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      Decision makers often confront an inability to understand the consequences of interactions 

within systems of systems (SoS), which can have physical and human components and exhibit 

hybrid (continuous and discrete) dynamics.  The human and physical interactions with the 

environment and related uncertainties can make optimization and control difficult and result in 

unintended consequences. As examples, transportation networks may experience lengthy 

delays or gridlock, and economic stimuli may be ineffective, as a result of suboptimal network 

control policies. The objective of this dissertation is to motivate, propose and implement a 

framework that provides decision support in order to manage and operate human-physical 

networks with hybrid dynamics. The stochastic human-physical analysis framework facilitates 

the integration of system simulation, uncertainty analysis and optimization under uncertainty 

for this class of problems.   

     Specifically, this dissertation: 1) motivates the necessity for a SoS approach to optimizing 

network control policy; 2) proposes a SoS approach to policy analysis and design under 

uncertainty; 3) develops an integrated discrete choice and agent-based simulation approach for 

stochastic human-physical networks with hybrid dynamics; 4) develops and validates 

computationally inexpensive surrogate models to predict high-fidelity simulation outputs, and 

uses these models to perform probabilistic reachability analysis and sensitivity analysis; and             

5) performs uncertainty propagation and stochastic policy optimization considering both 

cooperative and non-cooperative decision-makers.  
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CHAPTER I 
 

INTRODUCTION 
 

“Mathematics shows many faces as it works in diverse settings. Statistics measures the quality of 
information. Optimization finds the best alternative. Probability quantifies and manages uncertainty. 
Control automates decision making. Modeling and computation build the mathematical abstraction of 
reality upon which these and many other powerful mathematical tools operate. Mathematics is indeed 
the foundation of modern decision making.” 

                   -- Paul Davis, Worcester Polytechnic Institute 

     Interdependent systems with human decision-makers constitute many current systems of 

systems (SoS) problems.  SoS examples are urban transportation networks (Sheffi, 1985), 

ecomomic infrastructure (Roberts, 2004), military operations and logistics (Sage and Cuppan, 

2001), (Pei, 2000), social networks (Lukasik, 1998) and private enterprises (Carlock and Fenton, 

2001), just to name a few.  Systems of systems often possess multidisciplinary attributes and 

contain hybrid (discrete and continuous) dynamics.  But perhaps the most interesting element of 

many SoS is the human element.  The “humans in the loop” make associated problems inherently 

difficult to model and analyze.  Because humans both affect and react to their environment, the 

nature of their interdependent relationship is inherently complex.  Failure to properly account for 

the nature of the interactions between these systems can lead to unintended events with 

unanticipated consequences. A computationally affordable approach to integrate multi-

disciplinary system models and uncertainty analysis to provide optimal control policies to SoS 

decision-makers is needed.  

     This dissertation motivates, proposes and implements a framework that provides decision 

support to those who manage and operate human-physical networks with stochastic hybrid 

dynamics. The stochastic human-physical analysis framework facilitates the integration of system 

simulation, uncertainty analysis and optimization under uncertainty for this class of problems.  
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The approach takes advantage of well-established techniques from agent-based modeling, 

surrogate modeling, probability and statistics and optimization, where possible, but in some cases 

proposes new techniques for addressing some of the component issues.  The necessity for a SoS 

approach is motivated through a detailed investigation into the transportation systems problem of 

optimal ramp metering.  Then, a basic SoS approach is proposed in the context of an economic 

stimulus problem.  An integrated discrete choice and agent-based simulation approach for 

stochastic human-physical networks with hybrid dynamics is developed.  Computationally 

inexpensive surrogate models are developed and validated to predict high-fidelity simulation 

outputs. These models are used to perform probabilistic reachability analysis and sensitivity 

analysis for network policy.  Finally, uncertainty propagation and stochastic policy optimization 

is performed for cooperative and non-cooperative decision-makers.  The result of this work is a 

methodology that integrates multi-disciplinary models; performs uncertainty analysis; generates 

output that satisfies reliability and performance requirements; and provides risk-informed 

decision support to those who operate and manage stochastic human-physical systems with 

hybrid dynamics.  

 

1.1 Background 

 

1.1.1 History 

     General Systems Theory has gathered momentum since 1948 through the pioneering work of 

Wiener, von Neumann, Bertalanffy, Ashby and Forrester, among many others (Francois, 1999).  

Out of this rich history, a new area of research has grown.  Despite falling short of the goal of a 

grand unified theory of systems, a science of systems has begun to emerge over the last two 

decades (Troncale, 1985), (Bürger, 1991).  More recently, Ossimitz (2003) supports the call for 

further advances in systems thinking stating,  
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“Through analysis of systems (consisting of components which influence each other), 
interrelated thinking, has become necessary in many areas and should be promoted.”  

One research area in which this should be promoted is system of systems.   

     The relatively new field of System of Systems (SoS) research has yet to settle on a common 

taxonomy or even a widely accepted definition for a SoS.  System of Systems is a relatively new 

term that is being applied to large scale inter-disciplinary problems with multiple, heterogeneous, 

distributed systems, which may be embedded in networks, at multiple levels.  While particular 

views vary, it is widely agreed that System of Systems is a new and critical discipline for which 

design and analysis techniques are incomplete (Crossley, 2004).  Manthorpe (1996), Kotov 

(1997), Luskasik (1998), Pei (2000), Sage and Cuppan (2001), and Carlock and Fenton (2001) 

offer definitions of systems of systems.   

     One definition common in literature is that SoS is a collection of different elements, which can 

have physical and human components and exhibit hybrid (continuous and discrete) dynamics, and 

together produce results not obtainable by the elements alone.  The elements can include people, 

hardware, software, facilities, and policies; that is, all things required to produce systems-level 

results (Rechtin, 2000).  Examples of SoS include environmental systems, economies, supply 

chains, information systems, biological systems and transportation networks.  Evidence of the 

popularity of SoS research is showcased by numerous recent SoS developments (Valerdi et al, 

2007). 

• Advent of Institute of Electrical and Electronics Engineers (IEEE) Conference on SoS.  
• Inception of the International Journal of SoS Engineering.  
• Definition of the SoS signature areas at Purdue University.  
• A National Center for Systems of Systems Engineering at Old Dominion University.  
• Inclusion of SoS considerations in the Defense Acquisition Guidebook (DAU, 2006). 
• Development of systems uniquely labeled System-of-Systems such as Army’s Future 

Combat Systems by Boeing and Science Applications International Corporation (SAIC).  
• Creation of the SoS Engineering Center of Excellence by the Office of the Under 

Secretary of Defense for Acquisition, Technology and Logistics, specifically the Deputy 
Director of Joint Force Integration.  
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     The need to solve SoS problems is important not only because of the growing complexity of 

today’s systems, but also because SoS problems involve decisions that commit large amounts of 

money and resources and outcomes that can carry long-term consequences.  An example of this 

kind of consequence is shown in the failure to properly address interactions and complexities of 

SoS in the national response following Hurricane Katrina in 2005. 

      Leading researchers in “systems thinking” have published system classifications to describe 

the relationship among constituent systems (Gharajedaghi, 2005), (Buckley, 1967).  Inherent 

traits (Maier, 1994) are is one way to describe a system of systems.  Another method is by 

identifying the system bonds or interactions defined by the types of flows that exist between the 

components.  Pahl and Beitz (1996) describes the kinds of flows that bond systems (i.e., link their 

interactions) as information, energy, material, and spatial relations.  Gharajedaghi (2005) states, 

“Mechanical systems are energy-bonded and sociocultural systems are information-bonded.”  For 

many SoS, the laws of physics govern the relationship between physical elements, but the human 

behavior is much more uncertain.  I will use this definition for the purposes of this research 

(DeLaurentis, 2005): 

“A collection of trans-domain networks of heterogeneous systems likely to exhibit 
operational and managerial independence, geographical distribution, and emergent 
behaviors that would not be apparent if the systems and their interactions are modeled 
separately.”  

     Examples of current SoS research challenges were expressed in a 2008 call for proposals by 

the Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR) 

and the Office of Science (SC).  The announcement outlined a need for research including 

techniques for formulating, analyzing and solving challenging optimization problems in complex 

multiphysics systems.  Additional areas of interest in this category included risk analysis and the 

quantification and mitigation of uncertainty.  Three listed areas of interest motivate this line of 

research (DOE, 2008).  They were: 
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• Techniques for integrating models with data to support decision-making 
• Analysis and algorithms for stochastic optimization 
• Related methods for sensitivity analysis, risk analysis, and uncertainty assessment   

To meet the need for computational decision support methods that provide accurate, efficient 

solutions to multi-disciplinary problems, this dissertation draws on concepts from a broad class of 

academic areas including systems theory, statistical theory, network theory and decision theory.   

Chapter 2 contains a comprehensive review of the literature pertaining to the topics included in 

this dissertation.  The integration of these topics forged an opportunity to extend the body of 

knowledge through the research objectives addressed in this dissertation. 

 

1.1.2 Motivation 

     Most Americans participate in a transportation system of systems everyday when they 

commute to work and for many of these travelers SoS stands for “Source of Stress.”  

Transportation systems have become ever more linked to broader issues in society and the 

economy, particularly in America.  Americans are the most mobile people on earth, but 

transportation systems are being pushed to the limits due to population growth, technological 

change and increased globalization of the economy (TRB, 2005).  Transportation systems 

problems are one of many systems of systems problems for which current solution methods and 

problem solving approaches are inadequate.  Optimally controlling interdependent SoS is 

especially challenging, given the technical complexity and the difficulty in modeling and 

predicting human choices.  An example of such a problem is the ramp metering to optimally 

control a transportation network.  Of the numerous traffic control strategies employed, perhaps 

the most prevalent strategy is ramp metering.  A ramp metering scheme consists of controlling 

boundary conditions with metering lights which delay the entrance of cars onto the highway.  The 

intent of such flow control strategy is to improve operating conditions on the highway by 

restricting the entrance of vehicles.  Since traffic engineers control the rate of flow of vehicles 
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onto the highway, it is natural to ask how best to control the rate of flow in order to optimize 

some system-level performance metric. 

     In response to the challenges, the vision for traffic management is, “an integrated control of 

freeway networks involving both ramp metering and route guidance; however, only preliminary 

measures are currently in use” (Papageorgiou et al, 2003).  Papageorgiou et al (2003) identified 

the following issues in future transportation research specific to road traffic control strategies and 

their implementation:    

• Operational control systems are the exception, rather than the rule 
• Employing optimal control algorithms can dramatically improve freeway congestion 
• Substantial improvements are achievable via modern traffic control methods and tools 
• Improvements are possible at the network-wide level 

Methodological developments are required to produce integrated control strategies that are 

efficient and applicable to large networks.  Kotsialos and Papagerorgiou (2001) and Hoogendoorn 

and Bovy (2001) confirm this assessment of current research related to transportation 

optimization and control.  The goal of this dissertation effort is to further this line of research 

effort with a contribution to the body of knowledge.      

   

1.2 Problem Statement and Research Overview 

     Decision makers often confront an inability to understand the consequences of interactions 

within systems of systems (SoS), which can have physical and human components and exhibit 

hybrid (continuous and discrete) dynamics.  The human and physical interactions with the 

environment and related uncertainties can make optimization and control difficult and result in 

unintended consequences. For instance, transportation networks may experience lengthy delays or 

gridlock and economic stimuli may be ineffective as a result of suboptimal network control 

policies. The objective of this dissertation is to motivate, propose and implement a framework to 

provide decision support to those who manage and operate human-physical networks with hybrid 
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dynamics. The stochastic human-physical analysis framework facilitates the integration of system 

simulation, uncertainty analysis and optimization under uncertainty for this class of problems.   

 

1.3 Research Objectives 

     The research question addressed in this dissertation is how a system of systems approach can 

be applied to optimizing control policy in human-physical networks.  Such approaches require 

optimization under uncertainty characterized by the necessity of making decisions without 

knowing what their full effects will be (Rockafeller, 2001).  Given the complexity of SoS 

operational environments, policy-makers must to choose policies under uncertainty which will 

bring about system-wide improvement and ensure catastrophic failure is avoided.  The objective 

of this dissertation is to motivate, propose and implement a framework that provides decision 

support to those who manage and operate these human-physical networks.  The proposed research 

does not directly address SoS architecture or design issues; rather it accepts the architecture and 

design as given and seeks to improve the overall performance of the existing SoS through 

identifying optimal operational controls.  

     To accomplish these goals, this dissertation: 1) motivates the necessity for a SoS approach to 

optimizing network control policy; 2) proposes a SoS approach to policy analysis and design 

under uncertainty; 3) develops an integrated discrete choice and agent-based simulation approach 

for stochastic human-physical networks with hybrid dynamics; 4) develops and validates 

computationally inexpensive surrogate models to predict high-fidelity simulation outputs, and 

uses these models to perform probabilistic reachability analysis and sensitivity analysis; 5) 

performs uncertainty propagation and stochastic policy optimization considering both cooperative 

and non-cooperative decision-makers.   An overview of each of the research objectives follows. 
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1.3.1 The Necessity of a System of Systems Approach to Optimizing Individual Flow 
Systems  

     This objective motivates the necessity for a SoS approach to optimizing network control 

policy.   Using an example ramp metering problem, two optimal ramp metering formulations are 

examined.  The example problem is a physical system model based on actual flow physics 

(including time and space elements) with user behavior considered assumed and fixed.  

Shortcomings are identified in single system approaches that use mathematical programming to 

determine optimal policies for controlling the flow of highway traffic in order to optimize some 

system-level measure of performance.  The sensitivity of ramp metering strategies to choices of 

performance measures in the objective function is investigated.   

     Specifically, this objective uses a partial differential equation (PDE) constrained optimization 

approach to the ramp metering problem and compares results for formulations based on total 

vehicle miles traveled (VMT) and on total delay.  VMT and delay-based formulations are shown 

to produce optimal strategies that differ in terms of metering restrictiveness and locations.  An 

expanded formulation of the optimal ramp metering problem is proposed which explicitly 

includes the impact of capacity reduction due to poor queue discipline at diverge bottlenecks into 

the optimization problem.  Using synthetic data, this objective also illustrates how traditional 

optimal ramp metering formulations may inadvertently cause traffic problems for both the 

highway and associated surface streets.  In light of these results, this objective advocates 

formulating and solving SoS problems as multi-objective optimization problems which account 

for the broadest set of transportation system priorities. 

     The contribution of the work is in showing how optimizers can exploit incomplete 

mathematical models of the evolution of flow and density on freeway segments in ways which 

may cause such unintended consequences as a drop in freeway capacity at diverge bottlenecks. 

This phenomenon is usually not considered, even in the most sophisticated of ramp metering 
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algorithms. These effects are shown to be potentially exacerbated by the choice in objective 

function.  One conclusion is that optimization formulations should take into account the 

distribution of the origins of drivers who are headed for the diverge bottleneck.  Another 

conclusion is traditional methods can adversely impact connected flow network performance and 

a broader systems perspective is needed to better address the problem. 

     In light of these results, the following features are concluded to be desirable in developing 

optimal network control strategies: (1) when possible, explicitly consider the physics of network 

and related uncertainties; (2) integrate the coupled nature of human-physical environment where 

flow exchange is based on user choice; (3) formulate control strategies based on multi-objective 

optimization which accounts for the broadest set of system priorities.  The extension of this 

research to include these mentioned features are the focus of a later objective. 

 

1.3.2 An Integrated Approach to Policy Analysis and Design Under Uncertainty for SoS 

     This objective proposes a system of systems approach to policy analysis and design under 

uncertainty.  Human and physical systems often interact with each other and form networks of 

systems, also referred to as systems of systems (SoS).  In developing operational policies for 

these systems, it is important to model the operation of the system of systems, represent and 

propagate uncertainties through the operational model, and optimize the system under 

uncertainty.  This objective proposes a framework for modeling and optimizing policy decisions 

for systems of systems under uncertainty in the context of economic policy planning.  The 

numerical example demonstrates the integrated approach to system simulation, uncertainty 

analysis, and optimization under uncertainty for a static, multi-sector economic stimulus problem 

with linear interdependencies.  These tools combine to provide decision-makers insights into the 

impacts of primary and secondary effects resulting from system interdependence. A decoupled 

approach to optimization under uncertainty is employed using first-order approximations to 
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probability estimates.  The example using an economic network illustrates how planners can 

make more robust decisions under uncertainty using reliability-based optimization methods. 

 

1.3.3 Modeling and Simulating Stochastic Human-Physical Networks with Hybrid 
Dynamics Using Agent Based Models 

     This objective develops an integrated discrete choice and agent-based simulation approach for 

stochastic human-physical networks with hybrid (continuous and discrete) dynamics.  Previous 

models of stochastic human-physical networks often exclude many of the realistic network 

factors such as hybrid dynamics and human behavior.  The human and physical interactions with 

the environment and related uncertainties can make optimization and control difficult and result 

in unintended consequences.   

     Several traditional approaches to address interdependent network problems are based on 

network equilibration (Nagurney et al, 2002) and (Nagurney and Toyasaki, 2003).  However, 

these techniques lack a computationally efficient way to optimize under uncertainty 

(Papageorgiou et al, 2003).  This objective presents a decision support framework for SoS policy 

makers to affordably evaluate existing or potential policies for human-physical systems in which 

network flows and human decisions are coupled.  The stochastic human-physical network with 

hybrid dynamics is modeled and simulated using agent-based stochastic simulation.   

     The approach developed in this objective facilitates explicit consideration of multi-network 

physics through agent-based stochastic simulation and incorporates the dual impacts of user 

decisions on physical system performance and the physical system state on subsequent user 

choice.  For a given network operating environment, modal preferences are estimated for a set of 

control policies (i.e., modal access costs and network access schedule) and total network demand.   

Expected network performance and network vulnerabilities can be estimated based on user-

informed equilibrium network performance and inherent preferences among the user population.  



11 

 

Resulting trends and sensitivities serve as insights to inform SoS policies aimed to regulate or 

incentivize preferred user behavior and shape policy decisions such as pricing modal access to 

promote a desired aggregated flow across the multi-modal network.   

 

1.3.4 Surrogate Modeling, Model Validation and Sensitivity Analysis for Stochastic 
Human-Physical Networks with Hybrid Dynamics 

     This objective develops and validates computationally inexpensive surrogate models to predict 

high-fidelity simulation outputs, and uses these models to perform probabilistic reachability 

analysis and sensitivity analysis.  Gaussian process models and Quadratic Response Surface 

models are developed to represent the continuous variables (i.e., tolls, fares, signal timing).  In 

order to determine which continuous models are most appropriate for predicting the responses, a 

quantitative model evaluation method called a Predicted Residual Sum of Squares (PRESS) test is 

performed (Allen, 1971).  To evaluate the predictive strength of the developed models, each of 

the models is compared to high-fidelity simulation outputs and statistical tests are performed on 

the fitted models.  The quadratic response surface models are shown to be the most appropriate 

surrogates for the four continuous model outputs.  A binary logistic regression model is 

developed to address the prediction of categorical responses (i.e., pass/fail) and is used to perform 

probabilistic reachability analysis to assess the probability of the human-physical network with 

stochastic hybrid dynamics reaching a failed state.  Finally, sensitivity analysis is performed to 

demonstrate the effects of varying control values on output metrics of interest and the SoS 

objectives. 

 

1.3.5 Uncertainty Propagation and Cooperative/Non-Cooperative Policy Optimization for 
Stochastic Human-Physical Networks with Hybrid Dynamics   

     In this objective, system metrics are evaluated under uncertainty and stochastic policy 

optimization for cooperative and non-cooperative decision-makers is performed.  The system 
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objectives of network delay, mass transit ridership, total revenue and network reliability are 

considered.  Surrogate models are used to generate output statistics for control policies evaluated 

over a stochastic demand using Monte Carlo simulation.  Analysis is performed under uncertainty 

to optimize weighted combinations of policy objectives, so the impacts of stochastic demand and 

varying objective weights are considered.  Finally, policy optimization is performed and 

compared for two network cases.  In the first case, centralized policy optimization is performed 

for cooperative system leaders that are willing to adhere to control policies set by a central 

authority.  In the second case, a de-centralized optimization is performed for competitive system 

leaders who seek to myopically optimize the objectives that most benefit their constituent system. 

 

1.4 Research Significance 

     This research extends the current approaches to optimally controlling stochastic human-

physical networks by addressing the hybrid dynamical evolution in a computationally efficient 

way.  The stochastic processes are modeled with a high fidelity simulation and the physical 

system evolves in response to network controls.  Additionally, uncertain initial conditions and 

model parameters contribute to the system evolution which may or may not reach a failed system 

state.   The best indication of the successfulness of a given control strategy can only be shown in 

implementation. However, the ability to provide uncertainty-based estimates in a reasonable 

amount of time is valuable decision support for those who manage and operate stochastic human-

physical network with hybrid dynamics.   

     Based on my review of the literature, it is my opinion that perhaps the greatest technical 

challenge, in SoSE at the present, is the integration of all the aspects of SoS modeling, analysis, 

optimization and control.  This dissertation presents one approach for addressing this challenge 

by offering an uncertainty-based, multi-disciplinary optimization approach to integrate multi-
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disciplinary models; perform uncertainty analysis; generate output that satisfies reliability and 

optimization analyses; and provide risk informed decision support.  

     The research described in this dissertation is a contribution to a systems science aimed at 

meeting the need for computational decision support to those who manage and operate human-

physical networks with hybrid dynamics. Such support benefits system leaders by identifying 

strategies to optimize both collective and competitive objectives.  This benefits the public by 

offering policy solutions to improve the quality of their experience in complex networks, while 

ensuring the likelihood of catastrophic failure is minimized.  It is my goal that this research 

meaningfully advances the state of the art for finding efficient, reliability-based solutions to some 

of the interdependent, multi-disciplinary challenges in our world.   
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2 CHAPTER II 
 

          LITERATURE REVIEW 
 

     A review of concepts and literature relevant to this research (organized by topic) is presented 

here.  The chapter is organized by topic for ease of reference.  The literature review is organized 

as follows— 

1. System of Systems 
2. Multi-Disciplinary Optimization 
3. Stochastic Programming 
4. Reliability Analysis 
5. Systems Modeling 
6. Game Theory 

7. Uncertainty Analysis 
8. Uncertainty-based Design 
9. Surrogate Modeling 
10. Transportation Theory 
11. Logistic Regression 
12. Probabilistic Reachability 

 
     System of systems (SoS) analysis and design for a given architecture involves five key 

components: (1) optimization, combinatorial problem solving; (2) dynamics and control; (3) non-

deterministic analysis; (4) game theory and economic/competitive behavior; and (5) domain 

specific modeling (Crossley, 2004).  Various methods exist for each of these domains.  Perhaps 

the single greatest challenge in system of systems engineering is integrating the various available 

tools into a framework for formulating and solving system of system engineering problems.  

Multi-disciplinary optimization (MDO) is one approach to providing integrated solutions. 

     MDO is capable of producing solutions which include more accurate analysis because the 

interactions among disciplines are considered. Reliability analysis techniques are capable of 

modeling, in a probabilistic framework, many uncertainties inherent to SoS problems.  

Techniques such as the first-order reliability method (FORM) can provide a failure probability at 

lower computational expense than required for simulation-based uncertainty analysis methods.  

Current methods of MDO accommodate system analysis and design in three disciplines: 

optimization, uncertainty analysis, and domain-specific modeling. 
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     SoS can exhibit evolutionary or emergent behavior and involve multiple decision-makers and 

humans in the loop.  The human-environment interactions occur over space and time. Various 

modeling strategies exist which are capable of modeling these phenomena at varying levels of 

sophistication and detail, including input-output analysis, systems dynamics, network models, 

agent-based simulation.  Each of these techniques will likely have their place in the modeling, 

design, and analysis of systems of systems.  

     Input-output analysis can be useful in understanding interdependency in a system of systems, 

but cannot model SoS problems at a microscopic level or handle changing SoS topologies when 

member systems come online or go offline.  Network models describe the topology of a SoS and 

are a central part of SoS modeling and simulation.  Agent-based simulation allows for modeling 

decision logic of the SoS elements and for capturing emergent behavior in the dynamically 

changing network topology. 

     There are clear benefits in using uncertainty-based design methodologies. First, confidence in 

analysis tools increases as physical, model, and data uncertainties are systematically addressed. 

Designs are more robust as a wider array of situations is considered.  Finally, uncertainty-based 

design allow the designer to consider extreme circumstances and can allow for planning that 

accommodates the worst possible conditions. 

     While the benefits of uncertainty-based design are clear, there are several difficulties which 

need to be addressed if these benefits are to be realized. Current uncertainty-based methods are 

more complex and significantly more computationally expensive than deterministic methods, and 

more efficient methods of performing uncertainty-based design are clearly needed. With the high 

computational cost of probabilistic design, it is too expensive for use with high fidelity models.  

Multi-disciplinary analysis only compounds the problems of computational effort, since such 

problems must generally be solved iteratively. 
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     A comprehensive solution methodology must address modeling, design, analysis and 

optimization.  Because SoS research is less than 20 years old, there are some significant areas that 

provide great opportunity for study, particularly in the area of MDO when the disciplines are both 

human and physical.  Smith and Mahadevan (2005) developed efficient methods for reliability 

analysis of multi-disciplinary systems, and has further integrated MDO and RBDO for multi-

disciplinary energy-bonded systems.  However, the current literature is lacking advance in the 

following areas: (1) developing MDO methods for SoS with energy and information bonded 

systems; (2) developing efficient reliability-based methods of solution to MDO problems 

comprised of energy and information bonded systems, (3) a stochastic programming approach to 

optimize in a Multi-disciplinary SoS performance, (4) a cohesive method to efficiently integrate 

surrogate models into the MDO process (DOE, 2008).  Fundamental methodological 

developments in system of systems engineering must be generic enough to be able to 

accommodate a wide range of diverse models.   

     Due to the size of SoS problems, surrogate models are critical to reducing the computational 

expense associated with the modeling, uncertainty analysis, and optimization of systems of 

systems.  Common surrogate techniques for modeling continuous processes include Gaussian 

Process modeling and quadratic response surface methods.  For discrete events, logistic 

regression has become a standard method of analyzing model relationships (Hosmer and 

Lemeshow, 2000).  Surrogate models facilitate the performance of uncertainty analysis. 

     Uncertainty analysis is valuable to decision-makers who design, operate and control SoS to 

determine when and under what conditions the network is likely to fail.  An important approach 

for hybrid systems, known as reachability analysis, is rooted in classical control theory evaluates 

whether starting from a given set of initial states the system will reach a certain set or not (Abate 

et al, 2008).  For deterministic problems, reachability is a yes/no problem; in stochastic problems, 
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trajectories originating from each initial state have likelihoods of reaching the failed state (Abate, 

2007).   

     Finally, two application domains are explored in this dissertation.  The data used in both 

example problems in this research are synthetic values based on typical figures and are not 

intended to solve a specific number problem, rather to produce generalized findings.  An 

economic stimulus example is used to introduce the optimization under uncertainty approach.  

Relevant economic concepts such as Leontief Input-Output modeling are reviewed in this 

chapter.  The second application domain of a transportation network example is used to illustrate 

the developed stochastic human-physical analysis framework and showcase the surrogate 

modeling, uncertainty analysis and policy optimization.  Therefore, the relevant transportation 

domain concepts and fundamental theory are also reviewed in this chapter. 

 

2.1  System of Systems (SoS) 
 

2.1.1 General Systems Theory  

     General Systems Theory has gathered momentum since 1948 through the pioneering work of 

Wiener, von Neumann, Bertalanffy, Forrester and Ashby, among many others (Francois, 1999).  

Bartolomei (2007) recognizes key theoretical approaches in systems theory and charts its origin 

in natural science and its growth through social science, political science, management science 

and most recently in engineering science.  The systems view gives a distinct view of humans and 

nature (Midgley, 2003).  Despite falling short of the goal of a grand unified theory of systems, a 

skeleton for a science of systems is beginning to emerge (Troncale, 1985). 

 

2.1.2 System of Systems 

     System of Systems is a relatively new term that is being applied to large scale inter-

disciplinary problems with multiple, heterogeneous, distributed systems, which may be embedded 
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in networks, at multiple levels. In addition to the definitions listed in Section 1.1, the Office of the 

Under Secretary of Defense for Acquisition, Technology, and Logistics, provides a frequently 

asked questions document about “systems of systems” describing a system of systems as, “a set 

or arrangement of interdependent systems that are related or connected to provide a given 

capability” (OUSD-ATL link, 2004).  System of Systems Engineering, while still predominantly 

focused on the defense sector, is beginning to be considered for other challenges; some specific 

applications that are being explored are in transportation systems, emergency response, and space 

exploration. Other applications where a system of systems approach can be applied are 

healthcare, internet design, software integration, homeland security, and other national and global 

challenges.   

     Current research efforts in system of systems engineering problems includes, but is not limited 

to: establishment of an effective frame of reference; crafting of a common lexicon; study of 

architecting; study of various modeling & simulation techniques, including network theory, 

systems dynamics, and agent-based simulation; decision making and design under uncertainty 

and multi-disciplinary analysis and optimization (Crossley, 2004).  Central to all of the proposed 

definitions is the potential for human involvement both as participants and decision-makers.  

Although the relatively new field has yet to settle on a common taxonomy, the essence of the 

descriptions in Maier (1998), Crossley (2004) and DeLaurentis (2005) is similar and a common 

lens through which this research and most SoS research is viewed.  

 

2.1.3 Energy-Bonded and Information-Bonded Systems 

     Inherent traits are just one way to describe a system of systems.  Another method is by 

identifying the system components across domains and the interaction between these components.  

Pahl and Beitz (1996) define the types of flows that exist between the systems.  Pahl and Beitz 

describe the kinds of flows that bond systems together as information, energy, material, and 
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spatial relations.  Boulding (1956) described open systems as systems in which information, 

energy, or material was exchanged with an environment.  The conceptual idea of describing the 

system properties that bond it to other systems or to its operating environment is where I derive 

the use of the terms energy-bonded and information-bonded systems for this research. 

Before developing a strategy for using control mechanisms to influence SoS with energy and 

information bonds, I must first define the terms.  Leading researchers in “systems thinking” have 

published system classifications to describe the relationship among constituent systems.  

Gharajedaghi (2005) provide the following description: 

While elements of mechanical systems are “energy bonded,” those of sociocultural systems 
are “information-bonded.”  In energy-bonded systems, laws of physics govern the relationship 
between elements…but the behavior of active parts (i.e., humans) in information-bonded 
systems is considered a voluntary association in which bonding is achieved based on perception. 
 
Buckley (1967) explains the dynamics of information bonded systems as a function of the 

effect of information (or lack thereof), rather than energy transmission.  Information-bonded 

systems can be viewed as a set of elements linked almost entirely by intercommunication of 

information.  It is an organization of meaning emerging from a network of interactions among 

individuals (Gharajedaghi, 2005).  Networks in which both information-bonded systems and 

energy-bonded systems interact include transportation, biomedical, technology and security 

networks.  The contemporary organizational environment requires successful integration and 

interoperability of systems of systems (Brooks and Sage, 2005).  This research develops a 

methodology for analyzing and optimizing interdependent human and physical systems in order 

to provide decision support to policy makers.  

  

2.1.4 System of Systems Engineering (SoSE) 

     The emerging system of systems context arises when a need or set of needs are met with a mix 

of multiple systems, each of which are capable of independent operation but must interact with 

each other in order to full the global mission or missions.  The architecture of a system of systems 
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may include existing and yet-to-be-designed aircraft, satellites, ground vehicles, ground 

equipment, and other independent systems, in addition to their human operators and managers. 

     The phrase “system of systems” has been in use for several years now, but there is not a 

single, widely accepted definition of a system of systems. Several researchers have developed 

their own definitions for a system of systems, and the work by Keating, et al. provides a summary 

of several of these perspectives of system of systems (Keating et al, 2003). Keating and his co-

authors describe their view of systems of systems as meta-systems that are themselves comprised 

of multiple autonomous embedded complex systems that can be diverse in technology, context, 

operation, geography and conceptual frame. 

     A key element of a system of systems is the presence of human decision makers, and this is a 

critically important modeling element in domains such as homeland security and transportation 

planning where decision maker behavior drives the behavior of the system. In a system of 

systems problem, models of human decision making are a vital necessity, whereas in a family of 

systems problem, they are not.  The additional degrees of freedom associated with the ability of 

each system to operate independently within the family or system of systems add complexity 

above that encountered in the simpler systems engineering paradigms. 

     A significant challenge in system of systems design is determining the appropriate mix of 

independent systems.  This is further complicated as yet-to-be-designed systems are considered as 

potential options for the system of systems. Because the constituent systems are capable of 

independent operation, the systems could not only cooperate but also compete (Crossley, 2004). 

The system of systems is a dynamic entity as new systems are added and current systems are 

replaced or removed. The operation of the system of systems occurs in an uncertain environment 

(for instance, an Air Traffic Management system of systems must handle weather conditions).  

Interoperability, which is defined by the DOD as, “the ability of systems . . . to provide data, 

information, material, and services to, and accept the same from, other systems. . . and to use the 
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data, information, material and services so exchanged to enable them to operate effectively 

together,” (DOD, 2003) also poses a significant challenge.   

     To summarize, system of systems problems go beyond traditional systems engineering 

problems because of their size and because of the complexity involved in their architecture, 

design, and operation. System of systems problems are different from both traditional systems 

engineering problems and family of systems problems because they have the properties including: 

Operational Independence; Managerial Independence; Evolutionary Behavior; Emergent 

Behavior; and Geographical Distribution (Sage and Cuppan, 2001).  Systems of systems 

problems represent major technical challenges for which current solution methods and problem 

solving approaches are inadequate. This dissertation will develop fundamental methodologies 

needed to address some of the challenges.   

 

2.1.5 Five Signature Areas for System of Systems Research 

     Crossley (2005) has identified five areas as necessary for SoS problem formulation and 

solution: (1) optimization, combinatorial problem solving; (2) dynamics and control; (3) non-

deterministic analysis; (4) game theory and economic/competitive behavior; and (5) domain 

specific modeling.  

     Optimization is a formal approach which allows decision makers to determine which of the 

available policies or designs is best.  Dynamics and control involve governing the process or 

performance of the SoS.  Non-deterministic analysis is necessary because SoS must perform 

under conditions set by an uncertain operating environment.  Game theoretic models describe the 

logic of those who make decisions in a SoS.  Domain-specific modeling facilitates appropriate 

representation of the operational environment and relevant interdependencies.  The integration of 

research in these five areas offer a comprehensive set of ideas from which SoS research can 
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continue to grow. This section highlights the most important research challenges from this 

perspective (Crossley, 2004).  

Optimization, Combinatorial Problem Solving 

     Over the past 20 years, advances in computation have allowed formalized optimization 

methods to become a part of design efforts for most single complex engineering systems, like 

aerospace vehicles. These advances have placed system simulation at the heart of the design 

process. When addressing a single complex system, most design optimization strategies focus on 

minimizing or maximizing an objective while meeting several constraints. These objectives and 

constraints typically characterize the performance of the individual system for a typical design 

mission or missions (Crossley, 2004). 

     However, optimization strategies alone do not address the impact of a single system's features 

on the performance of a larger system of systems, nor do they usually address the dynamic, 

evolving, uncertain environment in which the system of systems must act.  Yet there can be no 

doubt that optimization and traditional operations research techniques a prominent role in SoS 

research (Crossley, 2004). 

     A large field of work exists in optimization and operations research that can address 

organizing a system of systems from existing single systems (Winston, 1991).  Resource 

allocation is currently used in any number of fields of engineering and business to improve the 

profit, throughput, or other system-level metric.  However, these approaches make the assumption 

that the resources being allocated or assigned have static characteristics that are known. 

