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I. INTRODUCTION 

 

Motivation and Goals 

 

As robots are increasingly used outside the lab environment, they need to be more 

adaptable to increasingly challenging environments and exhibit robust performance in a 

wide range of situations. It is likely that in the future, robots will co-exist with people and 

they will be used in homes, workspaces and public spaces such as museums and 

hospitals. The role of robots in society is changing rapidly with recent advances, such that 

they will need to interact with people, help them with their jobs, and even take the 

responsibility of human beings in dangerous and harmful environments. Apart from being 

helpful in households with children and the elderly, robots will also need to adopt a wide 

range of roles including those of tour guides, factory workers, hospital nurses, and even 

astronauts. Robots will need to be used by a wide range of people from amateurs to the 

experts, therefore it is not efficient to pre-program robots for all tasks, which is infeasible 

in most circumstances.  

Designing a robot controller would increase the amount of time and expertise, 

thus the focus should be on learning from experience registered through the robot’s own 

sensors, so it can learn from a small set of trials. Designing controllers for particular tasks 

is a method which is very tedious and inflexible; instead it would be much more 

advantageous to design robots in a way that they could learn on their own in a manner 

similar to human beings. They need to be able to take decisions, adapt and learn how to 
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act in an environment, and be able to invent solutions based on prior experience. It is 

likely that people will interact with robots in the future, so they need to be able to learn 

from humans. The robots of the future will not simply move based on pre-given 

commands, but they will perceive, categorize, understand and act. Such capabilities will 

give flexibility and efficiency to the system. It is impossible to consider all possibilities in 

advance and implant the robot with those hard-wired codes. Instead, if robots could 

simulate what happens in developing human beings, learn by trial and error much like a 

human baby does, and discover its action possibilities based on perceptual-motor 

interactions, then they would be able to handle complex problems. Currently, most 

engineering solutions used in robotic designs do not have this level of learning and 

adaptation.  

A promising approach to advance robotic technology qualitatively is to enable 

robots to imitate humans, to learn affordance relations from them and update these 

relations by observing the outcomes of the behaviors learned during these processes. As 

robots come to learn from humans by adapting their repertoire, by mapping the 

perception of observed actions onto their own motor repertoire, they are more likely to 

perform adeptly in the service of their goals across the broad range of changing 

circumstances.  

First of all, for robots to come to learn affordance relations from humans using 

limited experience, they need capabilities for discovering their own self-capacity so that 

they can generate their own action representations, and understand the accompanying 

sensory outcomes of those actions. Such an approach, which is based on attempts, errors 

and exploration, would fit better to their functioning than those hardcoded by the human 
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programmers or interpreters. It has been successfully shown that Self-Organizing Maps 

[1] [2] can be used to extract the affordance relations between a robot's crawling motion 

video and its motor actions. This unsupervised vector quantization and dimension 

reduction algorithm can also enable the robot to learn from a human demonstrator and to 

visualize large bodies of high-dimensional data for finding limb/tool affordances from 

observing a human.  

Second, robots should revisit and reconsider their own experiences to increase the 

efficiency and effectiveness with which they learn affordance relations on their own.  

Robots that can anticipate and account for the effects and expected performance of their 

behaviors will behave more like living beings that are aware and knowledgeable of their 

motor capabilities and shortcomings. Using physics engines, in which robots can learn 

and improve goal-subserving knowledge of affordance relations, will be a logical 

extension to imitation learning for robots. The robot can successfully imitate human 

actions and act in the actual world, by predicting its future state and the future state of the 

surrounding environment after having learned sensory-motor associations through self-

exploration.  

Imitation has a central role in human development and especially for learning and 

development of novel motor skills. Many studies show that imitation ability emerges 

early in life, and despite its complexity it is one of the major learning modes for infants as 

well as for adults [3]. Imitation requires encoding the observed task first, and then 

transferring this information onto one’s own motor representation of the same action. 

Before imitation ability emerges, affordance relations need to be learned and certain 

perceptual-motor associations need to be formed [3][4]. Developmental science and 



4 
 

cognitive neuroscience point out how tightly action, perception and cognition are coupled 

in development [5]. Learning affordance relations, by autonomous experience requires 

learning to associate actions with corresponding sensory effects first, which then helps to 

close the action-perception loop so that infants can act accordingly to bring about desired 

action effects. This is mainly provided through a trial-by-error strategy through which 

infant explores own motoric capacities, biomechanical constraints, and discovers the 

possible contingencies between their limb movements and accompanying sensory effects. 

Self-exploration forms the basic building block for all kinds of action based learning. 

Beginning the first day of life babies engage in an active world where they observe and 

interact with others. However in order to be able to interpret the surrounding world and 

its action-effect relations. They need to discover their own bodies, and their motor 

capacities, which are mainly based on self-exploration of action-effect relations, where 

they actively get involved in random acts and observe the accompanying changes in the 

perceptual world, so they start forming associations between their action commands and 

accompanying perceptual effects. Affordance learning and imitation ability are built upon 

the ability to form perceptual-motor contingencies, and self-awareness of one’s own 

body’s limitations and capabilities. Applying this method, which is based on the way 

human beings learn, will advance the robotics field and increase the capacity and 

usefulness of robots greatly.  
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Research Objective 

 

The objective of this dissertation is to implement human-inspired cognitive 

control abilities such as imitation learning and affordance learning within a Bioloid 

Humanoid Robot (BHR) [6]. Rather than using pre-programmed algorithms, we designed 

a flexible mechanism with which it could learn by a set of experience, and based on self-

exploration of affordance relations it can learn to imitate actions on its own in a way 

much like a human baby does. 

 

Research Approach 

 

The approach described in this article takes additional steps towards allowing 

robots to systematically learn how to integrate perception, action, tasks and goal 

information from a relatively small number of experiences much like a human being 

does, so as to generate adaptive behaviors efficiently and flexibly.  

 

Research Method 

 

In our series of experiments we will show how our Bioloid Humanoid Robot 

(BHR) learned to imitate.  

In STAGE 1, called LIMB AFFORDANCE LEARNING THROUGH MOTOR 

BABBLING, our humanoid robot provisionally discovered affordance relations between 

certain arm limb movements and corresponding motor units by exploring the outcomes of 
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its random arm movements while in a crawling position. The purpose of this stage is to 

let the robot classify the right and the left arm based on self-exploration and a set of 

experience similarly to how a human baby discovers action-effect relations of his arm 

movements. Here, the idea behind motor babbling was to speed up the process of learning 

motion primitives by randomly executing, analyzing and gathering the outcomes of 

actions.   

In STAGE 2, called IMPROVING LEARNED LIMB AFFORDANCES 

THROUGH SELF-EXPLORATION, the robot will provisionally learn a set of basic 

motion primitives, its own motor limits, biomechanical constraints and skills. In this 

phase, by performing random arm movements it will discover the associations between 

biomechanically possible arm movements and their spatial effects in the visual space. 

That is it will discover the link between joint angles for the left and right arm and the 

corresponding action effects in the environment in terms of the final position of the hands 

in the visual space. Using a neural network, the robot will learn the biomechanically 

possible work space.  

Having learned the perceptual-motor coupling between certain actions and their 

resultant visual effects, then in STAGE 3, called IMITATION LEARNING FROM 

MOTION CAPTURE, the robot will learn to imitate a novel object-oriented action. In 

this case, by observing the spatial arm coordinates of a human being performing 

lift/push/pull actions oriented towards certain object, the robot will identify 

corresponding movement sequences in its own motor system that are suited for the 

spatio-visual effect being observed. In this final stage the robot builds upon its skill in 

limb affordance relations, and action-effect associations, and by bringing the perceptual-
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motor system a step further now it can imitate a novel action. This phase requires a direct 

mapping of the perceived sensory effects to the robot’s own action system so it could 

choose the right joint angle combinations so as to bring about the perceived effect.  

 

Organization of the Dissertation 

 

This dissertation presents a design and implementation of imitation learning 

through affordances. The dissertation is organized into five chapters.  

CHAPTER I is an introductory chapter to the research problem statement, 

method, objective and outline of this dissertation. Summaries of the subsequent chapters 

are given as follows: 

CHAPTER II describes how imitation ability develops in human beings, and 

gives an overview of studies in cognitive science.  

CHAPTER III provides a review of the relevant previous work in the area, 

presents background information related to motor babbling, affordance relations, and 

cognitive architectures for imitation learning. 

CHAPTER IV provides an overview of the studies and the general approach. 

CHAPTER V provides an overview of the first stage, and the tools used in the 

self-exploration stage which involves limb affordance learning through motor babbling. 

CHAPTER VI describes an overview of the second stage, and the tools used in 

the self-exploration stage which involves improving learned limb affordances. 

CHAPTER VII describes an overview of the third and last stage which involves a 

novel imitation task, and the tools used in this stage. 
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CHAPTER VIII provides the results of the imitation learning, as well as 

conclusions and future research discussion. This chapter summarizes and discusses the 

dissertation, and highlights contributions of this research. Directions for future research 

are offered. 
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II. HOW DOES IMITATION LEARNING DEVELOP IN INFANTS? 

 

Self-exploration 

 

Choosing appropriate action plans for a desired motor output requires learning the 

relationship between specific motor commands and accompanying sensory feedback (i.e. 

visual, proprioceptive, auditory, etc.) that result as a consequence of those movements. In 

other words, infants first need to learn to associate their actions with corresponding 

sensory effects in order to be able to act. Starting at birth infants engage in active 

exploration of their own body by touching it, moving it and they investigate the cross-

modal contingencies of their action effects [7]. They move their arms and legs in an aim 

to explore the regularities in their sensori-motor system; they observe the link between 

their actions and the kind of perceptual consequences (i.e., visual, auditory, kinesthetic, 

haptic, etc.) those actions have in the body and in the environment as shown in Figure 1. 

Self-exploration promotes cross-modal calibration which is necessary for the emergence 

of complex action forms. This mechanism is systematic in the sense that the infant 

deliberately acts to see the perceptual effects, however it is also random because the 

actions are mostly uncontrolled, unskilled, and involve errors. Infants indeed get 

fascinated by the simultaneous experience of ‘seeing’ their body parts and ‘feeling them 

move’ in space [7].  
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Figure 1. Infants Exploring Actions and Resultant Sensory Effects. Self-exploration is 
necessary to develop perceptual-motor coordination. 

 

For instance young infants spend almost 20% of their waking time by touching 

their face and mouth [8], an action which includes specific proprioceptive (due to arm 

movement) and haptic (from the face) action effects, which are integrated in the brain, 

thereby the infant discovers the contingency in such movement.  Amsterdam [9] has 

found that especially in the first year of life infants observe their own movements in front 

of the mirror in an aim to explore the particular visual-kinesthetic contingency of their 

action results, and in later years this habit disappears gradually. Similarly Bahrick and 

Watson [10] using a habituation paradigm, demonstrated that 5 month old babies 

preferentially look at non-contingent views of their bodies which have conflicting visual 

and kinesthetic cues (i.e., upper torso belongs to the baby, but the leg movement belong 

to some other baby), because in this non-congruent view there is a violation of the 

familiar visual-proprioceptive expectation of body movements. Another example is, 

before being able to speak meaningful syllables and words, infants pass through a stage 

during which they experiment with uttering various sounds that resemble phonemes 

which are not meaningful and recognizable yet. The emergence of speech-like sounds is 

called BABBLING, and it begins at approximately 5- 7 months of age. This phase of 
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experimenting with sounds and exploration of vocal capabilities is necessary for 

developing complex language skills in later development [11].  

Moreover, very young infants were shown to alter their sucking rates in order to 

be able to hear their mother’s voice [12]. Another example is that two-five month old 

infants can form associations between leg kicks and the visual feedback from the 

contingent movements of a mobile, so they increase their rate of kicking in order to bring 

about the desired visual outcome: movement of the mobile [13]. It has also been shown 

that the infants start working on forming the sensorimotor link between the eye and the 

hand right after birth. Van der Meer et al. [14] [15]have found that newborns make an 

effort to view their hands. As also can be seen in one study [14] where they flashed light 

beams over various parts of the babies’ bodies, the surroundings otherwise being dark, 

and observed that the infants tried to control the position and velocity of their arms so as 

to keep them visible within the light. Even more interestingly, most of the babies started 

decelerating their arms before entering the light, suggesting that they wanted to and could 

form a link between the kind of arm movement they execute and the resultant visual 

effect:  the spatial position of arm in the light. Thus, by exploring the contingencies 

between their movements and resultant environmental events, infants learn to associate 

their actions with corresponding changes in the environment, which is an important skill 

for the development of goal-directed and object-oriented action. 
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Figure 2. A Newborn Infant Taking Part in the Experiment [14]. He is making an effort to 
keep his hands visible in the beam of light. 

 

Despite the restricted motor repertoire and muscle control of infants, they enjoy 

exploring those contingencies between their actions and action effects, and by doing so 

they learn about the capacity and limitations of their own body so that they can use it in 

the most efficient way to act on the environment and objects in a desired way. Moreover, 

the experience of contingencies between movements and their sensory events is a 

pleasing and arousing activity for infants [16] [17]. For instance, they enjoy it when they 

can correctly anticipate the contingent effects of their own movements, and get nervous 

when expected effects do not occur [17]. 

Self-exploration forms the basic building block for all kinds of action based 

learning. Beginning the first day of life babies engage in an active world where they 

observe and interact with others. However, in order to be able to interpret the surrounding 

world and its action-effect relations they need to discover their own bodies, and their 

motor capacities, which is mainly based on self-exploration of action-effect relations. 
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They actively get involved in random acts and observe the accompanying changes in the 

perceptual world, so they start forming associations between their action commands and 

accompanying perceptual effects. Imitation ability is built upon the ability to form 

perceptual-motor contingencies, and self-awareness of one’s own body’s limitations and 

capabilities.  

Therefore, throughout development, infants start with exploring their own motor 

capacities, biomechanical constraints, and discover the possible contingencies between 

their movements and accompanying sensory effects. Self-exploration is based on a need 

to form spatio-temporal congruency of feedback from various modalities which are 

combined with appropriate motor plans. Self-exploration helps infants to close the action-

perception loop and learn the relationship between motor commands and resultant 

sensory feedback (i.e., visual, proprioceptive, auditory, etc.) so that they can act 

accordingly to bring about desired action effects.  

