenesis process longitudinally through the skin is a unique advantage over current 

techniques used in this model, because artifacts associated with exposure through skin 

incisions and post-mortem fixation of tissue and injection of contrast agents can be 

avoided. 

 

Conclusions and perspectives 

While hyperspectral imaging and quantification of hemoglobin oxygen saturation 

has several advantages, including the ability to study recovery from ischemia in a 

quantitative manner within the same animal over time, it is not without limitations. The 

resolution of our hyperspectral system does not currently allow us to identify individual 

vessels for co-registration of vessel morphology and function data. However, when 

hyperspectral imaging is used in combination with OCT techniques we are able to 
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acquire complementary morphology and flow data which fills the gaps in acquiring a 

complete picture of hind limb recovery. Additionally, hemoglobin oxygen saturation data 

alone does not replace the valuable insights to be gained from high resolution, 

morphological data provided by techniques such as post-mortem micro-CT (23). Again, 

we can acquire anatomic data non-invasively with OCT techniques to complete the data 

set needed for a robust analysis of arteriogenesis and recovery from hypoxia. 

Hyperspectral imaging of hemoglobin oxygen saturation and Doppler OCT 

imaging of vessel morphology and blood flow have significant advantages over 

commonly used techniques for evaluating vascular recovery in the mouse hind limb 

ischemia model. The use of multiple intravital methods, such as hyperspectral imaging 

and OCT, allows for correlations to be made between microvessel morphology and 

function. This is important because an increase in vessel density or remodeling does not 

necessarily indicate improved function and oxygen delivery to the ischemic tissue and 

vice versa. Previous studies have found that certain factors can confound these 

conclusions, such as the proliferation of unstable and immature vessels in a mouse model 

of diabetic PAD (57). Thus it is important to obtain a complete picture of changes in the 

microvasculature over time. The combination of hyperspectral imaging and optical 

coherence tomography has potential to be a powerful addition to the cardiovascular 

researcher’s toolbox since it is both non-invasive and quantitative. 
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CHAPTER 3 

 

CONCLUSION AND FUTURE DIRECTIONS 

 

 Morphological changes and functional recovery in the hind limb vasculature were 

studied in the mouse hind limb ischemia model of peripheral arterial disease. 

Quantitative, intravital and non-invasive optical imaging techniques were applied to 

obtain new insights into the dynamics of recovery in this model and address a significant, 

unmet need for an improved methodological toolbox for angiogenesis researchers. 

Hemoglobin oxygen saturation was quantified in areas distal to the site of vessel 

occlusion using hyperspectral imaging, and changes in vessel morphology and flow were 

visualized and quantified using optical coherence tomography. Hemoglobin oxygen 

saturation correlated with traditional perfusion measurements, validating this quantitative 

endpoint for use in this preclinical model. Additionally, OCT provided previously 

unattainable visualization of hind limb vasculature in a given mouse over time without 

the need for contrast agents, in contrast to the post-mortem techniques of micro-CT and 

histology. These results suggest that hyperspectral imaging and OCT may be further 

developed as tools for studying the mechanisms of vascular recovery in this model and 

evaluating new therapeutic treatments in preclinical studies. 
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Quantitative Endpoints for Optical Imaging Methods 

 

 The results presented in Chapter 2 indicate that hyperspectral imaging and optical 

coherence tomography are valid techniques for studying the hind limb ischemia model. 

However, the full power of OCT to provide robust, quantitative endpoints has not yet 

been utilized. Examples of quantitative endpoints that could be derived from OCT data 

are summarized in Table 3.1. Feasibility of extracting absolute velocity from the hind 

limb vasculature in mice has been demonstrated in a pilot experiment (Fig. 3.1). In this 

experiment, the absolute blood velocity along the center line of the vessel was computed 

from the phase shift measured by Doppler OCT using the relation described by Davis et 

al. (58) which corrects the data for the angle of incidence and fits the flow profile to a 

second order polynomial. From the velocity profile in a vessel of interest, the blood flow 