     One important feature of a system-of-systems perspective is a shift in focus regarding the 

optimization objectives for single systems.  For instance, when designing new, single systems, 

there is often a tendency, owing to the desire to simplify the problem space, to optimize 

individual systems without considering the broader impacts on the larger system of systems. This 
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generally has the impact of improving that system's performance, but unfortunately a set of 

locally optimal systems rarely produces the best system of systems. 

     Additionally, single complex systems designed today are typically designed for a specific, and 

generally static, mission and operating environment. Because its constituent components are 

themselves independently operating systems, a system of systems can continually evolve. As new 

systems are produced, they must be integrated into the system of systems; similarly as current 

assets reach retirement, they must be removed from the system of systems.  These concepts 

suggest applications of multistage stochastic programming (Sabbagh, 1996); dynamic 

programming (Bellman, 1957); Markov decision processes (Denardo, 1965); or optimal control 

(Dreyfus, 1966), in which decisions are made over time. The optimization aspect is also 

important for the control of a system of systems to ensure optimal performance to complete the 

assigned tasks and missions. With multiple, independently operating systems in a system of 

systems, concepts of hybrid, hierarchical, and distributed/decentralized control may provide 

approaches to ensure that the system of systems maintains an optimal level of performance 

(Crossley, 2004). 

Dynamics and Control 

     Systems of systems problems represent major technical challenges for which current solution 

methods and problem solving approaches are inadequate.  Particular challenges exist in the area 

of planning, designing, and operating the SoS.  The timescale for each phase is an important 

factor of the SoS dynamics.  Planning may be a 50 year time horizon determining whether a 

highway network should be constructed.  Designing may be a 10 year time horizon involving the 

actual construction of the highway network.  Operating is a short time-scale perspective aimed at 

controlling the network performance.  Research into system of systems optimization and control 

is limited (Crossley, 2004).  
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Non-Deterministic Assessment, Decision-Making and Design under Uncertainty 

     A system of systems, like single, complex systems, will operate in the real world; however, the 

operating environment is non-deterministic. For instance, an air traffic management system of 

systems operates in varying kinds of weather conditions, which can be predicted, but not with 

absolute certainty. Most engineering disciplines are beginning to address this type of uncertainty, 

and this focus must also be incorporated in system of systems problems (Crossley, 2004). 

      A system of systems approach further extends the impact of non-deterministic assessment. 

Much of the motivation behind the move to a capability-based acquisition strategy requiring 

system of systems solutions is that the capabilities sought by the customer are driven by the desire 

to have high performance that is robust with respect to varying operating conditions and 

scenarios.  When designing a system of systems, nondeterministic conditions must be addressed, 

and the system of systems must be architected to be reliable.   

     Uncertainty analysis in the context of a large scale system generally requires constructing a 

probability distribution that describes the overall system response give the distributions of the 

inputs. For a single complex system, the aggregate PDF can often be determined by Monte Carlo 

Simulation or sometimes by analytical reliability methods (Haldar and Mahadevan, 2000). In a 

system of systems sense, it is not clear that the system of systems level reliability assessment 

could or should be conducted in the same manner. 

     Because a system of systems is comprised of multiple systems capable of independent 

operation, as one system entity begins to reach a degraded performance or a failure mode, other 

system entities can alter their independent operations to perform functions that the failed system 

no longer performs. This is not simply an "m out of n” redundancy issue, because, if properly 

designed, the system of systems does not necessarily include spare systems whose sole purpose is 

to replace a failed system (Crossley, 2004). 
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     For instance, if a regional transportation network is viewed as a system of systems, whose 

constituent systems include busses, trains, and aircraft, and then as a train system becomes 

unavailable, no spare train may be present in the system of systems.  One or more of the busses 

can be assigned to different or more frequent routes to replace the transportation capacity of the 

train.  When the train becomes unavailable, an aircraft may be assigned to different or more 

frequent routes.  The more desirable option would the one that maintains the highest system-of-

system performance.  However, deciding upon this best option implies some sort of resource 

allocation is needed.  In order to predict the reliability of the system of systems, the failure of the 

train system would need to be modeled, and then a series of conditional assessments are needed 

to determine the remaining reliability of the system of systems.  Examples of such assessments 

include whether one bus is used to replace the train system, if multiple busses are used to replace 

the train system, if an aircraft is used to replace the train system, etc.  The approaches needed to 

perform this type of assessment currently are not readily apparent, though it appears obvious that 

model-based simulation of the entire system of systems is necessary to understand the 

implications of a major disruption to one or more critical systems, and that fault-tolerant and 

robust designs are needed for systems of systems (Crossley, 2004).   

     The management of uncertainty for SoS engineering is also a focus of much literature.  

Techniques in reliability-based design optimization (Zhao and Ono, 1999), (Youn and Choi, 

2004), (Chiralaksanakul and Mahadevan, 2004), (Wu et al, 1990), (Wu and Wang, 1998), (Du 

and Chen, 2000, 2004), (Du and Sudjianto, 2003), (Yang and Gu, 2004), (Parkinson et al, 1993), 

(Jung and Lee, 2002), (Yu and Ho, 2000), (Gunawan and Azarm, 2005), (Lee and Park, 2002), 

(Stocki et al, 2001) and stochastic programming are relevant to multi-disciplinary problems. 

Economic Theory, Game Theory, & Other Approaches for Modeling Competitive Behavior 

     A system of systems is comprised of individual systems capable of independent operation, and 

the individual systems are managed independently. As described in previous sections, using 
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multiple systems in collaboration can provide capabilities well beyond those available from a 

single system. Further, the ability for each constituent system to operate independently can 

provide increased robustness for the overall system of systems.  However, these aspects provide 

an additional level of complexity in determining which systems provide which contributions to 

the overall performance.  The best operation for one system may compete with best operation of 

other systems. Decision making for the system of systems must resolve these issues, and 

determining an appropriate sharing of capabilities and resources will call upon applications and 

approaches from game theory and competitive behavior (Mas-Collel et al, 1995). In some 

circumstances, a system of system may itself compete against other systems of systems using 

strategies that allow less or non-competitive behavior in one aspect in order to provide overall 

system-of-systems level performance. This autonomy in decision maker behavior is of critical 

importance of system-of-system behavior, because in practical system of system problems, the 

member systems have choice in how they operate. Hence the decision maker behavior is what 

drives the performance of systems of systems. 

     In some cases, distributed decision-making can be stated explicitly as a game theory problem, 

or as a very special case of a multi-disciplinary design optimization problem known as a 

mathematical program with equilibrium constraints (Nagurney and Dong, 2001). Yet these 

approaches have significant limitations in that humans are not always economically rational, and 

cannot possibly have and understand the true state or dynamics of a system of system and are thus 

boundedly rational (Simon, 1957).  In other words, modeling decision maker behavior using 

optimization methods makes assumptions that are not realistic.  System dynamics (Forrester, 

1968) and agent-based (Axelrod, 1997) approaches to modeling decision maker behavior are 

explored.  Further review of Game Theory is presented in Section 2.6. 
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Domain-Specific Modeling 

     Optimization and control poses some interesting multi-disciplinary issues for system of 

systems work. For example, the proposed Future Combat System involves manned ground 

vehicles, unmanned air vehicles, combat robots, soldier robots, communications systems, and the 

soldier him/herself (USCG, 2004). Each of these systems is a multi-disciplinary system which 

must be modeled, and there is yet another multi-disciplinary issue in integrating these models. To 

successfully provide function evaluations for an optimization approach, or other decision making 

strategy, these components must be appropriately modeled.  One important issue is systems be 

modeled at compatible levels of detail, which will require domain-experts to successfully 

communicate with other domain-experts. Further, nearly all systems of systems will have 

humans-in-the-loop, requiring the capability to model and simulate human behavior. 

Simultaneously modeling all of the constituent systems in a system of systems is difficult. 

Emerging approaches like grid computing, where a central core or bus computational structure 

controls distributed, dissimilar simulations and modeling programs, appears to be a promising 

area for system of systems approaches. Modeling a large number of diverse systems capable of 

independent operation may see benefits from recent work in agent-based modeling. Some 

applications of agent-based modeling have included tens of thousands of independent agents and 

have also incorporated human behavior simulation as part of the modeling strategies (Axelrod, 

1997), thereby allowing for the modeling of boundedly rational agents. A further challenge is 

using these modeling strategies in conjunction with optimal design and optimal control methods. 

   

2.2 Multi-disciplinary Design Optimization (MDO) 

     Optimization is a tool which can help decision makers reach decisions which are justifiable, by 

some metric, as the best decision. Multi-disciplinary design optimization (MDO) is an 

optimization approach which allows decision makers to perform optimization in systems where 
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multiple disciplines and/or system models must be integrated. MDO has been used in a number of 

fields, including automobile design, naval architecture, electronics, computers, and electricity 

distribution.   

     MDO allows designers to incorporate all relevant disciplines simultaneously. The optimum of 

the simultaneous problem is superior to the design found by optimizing each discipline 

sequentially, since it can exploit the interactions between the disciplines. However, including all 

disciplines simultaneously significantly increases the complexity of the problem. Problem 

formulation is normally the most difficult part of the process. It includes the selection of design 

variables, constraints, objectives, and models of the disciplines. A further consideration is the 

strength and breadth of the interdisciplinary coupling in the problem.   

     Many solution methods work only with single objectives, although MDO problems typically 

involve several objectives. When using these methods, the designer normally weights the various 

objectives and sums them to form a single objective. Other methods allow multiobjective 

optimization, such as the calculation of a Pareto front. The designer must also choose models to 

relate the constraints and the objectives to the design variables. These models are dependent on 

the discipline involved. The Multi-disciplinary nature of most design problems complicates 

model choice and implementation. Often several iterations are necessary between the disciplines 

in order to find the values of the objectives and constraints, or special formulations of the MDO 

problem are necessary.  Once the design variables, constraints, objectives, and the relationships 

between them have been chosen, the problem can be expressed in the following form: 
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where f is an objective, x is a vector of design variables; u and v are vectors of state variables for 

the disciplinary analyses, g is a vector of constraints, h is a vector of disciplinary analyses.  The 

problem is normally solved using appropriate techniques from the field of optimization. These 

include gradient-based algorithms, population-based algorithms, or others. Specialized solution 

techniques such as Multi-disciplinary Feasibility (Kodiyalam, 1998), Interdisciplinary Feasibility 

(Cramer et al, 1994), Simultaneous Analysis and Design (Alexandrov and Lewis, 2000), and 

Collaborative Optimization (Braun, 1996) are available for these types of problems.  A brief 

overview of the Multi-disciplinary Feasible method and the All-At-Once (AAO) methods will be 

given; as they are the two most widely use approaches. 

 

2.2.1 Multi-disciplinary Feasible (MDF) Approach 

     The most basic of MDO formulations is the MDF approach, also known as ‘Nested Analysis 

And Design’ (NAND), ‘All-in-One’ (AIO), and ‘One at a Time’. This formulation is distinct 

from AAO, presented later in this section. A single system-level optimizer is used, and from the 

perspective of the optimizer MDF is no different than a ‘standard’ optimal design problem. A 

system analyzer coordinates all of the subspace analyzers. The optimizer supplies the system 

analyzer with a design x, and the system analyzer supplies the optimizer with the appropriate 

response functions, f, g, and h.  

     Since convergence must be achieved for all analyses after every iteration of the optimizer, 

some iterative algorithm must be applied at every optimizer iteration to assure disciplinary 

consistency. Fixed point iteration is a popular solution method for MDF, although other analysis 

options exist. A formulation strategy is classified as MDF if a complete system analysis is 

performed for every optimization iteration. The analysis is “nested” within the design (hence the 

acronym NAND). The optimizer is charged with the responsibility to find the optimal design d 

(the design solution), while the system analyzer is solely responsible to find the set of consistent 
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coupling variables y and returns values for the objective function f, the limit state functions g, and 

the disciplinary analyses h.  

     The MDF problem statement, shown above, is completely non-hierarchic in nature (no 

communication restrictions).  In a purely computational context, this approach is desirable if the 

subspaces are weakly coupled (fast analysis convergence), and if the subspace analyses are not 

computationally expensive. From the point of view of the optimizer, this problem is no different 

from solving a traditional optimization problem. In an organizational context, MDF allows the 

continued use of legacy analysis tools without modification. If the organization already performs 

a complete analysis before making a design decision, MDF is a natural fit. 

 

2.2.2 All-At-Once (AAO) Approach  

     The All-At-Once Approach (AAO), also referred to as Simultaneous Analysis and Design 

(SAND) is a highly centralized approach. Instead of utilizing analyzers to complete the analysis 

for each subspace, algorithms are used that compute only the residuals of the governing 

equations. The SoS optimizer controls two sets of decision variables: the original design variables 

d, and the state variables y.  AAO centralizes both design and analysis, but still distributes 

evaluation of governing equations. This can result in impressive efficiency, but is difficult to map 

to organizational structures or simulation tools due to its centralization and specialized structure.  

The formulation of the AAO approach is given below.  It includes no auxiliary constraints 

because the optimizer chooses values for the state variables that assure disciplinary consistency.  

In this approach, design, system analysis, and subspace analyses are all performed 

simultaneously. 
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2.3 Stochastic Programming 

     Stochastic programs are mathematical programs where some of the data incorporated into the 

objective or constraints are uncertain and uncertainty is characterized by probability distributions 

for the parameters.  In practice, the uncertainty information can range in detail from a few 

scenarios (possible outcomes of the data) to specific and precise joint probability distributions. 

The outcomes are generally described in terms of elements of a set, for example, the set of 

possible demands (Holmes, 1994).  The field is currently developing rapidly with contributions 

from many disciplines including operations research, mathematics, and probability and 

applications in areas such as macroeconomic modeling, freight planning and traffic management 

(Birge and Louveaux, 1997). 

 

2.3.1 Mathematical Programming  

     Many decision problems can be modeled using mathematical programs, which seek to 

maximize or minimize some objective which is a function of the decisions. The possible 

decisions are constrained by limits in resources, minimum requirements, etc. Decisions are 

represented by variables.  Objectives and constraints are functions of the variables, and problem 

data. Examples of problem data include unit costs, production rates, sales, or capacities (Bazarra 

et al, 1990).  Let xi represent production of the ith of n products. The general form of a 

mathematical program is  
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where X is a set of all nonnegative real numbers. The constraints can linear of nonlinear to 

capture the essence of the model.  
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2.3.2 Recourse Models 

     Holmes (1994) gives a good overview of recourse models.  When some of the data are 

random, then solutions and the optimal objective value to the optimization problem are 

themselves random.  A distribution of optimal decisions is generally unrealistic. Ideally, one 

decision and one optimal objective value are preferred.  One logical way to pose the problem is to 

require one decision now and minimize the expected costs (or utilities) of the consequences of 

that decision.  This paradigm is called the recourse model.   

     Suppose x is a vector of decisions that one must take, and y(w) is a vector of decisions that 

represent new actions or consequences of x. Note that a different set of y will be chosen for each 

possible outcome w.  An example two-stage formulation is: 
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     The set of constraints h1 ... hk describe the links between the first stage decisions x and the 

second stage decisions y(w).  Note that each constraint is required to hold with probability 1, or 

for each possible w in W.   This procedure facilitates making a correction (recourse) to the first 

stage decision that is the best such correction.  Recourse models can be extended to multistage 

problems, where you make one decision now, wait for some uncertainty to be resolved (realized), 

and then make another decision based on what happens.  The objective is to minimize the 

expected costs of all decisions taken. 

  

2.3.3 Probabilistically Constrained Models 

     Holmes (1994) gives a good overview of probability constrained models.  In some cases, it 

may be more appropriate to try to find a decision which ensures that a set of constraints will hold 

with a certain probability.  An example might be a delivery service that experiences random 
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demands, and wishes to find the cheapest way to deliver its packages with a high probability.  

Again, assume that x is a vector of decisions. The general form of this problem is to the 

following: 
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2.4 Reliability Analysis 

     Reliability analysis is a central issue in formulating and solving a system of systems 

engineering problems because systems of systems must perform reliably under uncertain 

conditions.  However, the computational effort involved in modeling a system of systems may be 

very expensive. The use of approximate uncertainty analysis techniques which can provide 

reasonably accurate results with a minimum of computational expense are useful in system of 

systems engineering and may be an acceptable alternative to expensive simulation-based methods 

for reliability analysis. 

 

2.4.1 First-Order Reliability Method (FORM) 

     The first-order reliability method (FORM) is an analytical method used to determine the 

probability of a function of continuous random variables assuming less than a certain value The 

probability of a function being less than or equal to zero (failure of a component limit state) is 

given as 

∫
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where fx(x) is the joint probability density of variables x1, x2… xn.  
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     An analytical evaluation of the above integral is possible in only a few special cases, and 

hence numerical integration is necessary. FORM has been found to be a computationally efficient 

and reasonably accurate analytical approximation to the probability integral under consideration 

for many problems. In FORM, there are three important steps in the calculation of the probability 

of failure for an individual component failure mode. These are: 

1. Transformation of the random variables x to the standard normal space u. 

2. Calculation of the most probable point of failure. This point is the solution to the 

constrained optimization problem )0)(min(arg* == uuu G . Good algorithms for 

solving this problem have been proposed by (Hasofer and Lind, 1974); (Rackwitz and 
Fiessler, 1978) and (Der Kiureghian et al, 1994). 

3. Calculation of the reliability index β. β is in general equal to αu*, in which α is the 
negative normalized gradient row vector of the limit state surface in the u space, pointing 
toward the failure domain. For most practical problems β is greater than zero, in which 

case β is also equal to *u .  The probability of failure is approximated as PFail = Φ (-β). 

For more details about the implementation of FORM are found in (Ditlevsen and Madsen, 1996), 

(Haldar and Mahadevan, 2000), and (Nowak and Collins, 2000).  

A very important by-product of FORM is the so-called alpha vector, defined by 
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     The alpha vector is the negative normalized gradient row vector of the limit state function in 

the transformed space. Also, at optimality in the FORM problem, the alpha vector is collinear 

with the MPP vector. This vector is important because this vector gives relative importance 

information about each of the random variables (Ditlevsen and Madsen, 1996), (Haldar and 

Mahadevan, 2000).  This vector can help analysts determine which uncertain parameters are the 

most important so that information gathering efforts are focused on these variables. Random 

variables with alpha values of low magnitude can often be modeled as deterministic at the mean. 
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2.4.2 Inverse FORM 

     A very important technique in reliability-based design optimization is the inverse FORM 

method. The inverse FORM problem has a very important role in reliability-based design 

optimization because it returns a worst-case point at a certain probability level. By obtaining 

safety at the worst case point for a desired level of reliability, a designer can assure performance 

of the design at a prescribed level of reliability. The inverse FORM problem solves the 

optimization 

)|)(min(arg* tg β== uuu  

In this optimization, tβ is a prescribed reliability index. If in the worst case scenario the limit 

state function of the design is greater than zero, it is obvious that the design has a reliability index 

greater than the target reliability index.  

     FORM and inverse FORM share some common concepts, such as the ideas of probability 

transformation to the standard normal space, the reliability index, and the alpha vector.  If the 

limit state is equal to zero at the solution of the direct and inverse FORM problems, then the 

direct FORM and inverse FORM have the same solutions. In fact, the inverse FORM solution 

will always be a FORM solution for a given limit state function plus a constant term.  Hence, the 

alpha vector will be coincident with the MPP vector at optimality for both direct and inverse 

FORM.  Thus, sensitivity results can be obtained from both FORM and inverse FORM.  This is 

an especially useful fact for problems involving policy problems, because inverse FORM can be 

used to obtain relative sensitivities with respect to random parameters of outcomes such as the 

number of fatalities or economic losses for which no meaningful, crisp limit state may exist. 

 

2.4.3 System of Systems Reliability 

     Another important task in uncertainty analysis for system of systems problems is the 

estimation of system reliability. For purposes of reliability analysis, systems are generally 
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characterized as series, parallel, or general systems.  The failure probability for systems in series 

is calculated 

U
i

iSeriesFail gPP }0)({, ≤= x  

and the failure probability for a system in parallel system is calculated (Haldar and Mahadevan, 

2002) 

I
k

kParallelFail gPP }0)({, ≤= x  

     Systems can be represented as combinations of series and parallel systems. It is common to 

evaluate general systems reliabilities using either a cut set formulation or a link set formulation. A 

cut set is a set of failure events for which occurrence of all the events results in failure of the 

system. A minimal cut set contains no more than the minimum number of events required for 

system failure; disjoint cut sets are mutually exclusive sets of events. It is usually easier to define 

minimal cut sets. A link set is a set of survival events for which occurrence of all the events 

results in survival of the system. Failure probabilities for a general system can be written as either 

the union of a set of intersections of events, or by using de Morgan’s laws, the intersection of a 

set of unions of events. 

     It is often preferable to use the cut set formulation for several reasons. First, it is often easier to 

identify cut sets than link sets. Secondly, if the cut sets are disjoint, then the failure probability of 

the general system is the sum of the failure probabilities of the cut sets. Thirdly, failure 

probabilities for a cut set are easily calculated as a series system failure probability. Finally, 

bounding formulae applied to a group of minimal cut sets result in conservative estimates of 

failure probabilities. 

     As was the case for component reliability, system reliability can be evaluated by simulation 

methods, but it is computationally expensive to do so. However, system reliability can be 

approximated with elegant analytical approximations using FORM. Let B be the vector of 
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reliability indices for each of the limit states and the elements of the matrix R be the dot products 

of the corresponding α vectors obtained from the FORM analysis for each distress mode. Then 

for a series system, the system failure probability is given by 1 – Φ(B, R), where Φ(B, R) is the 

standard normal multivariate CDF with correlation matrix R. For the bivariate case (Dunnett and 

Sobel, 1954) shows 
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     If more than two limit states are considered, then one may elect to use bounding formulae such 

as those in (Ditlevsen, 1979) or evaluate the multinormal CDF using methods such as importance 

sampling methods in (Mahadevan and Dey, 1998) and (Ambartzumian et al, 1997), multiple 

linearizations in (Hohenbichler and Rackwitz, 1987), or a moment-based approximation as found 

in (Pandey, 1998). 

 

2.4.4 Reliability-Based Design Optimization (RBDO) 

     Formulating and solving problems in system of systems engineering requires integrating 

system modeling and uncertainty analysis into the decision making process. RBDO is a 

methodology by which this integration can occur. In an RBDO problem, an objective function is 

minimized subject to reliability constraints corresponding to various limit states and deterministic 

constraints. The objective function is a function of the design variables and can include initial 

costs, failure costs, maintenance costs, structure weight or performance efficiency.  The uncertain 

variables are modeled as random variables. The design variables can be distribution parameters 

such as means or standard deviations of the random variables or the design variables can be 

deterministic.  RBDO methods fall into three groups depending upon how reliability analysis is 

incorporated into the optimization process. (Tu et al, 2001) refers to the RBDO methods that use 
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the reliability index directly as Reliability Index Approach (RIA) and those based on quantile 

functions of the probability distributions as the Performance Measure Approach (PMA). 

     Nested algorithms, used before the 1990s include a full reliability analysis at every step of the 

design optimization algorithm. It is well known that nesting these two procedures results in a 

large number of function evaluations, and studies performed in (Agarwal and Renaud, 2004), 

(Liang et al, 2004), (Du and Chen, 2004) and (Yang and Gu, 2004) have confirmed that nested 

methods require many more function evaluations than RBDO methods in which the reliability 

analysis loop is either decoupled or eliminated via single loop methods. 

     To reduce the computational expense associated with nested methods, many researchers have 

developed single-loop approaches to RBDO (Madsen and Hansen, 1992), (Chen et al, 1997), 

(Wang and Kodiyalam, 2002) and (Agarwal and Renaud, 2004).  The methodologies are focused 

on removing the inner reliability analysis loop by making the optimality conditions of either 

FORM or inverse FORM constraints in the optimization loop. This general approach using direct 

FORM is described below.  
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     The first and second constraints are simply the necessary conditions for the MPP, the third 

constraint requires the reliability index for the design to be greater than or equal to the required 

reliability index. This formulation is the single-loop RIA formulation.  If the optimality 

conditions of the inverse FORM problem are used, a similar formulation can be derived.  
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     Several researchers have reformulated the nested RBDO problem to decouple the reliability 

analysis from the design optimization.  This has been accomplished in one of two ways, using 

direct or indirect FORM (i.e., RIA or PMA).  Royset et al, (2001) provided decoupled RBDO 

formulations that use both RIA and PMA approaches. Using RIA, (Torng and Yang, 1993) 

replaced the probabilistic constraint with its Taylor series expansion to solve: 
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Using PMA, (Wu and Wang, 1998), (Wu et al, 2001) and (Du and Chen, 2004) developed 

decoupled formulations of the RBDO problem as shown. 
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     Zou and Mahadevan (2006) implemented a decoupled formulation in which the probability 

function is used in place of the reliability index. This formulation has several advantages over 

previous methods. First, this method can be used to solve problems with systems-level reliability 

constraints.  Secondly, it can handle problems with probability of failure in the objective function. 

It can also allow for different reliability analysis methods to be used for different limit states.   

     Most approaches to systems-level reliability analysis are computationally expensive.  

Furthermore, no proof of convergence exists for either single-loop or decoupled RBDO 
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algorithms (Royset et al, 2001).  However, when single-loop methods are successful, they are 

usually more computationally efficient than decoupled or sequential methods. 

 

2.4.5 RBDO Formulations with Discipline and SoS Reliability Constraints 

 In order to address the difficulty of including system reliability constraints in RBDO, 

(McDonald and Mahadevan, 2007) develops an algorithm which can include system reliability 

constraints in a single-loop formulation for continuous design and random variables. This 

formulation is similar to previous single-loop methods, but uses the augmented decision space 

and appropriate multinormal CDF approximations to assure that the system-level probability of 

failure is less than a specific threshold. In this approach the FORM optimality conditions are 

satisfied for each component in the system.  Although most RBDO methodologies only require 

the satisfaction of either the direct FORM or the inverse FORM optimality conditions, sometimes 

both sets of optimality conditions are required. 

     Component reliability targets are included in the decision space of the optimization problem, 

along with the design vector and each component limit state MPP.  These component reliability 

targets, along with the correlations, are obtained from the limit state direction cosines α, where  

),(
),(

ud
udα

G
G

u

u

∇
∇−

=  

The component reliability information is then used to calculate the system failure probability, 
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     The objective function lists B to denote the entire vector of target reliability indices, whereas 

βk refers to the target reliability index for the kth limit state. R is the correlation matrix between 

failure modes, calculated by the equation Rij = αiαj. It is necessary that B be included in the 

augmented decision space because the optimizer must decide how reliable each component of the 

system must be.  In the constraints, p(B, R) is the system failure probability (McDonald and 

Mahadevan, 2007).  

     McDonald and Mahadevan (2007) show this formulation to be extremely efficient for 

problems of relatively small size with limit states that do not require Multi-disciplinary analysis. 

The formulation above is directly extendable to MDO problems solved with the Multi-

disciplinary approach. 

 

2.5 System Modeling 

     System of system engineering requires that the interactions among systems be modeled.  This 

section outlines three popular modeling approaches:  Input-Output Analysis, Systems Dynamics, 

and Agent-Based Modeling. 

 

2.5.1 Input-Output Analysis 

     The economist Wassily Leontief (1953) proposed a model for economies which are built upon 

input-output technologies.  This model assumes that the production functions for all sectors of the 

economy are linear and involve the goods produced by other sectors of the economy. The model 

shows that the vector of final outputs, x, of all sectors required to meet a vector of initial 

demands, c, can be determined through the matrix equation 

caIx 1)( −−=  
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where I is the identity matrix and aij is the dollar amount of goods from sector i used in 

production of the goods from sector j . 

     This model has been adapted for other uses besides macroeconomic modeling.  Haimes et al 

(2001) has adapted this model to estimate the consequences to a set of interdependent 

infrastructures arising from a terrorist attack. In this adaptation, c represents a perturbation in the 

systems’ inoperability caused by damage from a terrorist attack, x represents the final state of the 

systems’ inoperability, and the aij relate the extent of inoperability caused to infrastructure j to the 

final inoperability of infrastructure i. In the context of this model, inoperability is a continuous 

variable between 0 and 1 representing the extent of loss of functionality of a system, where a 

system with inoperability 0 is completely functional and a system with inoperability 1 has failed. 

The aij are a measure of how the inoperability of infrastructure j is transferred to infrastructure i. 

If aij = 0, then total failure of infrastructure j does not affect infrastructure i. If aij = 1, then if 

infrastructure j fails, then infrastructure i will also fail. If   aij = 0.5 then complete failure of 

infrastructure j will cause infrastructure i to suffer an inoperability of 0.5. Because inoperability 

of a system cannot be greater than 1, (Haimes et al, 2001) proposed the solution of the extended 

Leontief equations, where inoperability is the minimum value of 1 and the result obtained by the 

Leontief model. 

 

2.5.2 Systems Dynamics  

     System of systems engineering involves modeling interactions among the member systems. 

The Leontief input-output model, while simple and easy to construct, cannot account for intricate 

independencies in a system of systems environment. For this reason, systems thinking and 

systems dynamics modeling are two useful tools for modeling and studying the emergent 

behaviors inherent to system of systems engineering problems. 
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     Systems thinking is a mental model that promotes the belief that the component parts of a 

system will act differently when isolated from their environment or other parts of the system.  It 

includes viewing systems in a holistic manner, rather than through purely reductionist techniques 

because often in systems the behavior of parts can only be understood in the context of the 

behavior of the whole. It promotes gaining insights into the whole by understanding the linkages 

and interactions between the elements that comprise the whole "system," consistent with systems 

philosophy (Gharajedaghi, 2005).  

     System thinking recognizes that all human activity systems are open systems; therefore, they 

are affected by the environment in which they exist. System thinking recognizes that in complex 

systems events are separated by distance and time; therefore, small catalytic events can cause 

large changes in the system. System thinking acknowledges that a change in one area of a system 

can adversely affect another area of the system (Gharajedaghi, 2005). 

     System dynamics is one approach to modeling the dynamics of complex systems such as 

population, ecological and economic systems, which usually interact strongly with each other. 

What makes using System Dynamics different from other approaches to studying complex 

systems are the use of feedback loops (Forrester, 1961). Stocks and flows are the basic building 

blocks of a System Dynamics model. They help describe how a system is connected by feedback 

loops which create the nonlinearity found so frequently in modern day problems. Computer 

software is used to simulate a system dynamics model of the situation being studied and can 

allow for a graphical specification of the interdependencies among system variables and can 

simulate the evolutionary behavior of systems by solving the system of equations. 

     Model simulations can greatly aid in understanding how the system changes over time, and 

allow for the understanding of the importance of various uncertainties and the understanding of 

how best to control the behavior of the system. 
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2.5.3 Agent-Based Modeling 

      System of systems, by definition, has multiple decision makers, and often these systems have 

many humans in the loop. In assessing policies and strategies for systems of systems, it is 

necessary to model the behaviors of decision making entities.  Current research efforts in system 

of systems engineering problems includes agent-based modeling (Crossley, 2004).  Agent-based 

modeling is described in (Axelrod, 1997) as a specific individual-based method for computer 

simulation with the intent to construct computational devices (known as agents with some 

properties) and simulate them in parallel to model the phenomena. The process is one of 

emergence from the micro-level of the social system to the higher macro-level.  The predominant 

methodological approach to research involving computational modeling characterizes most 

systems with respect to equilibrium.  Agent based modeling, by using simple rules, can result in 

far more complex and interesting behavior. 

     Agent based models consist of dynamically interacting rule-based agents.  The systems within 

which they interact can therefore create complexity like that which is present in the real world.  

According to (Page, 2005), agents are: 1) intelligent and purposeful, but they are not so smart as 

to reach the cognitive closure implied by game theory; and 2) situated in time and space. They 

reside in networks and on lattice-like neighborhoods. The situation of the agents and their 

behavioral rules are encoded in algorithmic form in computer programs.  The modeler makes the 

assumptions most relevant to a given situation and then watches phenomena emerge from the 

interaction of the agents. Sometimes the result of the agent-based modeling process is 

equilibrium. Sometimes it is an emergent pattern. Sometimes, however, the result can be 

unintelligible chaotic behavior. 

     On some levels, agent based models complement traditional analytic methods such as systems 

dynamics. However, unlike other methods which focus on the characterization of equilibrium 

states, agent-based modeling allows analysts to explore the generation of equilibrium states.  This 
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type of study explores why certain complex phenomena exist in social systems, and this is one of 

the most important contributions of agent-based modeling. A more complete explanation of 

agent-based models is found in (Axlerod, 1997), (Arthur et al, 1997) and (Prietula et al, 1998). 

 

2.6 Game Theory  

     Game theory was presented briefly in Section 2.1 as part of the five signature areas of system 

of system research.  Game theory studies situations where players choose different actions in an 

attempt to maximize their returns. This study of the interactions of decision makers is central to 

formulating and solving system of systems problems. The field came into being with 

(Morgenstern and von Neuman, 1947).  It provides a formal modeling approach to social 

situations in which decision makers interact with other minds.  Game theory extends the simpler 

optimization approach developed in neoclassical economics. 

     Equilibration models are rooted in Game Theory (Sheffi, 1985).  A game consists of a set of 

players and a set of rewards for each player for each combination of strategies selected by the 

players.  A game has an equilibrium strategy if and only if there is a strategy in which no single 

player can be made better off by switching strategies unilaterally (Gibbons, 1992).  This principle 

is very important in game theory, and it has found extensions into other fields.  For instance, in 

the field of urban transportation planning, the user equilibrium traffic flow pattern is the pattern 

of traffic flow where no traveler is able to reduce their own travel time by unilaterally switching 

routes in a transportation network (Wardrop, 1952).   

     Although some game theoretic analyses appear similar to decision theory, game theory studies 

decisions made in an environment in which decision makers interact. In other words, game theory 

studies choice of optimal behavior when costs and benefits of each option depend upon the 

choices of other individuals. This makes game theory a very important tool in making decisions 
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in a system of systems context since systems of systems have managerial independence with 

operational interdependence (Sage and Cuppan, 2001). 

 

2.7 Uncertainty Analysis 

     Because uncertainty is present in virtually all SoS, analyzing uncertainty is important for 

solving SoS problems.  The concepts comprising uncertainty analysis will be discussed in the 

following three categories:  representing uncertainty, quantifying uncertainty and propagating 

uncertainty. 

 

2.7.1 Uncertainty Representation 

     Uncertainty is traditionally represented probabilistically as the measure of error associated 

with an aspect of a system.  Haldar and Mahadevan (2000) describe uncertainty, specifically in 

the context of randomness or stochasticity, as the occurrence of multiple outcomes without any 

pattern.  However, some quantities in a system model may not have a probabilistic representation 

since data may be sparse or may be based on expert opinion. Representations such as fuzzy sets, 

evidence theory etc. are used, leading to interval analysis of the system model. Transformations 

have been proposed from non-probabilistic to probabilistic format, through the maximum 

likelihood approach (Ross et al, 2002).  Such transformations have attracted the criticism that 

information is either added or lost in the process (Cooper et al, 1996). 

     Most studies only incorporate the first type of uncertainty, namely, physical or inherent 

variability.  Alternatives such as those in Mehta et al (1992) used Bayesian techniques to consider 

data uncertainty in developing confidence bounds on the output through a nested computation, 

using either Monte Carlo or analytical methods.  These confidence intervals can be combined 

with probabilistic sensitivity information to increase the system's robustness (Stoebner and 

Mahadevan, 2000).   
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     Representations of epistemic uncertainty also continue to be explored.  Ferson et al (2004) 

presented challenge problems to motivate research in this direction.  One developing technique at 

Vanderbilt University involves interval representations of uncertainty as a probabilistic approach 

to represent interval data for input variables in reliability and uncertainty analysis problems, using 

flexible families of continuous Johnson distributions. 