Hauf, Elsner & Aschersleben [4]and Aschersleben [3] favor the idea that 

newborns start with acquiring associations between actions and their effects. Then they 

build upon that to learn to form abstract goal representations in terms of action effects so 

that they can imitate, which they think develops at around 9 months of age. According to 

Hauf and colleagues, the acquisition of action-effect associations is the first step towards 

and an important prerequisite for acquisition of goal-directed action. For forming abstract 

goal-representations, infants need to go beyond instrumental learning and acquire a new 

level of understanding of action–effect relations. Tomasello [3] states that when infants 

begin to differentiate goals from the behavioral means to pursue the goal, then they can 
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truly represent actions as goal-directed and can plan accordingly to produce desired 

action effects.  

This ability further develops through infants’ increased capability to map 

observed actions onto their own action repertoire. In other words, imitation ability, which 

requires understanding and encoding an observed task first and then transferring that 

information onto one’s own motor representation, is built upon the ability to form those 

action-effect relations within one’s own perceptual-motor system first.  

 

Learning Affordance Relations 

 

For infants as well as for adults, many actions are organized around a relation 

between the agent and some object. For instance during grasping, looking or pointing, the 

action is organized around a goal, i.e., a visual target, which affords some kind of an 

action type [18]. Affordances play an essential role for the perceptual-motor development 

in infancy. They encode the relationships between actions, objects, and their effects in the 

environment, and are important for cognitive capabilities such as motor planning and 

motor control.  

‘Affordances’ is a term coined by Gibson [19], used to refer to action possibilities 

of an object with regard to the actor’s action capabilities. For instance, a tennis ball is 

only throw-able for a human being of certain arm muscle power. Consider, for example, 

that a surface affords support comes to be understood by placing many different objects 

on many different surfaces, observing the perceptual effects of those actions, and 

discovering that level, non-compliant surfaces work best, and only then, away from their 
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edges.  With the onset of locomotion, children's own vestibular system informs them that 

horizontal acceleration and deceleration can destabilize their own vertical posture, 

however, its takes longer for children to appreciate the destabilizing impact of the 

instability they cause to objects that they push and pull, and far longer to appreciate this 

in the context of an acceleration caused by a machine that is not acting one-to-one with 

the child's own behavior.  It takes years of many different kinds of experiences for a child 

to develop general knowledge of this simple affordance, such that the child, confronted 

with a conveyor belt of groceries, would apprehend the need to grab a carton of eggs 

more carefully if they are at the edge of the conveyor rather than the center. Another 

example is, for a ten year old child to realize that a chair affords a place to put a bag of 

groceries, she or he must marshal a more fundamental discovery, made when one year 

old, that stable horizontal surfaces afford placing objects on top of them. 

Affordances are learned by autonomous experience and self-observation. The way 

an infant grasps a cup and a pencil, the kind of arm kinematics he uses might seem 

similar in the first year of life, but as affordance relations are learned and improved he 

would grasp two objects differently depending on their role in life. This is a skill that 

needs to develop in order to form accurate action representations. During the first year of 

life infants perceive actions as goal-directed, in other words, they represent human 

actions and object motions in relation to the particular objects to which they are directed 

and the kind of sensory feedback they would receive when they interact with those 

objects, rather than in terms of the superficial properties of those objects [20] [21].  In 

other words, affordance relations are developed by practicing action-effect relations in 

object oriented actions. By exploring actions and their perceptual effects in the 
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environment, an infant would learn that a glass cup and a pencil would afford different 

actions towards them.   

Thus, in parallel to the development in the capacity to detect goal structures, 

infants also develop affordance relations, an effective action-effect coupling and 

perceptual-motor coordination. Infants guide their actions and perceive affordances by 

exploring and learning action-effect relations [22].  

 

Imitation Learning 

 

Actions done by other individuals form a category of stimuli of great importance, 

in particular for humans. From an evolutionary point of view we must understand the 

actions of others if we want to survive, and our unique ability to imitate successfully 

seems to be a core faculty necessary for understanding the actions of others. Until 

recently, imitation ability was not considered to be associated with a high form of human 

intelligence, however, this perception has changed in such a way that it is now described 

as “a rare ability that is fundamentally linked to characteristically human forms of 

intelligence, in particular to language, culture, and the ability to understand other minds” 

[23]. Imitation has a central role in human development and especially for learning and 

development of novel motor skills. Imitation ability starts very early in life, and despite 

its complexity it is one of the major learning modes for infants as well as for adults.  

We might think of imitation as copying in a reproductive way. During imitation, 

the observer transforms an observed action into an executed action that is very similar to 

the observed one. It requires encoding the observed task first, and then transferring this 
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information onto one’s own motor representation of the same action. Imitation also 

requires a precise matching of the performed action onto the observed one. Yet, close 

examination reveals that imitation is not as simple as it seems. For instance, which 

information must the observer extract from the model in order to imitate his behavior? Is 

it sufficient to understand the goal of the action or should its details also be coded? Most 

importantly, there is the translation problem. Sensory and motor systems are classically 

considered to be separate systems. Thus, how is the description of a visual event 

translated into muscle activity that accurately replicates the observed action? According 

to Rizzolatti, imitation is composed of two closely related cognitive phenomena. The first 

is the capacity to understand others’ actions and the second is the capacity to replicate the 

action based on an understanding of the action [24]. Moreover, there is an important 

distinction between mimicry and imitation. Mimicry involves superficially copying the 

modeled behavior without understanding it [25]. However, according to Thorndike [26], 

true imitation is much more sophisticated and during imitation the observer not only 

truthfully transforms an observed action into an executed action, he also acquires a new 

motor behavior; thereby imitation implies learning.  

It is well documented that imitation is one of the most important means by which 

infants and young children acquire a wide range of new behaviors. A growing body of 

research has now documented that imitation emerges early in life. In these studies with 

highly controlled conditions, newborns were shown to display facial gestures that 

matched those performed by an adult model [27], see Figure 3. However, it has also been 

suggested that the kind of action replication observed in those newborns resemble 

mimicking which is automatic and lack understating, rather than true imitation. Still it is 
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remarkable that infants as young as a few months old seem to be capable of replicating 

actions despite the differences in body size, perspective of view and lack of conception of 

self-other distinction. Somehow these infants are able to relate the proprioceptive motor 

information about their own unseen body to an internal representation of the visual 

kinematics and create a match. What is more interesting is that infants show traces of a 

learning process though imitation. Meltzoff and Moore [28] conducted a study in which 

they looked at how 6-week olds temporally organize their behavior, and they found that 

the infants gradually corrected their imitative attempts over time through a sequence of 

repetitive trials [28].  

 

 

Figure 3. Six-week old Infants Imitating the Large Tongue-protrusion Gesture. 
Demonstration from the Meltzoff and Moore study [27]. 

 

Infants’ ability to learn about actions is restricted by their limited motor 

repertoire, and is constrained by their postural and muscle control ability, thus especially 

in the first year of life the range of actions an infant can perform is quite narrow. On the 

other hand, infants have ample opportunity to observe other people perform actions, as 

they try to acquire the capacity to produce those actions on their own. For instance, they 
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watch other people (especially their parents and siblings) acting on the environment and 

on objects. They watch them to reach and grasp for objects, to lift boxes, to pull and push 

various objects, etc. Being able to transfer the knowledge of an observed action onto 

one’s own action, i.e., true imitation, is a complex task which develops towards the end 

of first year of life as shown by the imitation paradigms performed on young infants [3]. 

In one such study by Carpenter [3] 10 and 12 month infants are asked to copy a target 

action that produced an interesting sensory effect. Both age groups copied the action 

correctly, but only the latter age group checked whether their own action resulted in a 

similar sensory effect, suggesting that 12 month olds had expected the same action-effect 

relations in their own actions. 

Thus, it seems that although infants learn about contingencies between self-

performed actions and their sensory effects starting in the first month of life, they seem to 

be able to detect action-effects relations from observed actions and mapping those 

relations onto their own motor representations towards the end of their first year of life, 

see Figure 4. 
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Figure 4. Infants Observing and/or Imitating various Actions.  

 

Observational/imitation learning is an important part of learning goal-directed 

actions during infancy, and it remains very important during adulthood as well. Adults 

improve their motor skills by observing other people perform, and by trying to transfer 

the observed action onto their own action system. In order to imitate an action 

successfully, people need to transform the observed action into relevant motor codes so 

that a relevant motor representation could be formed in turn for use in imitation. That is, 

the perceptual characteristics of the observed action need to be mapped onto the motor 

repertoire of the observer.  

Recent advancements such as the discovery of Mirror Neurons [24] and the 

Simulation Theory [29] [30] in the Cognitive Science field, bring new insights into our 

understanding of imitation learning. Mirror neurons, first discovered in the motor-related 
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areas of the monkey brain, provide a neurophysiological basis for a direct matching 

system and the ability to map observed actions onto one’s own action. Imitation might be 

based on a mechanism that directly matches the observed actions onto an internal motor 

representation through mirror neuron activation, because this set of neurons fire both 

when a monkey produces goal-directed action (such as breaking a peanut) and when the 

monkey observes the same action performed by another individual [31] [24]. According 

to Rizzolatti, this is a resonance mechanism through which “pictorial descriptions of 

motor behaviors are matched directly on the observer's motor representations of the same 

behaviors” [32]. Moreover, related findings in human beings using brain imaging 

techniques such as electroencephalography (EEG), transcranial magnetic stimulation 

(TMS), and functional magnetic resonance imaging (fMRI) reveal that common brain 

regions are activated when observing an action and when executing the same action 

oneself. They also show that observing an actor act primes the muscles the observer will 

need to use do the same action [33] [34]. Thus, this matching mechanism between 

observed and executed actions is a reasonable candidate for human imitation. 

Moreover, this idea is further supported by the Simulation Theory, which states 

that we understand others’ actions (and thus able to imitate) by using our own internal 

motor system as an emulator, in other words, by ‘running an internal neural simulation of 

the observed action’ [29] [30]. According to the theory, when humans observe an action, 

they internally simulate the observed action within their own sensori-motor system via 

their own internal model of action control and the simulated replica is a true internal 

action representation except for one fact: it is not covertly executed. Simulation Theory 

provides a basis for imitation learning as well as for mental training, where professional 
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athletes and musicians, improve their skills by mentally rehearsing the action patterns. 

Mental simulation is based on a common activation pattern in the mirror neuron circuit 

for observed and executed actions, and it provides an explanation for how observed 

actions are directly mapped onto a corresponding action schema in observer’s own 

internal motor repertoire: through running an internal simulation.  
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III. RELATED WORK 

 

Affordance Relations Learning through Motor Babbling in Robots 

 

A cognitive robot is likely to operate in a complex, often distracting environment, 

which provides many challenges to learning from experience.  How should the robot 

focus its attention for best effect?  Of all the features of the robot’s environment, and the 

geometric explosion of relations between these features, which are those very few that 

warrant attention from the robot's limited processing resources? What aspects of the 

robot’s experience are worth exploring in order to have good likelihood of learning 

something that will improve task performance? We believe affordances, or affordance 

relations, are the best candidates, because affordances are what an organism leverages 

toward successful completion of tasks that advance goals. 

'Affordance' is a term coined by Gibson [19] initially to refer to features of the 

environment that offered (afforded) "good or ill" to an organism attempting to complete a 

task. For example, Gibson would have said that a ball affords throwing in a game of 

catch; thus, to perceive a ball is to perceive that it affords throwing. Subsequent thinking 

[35] has recognized that affordances are not static properties of objects but rather are 

emergent properties of the goal-object relationship. When an individual wants to play 

catch, a ball affords throwing. When an individual wants to play golf, a ball affords 

hitting. When an individual wants to prevent friction, a ball affords use as a bearing. 

None of the many known uses that balls afford, as well as none of the afforded uses yet to 

be discovered, perceived when perceiving a ball. Rather, the afforded utility of a ball is 
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imputed in the context of accomplishing a goal, where an afforded use of an object 

materially promotes or prevents goal-success. This conception of affordance applies not 

only to features of the environment, but to features of the individual as well. An 

opposable thumb affords grasping a pool cue. The ability to reason geometrically and to 

hit the cue ball accurately affords the likelihood of causing the balls to drop into their 

planned holes. The ability to assess an opponent's strengths and weakness affords the 

opportunity to plan side-effects that create an inopportune lay of the balls for one's 

opponent. None of these affordances are available to direct perception. All must be 

imputed in the context of having the goal of winning a game of pool. 

Approaches to robotic machine learning have typically focused, not on 

affordances per se, but rather on exploring an environment in an attempt to formalize the 

system’s underlying behavior selection model. This involves learning to predict the 

outcomes of behaviors, behavior reliability (i.e., likelihood of success), as well as 

necessary and/or sufficient conditions for behavior selection. One question that 

traditional learning techniques leave open is how to link behaviors, percepts, and goals in 

such a way as to identify which perceptual features indicated affordances that can be 

leveraged by behaviors in the robot's repertoire, so as to promote system goals.  While 

little work has been done to answer the question, the work that has been done adds 

important insights. 

In research that demonstrates the basic utility for robotics of the concept of 

affordance, Cos-Aguilera et al. [36] investigated the acquisition of affordances for 

behavior selection and the satisfaction of internal drives, in order to enable a mobile robot 

to exist autonomously within its environment. In order to accomplish this, the robot is 
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endowed with an internal homeostatic system. This system measures quantities such as 

battery power and movement and links these quantities with the concepts of hunger and 

fatigue. An internal drive system monitors the homeostatic system and arbitrates behavior 

selection. Over time, the robot attempts to learn correlations between behavior execution, 

percepts, and the satisfaction of internal drives. These correlations are modeled as learned 

affordances and used to guide behavior selection in the future.    