rate and vessel wall shear rate can be calculated as defined in Table 3.1. In addition to 

extracting quantitative endpoints from Doppler OCT images, software can be developed 

to automatically segment the vessels in three dimensions using filtering techniques 

applied to the speckle variance data. This segmentation would facilitate quantification of 

the vascular volume fraction and connectivity endpoints. Finally, the structure-function 

relationships in the vasculature can be visualized by overlaying the Doppler data onto the 

corresponding morphological image which allows for visualization of blood flow 

dynamics in the context of vessel structure.  
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Table 3.1. Endpoints to be derived from speckle variance and Doppler OCT data. 

Endpoint Definition 

Vascular volume 

fraction 

Volume of all vessels / total tissue volume in region of 

interest 

Connectivity Maximal number of branches that can be broken within a 

structure before it is divided into two separate parts 

Blood flow rate 1/2Vmaxπr
2
, where Vmax is the maximum blood velocity 

and r is the vessel radius 

Vessel wall shear rate Derivative of the 2nd order polynomial fit to the velocity 

flow profile at the vessel boundary  

Vascular index Doppler-positive pixel count integrated over the volume of 

interest 

 

 
Figure 3.1: Doppler OCT of femoral artery and vein in a control hind limb. A 

Doppler OCT B-scan was acquired through the skin of the control hind limb of a mouse. 

Blue and red colored pixels indicate blood flow in opposite directions. The inset is a plot 

of the velocity flow profile in the femoral artery with a second order polynomial curve fit. 

 

With these quantitative endpoints, the OCT techniques can be more robustly compared to 

the established methods of studying the hind limb ischemia model including micro-CT 

and LDPI. Additionally, new insight into the physiological processes of arteriogenesis 
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and angiogenesis may be gained through measurement of previously unattainable 

parameters such as the shear rate on the vessel wall. 

 

Future Directions 

 

 After image processing techniques and extraction of quantitative endpoints from 

OCT and hyperspectral data have been optimized, we will seek to validate the sensitivity 

of the optical imaging methods with a known proangiogenic perturbation applied to the 

hind limb ischemia model. A growth factor such as VEGF or FGF will be administered in 

protein form encapsulated in biodegradable nanoparticles for sustained delivery as 

described in previous studies (22). VEGF has been shown to accelerate 

neovascularization in the mouse hind limb ischemia model (22), and FGF has been 

shown to induce as much if not greater collateral vessel formation compared to VEGF 

(59). Comparison between mice receiving treatment and control mice that do not receive 

a growth factor will provide a means to test the sensitivity of the hyperspectral and OCT 

techniques for detecting the differences in treatment versus control outcomes. Sensitivity 

to treatment effects is critical to using these techniques to evaluate novel therapeutic 

treatments in the future. 

 Another future direction of interest is a study of the hind limb ischemia model in 

diabetic mice. As described in Chapter 1, diabetes mellitus (DM) significantly increases 

risk and severity of peripheral arterial disease. Diabetes is linked to impaired collateral 

vessel formation and reduced treatment response (7, 60), indicating a need for studies that 

more clearly elucidate the differences between revascularization in diabetic and non-
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diabetic PAD. It is believed that shear stress is a key stimulus for arteriogenesis, but to 

date there is no experimental evidence of how this mechanism is dysfunctional in DM 

(61-63). 

 The streptozotocin model of DM has been used extensively in preclinical research 

to study the pathways that lead to insulitis and β cell death (20). The mouse hind limb 

ischemia model (18) has been used to study postnatal blood vessel formation and plays a 

vital role in testing new therapeutic angiogenesis approaches as described in Chapter 1. 

Recently, these models have been combined in an effort to develop better treatments for 

DM-PAD patients (64, 65). If the diabetes phenotype is characterized with more 

informative and quantitative techniques such as hyperspectral imaging and OCT, it may 

lend insights that will ultimately lead to the development of more effective therapeutic 

treatments for diabetic PAD patients.  
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