  

2.7.2 Uncertainty Quantification 

 Uncertainty quantification is the quantitative characterization and reduction of uncertainty in 

applications. Three types of uncertainties commonly appear in literature.  The first type is 

uncertainty due to variability of input and/or model parameters and the characterization of the 

variability is given (i.e., probably density functions). The second type is similar to the first type 

except that the variability characterization is not fully available.  The third type, which is the most 

challenging, is modeling uncertainty due to an unknown process or lack of knowledge (Tong, 

2008). 

     Both classical and Bayesian statistical analyses are used to first quantify physical variability.  

Mahadevan et al (2001) and (Mahadevan and Rebba, 2005) suggest that the Bayesian approach is 

quite valuable when there is only little data.  For any random variable that is quantitatively 

described by a probability density function, there is always uncertainty in the corresponding 

distribution parameters due to small sample size. As testing and data collection activities are 

performed, the state of knowledge regarding the uncertainty changes, and a Bayesian updating 

approach can be implemented.  

     The quantification of model prediction uncertainty is due to multiple sources: physical 

variability, inadequate data, measurement errors, and modeling errors.  Uncertainty and error 

quantification is an important challenge in multi-disciplinary analysis and optimization, and has 

to address uncertainties in physical, data, and modeling uncertainties.   Modeling errors may 
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relate to governing equations, boundary and initial condition assumptions, loading description, 

and approximations or errors in solution algorithms.  Model errors will be quantified by 

comparing model prediction and experimental observation, properly accounting for uncertainties 

in both. Numerical errors in model predictions are typically quantified first, using sensitivity 

analysis, uncertainty propagation analysis, discretization error quantification, truncation (residual) 

error quantification, etc. The variability in experimental measurement can also be quantified.  The 

model form error can be quantified based on all the above errors, following the approach in 

(Mahadevan and Rebba, 2005). 

 Finally, the contributions of different sources of uncertainty and error can be integrated to 

quantify the uncertainty in Multi-disciplinary system response. Obviously, the combination of 

various sources of error is nonlinear and not straightforward. An effective approach is to use a 

Bayes network, where individual contributions can be mapped through conditional probability 

relationships, and the overall effect can be quantified by integration through the Bayes network. 

This approach is explained more fully in (Mahadevan et al, 2001).  

 

2.7.3 Uncertainty Propagation 

     Various methods are available to compute the uncertainty in the system response due to 

uncertainties in the input quantities, but these techniques need to be explored and developed for 

multi-disciplinary systems. Probabilistic techniques have been pursued extensively, by modeling 

the inherent variability through random variables. These methods, along with Bayesian 

techniques, can also consider uncertainty in the statistical distributions that derives from lack of 

adequate data. Non-probabilistic, interval analysis has been pursued to deal with imprecise 

information using existing probabilistic approaches and empirical distribution functions. In 

addition, the errors due to mathematical modeling and numerical approximation and 

discretization need to be quantified. Thus, a comprehensive strategy is needed for computing the 
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total uncertainty in modeling and simulation, and to determine the contribution of each type of 

uncertainty to the overall uncertainty.  A survey of common uncertainty propagation methods are 

presented in (DeLaurentis, 2000).  Literature from the Sandia National Laboratory also describes 

the various methods used in (Oberkampf et al, 1998).  The discussion in this research is restricted 

to the probabilistic approaches of Monte Carlo simulation and moment-based methods. 

Monte Carlo Simulation 

     Monte Carlo simulations are the most accurate method of uncertainty propagation.  For 

computationally expensive simulations, a surrogate model can be generated for various 

confidence levels and then the Monte Carlo simulations can be performed.  As a first step in 

probabilistic modeling, Monte Carlo simulation is commonly used.  However, the basic Monte 

Carlo method is too time-consuming to achieve acceptable accuracy for low probability events. 

Several efficient sampling schemes and variation reduction techniques such as Latin Hypercube 

Sampling and adaptive importance sampling have been developed (Mahadevan and Dey, 1997).  

Moment-based Methods 

     An attractive alternative to Monte Carlo simulation is to use analytical approximations that 

combine probability theory and optimization methods (Rackwitz and Fiessler, 1978), (Cruse et al, 

1988). These are based on first-order or second-order approximations of the system performance 

constraint equations (limit states), and analytical estimation of the reliability through the 

identification of the most probable combination of the random variables that cause the system to 

be at the limit state.  

     The simplest and most commonly used method is the method of moments (Putko et al, 2001). 

Method of moments is computational much cheaper than the full non-linear Monte Carlo 

simulations. Traditionally, only the first order moments are available for full non-linear CFD 

calculations. The accuracy of the method may be improved by using higher order derivatives. 

Calculation of higher order derivatives is computationally expensive and no known automatic 
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differentiation packages can calculate more than first order derivatives.  Use of adjoints has been 

successfully demonstrated in propagating first order derivatives (Alekseev and Navon, 2003). 

     Uncertainty propagation is often performed with the aid of surrogate models to create response 

surfaces.  There are several surrogate modeling techniques, such as Gaussian Process modeling in 

which response variables are modeled as a group of multivariate normal random variables and 

polynomial chaos first introduced in (Wiener, 1938) as “Homogeneous Chaos.”  Surrogate 

modeling and its uses are discussed in more detail in Section 2.9. 

 

2.8 Uncertainty-Based Design 

     Methods for design optimization under uncertainty can be divided into three classes: sampling 

methods for expected value optimization problems, robust optimization, and reliability-based 

design optimization. Sampling methods can be used to solve either robust optimization or 

reliability-based optimization problems, but it is useful to discuss these methods separately. The 

sampling methods perform all experiments (whether mathematical simulations or physical tests) 

simultaneously and then optimize the design based on the results of those experiments. Robust 

optimization methods use the numerical optimization procedure to specify which simulations are 

needed and evaluate those simulations one at a time. Reliability-based design optimization 

(RBDO) methods also use numerical optimization procedures but with the goal of reliability 

rather than robustness.  

     There are several existing RBDO methods, each with their own relative strengths and 

weaknesses.  Likewise, there are several options for formulating and solving MDO problems 

[including Multi-disciplinary Feasibility (Kodiyalam, 1998), Interdisciplinary Feasibility (Cramer 

et al, 1994), Simultaneous Analysis and Design (Cramer et al, 1994), and Collaborative 

Optimization (Braun, 1996)].   
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     For nonlinear problems the expected value of the objective function is, in general, not the 

value of the function evaluated at the expected values of its inputs, so sampling-based approaches 

are used to compute the expectation. A robust design problem seeks a solution that is relatively 

insensitive to small changes in the uncertain quantities. A reliability-based design seeks a solution 

that has a probability of failure that is less than some acceptable value. 

     Traditional design procedures are based on combinations of factors of safety and knockdown 

factors. The aerodynamic design procedures used by the industry are exclusively deterministic 

(Zang et al, 2002). There has been considerable work on "robust controls," but this work has been 

limited to using interval bounds on the uncertain variables (Ham et al, 2000).  Reliability-based 

design methods have been used within civil engineering for several decades, as noted in (Haldar 

and Mahadevan, 2000). 

     To use uncertainty-based design methods, the various uncertainties associated with the design 

problem must be characterized and managed, and these characterizations must be exploited. 

Uncertainty in engineering analysis and design arises from several sources (Oberkampf et al, 

1999). Some of the "known" sources are: (1) physical uncertainty or inherent variability, (2) 

informational uncertainty or statistical uncertainty, and (3) modeling error. Uncertainties are 

typically specified in terms of probability density functions, membership functions, or interval 

bounds. Better and less resource-intensive methods are needed for both uncertainty propagation 

and optimization under uncertainty.  

     There are clear benefits in using uncertainty-based design methodologies. First, confidence in 

analysis tools will increase as physical, model, and data uncertainties are systematically 

addressed. Design cost, risk, and cycle time would be reduced as models could be selected with 

an understanding of the model uncertainty so that computational overkill can be reduced. System 

performance would increase while assuring reliability of systems because optimization methods 

would lead to minimum cost designs and optimal flow down of system reliability requirements to 
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the component level. Design will clearly be more robust as a wider array of situations is 

considered in the design process. Finally, uncertainty-based design can allow the designer to 

consider extreme circumstances and can allow for planning that accommodates the worst possible 

conditions. 

     Regarding MDO, there are several examples of previous research in Multi-disciplinary 

optimization under uncertainty.  Mahadevan and Smith (2006) developed very efficient methods 

for reliability estimation of Multi-disciplinary systems. Chiralaksanakul and Mahadevan (2004) 

applied decoupled reliability-based design optimization techniques to several different Multi-

disciplinary optimization algorithms.  Smith and Mahadevan (2007) implemented several 

formulations of reliability-based Multi-disciplinary optimization on a few simple problems.  

Smith and Mahadevan (2007) optimized the integration of component and system design under 

uncertainty for an aerospace vehicle.   

     While the benefits of uncertainty-based design are clear, there are difficulties which need to be 

addressed if these benefits are to be realized. Current uncertainty-based methods are more 

complex and significantly more computationally expensive than deterministic methods and more 

efficient methods of performing uncertainty-based design are clearly needed.  It is often too 

computationally expensive to do probabilistic design with high fidelity models.  Multi-

disciplinary analysis compounds the problems of computational effort, since such problems must 

generally be solved iteratively.  McDonald and Mahadevan (2008) have made progress in this 

area with a novel single loop method for solving RBDO problems with system and component 

reliability, as well as, extending it to discrete and continuous design and random variables. 

 

2.9 Surrogate Modeling 

     The most straightforward approach for uncertainty propagation is known as Monte Carlo 

simulation.  Monte Carlo simulation is a sampling based approach, in which a large number of 
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random realizations of the input parameters are generated, and the simulator is run for each 

sample. The output samples are then used to make inference about the model output distribution. 

     The problem with basic Monte Carlo sampling, however, is that it requires a very large 

number of evaluations of the computer simulation in order to accurately characterize the output 

distribution, and in practical applications, obtaining this number of evaluations is often not 

feasible. For this reason, there are several techniques available for reducing the variance in 

sampling-based estimators.  McKay et al (1979) describes latin hypercube sampling as an 

approach that has the goal of attaining a more even distribution of the sample points in the 

parameter space. When reliability estimation is of interest, importance sampling (Haldar and 

Mahadevan, 2000) is popular.  Importance sampling uses a sampling density that is concentrated 

in the failure region, so that samples are evaluated efficiently in the parameter space. 

     An alternative to efficient sampling techniques is to use an inexpensive approximation to the 

input/output relationship in lieu of the expensive computer simulation. Such approximations are 

often called surrogate models, or response surface approximations. A variety of methods are 

available for developing response surface approximations, including the development of models 

with reduced degrees of freedom, polynomial regression, multivariate adaptive regression splines 

(Friedman, 1991) and (Schumaker, 2007), neural networks, non-intrusive polynomial chaos 

(Isukapalli et al, 1998), and Gaussian process interpolation. The use of Gaussian process 

interpolation for surrogate modeling has been of particular interest within the scientific 

community for studies involving both uncertainty quantification and optimization.  Examples 

include (Bichon et al, 2008);  (Jones et al, 1998); (Kennedy and O’Hagan, 2001); (Bayarri et al, 

2002); (Simpson et al, 2001); (Kaymaz, 2005); (Kennedy et al, 2006); (Oakley and O’Hagan, 

2002) and (McFarland et al, 2008). 
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2.9.1 Surrogate Multi-disciplinary Analysis 

     Gaussian process models have several features which make them an attractive choice for a 

surrogate model in the context of multi-disciplinary analysis. The primary feature of interest is 

the ability of the model to “account for its own uncertainty” (Kennedy and O’Hagan, 2001). That 

is, each prediction obtained from a Gaussian process model also has an associated variance, or 

uncertainty. This prediction variance primarily depends on the closeness of the prediction 

location to the training data, but it is also related to the functional form of the response.  Figure 

2.1 depicts a Gaussian process model.  The uncertainty bounds are related to the closeness to 

training points and to the curve’s shape. 

 
Figure 2.1.  Example Gaussian Process Model with Uncertainty Bounds 

 
     The basic idea of the Gaussian process model is that the response values are modeled as a 

group of multivariate normal random variables. A parametric covariance function is then 

constructed as a function of the inputs. The covariance function is based on the idea that when the 

inputs are close together, the correlation between the outputs will be high. As a result, the 

uncertainty associated with the model's predictions is small for input values which are close to the 

training points, and large for input values which are not close to the training points. In addition, 

the GP model may incorporate a systematic trend function, such as a linear or quadratic 

regression of the inputs (in the notation of Gaussian process models, this is called the mean 
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function, while in Kriging it is often called a trend function). The effect of the mean function on 

predictions which interpolate the training data is small, but when the model is used for 

extrapolation, the predictions will follow the mean function very closely.  Gaussian Process 

models are used to build surrogate physical disciplinary models over a design and random space.  

Gaussian process models are also able to characterize its own uncertainty in order to quantify the 

model error associated with the surrogate model. 

 

2.9.2 Reliability Analysis using Gaussian Process Models 

     As engineering applications become increasingly complex, they are often characterized by 

implicit response functions that are both expensive to evaluate and nonlinear in their behavior. 

Reliability analysis given this type of response is difficult with available methods. Current 

uncertainty analysis methods focus on the discovery of a single most probable point of failure, 

and then build a low-order approximation to the limit state at this point.  This creates inaccuracies 

when applied to engineering applications for which the limit state has a higher degree of 

nonlinearity or is multimodal. Sampling methods, on the other hand, do not rely on an 

approximation to the shape of the limit state and are therefore generally more accurate when 

applied to problems with nonlinear limit states.  However, sampling methods typically require a 

large number of response function evaluations, which can make their application infeasible for 

computationally expensive problems.  Bichon et al (2008) presents a promising technique based 

on Gaussian Process interpolation as one approach for efficient global reliability analysis. 

 

2.10 Transportation Theory 

     In mathematics and economics, Transportation Theory is the name given to the study of 

optimal transportation and the allocation of resources.  The portion of transportation literature that 

is most relevant to this research is optimizing and controlling a transportation network. 
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     Highway traffic operations are influenced by the behavior of drivers. A highway can be used 

by a finite number of vehicles, and the driver perceived safe distances between vehicles 

determine this limit. For a given speed, as distances become shorter, more vehicles can use the 

highway. Both the volume of drivers choosing to use the highway (demand) and the maximum 

volume that can be served (supply) depend on driver behavior. Congestion results from too many 

people attempting to reach their destinations at the same time using the same highways. The 

combination of demand, capacity, and certain infrastructure features determines how drivers 

perceive the traffic conditions. Transportation agencies strive for economical solutions to 

congestion that satisfy a majority of highway users. 

     Let us assume that all vehicles move at the same speed S.  The time headway between two 

consecutive vehicles h is the distance x between these two vehicles divided by the speed S: h = 

x/S.  The same relationship holds for average values too (i.e., Sxh /= ).  The reverse of average 

intervehicle time is volume V and the reverse of average intervehicle distance is density D.  Thus, 

the following relationship is obtained,  DSV ⋅= , implying volume equals speed times density 

(this relationship is called the fundamental traffic flow relationship).  The fundamental diagram is 

depicted in Figure 2.2, where a flow (q) is a function of density (k) and the slope from the origin 

is speed (Daganzo, 2008).       

 

Figure 2.2  Fundamental Diagram of Traffic Flow 
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     SoS problems present major technical challenges for which current solution methods and 

problem solving approaches are inadequate.  Consider, for example, SoS problems related to 

controlling road traffic on transportation networks.  Papageorgiou et al (2003) reported on a team 

effort to identify directions for future transportation research.  Specific to road traffic control 

strategies, the following points were presented.   

• Operational control systems are the exception, rather than the rule 
• Employing optimal control algorithms can dramatically improve freeway congestion 
• Substantial improvements are achievable via modern traffic control methods and tools 
• Improvements are possible at the network-wide level 

The vision for this type of traffic management in literature is, “an integrated control of freeway 

networks involving both ramp metering and route guidance.  Very preliminary measures are 

currently in use, but a lot more developments are required to produce integrated control strategies 

that are efficient and applicable to large networks or in real-time.” (Papageorgiou et al, 2003).  

 

2.11 Logistic Regression 

     Logistic regression, also referred to as the logistic model or logit model.  It is a statistical 

model used for predicting the probability of an event occurring by fitting the data to a logistic 

function (Agresti, 2002).  In the early 1940s, the mathematical concept of a probit, short for 

probability unit, was a prominent statistical scale for normal deviates based on the normal 

distribution.  Berkson (1944) advanced the idea by proposing the use of the logistic function 

instead of the normal probability function, coining the term logit by analogy to the probit of Bliss 

(1934).  For the inverse of the logistic function, the dependent variable is a logit (the natural log 

of the event odds), as shown. 

⎟
⎠
⎞

⎜
⎝
⎛

−
==

P
PPitodds

1
ln)(log)log(  

and if log(odds) are linearly linked to the independent variable X, then the relation between X and 

P is non-linear with an S-shaped function as shown in Figure 2.3 (Brannick, 2007). 
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Figure 2.3  Logistic Regression Model 

 

     User equilibrium is commonly modeled in accordance with a logistic regression model.  In this 

research domain, an example application would be to model user choice among drivers traveling 

in a transportation network with multiple modes and routes.  Inputs such as perceived travel time 

for each option would generate corresponding proportions which serve as likelihoods for the user 

selecting each mode and route. 

     Over the last decade, logistic regression has become a standard method of analyzing model 

relationships with discrete responses (Hosmer and Lemeshow, 2000).  It is appropriate for data in 

which there is a binary (success/failure) response variable, such as the discrete response variable 

in this study problem, network failure. Unlike linear regression, where one estimates the 

relationship between predictor variables and an outcome variable, logistic regression estimates 

the conditional probability that a dichotomous outcome occurs. (Hilbe, 2009).  The general form 

for the logistic model is logit(π) = log(odds) = α+βX, where 
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Evaluation of this parameterized model yields a probability that the outcome occurs.  For 

example, if the outcome is defined as the network reaching a failed state, then π is one way to 

represent the failure probability for the network. 

 

2.12 Probabilistic Reachability 

     Reachability analysis in discrete, continuous or hybrid systems seeks to partition states into 

two categories: those that are reachable from the initial conditions, and those that are not 

(Mitchell et al, 2001).  The concept of probabilistic reachability centers around determining the 

probability of reaching a given system state from a given set of initial conditions and subject to a 

given control.  Reachability is an important topic in classical control theory (Abate et al, 2008).  

For deterministic problems, reachability is a yes/no problem evaluating whether starting from a 

given set of initial states the system will reach a certain set or not.  In stochastic problems, the 

different trajectories originating from each initial state have likelihoods of reaching the set 

(Abate, 2007).   

     System evolution in stochastic human-physical networks is influenced by control policy, so a 

SoS priority is to choose appropriate controls to minimize the probability that the state of the 

system will enter the failed state.  Given the complex dynamics of practical applications, 

approximations are needed for reachability computations.  Various approximation approaches are 

proposed in the literature including:  over-approximations by ellipsoids (Kurzhanski and Varaiya, 

2002), polyhedral (Asarin et al., 2003), and oriented rectangular polytopes (Stursberg and Krogh, 

2003), (Yazarel and Pappas, 2004).   

     Abate (2007) describes the approach presented in (Girard et al, 2006) as a valid approach for 

hybrid systems.  The approach uses an abstraction of the original problem that can be represent 

and propagate the system dynamics.  This general approach is used in this research to quantify the 

likelihood of a stochastic human-physical network with hybrid dynamics reaching a failed state.  
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For this problem, the system is represented by a high fidelity computer simulation.  Support for 

reachability analysis in optimally controlling deterministic problems has been pointed out in 

(Hedlund and Rantzer, 2002) and (Lygeros, 2004).  Connections between reachability, and safety 

for deterministic hybrid systems (mostly applied to air traffic management) has been stressed in 

(Mitchell et al., 2005) and (Lygeros et al, 1999), and (Tomlin et al, 1998).  Reachability for 

stochastic hybrid systems, such as the class of problem presented in this research, is a recent 

focus of research.  Bujorianu and Lygeros (2003) address theoretical issues regarding the 

measurability of the reachability events.  However, even the most recent approaches consider the 

problem of reachability analysis for continuous time stochastic hybrid systems without any 

control input.   
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3 CHAPTER III 
 

     THE NECESSITY OF A SYSTEM OF SYSTEMS APPROACH TO      
     OPTIMIZING INDIVIDUAL FLOW SYSTEMS 

 

3.1 Introduction 

     Travelers generally expect a transportation system to be efficient and reliable, yet on many 

urban freeways, demand often exceeds capacity.  In order to address this problem, transportation 

engineers manage freeway congestion with strategies aimed at controlling the flow of traffic 

(Daganzo et al, 2002).  Of the numerous freeway traffic control strategies employed, the most 

prevalent strategy is ramp metering.  A ramp metering scheme consists of controlling on-ramp 

fluxes with metering lights which delay the entrance of cars onto the highway.  The intent of 

ramp metering is to improve operating conditions on the highway by restricting the entrance of 

vehicles.  Ramp metering decision-makers seek to improve performance by controlling the rate of 

flow in order to optimize some system-level performance measure.  Ramp metering improves 

freeway traffic flow by distributing traffic over time and space to avoid saturation pressure on 

bottlenecks (Jin and Zhang, 2001).  When demand pressure is low, ramp metering can completely 

eliminate freeway congestion.  However, when demand pressure is high, traffic engineers must 

prioritize between a “freeway-first” policy with heavily metered ramps and a “balanced” policy 

considering the interests of traffic on both the freeway and feeder streets.  Current ramp metering 

algorithms usually give priority to freeway traffic (Jin and Zhang, 2001).   

     Several ramp metering optimization schemes are used in practice, including fixed time 

strategies found in (Wattleworth, 1965), (Yuan and Kreer, 1971), (Tabac, 1972), (Wang, 1972), 

(Wang and May, 1973), (Cheng et al, 1974), (Schwartz and Tan, 1977), and (Bayen et al, 2004) 

and reactive metering strategies such as SWARM (NET, 1996), ALINEA and METALINE 

(Papageorgiou and Kotsialos, 2000).  However, (Muñoz and Daganzo, 2000) and (Cassidy et al, 
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2002) show that diverge bottlenecks (exit ramps) can create significant delay.  Cassidy (2002) 

shows some of the existing ramp metering algorithms to even increase total delay which can lead 

to unintended consequences due to underestimation of the effect of poor queue discipline at 

bottlenecks (Cassidy, 2002).  

     These queue discipline problems arise because drivers who wish to exit at the diverge 

bottleneck will not merge until the last instant because the left hand lanes offer better progression. 

When these drivers cannot merge right, they slow down and impede the progression of the left 

(and right) hand lanes. Therefore, the percentage of the traffic stream headed for the diverge 

bottleneck has a large impact on the capacity of the freeway section immediately before the 

diverge bottleneck. Further, some metering schemes restrict drivers from entering the freeway 

immediately before the bottleneck, resulting in longer queues at on-ramps near bottlenecks 

clogging surface streets, which can pose additional challenges in urban areas (i.e., impeding 

access for emergency vehicles or delaying city busses with many passengers), as well as an 

increase in the proportion of drivers headed for the bottleneck exit.  

     The conclusions of (Cassidy, 2002) support the hypothesis that the formulation of a ramp 

metering optimization problem can influence the resulting metering scheme and, therefore, its 

subsequent effectiveness as measured by some system-level metric.  Two metrics commonly used 

to evaluate the effectiveness are total system delay (Cassidy, 2002) and total vehicle miles 

traveled (VMT) (Bayen et al, 2004).  As measures of effectiveness, delay is a measure of travel 

time beyond free flow trip time and preferred to be minimized; VMT is a measure of network 

flow and preferred to be maximized.  Cassidy’s results lead to several related questions:   

1) What is the most appropriate performance measure to use for optimizing metering 
strategies?  

2) What consequences are likely to arise from using various performance measures? 

3) What impacts do diverge bottlenecks have on optimal metering strategies?  What can 
be done about them? 
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     The first task in this objective is to determine the extent to which the choice of system-level 

measures of performance impacts optimal ramp metering control strategies and to shed further 

light on the benefits and unintended consequences of “freeway first” control strategies, 

particularly on freeway sections with diverge bottlenecks.  The second task of this objective is to 

offer an expanded PDE constrained formulation that considers the additional reduction in 

capacity at the bottleneck caused by poor queue discipline at the bottleneck.  An example of poor 

queue discipline at diverge bottlenecks is drivers entering the passing lane to advance along the 

queue and exit closer to the off-ramp.  This action slows or even clogs the passing lane to through 

traffic, causing what amounts to further reduction in the capacity at the bottleneck.  The impact of 

poor queue discipline at the bottleneck propagates backward and slows traffic upstream much 

more than current models consider.  The expanded formulation accounts for flow bound for an 

exit at which a bottleneck would activate and is shown to produce more conservative ramp 

metering policies that appear to be more realistic. 

     This objective also investigates the sensitivity of the optimal ramp metering strategy to the 

choice of the objective function.  An alternate formulation is proposed to improve ramp metering 

results by explicitly including the capacity reduction of the diverge (off-ramp) bottlenecks in the 

optimization problem.  A model formulation is presented that uses two different measures of 

performance to solve a 26-link highway network topology found in (Bayen et al, 2004) and 

compare the results.  Specifically, this objective examines a ramp metering problem based on the 

physics of highway traffic flow expressed in the Lighthill-Whitham-Richards (LWR) partial 

differential equation (PDE) and measured on the basis of total VMT and total delay.  The VMT-

based model optimizes total number of vehicle miles traveled on a series of freeway sections.  

The delay-based model optimizes total system delay calculated as the difference between total 

actual travel time and the corresponding free flow travel time at the speed limit.  These models 

constrain the control strategy such that no backward waves propagate, ensuring gridlock does not 
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occur.  This assures the LWR PDE is satisfied for the steady-state steady-flow conditions.  This 

allows us to simplify the problem by considering on-ramp flow fixed over the analysis period and 

focus the study on the properties of optimal solutions derived by various formulations. 

     In summary, this objective models the physical flow of a multi-network system and examines 

the extent to which operational controls can be employed such that appropriate performance 

measures are optimized and unintended consequences are minimized.  Simplified optimal ramp 

metering formulations are examined based on different objective criteria and accounts for reduced 

mainstream capacity due to diverging traffic (off-ramps).  Specifically, this objective examines 

optimal ramp metering formulations and offers improvements using mathematical programming 

approaches to determine optimal policies for controlling the flow of highway traffic in order to 

optimize a system-level performance measure.  This objective investigates the sensitivity of ramp 

metering strategies to choices of performance measures in the objective function.      

     This chapter is organized as follows:  Section 3.2 describes the PDE based optimization 

approach to the ramp metering problem; Section 3.3 describes the two candidate model 

formulations for performing ramp metering optimization; Section 3.4 provides the numerical 

results for the two formulations; Section 3.5 contains the expanded formulation that is more 

inclusive of the dynamic nature of the highway physics; Section 3.6 discusses the results of the 

numerical illustrations; and Section 3.7 provides conclusions. 

 

3.1.1 Background 

     The first attempts to optimally meter freeways were developed in the 1960s and 1970s.  Sheffi 

(1985) further developed the inputs and link performance models including a discussion of speed-

flow-density relationships for general freeway segments.  Approaches in the review of relevant 

literature include ALINEA, METALINE, and PDE-Based control formulations, as well as to 

recent critiques of these types of strategies. These approaches can lead to suboptimal performance 



65 

 

when queue discipline effects are not properly considered.  The objective illustrates how common 

optimization formulations for flow networks are based on mathematical assumptions in modeling 

which an optimizer will exploit.  The resulting design may cause unintended consequences.  A 

simplified formulation of a LWR PDE-based approach to optimal ramp metering illustrates what 

the consequences of this phenomenon are. ALINEA and METALINE, as well as other 

approaches based on direct control of the LWR PDE have similar weaknesses as described in 

(Cassidy, 2002). 

     One of the major objectives of ramp metering is to influence routing.  Commonly used 

assumptions, such as those in (Payne and Thompson, 1974) are too simplistic, in that they assume 

that users are either routed directly into the freeway or into an equivalent surface street.  This is 

obviously not realistic, as drivers will use the freeway and will wait in queues on the on ramps 

and feeder streets in order to use the freeway.  Governing queuing theory equations, such as those 

in (Tarko, 2003) are applied independent of the impact of the control policy on queue discipline.  

This vulnerability is mitigated in this research by explicitly considering the resulting capacity 

reduction at diverge bottlenecks. 

    Another concern in optimizing ramp metering control is modeling reasonable flow phenomena.  

This research follows the process as included in (Bayen et al, 2004) where the merge 

phenomenon is considered implicitly in the choice of fundamental diagram.  Capacity reduction 

may be modeled by introducing a bottleneck-bound flow, αi , which reduces the flux of each 

increment on link i universally by (1- αi).  This objective only considers steady-state, steady-flow 

ramp metering schemes, thus the calculation of alpha is straightforward.  Alpha becomes the flux-

weighted average of the fraction of cars at each on ramp with a destination of the bottleneck.   

     A distance based formulation to maximize vehicle miles traveled (VMT) and a time based 

formulation to minimize network delay is presented and sensitivities analyzed.  By formulating 

and solving problems with different objectives, two different methods of exploitation are 
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observed. In the VMT-based formulation, upstream progression is maximized by restricting ALL 

traffic necessary to prevent queues before the bottleneck at the ramp closest to the bottleneck. 

However, when optimizing with a delay metric, the optimal metering scheme equates the 

marginal delay on the freeway with the marginal delay on the on ramps.  

 

3.1.2 Optimization Method 

The optimization method used to solve this non-linear problem is the generalized reduced 

gradient method. By simplifying the optimization problem to steady-state, steady flow (SSSF) 

solutions of the LWR PDE, it is possible to solve it as a static nonlinear programming problem by 

any standard NLP method. The results prove the exploitation of the LWR equation by the 

optimizer to alleviate the bottleneck by metering the on ramps closest to the bottleneck to 

maximize progression upstream, or with equating marginal delays on the freeway and on ramps.  

The implication of these optimality principles is that when drivers headed beyond the bottleneck 

are metered in favor of those who will take the exit at the diverge bottleneck and create queue 

discipline problems, the model based optimal solution is not optimal. 

     To address this issue, an expanded formulation of the optimal ramp metering problem is 

developed which explicitly includes the impact of capacity reduction due to poor queue discipline 

at diverge bottlenecks into the optimization problem.  Using synthetic data, it is shown how 

traditional optimal ramp metering formulations may inadvertently cause traffic problems for both 

the highway and associated surface streets.  It is then shown how accounting for the poor queue 

discipline that undermine current strategies will lead to control policies based more realistic 

system physics that will improve network performance.  A side by side fundamental diagram and 

time-space diagram depicts the solution of the LWR equation inclusive of the reduction in 

capacity at the bottleneck.  

  



67 

 

3.1.3 Assumptions and Limitations 

     Several key limitations and assumptions support the work presented in this objective.  One 

important assumption is that it is preferable to operate in the unqueued portion of the fundamental 

diagram because for equal flows, the speed obtained in the unqueued portion is higher than that 

obtained in the queued portion.  Only when freeway queue storage is desired should a strategy 

involving queued states of the fundamental diagram be considered.  Two simplifications in the 

research formulations are disallowing shock waves to form on the mainstream and no 

consideration of on-ramp queue constraints.  For the purposes of this portion of research, those 

who wish to use the on-ramp are assumed to be willing to wait in queue without switching routes.  

     An assumption for each system is that the “traffic physics” is modeled in accordance with the 

Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) model (Richards, 1956) 

and (Lighthill and Whitham, 1956), which describes the evolution of the car density on the 

highway using a PDE. This PDE relates the time derivative of the car density to the space 

derivative of the flux function, where the flux function is an empirically determined function 

which relates the number of cars traveling through a given section of the highway per unit of time 

to the local car density.   From the constraints in the model that the flow for each section is less 

than the capacity flow, steady-state, steady flow (SSSF) conditions are imposed, yet the LWR 

PDE is still satisfied. 

     Another assumption is that the fundamental unit of analysis is the highway and its associated 

ramps.  This assumption allows for clear illustration of the operational implications of a model of 

traffic flow that does not consider flow phenomena near the bottleneck.  The unit of analysis 

selected is appropriate for the work done, as the focus of the study is solely on the operations of 

the freeway and on ramps. As many modern ramp metering approaches consider only the 

operation of the freeway, our unit of analysis is significantly larger than that for many recent 

papers and algorithms.  



68 

 

     Another important assumption is the LWR PDE model accurately captures the conservation of 

flow over the control volume.  The freeway is assumed homogeneous between on and off ramps, 

with a fundamental diagram that is time and space invariant for each link.  The example contains 

a detailed description of the capacity drop for the diverge bottleneck, as this is a key concern, and 

assume that the merging capacity drop is taken into account in the fundamental diagram of the 

freeway segment. This has been shown to be standard practice in such models (Cayford et al, 

1997).  Additionally, for this objective user decisions are assumed and fixed.  A stochastic 

simulation presented in Chapter 5 will further incorporate more realistic physics and mode/route 

switching through a user choice model.  

 

3.2 Problem Description 

     Jin and Zhang (2001) state the purpose of ramp meters is to regulate input demand so that 

operational balance is achieved in the system.  To accomplish this, on-ramp meters (i.e., D1, D2 

and D3 in Figure 3.1) restrict entrance from surface street links (i.e., w, x, y in Figure 3.1) onto the 

freeway.  Transportation decision-makers seek to control the flow such that the tradeoff between 

progression on the freeway, governed by the LWR PDE and queuing on adjacent on-ramps and 

surface streets optimizes a given system-level measure of performance (i.e., total VMT on the 

freeway or total system wide delay).  Many metering schemes simply transfer the travel cost from 

the freeway to its on-ramps and surface streets.  However, an effective metering scheme should 

reduce the overall commuter travel cost (Cassidy, 2003). 
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Figure 3.1  Ramp Metering Problem Diagram 
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3.2.1 Lighthill-Whitham-Richards (LWR) PDE 

     The physics of traffic flow is modeled in accordance with the Lighthill-Whitham-Richards 

(LWR) partial differential equation (PDE) which describes the evolution of the car density on the 

highway using a PDE (Richards, 1956), (Lighthill and Whitham, 1956).  The LWR PDE is a 

macroscopic model based on aggregate variables that summarize information about multiple 

vehicles to describe the behavior of traffic (Bellemans et al, 2002).  This equation is a physical 

law in traffic theory that relates the time derivative of the car density to the space derivative of the 

flux function, such that cars do not appear or vanish and flow is conserved across the network 

(Bellemans et al, 2002). 

     The example problem for this study was formulated based on the 26-link section of highway 

containing both on and off ramps as shown in Figure 3.2 (Bayen et al, 2004). 

 

 

 

 

 

 

For a network of N connected highway segments, indexed by i, at link densities ρi (i.e., vehicles 

per mile), 0)( =iiN ρ  implies the conservation of vehicles in the traffic context across network 

N.  The length of link i is called Li  and the coordinate on this link is ],0[ ii Lx ∈ .  The evolution 

of car density on the highway is described by the following PDE: 
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(Bayen et al, 2004) 
Figure 3.2  Portion of I-210 East, California 
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in which )(⋅iq represents a flux function relating the flux of cars (number of cars through a given 

section of the highway during a time unit) to the car density at that location.  This equation is 

interpreted as the local rate of change of car density which is equal to the space derivative of the 

flux of cars (i.e., conservation of mass).  The flux )(⋅iq  can be identified empirically from 

highway data.   