In an ambitious effort, Stoytchev [37] adds Piaget’s developmental theories [38] 

to Gibson's notion of affordance, to take a developmental approach to learning 

affordances. The simulated robot (‘simbot’) begins with an internal representation of 

itself, as well as a means of identifying visual signatures of both its bodily parts and 

environmental objects. The simbot then explores various behaviors using a “motor-

babbling” technique. This technique is similar to what happens when infants explore their 

own motor capacities and biomechanical constraints, and discover the possible 

contingencies between their movements and accompanying sensory effects.  

The process of motor-babbling results in a sequence of behaviors that are then 

recorded and linked with the system’s corresponding visual inputs. Once a behavioral 

sequence/visual signature list has been obtained, numerical techniques search for 

invariants among the visual signatures and attempt to correlate these invariants with 

subsets from the behavioral sequence. Finally, the identified behavioral subsets are 

performed once more, and if the invariant(s) persist, an affordance is created between the 

environmental objects used by the behaviors, the behavioral subset, and the known 

invariants [37]. While a powerful demonstration, Stoytchev [37] also reveals how lengthy 

and laborious a developmental approach is, as the simbot is preprogrammed to start at 
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Piaget's Stage II of sensory-motor operations, and advances through its experiences to 

Stage III. We have shown that a part of his approach could be applied to a humanoid 

robot, ISAC (Intelligent Soft Arm Control), to make ISAC learn traversability 

affordances. In Erdemir [39] , we considered the following reaching task for ISAC: 

Given an environment of unfamiliar objects, one of which is a goal object, ISAC should 

be able correctly to traverse the environment with its arm and reach the designated goal 

object, or else refuse to traverse an environment in which collision with non-goal objects 

is unavoidable. 

 

 

Figure 5. ISAC Simulator and Internal Rehearsal 

 

Instead of recognizing objects and learning affordances to be attributes of specific 

objects, as was done in Erdemir et al. [39] we used the edge features as the basis of a 

traversability affordance relation. Then, instead of interpreting human behaviors and 

mimicking these, we allowed ISAC to rehearse its behaviors internally to estimate 

general affordance relations and how best to leverage these for any given task. ISAC 

acquired knowledge of affordance relations in two stages, a babbling stage followed by a 
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learning stage. In the first stage, ISAC's Central Executive Agent (CEA), as shown in 

Figure 6, primed the Internal Rehearsal Subsystem (IRS), by having ISAC engage in 

random behavior, "motor babbling" [40], in order to accrue a baseline of experiences and 

consequences from which to generalize. In the first part of this stage, ISAC reached to the 

goal-object in an obstacle-free environment. Every time it reached the goal, it got a 

reward. In the second part of this stage, an impediment object was put between ISAC and 

the goal object. Every time ISAC's end-effector hit the impediment object, ISAC got a 

punishment and noted the position where its end-effector hit the object. These rewards 

and punishments were tracked in order to structure ISAC's motivational processing to be 

congruent with the demand to reach only into traversable spaces. 

 

 

Figure 6. ISAC Cognitive Architecture [41] 
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In the learning stage, ISAC's IRS created and optimized a Gaussian Mixture 

Model (GMM) to represent its accrued experiences. GMMs comprise a weighted sum of 

Gaussian probability density functions. GMMs are one of the more widely used methods 

for unsupervised clustering of data, where clusters are approximated by Gaussian 

distributions and fitted on the provided data. 

An interesting result we discovered from our experiment was the impact of the 

shape of the gripper on collision probability and the formation of impedance surfaces as 

shown in Figure 7. In simulation, the shape of the gripper was an intrinsic part of the 

simulation and it had no effect on experiment. In the real-world experiment, we found 

that since we did not predefine the exact gripper shape for each arm, additional collision 

data was generated near the edges of the obstacles. This data was found to follow a 

Gaussian distribution. We therefore added an additional term to the collision probability 

to represent different grippers used. This in turn yielded the result that ISAC was willing 

to move the arm with the smaller gripper closer to an obstacle than the other arm. This 

shows that ISAC is beginning to learn how to use each gripper distinctively. 
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Figure 7. The Impedance Surface Created for an Object Located at (0, 550). The 
impedance surface does not allow left hand to reach the object, but ISAC can reach the 

object using its right hand [39]. 

 

Additional exploratory research has utilized back-propagation of reinforcement 

learning signals to enable affordance cueing [42], combined imitation learning with a 

world model developed through learned affordances [43], and function-based object 

recognition [44]. Moving beyond Gibson's original formulation, as we also propose, [45] 

reviews the affordance formalizations of [46] [47] [48] [49] and suggests that for robot 

control there are three different perspectives from which to view affordances: agent, 

observer, and entity [45]. For example, the human-robot interface research of [50] takes 

an observer perspective, inasmuch as a human operator perceives and subsequently 

utilizes affordances for the robot in a given environment. Herein we take an agent 

perspective, in which the robot-agent learns about affordances by imitation learning. 
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Sensory-motor Coupling 

 

How perception and action are linked together and act as a coordinated system is 

one of the most fundamental problems autonomous robots are faced with. Traditionally 

robots depended on theoretical models designed by people, however new approaches 

based on sensori-motor contingencies need to be developed. Laflaqui`ere et al. [51] uses 

a multi-modal integration method to equip a robot with action-perception performance 

without any a priori knowledge about itself nor the outside environment. The robot learns 

about its own interation with the environment and extracts this information bu using its 

sensori-motor flow. The idea that perception is independent of action has long been 

challenged, and the dominant view that action and perception are closely linked and are 

in constant interaction throughout development. In line with this idea, and as suggested 

by sensorimotor contingencies theory O’Regan and Noe [52] argues that perception is not 

passive phenomenon where the outside world leads to the activation of some internal 

representations, but it is active in the sense that it leads to some sort of interaction with 

the environment.    

Similarly, Philipona et al. [53] suggests that in biological organisms the 

perception of our bodies, other agents and objects is a consequence of the interplay 

between sensory inflow and motor outflow. An agent's movements are accompanied by a 

sensory change inflow emerging from the environment. Sensori-motor contingencies (the 

spatio-temporal link between motor movement and resulting sensory consequences) 

allow one to infer the outside physical space, because any change in movement leads to a 

predictable change in the physical space as well, which also makes it possible to 
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differenciate between movements of the agents and movement of the outside 

environment only. Another related is work by Philipona and O’Regan [54] who described 

an algorithm that discovers the structure of the outside environment by analyzing the 

interplay between its motor outputs and resultant sensory inflow without relying on the 

body its linked to. Through simulations they show that the algorithm can discover the 

info about its relation to the outside world and learn to move in a desired way by 

comparing its motor outflow to their accompanying sensory inflow, and thus by forming 

sensori-motor contingencies. Another approach that focuses on Sensory-Motor mapping 

is offered by Chalodhorn et al. [55] who tested the methodology on both a dynamic 

simulator and a humanoid robot learning a complex set of motion dynamics by imitation. 

Their approach was based on optimization of motion dynamics by mapping motor 

commands in the low dimensional subspace onto expected sensory feedback, so that in 

the task phase the robot could select appropriate motor commands based on the sensori-

motor match and learned kinematic constraints. 

 

Imitation Learning in Robots 

 

Imitation learning has been receiving broad attention in the robotics community 

as a powerful tool for rapid transfer of skills from demonstrators to robots [56] [57] [58]. 

The objectives of imitation learning include efficient motor learning, connecting action 

and perception, dimension reduction, capability of copying novel cognitive rules and 

transferring information/knowledge from a mentor. Imitation learning also offers a 

promising direction to gain insight into faster affordance learning [59] and a perceptual-
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motor control mechanism, which can ultimately lead to developing autonomous robots. 

In particular, imitation learning in robots offers great promise for the realm of humanoid 

robots that aims to look and behave like human beings. In our lab, we have used a 

dynamic motor primitive method [56] and a potential filed method for imitation learning 

for object avoidance behavior in simulation [60].  Imitation learning also offers a 

promising direction to gain insight into faster affordance learning [59] and perceptual-

motor control mechanism which can ultimately lead to developing autonomous robots.  

Most of the robotics research that implements imitation learning in robots actually 

uses mimicry in their tasks. There is a significant difference between mimicry and 

imitation; however most of the robotics community seems to be unaware of that 

distinction. Mimicry involves superficially copying the modeled behavior without 

understanding it [25]. A good example would be of how parrots mimic words that they 

hear automatically without comprehension. Imitation, on the other hand, is much more 

sophisticated and deliberate in terms of recreating the action. It involves consciously 

attempting to copy the behavior. Most robotics studies refer to imitation as the behavior 

of robots as they replicate an action that is already in their motor repertoire; in 

psychological studies, on the other hand, the stress is on the “learning” aspect of 

imitation. Cognitive psychologists often define true imitation as the capacity to acquire a 

motor behavior previously not present in the observer’s motor repertoire [61]. According 

to Thorndike’s [26] definition of imitation, which is also adopted by Rizzolatti, “imitation 

is learning to do an act from seeing it done”. Thereby, according to Thorndike’s 

definition, in true imitation the observer not only truthfully transforms an observed action 
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into an executed action; also acquires a new motor behavior. Therefore, imitation implies 

learning.  

In line with this premise, the self-exploratory stages described in this study, which 

focus on discovery of motoric capacities, biomechanical constraints, limb affordances 

and skill learning set the stage for a much more advanced action reproduction 

mechanism, which resembles more the mechanism of imitation observed in human beings 

than pure mimicry. Imitation ability requires understanding and encoding an observed 

task first and then translating that information onto one’s own motor representation. It is 

built upon the ability to form action-effect relations within one’s own perceptual-motor 

system first. The ability to form associations between actions and their perceptual effects 

is mainly maintained through an active self-exploration stage analogous to the one in 

which an infant discovers the cross-modal contingencies from body movement. Similarly, 

in our studies the developmental stages (such as motor babbling and self-exploration) that 

the robot goes through would lead to a complex and true imitation ability which is 

biologically grounded.  

Observational learning and learning by imitating human performance is one of the 

most fundamental problems addressed by developmental cognitive robotics [62] [63]. 

The underlying mechanism that gives rise to imitation ability attracts a lot of attention 

from the field of not only neuroscience and psychology but also robotics. One of the long 

cherished goals of cognitive robotics is to implement a robot with the ability to learn and 

generalize motor behaviors from observing human demonstrators. Imitation is a complex 

skill that requires perception (vision) and action (motor system) to be coupled and 

combined with memory and action representations in a meaningful way. Imitation 
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requires self-learning and social interaction, and it plays a fundamental role in getting in 

contact with physical objects as well interacting with other beings [64]. Imitation learning 

is also a very powerful tool for acquiring new complex behaviors, ranging from tool use 

to different forms of social interaction which are passed from generation to generation. 

The social aspect of imitation learning where individuals learn to interact with objects 

and other beings plays an important role in cognitive development starting very early in 

life. Given the complexity of the imitation ability and tasks to be imitated, it is extremely 

difficult and inconvenient to program robots manually. Also, imitation ability requires 

rapid behavior acquisition which makes manual programming with a large set of trial-

and-errors an undesirable approach. Moreover, humanoid robots are designed to be in 

interaction with human beings and the environment. Therefore robots need to be able to 

learn new tasks on their own, and generalize their ability to different contexts.  

Early studies in cognitive robotics modeled imitation ability using neural 

networks, which consists of learning, vision and motor modules, and successfully 

imitated various oscillation and reaching behaviors [65]. Fitzpatrick et al. [66] went 

further and proposed that a robot uses target information and simple experimentation with 

action consequences to learn to imitate. According to the authors robots can be 

implemented with active observational strategies which allow them to experiment with 

their motion primitives and thereby manipulate the visual target, and then to understand 

the causal relation between their actions and the resultant visuals in the environment. 

Like current study, they underline the importance of experimentation with motor 

primitives for action learning in humans as well as in robots.   
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Schaal et al. [67] defined complex movements as combination of movement 

primitives, and outlined the use of non-linear dynamic equations derived from these 

motion primitves which are then used to build up the complex patterns. Ilg et al. [68] 

proposed that robots can learn complex human behaviors through a reinforcement 

learning algorithm which goes beyond standard imitation, and one that involves parsing 

complex movement patterns into meaningful movement subsequences; and then use of 

dynamic programming to combine matched segments and build up a complete morphable 

motion trajectory. The authors selected the points of zero velocity as the dividing 

criterion between movement segments. Another reinforcement method has been proposed 

by Guenter et al [69] in order to cut down on the number of demos trials shown to the 

robot. They proposed a reinforcement strategy which was used combine with the 

knowledge acquired during action observation.  

Some approaches to generate imitation in robots rely on using nonlinear 

dynamical systems [70] while others take inspiration from biological algorithms [65]. 

Programming by Demonstration (PbD) takes inspiration by the way human beings learn 

new skills through imitation and implement robots with these kinds of skills [71]. One 

such example is the work by Calinon et al. [72] who developed a PbH framework which 

requires generalizing a learned knowledge to different contexts. They conducted a series 

of experiments where humanoid robots learn simple manipulation tasks by observing 

human demonstrators. They suggested a probabilistic relevance estimation using 

Principal Component Analysis (PCA), where the resultant signals are encoded by 

Gaussian/Bernoulli distributions (GMM/BMM). This approach allowed for spatial and 
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temporal correlations across modalities to be gathered from the robot, and then be 

generalized to different contexts using Gaussian Mixture Regression (GMR). 

However one disadvantage of general PbD approaches is that is depends on a 

large amount of predefined prior knowledge. Most of prior approaches have required 

large number of training trials and an additional smoothing process. The robust 

probabilistic method of Hidden Markov Model (HMM) [73] and spatio-temporal Isomap 

[74] alike have been proposed as possible solutions to the problem. Kulic et. al [75] 

modeled imitation by focusing on the intrinsic dynamic features of the motion, using 

Hidden Markov Model (HMM) which is designed to deal with spatio-temporal variability 

in human motion across different demonstrations. This is advantageous in situations 

where the robot could perform in any workspace provided actions with similar trajectory 

dynamics are produced.  

Another probabilistic approach is proposed by Grimes et al. [76] who used 

probabilistic interference and Gaussian processes to implement the robot with ability to 

lift objects of varying weights from human demonstration. The robot learns by sensori-

motor feedback control, and infers a stable action plan for use in imitation. The fixed 

action plan could be used with various tasks since it does not require any knowledge of 

the environment. Similarly, a probabilistic encoding method with Gaussian Mixture 

Models was applied to a humanoid robot so that it can learn the important features of 

observed object trajectories, and develop new bimanual motor skills [77].  

Having taken inspiration from recent discoveries in humans about action 

observation/execution Erlhagena et al. [78] propose control architecture for use in robots 

learning by observation and imitating goal-directed actions. Their approach is based on 
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findings of human studies which state that imitation is different from mimicking, and is 

aimed at reproducing the end goal (intention) of an action rather than the means that lead 

to the goal. Similarly Guenter at al. [69] emphasizes the importance of being able create 

new solutions when learning a task from a demonstrator, such that the robot need to be 

able to imitate even in unexpected situations, so the demonstrator does not need to 

perform all possibilities during the training phase. Moreover human studies suggest that 

the motor intention of other agents is understood by internally simulating the observed 

action within one's own motor repertoire. Erlhagena et al. [78] base their control 

architecture on human findings and validate the model by showing robots can learn to 

imitate grasping and sequencing actions performed by a human model in a goal-directed 

manner. The control framework is based on the work on dynamic fields [79] and 

implements goal-directed imitation by combining contextual reference, sensory input and 

mapping of the observed action onto robots internal motor system. Similarly, Calinon et 

al. [80] taking inspiration from developmental psychology, present a strategy where the 

robot infers the goal of an observed task and determines the best method to reach the goal 

itself through use of a robust discriminant controller.  

Some of the other biologically inspired robotic studies include Metta et al. [81] 

who used neurophysiological findings about the mirror neuron system to develop a model 

for action understanding and imitation by taking into consideration object affordances.  

The authors first recorded actions with accompanying multi-sensory information from 

humans and then used this info to train an action-recognition system. Second, they 

implemented this model on a humanoid robot which was trained to imitate simple object 

oriented actions performed by a human being. Their model correctly predicted a mirror-
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like motor representation in the motor system of the robot. A similar work by Maistros et 

al. [82] proposed an imitation system which was modeled based on the functional role of 

premotor brain areas with mirror-like properties. Mirror neurons are activated with both 

action observation and action execution and the imitation system is thought to rely on the 

mirror neuron system. Another biologically inspired model is proposed by Billard [83]. 

The model was implemented in humanoid avatars when they learned repetitive arm/leg 

movements, oscillatory shoulder/elbow movements as well as grasping and reaching 

movements by observing the video of a human demonstrator. Their model consisted of 

modules that are inspired from the motor control regions of the brain, including spinal 

cord, Cerebellum, Primary Motor Area (M1) and Premotor Cortex (PM). DRAMA neural 

architecture was used to model the neural network in PM and cerebellum, which are 

responsible for decoding visual information from observed actions (PM) and generate 

corresponding motor commands (cerebellum) so that new action representations could be 

formed. 

Similarly, Berthouze [84] developed adaptive agents that can learn by imitation 

by use of a neural mirror similar to those found in biological systems. The systems is 

these agents included perceptual-motor coupling which enables replication of observed 

actions within one's own motor system.  

Some past studies bear similarities to the current work in terms of their 

developmental approach to investigate the imitation mechanism. For instance, Lopes [85] 

implemented a robot with skills developed through various developmental stages until 

imitation ability is successfully acquired. Then stages included sensory-motor 

coordination, interaction with the outside world, and finally imitation. Specifically the 



39 
 

robot started with an emphasis on its own body and then to physical objects and 

eventually to human beings. The implemented modules included teaching sensory-motor 

maps, methods for grasping objects, and a framework to learn by observation. Another 

work in developmental robotics is that of Rajesh [86] who proposed a probabilistic model 

of imitation learning based on Meltzoff and Moore's four-stage imitation progression. 

Their model was based on the developmental stages of babbling, imitation of body 

movements, imitation of object-oriented actions, and the most advanced version of 

imitation with inferring other's intentions. The model was focused on the role of internal 

sensori-motor control and Bayesian inference techniques which have the advantage of 

more accurate performance in noisy environments. Another developmental perspective 

was offered by Montesano [87] who proposed an affordance learning which was focused 

on learning about the statistical relations between actions, and their effects on object 

properties. Their approach suggests affordance learning as a building block of sensori-

motor coordination and a prerequisite for simple imitation tasks with action planning 

capabilities. Billard et al. [88] developed another probabilistic approach to model the 

imitation process in a humanoid robot, which involves discovering different strategies for 

different tasks.  

Similar to the current work, study by Wanitchaikit et al. [89] focused on the visual 

information and used a self-organizing neural network module to test on robots 

approaching a target and avoiding an obstacle. The visual system captured the movement 

of the demonstrator, and the movement features were extracted from the vision and 

embedded into a self-organizing neural network which was then supplemented with a 

simple action selection algorithm. The visual information needed for robot imitation 
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could be gathered through use of high-resolution motion capture systems which are used 

to record high quality human movements. In line with this, the approach by Kuli´c et al 

[90] emphasizes the advantage of observing human demonstrators rather than other 

robots in terms of the success of learning by imitation. Observing and imitating a human 

demonstrator rather than a another robot, has the advantage that the robot can use the 

structural similarity between human and robot bodies, without having need to program 

complex robot actions. Their approach was based on recording human movements using 

motion capture, and then partitioning the action into motion segments, and them 

clustering and organizing those segments into basic human motion primitives. 

 

Cognitive Architecture for Imitation Learning 

 

“Cognition” is a term referring to the mental processes involved in gaining 

knowledge and comprehension, including thinking, knowing, remembering, judging and 

problem solving. These are higher-level functions of the brain and encompass language, 

imagination, perception and planning. Due to this broad definition, the task of developing 

a general cognitive architecture and subsequent computational models is extremely 

difficult. Nevertheless, cognitive architectures and computational neuroscience systems 

are designed to capture key cognitive processes that exist in biological cognitive systems 

such as humans.   

Neuroscience and computational neuroscience has recently made major advances, 

especially in understanding the neural control of behaviors [91] [92] [93] [94] uncovering 

features of learning [94, 93] memory [95] [96]. They also deal with how we perceive and 
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interact with the external world [97] [98] giving some initial purchase on how human 

experience and human biology influence each other.  Similarly, robotics research has 

reached out to neuroscience to inform the design of increasingly more complex robots, to 

address high-dimensional problems of motor control [99] [100] perception [101] [102] 

and decision-making [103] [104]. 

Artificial implementation of neurobiological control of sensori-motor processes is 

being markedly advanced by the design of neuroscience-based theoretical models and the 

creation of physical devices, known as Brain-Based Devices which are controlled by 

simulated nervous systems [104]. This research tests theories of the nervous system, so as 

to provide a basis for robotic design and practical applications.  Advances from this 

research include the construction of devices based on principles of nervous systems, 

experience-dependent categorization and learning [93] and implementation of a value 

system [104] which informs individuals about the situations that can bring pleasure and 

pain, one of the most basic rudiments of emotion. These studies provide important steps 

toward embodying an artificial nervous system which appraises the salience and value of 

environmental cues from the real world in order to modulate its own operation. 

Work in the CIS laboratory has yielded an operational cognitive robot that 

implements of crucial features of the neurobiology of human working memory (ITR: A 

Biologically Inspired Adaptive Working Memory System for Efficient Robot Control and 

Learning, NSF grant # EIA0325641). In this implementation (ISAC—Intelligent Soft 

Arm Control humanoid robot [http://eecs.vanderbilt.edu/CIS]) learning how to respond to 

novel tasks is accomplished using an untrained long-term memory model, in conjunction 

with a working memory system that is grounded in computational neuroscience models 
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of the working memory circuits of the prefrontal cortex [104]. This work shows how to 

provide robotic systems with a means of maintaining task-related information during task 

execution, in a manner similar to human task execution. When a novel stimulus is 

present, this system explores different responses and, over time, learns on which 

information to focus, in both working and long-term memory, in order to best execute the 

novel task. Offline, the robot reviews its experiences and uses Internal Rehearsal of 

alternatives to its actually exhibited behavior, in order to estimate likely consequences of 

behavioral alternatives, thereby to learn how to improve its performance, when similar 

situations arise in the future. The robot thereby learns from its experiences in a way that 

goes beyond the associative learning of which simple creatures with but a handful of 

neurons are capable. This research demonstrated the utility for robot learning of 

embedding a neurobiologically faithful working memory in a robot. 

It is expected that these kinds of close, mutually informing interchanges between 

neuroscience and robotics will lead to more complex, realistic robotic systems involving 

perceptual systems, actuators, attention, emotion, working and long-term memory 

structures, reasoning and learning that go beyond associative learning. Indeed, an 

adaptive control substrate that is faithful to the neurobiology of emotion holds promise 

for facilitating a robot, with neurobiologically faithful working memory, to learn more 

quickly and robustly that knowledge which is important for its adequate functioning, and 

then to apply that knowledge adequately during real-time task performance. 
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Motion Capture for Robotics Research 

 

Some recent studies emphasize the use of motion capture and gathering 3D 

motion data from the movement of human demonstrators for humanoid robot imitation 

learning. This method allows recording the motion trajectories of the human movements 

and partitioning the movement patterns into motion segments, which then can be used as 

a learning tool. For instance, Kuli´c et al. [90] propose an approach where human actions 

gathered from motion analysis are segregated into motion segments using stochastic 

segmentation, and then are organized into motion primitives of which the sequential 

relationship is learned by the system. Another study by Suleiman et al. [105] tested the 

idea whether imitated motions in a dynamic humanoid robot simulator matched those of 

the original human captured data. In order to achieve a good replica they used an 

optimization approach which involved an efficient dynamics algorithm to control 

parameters and considered the physical limits of the robot as constraints.  

Tang and Leung [106] propose a motion retrieval method called Adaptive Feature 

Selection (AFS) which allows for selection of different movement features depending on 

the relative distance among joints. The method, if used in robot imitation tasks, could be 

advantageous over other methods. Another approach proposed by Ott et al. [107] is a 

Cartesian control approach in which a humanoid robot is connected to measured marker 

points, which allows the robot to follow marker positions from the motion data rather 

than computing inverse kinematics, in order to recognize and imitate human action. 

Moreover, they integrated marker control with hidden Markov models (HMMs), which, 
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together with the Cartesian control method, allowed for action learning, action 

recognition and action imitation involving object manipulations tasks.  

Another work by Yamane at al. [108] defined a control framework for robots, 

which tracts data from motion capture using all of its joints (tracking controller), while 

trying to maintain balance (balance controller). Using joint pressure information as the 

input, and by computing joint torques that are as close as possible to the motion capture 

data (tracking controller) the authors demonstrate the efficiency of their system to 

produce dynamics simulations. 
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IV. EXPERIMENTAL SET-UP 

 

Imitation Learning of Affordances on a Humanoid Robot 

 

Having recently shown the use of biologically inspired cognitive mechanisms 

such as affordance relations, internal rehearsal [40] [39] and working memory [41] [109] 

on a humanoid robot, ISAC, we demonstrate affordance learning by imitation using a 

simple and small humanoid robot based on the Bioloid Humanoid Robot (BHR) as shown 

in Figure 8 [6].  The BHR platform consists of the following components, a CM-5 circuit 

board, designed by Robotis, and small, modular servomechanisms called Dynamixels, 

which have their own Atmel MEGA8 microcontrollers and can be used in a daisy-

chained fashion to construct robots of various configurations, such as wheeled, legged, or 

humanoid robots. The structure of the B-type humanoid robot, shown in Figure 8, was 

used in this dissertation for learning crawling affordances.  

 

 

Figure 8 Bioloid Humanoid Robot (BHR) [6]. 

 



46 
 

The microcontroller mounted on the back of the BHR was bypassed and we 

directly connected the Bioloid servo network to the laptop via Dynamixel single cable 

network connection. A camera with a resolution of 640x480 pixels was mounted to the 

head of this robot. The camera was connected to the USB Port of the laptop to enable the 

robot to process the environment and accomplish the task accordingly. The overall 

system is shown in Figure 9. 

 

Figure 9. The Bioloid and Overall Control System 

 

General Approach 

 

Considering the complexity, intricacy and cost of a robot capable of learning by 

imitation, it is of fundamental importance to be able to first build a prototype and 

simulate the overall robotic system on this prototype. In this dissertation, we plan to show 

how imitation learning of affordances can be done by using an educational robot kit that 

ultimately could lead to important improvements in the autonomy of humanoid robots.  
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The Bioloid robot came with a set of preprogrammed behaviors such as walking, 

kicking, and lifting. However, instead of using these behaviors, the robot explored, 

learned and created its behaviors and its motion primitives by itself in the babbling or 

virtual exploration stage. We attached a camera on the top of the robot to use as an 

external sensor and find relevant virtual features for the affordances. We chose a simple 

behavior, a crawling behavior, to demonstrate how the robot learned body affordances to 

change its position by way of a crawl-like behavior. 

 

General Summary 

 

In STAGE 1 called LIMB AFFORDANCE LEARNING THROUGH MOTOR 

BABBLING, our humanoid robot provisionally learned a set of basic affordance relations 

by exploring ways of crawling and discovering the outcomes of its actions. After having 

classified the arms, then in STAGE 2, called IMPROVING LEARNED LIMB 

AFFORDANCES THROUGH SELF-EXPLORATION, the robot will provisionally learn 

a set of basic motion primitives, its own motor limits, biomechanical constraints and 

skills by performing random arm movements and discovering the associations between 

those movements and their spatial effects in the visual space. And having learned the 

perceptual-motor coupling between arm movements and their resultant visual effects, 

lastly in STAGE 3, called IMITATION LEARNING FROM MOTION CAPTURE, the 

robot will learn to imitate a novel object-oriented action such as lifting/pushing/pulling an 

object.  
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Figure 10. Schematic Summary of the Experimental Stages. In Stage 1, the robot learns 
affordance relations through motor babbling, in Stage 2 the robot improves affordance 

relations though self-exploration, and in Stage 2 the robot learn to imitate a novel action. 