     In this example, drivers merge (on ramps) and diverge (off ramps) across a 26-link highway 

topology. The governing equations for this system are given by: 
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In the governing equations, )( i
o
i xρ  denotes the density of cars at time 0.  The set of links with 

merging on-ramps is represented by the ON equation.  )(tqon
i denotes the inflow of cars into link 

i.  OFF denotes the set of links with diverging off ramp cares leaving link i through an off ramp.  

Every xi ranges in [0, Li], and ],0[ Tt ∈ .  The interpretation of the ON equation is the 

conservation of flow at an on-ramp (the flow into link i is the flow from link i – 1 plus the 

additional flow from the ramp).  The OFF equation expresses the same with off ramps.  In the last 

equation β i (t) represents the proportion of flow leaving link i.  The first order approximation that 

β i (t)= β i does not depend on time is also used. 

 

3.2.2 PDE Constrained Optimization for Control Problems 

     Constrained optimization seeks to optimize a cost function, subject to constraints inherent to 

the problem and imposed by the available control.  In case one or more of the constraints is the 
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satisfaction of a PDE, the phrase “PDE constrained optimization” is used.  The physics of a 

highway network is described by the LWR PDE and corresponds to what is referred to as the 

“fundamental diagram.”  Figure 3.3 depicts a fundamental diagram for a typical traffic flow 

where a flux q is a function of density ρ and the slope from the origin is speed (Geroliminis and 

Daganzo, 2007).  

 
 
 
 
 
 
 
 

 

 

 

     Many traffic network problems can be formulated as mathematical programming problems 

with objectives to minimize the total cost to the network.  The optimization program is 

nonconvex, nonlinear and includes constraints in the form of PDEs (Sheffi, 1985). 

 

As previously stated, our formulation disallows backward wave propagation by ensuring link 

flows do not exceed link capacities.  The LWR PDE is satisfied for the steady-state steady-flow 

conditions and under these conditions flow is conserved at steady state.  The problem is 

simplified to consider qon fixed over time by holding metering rates (fluxes) constant over the 

analysis period.  This allows us to focus on the properties of optimal solutions derived by various 
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Figure 3.3  Fundamental Diagram of Traffic Flow 
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formulations. The total cost function can be any appropriate metric.  A model formulation, using 

different metrics, is presented in Section 3.3.   

3.3 Model Formulation 

     A formulation for determining metering schedules to optimally control a network of connected 

highway segments is presented in this section and solved based on two different measures of 

performance.  First, a mathematical program is presented to maximize the total vehicle miles 

traveled with respect to the ramp meter strategy and subject to satisfying the LWR PDE and 

ensuring the conservation of flow for each link.  Vehicle miles traveled (VMT) is defined as the 

sum of distances driven by cars on a highway section over a time interval (Chen et al, 2001). 

 

3.3.1 VMT-based Formulation 

 

VMT is expressed as a function of ))(( ⋅iiq ρ , as can be seen in the objective function of the 

following optimization problem: 

                

cap
ii

on
i

on
i

iiiiii

on
iiiiii

i
o
iii

i

iii
ii

L T

iiii
N

i

qq

qq

OFFitLqttq
ONiqtLqtq

Nixx

Ni
x

q
t

N

dtdxtxqi

≤

≤≤

∈∀−=
∈∀+=

≤≤=

≤≤=
∂

∂
+

∂
∂

=

−−−−

−−−

= ∫ ∫∑

max,

1111

111

0 01

0

)),(())(1()),0((
)),(()),0((

1)()0,(

10)()(

,

)),((max

       
               

                                           

                             

s.t.
ρ q   w.r.t.

  

ρβρ
ρρ

ρρ

ρρ
ρ

ρ

       (2) 

 
 
 
 
 
 
 
 

max Vehicle Miles Traveled 
 

w.r.t. Metering Policy (qon) 
 

s.t. Link Performance Model (LWR PDE) 
 

 Conservation of Flow 
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     The first four constraints in this optimization problem are the governing equations listed in 

Section 3.2.1 and the last two constraints set a bound on the number of cars that can be let into the 

highway.  On-ramp flux 
on
iq is the control variable for the problem.  Maximum flow on link i is 

represented by on
iqmax, ; cap

iq represents the capacity of the ith homogeneous section of the freeway.  

 

3.3.2 Delay-based Formulation 

 

The delay-based formulation is a mathematical program to minimize the total delay to the system 

with respect to the ramp metering strategy, while subject to satisfying the LWR PDE and 

ensuring the conservation of flow for each link.  The link performance model and conservation of 

flow are represented the same way as in the VMT formulation.  However, the objective function 

minimizes total delay which is computed as the sum of ramp delay and freeway delay.  Ramp 

delay is the amount of time vehicles spend waiting at an on-ramp.  Average ramp delay d for a 

given link is computed using this time-dependent version of Little’s formula from queuing theory 

in Eq. (3) 

[ ]CT
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ramp xxT
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d 42)1(19003600
+−+−+=                               (3) 

where the time period T is expressed in hours and capacity C in vehicles/hour with x representing 

a saturation ratio of volume to capacity.  For this problem, T = 1 hr, C = qi
on, and 

iq
qx max= . 

     Freeway delay is the difference in free flow speed sff and actual travel speed s for flow q on 

link i  Average freeway delay for a given link is computed using Eq. (4) 
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On‐R amp i q on q max

2 1300 1300
4 1300 1300
5 1300 1300
8 1300 1300
11 1300 1300
13 1283.9 1300
14 1285.6 1300
16 1260.6 1300
18 1210.6 1300
19 1215.7 1300
20 1223.5 1300
21 1236.6 1300
23 1300 1300
26 1300 1300

Total Delay (min)  1,061

Total VMT  (miles ) 134,288

Delay Formulation

On‐R amp i q on q max

2 1300 1300
4 1300 1300
5 1300 1300
8 1300 1300
11 1300 1300
13 1300 1300
14 1300 1300
16 1300 1300
18 1300 1300
19 1300 1300
20 1300 1300
21 952.9 1300
23 1300 1300
26 1300 1300

Total VMT  (miles ) 135,172

Total Delay (min)  1162

 Vehicle Miles  T raveled F ormulation

)1()( −= s
s

ffifreeway
fftqd                                             (4) 

For this problem, the free flow trip time tff is 60 seconds, implying it takes that long to travel each 

1-mile link at the free flow speed sff of 60 mph.  The delay-based approach is the same as the 

VMT formulation in Eq. (2), except the objective function of the optimization problem is 

replaced by Eq. (5). 
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3.4 Numerical Results 

     Each formulation in Section 3.3 was solved from the same initial conditions: free flow speed = 

60 mile/hr; jam density = 600 veh/mile; initial flow = 5000 veh/hr; and the percent diverge βi 

equal to 25 percent at each off-ramp.  Optimal metering was obtained for each on-ramp i.  The 

maximum on-ramp flux for each link was given as no more than 1300 vehicles per hour.  Values 

for qon in Table 3.1 and Table 3.2 are the flux for each link at convergence of the optimization 

problem (vehicles/hour to which link flow is restricted in the optimal policy).  

 

 

 

 

 

 

  

Table 3.1  VMT-based Optimal Metering Policy Table 3.2  Delay-based Optimal Metering Policy 
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     The VMT formulation optimized total distance and produced an optimal control strategy of 

aggressively restricting the flow just before the bottleneck.  The optimal policy was a total VMT 

of 135,172 miles with a total delay of 1162 minutes.  The delay formulation optimized total time 

and produced an optimal control strategy that modestly metered many on-ramps upstream from 

the bottleneck.  The optimal policy was a total delay of 1061 minutes with a total VMT of 

134,288 miles.   

     The simulation results produced some interesting insights.  First, although both formulations 

generated an optimal control policy, the metering strategy was sensitive to the performance 

measure that was optimized.  The results illuminated the tradeoff between time and distance as 

the primary performance measure in the optimization problem.  As depicted in Table 3.1, 

aggressive metering just prior to the bottleneck allowed more drivers to travel unimpeded, 

provided they desired to travel relatively short distances and exit prior to the bottleneck.  

However, the long line at the aggressively metered on-ramp has the potential to interfere with 

adjacent surface streets and contribute to congestion in local urban areas where the capacity to 

store queued vehicles is much less than on the freeway.  Longer delays at meters may incentivize 

drivers to change routes or even modes of travel.  The potential consequences serve as a call for a 

broader system perspective to better balance the needs of the greater transportation system. 

     A second insight is that, although the results in Table 3.1 and Table 3.2 represent widely 

accepted approaches, neither accounts for the upstream impacts due to the reduced capacity at the 

diverge bottleneck.  The extent to which capacity near the bottleneck is over estimated in the 

formulation determines whether the resulting optimal control solution will guarantee congestion 

is avoided.  An expanded formulation that incorporates the impacts due to reduced capacity is 

offered in Section 3.5. 
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3.5 Expanded PDE Constrained Formulation and Results 

     Despite being among the most prevalent highway traffic control strategies used in practice, 

even popular ramp metering algorithms do not include some of the effects of the physics of 

diverge bottlenecks (Cassidy, 2002).  Cassidy (2003) suggests much of the literature on how ramp 

metering might achieve reductions in congestion actually offers techniques which can make 

conditions worse than if left uncontrolled.  The central aspect of the physics of diverge 

bottlenecks not adequately considered is the additional reduction in capacity at the bottleneck 

caused by poor queue discipline at potential bottlenecks.  As previously stated, drivers entering 

the passing lane to advance along the queue and exit closer to the off-ramp slows or even clogs 

the passing lane to through traffic, causing what amounts to further reduction in the capacity at 

the bottleneck.  This section offers an expanded formulation that includes the impact of this 

reduction in capacity. 

     The expanded PDE constrained formulation differs from the previous formulation by 

explicitly considering the flow bound for an exit at which a bottleneck would activate, expressed 

by iα . This proportion can be estimated from an origin-destination (O-D) matrix for a given 

highway based on historical data describing where drivers enter and exit the freeway. The impact 

can be described as a shrinking of the fundamental diagram mapping density to flow and based on 

Greehshield’s traffic flow relationship in Eq. (6)  

)1()1(
ff

i
iffii Vq ρ

ρρα −−=   
      (6) 

where ffV and ffρ  are the free flow volume and density; iq and iρ are the actual link flow and 

density (Tarko, 2003). 

     The (Bayen et al, 2004) VMT-based approach is modified to illustrate the expanded 

formulation.  For the 12 on-ramps prior to the bottleneck at exit 22, iα  values were initialized 

such that the total expected upstream flow bound for the bottleneck was 25 percent (same as 
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previous formulation).  Another difference in the expanded formulation is that βi is parameterized 

as ),(1 oni qt−β  in the OFF constraint.  iβ  represents the proportion of flow that exits off ramp i. 

     The expanded PDE constrained formulation to minimize total delay is shown below.  Ramp 

and freeway delay are computed as shown in Section 3.3. 
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     The initial conditions were the same for the alternate formulation as in the formulations in 

Section 3.3.  The additional information regarding the percentage of flow from each upstream 

link desiring to exit off-ramp 22 was added and the optimization was resolved.  Again, each 

formulation generated an optimal metering strategy to ensure no bottleneck activated.  Table 3.3 

and Table 3.4 depict the optimal metering policies for the expanded formulation. 
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On‐R amp i α i q on q max

2 0.08 1300 1300
4 0.17 1300 1300
5 0.25 1300 1300
8 0.33 1300 1300
11 0.42 1300 1300
13 0.50 1300 1300
14 0.50 1175.4 1300
16 0.42 1132.2 1300
18 0.33 0 1300
19 0.25 112.0 1300
20 0.17 1183.9 1300
21 0.08 1126.1 1300
23 1300 1300
26 1300 1300

Total VMT  (miles ) 109,830
Total Delay (min)  8077

B
N
 a
t 2

2  
ex

it

Vehicle Miles  T raveled Formulation

On‐R amp i α i q on q max

2 0.08 1300 1300
4 0.17 1300 1300
5 0.25 1300 1300
8 0.33 1258.9 1300
11 0.42 1052.7 1300
13 0.50 903.1 1300
14 0.50 905.4 1300
16 0.42 838.9 1300
18 0.33 761.4 1300
19 0.25 785.9 1300
20 0.17 813.6 1300
21 0.08 845.4 1300
23 1300 1300
26 1300 1300

Total Delay (min)  4,565
Total VMT  (miles ) 108,630

B
N
 a
t 2

2  
ex

it

Delay Formulation  

 

 

 

 

 

 

 

 

  

       

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3  VMT-based Optimal Metering with α Considered  

Table 3.4  Delay-based Optimal Metering Policy with α Considered 
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The results from the alternate formulation verified the tendency for VMT-based control policies 

to meter more aggressively over fewer on-ramps and delay-based control policies to meter more 

modestly across more on-ramps upstream from the bottleneck.  The optimal policies (depicted in 

Figure 3.4) for both formulations restricted heaviest at on-ramp 18 (where most people are 

headed to the diverge bottleneck).   

 

Figure 3.4  Optimal Policies w/ Alternate Problem Formulation 

 

     The impact of qon= 0 at on-ramp 18 was no cars entered the freeway at that location for entire 

analysis period.  From a driver’s perspective, this is extremely inconvenient.  The VMT-based 

policy allowed maximum entry as far as possible (until on-ramp 14), then metered increasingly 

heavier until on-ramp 19 where flow increased rapidly to maximize the flow of travelers with 
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destinations beyond the bottleneck.  The delay-based formulation began metering at on-ramp 8 

and increasingly restricted flow through on-ramp 18, then gradually decreased metering until the 

bottleneck. 

 

3.6 Analysis 

     For this objective, a common problem instance was used to illustrate the formulations and 

results in Sections 3.3, 3.4 and 3.5.  However, over the course the study, multiple simulations 

were performed and sensitivity of the optimal policy to the performance measure was consistently 

observed.  When distance was the priority, aggressive metering just prior to a potential bottleneck 

was the optimal policy.  When time was the priority, a modest, broader optimal policy was the 

solution.  The reason for this observed sensitivity is the scope of the system under consideration.  

For example, when optimizing VMT, only the distance traveled by vehicles on the highway 

mattered, thus the aggressive, single point metering strategy provided the greatest possible overall 

forward flow.  Time spent waiting to enter the highway was not a factor; the optimizer exploited 

this by assigning all queued vehicles to the single point location.  Conversely, in the delay 

formulation, the optimizer exploited short trips upstream to promote faster overall flow by 

restricting flow at more upstream on-ramps. 

 

3.6.1 Discussion of Results 

     The results in our study showed how optimal control strategies derived from VMT-based and 

delay-based formulations differ.  But which strategy is better for the broader transportation 

system?  For one thing, the VMT-based optimal policy which included completely closing a 

freeway on-ramp should be scrutinized for its potential to cause tremendous traffic jams around 

the entrance ramp.  Furthermore, with humans-in-the-system, such a drastic policy would likely 

lead to someone being fired, thus it may not be optimal if it is not realistically feasible.  As 
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compared to the commonly used VMT-based formulation solution, the delay-based formulation 

produced a metering scheme that distributed the metering effects across the highway system and 

prevented extremely long queues at on-ramps near a bottleneck.  Both optimal ramp metering 

schemes effectively control highway traffic; however, the question of whether the control causes 

traffic problems for associated surface street systems will depend on the circumstance.  VMT-

based formulations aggressively constrain flow immediately upstream of potential bottlenecks.  

This can lead to long lines at on-ramps that interfere with flow on adjacent surface streets.  The 

delay-based formulation spreads a more modest metering policy across more upstream links.  In 

some cases, it may be preferred to store vehicles on the highway rather than in an urban center 

(even if this means allowing temporary jams to activate).  Thus, for many typical highway traffic 

situations, maintaining steady-state steady-flow conditions through a delay-based control strategy 

seems more appropriate.  Most commuters likely prefer reaching their destination in the least 

amount of time and value minimizing delay over maximizing VMT.  The delay-based 

formulation is more appropriate when this is the case.     

     The expanded formulation also exposes a tradeoff between underutilized capacity upstream 

and delay which was the results of the reduced capacity at the bottleneck.  In our initial 

simulations, the optimization procedure traded between underutilized capacity upstream and 

decreasing the anticipated percentage of drivers exiting at the bottleneck in order.  When a 

constraint was imposed to maintain alpha equal to twenty-five percent, the excess diverge 

bottleneck volume was reverted back to the freeway and the optimization required heavier 

metering to balance the system and maintain steady-state steady flow conditions.  This resulted in 

a non-linear increase in delay, particularly at the on-ramps. 

     Including the effects of diverge bottlenecks in the problem formulation produced a metering 

strategy in Section 3.5 that better accounted for the reduced capacity at the bottleneck and its 

impacts upstream on traffic flow.  The resulting control strategy metered more aggressively, 
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which underscored the premise that prior formulations did not include the effects of poor queue 

discipline on the traffic flow.  When the reduced capacity at the bottleneck is not accounted for in 

the optimization formulation, Figure 3.5 provides a graphical illustration of the impact as 

determined by solving the LWR PDE. 

 

 

 

 

 

 
 

 

     In the absence of queue discipline effects the traffic would move according to the top curve on 

the fundamental diagram on the left graph in Figure 3.5.  However, the reduction in capacity of 

the segment caused by the poor queue discipline of drivers exiting at the diverge bottleneck 

results in a situation where, if left unaccounted for in the ramp metering control strategy, would 

result in upstream traffic approaching the bottleneck in state C with the bottleneck discharging in 

state C’.  Traffic immediately before the bottleneck would then be in state Q and a shockwave 

would propagate backward from the bottleneck with a speed equal to the slope between points C 

and Q on the fundamental diagram.  In our example, the speed was 17.2 mph and is depicted in 

Figure 3.5.  Facility-specific studies are needed to parameterize the fundamental diagram, but the 

expanded formulation proposed in this objective accounts for this realistic aspect of highway 

traffic. 

 

Figure 3.5  Shockwave Propagation Due to Reduced Capacity at Bottleneck 
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3.6.2 Insights and Observations 

     Several interesting insights were observed.  First, the results show that when drivers who are 

headed beyond a bottleneck are metered in favor of those who will take the exit at a diverge 

bottleneck and create queue discipline problems, the model based optimal solution is NOT 

optimal.  Second, ramp metering strategies that do not account for queue discipline can cause 

unintended consequences to adjacent networks.  Third, delay-based optimal metering solutions 

generated a total distance traveled that was less than the generated total distance traveled in the 

optimal distance-based metering solution.   This is to be expected, since vehicle miles traveled is 

to be maximized and delay is to be minimized.  Furthermore, another insight was that it is not 

unreasonable to generate an optimal strategy that requires a ramp to completely close.  In the 

VMT case, without considering queue discipline effects, this was the best place for the overall 

system to apply metering.  This makes sense because these vehicles enter the freeway the furthest 

downstream, and without activating another constraint, such as a minimum allowable influx 

constraint, there was no reason to meter anywhere else.  However, the feasibility and impacts of 

such an extreme policy were discussed in Section 3.6.   

 

3.7 Conclusion 

     This objective examined the extent to which ramp metering strategies can control freeway 

traffic such that appropriate performance measures are optimized and unintended consequences 

are minimized.  The most appropriate metric to use depends on the situation.  Many typical city 

planning factors, such as capacity of surface streets, proximity of on-ramps to critical 

infrastructure and services and freeway design, should be considered when choosing a metric.  

Optimal ramp metering strategies were observed to be sensitive to the problem formulation that is 

solved.  VMT and delay based formulations were shown to produce optimal strategies that 

differed in terms of metering restrictiveness and locations.  One particularly important 
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consequence of the VMT-based formulation is that it meters the people accessing the highway 

immediately upstream from the bottleneck. This is likely a very undesirable situation if the 

bottleneck is a diverge bottleneck, as this will result in metering people who are not likely to 

cause queue discipline problems. This will almost certainly reduce bottleneck throughput and 

increase system-wide delays.  

     If the percentage of drivers headed for a diverge bottleneck can be estimated, then it is 

possible to tailor a ramp metering strategy using the methods developed in this objective. An 

alternate formulation was proposed and shown to provide a strategy that was more inclusive of 

the physics of diverge bottlenecks, as the fundamental diagram was parameterized by the fraction 

of users exiting at the bottleneck. Therefore, resulting optimal ramp metering strategies are based 

on more realistic models of freeway performance and thus have a greater potential for reducing 

congestion and limiting unintended consequences.  Estimation of such information is a 

notoriously difficult problem, but with the advent of sensor network capabilities provided by 

devices such as personal GPS navigational systems and cell phones with GPS capabilities, it is 

likely for more accurate estimation of O-D matrices to be possible in the future. 

     Ideally, a metering scheme should be specially tailored to the freeway it serves. This may 

involve solving the ramp metering problem as a multi-objective optimization problem using the 

same PDE constrained optimization discussed in this objective.  Ramp metering solutions 

designed to effectively control highway traffic may inadvertently cause traffic problems for 

associated surface streets, especially if queue lengths on and inadequate queue storage 

capabilities of surface streets are ignored.  Therefore, while this study has focused on freeway 

metering, optimization and control is most effective for the broader transportation system when 

aspects of and impacts to as many facilities as possible are considered. 

     The need for a broader systems perspective to better address SoS problems is only one of 

several general insights into broader SoS problems that come from the research described in this 
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objective.  A second insight is that system engineers and planners should take great care in 

deciding the problem-solving methods to employ and the performance measures with which to 

evaluate success.  State of the art mathematical approaches, such as the ones examined and 

developed in this objective, still simplify the SoS problem in order to analyze and optimize 

certain aspects.  Finally, a risk of selective or piecemeal solutions to SoS problems is the potential 

for unaccounted for interdependencies to result in different performance that is missed without an 

integrated optimization approach.   

     From the SoS issues identified in this research objective, subsequent tasks should seek to show 

how optimization and control methods, used as decision support to SoS policy makers, can 

increase the reliability and performance of an SoS.  The lack of an integrated system approach is 

addressed in the next objective in the context of an economic SoS.  A general optimization under 

uncertainty (OUU) approach is developed as an initial road map from which more detailed 

features can be added. The economic example in the next objective showcases the 

appropriateness of the SoS approach in a domain other than transportation.  However, in later 

objectives the transportation example is reintroduced as the OUU approach is extended to 

incorporate microscopic system performance, hybrid dynamics and user decisions.        
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4 CHAPTER IV 
 

 AN INTEGRATED APPROACH TO POLICY ANALYSIS AND    
DESIGN UNDER UNCERTAINTY FOR SYSTEM OF SYSTEMS 

  

4.1 Introduction 

     System of systems problems appear within and across many domains.  In developing 

operational policies for these systems, it is important to model the behavior of the system of 

systems, represent and propagate uncertainties through the system model, and optimize the 

policies under uncertainty.  Policy makers are interested in achieving desired outcomes as a result 

of a given action. For example, creating demand for finished goods from each of a developing 

nation's sectors will stimulate cross-sector demands and improve the performance of the entire 

economy.  This objective develops an SoS approach to determining optimal control policies for 

these situations and showcases the appropriateness of such strategies in the context of an 

economic SoS.    

     The goal of the economic planner would be to maximize the benefit of the economic 

investment made in the economy. Another example would be the assignment of tasks to work 

centers in a work flow network in which each work center is dependent on some or all of the 

other work centers in the network in order to complete its tasks. The goal of the policy designer 

would be to assign tasks to work centers such that the overall workload is smallest, the total job is 

completed most quickly, the job is done at minimum cost, etc. Communications networks can 

have systems with input-output relationships, and it may be required to maximize metrics of 

network efficiency with the network operational policies. Queuing networks also exhibit similar 

properties if there are multiple interdependent servers who can send the items in queue to other 

servers before or after they have been served, and it may be desirable to minimize the total wait 
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time for a network of servers. Such a network representation is consistent with system of systems 

research which typically involves the large-scale integration of many independent, self-contained 

systems. From homeland security and military planning to air traffic control and satellite 

operations, complex multi-systems are very interdependent.  

     The synthesis of these very large systems often results in different problems than those 

presented by the design of a single system and the degree of uncertainty grows with the size of 

the system (DeLaurentis et al, 2006). SoS attributes such as operational and managerial 

independence, interdisciplinary domains and emergent behavior, require the relationships 

between systems to be modeled accurately and comprehensively. Policy design and analysis for 

systems of systems should also systematically account for the various sources of uncertainty and 

optimize the system objectives under uncertainty. A challenge for policy design in the context of 

systems of systems is integrating analyses which are often performed separately. This objective 

develops a framework for policy design in a system of systems which integrates simulation, 

uncertainty analysis, and optimization techniques to provide decision support for policy design. 

The proposed framework represents a network of interdependent systems using input-output 

models which describe the behavior of the various systems, efficiently analyzes and propagates 

uncertainties using analytical reliability methods, and optimizes system objectives under these 

uncertainties. This framework provides insights to alert decision makers of potential direct and 

indirect impacts from system interactions and make risk-informed policy decisions. The 

framework described in this objective addresses policy design in systems of systems from the 

perspective of optimization under uncertainty (OUU). This is important because policies should 

be effective even under adverse conditions. This framework uses first-order approximations of 

the probabilistic constraints to develop a decoupled formulation for SoS optimization under 

uncertainty. Our approach to OUU is depicted in Figure 4.1.   
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 SoS optimization under uncertainty has three components: (1) a model of SoS behavior and 

interactions, (2) uncertainty analysis, and (3) policy optimization analysis. 

     The rest of the chapter is organized as follows.  Section 4.2 gives an overview of the elements 

of the methodology used in this objective, including SoS analysis, uncertainty propagation, and 

optimization under uncertainty. Section 4.3 develops a novel approach to find robust optimal 

solutions for SoS policy optimization, proves that under assumptions of convexity in the decision 

space robust optimal policies do exist, and gives the optimality conditions for robust optimal 

solutions. Section 4.4 gives a numerical illustration of the proposed methodology.  A brief 

summary of the chapter is in Section 4.5.  

 

4.2 Methodology 

     Systems of systems may be modeled in different ways, depending on the level of detailed 

information available. While different mathematical and computational models such as simplified 

input-output models, systems dynamics, and agent-based simulation are available for describing 

their behavior, systems of systems are all networks involving their member systems. Networks 

are an organizational foundation for societies and economies. Nagurney (2003) suggests that 

network theory, as a methodology, has developed into a powerful and dynamic medium for 

abstracting complex problems with associated nodes, links and flows.  Since systems of systems 

 
 

System
A 

System
B 

          System of systems Modeling 

  Uncertainty Analysis

                  Decision Analysis / Optimization 

Figure 4.1  Analysis Framework for SoS Decision Support 
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are abstract networks of autonomous systems, the hypothesis is forwarded that such network 

analysis techniques are able to model the behavior of systems of systems.  This section will show 

how network theory can be used as the basis for policy optimization for systems of systems.  An 

overview of the Leontief input-output model (Leontief, 1953) is provided, which gives a 

simplified mathematical tool for the input-output analysis of economic networks.   This approach 

is also adaptable to other types of network systems (Haimes and Jiang, 2001).  The Leontief 

Input-Output model is used to derive the response of an economic system of systems to an 

external stimulus. Analytical methods are described for uncertainty analysis and methods for 

optimization under uncertainty. The OUU framework is generic and can be incorporated with 

other appropriate models of system of systems response.  In the following subsections, each of 

the three elements of the proposed methodology are described, and then their integration is 

developed.  

 

4.2.1 Leontief Input-Output Model 

     The Leontief Input-Output Model is a macro-level approach that represents the interactions 

among various interdependent entities, such as sectors in a national economy, as linear 

relationships (Leontief, 1953). The input-output model is based on three assumptions: fixed 

coefficients of production, constant returns to scale, and homogeneity of input resources. As an 

example, Figure 4.2 is a two-dimensional representation of the Leontief production function, 

where K is capital input and L is labor input. The L-shaped isoquants illustrate the various 

combinations of K and L to achieve a given level of system output  
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kkj

n

j
k cxx +∑

1=

=
    

                              (2) 

for ,,1,2,= nk K  where kx  is the output of commodity k ; the first term on the right is the total 

use of commodity k  in the production of all other commodities; and the second term on the right, 

kc , is the final demand for commodity k , including consumption, investment, export and 

government demand. Combining the balance equation and proportionality equation yields 

kkjkj

n

j
k cxax +∑

1=

=                              (3) 

for nk ,1,2,= K , where the left side gives output, and the two terms on the right are input and 

final demand, respectively. The resulting n  equations can be written as the single matrix 

equation, the Leontief equation  

cax=x +                      (4) 

where where 1)(= −− aIA  and I  is an identity matrix. The Leontief equation can be solved for 

the output required to produce a given vector of final demand 

caI=x 1)( −−                         (5) 

 or 

Ac=x                 (6) 

where 1)(= −− aIA . The sum of the elements thi  column of the 1)( −− aI is called the sector 

multiplier since a change in final demand icΔ  requires a change in final demand 

1)(= −−ΔΔ ∑ ijij
c aIx . The values of the matrix multiplier are sensitivities, representing sector 

interdependencies which measure the impact of interactions among sectors in the system of 

systems. Demand for goods from a sector with a larger multiplier stimulates a larger demand 

from other sectors.  



92 

 

     Other nonlinear models of production and general equilibrium exist in the economic literature 

(Intriligator, 1971).  This objective uses the Leontief input-output model only for the sake of 

illustration. One may include a more appropriate model with the overall OUU framework if 

necessary. 

 

4.2.2 Uncertainty Analysis 

     The model discussed in Section 4.2.1 is used as a baseline model to predict the impact of a 

major economic investment given values of the uncertain model parameters and the mitigation 

and prevention strategies implemented.  However, since some of the model inputs are random, 

the model outputs will also be random. Thus methods for propagating uncertainty through the 

underlying models are needed. Since Monte Carlo Simulation (MCS) is expensive, using MCS 

with the thousands of iterations required for accurate estimation of output statistics may be 

impractical, especially in the context of policy optimization. Thus, it may be desired to estimate 

the statistical moments of a function of random variables using analytical approximation methods 

which require only a few model evaluations. 

     One can use second-moment approximations for the output statistics of the mean and variance 

of system of system level responses as a function of random variables, but second-moment 

approximations often are inaccurate with nonlinear limit states and non-normal random variables 

(Ditlevsen and Madsen, 1996), (Haldar and Mahadevan, 2002), (Nowak and Collins, 2000). 

Given the potential for inaccuracies with second moment approaches, it is desirable to use more 

accurate methods for estimating the CDF of the system of systems model outputs, especially if 

extreme events are of particular importance. The First-Order Reliability Method (FORM) is a 

more accurate analytical method that can be used to determine the CDF of functions of random 

variables (Ditlevsen and Madsen, 1996), (Haldar and Mahadevan, 2002), (Nowak and Collins, 

2000). 
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     The probability of a function of random variables being less than or equal to some value k  is 

given as 

 { } yyy yy dfkgP kg )(=)( )( ≤≤           

where )(yyf  is the joint probability density function of the random variables y . An analytical 

evaluation of the integral is possible only for a few special cases, and hence numerical integration 

is necessary. FORM has been found to be a computationally efficient and reasonably accurate 

analytical approximation to the probability integral under consideration for many problems 

(Ditlevsen and Madsen, 1996), (Haldar and Mahadevan, 2002), (Nowak and Collins, 2000).  In 

FORM, there are three important steps in the calculation of the probability of failure for an 

individual component failure mode. These are:    

 • Transformation of the random variables y  to an uncorrelated standard normal space u. 
Several transformations for correlated and non-normal random variables are available, 
such as Rosenblatt, Nataf, and Rackwitz-Fiessler (see (Rosenblatt, 1952), (Liu and Der 
Kiureghian, 1986), and (Rackwitz and Fiessler, 1976)).  

• Calculation of the most probable point (MPP) corresponding to the condition 
kGg =)(=)( uy . This point is the solution to the constrained optimization problem.  

( )kGargmin =)(|=* uuu                     (7) 
Good algorithms for solving this problem have been proposed in (Hasover and Lind, 
1974), (Rackwitz and Fiessler (1978), and (Zhang and Der Kiureghian (1994).   

 • The probability of the event ( ) kg <y  is approximated as )( β−Φ , where β  is the 

reliability index. The reliability index is calculated as *αu  where  

T

u

u

G
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=
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u

α
∇
∇

−
 
    (8) 

     That is, the alpha vector is the negative normalized gradient row vector of the response 

function in the transformed space. At optimality in the FORM MPP search, it is important to note 

that the alpha vector α is collinear with the MPP vector. The alpha vector can help analysts 

determine which uncertain parameters are the most important so that information gathering 
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efforts are focused on these variables (Haldar and Mahadevan, 2002).  Random variables with 

alpha values of low magnitude can often be modeled as deterministic at the mean. 

     A further useful technique in reliability-based design optimization is the inverse FORM 

problem, which returns a worst-case point such that the probability of a more extreme event is 

)( β−Φ . The inverse FORM problem solves the optimization (Du and Chen, 2004).  

( )tGargmin β=|)(=* uuu                                                    (9) 

      In this optimization, )(= t
f

t pΦβ , where t
fp  is a target failure probability in design 

optimization. The inverse FORM formulation allows for the decoupling of the reliability analysis 

and optimization problems in reliability constrained optimization problems, which are discussed 

in the next section, and greatly reduces the computational expense involved in solving such 

problems.  

 

4.2.3 Optimization Under Uncertainty 

     In the process of policy design for systems of systems, decision makers want to set decision 

variables at values which will result in the best overall result for the system of systems. However, 

finding the optimal policy is more difficult in the presence of uncertainty. One existing strategy 

for the implementation of optimization under uncertainty is stochastic programming (Bertsimas 

and Tsitsiklis, 1997). In stochastic programming, some of the parameters are random variables 

and the optimization formulation includes many scenarios, or realizations of the random 

variables. Feasibility for all possible scenarios can be required, or infeasibility can be penalized in 

the objective as in Eq. (10):  
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where d  is a vector of decision variables, iu  is a set of state variables for each scenario i , and ix  

is a realization of the random variables defining scenario i . Each scenario occurs with probability 

iq . In Eq. (10) the penalty function for each scenario ip  is defined to be zero if d  is feasible for 

scenario i . In addition, the penalty function satisfies a form of monotonicity in that worse 

violations incur greater penalty. There may be additional side constraints on the decision 

variables Eq. (10) accounts for uncertainty in optimization problems, but does so at a very large 

computational cost as the underlying models must be evaluated for every specified scenario.  

     Often decision makers planning may not be concerned with all possible scenarios, but only 

with preparing for the scenarios which could realistically occur and result in catastrophic 

consequences.  Since extreme events are often of concern to decision makers, another approach to 

optimization to optimization under uncertainty is optimization for the worst-case scenario 

(Rockafellar, 2007). This statement of the OUU problem is given as 

SDd
dd

∈∀∈
∈

ttts
sfmaxmin Ss

)(..
),(

                                      (11) 

     The policy d  is required to be feasible no matter what parameter value (scenario) occurs; 

hence, it is required to be in the intersection of all possible feasible sets )(tD  for each of the 

possible scenarios. The inner maximization yields the worst possible objective value among all 

scenarios.  This approach will be used and only continuous random variables will be considered.  

If the set S  is continuous, this is a problem of semi-infinite, but there is a need to define the set S  

probabilistically.  The problem is defined as 

)(0}),({

..
,

t

z

zfP

ts
zmax

β−Φ≤≤−xd

d

                                     (12) 

and using methods of semi-infinite optimization and reliability-based optimization to solve this 

problem (Kortanek, 2001), (Jongen et al, 1998).  Only the scenarios which occur within a 
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continuous subspace of the transformed normal space are considered (i.e. those scenarios such 

that tβ≤u ). This statement of the OUU problem allows for the use of techniques developed in 

the semi-infinite optimization and reliability-based design optimization (RBDO) literature which 

exploit the computational efficiency of FORM in the evaluation and/or assurance of probabilistic 

constraints, which is reviewed here for the reader's convenience. 