 

 

 

 

 

 

 

 

 

 

 

 

                      Stage 1                                             Stage 2                                                  
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V. STAGE 1: LIMB AFFORDANCE LEARNING THROUGH MOTOR 

BABBLING 

 

Self-Reflection in Human Infants & in a Bioloid Robot 

 

Self-exploration observed in human infants is the basic building block for all 

kinds of action based learning including imitation learning. Infants first need to discover 

their own bodies, and their motor capacities, which mainly involve learning action-effect 

relations, i.e., learning to associate actions with corresponding sensory effects. Starting at 

birth infants engage in active exploration of their own body by touching it, moving it and 

investigating the cross-modal contingencies of their action effects [7]. Self-exploration 

helps infants to close the action-perception loop and learn the relationship between motor 

commands and resultant sensory feedback (i.e., visual, proprioceptive, auditory, etc.) so 

that they can act accordingly to bring about the desired action effects. Moreover, during 

most of the actions the infant’s exploration of the action is organized around a goal, 

which might be an object. Affordances encode the relationships between actions, objects, 

and their effects in the environment, and they play an essential role for discovering 

perceptual-motor contingencies in object oriented actions. Thus, infants also guide their 

actions and perceive affordances by exploring and learning action-effect relations [22]. 

Like infants, the BHR is not pre-programmed with knowledge of affordances and 

action-effect relations, and thereby it requires a great deal of self-experience from which 

to extract progressively more abstractly represented knowledge so it can learn to imitate. 

Thus, the  robot needs to go through a set of self-exploration stages in which it learns 
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affordance and action-effect relations. In this first stage, similar to a young infant who 

moves his/her arms in order to explore the cross modal match between specific 

proprioceptive cues from the movement of particular limbs and the accompanied visual 

cues from the spatio-temporal characteristics of the arm, our robot moves its arms 

randomly and forms specific associations between its arm movements and the kind of 

change in the visual space, thereby learning to classify certain motor units as belonging to 

the left and right arm as shown in Figure 11. 

 

Figure 11. Developmental and Computational Similarities in Stage 1. BHR goes through 
a set of self-exploration stages, similar to an infant. 

 

Methods 

 

Similarly to how a human baby discovers action-effect relations of his arm 

movements, BHR provisionally discovered affordance relations between certain arm limb 
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movements and corresponding motor unit numbers by exploring the outcomes of its 

random arm movements while in  a crawling position. The robot has three motor units at 

the joints for each arm. The task was to execute a random arm movement which 

happened as a result of random limb angle assignments for each of the three motor units 

in a certain arm.  Each arm movement resulted in a particular shift in the visual field of 

view of the robot (ego motion). Then, by evaluating those resultant action effects (visual 

feedback or ego motion) and their link to specific joint angles, the robot learned limb 

affordances: learned to classify which motors belong to the right or the left arm, and what 

right and left arm motion affords to.  

Motor babbling was used to speed up the process of learning motion primitives by 

randomly executing, analyzing and gathering the outcomes of actions.  These actions are 

based on the most primitive motor actions, i.e., the positions of its servomotors, rather 

than higher level actions such as walking. This would take a long time if all these were 

done in a real environment by a real humanoid robot, but it can be done more quickly and 

safely by this prototype. 

Figure 12 shows the experimental set-up while the robot is crawling and trying to 

discover cross correlations between motor units and the accompanying arms.  In a stable 

position the focus of the vision is on a certain object (a). As the robot bends its right arm 

(using various motor unit angles), there is shift in the visual focus to the right (b). As the 

robot bends its left arm (using various motor unit angles), there is shift in the visual focus 

to the left (c). By exploring the cross modal associations between certain arm movements 

and corresponding shifts in the visual fixation point, then the robot learns to classify its 

left and right arm.  Figure 13 shows the view from the robot’s camera as a function of the 
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movement of the robot as it bends its arms. Note the shift in visual fixation point as a 

function of movement. 

  

             

Figure 12. Experimental Set-Up for Stage 1. Markers attached to the hands of the robot 
while robot is crawling and trying to discover cross correlations between motor units and 

the accompanying arms. 

 

 

      a)  Stable position                      b) Right arm bended                   c) Left arm bended 
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Figure 13. The Shift in the Field of View from the Robot’s Camera as a Function of 
Movement. The columns represent: a) stable position b) moving up c) moving down d) 
moving left e) moving right, and f) stable position. Note the shift in visual fixation point 

as the robot bends its arms. 

 

Assumptions 

 

 It is assumed that the robot knows its joint limits and programmed the 

babbling with these limits, unlike Brooks’ approach [110]. The robot could have learned 

its limits by watching the torques at its servo motors during babbling and if the torque 

values came to a maximum point it could record these points and limit the babbling 

between these maximum points.  

 In the babbling stage, we let the robot babble using smooth approximately 

sinusoidal actions instead of white noise to discover the babbling space. Giving a white 

noise sequence and watching the outcomes of the motors may damage the coils of the 
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motors, so we avoid these kinds of babbling sequences by forcing the robot to create 

random sinusoidal sequences and execute them. 

 

Motor Babbling 

 

Sensori-motor learning based on motor-babbling has been shown to be effective 

for autonomous humanoid robots for developing an internal representation of the 

relationship between the self and the surrounding environment [111]. 

During this stage, the ݉	number of actuators of BHR were given sinusoidal angle 

references, denoted by ߠ௜଴ ± ݀௜ே(ܰܶ) where ܰ	is the number of babbling trials, ܶ		is the 

sampling time of, ݊ is the step number where the sinusoidal cycle was divided into ݊ 

parts, ݅ = 1 …݉	is the joint number, ߠ௜଴ 	 is the initial angle of the ith joint angle and the 

sign of the ݀௜ே(ܰܶ)  changes randomly to let BHR try different sequences of angle 

combinations. When the angle references were given to the joint actuators, the 

Dynamixel Motors’ controllers move joints to these reference angles, as an example is 

shown in Figure 12, and the outcomes of these actions are recorded as raw encoder 

readings as ݀௜ே(ܰܶ)	at each time step. At the same time, the position of BHR fixation 

point locations,{	ݔே(݊ܶ),ݕே(݊ܶ)}, where ݔ and ݕ values were pixel-wise displacements 

in  horizontal and vertical displacements respectively, as shown in Figure 13. The 

calculation of the fixation point locations are shown in section Egomotion Estimation.  
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Egomotion Estimation 

 

The egomotion of the BHR was determined by the use a camera attached to the 

head of the BHR and the use of a kind of visual odometry technique on a sequence of the 

images taken from that camera. Optical flow was constructed by using The Kanade-

Lucas-Tomasi (KLT) feature tracker [112] from two image frames in a sequence. The 

good features that were tracked in the KLT were found by Shi-Tomasi’s method [113]. 

Finally, affine transformations were calculated and the change in the position of the 

fixation point from the egomotion was estimated from these transformations.  

The egomotion estimation contains the feature point extraction, optical flow 

detection, global parametric motion model estimation, affine transformation estimation 

and estimating the position of the fixation point.  

 

Feature Point Extraction 

 

Transforming the image data into the set of useful set of features, mostly corners, 

is called feature extraction and a special form of dimensionality reduction. Usually the 

image data is too large to be processed and it is suspected to be noisy, redundant and full 

of poor information so the image data should be analyzed and transformed into a reduced 

representation set of features. There are many feature extraction algorithms like Harris 

corner detector, Shi-Tomasi’s corner detector, SUSAN, SIFT, SURF, and FAST and 

around all Shi-Tomasi is considered to be the fastest and most reliable [114]. Shi-Tomasi 

[113]  feature extraction algorithm estimates the quality (called them good features) of 
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image features during tracking by using a measure of feature dissimilarity function that 

quantifies the change of appearance of features between the consecutive frames. They 

indicated that a good feature extraction algorithm should take the motion of points in 

consecutive frames into account to find the best features to track. So they modeled the 

motion of points, indicated as ݌ = ௫݌] ௬݌ ௫ and݌ ௬] where݌ 	are the pixel-wise locations 

of the point is the horizontal and vertical directions respectively,  as both pure 

translational and affine transformed motion. They showed in both cases the best 

corners/features were located where the gradient matrices, as shown in Equation 1, 

calculated around the pixels have two large eigenvalues. A matrix of gradients, ݃௣௫ 	,݃௣௬ 

, at each point ݌ = ௫݌]  and ݔ was generated by using the image derivatives in the	௬]݌

 .directions , as shown in Equation 2	ݕ

ࢆ = ൥
࢞࢖ࢍ
૛ ࢟࢖ࢍ࢞࢖ࢍ

࢟࢖ࢍ࢞࢖ࢍ ࢟࢖ࢍ
૛ ൩			(૚) 

The eigenvalues of the ܼ matrix were calculated for each point and these points 

were ranked in descending order according to their eigenvalues. Then, a certain number 

of top points that were greater than a given minimum threshold were selected as “good 

features to track”. The OpenCV cvGoodFeaturesToTrack() funtion implements the Shi 

and Tomasi [113] approach and is used to find the good features.  

 

Optical Flow Detection 

 

Bouguet’s [115] Pyramidal Implementation of the Lucas Kanade Feature Tracker 

was indicated to be one of the best ego-motion estimation algorithms in Yao et.al.’s paper 
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[114]. This approach was used to match good corner features, which were found in the 

feature extraction section, between adjacent pairs of video frames to obtain a sparse 

estimate of the optical flow field. 

Let ܫ௧		be a 2D grayscale image and ܫ௧ାௗ௧		represents a consecutive image that 

comes afterܫ௧	. Let a point ݌ = ௫݌]  	(݌)	௧ܫ in these frames have grayscale values of	௬]݌

and ܫ௧ାௗ௧(݌). The vector ݀ = [݀௣௫ ݀௣௬]	is the image velocity at ݌, also known as the 

optical flow at ݌. The goal of this feature tracking is to find the location of   ݌ + ݀  in the 

image ܫ௧ା∆௧	 such as ܫ௧(݌) and ܫ௧ା∆௧(݌ + ݀)have some “similarity”. Let ݓ௫ and ݓ௬ be two 

integers indicating the window sizes or image neighborhood sizes. The definition of 

velocity flow, ݀ that minimizes the residual function shown in Equation 2 [115]. 

 

(ࢊ)ࢿ = ෍ ෍ (࢟,࢞)࢚ࡵ) − ࢞൫࢚ࢤା࢚ࡵ + ࢟,࢞ࢊ + ൯(࢟ࢊ
૛

. (૛)

࢟࢝ା࢟࢖

࢟࢝ି࢟࢖ୀ࢟

࢞࢝ା࢞࢖

࢞࢝ି࢞࢖ୀ࢞

 

 

For each corner feature found in the subsection feature extraction, Equation 2  

was solved for a sub-pixel translational displacement vector that minimized the sum of 

squared intensity differences between an image patch centered at the corner and a patch 

in the subsequent frame centered at the estimated translated position. 

 

Affine Transformation Estimation 

 

Ego-motion was found by fitting a global six parameter affine motion model to 

sparse optic flow vectors found in subsection Optical Flow Detection. Affine 
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transformation, which preserves collinearity (maps parallel lines to parallel lines) and 

ratios of distances, is a parametric and geometric transformation. Affine transformations 

can be constructed by any combination of translations, scales, flips and sequences of 

rotations. 

Six-parameter affine transformation model is given in Equation 3. 

ቆ
࢚ࢤା࢚௫݌

࢚ࢤା࢚௬݌
ቇ = ൤ܽଵଵ

௧ ܽଵଶ௧

ܽଶଵ௧ ܽଶଶ௧
൨ ቆ
࢚௫݌

࢚௬݌
ቇ + ൬ܾଵ

௧

ܾଶ௧
൰							(3) 

where ݌௫࢚ା࢚ࢤ and ݌௬࢚ା࢚ࢤ are the corner features in frame ࢚ࡵା݌ ,࢚ࢤ௫࢚ 	and ݌௬࢚ 	are the corner 

features in frame ࢚ࡵ from the optical flow calculations,{ܽଵଵ௧ 	ܽଵଶ௧ 	ܽଶଵ௧ 	ܽଶଶ௧ 	ܾଵ௧ 	ܾଶ௧} are the 

affine transform parameters, which are account for the deformations and translations. The 

{ܽଵଵ௧ 	ܽଵଶ௧ 	ܽଶଵ௧ 	ܽଶଶ௧ 	}parameters account for the deformations while the {ܾଵ௧ 		ܾଶ௧} parameters 

are account for the translations. This over-determined system was solved using the 

pseudo-inverse, which used SVD methods to find the least-squares solution for these 

affine parameters. 

 

Estimating the Position of the Fixation Point 

 

The fixation point,݂࢚ =  of the BHR was assumed to be at center of the ,{	࢚ݕ,	࢚ݔ	}

image, when BHR started moving, ݂૙ = {	0	, 0	}. The location of the fixation point 

changed due to the movement of arms in each time step and the location of the fixation 

point was updated by the affine transformation as show in Equation 4. 

൬ݔ
࢚ࢤା࢚

൰࢚ࢤା࢚ݕ = ൤ܽଵଵ
௧ ܽଵଶ௧

ܽଶଵ௧ ܽଶଶ௧
൨ ൬ݔ

࢚

+൰࢚ݕ ൬ܾଵ
௧

ܾଶ௧
൰							(4) 
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Figure 14 The change in fixation point during the motor babbling stage. Numbers on the 
red line indicates the frame number. 

 

Self-Organizing Maps 

 

In this stage, Self-Organizing Maps [1] were used to extract the affordance 

relations between its crawling motion and its motor actions. The SOM is an unsupervised 

algorithm which forms a nonlinear regression of the ordered set of reference vectors into 

the input space, and is a special tool which can be used at the same time both to reduce 

the amount of data by clustering, and for projecting the data nonlinearly onto a lower-

dimensional display [1]. This combination of vector quantization and dimension 
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reduction allows the SOM to visualize large bodies of high-dimensional data and help 

researchers to create a model like affordance learning from imitation learning.  

The self-organizing map is an unsupervised neural network that projects a high 

dimensional input space onto a group of neurons organized on a regular low-dimensional 

grid. Each neuron in this grid has a ݀ dimensional weight vector, ݓௗ, which gets updated 

such that neighboring neurons on this grid get similar weight vectors during training. In 

this way, these neurons learn to recognize groups of similar input vectors and respond to 

similar input vectors. Samples (one row at a time, as shown in Equation 5) from the 

samples data,		ॿ, are presented to the map one at a time as input vectors, and the 

algorithm gradually moves the weight vectors towards them, as shown in Figure 15 using 

the Equation 6. 

ॿ(݊ܶ, : ) = 	 ,(ܶ݊)ଵேݍ} … , ௠ேݍ  (5)			ே(݊ܶ)}ݕ,(ܶ݊)ேݔ,(ܶ݊)

௜ܹ௝(݊ܶ + 1) = ௜ܹ௝(݊ܶ) + ߙ ቀॿ(݊ܶ, : ) − ௜ܹ௝(݊ܶ)ቁ				(6) 

where  ௜ܹ௝(݊ܶ + 1) is the updated weight vector, ݅ and ݆ are the neuron indices in the 

spatial neighborhood of the winning neuron and ߙ is the learning coefficient. In this way, 

neurons, the weight vectors of which are closest to the input vector, are updated to be 

even closer. Next time, the winning neuron is more likely to win the competition when a 

similar vector is presented, and less likely to win when a very different input vector is 

presented. As more and more samples/input vectors from 		ॿ are presented, each neuron 

in the layer closest to a group of input vectors soon adjusts its weight vector toward those 

input vectors. 
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Figure 15. A 5x5 SOM training illustration. 

 

Since SOM is an unsupervised learning method and does not have target vectors, 

the target vectors, the pixel-wise location of the fixation points {ݔே(݊ܶ),ݕே(݊ܶ)} , were 

included in the input vector to force SOM to divide the input vectors into clusters that 

give some information about the correlation between the arm motors of BHR. The results 

are discussed in the Conclusion section in detail.   

 

Learning Vector Quantization 

 

A Learning Vector Quantization (LVQ) network has a first competitive layer, 

which learns to classify input vectors in the same way as the competitive layers of SOM, 

and a second linear layer, which transforms the competitive layer’s classes into target 

classifications given by the user.  
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The second layer of the LVQ network compares the output of the competitive 

layer output with the given target vector and updates the weight function as shown in 

Figure 16 and Equation 7. 

௜ܹ௝(݊ܶ + 1) = ௜ܹ௝(݊ܶ) + ߙ ቀॿ(݊ܶ, : ) − ௜ܹ௝(݊ܶ)ቁ ݐݑ݌ݐݑ݋	ℎ݁ݐ	݂݅	 = ݏݏ݈ܽܿ	ݐ݁݃ݎܽݐ

௜ܹ௝(݊ܶ + 1) = ௜ܹ௝(݊ܶ)− ߙ ቀॿ(݊ܶ, : ) − ௜ܹ௝(݊ܶ)ቁ ݐݑ݌ݐݑ݋	ℎ݁ݐ	݂݅	 ≠ ݏݏ݈ܽܿ	ݐ݁݃ݎܽݐ
 (7) 

 

Figure 16 LVQ training illustration. 
 

K-Means Clustering and Validation of Clusters of Data 

 

The target vector was prepared for the LVQ network by using a k-means 

clustering. k-means clustering divided the fixation points,{	ݔே(݊ܶ),ݕே(݊ܶ)} found by 

the egomotion calculations, into ݇  number of clusters in which each fixation point 

belonged to the cluster with the nearest mean. The number of clusters is an important 
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parameter and wrong choice of this number may yield poor results so this number is 

chosen after running silhouette validation method. It is known that good clusters have the 

property that cluster members are close/similarity to each member and far 

from/dissimilarity to the members of the other clusters. Silhouette is the relation between 

a member's dissimilarity to its own cluster and the dissimilarity with its neighboring 

cluster. The ratio between the average distances to the members in its own to the distance 

of the closest member in the neighbor cluster gives the silhouette value of this member, 

as shown in Equation 8. The silhouette score is the average of these silhouette values for 

entire cluster members, as shown in Equation 10. 

(݅)ݏ = 	
ܾ(݅)− ܽ(݅)

max	{ܽ(݅),ܾ(݅)} 			 (8) 

ܵ = 	
∑ ௡(݅)ݏ
௜ୀଵ

݊ (9) 

where ܽ(݅) is the average dissimilarity of ith member to all other members in the same 

cluster and ܾ(݅) is the minimum of average dissimilarity of ith member to all members in 

the neighbor cluster, which is the closest cluster to the member and , n is the number of 

members in the cluster. 

Intuitively, if silhouette value is close to 1, it means that member in the cluster is 

appropriately clustered. If silhouette value is about zero, it means that this member can be 

assigned to other group and equally far away from both clusters. If silhouette value is 

close to –1, it means that it would be more appropriate if the member was clustered in its 

neighboring cluster.   

To find the best number of clusters, the data is clustered into different number of 

clusters using k-means algorithm and the largest overall average silhouette score 
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indicates the best clustering number. Consequently, the number of cluster with maximum 

overall average silhouette score is taken as the optimal number of the clusters. 

 

Design Problem 

 

Let {ܯ௜}௜ୀଵ௠ 	be ݉ even number actuators of a robot. Assume  ܯଵ and ܯଶ are sub 

groups of {ܯ௜}௜ୀଵ௠  which has the same number, ݉/2 of independently controllable 

motors.   Let {	ݔே(݊ܶ),ݕே(݊ܶ)}	be the absolute change of the fixation point in image 

plane after ݊ random actuation signals for ܰ, number of babbling trials, at time ݊T		are 

applied for each motor. Let {ܥ௜}௜ୀଵ௞   is the target classes used for the LVQ network where 

the number of clusters ݇ is found after clustering the fixation points using k- means and 

silhouette validation method. Let ॿ = 	 ,ଵேݍ} … ௠ேݍ }	is the N-by-m input matrix which has  

ܰ angular position samples of ݉ actuators. Use target classes and input matrix to train an 

LVQ network and find the m-by-m autocorrelation matrix, ܣ௜,௝ of weight vector. Find the 

column number of the highest correlation value in the ith row. Group these indices and 

show that the highly correlated indices are physically connected actuators and construct 

the ܯଵ and ܯଶ subgroups. 
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VI. STAGE 2: IMPROVING LEARNED LIMB AFFORDANCES THROUGH 

SELF-EXPLORATION 

 

Motor Skill Learning in Human Infants and in BHR 

 

Self-exploration promotes cross-modal calibration which is necessary for the 

emergence of complex action forms. However in order to be able to interpret the 

relationships between actions, objects, and their effects in the environment infants need to 

discover their own bodies, and their motor capacities, which is mainly based on self-

exploration of action-effect relations, where they actively get involved in random acts 

repeatedly and observe the accompanying changes in the perceptual world, so they start 

forming associations between their action commands and accompanying perceptual 

effects. Infants routinely improve their performance by revisiting their experiences, 

taking them apart and putting them back together in alternative ways, to explore changes 

in behavior that are likely to make performance better or worse. Imitation ability is built 

upon the ability to form perceptual-motor contingencies, and self-awareness of one’s own 

body’s limitations and biomechanical constraints.  

Like infants, the Bioloid robot is not pre-programmed with knowledge of its own 

motor limits and the motor skill of lifting/pushing/pulling objects. Thereby the robot 

needs to go through a great deal of self-experience which involves a trial by trial method 

with possible erroneous attempts. Thus, the robot needs to go through a set of self-

exploration stages in which it learns limb affordance and action-effect relations. In this 

second stage similar to a young infant who moves his/her arms systematically in an aim 
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to explore the resultant perceptual effects (i.e. visual feedback from the arm in space); 

BHR moves its arms repeatedly and explores the kinds of changes in its own visual 

perspective, which are then linked back to the particular motor unit codes the robot 

assigned Figure 17. 

 

  

Figure 17. Developmental and Computational Similarities in Stage 2. The Bioloid Robot 
goes through a set of self-exploration stages using its arms, similar to an infant. 

 

Methods 

 

This stage is comprised of accomplishing two tasks: learning the biomechanical 

limits, and learning the motor skill through repeated trials. In this stage by randomly 

assigning angles to the arm motor units the robot will act in a certain way Figure 18, and 

then explore the resultant action effects: the final position of the hands in robot’s visual 

perspective. Each motor unit has a torque power, so the torque sensors notify the robot 



67 
 

when there is high pressure thereby classifying the action as mechanically impossible. 

Using a neural network, the robot learns the biomechanically possible work space, and 

explores its biomechanical limits. Also, through repeated assignment of joint angles, and 

by observing the resultant hand location in the visual space, the robot learns to associate 

particular arm movements with particular coordinates of the hands. The robot tracks the 

hands with its camera as it performs. In this stage the robot will learn which muscles to 

contract (which joint angles to assign) so as to bring about desired action effects: desired 

Cartesian coordinates of the hands in the visual workspace.   

 

        

Figure 18. Experimental Set-Up for Stage 2. By randomly assigning angles to the arm 
motor units the robot will explore the associations between its actions, and the resultant 

action effects: the final position of the hands in robot’s visual perspective. 
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Assumptions 

 

 The robot learned its limits by watching the torques at its servo motors 

during babbling and if the torque values came to a maximum point it could record these 

points and limit the babbling between these maximum points. Applying the white noise 

of approach is not recommended, because this method can damage the robot while it tries 

to discover its limits. The robot worked and improved its skills only in these limits. 

 In the babbling stage, we let the robot babble using smooth approximately 

random prerecorded actions instead of white noise to learn the skill workspace. Giving a 

white noise sequence and watching the outcomes of the motors may damage the coils of 

the motors, so these kinds of babbling sequences are avoided by forcing the robot to track 

prerecorded sequences and execute them. 

 

The Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are inspired from the structure and functions 

of biological neural networks. They are typically designed to perform high dimensional 

nonlinear mapping from a set of inputs to a set of outputs. ANNs are developed to model 

complex relationships between inputs and outputs or to find patterns in data using a dense 

interconnection of simple processing elements analogous to biological neurons. ANNs 

learn from experience and generalize a model from previous examples. They modify their 

behavior and structural variables in response to the environment, and are ideal in cases 

where the required mapping algorithm is not known and tolerance to faulty input or 

inconsistent information is required [116]. ANNs contain electronic processing elements 
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(PEs) connected in a particular fashion. The behavior of the trained ANN depends on the 

weights, which are also referred to as strengths of the connections between the PEs. 

ANNs offer certain advantages over conventional electronic processing 

techniques. These advantages are the generalization capability, parallelism, distributed 

memory, redundancy, and learning [116]. 

 

The Backpropagation Neural Network 

 

Backpropagation is a common method of training multilayer interconnected 

artificial neural networks so as to minimize the cost using gradient descent method. The 

layered structure of the backpropagation network deals with the linear separability 

limitation making it a much more powerful tool for nonlinear complex systems. The 

backpropagation neural network is not limited to only to binary outputs; but also it can 

create any number of outputs whose values fall within a continuous range. The 

backpropagation neural network is ideal for problems involving classification, projection, 

interpretation, and generalization, finding complex relationships between inputs and 

outputs [117]. A simple backpropagation neural network contains three layers, input, 

output and middle layers. Figure 19 shows a sample backpropagation neural network 

with middle layer, n input layer nodes and m output layer nodes. Backpropagation neural 

network training involves three stages 

 Feedforward of the input training pattern, 

 Calculation and backpropagation of the associated error,  

 Adjustment of the weights. 
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In the application of the network involves only the computations of the 

feedforward phase after training with new weights. The training process is slow; however 

the trained network can produce its output very rapidly [118]. A sample training 

algorithm of the backpropagation is [117] [118]: 

Step 0. Initialize weights. 

Step 1. Until all examples classified correctly or stopping criterion satisfied do 

Steps 2-9. 

Step 2. For each training pair, do Steps 3-8. 

Step 3. Each input unit { ௜ܺ}௜ୀଵ௡  broadcasts this signal to all units in the hidden 

layer. 

Step 4. Each hidden unit ൛ ௝ܼൟ௝ୀଵ
௣

accumulates its weighted input signals, and 

applies activation function to create the output. Later it broadcasts this output to other 

layers and if there is only one hidden layer, it sends the output directly to the output layer 

of the neural network.  

௝ݖ = ݂	 ൭ݒ௢௝ + ෍ݔ௜ݒ௜௝

௡

௜ୀଵ

൱ (10) 

Step 5. Each output unit { ௞ܻ}௞ୀଵ௠ 	accumulates its weighted input signals, and 

applies activation function to compute the output. 

௞ݕ = ݂	 ൭ݓ௢௞ + ෍ݖ௜ݓ௝௞

௠

௞ୀଵ

൱ (11) 

Step 6. Each output unit { ௞ܻ}௞ୀଵ௠ 	 receives a target pattern corresponding to the 

input training pattern, computes its error information term, 
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௞ߜ = ௛ݐ) ݂̇(௞ݕ	− ൭ݓ௢௞ + ෍ݖపݓఫ௞

௠

௞ୀଵ

൱
̇

(12) 

The weight correction term 

௝௞ݓ∆ = ௝ݖ௞ߜߪ	 (13) 

where ߪ is the learning rate.  

Step 7. Each hidden unit ൛ ௝ܼൟ௝ୀଵ
௣

		 sums its delta inputs from units in the layer 

௝ߜ = ෍ߪ௞ݓ௝௞

௠

௞ୀଵ

	 . ݂̇ ൭ݒ௢ఫ + ෍ݔపݒపఫ

௡

పୀଵ

൱
̇

(14)	 

 

The weight correction term is, 

௜௝ݒ∆ = ௜ݔ௞ߜߪ	 (15) 

Step 8. Each output unit { ௞ܻ}௞ୀଵ௠ 		updates its bias and weights, 

௝௞௡௘௪ݓ = ௝௞௢௟ௗݓ + ௝௞ݓ∆ (16) 

Each hidden unit ൛ ௝ܼൟ௝ୀଵ
௣

 updates its bias and weights, 

௜௝௡௘௪ݒ = ௜௝௢௟ௗݒ + ௜௝ݒ∆ (17) 

Step 9. Test stopping condition [117] [118] 
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Figure 19 Backpropagation Neural network structure with one hidden layer [118]. 
 