     In an RBDO problem, an objective function is minimized subject to reliability constraints 

corresponding to various limit states and deterministic constraints. The objective function is a 

function of the design variables and random variables. The design variables can be distribution 

parameters such as means or standard deviations of the random variables or can be deterministic. 

Nested algorithms, which were used before the 1990s include a full reliability analysis at every 

step of the design optimization algorithm. It is obvious that nesting these two procedures results 

in a large number of function evaluations, and studies performed in (Agarwal and Renaud, 2004), 

(Du and Chen, 2004), (Liang et al, 2004) and (Yang and Gu, 2004) have confirmed that nested 

methods require many more function evaluations than RBDO methods in which the reliability 

analysis and optimization iterations are either decoupled or combined into a single loop. To 

reduce the computational expense associated with nested methods, many researchers have 

developed single-loop approaches to RBDO which formulate the RBDO problem as a single 

optimization problem and solve it using the Karush-Kuhn-Tucker conditions of FORM or inverse 

FORM as constraints (Madsen and Hansen, 1992), (McDonald and Mahadevan, 2007), (Wang 

and Kodiyalam, 2002), (Liang et al, 2004).  This general approach is described in Eq. (13).  
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     The first and second constraints in Eq. (13) are simply the necessary conditions for the MPP, 

the third constraint requires the reliability index for the design to be greater than or equal to the 

required reliability index. This formulation is the single-loop formulation using direct FORM 

Karush-Kuhn-Tucker (KKT) conditions.  Wang and Kodiyalam (2002) and (McDonald and 

Mahadevan, 2007) have developed an alternative approach to single-loop RBDO which uses the 

gradients of the limit state and the relationship βαu =*  to approximately calculate an MPP at 

which the design is then optimized, and the gradient evaluations and optimization are repeated 

until convergence to an appropriate FORM MPP and optimal design is achieved. Unfortunately, 

this approach to RBDO does not always converge, and other strategies known as “decoupled” or 

“serial single-loop” methods have been developed with improved convergence properties (Royset 

et al, 2001). 

     Several researchers have reformulated the nested RBDO problem to decouple the reliability 

analysis from the design optimization. This has been accomplished in one of two ways, using 

direct or inverse FORM.  Torng and Yang (1993) and (Zou and Mahadevan, 2006) used FORM 

and replaced probabilistic constraints with a Taylor series expansion to solve:  

required

ts
fmin
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** udud

d

d

                                      (14) 

     Wu et al (2001), (Wu and Wang, 1998), (Royset et al, 2001) and (Du and Chen, 2004) used 

inverse FORM and developed decoupled formulations of the RBDO problem as stated in Eq. (15).  
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     For this objective the inverse FORM approach is used to solve the robust optimization 

problem for a continuous set of possible scenarios.  In this problem, a decoupled formulation 



98 

 

similar to that used in (Du and Chen, 2004), but modified to assure convergence to a global 

optimum.  

 

4.2.4 Economic Policy Optimization Under Uncertainty 

    In performing the analysis of the effects of the economic policy, a mathematical programming 

with equilibrium constraints approach will be used.  However, these constraints will be linearized 

at the current equlibrium point.  Therefore, the benefit of the economic policy would be 

calculable directly from the Leontief equation 

cAcaIx ΔΔ−Δ − =)(= 1                                      (16) 

     However, in making plans to improve the output of the economy, the structure of the economy 

may not be certain. The objective considered here is that of finding a policy which yields the best 

results under the worst case. This section describes our approach to the problem of economic 

policy optimization under uncertainty.  Since a policy which will give reliably good results is 

desired, the policy optimization problem can be stated as 
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     The optimization problem is formulated in a manner that decouples the optimization iterations 

and probabilistic analysis iterations. The decoupled formulation, shown below, maximizes the 

benefits of second-order effects, resulting from an action, cΔ , invested in the economy, as 

calculated at worst case scenarios (i.e., at values of the coefficients A that minimize the benefits 

of the second order impacts). The norm of the variates of the entries of A in the transformed, 
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standard normal space is constrained to be a certain target of tβ .  The decoupled optimization 

problem is then formulated as 

 

(18) 

(19) 

(20) 

(21) 

(22) 
 

     Eq. (18) is the objective function, which for this problem is the sum of the total outputs of all 

sectors of the country's economy. The decision variables are the cΔ  vector (sector aid in the form 

of increased consumer demand for the sector's product or service). Eq. (19) represents the linear 

system model evaluated at the values of *A  as determined by the analysis of Eq. (22).  Eq. (20) 

allows the decision maker to set bounds on the amount of aid to be given to each of the economic 

sectors. Eq. (21) is a budget constraint. Eq. (22) is the optimization problem, based on inverse 

FORM and Eq. (18) is its limit state function. The inverse FORM analysis returns worst-case 

scenario estimates for a given policy. Eq. (22) is solved at the incumbent value of cΔ  given by 

the policy optimization problem. The policy optimization problem given in Eqs. (18) through (21) 

and the optimization problem, given in Eq. (22) are solved iteratively until convergence. At 

convergence, the policy cΔ  provides the best solution under the worst-case of A .  The solutions 

which are best under the worst case realization of the random variables are called reliably 

optimal.  
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4.3 Identifying Reliably Optimal Solutions 

     A national economy can be represented as a SoS in the form of a network of infrastructures or 

sectors.  A network conceptualization is given which will be useful later in determining reliably 

optimal investment strategies. Consider an example network flow representation in Figure 4.3 of 

a simple national economy comprised of three economic sectors, where the flow is considered to 

be a transfer of goods and services measured monetarily. Assume that the system is in an 

equilibrium state initially, from which it will move by applying a stimulus of cΔ  to the economy 

(i.e. increased demand for finished goods). Let ijxΔ  be the change in the flow of money from 

sector i  to sector j  resulting from the stimulus cΔ . The new system state can be found by the 

balance condition jijij caIx Δ−Δ −1)(=  and the policy cΔ  determines the changes in output.   

 

 

 

 

 

     The framework developed in this Section 4.2 generates reliably optimal solutions by 

optimizing for a worst case scenario. The conditions of optimality for this approach are developed 

in this section and are based on the Nash equilibrium (Gibbons, 1992).  Fixed-point theorems are 

used to show the existence of these solutions and derive their properties. 

Definition 1: A policy d  is said to be first-order reliably optimal if it is a maximizer of 
the program of Eqs. (18)-(22). 

 Theorem 1: Given a realization of the 1)( −− aI  matrix, a policy is first-order reliably 

optimal if, and only if, there exists a return on investment +∈R*r  such that for every sector in the 
economy: 

Figure 4.3  Economic Network 
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iij
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0)(* ≥Δ−∑ iij
j

cxr                          (24) 

 

 Proof 1: Assume there is a policy cΔ  for which Eqs. (23) and (24) are true, but policy 
cΔ  is not optimal. The first condition implies that either: 1) sector i  receives no funding; or       

2) the rate of return to the entire economy for the sector i  funding is equal to *r .  The second 
condition requires that *r  be greater than or equal to the rate of return on investment at the given 
level of funding for all sectors.  However, if cΔ  is not optimal, a funded sector would exist for 
which there is a rate of return less than *r . An optimal strategy would require funding the sector 
with the higher rate of return.  Thus, there cannot be a sub-optimal solution that meets these two 
conditions.  This shows the optimality criterion for a policy, given a realization of the random 
parameters.  

The next theorem shows that a robust optimal solution does exist, as a result of Brouwer's Fixed 

Point Theorem and provides the conditions for a robust optimal solution for the types of problem 

presented in this objective.  

 Theorem 2: There exists a reliably optimal solution RcΔ , such that RR ΔccuΔc =))(( ** Δ , 

where ⎥⎦
⎤

⎢⎣
⎡ Δ∑∑Δ ),(=* uΔcΔc c ijji

xargmax  and ⎥⎦
⎤

⎢⎣
⎡ ∑∑ ),(=* uΔcu u ijji

xargmin .  

 Proof 2: Since ),( uΔcijji
x∑∑  is continuous and defined over convex, closed and 

bounded sets cΔ  and u, )(* ucΔ  and )(* Δcu  are also continuous. Further, )(* ucΔ  and )(* Δcu  
map cΔ  and u into itself. Therefore, Brouwer's Fixed Point Theorem assures the existence of the 
point RcΔ (Intriligator, 1971).  

     From the two proofs above, the optimality conditions for a given solution can be shown, as 

well as the existence of such a first-order reliably optimal solution. These are expressed 

mathematically as  

0=))(( *
iij

j
i cxrc ∑−  

0)(* ≥−∑ iij
j

cxr  

RR ΔcΔcuΔc =))(( **
         (25) 
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     These properties will be very central in the development of an appropriate algorithm to solve 

the optimization of Eqs. (18) to (22). Unfortunately, it is usually impossible to derive this solution 

from solving Eqs. (18) to (21) and Eq. (22) in an iterative manner. A decoupled approach which 

allows optimization algorithms to sequentially update the policy and the worst case values of the 

A  matrix will always allocate the entire investment to the sector with the largest multiplier under 

the most recent realization of the A  matrix.  However, upon calculating the worst case scenario 

under this particular single sector allocation, it is possible that another sector would have had a 

larger return on investment. This motivates the development of an alternative strategy to find the 

optimal solution, which will be developed in this subsection.  

     The algorithmic approach taken here is an incremental allocation approach, which is a 

modification to the decoupled approach. The basic idea in this optimization strategy is to more 

gradually move toward the fixed point.  At this solution, given the worst case realization of the A  

matrix, we can have no better policy, but given the realizations of the policy, there can be no 

worse A  matrix. In this approach, the economic aid is incrementally allocated to the optimal 

sector in each increment and the worst case scenario is found between increments given the 

current allocation levels. This process allows for the policy to gradually reach the fixed point 

solution for the OUU problem. This approach distributes the benefit more evenly and generates 

the largest second order effects. The algorithm for determining the alternative allocations may be 

implemented as follows: 

• Initialize: Initialize random variables in the A  matrix, using means of the random 
variables for initial values. 

• Step 1: Allocate current increment of aid to the sector with the largest multiplier for the 
current value of A .  

• Step 2: Given the current allocation of effort, solve the inverse FORM problem to find 
the worst case scenario of the values of A . Update values of A  with those found from 
the solution of the inverse FORM problem. If the solution has not converged, go to Step 
1. Otherwise, the current allocation is a candidate for optimality.  
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     By gradually changing the policy from the optimal policy based on expected values, the risk is 

then able to be shared across sectors.  The benefits of this risk sharing will be clearly shown in the 

example given in Section 4.4. 

 

4.4 Numerical Results 

 

4.4.1 National Economy as a System of Systems 

     One can represent a national economy as an interrelated system of systems through Leontief 

input-output coefficients. For example, a few sectors are listed in Table 4.1 comprising an 

interdependent system of systems. Rows 1-7 represent, in terms of the percentage of the gross 

domestic product (GDP), the quantities sold to each sector in columns 1-7, and demand for 

finished goods. Final demand figures are reported as factors of production for sectors 1-7, listed 

as finished goods for Consumer Consumption (C), Investment (I), Government Consumption (G), 

and Net Exports (X) (Roberts, 2004). 

 

Table 4.1  Sector to Sector Economic Relationships 

        

  Cost of Production Final Demand   
Sectors 1 2 3 4 5 6 7 C I G X Output 
1. Agriculture 1 - - 2.5 - - 1.5 13.5 - - - 18.5 

2. Oil 0.5 - 0.5 2 0.5 0.5 1.5 3 0.5 - 41.5 50.5 

3. Mining - - - 4 - - - - - - - 4 

4. Industry 1.5 1 - 1 5 2 3.5 8 3 - 3 28 

5. Construction 0.5 1.5 - 0.5 - 0.5 2 2 8 - - 15 

6. Transport 4 - 0.5 1 1 3 3 7 3 - 1.5 24 

7. Service 0.5 3 0.5 1 0.5 0.5 2 4 - 28 - 40 

Hhold Income 7 4 1 8 3.5 11 20         54.5 

Profit & Taxes 0.5 35 0.5 3 1 3.5 2         45.5 

Imports 3 6 1 5 3.5 3 4.5 16 6 4 - 52 

COST (Output) 18.5 50.5 4 28 15 24 40 58.5 20.5 32 46   
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     Consider policy planning in the context of an economic aid package to this multi-sector 

system in which the economic impact of the package is to be maximized. The linkages of the 

autonomous, yet interdependent sectors are modeled by the coefficients of the Leontief input-

output table and influence the aggregate GDP. Analysis of these interactions can provide 

measures of second and third order impacts of the economic aid on the GDP.  

      Table 4.2  Sector Interdependency Matrix A 

 

     Sensitivity coefficients are computed from the sector to sector economic data in Table 4.1 by 

dividing each sector's cost of production by the total output. The A  matrix, shown in Table 4.2 

above, is generated from the sensitivity coefficients a  and calculated as 1)(= −− aIA . 

Interdependencies among the sectors are depicted as the amount of output required by the row 

sector to satisfy a unit of demand for the column sector output. The sectors with greater 

interdependence to other sectors have larger values in their respective column in Table 4.2.  For 

this objective, the uncertainties in the structure of the economy are represented by modeling the 

members of the A  matrix as uniform random variables, centered at the mean values given in 

Table 4.2. 

 

4.4.2 Single Sector Allocations 

     The absolute allocation policy seeks to identify a single sector which would maximize the 

benefit for the entire system, and allocate 100% of the aid to that critical sector. With this 

Sector 1 2 3 4 5 6 7 
1. Agriculture 1.071 0.007 0.009 0.104 0.041 0.012 0.055 
2. Oil 0.050 1.008 0.138 0.105 0.077 0.037 0.058 
3. Mining 0.019 0.006 1.005 0.153 0.054 0.017 0.019 
4. Industry 0.134 0.041 0.036 1.074 0.381 0.116 0.135 
5. Construction 0.041 0.035 0.016 0.031 1.020 0.030 0.062 
6. Transport 0.281 0.013 0.161 0.100 0.123 1.158 0.119 
7. Service 0.052 0.069 0.148 0.076 0.137 0.038 1.075 
Multiplier 1.65 1.18 1.51 1.64 1.83 1.41 1.52 
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analysis, the decision maker can determine the best economic aid package according to the 

optimal results given from the problem formulation in Eqs. (18) to (22) with no constraints on the 

allowable funding allocations to any sector. B  was set equal to 100 so that the optimal cΔ  values 

represent the percentage of the aid amount to be allocated to a sector. Initial values for the 

random variables were the means. 

     The optimal solution at the mean values was to allocate 100 percent of the funding to the 

construction sector. The optimization technique used was the reduced gradient method. Under the 

economic structure given by the mean values of the A  matrix, focusing all effort on the 

construction sector created a level of economic increase equal to 183.3 percent of the total 

investment. This result is intuitive because the Leontief model is a linear model. The impact of a 

stimulus to one sector of the economy on the final production of the entire economy is found by 

multiplying the stimulus icΔ  by a multiplier equal to the sum of the entries of the thi  column of 

the A  matrix. The multipliers, evaluated at the mean values of the A  matrix entries, are given in 

the last row of Table 4.2. 

     The sectors in Table 4.2 with higher multipliers have stronger linkages, and thus generate 

greater secondary effects on dependent sectors. This means that if a sector with strong linkages is 

aided, the performance of the linked sectors will also be improved.  For example, the construction 

sector has the greatest multiplier. Thus, the greatest secondary effects on GDP result from 

providing all aid to the construction sector.  Inverse FORM was applied to the policy of providing 

all aid to the construction sector. The worst case values of the A  matrix at a target reliability 

index, 2=β , are given in Table 4.3.  
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Table 4.3  Worst Case   Matrix for Construction Only Policy 

 

     The overall benefit of this plan to the economic SoS under the worst case scenario would be 

130 percent of the original stimulus, as calculated by summing the worst case values in the fifth 

column of Table 4.3. This implies that the return on investment would be greater than 30%, with 

a probability of 0.977=(2)Φ . An important source of uncertainty in this analysis is the extent to 

which other sectors are linked to the construction sector. The sectors with the greatest deviations 

from the means at the MPP (see Table 4.2) are those sectors with the strongest links to 

construction (i.e., industry, transportation, and service). As a potential investment strategy, the 

analysis suggests that economic data gathering efforts should focus on obtaining more 

information about linkages between construction and other sectors in order to reduce variability 

in the interaction estimates. 

     The solution process for Eqs. (18) to (22) continues at the worst case values returned by the 

solution of the inverse FORM problem. Optimization at the worst case results in a new aid 

package where the agriculture industry receives 100 percent of the aid package. This solution is 

intuitive, since at the worst case for the "construction only" package the multiplier for the 

construction sector drops to 1.30 and the agriculture sector has a multiplier of 1.65. Hence, at the 

new worst case scenario the new economic improvement for the SoS would be 165% of the aid 

amount, were all of it invested in the agriculture sector. With a new "agriculture only" policy, the 

inverse FORM problem is now solved again to generate a new worst case scenario. When inverse 

FORM is applied to the policy of giving all aid to the agriculture sector, the worst case scenario 

      Sector 1 2 3 4 5 6 7 

1. Agriculture 1.08 0.01 0.01 0.10 0.03 0.01 0.06 
2. Oil 0.05 1.01 0.14 0.11 0.04 0.04 0.06 
3. Mining 0.02 0.01 1.01 0.15 0.04 0.02 0.02 
4. Industry 0.13 0.04 0.04 1.07 0.07 0.12 0.14 
5. Construction 0.04 0.03 0.02 0.03 1.02 0.03 0.06 
6. Transport 0.28 0.01 0.16 0.10 0.05 1.16 0.12 
7. Service 0.05 0.07 0.15 0.08 0.05 0.04 1.08 
Multiplier 1.65 1.18 1.53 1.64 1.30 1.42 1.54 
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Sector 1 2 3 4 5 6 7 

1. Agriculture 1.03 0.01 0.01 0.10 0.04 0.01 0.06 
2. Oil 0.03 1.01 0.14 0.11 0.08 0.04 0.06 
3. Mining 0.01 0.01 1.01 0.15 0.05 0.02 0.02 
4. Industry 0.04 0.04 0.04 1.07 0.38 0.12 0.14 
5. Construction 0.02 0.03 0.02 0.03 1.02 0.03 0.06 
6. Transport 0.05 0.01 0.16 0.10 0.12 1.16 0.12 
7. Service 0.03 0.07 0.15 0.08 0.14 0.04 1.08 

for the values of the A  matrix, for 2=β , is given in Table 4.4. In this scenario, the growth in 

SoS GDP totals 123 percent of the total investment.   

Table 4.4  Worst Case Matrix for Agriculture Only Policy 

      

 

 

 

 

When the strategy was optimized under this current worst case scenario, the optimal solution was 

once more to focus all effort on the construction sector. This means that cyclic behavior is 

observed with this approach, and thus it did not converge to a uniquely optimal solution. This 

cyclic behavior was the effect of the multipliers resulting from the Leontief model's linear form. 

The optimal strategy was for every realization to give all aid to the sector with the largest 

multiplier. When the strategy was optimized under this worst case scenario, the optimal solution 

was once more to focus all effort on the construction sector. The cycling of solutions between the 

construction and agriculture sectors was partially the result of initializing the random variables at 

their means. Were the optimization procedure initialized from a point more favorable to one of 

the other five sectors, this sector could have also been included in the cycling of solutions. 

Inverse FORM, however, allows for the comparison of solutions by calculating the worst case 

objective value associated with scenarios in which each sector receives 100 percent of the aid 

package. The worst case multipliers associated with focusing all effort on each individual sector 

are given in Table 4.5.                                               
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 iteration Agr Oil Mi Ind Cstn Trans Serv Aid to 

1 1.65 1.17 1.51 1.64 1.8 1.41 1.52 Const. 
2 1.65 1.17 1.51 1.64 1.2 1.41 1.52 Agric. 
3 1.55 1.17 1.51 1.64 1.3 1.41 1.52 Indust 
4 1.48 1.17 1.51 1.57 1.3 1.41 1.52 Indust 
5 1.43 1.17 1.51 1.37 1.4 1.41 1.52 Serv 
6 1.43 1.17 1.51 1.38 1.5 1.41 1.42 Mine 
7 1.47 1.17 1.38 1.40 1.5 1.41 1.42 Const. 
8 1.47 1.17 1.39 1.43 1.4 1.41 1.44 Agric. 
9 1.43 1.17 1.40 1.44 1.4 1.41 1.44 Const. 

10 1.43 1.17 1.40 1.44 1.4 1.41 1.44 Indust 
Aid% 20% 0 10% 30% 30 0 10%  

Table 4.5  Worst Case Sector Multipliers 

 

By comparison of worst case solutions, it can be seen that if an absolute allocation approach is 

used, then all effort would be directed toward the construction sector. 

 

4.4.3 Incremental Allocation 

     The solution for the incremental allocation approach to the case study with the aid divided into 

ten equal allocations is summarized in Table 4.6. Reported are the optimal allocations and worst 

case multipliers at each allocation step.   

Table 4.6  Allocations Based on Incremental Algorithm 
      

 

 

 

For this allocation the worst case total output of all sectors is 143 percent of the original stimulus, 

or a worst case multiplier of 1.43. This allocation provides a substantially better worst case value 

than all solutions given in Table 4.6. This solution gives better performance under worst case 

conditions because risk is shared among several sectors. Notice that 80% of the aid was allocated 

to the three sectors with the strongest linkages, the agriculture, industry, and construction sectors. 

These sectors have the strongest linkages in the economy. These results suggest a SoS 

equilibrium solution may exist for certain problems, as shown by the incremental allocation 

Agriculture 1.23 
Oil 1.06 
Mining 1.17 
Industry 1.28 
Construction 1.29 
Transport  1.14 
Service 1.22 
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method graph in Figure 4.4.  The pattern observed in Figure 4.4 suggests that an incremental 

allocation policy may lead to an optimal policy for the SoS.  The incremental allocation 

procedure was repeated for increasing increments and an equilibrium solution was found to exist 

for the problem after twenty-seven iterations. 

 

 

 

 

 

 

 

     As shown in Table 4.7 and Table 4.8, the sector multipliers converged as successive 

optimization iterations were performed. After 27 iterations, the funded sectors all had multipliers 

of 1.47.  Under this investment policy, the percentage invested in each sector was allocated as 

shown in Table 4.8.  At the optimal scenario, the marginal benefit of any dollar spent in any 

funded sector is equal.  The optimal solution was accepted, based on this result.  It was 

determined that the sector multipliers of all the funded sectors were equal for the incremental 

allocation policy with twenty-seven increments.  The return on investment to any funded sector 

was equally beneficial to the economy.  
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Figure 4.4  Convergence of Incremental Allocation Algorithm 
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Table 4.7  Incremental Policy After 10 Iterations 
 

 
 

 
 

Table 4.8  Incremental Policy After 27 Iterations 
 

 

 

4.4.4 Analysis Verification 

     To verify the consistency of the analysis, worst-case sector multipliers were generated using a 

genetic algorithm to compare with the worst-case multipliers obtained from our reduced gradient 

optimization technique.  The values from the absolute allocation policy results of the Leontief 

formulation were compared.  The genetic algorithm analysis contained 1000 runs, each consisting 

of 100 evaluations and reported the best objective function values and associated design variable 

values, subject to the constraint that 2=β .  Table 4.9 illustrates the multiplier comparisons for 

the linear and non-linear formulations in which total economic investment was allocated to the 

agriculture sector. Both solution techniques provide similar results. The genetic algorithm 

multiplier of 1.26 for the Agriculture sector is close to the reduced gradient multiplier of 1.23 

obtained by the Leontief based optimization.    
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Table 4.9  Analysis Verification 

 

The genetic algorithm results in Table 4.9 suggest the increase in GDP for the economy will be 

between 26%. This compares well with the corresponding worst-case estimates of GDP increase 

of 23% from the reduced gradient optimization technique. 

     The numerical results were also verified with reliability estimates derived from Monte Carlo 

simulation.  Figure 4.5 depicts the CDF values for an economic policy in which an increase of 

10% of each sector's goods and services is invested. Figure 4.5 shows the Monte Carlo and 

FORM estimates for worst case investment policies. The FORM method is consistent with Monte 

Carlo, particularly for extreme event analysis such as the worst case investment planning in this 

numerical example, although linearization errors due to the transformation of the uniform 

variables to the standard normal space are small, yet clearly present. 

 

Figure 4.5  CDF Approximations of System Response 
 

 

 
Policy Benchmarks Optimization Technique 

 Reduced Gradient Genetic Algorithm 

Reliability Level 95% 95% 

β-value 2 2 

Final SoS Multiplier 1.23 1.26 
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4.5 Conclusion 

     The methodology implemented in this chapter produces robust results and improves economic 

investment decision making under uncertainty.  This objective integrated three techniques central 

to system of systems engineering. First, a linear economic input-output model was used to 

represent a network of economic sectors as a system of systems. Second, an inverse FORM 

technique was used to evaluate the probabilistic constraints in SoS optimization. Third, an 

efficient, decoupled, reliability-based design optimization formulation was used to produce robust 

policy recommendations in an uncertain decision making environment.  

     There are two general conclusions from this research. First, the OUU framework integrates 

system analysis, uncertainty modeling and decision making and is flexible enough to 

accommodate a variety of system models, such as the illustrated Leontief Input-Output model. 

Nonlinear models, such as Cobb-Douglass production functions and general equilibrium models, 

as well as more complex models of system behavior based on network flows, system dynamics, 

or agent-based models can also be integrated within the proposed OUU framework. Second, the 

use of FORM yielded probabilistic sensitivity measures which allow decision makers to identify 

the most important random variables, identify critical elements of the system, and quantify the 

impacts of interactions among the SoS elements. Existing literature contains many systems 

analysis techniques for engineering and science; however, few studies have been reported that 

integrate simulation, uncertainty analysis, and optimization to provide decision support for 

system of systems decision-makers, such as military and governmental planners. Current 

literature applies these approaches separately. The proposed framework integrates these 

techniques, by accounting for uncertainties and optimizing objectives under these uncertainties. 

     Additionally, the system of systems model has limitations. For instance, in a time of rapid 

change, an economy's structure is uncertain, thus a static, input-output, coefficient-based structure 

will fail to properly capture the characteristics of the dynamic environment.  Haimes and Jiang 
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(2001) modeled this uncertainty by assigning expected values to the elements of the A matrix, 

and based decision making on maximizing a first order estimate of expected utility. As this 

objective has shown, this limitation may lead to oscillation among solutions, which is confusing 

and insufficient for making decisions under uncertainty. Using a single sector allocation approach 

deprives the system of benefits gained by sharing risks among the different sectors of the 

economy. This motivated the development of the incremental allocation method in Section 4.4.3, 

which mitigated the limitation and expanded the usefulness of the proposed framework for 

practical application.  

     There are several insights into SoS problems, in general, from the research performed in this 

objective.  First, for many SoS policy optimization problems, it is unknown whether policies are 

stable. In some systems of systems, perturbations of some solutions may result in large 

divergence in the trajectory of the system's state variables, resulting in chaotic behavior and 

defeating the purpose of controls.  The emphasis on determining a best “worst case” optimal 

policy serves as an example for formulating other SoS problems with a focus on robustness. 

     A second insight for SoS problems, in general, is that interdependent problems can often 

posess multiple types of uncertainty.  A potential extension of the OUU framework will be to 

account for multiple types of uncertainty.  Currently the uncertainty associated with system 

interdependence is accounted for through random variables. It is likely for uncertainty in many 

system interdependencies to be epistemic in nature, and requiring non-probabilistic 

representations (i.e., fuzzy sets, evidence theory, etc.).  An important benefit of using the 

proposed framework is that it can help decision makers incorporate coupling effects between 

systems in a SoS.  

     Another general insight is system performance can be modeled and analyzed by representing 

the SoS as a network.  The Leontief input-output model is just one representation that can be 

easily constructed, readily understood by a wide range of policy planners, and effectively 
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implemented on a short time scale.  The overall framework developed in this objective can serve 

as a black box approach to accomodate more detailed models. The computational framework is 

based on analytical reliability approximations and greatly reduces the expense of the OUU 

process. The ability to rapidly construct informative and understandable models for decision 

making under uncertainty and perform OUU in a computationally affordable manner is 

particularly valuable when planners must make decisions under uncertainty and time pressure.
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5 CHAPTER V 
 

MODELING AND SIMULATING STOCHASTIC HUMAN-PHYSICAL 
NETWORKS WITH HYBRID DYNAMICS USING AGENT-BASED MODELS 

 

5.1 Introduction 

     In a coupled human-physical network, user choices change the state of the physical system and 

the resulting physical conditions are the basis of subsequent user choices.  The interdependent 

nature of the relationship between humans and their operational environment is inherently 

complex.  Failure to properly account for the interactions between them can lead to unintended 

events with unanticipated consequences.  A human-physical network analysis framework that 

integrates user choice and system physics under uncertainty is developed in this objective.  This 

framework extends the general OUU approach from the previous objective.  The framework 

developed in this objective replaces the system modeling and uncertainty analysis loops in the 

OUU approach as a more detailed method for SoS decision-makers to model and analyze 

performance in systems where stochastic and hybrid dynamics are present.  Only the uncertainty 

associated with the stochastic nature of the physical system is captured in this objective using 

stochastic agent-based simulation.  Uncertainty due to random network demands, as well as, 

uncertainty in SoS objective priorities comprise the third OUU loop (decision 

analysis/optimization) and are addressed in later chapters. 

     The application and SoS example for this objective and the remaining objectives in this 

dissertation is in the transportation domain.  This objective uses the transportation network as the 

example and considers the problems for associated with freeway and surface streets, multi-modal 

transit issues and the impacts of the coupled nature of such stochastic networks with multiple 

decision makers. The purpose of properly simulating the operating environment and selecting the 
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most appropriate models to characterize its major elements is to support insightful optimization 

and lead to effective policy-making.  Both are most effective for the broader transportation 

system when aspects of and impacts to as many facilities as possible are considered.  The result of 

the integrated approach presented in this objective is a suggested optimal control policy for the 

specified operating environment.  The example network is a hybrid SoS, meaning both discrete 

and continuous elements govern network performance.  The framework process is applied to an 

example transportation SoS comprised of a multi-modal flow network and multiple decision 

makers.  Success of the policy is measured in terms of modal choice, network efficiency, revenue 

and reliability.   

     To illustrate the framework, an example human-physical network is presented.  A stochastic 

simulation represents a multi-modal transportation system in which users first decide whether to 

travel by bus or auto, and then auto drivers choose between a surface street and freeway route.  

Iterative analysis between the physical system model and a logit-based user choice model 

generate equilibrium modal flow times and aggregate mode splits representing the proportion of 

users preferring each mode under the given operational conditions.  Equilibrium network 

parameters are used to estimate network failure probabilities associated with given operational 

policies (i.e., toll, bus fare, signal timing) under given conditions (i.e., demand) and the number 

of users who fail to experience a prescribed level of service on the physical network.  Resulting 

trends and sensitivities serve as insights to inform SoS policies aimed to regulate or incentivize 

preferred user behavior and shape policy decisions such as pricing modal access to promote a 

desired aggregated flow across the multi-modal network. 

 

5.2 The Framework 

     The Stochastic Human-Physical Network Analysis shown in Figure 5.1 is the step-by-step 

process developed in this research to characterize and analyze networks with multiple flow 



117 

 

systems, multiple modes of flow, multiple decision-makers, multi-disciplinary network 

properties.  The benefit of this framework its ability to facilitate representative reduced models 

for faster network optimization of policy objectives.  This section describes the framework and its 

components. 

 

 

Figure 5.1  SoS Analysis Framework 
 

Design of Experiments 

     The initial step in the framework requires understanding of the operational environment being 

studied.  The network simulation process must sufficiently characterize the network topology, 

inputs relevant to performance and available controls desired to be used.  Depending on the 

number of input variables, an appropriate experimental design must be followed when conducting 

network simulations.  Latin hypercube designs (LHDs), as described in (Prescott, 2009), use a 

relatively small number of design points to investigate a relatively large number of factors. These 

designs were initially introduced by (McKay et al, 1979); however, since their introduction, 
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LHDs have found extensive use in computer experiments and are also a popular design type for 

Kriging (Beers and Kleijnen, 2005).  A carefully selected, space-filling fractional factorial design 

will be used in this research to efficiently explore the network performance under various control 

policies and across a range of operating conditions. 

 

Physical System Simulation 

     The physical simulation represents the performance of the physical networks in the SoS and 

comprises the following three steps in Figure 5.1: Physical System Physics Updated; Physical 

Limit States Verified/Enforced; Physical System Stochastic Agent Model Prediction).  A detailed 

physics model that captures many of the complexities of the network is used, while imposing 

many of the realistic physical limitations of the actual networks (i.e., capacities, flow rates, 

densities, user types, laws, regulations, etc).  The simulation is coded to enforce the natural laws 

of physics and governing traffic theory and safety regulations on the network over an analysis 

period.  These constraints ensure the physical boundaries of time and space are not violated in the 

simulated environment. 

     The physical system is simulated as a stochastic agent simulation.  Not every network can be 

represented with a stochastic agent simulation or requires this level of detail in analysis; however, 

when necessary, stochastic network simulation using agent-based modeling give some important 

benefits.  One benefit of using a stochastic agent simulation is the ability to propagate uncertainty 

across the myriad to network attributes.  Another benefit is the network can represent the flow of 

individual agents, each following simple rules and whose collective behaviors represent a 

comprehensive view of the network.  The disadvantage of using a high-fidelity stochastic 

simulation is that model evaluations under these conditions can be computationally expensive.   
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User Choice Modeling 

     Network users decide on their mode of transportation and their route of travel and this activity 

comprises the Update Mode Split/Route Choice step in Figure 5.1.  Utility functions are used to 

model user mode and route preferences at various mode and route costs (i.e., bus fares and 

freeway tolls).  Certain inherent preferences for a given operating environment are also reflected 

in the user models.  For example, surveys of the users in a densely populated urban center with 

expensive parking fees and fuel prices may indicate an inherent preference for bus travel.  

Appropriate user choice models must be employed to predict the portion of the usership which 

prefer each network mode and route, based on utility functions and user choice models.  Logit-

based user choice models are well-researched and shown to be valid for many these type of 

problems (Sheffi, 1985).  Users are assumed rational decision makers who prefer the mode and 

route with the greatest utility based on a combination of travel time, mode cost and route cost.  

  

Equilibrium Analysis 

     The computational models for user choice and system physics are coupled through an iterative 

scheme designed to achieve stochastic network equilibrium (SUE).  Daganzo and Sheffi (1977), 

(Daganzo, 1979) and (Powell and Sheffi, 1982) introduced the first stochastic user equilibrium 

formulations.  Network equilibrium is defined by a convergence criterion in this study that is 

consistent with the formal proof presented in (Powell and Sheffi, 1982).  Initial demand values 

are assigned in the network simulation which evenly distributes users across the modes and routes 

according to the user choice models.  As simulations are performed, mode and route travel times 

become inputs to the logit-based models and new mode and route preferences are obtained.  

These updated demands are adjusted in the simulation and the physical system simulation is 

repeated until a convergence criterion is met.  Equilibrium is based on the mode and route load 

values from the previous iteration changing less than a prescribed amount.  In this study, when 
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user preferences change by < 2% from the previous iteration, then network equilibrium is 

assumed and the equilibrium output values reported. 

 

Refine Design of Experiments (DOE) 

     This step in the framework is the opportunity for the network level decision maker to refine or 

adjust the network control policy.  If the initial policy values (i.e., toll price, bus fare, signal 

timing, etc) for the system of systems are satisfactory, then this step is skipped and the reported 

equilibrium outputs are used to derive appropriate reduced models from which policy 

optimization can be obtained.  If the initial policy values (i.e., toll price, bus fare, signal timing) 

for the network are not satisfactory, then the new policy values are reflected as an update in to 

system physics.  The framework steps are repeated as described above until network equilibrium 

values are once again obtained. 

 

5.3 Example Network Simulation 

     In traffic engineering, the concept of traffic control is giving way to the broader philosophy of 

Advanced Traffic Management Systems (ATMS), whose purpose is not only to move vehicles, 

but also to optimize the utilization of transportation resources to improve the movement of people 

and goods without impairing the community (Yang and Koutsopoulos, 1996).  One of the most 

important analytical tools of traffic engineering is computer simulation. Computer simulation is 

more practical than a field experiment for the following reasons: 

• It is less costly 
• Results are obtained quickly 
• Some measures of effectiveness are more easily obtained over field studies 
• No disruption on traffic operations, which can accompany a field experiment 
• Significant physical changes to the facility can be explored 
• Evaluation and analysis of the operational impacts of various controls are possible 

 



121 

 

5.3.1 Traffic Software Integrated System (TSIS) 

     Transportation network control research is widely performed, but typically as deterministic 

analysis and focused on a single facility or system (Bayen et al, 2004).  Current stochastic 

simulation in transportation analysis does not explicitly consider user choice (McTrans, 2008).  

Therefore, a computational approach that facilitated the coupled human-physical relationship was 

required.  The software used to simulate the example network was a simulation package called 

the Traffic Software Integrated System (TSIS).  TSIS was chosen because it was a customizable, 

stochastic agent simulation with the features and capabilities that fit the needs of this research.   

     TSIS is an integrated development environment designed to perform traffic operations 

analysis.  TSIS is a toolbox, built using component architecture, which allows the user to define 

and manage traffic studies, define traffic networks and create inputs for traffic simulation 

analysis, execute traffic simulation models, and interpret the results of those models (TSIS, 

2008).  This concept of a single integrated simulation system with flexibility and ease of use and 

that can optimize the efficiency of all computations was conceived by the Federal Highway 

Administration (FHWA) in the mid-1970s (TSIS, 2008).  FHWA has since supported a series of 

projects to implement this design and to develop and update the software.  TSIS-CORSIM 6.1, 

the latest version of the software, was used for this research.  The analysis engine for TSIS is 

written in FORTRAN and the system interface is coded in C++.  

 

5.3.2 Description of the Stochastic Network Simulation (CORSIM) 

     To test the effect of control policies on trip patterns, it was necessary to analyze a given area 

that contained a substantial portion of the routes that the trip-makers follow.  TSIS was used to 

create a corridor simulation (CORSIM) to represent the physical environment.  CORSIM 

simulated the operational environment consisting of a multi-modal, multiple flow route 

simulation that was capable of representing many of the features and complexities of traffic flow 
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in large urban areas containing surface street networks and freeways and bus transit within 

reasonable computer usage requirements. 

     Figure 5.2 illustrates the integrated transportation network as a surface street network with a 

two-way bus line surrounded by a freeway network and two subnetwork interfaces.   

 

Figure 5.2  Integrated Transportation Network Topology 
 

The multi-network model designed for this research had many standard features of the prevailing 

freeway geometries, such as multiple-lane freeways, on/off ramps, connectors to other freeways, 

variations in grade, lane additions and lane drops and auxiliary lanes to facilitate lane-changing or 

freeway entry and exit.  The CORSIM network had 100 surface street links, 12 Surface Entry 

Nodes, 2 Freeway Entry Nodes, 2 interface nodes for switching subnetworks, a 3 lane freeway 

system with a capacity of 2200 vehicles per lane per hour, and a 2.5 mile East and West bound 

bus line. 
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     Agent-based approaches are very suitable for this domain (Davidsson, 2005).  CORSIM is a 

stochastic agent simulation consisting of an integrated set of two microscopic simulation models 

that represent the entire traffic environment.  Each of the component models of CORSIM 

simulates a different subnetwork.  NETSIM is a simulation model that represents traffic on 

surface streets; FREESIM is a simulation model to represent traffic on freeways.  These 

microscopic simulation models propagate movements of individual agents (vehicles) across the 

network.  Agents move about the network according to specific rules that reflect stochastically 

determined agent decisions constrained by system safety and traffic theory boundaries.  An 

important characteristic of this simulated network is the assumption that no catastrophic events 

occur during the analysis period.  The flow of traffic is in accordance with natural physical laws 

and US transportation guidelines (McTrans, 2008).  Exogenous events such as wrecks, non-

working control devices, work zones or upstream drivers are not considered congestion factors in 

this study.   

     The interface nodes represent points at which vehicles leave one sub network and enter 

another (see Figure 5.3).  Nodes of this type were distinguished from other nodes in the network 

for the purposes of defining the boundaries of the subnetworks in order to assessing both 

subnetwork and full network performance metrics.  Entry interface links received traffic from the 

adjoining subnetwork and exit interface links carried traffic exiting the subnetwork to adjoining 

subnetworks.  The interfacing of adjoining subnetworks was accomplished by defining the 

network specific demand in the simulation code as the route demands generated by the user 

choice model. 
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Figure 5.3  CORSIM Subnetwork Interface 
 

     CORSIM is a stochastic model, which means that randomness is a factor in assigning driver 

and vehicle characteristics and to decision making processes. The MOEs that are obtained from a 

simulation are the result of a specific set of random outcome.  For example, one random number 

seed may result in three very conservative drivers driving side by side on a three-lane roadway 

blocking more aggressive drivers behind them.  The resulting MOE would reflect a lower average 

speed then has been observed in the real world.  In order to mitigate the potential for MOEs 

generated from a single run to be misleading, the network runs were simulated several times 

using different sets of random number seeds. The resulting distribution of MOEs reflected a more 

accurate representation of the network performance. 

     The stochastic elements of the simulation greatly enhance the model’s ability to reflect a 

broader sense of the impacts to the network under various conditions.  As with real traffic 

conditions, the effects of control strategies on network performance in a stochastic simulation 

depend on agent behavior and the evolution of the network over a time period.  CORSIM applies 

time step simulation to describe network operations.  A time step is one second. Each vehicle is a 
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distinct object that is moved every second.  Each variable control device (such as traffic signals) 

and each event are updated every second. 

     Each vehicle was identified by type.  Up to nine different types of vehicles (auto, carpool, 

truck, bus, etc.) with different operating and performance characteristics were specified.  

Furthermore, driver behavioral characteristics (i.e., passive or aggressive) were assigned to each 

vehicle.  Based on which driver type (out of nine types) was assigned, the associated kinematic 

properties such as speed and acceleration, as well as its moving or queued status were 

determined.  Also assigned stochastically were turn movements, queue discharge headways, and 

bus dwell times at bus stops.  As a result of such specific behavioral attributes, each agent's 

behavior was intended to reflect real-world processes and adhere to the governing physical laws 

and regulations imposed by transportation guidelines (i.e., Highway Capacity Manual).  Three 

views of CORSIM simulations are shown in Figure 5.4, Figure 5.5 and Figure 5.6 and represent 

respectively, the integrated FREESIM-NETSIM network, the NETSIM network only, and close-

up view of intersection activities. 

 

Figure 5.4  Integrated NETSIM-FREESIM Network 
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Figure 5.5  NETSIM Network Only 

 

Figure 5.6  Intersection Activities (Close-up) 
 

     Each time a vehicle is moved, its position (both lateral and longitudinal) on the link and its 

relationship to other vehicles nearby were recalculated, as were its speed, acceleration, and 

queued or moving status.  Agents moved according to car-following logic and in response to 
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traffic control devices.  For example, buses service passengers at bus stops with movements 

which differ from those of private vehicles.  Congestion can result in queues that extend 

throughout the length of a link and block the upstream intersection, thus impeding traffic flow. 

CORSIM accumulated data every time step.  At the end of each time period the accumulated data 

was used to produce and report Measures of Effectiveness. 

 

5.3.3 Measures of Effectiveness 

     Measures of Effectiveness are standards against which the capability of a solution to meet the 

needs of a problem may be judged (Sproles, 2000).   The CORSIM contains a comprehensive set 

of MOEs, defined for each subnetwork separately (TSIS, 2008).  There were 21 NETSIM MOEs 

and 16 FREESIM MOEs.  MOEs were also measured for the combined CORSIM network.  Some 

of the MOEs particularly significant to the research performance objectives were: Total Time, 

Vehicle Minutes per Mile, Delay, Bus Travel Time, and Phase Failures.   

     The MOEs provide insight into the effects of the applied strategies on the traffic stream, and 

they also provide the basis for optimizing that strategy.  The Travel Time (TT) MOEs were the 

basis for evaluating whether the network had reached equilibrium.  The logit-based utility 

functions were evaluated and the physical system modal and route splits were updated until the 

mode and route splits for consecutive simulation runs were within the convergence criterion 

(Sheffi, 1981).  The importance of the reaching network equilibrium was that it meant, at a macro 

level, that users were not incentivized to change (prefer) a different mode or route, under the 

prescribed loading and policy (modal access cost, route access cost and signal timing). 

 

5.4 Framework Applied to the Example Network 

     This section illustrates how the research framework was applied in the context of the CORSIM 

network described in the previous section. 
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5.4.1 Network Description 

     Consider the CORSIM transportation system previously described located in a geographic 

locale in which user surveys have shown an inherent preference for bus travel over auto 

commutes due to high fuel prices and expensive, scarce available parking in the area.  Among 

auto routes, freeway travel is preferred to surface street routes based on the faster free flow speed 

on the freeway network.  User choice is a function of the cost of travel measured in terms of time 

and money.  Individual mode and route choice follows utility functions defined for each based on 

user survey results.  It is assumed that half of the user decision is simply which travel option is 

faster.  The other half is the financial cost associated with obtaining the faster travel option (time 

value of money reflected in the utility function). 

 

5.4.2  Objectives 

     Network decision-makers seek to control the flow such that the tradeoff between progression 

on each mode, governed by the flow physics (i.e., LWR PDE and queuing principles) optimizes a 

given system-level measure of performance (i.e., delay, network failure).  Many metering 

schemes simply transfer the travel cost between modes; however, an effective metering scheme 

should optimize system-wide metrics (i.e., minimize overall user delay).  Planners and managers 

for the example transportation system of systems are assumed to be cooperative and willing to 

implement policies deemed optimal for the entire network.  These policy makers seek to use 

available operational controls to promote travel behavior that optimizes: 1) network delay; 2) 

mass transit ridership; 3) total revenue; 4) network reliability.  These objectives are described 

below and the simulation data pertaining to each of these objectives was collected. 

Network Delay 

     Delay is measured as a function of how much longer the trip lasts as compared to an 

unimpeded trip at free flow speed.  The aggregate time above free flow speed is reported as delay.  
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Total delay is comprised of travel delay and control delay, both of which are captured as 

simulation outputs.  Travel delay is a straight forward time-distance calculation across each 

CORSIM link.  A detailed description of control delay based on the diagram in Figure 5.7 is 

shown below. 

 

       Figure 5.7  Delay Diagram 
 

Dcntl:  Control delay; Ds: Stopped delay; Dd: Delay incurred while decelerating in approaching the 

stop light or the end of the queue; Da: Delay incurred while accelerating to gain full operating 

speed after signal turns green.  As Figure 5.7 indicates, asdcntl DDDD ++=  and the 

computations for intersection control delay and total delay are: 
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Where V is the normal operating speed of the vehicle before it slows in response to the 

intersection control and ffs is the free flow speed of the vehicle.  Vehicles are delayed by both 

intersection control and high volume.  When traffic volume is light, ffs approaches V.  However, 

at high demand, V can be considerably smaller than ffs.   

Mass Transit Ridership 

     For this example, when time and cost are equal, mass transit is heavily preferred.  The mass 

transit option in the CORSIM problem is bus travel with East and West bound bus lines available 

for a given bus fare.  The SoS level objective is to maximize the number of bus riders for the 

benefits of public revenue and reduced auto congestion. 

Total Revenue 

     For this example, revenue is defined as public proceeds gained through toll and bus fare.  Tolls 

are charged to each vehicle that enters the freeway at two locations represented as interface nodes 

between the surface street and freeway subnetworks.  The values for the toll and bus fare are part 

of the network control policy.   

Network Reliability 

     For this example, reliable network performance is defined in terms of level of service (LOS) to 

the transportation network commuters.  LOS guidelines are published by transportation 

management authorities to indicate the degree to which the traffic situation is satisfactory.   

According to transportation guidelines, a failing level of service for a network is reached when 

the mean number of phase failures for the network exceeds 10%.  For this network, each 

simulation analysis period contained 600 green phases across 100 links.  Thus, a mean number of 

failed phases per link that is greater than 6 phases constituted a failing network service level. 
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5.5 Experimental Design 

     Knowledge of the importance of certain main effects and interactions was emphasized in (Xu, 

2004) as critical to the choice of experimental design.  One priority for the design of experiments 

(DOE) in this study was to efficiently estimate important effects within the interior of the design 

space.  Emphasizing this priority, (Sacks et al, 1989) suggested a good design tended to fill the 

design space rather than to concentrate on the boundary.  Latin hypercube designs are found to be 

more accurate than random sampling and stratified sampling to estimate the means, variances, 

and distribution functions of an output (Lian and Liou, 2005).  Thus, a fractional factorial design 

developed in (Xu, 2004) was selected as an appropriate DOE for this research problem.  This 

selected design achieves efficient coverage of points in the interior design space where capturing 

non-linear interactions is preferred.  This design is preferred to alternative techniques which 

stretch the same number of points to span the extremes in the input space and provide less 

coverage in the interior.  The chosen design is a space filling design, appropriate for the 

operational constraints on the input space (infeasible policies such as free bus, free toll, and shut-

off freeway).   Future work can explore the tradeoff of competing DOEs on resulting model 

performance.  The chosen DOE is depicted in Table 5.1. 
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Table 5.1  Experimental Design for Hybrid System Simulation 

 
 

     The input space was divided into bins classified Low-Medium-High for each of the five input 

variables.  Stochastic sampling was used to select inputs values for the simulation in accordance 

with the experimental design.  Tolls range from $0 to $12; Mass Transit Fares range from $1 to 

$15; Signal Timings (% of each cycle length freeway bound flow is green) range from 0% to 

100% freeway green.  Node volumes range from 50 to 650 vehicles/hour (see Table 5.2).  

NETSIM and FREESIM entry node volumes are set such that initial subnetwork volumes are 

equal then adjust iteratively as user choices update. 

0 = Low 1 = Med 2 = High

Run # Toll ($)
Mass Transit 

Fare ($)
Signal 1        

(% Fwy Green) 
Signal 2        

(% Fwy Green) 
Network 

Volume (vph)

1 0 0 0 0 0
2 0 0 1 1 0
3 0 0 2 2 0
4 0 1 0 1 2
5 0 1 1 2 2
6 0 1 2 0 2
7 0 2 0 2 1
8 0 2 1 0 1
9 0 2 2 1 1
10 1 0 0 1 1
11 1 0 1 2 1
12 1 0 2 0 1
13 1 1 0 2 0
14 1 1 1 0 0
15 1 1 2 1 0
16 1 2 0 0 2
17 1 2 1 1 2
18 1 2 2 2 2
19 2 0 0 2 2
20 2 0 1 0 2
21 2 0 2 1 2
22 2 1 0 0 1
23 2 1 1 1 1
24 2 1 2 2 1
25 2 2 0 1 0
26 2 2 1 2 0
27 2 2 2 0 0
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Table 5.2  Input Variable Ranges 

 

     The 1/9 factorial design reduced the five variable, three level problem from 243 problem 

instances to 27 carefully chosen problem instances.  This made the problem feasible to simulate.  

For each of the five factors, a latin hypercube sampling scheme was employed to determine the 

actual value within the Low-Medium-High bin to assign to each variable.  A LHS scheme was 

generated in Matlab and applied to the input space.  The distribution of these LHS sampling 

values across the 27 runs is shown in Figure 5.8.  

 

Figure 5.8  Treatment Combinations for the 35-2 Design with Latin Hypercube Sampling 

LOW Toll Mass Transit Fare Timing Signal 1  Timing Signal 2  Node Volume

min 0 1 0 0 50
max 4 5 25 25 250

$ $ (% Fwy Green) (% Fwy Green) vehicles/hour

MED Toll Mass Transit Fare Timing Signal 1  Timing Signal 2  Node Volume

min 4 5 25 25 250
max 8 10 75 75 450

$ $ (% Fwy Green) (% Fwy Green) vehicles/hour

HIGH Toll Mass Transit Fare Timing Signal 1  Timing Signal 2  Node Volume

min 8 10 75 75 450
max 12 15 100 100 650

$ $ (% Fwy Green) (% Fwy Green) vehicles/hour
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5.6 Example Network Model Simulation 

     Once the input space was designed and the CORSIM was built to reflect the example 

operating environment, the 27 high fidelity model simulations were performed.  The model 

simulations were performed on a Dell XPS 1530 with a 2.5 GHz Intel processor.  The average 

CPU run time to simulate a 60 minute analysis period was 20 minutes.  Adjustments to the 

CORSIM inputs and controls were made by editing the user interface.  The settings were 

formatted as record type entries.  Multiple runs were performed and aggregated statistics were 

reported for MOEs.   

     The stochastic elements (i.e., randomized start points, distribution based values) propagated 

the uncertainty across the network.  For example, if a mean number of vehicles are assigned to 

turn left at a given intersection, an individual vehicle turn is randomly determined.  The 

randomized sequence ensures the aggregate number of left turning vehicles is equal to the 

prescribed mean at the end of the analysis period.  The variation in vehicle flow caused by the 

uncertainty leads to varied downstream flow across the network and the collective impacts 

change the network performance.  For this reason, 10 replications for each policy simulation were 

performed; identical simulations were run 10 times and cumulative metrics reported. The 

stochastic elements in the CORSIM also varied based on random number seeds (i.e., driver type 

assignment) and distribution parameters (i.e., Poisson arrivals at entry nodes).   

     For each problem instance, a consistent procedure was followed.  Initial physical system 

values were specified for network volume and signal timing.  Initial user choice values were set 

for mode and route split.  Initial settings were consistently 50% for the bus mode, 25% each for 

auto (surface street) and auto (freeway).  The analysis period for each simulation was consistent 

at 3600 seconds.  The physical limit states were enforced within the simulation to ensure physical 

laws, traffic theory and domain specific safety codes were not violated.  Next, simulation outputs 

were reported, utility functions evaluated and mode and route volumes assessed to determine 
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whether convergence was reached.  If convergence was not achieved, the updated mode and route 

splits were reflected in the CORSIM settings and the simulation was repeated.  Once convergence 

was reached, the associated travel times were reported as the Equilibrium Travel Times for the 

given control policy and the relevant MOEs (i.e., delay, mode/route distribution, failures) were 

exported to an Excel file for analysis. 

   

5.6.1 User Choice Modeling 

     The systematic incorporation of user decisions is a pivotal feature of the framework and the 

nexus of the coupled human-physical network analysis.  The ability to predict human choice is 

inexact, but some models have been shown to be helpful in modeling decisions under certain 

circumstances.  Decision-making is at the heart of any user choice model.  Decision-making is 

defined in (Dilts and Pence, 2006) as cognitive choices resulting from a combination of bounded 

rationality and perspective.  Typically, individual decisions incorporate “conceptual lenses” based 

on the setting, using one or a combination of several decision models.  Sheffi (1985) adds the 

behavioral mechanism underlying traffic models is a choice or decision-making process in which 

users choose a travel path.  The iterative updating of the mode split and route choice in this 

research requires a decision-making model to be applied.   

     Logit-based models are commonly used to represent choices between two mutually exclusive 

options, such as a commuter deciding to drive to work or to use public transit (Wen and 

Koppelman, 2001).  The underlying premise with logit-based discrete choice models is the degree 

of individual preference for an alternative is proportional to how distinct the user perceives the 

alternative is superior (Sheffi, 1985).  Because discrete alternative decisions were relevant to this 

research and logit-based models were widely used in the domain, a logit-based user choice model 

was chosen for this problem.  The model computed mode and route preferences based on the 
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perceived user utility associated with each mode and route alternative.  The next section presents 

the utility functions used in the logit-based user choice model. 

 

5.6.2 Utility Functions 

The following utility functions represented user preference among mode and route choices. 

FWFWFW CTTTollTVMU ++⋅= )(α  

SSSSSS CTTU += )(α  

BusBusBus CTTFareTVMU ++⋅= )(α  

where,  
Ci = calibration value for the ith modal disutility 
α = sensitivity value for % of user decision that is based on Travel Time 
TVM = time value of money in dollars per minute 
 
     For this operating environment, the expressions can be thought of as (dis)utility functions with 

negative values indicating a reduction in (dis)utility for the user.  It can be assumed that surveys 

of the usership within the operating environment were conducted to understand inherent mode 

and route preferences among the usership.  The surface street route was used as a reference 

model; this route was the slowest but free.  Relative to the base utility function, coefficients and 

calibration values were assigned for this example:  

CSS = 0  reference utility function 
CFW = -1   represents greater utility from a higher free flow speed 
CBus = -3 utility from savings in parking and fuel costs 
TVM = 0.25 $0.25 perceived worth for each minute saved 
α = 0.5  50% of decision based solely on which travel time is less 
 

 The resulting expressions were the utility functions used in the logit model for updating mode 

and route splits during the simulations: 

1)(5.0)(25.0 −+= FWFW TTTollU  

)(5.0 SSSS TTU =  

3)(5.0)(25.0 −+= BusBus TTFareU
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5.6.3 Logit Model 

     Explicitly modeling user choice in an iterative scheme with the system physics is a centerpiece 

of the analysis framework.  This section formulates logit-based mode and route choice models.  

Travel time on the network modes and routes are inputs to the user choice model; user’s choice of 

mode and route are inputs to the physical model.  This coupling facilitates modeling the 

interdependent systems in a way that reflects more operational realities and impacts than previous 

approaches.  The general form of the user choice model represents the user demand for an 

alternative i, at a given travel time t (as a function of link flow q), as expressed below. 
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     Substituting the utility functions defined in the previous section into the expression above, 

modal and route decision formulae were obtained.  The following expressions were used to 

compute the proportion of users who prefer each mode and route. 

• Proportion of network users who prefer to pay the policy fare and ride the bus:   

autobus
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• Proportion of auto users who prefer to pay the policy toll and drive the freeway route: 
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• Proportion of auto users who prefer to drive the surface street route at no extra cost: 
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5.7 Network Equilibrium Results 

     For each of the 27 policy simulations, the steps of the framework were followed until the 

convergence criteria was met.  The number of iterations needed to reach convergence varied with 

each simulation.  The primary factor in how quickly the simulation reached equilibrium was the 

value of α in the utility functions.  The sensitivity factor, α, represents the proportion of a user’s 

mode and route decisions based on travel time.  Low values for α resulted in the utility functions 

incrementing slowly; a α = 1 resulted in a solution for mode and route loading after only one 

evaluation.  For the sake of illustration, the value of α = 0.5 was used in the utility functions in 

this problem.  Another key factor in the number of iterations required to converge was the values 

of the policy variables.  Policies with balanced signal timing and comparable toll and fare prices 

tended to distribute the usership most quickly (typically converging in less than 4 iterations).  

Policies with disparate toll and fare prices and unbalanced signal timings tended to take much 

longer (as many as 10 iterations) to converge to an equilibrium load distribution of users across 

the network.   

     The equilibrium results for the 27 policy simulations are listed in Table 5.3.  The input and 

output variables for each simulated policy are defined below:  

        Inputs     
X1- % of the $12 Maximum Toll 

X2- % of the $15 Maximum Bus Fare 

X3- % of the 120 sec cycle that Signal 1 is Green 

X4- % of the 120 sec cycle that Signal 2 is Green 

X5- 0.001 x Total Network Vehicles per Hour 

        Outputs 
Y1- % of Total Users Traveling by Bus 

Y2- % of Total Users Traveling by Freeway 

Y3- % of Total Users Traveling by Surface Street 

Y4- 0.01 x Mean Vehicle Delay in seconds 

Y5- Mean # of Phase Failures per Link  
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Table 5.3  Equilibrium Results for High-Fidelity Simulation 

 

 

5.8 Conclusion 

     This objective produced a decision support framework for evaluating control strategies for 

human-physical systems in which network flows and human decisions are coupled.  An integrated 

traffic system software toolbox was used to customize a multi-modal, multi-route network with 

multiple decision-makers.  A stochastic agent simulation represented the network physics; 

discrete choice models represented user mode and route preferences.  An iterative analysis 

produced network equilibrium outputs.   

     Several general insights for SoS problems were made.  First, the interdependent nature of user 

choice and system physics can be investigated through an iterative experimental design.  Second, 

an operating environment for a SoS can be modeled and control strategies investigated through 

X1          
% Max Toll  

($)

X2             
% Max Transit 

Fare ($)

X3           
% Max Fwy 
Green 1      
(sec) 

X4           
% Max Fwy 
Green 2      
(sec) 

X5                    
Total Network Volume 

(vph) x 1000
Y1       

P(Bus)
Y2          

P(FW)
Y3           

P(SS)

Y4           
Control Delay 
(sec/veh) x 100

Y5           
Mean Phase 
Failures/Link

1 0.25 0.27 0.25 0.25 4.91 0.33 0.56 0.11 0.23 0.25
2 0.00 0.33 0.63 0.50 3.63 0.15 0.77 0.08 0.22 0.12
3 0.17 0.27 1.00 0.88 4.72 0.13 0.83 0.04 1.28 3.93
4 0.33 0.67 0.25 0.50 14.77 0.48 0.28 0.24 1.17 9.94
5 0.08 0.53 0.38 0.88 12.39 0.15 0.78 0.07 1.26 8.80
6 0.00 0.53 0.88 0.13 11.28 0.17 0.76 0.08 1.12 8.58
7 0.17 0.93 0.13 0.88 7.19 0.04 0.88 0.08 0.92 3.65
8 0.33 0.67 0.38 0.13 7.98 0.16 0.72 0.13 0.58 2.59
9 0.17 1.00 1.00 0.63 7.70 0.18 0.50 0.32 1.17 5.38
10 0.58 0.20 0.25 0.75 10.13 0.85 0.09 0.05 0.55 2.27
11 0.42 0.07 0.50 1.00 6.25 0.21 0.71 0.08 1.25 3.59
12 0.58 0.27 0.88 0.13 9.06 0.63 0.28 0.09 0.92 5.38

13 0.42 0.40 0.25 1.00 1.89 0.14 0.76 0.10 0.69 1.00

14 0.42 0.40 0.38 0.25 4.94 0.34 0.50 0.16 0.24 0.28
15 0.42 0.53 0.88 0.75 1.94 0.20 0.60 0.19 0.24 0.15
16 0.58 0.80 0.13 0.25 13.81 0.27 0.31 0.42 1.27 10.68
17 0.50 0.80 0.50 0.50 15.52 0.44 0.13 0.43 1.22 10.79
18 0.50 0.80 1.00 1.00 13.05 0.01 0.21 0.78 1.86 13.04
19 0.92 0.20 0.25 0.88 10.87 0.98 0.00 0.02 0.96 5.84
20 0.67 0.20 0.75 0.25 11.83 0.89 0.05 0.07 0.69 4.72
21 1.00 0.27 0.88 0.75 13.36 0.98 0.00 0.02 1.22 9.19
22 0.83 0.40 0.13 0.25 7.85 0.67 0.13 0.20 0.79 3.48
23 0.92 0.40 0.38 0.38 7.32 0.76 0.10 0.14 0.32 0.85
24 0.92 0.33 1.00 1.00 10.37 0.75 0.10 0.15 1.98 11.35
25 0.92 0.80 0.13 0.38 4.572 0.25 0.37 0.38 0.431 0.97
26 0.75 0.93 0.75 0.88 5.731 0.17 0.61 0.22 0.652 1.49
27 0.75 0.73 1.00 0.25 3.972 0.12 0.54 0.33 0.968 2.50
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stochastic agent simulation.  Such microscopic perspectives of SoS behavior offer opportunities 

for bottom-up performance analysis that may differ from aggregated macroscopic models.  Third, 

it is reasonable to expect a SoS analysis to explicitly consider the coupled relationship between 

the physical state of the network and the user choices that impact and result from various states of 

the operational environment.  Finally, the data used and results generated in this objective are 

illustrative and not tied to a specific number problem.  However, the process and findings are 

generalizable to investigate and determine control policies that optimize network objectives for a 

SoS.  No single policy will suffice for all situations, but ideally, a control scheme should be 

specially tailored to the network it serves to include the inherent user preferences within the 

defined operational environment.     
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6 CHAPTER VI 
 

SURROGATE MODELING, MODEL VALIDATION AND 
SENSITIVITY ANALYSIS FOR STOCHASTIC HUMAN-PHYSICAL 

NETWORKS WITH HYBRID DYNAMICS 
 

6.1 Introduction 

     For this objective, computationally inexpensive surrogate models are developed to faithfully 

predict more detailed simulation outputs.  The computational expense of detailed simulations, 

such as the transportation network previously described, limit the ability to exhaustively study 

human-physical networks.  Less expensive approximation models, often called surrogate models 

or response surface approximations, can represent network performance and reduce the 

computational expense of repeating the more detailed simulation over and over for every possible 

combination of policy settings.  Several methods are available for developing response surface 

approximations, including the development of regression models with reduced degrees of 

freedom (Friedman, 1991) and (Schumaker, 2007), and Gaussian process interpolation (Bichon et 

al, 2008);  (Jones et al, 1998); (Kennedy and O’Hagan, 2001); (Bayarri et al, 2002); (Simpson et 

al, 2001); (Kaymaz, 2005); (Kennedy et al, 2006); (Oakley and O’Hagan, 2002) and (McFarland 

et al, 2008).  Using the transportation network example, surrogate models are developed and 

compared for use in this study.  Gaussian process models and Quadratic Response Surface 

models are developed to handle the continuous variables (i.e., tolls and fares in dollars, signal 

timing in minutes).  In order to determine which models are the most appropriate for predicting 

the responses, a quantitative model evaluation method called a Predicted Residual Sum of 

Squares (PRESS) test is performed. (Allen, 1971) introduced PRESS and it is a commonly used 

technique to compare candidate models.  Results from the PRESS test indicate the most 

appropriate model for the four continuous output variables is a Quadratic Response Surface 
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model.  To evaluate the predictive strength of the developed models, each model is compared to 

high-fidelity simulation outputs and statistical tests are performed on the fitted models.   

     A Binary Logistic Regression model is developed to address the discrete variable with 

categorical responses (i.e., pass/fail network state).  This model is used to support probabilistic 

reachability analysis to assess the likelihood of the network reaching a failed network state.  

Reachability is an important topic in classical control theory (Abate et al, 2008) aimed at 

determining the probability of reaching a given system state from a given set of initial conditions 

and subject to a given control.  Finally, sensitivity analysis is performed to demonstrate the 

effects of varying control values on output metrics of interest and the SoS objectives. 

 

6.2 Surrogate Modeling 

     Computational expense precludes evaluating high fidelity simulations for the many possible 

policy combinations.  For the purpose of analysis, reduced models produced from response 

surface methods can be used to generate interpolating predictions.  Gaussian Process and 

Quadratic Response Surface models were developed as surrogates for the four continuous 

responses.  This problem also contained a discrete output variable representing the binary 

response of whether the network reached a failing level of service.  A Binary Logistic Regression 

Model was developed as the surrogate for the discrete response. 

 

6.2.1 Gaussian Process and Quadratic Response Surface Models 

     Response surface models were developed to serve as surrogates for the physical disciplinary 

model.  Gaussian Process (GP) models and a Quadratic Response Surface (QRS) model were 

developed and compared as potential surrogates for predicting the responses for the four 

continuous output variables for the continuous output variables (pBus, pFW, pSS and Delay).  

Both methods have their advantages.  GP models, as noted in (Kennedy and O’Hagan, 2001), can 
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account for its own uncertainty and quantify the model error associated with the surrogate 

prediction.  QRS models are popular because they are usually low-order polynomial alternatives 

to computationally expensive simulation codes (Lian and Liou, 2005). 

     Constant trend, linear trend and quadratic trend GP Models were developed and compared 

with a Quadratic Response Surface Model.  For the purposes of demonstration, model predictions 

for the output variable, Delay, are presented.  Five GP model predictions were computed.  Four 

predictions were interpolations and one prediction was a training point for the GP model.  Figure 

6.1 illustrates the GP model predictions for delay at each point.  The vertical lines in Figure 6.1 

depict the variance value in the GP model prediction.  As expected, a perfect prediction was made 

for the training point.  This is illustrated in Figure 6.1 by the blue circle exactly covering the 

observed value (a blue star) and the blue vertical whisker of length zero (indicating the prediction 

variance is zero).  For the other four points, the observed and predicted values and prediction 

variance is shown.  As Figure 6.1 shows, predictions near the design space boundary were greater 

than one standard deviation off; interior point predictions were within one standard deviation. 

 

Figure 6.1  GP Model Prediction 
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     A QRS model was also developed, using the same five points.  Estimates from the QRS model 

were generated and compared to candidate GP models (GP0, GP1, GP2), representing underlying 

trend functions (constant, linear and quadratic respectively).  QRS predictions for delay in Figure 

6.2 (shown as red star) were generally closer to the observed delay values than the GP 

predictions. 

 
Figure 6.2  GP Model and Quadratic Response Surface Predictions 

 

     A second test was performed to compare delay predictions on the same operational policy for 

additional network demands ranging from 4,000 to 14,000 vehicles/hour (Note: in this research, 

minimum demand is 1,000 vph and maximum demand is 15,000 vph).  Numerical results from 

this test are shown below.   

Inputs: X1= % Max Toll; X2= % Max Fare; X3= % Max Fwy Grn1; X4= % Max Fwy Grn2; X5= Demand (vph) x 1000 

X1    X2     X3    X4     X5 
.83    .40     .13     .25       7.85 
.05    .05     .10     .10       4.0 
.95    .95     .95     .05     14.0  
.40    .40     .40     .40       8.0 
.75    .75     .75     .75     10.0 
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The output predictions for the GP1 model and associated variance were 

     X1     X2       X3       X4        X5   
Output:      .79     0.50       1.95        .55       0.95 
GP Var:   0.00     0.054     0.052    0.004     0.023  

 
The output predictions for the QRS model were 

     X1     X2        X3       X4      X5   
Output:     .942      .45        1.75       .49       0.75 
  

The QRS model and GP1 (linear trend function) produced similar results.  For comparison, the 

absolute differences in Delay predictions (seconds per vehicle) were calculated and reported 

  X1       X2     X3      X4      X5   
Absolute Difference:    15.2       5.0     20.2      6.0      20.0 

 

     Differences in network delay estimate more than 20 seconds per vehicle could be significant.   

Therefore, it was necessary to quantitatively compare the models in order to determine which of 

the four candidate models (GP0, GP1, GP2, QRS) best approximates each response variable.  A 

quantitative model evaluation method called a Predicted Residual Sum of Squares (PRESS) test 

was performed and described in the next section. 

     Predicted Residual Sum of Squares, or PRESS (Allen, 1971) is an effective technique to 

evaluate candidate models.  The procedure for performing PRESS on a sample of size n is as 

follows: 

1. Individually omit each i 

th observation; recalculate the fitted model for remaining n-1 data 
2. Calculate the prediction error for the i 

th observation and square the difference 
3. Repeat the process for all n observations and compute the sum of squares 
4. Compare sum of squares value to other candidate models, with lowest value preferred 

 

     A PRESS test was performed for each of the candidate surrogate model predictions for pBus, 

pFW, pSS and Delay.  Three GP models (constant, linear and quadratic) and the QRS model were 

compared for predictive accuracy.  Following the procedure described above, each model was 

compared to the output values of the 27 high fidelity simulations and the sum of squares was 

reported.   
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Table 6.1 depicts the PRESS results.  The Quadratic Response Surface model ranked the best for 

the each model with the Gaussian Process with linear trend function next with the exception of 

the Surface Street Model for which the Gaussian Process model with constant trend ranked 

second to the QRS Model. 