 

The PONNET 

 

To construct the position control neural network (PONNET) based on the relation 

between the joint angles and the pixel-wise position and the size of the markers which are 

attached on the arms of the robot, a three layer backpropagation neural network with a 

simple structure with an input layer, a hidden layer and an output layer is used. The back-

propagation neural network with the generalized delta rule is employed as the learning 

mechanism. The main motivation of using PONNET in learning limb affordances is its 

capability of learning and mapping the joint position-marker size and position, which is 

nonlinear and involves inconsistency.  

Like infants, BHR needs to go through a great deal of self-experience which 

involves a trial by trial method with possible erroneous and inconsistent data. Thus, the 
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robot needs to go through a set of self-exploration stages in which it learns limb 

affordance and action-effect relations. In this second experiment and as shown in Figure 

20, similar to a young infant who moves his/her arms systematically in an aim to explore 

the resultant perceptual effects (i.e. visual feedback from the arm in space); BHR moves 

its arms repeatedly and explores the change in the markers positions and the size in its 

own visual perspective, which are linked to the particular joint positions. 

 

Figure 20 BHR moves his arms systematically and explores the resultant perceptual 
effects 

  

Design Problem 

 

Let {ܯ௜}௜ୀଵ௠ 	be ݉ even number actuators of a robot. Assume  ܯଵ and ܯଶ are sub 

groups of {ܯ௜}௜ୀଵ௠  which has the same number, ݉/2 of independently controllable motors 

and these are known from the experiment 1.   Let {ݔ௥௘ௗ(݊ܶ) (ܶ݊)௥௘ௗݕ  be	}	௥௘ௗ(݊ܶ)ݏ

the pixel-wise positions (horizontal and vertical) and size of the red marker and 

(ܶ݊)௚௥௘௘௡ݔ} (ܶ݊)௚௥௘௘௡ݕ   be the pixel-wise positions (horizontal and	}	௚௥௘௘௡(݊ܶ)ݏ

vertical) and size of the blue marker, in image plane found at the ݊ݐℎ step of the 
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prerecorded actuation. Let ॿ = 	 (ܶ݊)ଵݍ} …  is the N-by-m input matrix which	௠(݊ܶ)}ݍ

has  ܰ angular position samples of ݉ actuators. Use and train multilayer backpropagation 

neural network to create the mapping between the marker features and the angular 

position samples of ݉ actuators. 
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VII. STAGE 3: IMITATION LEARNING FROM MOTION CAPTURE 

 

Imitation Learning in Human Beings & in BHR 

 

An Infant’s ability to form action-effect relations further develops into the ability 

to transfer an observed action onto one’s own motor system. Infants go through active 

self-explanatory stages where they form contingencies between self-performed actions 

and their resultant sensory effects, and then this leads to advanced imitation abilities 

where they can translate observed action-effect relations into their own perceptual-motor 

systems. 

Similarly, the self-exploratory stages described in the previous stages, which 

focus on discovery of motor capacities, biomechanical constraints, limb affordances and 

skill learning set the stage for a much more advanced action reproduction mechanism in 

our robot, which resembles the mechanism of imitation observed in human beings. In this 

stage, the robot performs the goal task, which is to imitate a novel object-oriented action 

by observing a human being through motion capture. In this final stage the robot builds 

upon its skill on limb affordance relations, and action-effect associations, and by bringing 

the perceptual-motor system a step further now it can imitate a novel action Figure 21. 
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Figure 21. Developmental and Computational Similarities in Stage 3. The Bioloid Robot 
trying to imitate a novel object-oriented action, similar to an infant. 

 

Methods 

 

In this final stage the robot imitates a novel object-oriented action after having 

analyzed the motion capture data of a human being performing lift/push/pull actions 

oriented towards certain objects in a motion capture suit Figure 22. The robot analyzes 

the motion capture data; identify the markers using the sequence of the markers. By 

analyzing the data the robot identifies the affine transformation and so the Cartesian 

coordinates of the final position of the hands from the visual perspective of the actor. 

Then the robot correlates what it learned from the first two stages (self-exploration) and 

finds the relevant joint positions from PONNET to bring its own arms to the 

corresponding target spatial location within its own visual perspective. In other words, 

the robot identifies corresponding movement sequences in its own motor system that is 

suited for the spatio-visual effect being observed. The robot takes the perspective of the 

human actor and discovers the relevant joint angle combinations that would result in 
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corresponding visual effects (particular spatial location of the robot arms) in its own 

visual perspective through affine transformations. This phase requires a direct mapping of 

the perceived sensory effects to the robot’s own action system so it can choose the right 

joint angle combinations so as to bring about the perceived effect. The complete set of 

actions that the robot will need to perform can be seen in Figure 23.  

 

 

Figure 22. To-be-Imitated Actions Performed by a Human Actor and Recorded via 
Motion Capture System. 
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Figure 23. The Experimental Set-Up for Stage 3. Having gone through set of self-
exploratory stages, now the robot imitates novel object-oriented actions, which are 

performed by a human being and recorded via motion capture. 
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The Motion Capture System 

 

The recordings for the human actor performing lift/push/pull actions were made at 

The Center for Intelligent Mechatronics, Vanderbilt University, which is comprised of 

800 square foot motion capture laboratory, shown in Figure 24. The lab is used for 

subject preparation, warm-up, motion recording, data processing, and data analysis. The 

system is equipped with a 12-camera Optitrack optical motion capture system tracking at 

a frame rate of 250 fps with real-time capability. The lab also holds a treadmill, 

biomechanical experimentation stairs with hand rails, a high speed video camera (Sony), 

and two single axis Vernier analog force plates. Moreover, a full safety harness system is 

installed with adjustable attachment points and a re-configurable unistrut rail for support 

during gait. A PC computer runs the data collection and analysis software and is linked to 

a password protected remote server for data storage. Skeletal models can be fit to the 

actors using NaturalPoint's ARENA software environment, along with the custom 

definition of rigid body models. Tracked motion can be exported in a number of standard 

formats including C3D, which stores 3D coordinate information of the markers, and BVH 

which provides skeleton hierarchy information in addition to the 3-D motion data.  

For the purposes of our study, the actor was equipped with 21 reflective markers, 

the locations of which were tracked during data recording. And then a highly accurate 3-

dimentional representation of the performed action was formed. The data was exported to 

BVH file formats, Biovision hierarchical data, which is the standard optical marker-based 

file format that includes skeletal data in addition to the markers. The anterior view of the 
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location of these 21 joints/markers in a sample exported BVH file is depicted in Figure 

27. 

. 

 

Figure 24 The Motion Capture System 

 

Affine Transformation Estimation 

 

Affine transformation, which preserves collinearity (maps parallel lines to parallel 

lines) and ratios of distances, is a parametric and geometric transformation. Affine 

transformations can be constructed by any combination of translations, scales, flips and 

sequences of rotations. 

Six-parameter affine transformation model is given in Equation 18. 
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ቆ
࢚࢕࢈࢕࢘௫݌

࢚࢕࢈࢕࢘௬݌
ቇ = ቂ

ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶቃ ቆ

࢔ࢇ࢓࢛ࢎ௫݌

࢔ࢇ࢓࢛ࢎ௬݌
ቇ + ൬ܾଵܾଶ

൰ (18)	 

 

where ݌௫࢚࢕࢈࢕࢘ and ݌௬࢚࢕࢈࢕࢘ are the eight limit point  features found in experiment 2 and 

 ,are the eight limit point features from the motion capture data  ࢔ࢇ࢓࢛ࢎ௬݌ and ࢔ࢇ࢓࢛ࢎ௫݌

{ܽଵଵ ܽଵଶ ܽଶଵ ܽଶଶ ܾଵ ܾଶ} are the affine transform parameters, which are account 

for the deformations and translations. The {ܽଵଵ ܽଵଶ ܽଶଵ ܽଶଶ} parameters account for 

the deformations while the {ܾଵ ܾଶ} parameters are account for the translations. This 

over-determined system was solved using the pseudo-inverse, which used SVD methods 

to find the least-squares solution for these affine parameters. 

 

Motion Capture Data, Affine Transformation and PONNET 

 

In order to transform the motion from the recorded motion capture data to the 

BHR, first the recorded data is transformed into BHR perspective and then feed into 

PONNET. PONNET gives the joint positions at each time step and the controller actuates 

to the motors, which brings the joints to the desired position. 

 

Dynamic Time Warping 

 

Dynamic Time Warping (DTW) is a distance measurement technique that creates 

a non-linear mapping of one time sequence to another by minimizing the distance 

between the two and maintaining the important features [119]. This technique is very 
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similar to how humans compare curves by finding the most important features of curves 

such as sudden turns, starting points and end points and comparing these features in two 

sequences. In recent years, it has been accepted as an important tool for clustering [120], 

bioinformatics [121], indexing time series [122] and classification [119]. 

Despite the time complexity of DTW, DTW is superior to other distance 

measurement techniques such as the Euclidean  distance metric, Minkowski distance, 

Chebyshev distance and Manhattan distance which have been widely used, despite their 

known weakness of sensitivity to distortion in time axis [119] [123] .  

The matching path between two sequences is the most important part of the 

comparison of two sequences. The matching techniques determine which points match 

and are to be used to calculate the distance between the two sequences. The graphical 

comparison of two matching techniques, one-to-one and DTW is shown in Figure 25. 

The DTW technique is able to compare two sequences by matching the important 

features such as sudden turns, starting points and end points in two sequences [7]. 

 

 
Figure 25. Comparison of two sequences a) one-to-one, b) DTW [124]. 

 

The Dynamic Time Warping Algorithm 

 

Suppose that we have two sequences, H (sequence from the motion capture data) 

and R (sequence from the execution of behaviors of BHR). 
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ܪ = ℎଵ, ℎଶ … ℎ௜ … 	ℎ௡
ܴ = ,ଵݎ ଶݎ … ௝ݎ … ௠ݎ	

(19) 

 

The n-by-m distance matrix contains the norm-2 Euclidean distances ݀(ℎ௜,ݎ௝) 

between the two points ℎ௜, and	ݎ௝. Each matrix element (݅, ݆) corresponds to the distance 

between the points ℎ௜, and	ݎ௝. A warping path	ܹ, is an adjacent set of matrix elements 

that defines a mapping between ܪ and	ܴ, and the kth element is defined as ݓ௞ = 	 (݅, ݆)௞	 

as shown in Figure 26 [124]. 

 
Figure 26. An example warping path [125] 

 

 

ܹ = ଶݓ,ଵݓ ௞ݓ… … ௄ݓ	 	 	 ,݉)max	݁ݎℎ݁ݓ ݊) ≤ 	ܭ ≤ ݉ + ݊ − 1  
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There are three constraints that are applied to DTW. 

 The warping path should start and finish in diagonally opposite corner cells, given 

by ݓଵ = (1,1)  and ݓ௄ = (݉,݊)	of the matrix. 

 Given the location of the path at ݓ௞  then the next location  ݓ௞ାଵ	should be one of 

the adjacent cells to	ݓ௞ , which implies continuity. 

 The path should be monotonically increasing. 

 

The path that gives the minimum of the cumulative distances of the adjacent elements 

is found by using a search tree in dynamic programming. This path is used to calculate 

the DTW of motion capture data sequence and robot motion sequence, as shown in 

Equation XXX.   

(ܴ,ܪ)ܹܶܦ = ݉݅݊ ൝ඥ∑ ௞ݓ
௄
௞ୀଵ

ܭ
൘ ൡ (20)\ 

 

Design Problem 

 

Let ൛ݔ௟௘௙௧௛௨௠௔௡(݊ܶ) (ܶ݊)௟௘௙௧௛௨௠௔௡ݕ ௛௨௠௔௡ݏ
௛௨௠௔௡(݊ܶ)ൟ be the positions (horizontal and 

vertical) and size of the virtual lefthand and൛ݔ௥௜௚௛௧௛௨௠௔௡(݊ܶ) (ܶ݊)௥௜௚௛௧௛௨௠௔௡ݕ  	௥௜௚௛௧௛௨௠௔௡(݊ܶ)ൟݏ

be the positions (horizontal and vertical) and size of the virtual right hand, at the ݊ݐℎ step 

of the recorded motion capture data. Use found affine transformation to find 

(ܶ݊)௥௘ௗ௥௢௕௢௧ݔ} (ܶ݊)௥௘ௗ௥௢௕௢௧ݕ (ܶ݊)௚௥௘௘௡௥௢௕௢௧ݔ൛	௥௘ௗ௥௢௕௢௧(݊ܶ)}ܽ݊݀ݏ (ܶ݊)௚௥௘௘௡௥௢௕௢௧ݕ  ௚௥௘௘௡௥௢௕௢௧(݊ܶ)ൟݏ

Use PONNET and use the result of the affine transformation as input to create the 

sequence of desired joint positions. Examine how efficient the controller moves the joints 

to these desired references using dynamic time warping method. 
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Figure 27. Sample Exported BVH File. The stick figures depict the location of 
markers/joints. 
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VIII. EXPERIMENT RESULTS AND CONCLUSION 

 

Results 

 

 Supervised learning vector quantization (LVQ), learning vector quantization with 

silhouette validation (LVQS) and unsupervised learning (SOM) methods were used to 

find the limb affordances of BHR.  The performance of the methods depends on how they 

correlated the motors with the arms. The number of actuators ݉ is six because only the 

upper body motors were used. From Figure 8, the subgroups, ܯଵ and ܯଶ, can be clearly 

shown that motors 1, 3 and 5 are the actuators of the right arm,  ܯଵ subgroup and motors 

2, 4 and 6 are the actuators of the left arm, ܯଶ subgroup. 