Table 6.1  PRESS Test Results 

 
 

     Based on the PRESS test results, the most appropriate surrogate model for the each of the 

continuous response variables is the quadratic response surface model.  Thus, the QRS models are 

the most appropriate low-fidelity models for estimating pBus, pFW, pSS and Delay for policy 

analysis and optimization in the next objective. 

 

6.2.2 Probabilistic Reachability 

     Reachability is an important topic in classical control theory (Abate et al, 2008).  Reachability 

analysis in discrete, continuous or hybrid systems seeks to partition states into two categories: 

those that are reachable from the initial conditions, and those that are not (Mitchell et al, 2001).  

The concept of probabilistic reachability centers around determining the probability of reaching a 

given system state from a given set of initial conditions and subject to a given control.  For 

deterministic problems, reachability is a yes/no problem evaluating whether starting from a given 

set of initial states the system will reach a certain set or not.  In stochastic problems, the different 

trajectories originating from each initial state have likelihoods of reaching the set (Abate, 2007).  

MODEL (trend) Bus Freeway Surface Delay

GP (quadratic) 2.641 2.025 1.212 7.204

GP (constant) 2.608 1.804 0.882 5.055

GP (linear) 1.968 1.484 1.03 3.509

Quadratic Resp Surf 0.676 0.471 0.442 2.866

RESPONSE VARIABLE PRESS VALUE
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System evolution in stochastic human-physical networks is influenced by control policy, so a SoS 

priority is to choose appropriate controls to minimize the probability that the state of the system 

will enter the failed state. 

     Support for reachability analysis in optimally controlling deterministic problems has been 

pointed out in (Hedlund and Rantzer, 2002) and (Lygeros, 2004).  Connections between 

reachability, and safety for deterministic hybrid systems (mostly applied to air traffic 

management) has been stressed in (Mitchell et al., 2005) and (Lygeros et al, 1999), and (Tomlin 

et al, 1998).  Reachability for stochastic hybrid systems, such as the class of problem presented in 

this research, is a recent focus of research.  Bujorianu and Lygeros (2003) address theoretical 

issues regarding the measurability of the reachability events.  However, even the most recent 

approaches consider the problem of reachability analysis for continuous time stochastic hybrid 

systems without any control input.   

     This research extends the current approaches by including stochastic hybrid systems with 

controls and addressing the complex dynamical evolution in a computationally efficient way.  

The stochastic processes are modeled with a high fidelity simulation and the physical system 

evolves in response to network controls.  Additionally, uncertain initial conditions and model 

parameters contribute to the system evolution which may or may not reach a failed system state.  

Furthermore, analysis is performed under uncertainty to optimize weighted combinations of 

policy objectives, so the impacts of stochastic demand and varying objective weights are 

considered in assessing reachability. 

     The reachability computation in (Tomlin, 1998) and (Tomlin et al, 2000) follows an iterative, 

two stage algorithm in which an outer iteration computes reachability over the discrete switches 

and an inner iteration runs a separate continuous reachability problem in each of the discrete 

modes to compute the estimates.  The approach to network reliability used for this problem is an 

adaptation to the procedure described in (Tomlin, 1998) and (Tomlin et al, 2000).  The 
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reachability computation is a function of two factors:  the stochastic nature of the simulation and 

the impact of a prescribed network policy on the physical system.  Uncertainty is propagated 

throughout the TSIS simulation.  For example, agent behavior (i.e., turn movement) is initiated 

based on random seeds, agent arrivals follow a Poisson process and agent attributes (i.e., driver 

type assignment) follow a probabilistic distribution.  Depending on the stochastic system 

evolution, successive simulations for the same network policy could result in different network 

states.  Likewise, control policy significantly influences the system physics which, in turn, 

influences user mode and route choice and the evolution of the physical system.  Given the 

computational expense to perform many high-fidelity simulations, an appropriate and cheaper 

model was developed to predict the probability of the network reaching a failed state. 

 

6.2.3 Binary Logistic Regression Model 

     Over the last decade, logistic regression has become a standard method of analyzing model 

relationships with discrete responses (Hosmer and Lemeshow, 2000).  It is appropriate for data in 

which there is a binary (success/failure) response variable, such as the discrete response variable 

in this study problem, network failure.  Unlike linear regression, where one estimates the 

relationship between predictor variables and an outcome variable, logistic regression estimates 

the conditional probability that a dichotomous outcome occurs. (Hilbe, 2009).  The general form 

for the logistic model is logit(π) = log(odds) = α+βX, where 

X

X

e
eXYP βα

βα

π
+

+

+
==

1
by  given  is and )|1(  

The first step to generate the binary logistic regression model was to classify the simulations 

based on whether the network reached a failed state.  Network failure was defined using 

transportation guidelines for levels of service (LOS).  If the mean number of phase failures per 

link on the network exceeded 10%, the network is considered to have reached the failed state.  
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The next step was to estimate (infer) parameter values for the logistic regression model using the 

Minitab toolbox. 

     As previously discussed the simulation inputs were values for toll, fare, signal timing and 

demand.  Since each stochastic simulation had 10 replications, binary logistic regression was 

performed on the 270 high fidelity simulation scenarios to determine the maximum likelihood 

coefficients for the model.  The regression model coefficients with standard errors and the Z and 

p-values for each predictor are below.  

Predictor                         Coefficient       Std Error       Z          P   .   
Constant                           -0.1458    0.603    -0.24  0.809 
% Max Toll ($)                    -0.8422      0.479   -1.76  0.078   
% Max Transit Fare ($)           -0.0420    0.554    -0.08  0.940   
% Max Fwy Green (sec)              3.3640      0.637     5.28  0.000   
Network Volume (vph x 1000)   -0.6285     0.036    -1.73  0.084   

     Using a 0.1 significance level, the p-values for the regression coefficients showed three of the 

four model coefficients to be significant at the 0.10 level (% Max Toll; % Max Fwy Grn; 

Network Volume).  Depending on preference, the non-significant factors can be dropped and the 

simpler model used for prediction.  For the purposes of illustration in this dissertation, the 

complete model is used.  The selected predictive model for π, the probability the network reaches 

a failed state under a given policy is  

146.063.036.342.084.0

146.063.036.342.084.0

54,321

54,321

1 −−+−−

−−+−−

+
= XXXX

XXXX

e
eπ  

The listed predictors are X1= % Max Toll; X2= % Max Fare; X3,4= % Max Fwy Grn (combined); X5= Demand 

(vph) x 1000 and ε = an intercept term. 

 

6.3 Model Validation 

     The strategy of model verification and model validation according to (AIAA, 1998) is the 

assessment of error and uncertainty in a computational simulation.  Yet, depending on the 

domain, there are philosophical debates over their definitions.  A common convention is for 

verification to focus on the mathematical accuracy of an implemented procedure in a computer 
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simulation, while validation determines the degree to which a computer model represents the real 

world from the perspective of the intended model applications (AIAA, 1998) and (DOE, 2000).   

     In this research, the high fidelity TSIS model is approximated by candidate, low fidelity 

models.  The data evaluated is synthetic; no field experiments are performed.  So, the high 

fidelity model performance is the closest representation of the true physical environment and 

validation is meant in a broad sense.  One set of data was used for building and evaluating 

candidate surrogate models.  A separate set of data was evaluated by the high fidelity simulation 

and output values used to compare with the surrogate predictions.  Quantitative assessments such 

as goodness-of-fit and hypothesis tests are used for prediction testing.  Qualitative assessments 

such as graphical analysis are also used to confirm agreement between surrogate predictions and 

the high fidelity simulation evaluations.  For this reason, a general interpretation of validation is 

adopted which considers the described assessments to be satisfactory for the intended application. 

  

6.3.1 Binary Response Model 

Goodness-of-Fit Test  

     Statistical software has increased the popularity of goodness-of-fit testing for predictive 

models; however the methods used for models with binary outcomes face some challenges.  

Limitations in assessing fitted models for binary responses involve the choice of cutting points, 

size of subgroups and disparate covariate values, and each is an area of current research (Hosmer 

et al, 1997).  For this reason, subjective assessment should accompany quantitative measures (i.e., 

p-values) in assessing goodness-of-fit for this type of model.  Despite the limitations, such 

methods provide an analytical basis for evaluating a binary response model.  Pearson Chi-square 

and Hosmer-Lemeshow (H-L) methods are currently leading methods in literature and used in 

this study to assess the fitted model for pFail.  These tests are widely used goodness-of-fit test and 

only available for binary responses, such as pFail, with only pass/fail responses.  To evaluate the 
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fit of the pFail model, Pearson Chi-square and Hosmer-Lemeshow test statistics are evaluated.  

The hypothesis test, as shown in (Hosmer and Lemeshow, 1989), evaluates a goodness-of-fit test 

statistic which is distributed as chi-square and tests for evidence of a lack of fit.  Both test results 

are reported, but for the purposes of illustration, only the H-L procedure is formulated. 

H0:  The model is a good fit  HA: The model is NOT a good fit 
 

Test Statistic:    ܥመ ൌ ∑   ሺைೖିாೖሻమ

ாೖሺଵି
ாೖ ௡ೖൗ ሻ

 ~  ௚ܺିଶ
ଶ௚

௞ୀଵ  

where,  nk = number of observation in the kth group 
 Ok = observed number of cases in the kth group 
 Ek = expected number of cases in the kth group 

     In the H-L procedure, the observations are sorted in increasing order of their estimated event 

probability.  The observations are then divided into groups and the Hosmer-Lemeshow goodness-

of-fit statistic is obtained by calculating the Pearson chi-square statistic based on the observed and 

expected frequencies.  To illustrate, Figure 6.3 depicts the observed and expected frequencies 

from the H-L test applied to the simulation results used in the binary logistic regression procedure 

to generate the selected predictive model for π previously described.  Hosmer and Lemeshow 

(1989) suggests comparison of observed to expected frequencies within each group can be useful 

to indicate regions where the model may or may not perform satisfactorily. 

 

Figure 6.3  Goodness-of-Fit Test 
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     To evaluate the fit of the reduced model, a quantitative comparison of the prediction results 

and simulation results was performed.  As a technique to validate the fitted model, the H-L 

procedure was applied to simulation results from seven high fidelity simulations obtained for the 

purposes of comparing the high and low fidelity models.  The H-L and Pearson method results 

are reported below.  

Goodness-of-Fit Test Results 

Method             χ2 test statistic     DF P-value 
Pearson        3.057                2    0.210 
Hosmer-Lemeshow      3.057                5    0.691 

 

     Goodness-of-fit tests are an exception to the widely held paradigm that low p-values are 

desirable.  The alternative hypothesis states the fit is NOT good.  So, at the 0.1 significance level, 

p-values > 0.1 increasingly provide less and less evidence against a good model fit. 

Both the Pearson and Hosmer-Lemeshow methods suggest the reduced model is a good fit for 

predicting pFail, particularly the H-L method.  Given the limitations of the validation methods for 

binary response models, the consistent p-values from two of the leading methods is reason to 

conclude the developed model is an appropriate surrogate for π, the probability of the system 

evolution reaching a failed level of service for a given policy. 

Hypothesis Test about the Mean Failure Probability 

     In addition to confirming how well the reduced model fit the high fidelity model, a hypothesis 

test was also performed to determine whether a hypothesized value for the true pFail, equal to the 

reduced model pFail, could be shown to be statistically different from a pFail generated from a 

set of high fidelity simulations.  To investigate the predictive strength of the pFail surrogate 

model, a set of validation data was obtained from the high fidelity model from which 

comparisons were based.  The accuracy of the estimate depends on the number of simulations 

(Haldar and Mahadevan, 2000), so 100 network simulations were evaluated for a base control 

policy with % Max Toll, % Max Fare and % Max Fwy Grn all equal to 50%.  The stochastic 
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agent simulation with demand fixed at the mean value of 7,000 was compared to the reliability 

model for the same base policy and network demand values.  Output values for mean phase 

failures per link from 100 high fidelity replications are listed in Table 6.2.  Recall, the 

transportation level of service threshold for classifying the network as “failed” was a mean 

greater than 10%.  In this case, network runs with means > 6 were classified as failed.  The 

resulting point estimate for pfail was 0.04 with a variance of 0.00038. 

Table 6.2  High Fidelity Results for Mean Phase Failures 

 

 

By comparison, the pFail from the surrogate model evaluated at the base policy and demand of 

7,000 was equal to 0.029.  This result implies the probability of the network reaching a failed 

LOS, under this policy, is 0.029.    

     A two-tail hypothesis test of the mean pFail was performed, using the reliability model value 

as the assumed mean pFail.  The test results indicated, at the 0.05 significance level, the true 

mean pFail was not statistically different from 0.029, based on the high fidelity sample with 

Run Mean Fails

1 4.45 26 3.65 51 3.25 76 3.85
2 3.45 27 4.3 52 4.5 77 3.55
3 3.8 28 4.1 53 3.7 78 3.55
4 4.9 29 3.7 54 5.9 79 4.15
5 4.25 30 2.2 55 5.6 80 8.25
6 4.55 31 3.55 56 7.95 81 5.05
7 4.5 32 4.35 57 3.3 82 4.25
8 4.7 33 3.4 58 4.5 83 5.9
9 5.65 34 3.7 59 4.9 84 2.8
10 4.55 35 5.1 60 3.7 85 4.4
11 9.1 36 3.8 61 4.8 86 3.95
12 4.3 37 3.3 62 3.3 87 2.65
13 4.95 38 5.35 63 3.35 88 4.65
14 5.4 39 3.05 64 4.95 89 3.7
15 4.55 40 3.15 65 4.1 90 3.9
16 5.05 41 2.1 66 6.85 91 4.9
17 3.6 42 4.6 67 4.1 92 4.75
18 3.85 43 5.7 68 4 93 3.4
19 3.45 44 4.95 69 3.75 94 2.8
20 4.6 45 2.8 70 3.7 95 3.3
21 4.45 46 5.2 71 3.95 96 3.5
22 5.15 47 3.6 72 5.35 97 3.55
23 2.75 48 4.6 73 2.95 98 4.95
24 4.5 49 3.5 74 4.3 99 3.55
25 4.65 50 4.05 75 3.35 100 4.1
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݊ ൌ ̂݌ ,100 ൌ 0.04  and ߪଶ ൌ 0.00038.  The hypothesis test to determine whether the true pFail 

is equal to 0.029 is shown below.   

 H0:   ݌ ൌ 0.029   HA:   ݌ ് 0.029  α = 0.05 

Test Statistic:       ݐ ൌ ௣ොି௣

ටሺ೛ෝሻሺభష೛ෝሻ ೙  
  =  0.561 

Critical value:  ݐα/2, n-1 = 1.98 
p-value:  0.78 

Conclusion:  At the 0.05 significance level, the true pFail can be assumed to be equal to 0.029. 

     Additionally, computations were performed to determine the minimum sample size required to 

invalidate the hypothesis test at the .05 significance level.  When ݊ ൌ 1,250, the value for the test 

statistic exceeds the critical value and the conclusion is to reject the null and infer the true pFail is 

not equal to 0.029.  Based on the computational expense required to perform 1,250 high fidelity 

simulations, decision makers should evaluate the tradeoff between accuracy and expense.   For a 

95% level of confidence, it is recommended that decision-makers use the reduced model when it 

is infeasible to perform more than 1,250 simulation runs.  If enough resources are available to 

perform more than 1,250 runs then the high fidelity simulation results are considered more 

appropriate. 

 

6.3.2 Continuous Response Models 

     This section describes the validation of the surrogate models for the four continuous input 

variables, whose models were developed, compared and selected section 6.2.  Output values were 

computed as expected performance and compared with observed performance values from the 

high fidelity model.  As previously discussed, a priority for the experimental design was to focus 

on the non-linear interactions in the interior of the design space more than at the boundaries.  This 

is because the expected operational conditions for this problem were assumed non-extreme.  

More moderate operational conditions were typical; thus, more simulations in these areas would 
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improve the efficacy of corresponding surrogates for their intended applications.  An appropriate 

set of inputs was generated as a validation data set.  Table 6.3 contains these inputs and the 

observed and expected outputs.   

Table 6.3  High Fidelity Results for Validation Trials 

 

Graphical Analysis  

The first assessment was a visual inspection of the plotted results.  Figure 6.4 depicts the 

observed and expected results for the network mode and routes.  The strong evidence in the 

model agreement was expected given the network outputs were equilibrium values prior to 

building the surrogate to which it was compared.  

  

 

Figure 6.4  Mode and Route Predictions 

Volume Toll Fare FwyGrn Expected Observed Expected Observed Expected Observed Expected Observed

1 2000 1 0.8 0.2 0.112 0.124 0.537 0.491 0.350 0.385 0.432 0.485

2 5000 0.75 0.4 0.7 0.397 0.415 0.177 0.189 0.427 0.396 1.053 0.998

3 6000 0.25 0.6 0.6 0.161 0.150 0.071 0.101 0.768 0.749 0.600 0.541

4 7000 0.75 0.2 0.8 0.526 0.531 0.146 0.160 0.328 0.309 1.544 1.397

5 8000 1 0.4 0.5 0.773 0.777 0.147 0.154 0.080 0.069 0.848 1.001

6 9000 0.5 0.2 0.6 0.523 0.531 0.106 0.121 0.370 0.348 0.907 0.879

7 10000 0.75 0.5 0.8 0.453 0.439 0.245 0.229 0.302 0.332 1.240 1.300

pBus pSS pFW DelayPolicy

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800

1000 3000 5000 7000 9000 11000

Prediction Comparison for Mode/Route Choice

pBus Exp pBus Obs pSS Exp pSS Obs pFW Exp pFW Obs
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By contrast, the observed delay results in Figure 6.5 do not appear to match as closely.  The delay 

outputs matched well (R2
 = 0.9706), but not quite as well as mode and route outputs (R2

 > 0.9810).  

One reason for this relative difference is the how the output values are obtained in the high 

fidelity simulation.  The mode and route proportions are the results of iterative convergence, but 

the delay is simply the corresponding metric value for delay, at convergence.   

 

Figure 6.5  Delay Predictions 
 

The stochastic nature of the simulation impacted the delay metric value in the seven validation 

runs.  The equilibration requirement for the mode and route values caused the validation runs to 

tend more closely to their training run values.  By extension, the surrogate model results for mode 

and route compared well with the validation run results.  

Goodness-of-Fit Test  

     In addition to graphical inspection, residual analysis comparing the sum of squares for the 

error with the total variability as shown in (Haldar and Mahadevan, 2000) was performed as a 

prediction test.  Additionally, a χ2 goodness-of-fit test was performed to evaluate the fitted model.  

Table 6.4 lists the R2 and p-values for each model.  
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Table 6.4 Prediction Test Results for Continuous Responses 

 

 

These results support a good model fit with the outputs from the validation data set.  It is 

important to note that the R2 metric in Table 6.4 is specific to the validation data set.  As a 

coefficient of determination, it represents the proportion of variability in the high fidelity outputs 

that is explained by the surrogate model.  Because the seven high fidelity run results do not span 

the input space as thoroughly as the 27 simulations (upon which the surrogate models were 

based), the predictive strength is not assumed to be representative of the entire input space.  This 

metric is an indicator of the predictive strength across the space to the extent that other regions in 

the design space perform similarly to the validation set.  Depending on available computational 

resources, tests should be performed to verify the model fit in other areas of the non-linear space. 

     Of note, is the difference in the statistical test results between the 27 point training data set and 

the 7 point validation data set.  The relatively lower performance for the broader space as 

compared to the localized interior space suggests the fit may be worse near the boundaries of the 

design space.  This is expected because the LHS design was intentionally chosen to capture more 

interior points.  The 27 run results are more representative of the interior and the edges of the 

design space.  The relatively lower R2 values for the 27 point set (see Table 6.5), while definitely 

suggesting strong fit, also illuminate the vulnerability of model predictions for boundary values 

using the surrogate quadratic response surface models. 

 

6.4 Final Reduced Models 

     The result of the stochastic simulation and reduced model building is a set of the most 

appropriate surrogate models to use in reliability analysis and policy optimization in the next 

χ2  p‐value R2 χ2  p‐value R2 χ2  p‐value R2 χ2  p‐value R2

0.9999 0.9990 0.9998 0.9810 0.9999 0.9950 0.9979 0.9706

pBus pSS pFW Delay
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objective.  The reduced models determined to be the most appropriate for response predictions 

are presented below, along with the R2 value for each model. 

Inputs Variables:  (control policy and network demand) 

 X1= % Max Toll;  X2= % Max Fare;  X3,4= % Max Fwy Grn (total);  X5= Demand (vph) x 1000  
 
Output Variables:  (for a given control policy) 
pBus:  Proportion of users to choose the bus mode 

pSS:  Proportion of user to choose the auto mode and surface street route 

pFW:  Proportion of user to choose the auto mode and freeway route 

Delay:  Average seconds vehicles drive longer than free flow speed to travel each mile x 0.01 

Network Failure:  Probability the network reaches a failed LOS state 

The model form is a linear combination of the variables with coefficients and intercepts term, ε, 

listed in Table 6.5.  The R2 values for the four continuous models represent the proportion of the 

variability in the stochastic agent simulation that is explained by the reduced model.   

Table 6.5  Final Surrogate Models 

 

Input 
variable

pBus 
(R2=.94) 

pSS  
(R2=.96)

pFW 
(R2=.92) 

Delay 
(R2=.88)

pFail         

ε 0.165 0.664 0.370 ‐0.465 ‐0.146
X1 0.296 0.561 ‐0.953 1.459 ‐0.840

X2 ‐0.237 ‐0.627 0.697 ‐0.174 ‐0.420

X3,4 ‐0.222 ‐0.900 0.991 0.061 3.360

X5 0.047 ‐0.107 0.028 0.084 ‐0.630

X1
2 0.332 0.357 0.058 0.147 ‐‐‐

X2
2 0.015 0.240 0.002 0.653 ‐‐‐

X3,4
2 ‐0.060 0.448 ‐0.383 1.617 ‐‐‐

X5
2 0.001 0.005 ‐0.003 ‐0.004 ‐‐‐

X1X2 ‐0.813 ‐0.504 0.428 ‐1.186 ‐‐‐

X1X3,4 ‐0.052 ‐0.661 0.569 0.415 ‐‐‐

X1X5 0.037 0.039 ‐0.035 ‐0.139 ‐‐‐

X2X3,4 0.951 0.839 ‐1.283 ‐2.130 ‐‐‐

X2X5 ‐0.061 0.025 0.007 0.162 ‐‐‐
X3,4X5 ‐0.052 0.031 ‐0.005 0.022 ‐‐‐

Response Model Coefficients
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The relatively lower R2 values as compared to prediction test results in section 6.3.2 indicate the 

ability for the QRS models to fit the entire design space is slightly weaker than for the primarily 

interior point validation data.  Therefore, boundary point predictions carry an implicit variability 

for which decision-makers should be mindful.   

 

6.5 Sensitivity Analysis 

 

6.5.1 Overall Metric Trends 

     A macro-level view of metric and objective value sensitivities to changes in the controls was 

performed.  Figure 6.6, Figure 6.7, and Figure 6.8 provide a high level view of trend in the 

outputs.   

 

Figure 6.6  Overall Metric Sensitivity to Toll Changes 
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Figure 6.7  Overall Metric Sensitivity to Fare Changes 
 

 

Figure 6.8  Overall Metric Sensitivity to Freeway Green Changes 
 

6.5.2 Sensitivity of Equilibrium User Preferences—An Example 

     To illustrate the impacts of control pricing on user choice, figures are presented to depict the 

impact of increasing and decreasing tolls, using the equilibrium solutions for the 27 high fidelity 

simulation policy scenarios.  Figure 6.9, Figure 6.10, and Figure 6.11 depict the equilibrium mode 

and route preferences obtained from the high fidelity simulations.  Appendix B contains the 

graphical analysis of the sensitivity of mode and route choice to toll pricing.  
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Figure 6.9  Equilibrium pBus for 27 Scenarios 

 

Figure 6.10    Equilibrium pFW for 27 Scenarios 

 

Figure 6.11    Equilibrium pSS for 27 Scenarios 
 

6.5.3 Sensitivity Analysis for Objective Values 

     This section depicts the objective value for each of the four SoS objectives at various control 

policies. The family of optimal control policies is in Appendix C.  Each depicted curve, in this 

section, is the result of fixing two controls at the base policy and changing each control, one at a 
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time, in increments of 10%.  Recall, the base policy sets each control at 50% of its maximum.  

The base policy results for each objective are shown in Table 6.6. 

 

Table 6.6  SoS Metric and Objective Values for Base Policy 

  

• pFail = 0.029  (2.9% expected likelihood of the network reaching a failed LOS state) 

• Total Revenue = $31,622 in combined Toll and Fare revenue   

• Delay = 65.2  (Average delay per vehicle of 65.2 seconds) 

• pBus = 0.308  (30.8% of users prefer the bus at a $6 fare)  

 

Objective: Network Reliability 

     Figure 6.12 depicts the expected change in pFail for varying control policies.  The pFail for 

the base policy and at the mean demand is 0.029.  As toll and fare increase, pFail decreases.  

Higher prices promote more surface street travel which results in congestion and increases pFail.  

As freeway green increases, pFail also increases.  Favorable freeway green time promotes more 

freeway bound traffic.  However, the 3-lane freeway has a capacity of 2200 veh/ln/hr, so network 

demands sufficiently clog freeways and spill over congestion to adjacent streets increasing pFail. 

 

 

Figure 6.12  pFail Sensitivity to Control Changes 

%Toll %Fare %Fwy Grn pFail Toll Revenue Bus Revenue Total Revenue Delay pBus pFW pSS

50% 50% 50% 0.029 $23,537 $8,086 $31,622 65.164 0.308 0.560 0.132
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Objective: Total Revenue 

     Figure 6.13 depicts the expected change in Total Revenue for varying control policies.  The 

total revenue for the base policy and at the mean demand is $31,622.  Total revenue positively 

increases with each control.  Total revenue is the most sensitive to the revenue producing 

controls, toll and fare.  The value piques around 80% of the max toll and fare, then falls as 

reductions in ridership causes less total revenue. 

 

 

Figure 6.13  Total Revenue Sensitivity to Control Changes 
 

Objective: Network Delay 

     Figure 6.14 depicts the expected change in Delay for varying control policies.  Total revenue 

for the base policy and at the mean demand is $31,622. Delay increased with the toll, even more 

with freeway green.  Heavy loads slowed freeway flow; related congestion on adjacent surface 

streets slowed local streets.  Increasing bus fares remained competitive relative to tolls, but at 

75% of max many bus riders switched modes and joined the congestion reflected by the 

increasing delay. 
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Figure 6.14  Delay Sensitivity to Control Changes 
 

Objective: Mass Transit Ridership 

     Figure 6.15 depicts the expected change in pBus for varying control policies.  The pBus for 

the base policy and at the mean demand is 0.308.  Bus travel increases as tolls prices increase, 

due to many riders switching modes.  Similarly, mass transit ridership steadily falls as fare 

increase.  Freeway green increases cause pBus to decrease.  This is a result of the increased 

access to load the freeway which attracts bus travelers to switch modes.  As depicted in the 

figure, pBus is not as sensitive to freeway green as to the fare, since it is an indirect factor and 

fare is a direct factor. 

 

 

Figure 6.15  pBus Sensitivity to Control Changes 
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6.6 Conclusion 

     Solutions designed to effectively control network flow may inadvertently cause unintended 

consequences, particularly when the network performance is conditioned on user choice and 

uncertainty is propagated across the network.  Therefore, capturing the SoS performance over the 

largest possible set of operational conditions is preferred.  Yet, evaluating these aspects with a 

detailed stochastic simulation is limited by computational expense; therefore, surrogate models 

are needed.  This objective illustrated how to develop and validate computationally inexpensive 

surrogate models to predict the outputs from a more detailed simulation, and use these models to 

perform probabilistic reachability analysis and sensitivity analysis.    

     This objective also offers some general insights for SoS problems, in general.  First, prediction 

testing and surrogate model validation for SoS problems should be both quantitative and 

qualitative.  Graphical inspection of predictions combined with statistical tests offer the greatest 

potential for properly assessing candidate surrogate models.  As in this example, prediction 

testing may show one model to be very accurate in some places, but another model to have an 

overall better fit.  In these circumstances, considerations such as regions of interest and intended 

applications become important in model selection.      

     Second, when analyzing coupled human-physical SoS with hybrid dynamics, the sensitivity of 

user preferences to changes in control policies appear to be the most clear when performed on 

equilibrated scenario results.  The numerous trajectories that stochastic system behavior can 

follow complicate the understanding of the degree of the impact of changes in control policy.  

However, standardizing the analysis to the equilibrium results and isolating each control 

individually produces consistently proportional comparison values form which impacts can be 

judged.  

     Third, although the data used in this research is not intended to solve a specific number 

problem, the generalizable findings from the example problem suggests that for human-physical 
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SoS, the capacity of the faster mode is strongly linked to the likelihood of network failure.  The 

user preference for the faster route was quickly hampered by the route capacity.  Even when the 

cost to access the faster route (i.e., toll) was quite low and the opportunity to access the faster 

route (i.e., freeway green) was quite high, the network failures were significantly increased.  The 

findings suggested additional capacity on the freeway may relieve some of the pressure on the 

adjacent system.  When possible, SoS researchers should investigate the impacts of control 

policies on operations with an eye on augmenting SoS design in order to minimize the adverse 

impacts on the rest of the SoS. 

     This objective developed and validated computationally inexpensive surrogate models to 

predict high-fidelity simulation outputs, and used these models to perform probabilistic 

reachability analysis and sensitivity analysis.  Such efficient models enable analysis techniques 

such as Monte Carlo simulation to propagate uncertainty, generate output statistics and facilitate 

policy optimization.  The next objective applies this technique to the stochastic hybrid system in 

order to determine optimal policies under uncertainty.  This involves determining optimal control 

policies by solving the network flow problem as a multi-objective optimization problem using the 

results from the interdependent computational models. 
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7 CHAPTER VII 
 

UNCERTAINTY PROPAGATION AND COOPERATIVE/NON-
COOPERATIVE POLICY OPTIMIZATION IN STOCHASTIC 

HUMAN-PHYSICAL NETWORKS WITH HYBRID DYNAMICS 
 

7.1 Introduction   

     Analysis of stochastic human-physical networks with hybrid dynamics is often nested.  The 

numerous system conditions generate many sample simulations and evaluating each sample is 

computationally expensive.  In the hybrid system problem in this dissertation, every policy 

combination required enough simulation to equilibrate the integrated discrete choice and agent-

based simulation.  The nested analysis is particularly difficult for probabilistic reachability 

analysis.  There are two layers of uncertainty in the problem.  The sampling-based approach 

creates uncertainty in the initial conditions.  The stochastic nature of the simulation introduces 

uncertainty in the potential trajectories the system could follow that lead to a failed system state.  

For this objective, system metrics are evaluated under uncertainty and output statistics are 

computed.  The stochastic approach facilitates policy optimization which includes a broad set of 

possible network demands. 

     This objective also performs stochastic policy optimization for cooperative and non-

cooperative decision-makers.  Policy optimization is performed and compared for the network, 

given two cases.  The hierarchical nature present in many SoS is captured in these cases by 

including two types of decision makers.  The simulation agents are decision makers and represent 

the humans systems in the network that make travel path decisions based on the rules of the 

agent-based simulation.  SoS decision makers are the other type.   

     SoS decision-making can be centralized under an agreement by the systems to adhere to a 

single policy, typically for the benefit of the whole.  In the first case, centralized policy 
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optimization is performed for cooperative system leaders that are willing to adhere to control 

policies set by a central authority.  Centralized SoS policy optimization generates normative 

policies which suggest “what should happen” to optimize the network performance.   

     SoS decision-making can also be decentralized such that independent system decisions 

optimize single system priorities.  In the second case, a de-centralized optimization is performed 

for non-cooperative system leaders who seek to myopically optimize the objectives that most 

benefit their constituent system.  Decentralized SoS policy optimization generates policies from 

exploratory analysis of “what could happen” to network performance and is formulated as a game 

theory problem.  Game theory is an important tool in making decisions in a system of systems 

context since SoS have managerial independence with operational interdependence (Sage and 

Cuppan, 2001).   

     In section 7.2, uncertainty is propagated and the system objectives of network delay, mass 

transit ridership, total revenue and network reliability are evaluated.  Surrogate models are used to 

generate output statistics for these objectives over a stochastic demand using Monte Carlo 

simulation.  Probabilistic reachability is evaluated and an expectation for pFail is reported.  

Sections 7.3 and 7.4 examine choice in optimal behavior by formulating a game theory problem.  

  

7.2 Uncertainty Propagation 

     Various methods have been proposed in literature for uncertainty propagation with Monte 

Carlo simulation and moment-based methods as the most common (DeLaurentis, 2000), 

(Oberkampf et al, 1998).  The surrogate models developed in the previous objective were 

specifically intended for use with MCS to evaluate the moments for each of the four continuous 

output variables. 
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7.2.1 Continuous Responses  

     Output statistics in Table 7.1 were computed for the four continuous variables using 10,000 

MCS evaluations. 

Table 7.1   Output Statistics for Continuous Response Variables 

 

 

 

 

Probability density functions were generated to provide insights into the distribution of the 

variables.  Figure 7.1, Figure 7.2, Figure 7.3, and Figure 7.4 depict the histogram, probability 

density function and a “best fit” theoretical distribution.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

pBus  pSS  pFW  Delay 

Mean  0.3386  0.1745  0.4869  0.6582 

Variance  0.0078  0.0003  0.0096  0.0211 

Skewness  0.6517  1.7769  ‐1.0943  ‐0.6699 

Kurtosis  2.8217  6.1175  3.5939  2.7948 

Figure 7.1  pBus Distribution from MCS 

Figure 7.2    pFW Distribution from MCS 
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7.2.2 Probabilistic Reachability 

     For this problem, reachability is a key point of interest, and is made more difficult when 

stochastic demand is considered.  The analysis of pFail shows two distinct uncertainties which 

influence the likelihood of reaching a failed network state.  One uncertainty that impacts pFail is 

the system evolution due to the stochastic nature of the agent simulation.  Another uncertainty is 

the impact of the random demand on the value of pFail.  As reported in previous objective, the 

value for pFail = 0.029, for the base policy evaluated at a demand of 7,000.  By contrast, the 

expectation of pFail from 10,000 Monte Carlo evaluations was 0.06 (see Table 7.2).  The impact 

of the higher potential demand on the network was shown to increase the likelihood of the 

network reaching a failed state.  

 

Figure 7.3    pSS Distribution from MCS 

Figure 7.4    Delay Distribution from MCS 
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Table 7.2  Deterministic and Stochastic Reliability Results 
 

      

  

 

     An important reason for doing uncertainty propagation is to facilitate stochastic policy 

optimization.  This section propagated uncertainty across the network and used MCS to generate 

output statistics for the continuous variables and an expectation for the probability of network 

failure.  The values computed the MCS will be used by a genetic algorithm in the policy 

optimizer in sections 7.3 and 7.4.  

  

7.3 Policy Optimization with Cooperative Decision Makers 

     Centralized SoS policy optimization generates normative policies which suggest “what should 

happen” to optimize the network performance.   Centralized decision making involves a central 

SoS authority or an agreed consensus by constituent systems to adhere to the prescribed policies 

and can be implemented in many ways.  Consider a problem in which three systems agree to 

mutually support the decisions of a SoS central authority.  In this problem, the three players are: a 

state turnpike authority (STA), department of public transit (DPT), and a local government.  The 

STA sets the toll price.  The DPT sets the bus fare.  The city engineer for the local government 

sets the signal timing that determines the freeway green time.  The optimization problem seeking 

to determine the optimal control policy is formulated below. 

 

  

 

Demand pFail 

Deterministic D = 7000 0.029 

10,000 MCS D ~ Traingle (1, 15) 0.06 

max  E[Obj Fctn] 
w.r.t.  
   Toll, Fare, Fwy Grn Policy 
s.t.  
   0 < % max Toll < 1  
   0 < % max Fare < 1  
   0.2 < % max FwyGrn < 0.8 
   pFail < 0.1  
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     The toll and fare controls were constrained to a range between 0 and 1, representing the price 

range as defined by the problem (toll: $0 - $12; fare: $1 - $15).  The freeway green control was 

constrained to between 0.2 and 0.8 to represent a policy assumption for minimum and maximum 

percentage of route access dedicated to freeway bound traffic.  This assures neither the surface 

street nor the freeway access can be completely shut down.  A pFail < 0.1 constraint assured 

network reliability, as previously defined.  

 

7.3.1 Objective Function and Weighting  

     A weighted objective function representing varying objective priorities is used to evaluate a 

family of policies.  The objective function for the mathematical program is below.  

݊ݐܿܨ ݆ܾܱ ൌ ଵݓ ቆ
ݏݑܤ݌
௥௘௙ݏݑܤ݌

ቇ ൅ ଶݓ ቆ
ݕ݈ܽ݁ܦ
௥௘௙ݕ݈ܽ݁ܦ

ቇ ൅ ଷݓ ቆ
݁ݑ݊݁ݒܴ݁
௥௘௙݁ݑ݊݁ݒܴ݁

ቇ 

As previously presented, the problem has four SoS objectives (mass transit, delay, revenue and 

network reliability), but only mass transit, delay and revenue have weights, as shown.   

. Objective Weights          Reference Values          . 
w1 = pBus weight  pBus = 1 
w2 = Delay weight  Delay = 2.11 
w3 = Revenue weight  Total revenue = 4.63 

 
The network reliability objective is not weighted; rather, it is a chance constraint and imposed to 

assure network reliability.  A 10% pFail threshold conditions all of the weighted analyses.  The 

three weights range from w=0, implying no priority for an objective, to w=1 for exclusive 

priority.  The reference values for each objective were determined based on single metric optimal 

solutions evaluated at the mean demand (see Table 7.3).   
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Table 7.3  Control Policies for Individually Optimized Objectives 

 
 
 
     The pBus = 1 optimizes the max pBus objective and benchmarks the highest possible mass 

transit ridership.  The delay = 2.11 optimizes the max delay objective and benchmarks the control 

value for delay.  The total revenue = 4.63 optimizes the max total revenue objective and 

benchmarks the control value for total revenue.  An interesting observation from the results of 

optimization based on single objectives was that a policy of a maximum toll and a maximum 

mass transit fare was a sub-optimal policy.  The results in the table above confirm the graphical 

analysis in Chapter 6 that total revenue (pBus + pFW revenue) reached a point at which the 

impact of reduced ridership offset the revenue such that total revenue began decreasing.  Weights 

can also be decision variables.  For certain SoS problems, it may also be important to solve for 

the optimal weights with respect to a given system-wide performance metric. 

 

7.3.2 Deterministic and Stochastic Optimization Results  

     The deterministic optimal policies were first order approximations of the true design variable 

values.  The stochastic optimal policies were the expectations of the design variables after 10,000 

Monte Carlo simulations.  Table 7.4 and Table 7.5 show the weight scheme and resulting optimal 

policies (conditioned on pFail < 10%). 

  

Optimal Policy %Toll %Fare %Grn pFail Toll Rev Bus Rev Total Rev Delay pBus pFW pSS
BASE POLICY 0.5 0.5 0.5 0.029 1.961 1.078 3.039 0.652 0.308 0.560 0.132
max pBus 1 0 0.2 0.009 0 0 0 0.768 1 0 0
min Delay 0 0 0.2 0.020 0 0 0 0.053 0.442 0.558 0
max Delay 1 0 0.8 0.063 0.684 0 0.684 2.114 0.902 0.098 0
max Revenue 1 0.844 0.751 0.038 2.485 1.794 4.630 0.882 0.304 0.355 0.341
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Table 7.4  Deterministic Weighted Policy Results 

 

Table 7.5  Stochastic Weighted Policy Results 

 

     Since the objective weights form a partition of unity, explicit values for w3 are not evaluated 

(represented as zeroes in the lower triangles of each of the corresponding tables).  This approach 

was inclusive of all four objectives in the optimal solutions and facilitated the creation of 3-D 

plots of the 15 point evaluations and resulting optimal policy values for % max toll, % max fare 

and % max freeway green.  The optimal policy plots in Figure 7.5, Figure 7.6, and Figure 7.7 

depict w1 and w2 and each optimal control value.  Values for w3 are implied as 1 – (w1 + w2).  

w1      
(pBus)

w2    
(Delay)

w3 
(Revenue)

% Toll 
(Deterministic)

% Fare 
(Deterministic)

% Fwy Grn 
(Deterministic)

pFail 

(Deterministic)
Total Revenue 
(Deterministic)

Delay 

(Deterministic)

pBus 

(Deterministic)

1.00 0.00 0.00 0.89 0.00 0.33 0.01 0.00 0.86 1.00
0.75 0.00 0.25 1.00 0.25 0.20 0.01 1.75 0.64 1.00
0.75 0.25 0.00 0.71 0.00 0.20 0.01 0.00 0.53 1.00
0.50 0.00 0.50 1.00 0.25 0.20 0.01 1.75 0.64 1.00
0.50 0.25 0.25 1.00 0.25 0.20 0.01 1.75 0.64 1.00
0.50 0.50 0.00 0.71 0.00 0.20 0.01 0.00 0.53 1.00
0.25 0.00 0.75 1.00 0.76 0.78 0.04 4.24 0.99 0.37
0.25 0.25 0.50 1.00 0.74 0.56 0.02 4.10 0.74 0.38
0.25 0.50 0.25 1.00 0.33 0.20 0.01 2.17 0.62 0.90
0.25 0.75 0.00 0.00 0.00 0.20 0.02 0.00 0.05 0.44
0.00 0.00 1.00 1.00 0.84 0.75 0.04 4.28 0.88 0.31
0.00 0.25 0.75 1.00 0.88 0.62 0.02 4.24 0.73 0.26
0.00 0.50 0.50 1.00 0.89 0.54 0.02 4.17 0.68 0.24
0.00 0.75 0.25 1.00 0.88 0.45 0.01 4.06 0.65 0.24
0.00 1.00 0.00 0.00 0.00 0.20 0.02 0.00 0.05 0.44

POLICY SoS OBJECTIVESWEIGHTS

w1      
(pBus)

w2    
(Delay)

w3 
(Revenue)

% Toll 
(Stochastic)

% Fare 
(Stochastic)

% Fwy Grn 
(Stochastic)

pFail 

(Stochastic)
Total Revenue 
(Stochastic)

Delay 

(Stochastic)

pBus 

(Stochastic)

1.00 0.00 0.00 1.00 0.00 0.20 0.01 0.00 0.77 1.00
0.75 0.00 0.25 1.00 0.26 0.20 0.01 1.80 0.64 0.99
0.75 0.25 0.00 1.00 0.01 0.20 0.01 0.07 0.76 1.00
0.50 0.00 0.50 1.00 0.46 0.20 0.01 2.75 0.60 0.73
0.50 0.25 0.25 1.00 0.31 0.20 0.01 2.07 0.63 0.92
0.50 0.50 0.00 0.76 0.00 0.20 0.01 0.00 0.57 1.00
0.25 0.00 0.75 1.00 0.70 0.66 0.03 4.10 0.87 0.42
0.25 0.25 0.50 0.96 0.54 0.26 0.01 3.17 0.61 0.59
0.25 0.50 0.25 1.00 0.44 0.20 0.01 2.67 0.61 0.76
0.25 0.75 0.00 0.00 0.00 0.20 0.02 0.00 0.05 0.44
0.00 0.00 1.00 1.00 0.78 0.61 0.02 4.19 0.77 0.35
0.00 0.25 0.75 1.00 0.79 0.53 0.02 4.13 0.70 0.34
0.00 0.50 0.50 1.00 0.78 0.44 0.01 4.01 0.65 0.34
0.00 0.75 0.25 1.00 0.72 0.33 0.01 3.74 0.63 0.40
0.00 1.00 0.00 0.00 0.00 0.20 0.02 0.00 0.05 0.44

POLICY SoS OBJECTIVESWEIGHTS
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Optimal Toll Results

 
Figure 7.5  Optimal Toll Policies 

Stochastic Optimal Toll Policy Results  Deterministic Optimal Toll Policy Results 

      
 

Optimal Fare Results

 
Figure 7.6  Optimal Fare Policies 

Stochastic Optimal Fare Policy Results  Deterministic Optimal Fare Policy Results 
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Optimal Freeway Green Results 

 
Figure 7.7  Optimal Freeway Green Policies 

  
 Stochastic Optimal Freeway Green Policy Results      Deterministic Optimal Freeway Green Policy Results 

    

     An important factor in the differences observed in the deterministic and stochastic optimal 

policies was the way the two methods handled network reliability.  The deterministic approach 

solved for optimal control policies at a constant mean network demand of 7,000 vehicles/hour.  

The deterministic approach simply enforced a 10% limit on the pFail value, but did not ensure the 

actual probability the system avoided a failed state.  The stochastic approach solved for optimal 

control policies for triangle distributed demands with a mean equal to 7,000 vehicles/hour.  The 

inclusion of the network demands across the spectrum of potential operational conditions is an 

advantage of the stochastic policy optimization approach.   The stochastic approach allowed for a 

safeguard against exceeding the pFail threshold of 10%, which provides stronger assurance to 

those who manage and operate the transportation network. 
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0.25 0.62 0.56 0.20 0.20 0
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7.4 Policy Optimization with Competitive Decision Makers 

     Decentralized SoS policy optimization is needed because the normative analysis performed in 

centralized optimization is too idealistic for many practical situations.  System cooperation within 

an SoS is vulnerable to any single system breaking the alliance when the myopic interests justify.  

A decentralized approach generates policies from exploratory analysis of “what could happen.”  

Unlike the centralized approach which employs a single mathematical program, this approach is 

treated as a multi-player game theory problem and formulated as a combination of multiple, 

coupled mathematical programs.   

     Game theory studies situations where players choose different actions in an attempt to 

maximize their returns.  This study of the interactions of decision makers is central to formulating 

and solving system of systems problems.  It provides a formal modeling approach to social 

situations in which decision makers interact.  A game consists of a set of players and a set of 

rewards for each player for each combination of strategies selected by the players.  A game has an 

equilibrium strategy, if and only if, there is a strategy in which no single player can be made 

better off by switching strategies unilaterally (Gibbons, 1992).   

     The urban transportation planning problem presented in this dissertation formulated user 

behavior as macro-analysis of a discrete choice model coupled with an agent-based simulation.  

However, a game theoretic could have also been used with individual users or classes of users 

represented as players in the game.  For example, the user equilibrium traffic flow pattern 

solution would be the pattern of traffic flow where no traveler is able to reduce their own travel 

time by unilaterally switching mode or route in the network (Wardrop, 1952), (Sheffi, 1985).  The 

following section describes the SoS problem as a game theory problem, formulated as a three 

player game.   
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7.4.1 Problem Description 

    For this problem, a central authority is not presumed to oversee the SoS.  Systems individually 

decide what is best for them conditioned on what is believed the responses of the other decision 

making entities will be.  The situation is defined such that each system observes the decisions of 

the other two and responds by optimizing their control in response.  For the purposes of this 

study, there are three players— state turnpike authority (STA), department of public transit 

(DPT), and a local government.  The STA sets the toll price.  The DPT sets the bus fare.  The city 

engineer for the local government sets the signal timing that determines the freeway green time.  

This three player game of observe and respond continues as depicted in Figure 7.8 until system 

policies reach an equilibrium from which no system is benefited by adjusting their policy. 

 

Figure 7.8  Decentralized Policy Optimization Flow Chart 

Initialize Ti , Fi , Gi  
Ti (toll) - Fi (fare) - Gi (fwyGrn) 

* = optimal control value 
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     System preferences are represented by weights in the objective functions.  Table 7.6 contains 

the weights for each system, as well as weights for a centralized scheme that is proportional to the 

system preferences.  The policies will be compared to determine how the SoS objectives differed 

based on system strategies.  The weight table and problem formulation for each system is below. 

Table 7.6  Weights for SoS Objective Priorities 

 

State Turnpike Authority (STA): 

 

 

 

 

 

Department of Public Transit (DPT): 

 

 

 

 

 

Local Government (GOV): 

 

 

 

 

Optimzation Weights w 1 w 2 w 3 Σw i

DeCentralized (STA) 0 0.25 0.75 1
DeCentralized (DPT) 0.45 0.1 0.45 1
DeCentralized (GOV) 0.3 0.7 0 1
Centralized (proportional) 0.25 0.35 0.4 1

max  E[0.25(Delay) + 0.75(Total Revenue)] 
w.r.t.  
   Toll, Fare, Fwy Grn Policy 
s.t.  
   0 < % max Toll < 1  
   0 < % max Fare < 1  
   0.2 < % max FwyGrn < 0.8 
   pFail < 0.1  

max  E[0.30(pBus) + 0.7(Delay)] 
w.r.t.  
   Toll, Fare, Fwy Grn Policy 
s.t.  
   0 < % max Toll < 1  
   0 < % max Fare < 1  
   0.2 < % max FwyGrn < 0.8 
   pFail < 0.1 

max  E[0.45(pBus) + 0.10(Delay) + 0.45(Total Revenue)] 
w.r.t.  
   Toll, Fare, Fwy Grn Policy 
s.t.  
   0 < % max Toll < 1  
   0 < % max Fare < 1  
   0.2 < % max FwyGrn < 0.8 
   pFail < 0.1 
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7.4.2 Assumptions    

     The presented decentralized approach includes a couple of simplifying assumptions on the 

uncertainties in the problem and how they are addressed in the solution.  One simplifying 

assumption for this problem is that each system knows every system policy decision.  Another 

assumption is the STA is the first mover and sets the initial toll from which the DPT and city 

government simultaneously respond. The iterative process continues until equilibrium is reached. 

     Robust analysis is not considered in this approach.  All users are assumed to have no risk 

aversion and only seek to optimize the expectation of their objective function.  These priorities 

are represented by the weights in the system problem formulations.  The STA prioritizes efficient 

travel (to attract ridership) and toll revenue.  The DPT equally prioritizes mass transit ridership 

and fare revenue, as they go hand-in-hand.  The DPT has a very limited emphasis on efficient 

travel.  Local government prioritizes mass transit ridership and efficient travel, because they are 

both public concerns.  Viable mass transit is a public service; efficient travel promotes public 

satisfaction.  Both serve to bolster public sentiment in the ability of the local government to meet 

their travel needs. 

 

7.4.3 Results 

     The decentralized solution was obtained through an iterative process in which the STA set the 

toll and DPT and GOV responded with decisions for fare and green time.  Since it is assumed that 

all players see each other, the three systems again set their respective policy in light of the other 

system decisions.  The policy optimization problems for STA, DPT and GOV were set up in 

separate Excel worksheets.  The start point for the process was a base policy where each control 

was set at the median (Toll, Fare and Fwy Grn all 0.5).  The preference weights from the 

previously shown optimization weight table were applied to each system.  The first round 

consisted of STA setting an optimal.  This solution was the expected value for toll that optimized 
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the mathematical program for STA.  The process repeated itself for DPT and GOV with each 

system updating the control values for the other systems and then determining the optimal value 

for their control.  The game theoretic reached equilibrium after three rounds of policy 

adjustments.  Convergence was assumed when the round three was unchanged from round two 

for all three systems.  The control policy at convergence was % max Toll = 0.79; % max Fare = 

0.71; and % Fwy Grn = 0.5.  The decentralized solution was the control policy from which no 

system could improve their situation by changing.   

 

Table 7.7  SoS Policy Optimization Summary 

 
 
 
     Table 7.7 summarizes the SoS policy optimization results.  It contains deterministic and 

stochastic optimal policies for both the centralized and decentralized approaches.  For each 

optimal policy, the corresponding metric values are reported.  The centralized values were the 

solutions to the problem where a central authority sets the policy and each system obliges.  In 

order to create comparable policies the weights for the centralized policies were set at the values 

in the optimization weight in the previous section.  These weights are the normalized weights that 

are proportional to the preference structure expressed in the objective function of each system.  

Using these weights, the deterministic and stochastic optimal policies were determined for the 

network operating a demand equal to the mean.   

     The decentralized approach required a judgment be made assumed all three systems were risk 

neutral systems.  The decentralized control values are the optimal solutions for the controls when 

Optimal Policy %Toll %Fare %FwyGrn pFail Toll Rev Bus Rev Total Rev Delay pBus pFW pSS

Centralized
1 0.68 0.45 0.015 1.741 2.113 3.854 0.683 0.444 0.249 0.308

Decentralized
1 0.84 0.38 0.011 2.350 1.600 3.950 0.638 0.272 0.336 0.393

Centralized
1 0.51 0.2 0.007 0.559 2.381 2.940 0.603 0.668 0.080 0.253

Decentralized
0.79 0.71 0.5 0.021 2.460 1.480 3.940 0.682 0.297 0.445 0.258

D
et
er
m
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tic

St
oc
ha
st
ic
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determined individually by each system authority and equal to the converged solution of the game 

theoretic described in this section.  

     A key issue examined in the decentralized policy optimization is how competition affects the 

optimal solutions.  The results show several differences between the two approaches. The 

centralized approach eliminated the impacts of competitive pressure.  The central authority was 

assumed to take actuarially fair bets based solely on expected values and set the policy for each 

system.  The decentralized approach facilitated competitive system interactions.  When compared 

with the proportionally weighted centralized policy, some interesting observations were made.  

Table 7.8 summarizes the impacts of competitive pressure.  Table entries depict neutral, slight or 

significant change in policy and objective values when competition was considered. 

 

Table 7.8  Competitive Pressure Impacts 

 

 

     The impact of competitive pressure for the deterministic optimal controls was neutral to toll, 

increasing to fare and decreasing to freeway green.  The impact of competition for the 

deterministic problem objectives was neutral to pFail, slightly increasing to total revenue, slightly 

decreasing to delay and significantly decreasing to pBus.  Regarding the stochastic problem 

optimal controls, the impacts were all significant and decreasing to toll, increasing to fare and 

increasing to freeway green.  The impacts to the objective values were significant increases to 

pFail and total revenue, slight increases to delay and a significant decrease to pBus. 

↓↑ Competitive Pressure %Toll %Fare %FwyGrn pFail Total Rev Delay pBus

Deterministic Optimal  ↔ (0%) ↑(+24%) ↓ (‐16%) ↔ (0%) ↑(+3%) ↓ (‐7%) ↓ (‐39%)

Stochastic Optimal ↓ (‐21%) ↑(+39%) ↑(+150%) ↑(+200%) ↑(+34%) ↑(+13%) ↓ (‐56%)
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     The results prompted understanding of the operational environment and insights into the 

reason for some of these impacts.  The competitive pressure resulted in an increase in total 

revenue due primarily to the increase in freeway travelers.  This is especially clear in the 

stochastic case where the pFW increased from 8% to 45% in response to the toll being lowered 

by more than 20%.  It appears the decision by the STA to lower the toll attracted many of the bus 

travelers.  The response by the DPT to the 40% drop in pBus was an increase in fare among the 

faithful bus riders in order to boost revenue.  The GOV appears to make decision that value 

operations over revenue.  In both cases the competitive pressure only had slight impact on the 

network delay (local government’s highest priority).  If a delay of approximately 60 

seconds/vehicle is acceptable, then GOV maintained their priority by increasing freeway green 

time in order to preserve the low delay.  The DPT appears to be most negatively impacted in the 

decentralized solution.  In summary, the competitive pressure increased total revenue in both 

cases, but the revenue split was more disparate from the centralized solution.  The local 

government, unaffected by bus and toll revenue, has to make operational decisions to keep delay 

under control that exacerbate the revenue difference. 

  

7.5 Conclusion 

     This objective investigated policy optimization for stochastic human-physical network with 

hybrid dynamics. The system objectives of network delay, mass transit ridership, total revenue 

and network reliability were used to evaluate the different approaches.  Output statistics for 

control policies were evaluated over a stochastic demand using Monte Carlo simulation.  Policy 

optimization was performed and compared for cooperative and non-cooperative network systems.  

The SoS policy optimization indicated that “what should happen” when system leaders are 

willing to implement a control policy (deemed optimal for the entire SoS by a central authority) 



184 

 

can significantly differ from “what could happen” when system leaders optimize the objectives 

that most benefit their constituent system.  

     This objective illuminated several insights into SoS problems.  First, virtually all SoS 

problems are impacted by uncertainty.  Properly capturing its impacts begins at the very 

beginning of the modeling process.  The complexity of SoS problems of any realistic size requires 

careful handling of what is known, what is not known, and even what may be unknown 

unknowns.  Second, probabilistic reachability analysis showed an increase in pFail when 

stochastic demand was considered.  This suggests practitioners should exercise caution when 

employing deterministic SoS models evaluated to infer network performance.  Third, the humans-

in-the-loop for SoS problems, introduce aspects for which the rationality caveat imposed in this 

research are not sufficient.  This simplified decision models are only generalizable to problems 

for which similar rationality can be assumed.  This was evidenced by the numerous contingencies 

that emerged when formulating the game theory problem, but were beyond the scope of the 

illustrative focus of the approach presented in this objective.   

     A final insight for SoS, in general, is that competitive pressures within interdependent 

networks are an important consideration for those who operate and manage SoS.  Competitive 

pressures have both direct and indirect impacts which may be difficult to observe or anticipate, 

depending upon the complexity of the system relationships.  Also, SoS policies agreed upon by 

cooperative system leaders are vulnerable to competitive decisions by systems to leverage 

opportunities that benefit an individual system, despite the potential detriment to the SoS as a 

whole.  

  



185 

 

CHAPTER VIII 
 

SUMMARY AND FUTURE NEEDS 
 

8.1  Summary of Contributions   

     While particular views vary, it is widely agreed that System of Systems (SoS) is a new and 

critical discipline for which design and analysis techniques are incomplete.  Both computational 

and physical systems science have often ignored the responses of the humans who will ultimately 

be the end users of modern engineered systems and systems of systems.  Because humans both 

affect and react to their environment, the nature of their interdependent relationship is inherently 

complex.  SoS exhibit hybrid dynamics in the sense that network evolution is governed by the 

interaction of physical and informational processes.  Systems often form stochastic human-

physical networks in which decision are made under uncertainty by both individuals and system 

managers.  Failure to properly account for the nature of the interactions between these systems 

can lead to unintended events with unanticipated consequences.  This dissertation has motivated 

and developed a SoS approach for evaluating existing or potential operational policies for human-

physical systems in which network flows and human decisions are coupled and stochastic and 

hybrid dynamics are present.   

     This dissertation research did not directly address SoS architecture or design issues; rather it 

accepted the architecture and design as given and sought to improve the overall performance of 

the existing SoS through identifying optimal operational controls.  In the context of an economic 

example, a preliminary optimization under uncertainty approach was developed to produce 

optimal investment policies for economic stimuli.  In the context of a transportation example, this 

research illustrated how current approaches may simply transfer the travel cost between modes 

and why effective policies should optimize across broader system-wide metrics.  An integrated 

discrete choice and agent-based simulation approach for stochastic human-physical networks with 
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hybrid (continuous and discrete) dynamics was developed.  The stochastic human-physical 

analysis framework facilitated the integration of system simulation, uncertainty analysis and 

optimization under uncertainty.  The dual impacts of user decisions on physical system 

performance and the state of the physical system on subsequent user choices were shown to 

converge to stochastic user equilibria.  Surrogate models to approximate the agent-based 

stochastic simulation were developed and validated with statistical tests.  Using these surrogates, 

uncertainty was propagated and stochastic and deterministic policy results were computed and 

compared.  Monte Carlo simulation was used to propagate uncertainty and an objective weighting 

scheme was employed to determine optimal control policies that captured varying SoS decision 

maker priorities.   

     Stochastic policy optimization was illustrated for an urban transportation SoS problem as a 

multi-objective optimization problem and both centralized and decentralized approaches were 

formulated and compared.  Optimal policies were obtained and compared for both cooperative 

and competitive strategies to assess the impact of competitive pressure on resulting optimal 

policies.  The stochastic hybrid system example illustrated the difference between what “should” 

happen and what “could” happen in application.  Through the integration of system simulation, 

uncertainty analysis and optimization under uncertainty, an SoS approach was shown to provide 

decision support to those who manage and operate human-physical networks, including networks 

with stochastic and hybrid dynamics. 

   

8.2  Future Needs 

     Although this dissertation research is a contribution to the body of knowledge in this field, this 

line of research contains both incremental and substantial needs which provide many 

opportunities for future work.  
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8.2.1  Incremental Needs 

     Four areas of future work should be considered for advancing the research presented in this 

dissertation.  One area involves implementing a different experimental design and performing 

boundary analysis.  This research intentionally focused on the interior of the design space from 

the LHS design to the region of validation points.  The computational complexity dictates some 

narrowing of the areas of interest in order to feasibly study stochastic hybrid systems.  Future 

work should investigate differences in results between boundary points where extreme events 

occur and the results presented in this dissertation.  Optimally controlling the typical conditions is 

an important endeavor, but performance at the edges of the design space would prove equally 

important and quite interesting.   

     A second extension for this research is to expand the analysis to include robust policy 

optimization.  Expectations of the variables were the predominant measures for this work, but 

adding variance to the objective function would incorporate how the users and system managers 

view risk.  A weighted combination of E[X] + σ2x in the objective function would facilitate not 

only stochastic hybrid system performance but also risk profiles for the various decision makers.   

     A third worthwhile area to study in future work is how a more sophisticated discrete choice 

model would change the optimal policy.  This research used a macroscopic model to assign 

proportions of the users to each mode and route.   If users could be classified and a detailed model 

employed, then optimal policy could be tailored to the area of operations.  Computational expense 

is a limiting factor for this extension, but advanced analysis of how human decisions are made 

and the impacts of those decisions in the physical system would be very insightful. 

 

8.2.2  Substantial Needs  

     Given the ever-increasing size of SoS problems, more work to develop computationally 

affordable approaches to integrate multi-disciplinary system models and uncertainty analysis to 
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provide optimal control policies to SoS with decision-makers is clearly needed and timely.  There 

are substantial needs relevant to this effort on which future work should orient.  One such need is 

the further development of the foundations of a modern systems science that integrates the 

computational, physical, and human behavioral aspects of modern systems.  A modern systems 

science must combine, in a computationally affordable way, the models of physical, 

computational, and human behavioral processes to capture the emergent behaviors stemming 

from the interactions of these three types of processes.  This has proven difficult because these 

systems exhibit stochastic hybrid dynamics, and these models must be capable of reproducing the 

behavior of a dynamic system that has continuous time (and possibly stochastic) dynamics, 

interrupted by discrete (and possibly stochastic) events.  Agent-based models are capable of 

representing human logic and computational processes. Differential equations and difference 

equations are capable of modeling physical processes with continuous time dynamics.  These 

modeling languages must be efficiently integrated to derive a modeling tool for systems of 

systems.  These detailed capabilities would be a substantial extension to the work presented in 

this dissertation. 

     A second substantial need in this research area involves the employment of surrogate models.  

When the phenomena are complex, a compromise must be found between completeness and 

simplicity, particularly when models are the basis for uncertainty analysis.  Because surrogate 

models are less detailed than the computational models whose behavior it is attempting to 

replicate, the question of whether the model is accurate enough for its intended purpose must be 

addressed.  Techniques to verify that surrogate models are predicting the evolution of the system 

to a required level of accuracy, at a given time horizon, are needed.  Also, for surrogate models 

deemed accurate enough, the uncertainty analysis must be able to incorporate a variety of types of 

uncertainty arising from a lack of data, uncertainty in computational models, and basic 

randomness in model inputs and system evolution. 
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     Finally, in order to properly validate the appropriateness of an SoS approach for other 

applications and domains, the approach presented in this dissertation should be applied to a real 

world problem.  Analysis of a real-world operational environment, especially an area for which 

historical knowledge can be used to validate the results, would serve to validate the approach for 

certain problem instances under certain operational conditions.   

     The broadest understanding of our interdependent world is required in order to achieve 

meaningful advances.  Interdisciplinary research and cross-domain collaboration must continue to 

increase to provide the methods and tools to face the significant challenges posed by 

multidisciplinary systems with hybrid dynamics.  In providing decision support to those who 

manage SoS, it is clear that all three aspects of physics, computation, and human behavior must 

be integrated into a single analysis.  Critical to this effort is the establishment of a systems science 

which integrates these processes into a modeling language where all three of these processes can 

interact with each other to jointly describe the evolution of the system.  These models must be 

reduced to a form that replicates the system behavior without the need for a computationally 

expensive simulation, and then they must be exploited to optimally control the networked systems 

in accordance with priorities set by numerous decision-makers whose strategies may be 

cooperative, competitive or a bit of both.   

     The transportation and economic examples featured in this dissertation are among the many 

important SoS examples in which computational, physical and behavioral processes are 

intertwined.  SoS in areas such as telecommunications, space travel, national security, disaster 

response and even social networks continue to increase in our world as advances in technology 

and communication foster interdependent systems from micro-networks to global networks.  The 

nexus of human decisions and their physical consequences will no doubt continue to be heavily 

investigated, both academically and practically, for years to come.  
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APPENDIX A.  MATLAB CODE FOR PRESS TEST 

     Models produced from Response Surface Methods can be used to generate interpolating 

predictions.  Predicted Residual Sum of Squares, or PRESS (Allen, 1971) is an effective 

technique to evaluate candidate models.  The procedure for performing PRESS on a sample of 

size n is as follows: 

1)  Individually hold out each i th observation and recalculate and evaluate the fitted model for the n-1 
remaining data. 

2)  Calculate the prediction error for the i th observation and square the difference. 
3) Repeat the process for all n observations and compute the sum of squares 
4) The value for sum of squares can be compared to other candidate models with the lowest value 

preferred. 
 
A PRESS test was performed for each of the candidate Gaussian Process models.  Separate GP 

models were generated for the four continuous output variables of interest (P(bus); P(FW); P(SS); 

Delay).  Three trend functions (constant, linear and quadratic) were used to assess the predictive 

accuracy of each GP model.  The MATLAB code below was used to produce PRESS values for 

each of the candidate models.   

  
training_points4; 
  
nsams = size(train_pnts,1)-1; 
ndims = size(train_pnts,2)-1; 
order = 1; 
trdim = order*ndims + 1;        % num entries in trend fn 
  
SSresid=0 
for i=1:24 
    if i==1 
        Delete_pnts=train_pnts(i+1:24,:) 
        Delete_vals=train_vals(i+1:24,:) 
    else if i==24 
            Delete_pnts=train_pnts(1:23,:) 
            Delete_vals=train_vals(1:23,:) 
        else 
            Delete_pnts=train_pnts(1:i-1,:) 
            Delete_vals=train_vals(1:i-1,:) 
            Delete_pnts=[Delete_pnts; train_pnts(i+1:24,:)] 
            Delete_vals=[Delete_vals; train_vals(i+1:24,:)] 
            model=build_gp(nsams,ndims,Delete_pnts,Delete_vals,order,trdim); 
            SSresid=SSresid+[eval_gp(train_pnts(i,:),model,false)-
train_vals(i)]^2; 
        end 
    end 
end 
 
PRESS=SSresid  
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Appendix B.  CONTROL SENSITIVITY ANALYSIS: AN EXAMPLE 

Mode and Route Sensitivity to Decreasing Toll Prices 

 [Current Policy].   TOLL = $6   
   

 
 
ΔTOLL = − $3

 
 
ΔTOLL = − $6

 
 
ΔTOLL = − $12 
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Mode and Route Sensitivity to Increasing Toll Prices 

 [Current Policy].   TOLL = $6      
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Appendix C.  SOS METRIC AND OBJECTIVE RESULTS FOR FAMILY OF POLICIES 

 

  

%Toll %Fare %Fwy Grn pFail Toll Revenue Bus Revenue Total Revenue Delay pBus pFW pSS

10% 50% 50% 0.040 $6,865 $4,688 $11,553 57.7 0.179 0.817 0.004
20% 50% 50% 0.037 $12,878 $5,276 $18,154 59.1 0.201 0.767 0.032
30% 50% 50% 0.034 $17,786 $6,038 $23,824 60.8 0.230 0.706 0.064
40% 50% 50% 0.032 $21,386 $6,975 $28,361 62.9 0.266 0.636 0.098
50% 50% 50% 0.029 $23,537 $8,086 $31,622 65.2 0.308 0.560 0.132
60% 50% 50% 0.027 $24,169 $9,370 $33,539 67.8 0.357 0.480 0.163
70% 50% 50% 0.025 $23,300 $10,829 $34,129 70.7 0.413 0.396 0.191
80% 50% 50% 0.023 $21,043 $12,462 $33,505 73.9 0.475 0.313 0.212
90% 50% 50% 0.021 $17,620 $14,270 $31,890 77.3 0.544 0.233 0.223

%Toll %Fare %Fwy Grn pFail Toll Revenue Bus Revenue Total Revenue Delay pBus pFW pSS

50% 10% 50% 0.034 $14,486 $2,850 $17,337 77.5 0.543 0.345 0.112
50% 20% 50% 0.033 $16,817 $5,079 $21,896 72.5 0.484 0.400 0.116
50% 30% 50% 0.032 $19,127 $6,692 $25,818 68.7 0.425 0.455 0.120
50% 40% 50% 0.030 $21,378 $7,692 $29,071 66.3 0.366 0.509 0.125
50% 50% 50% 0.029 $23,537 $8,086 $31,622 65.2 0.308 0.560 0.132
50% 60% 50% 0.028 $25,566 $7,876 $33,442 65.3 0.250 0.609 0.141
50% 70% 50% 0.027 $27,432 $7,069 $34,501 66.8 0.192 0.653 0.155
50% 80% 50% 0.026 $29,099 $5,669 $34,767 69.6 0.135 0.693 0.172
50% 90% 50% 0.025 $30,532 $3,680 $34,212 73.7 0.078 0.727 0.195

%Toll %Fare %Fwy Grn pFail Toll Revenue Bus Revenue Total Revenue Delay pBus pFW pSS

50% 50% 10% 0.008 $17,792 $9,889 $27,681 52.2 0.377 0.424 0.200
50% 50% 20% 0.011 $19,464 $9,485 $28,950 50.6 0.361 0.463 0.175
50% 50% 30% 0.015 $20,989 $9,050 $30,039 52.2 0.345 0.500 0.156
50% 50% 40% 0.021 $22,352 $8,583 $30,935 57.1 0.327 0.532 0.141
50% 50% 50% 0.029 $23,537 $8,086 $31,622 65.2 0.308 0.560 0.132
50% 50% 60% 0.040 $24,526 $7,556 $32,082 76.5 0.288 0.584 0.128
50% 50% 70% 0.056 $25,298 $6,996 $32,294 91.1 0.267 0.602 0.131
50% 50% 80% 0.076 $25,828 $6,405 $32,233 108.9 0.244 0.615 0.141
50% 50% 90% 0.103 $26,091 $5,782 $31,873 129.9 0.220 0.621 0.159
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