 In the first babbling stage, random sinusoidal angle references, for 20 babbling trials, 

the sampling time,	ܶ, of 125 milliseconds, 100 for ݊ steps for a full sinusoidal cycle were 

given to the six actuators of BHR The changes in the position of the fixation point were 

recorded and created the matrix in Equation 19. This data was used to train SOM, LVQ 

and LVQs networks. The size of the data,ॿ, collected was 16000 data points = 20 (N, 

total number of babbling trials) x 6 (total number of motors) x 100 (total time steps) + 20 

(N, total number of trials) x 2 (total number of fixation point directions) x 100 (total time 

steps). The recorded matrix is shown in Equation 21. 
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X=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ (ܶ)ଵଵݍ (ܶ)ଶଵݍ ⋯ (ܶ)଺ଵݍ (ܶ)ଵݔ (ܶ)ଵݕ
ଵଵ(2ܶ)ݍ ଶଵ(2ܶ)ݍ ⋯ ଺ଵ(2ܶ)ݍ ଵ(2ܶ)ݔ ଵ(2ܶ)ݕ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ଵଵ(100ܶ)ݍ ଵଵ(100ܶ)ݍ ⋯ ଺ଵ(100ܶ)ݍ ଵ(100ܶ)ݔ ଵ(100ܶ)ݕ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
(ܶ)ଵଶ଴ݍ (ܶ)ଶଶ଴ݍ ⋯ (ܶ)଺ଶ଴ݍ (ܶ)ଶ଴ݔ (ܶ)ଶ଴ݕ
ଵଶ଴(2ܶ)ݍ ଶଶ଴(2ܶ)ݍ ⋯ ଺ଶ଴(2ܶ)ݍ ଶ଴(2ܶ)ݔ ଶ଴(2ܶ)ݕ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ଵଶ଴(100ܶ)ݍ ଶଶ଴(100ܶ)ݍ ⋯ ଺ଶ଴(100ܶ)ݍ ଶ଴(100ܶ)ݔ ⎦ଶ଴(100ܶ)ݕ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ଶ଴଴଴௫଼

(21) 

  

 SOM networks with 5x5, 7x7, 15x15, 20x20 and 30x30 neurons were created and 

trained for 100 epochs, an example of the weight matrix is shown in Figure 28. Due to 

the problem of stacking in local minimum, this process was repeated 50 times with 

different network initialization and each time the performance of the network was 

recorded and the results were shown in Figure 28. 

  It is hard to figure out how SOM weights correlated with the other from Figure 28 so 

the autocorrelation of weights are given in Table 1.The calculation of the performance 

depends on the autocorrelation of the weights in the network. In each row, the two 

number of columns, which have the biggest values (one of them is always 1), show the 

highest correlation of two motors. If this pair is in one of the subgroups ܯଵ		or ܯଶ, it is 

assumed that the algorithm succeeds for this row. If all the rows have a pair which 

belongs to one of these subgroup, the performance criteria is %100 successful.  For 

example, at the first row in Table 1, the column numbers 1 and 5 are the highest 

correlated pair and belong toܯଵ		. 
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Figure 28. The visualization of the SOM weights after training. Dark colored regions 
mean that the weight distances are far apart from each other in this region. 

.  

Table 1 Autocorrelation calculations of SOM weight vector 
Autocorrelation Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 
Weight 1 1 0.2096 -0.2179 -0.0436 -0.0925 0.0376 
Weight 2 0.2096 1 0.1432 -0.232 -0.2139 0.0959 
Weight 3 -0.2179 0.1432 1 -0.0084 0.2323 -0.0549 
Weight 4 -0.0436 -0.232 -0.0084 1 0.1177 -0.299 
Weight 5 -0.0925 -0.2139 0.2323 0.1177 1 0.0385 
Weight 6 0.0376 0.0959 -0.0549 -0.299 0.0385 1 

 

 LVQ networks with 5x5, 7x7, 15x15, 20x20 and 30x30 neurons were created and 

trained for 100 epochs, an example of the weight matrix is shown in Figure 33. Due to 

the problem of stacking in local minimum, this process was repeated 50 times with 
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different network initialization and each time the performance of the network was 

recorded and the results were shown in Figure 34. 

 The target vector was prepared for the LVQ network by using a k-means clustering to 

divide the fixation points into k number of clusters in which each fixation point belonged 

to the cluster with the nearest mean. The number of clusters is an important parameter 

and wrong choice of this number may yield poor results so in order to show the 

importance of this parameter, two groups of LVQ networks, one with a random number 

between 5-15 of target classes and the other with a number of target classes determined 

the silhouette validation method were trained and the performance of them are shown in 

Figure 34. 

 To find the number of clusters using the silhouette validation method, the data is 

clustered into various numbers of clusters using k-means algorithm and the largest overall 

average silhouette score indicates the best clustering number. Consequently, the number 

of cluster with maximum overall average silhouette score is taken as the optimal number 

of the clusters. Figure 29 shows the means of these silhouette scores of the clusters and 

10 is the highest score. 
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Figure 29 Mean silhouette scores for various cluster numbers. The maximum silhouette 
score is 0.386 for the cluster number 10. 

 

The target data after dividing into 10 clusters by the k-means algorithm for the 

LVQS is shown in Figure 31. In order to compare the performance of the cluster numbers 

for the given data set, the silhouette values for the best cluster number, 10, and the worst 

cluster number are shown in Figure 30. 
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Figure 30 Silhouette values for the cluster number 10 (up) and the cluster number 24. 
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Figure 31 K-means clustering of the fixation point positions into 10 classes. 
 

 There is an another way to find a good estimate for the number of the clusters for 

the clustering of the recorded fixation points, first a distance matrix is created and using 

this matrix a similarity matrix created. After the singular value decomposition of this 

similarity matrix, the diagonal matrix gave us a good estimate of the numbers of clusters 

that should be used for LVQ and it was shown that this number also holds the good 

choice of number of clusters found in the silhouette validation method. 
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Suppose that we have the data of recorded m number of fixation point samples, in 2D 

pixel coordinates, F, which is a 2-by-m matrix. 

 

ܨ =

⎩
⎪⎪
⎨

⎪⎪
⎧

(ଵݕ,ଵݔ)
⋮

(௜ݕ,௜ݔ)
⋮

,௝ݔ) (௝ݕ
⋮

௠ݔ) ⎭(௠ݕ,
⎪⎪
⎬

⎪⎪
⎫

(22) 

 

The m-by-m distance matrix contains the norm-2 Euclidean distances 

,(௜ݕ,௜ݔ))݀ ,௜ݔ) between the two points ((௝ݕ,௝ݔ) ,௝ݔ) ௜) andݕ  .Each matrix element	௝)ݕ

(݅, ݆) corresponds to the distance between the points(ݔ௜,ݕ௜) and	(ݔ௝,  .  The similarity	௝)ݕ

matrix is an m-by-m matrix, the elements of which are found by using the Equation 23 

for every element in the distance matrix. 

 

,࢏)࢙ (࢐ = 	 ૛(࢐,࢏)ࢊ)ିࢋ
૛ ) (23) 

 

The result of the diagonal matrix found by the singular value decomposition of 

this similarity matrix is shown in Figure 32. The diagonal values after the SVD 

decomposition.. 
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Figure 32. The diagonal values after the SVD decomposition. 

 

As it is shown in Figure 32, there is a sharp jump between 8 and 12, which is also 

very close to the cluster number found that fits to this data from the silhouette validation 

method. 

  After finding the number of clusters for LVQ networks, an example LVQS 

network with 7x7 neurons was created and trained for 2000 epochs with a learning rate of 

0.01 and target vector that had 10 classes. The weights of this LVQS are shown in Figure 

33.  
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Figure 33. The visualization of the LVQS weights after training. 
 

Table 2. Autocorrelation calculations of LVQS weight vector 
Autocorrelation Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 
Weight 1 1 0.0611 -0.5776 -0.1104 -0.7584 -0.195 
Weight 2 0.0611 1 -0.2113 0.3484 0.1812 0.3156 
Weight 3 -0.5776 -0.2113 1 0.5051 0.5604 -0.0065 
Weight 4 -0.1104 0.3484 0.5051 1 0.3352 0.6168 
Weight 5 -0.7584 0.1812 0.5604 0.3352 1 0.1304 
Weight 6 -0.195 0.3156 -0.0065 0.6168 0.1304 1 

 

The same performance test was used as the one for SOMS to show the 

performance of LVQ and LVQS methods. To show the performance of all these methods 

two babbling data sets were gathered and these methods were applied on them. The 

results were shown in Figure 34. 
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Figure 34 The performance of SOM, LVQ and LVQS methods. 
 

Figure 34 shows that supervised learning techniques are superior to unsupervised 

SOMs. All the methods gave similar result for different babbling trails. The performance 

difference between the LVQ and LVQS training is not significantly different than each 

other, so the effect of selecting the best cluster number for clustering the target class has 

no or a little effect on the performance of the learning. 

In stage 2, the position control neural network (PONNET) which finds the 

relation between the joint angles and the pixel-wise position and the size of the markers 

which are attached on the arms of the robot, a three layer, 100 neurons backpropagation 

neural network was used and trained for 1000 epochs. 

In stage 3, after finding the affine transformations, the BVH files for different 

behaviors were transformed into the BHR perspective and the trajectory were fed into the 
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PONNET. The results of the PONNET controller for different behaviors, pull/push/lift 

are shown in Figure 35, Figure 36 and Figure 37. 

 

Figure 35 PONNET output for push behavior. The red marker is the output of PONNET 
and the blue marker is the normalized motion from the motion capture system. . The 

black lines show the DTW distances. 
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Figure 36 PONNET output for pull behavior. The red marker is the output of PONNET 
and the blue marker is the normalized motion from the motion capture system. The black 

lines show the DTW distances. 
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Figure 37 PONNET output for lift behavior. The red markers are the output of PONNET 
for the left arm, the cyan markers are the output of the PONNET for the left arm, the blue 
markers are the normalized motion for left arm from the motion capture system and the 

purple markers are the normalized motion for the right arm from the motion capture 
system. The black lines show the DTW distances. 

 

 
In order to show the performance of the approach the DTW distances of the 

motion capture data and the robot motion data are calculated and show in Table 3.  
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Table 3. DTW distances between human and robot motion sequences. 
 

DTW Motion Capture Sequences 

Distances Push Pull Lift-
Left Lift-Right 

R
ob

ot
 M

ot
io

n 
Se

qu
en

ce
s 

Push 1.22  6.37 3.8 6.3 

Pull 5.47 1.6 6.19 3.28 

Lift-Left 4.51 9.12 1.62 8.59 

Lift-Right 6.45 4.94 7.29 2.69 

 
The distances on the diagonal shows that the robot motion and human motions 

sequences for the specific behavior are noticeably close to each other than other behavior 

sequences. 

 

Conclusion 

 

Recently the idea of imitation learning – designing robots that can learn from 

imitation – has started to attract increasing attention in the field of robotics as it offers a 

promising method to automate the tedious manual programming of robots. 

Implementation of imitation mechanisms is offered as a possible solution for 

problems created by sophisticated software systems, control of human programmers and 

task specificity used in robots. In this way, robots can learn to execute an action or task 

by merely observing someone else, without any knowledge of complicated programming 

languages. 
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Imitation learning also offers promising directions to gain insight into faster 

affordance learning and perceptual-motor control mechanism which can ultimately lead 

to developing of autonomous humanoid robots. Imitation learning offers promise for the 

realm of humanoid robots and robots that look and behave like human beings.  

In this research, how a robot could babble to get data to build limb affordances by 

processing it using LVQs was demonstrated. LVQ, LVQS and SOM methods were 

compared and it was shown that LVQ and LVQS could find the relations, whereas SOM 

couldn’t find any clear relation between motors. 

These results can be considered as the first steps towards allowing robots to 

systematically learn how to integrate perception, action, tasks and goal information from 

a relatively small number of experiences much like a human being does, so as to generate 

adaptive behaviors efficiently and flexibly. 

 

Future Work 

 

In this dissertation, a developmental approach for affordance and imitation 

learning was discussed, and was demonstrated using a humanoid robot BHR kit. The 

approach could be expanded to address other aspects of this approach, which can be: 

 

Using stereo camera 

 

At birth vision is not very accurate and it is not fully developed until about several 

years after birth. Depth perception, which is crucial for acting, develops gradually after 
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birth, and it is not until even 6-7 months of age that infants are capable of perceiving a 

three-dimensional shape. This ability further develops as infants enter the crawling age, 

which enables them to act upon the world using eye-hand-body coordination, then depth 

perception develops significantly. In a classic study, called "the visual cliff experiment"  

by Gibson and Walk [117], it was shown that when placed on a glass topped table that 

creates the impression of a cliff, infants with developed 3D views of their surroundings 

usually show signs of fear and avoid the deep side of a cliff. Most babies at crawling age 

show signs of depth perception, but this ability continues to improve and fine-tuned as 

they get more practice with crawling to reach out objects at different distances. Therefore 

the more experienced the babies are with crawling; the better they are in depth 

perception. Because binocular vision and full depth perception is not present very early in 

life, in our study we used a single camera to mimic monocular vision and simple 

perception. Using more complicated stereo image processing will allow the processing of 

spatial images and create more features that can be used to train the neural networks with 

more features. 

Motion capture from infants 

 

The approach in this paper was inspired from the developmental learning of 

infants from imitation. The BHR robot used the approach of an infant's imitation learning 

to imitate an adult's body movements from the motion capture data. According to 

Simulation Theory, which states that we understand others’ actions (and thus able to 

imitate) by using our own internal motor system as an emulator, an adult can learn or 

imitate more efficiently from another adult whose size is similar to his/her size [29] [30]. 
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On the other hand, according to the Meltzoff and Moore's research, newborns were 

shown to display facial gestures that matched those performed by an adult model [27]is a 

remarkable indication that infants as young as a few months old seem to be capable of 

replicating actions despite the differences in body size, perspective of view and lack of 

conception of self-other distinction. A follow-up study in which the observed data was 

captured using an infant's actions rather than an adult would contribute to the findings of 

this research. 

 

Online training vs. offline training 

 

All the neural networks were trained by using offline gathered data because of 

that, both systems could not achieve high learning performance or low learning errors 

satisfactorily or stuck at a local minimum that is worse than the global one. In the future, 

using an online learning systems or an adopting online training ability for the neural 

networks, can overcome these problems. As discussed in [116], using a better online 

learning approach ensures that small learning rates will be sufficient to increase the 

learning performance of the neural networks. 
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