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CHAPTER I 

 

INTRODUCTION 

 

The nervous system is a complex organization of classes of neurons and 

glia that can be broken into a central component (CNS) and peripheral 

component (PNS). Integration of the CNS and PNS regulates many processes 

within a body, from movement of muscles to recognition of sensory stimuli. 

Connection between the CNS and PNS occurs via axons extending from 

neurons. Information is transmitted along axons in the form of action potentials: 

current that flows due to depolarization of the plasma membrane. Propagation of 

action potentials occurs by saltatory, or jumping, conduction due to the presence 

of myelin on the axon (Bunge, 1968; Baumann and Pham-Dinh, 2001). Sodium 

(Na+) channels cluster at nodes of Ranvier, regions where two myelin sheaths 

abut each other along the axon, and allow the influx of Na+ ions that depolarize 

the membrane (Sherman and Brophy, 2005). The depolarization propagates 

along the length of the axon to the terminal that contacts the next neuron in the 

circuit (Bean, 2007) 

 

Myelin is a multi-layered structure composed of compacted lipid rich 

membranes produced by glial cells in the CNS and PNS (Baumann and Pham-

Dinh, 2001). Oligodendrocytes in the CNS and Schwann cells in the PNS form 

myelin by extensions of plasma membrane which wrap around and ensheath 



 2 

axons (Bunge, 1968; Pfeiffer et al., 1993). A single oligodendrocyte can wrap 

multiple axons multiple times (Figure 1A) (Pfeiffer et al., 1993), while a single 

Schwann cell interacts with axons at a one-to-one ratio. Each myelin sheath can 

be divided into three regions bounded by nodes of Ranvier (Figure 1B) 

(Baumann and Pham-Dinh, 2001). As the membrane wraps around axons the 

ends loop down to form the paranode that separates the node from the 

internode, or interior of the myelin. The loops are connected to each other by 

adherens junctions and to axons by tight junctions (Salzer et al., 2008). Between 

the paranode and internode lies the juxtaparanode region. Within the 

juxtaparanode lie potassium (K+) channels that are thought to play a role in the 

resting potential of the internode and prevent excitation from the node spreading 

into the internode to keep the flow of the signal down the axon (Salzer et al., 

2008). 

 

Oligodendrocytes and disease 

The importance of myelination, and hence oligodendrocytes, is 

demonstrated by diseases that alter development or maintenance of the myelin 

sheath and oligodendrocytes. Developmental diseases of oligodendrocytes are 

referred to as leukodystrophies. Later in adulthood, diseases such as multiple 

sclerosis (MS) or injury to the CNS are responsible for demyelination. 

 



NodePNJXP PN JXPInternode Internode

Na+K+ K+

A

B

3

Figure 1 Schematic of oligodendrocyte and myelin regions. (A) Graphic 
representation of a single oligodendrocyte wrapping several axons with myelin 
segments. (B) Cross-section of adjoining myeling sections showing regions and 
channel types associated with each. JXP = juxtaparanode, PN = paranode, Node 
= Node of Ranvier, K+ = potassium channels, and Na+ = sodium channels.

Oligodendrocyte Axons
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Leukodystrophies 

 Leukodystrophies are a group of inherited disorders characterized by 

impairment of the growth or maintenance of myelin in the CNS, for example the 

X-linked disease Pelizaeus-Merzbacher disease (PMD) caused by mutation or 

duplication of the proteolipid protein (PLP) locus and Krabbe disease caused by 

mutation of galactocerebroside β galacosidase (GALC) that is required for 

galactolipid metabolism in myelin (reviewed in (Perlman and Mar, 2012). Most 

have early onsets in infancy or childhood, although some do have incidences of 

later onset that are typically less severe. Common symptoms include problems 

with movement, speech, hearing, vision, and behavior (Lyon et al., 2006; Costello 

et al., 2009).  

PMD symptoms include hypomyelination, problems with movement, 

feeding, and possibly seizures depending on the severity of the disease (Hobson 

and Garbern, 2012). Treatments include medications, physical therapy, and 

surgery. There is currently no cure for PMD.  

Krabbe disease is a demyelinating disorder with incomplete metabolism of 

galactocerebroside due to mutations of GALC. There are two infantile onset 

forms: early (prior to 6 months of age) and late (6 months to 4 years of age) 

(Wenger et.al 2012; (Pastores, 2009). Most cases are of the early infantile form, 

however there are also juvenile and adult-onset forms (Pastores, 2009; Perlman 

and Mar, 2012). There is also no cure for Krabbe disease. 
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Demyelinating Diseases 

Diseases, such as MS or the peripheral myelin disease Charcot-Marie-

Tooth, or CNS injury can lead to demyelination of axons. Loss of myelin affects 

the ability of axons to efficiently conduct nerve impulses.  MS is an inflammatory 

demyelinating disease that is believed to be autoimmune in nature. MS can be 

divided into two classes: secondary progressive, which begins with episodes of 

relapsing and remitting symptoms followed by increasing disability and primary 

progressive, which is an accumulation of disability with no remission (Lucchinetti 

et al., 2005). Failure of remyelination in MS could be due to recruitment or 

differentiation of oligodendrocytes (Franklin, 2002; John et al., 2002). However, 

recruitment of OPCs to lesions does not appear to contribute to lack of 

remyelination because lesions have cells that express markers of OPCs (Wood 

and Bunge, 1991; Blakemore and Keirstead, 1999; Franklin, 1999). As the 

disease progresses, the ability of these cells to differentiate appears to decrease 

for reasons that have yet to be elucidated (Wolswijk, 2000; 2002; Kuhlmann et 

al., 2008). The mechanisms regulating initial remyelination and progressive 

failure of remyelination are not clear. Understanding the mechanisms used during 

development could be applied to promote more efficient remyelination. 

 

Development of oligodendrocytes 

Oligodendrocytes arise from discrete regions of the brain and spinal cord 

then migrate to occupy axon tracts, also called the white matter due to the color 



 6 

of the region after fixation. During development, the number of oligodendrocytes 

is regulated to ensure that they correlate to the axons that need to be wrapped 

(Barres and Raff, 1994; Calver et al., 1998). However, the mechanisms that 

regulate OPC specification and instruct oligodendrocytes to wrap particular axons 

are unclear.  

 

Spinal cord patterning 

 Dorsoventral patterning of the vertebrate spinal cord is based on the 

opposing concentration gradients of two morphogens: sonic hedgehog (Shh) 

ventrally and bone morphogenic protein (BMP) dorsally. Ectopic placement of 

notochords in chick and Xenopus induced ventral cells types, such as floor plate 

cells and motor neurons, in the spinal cord adjacent to the ectopic notochord (van 

Straaten et al., 1988; Clarke et al., 1991; Yamada et al., 1991). This suggested 

the notochord produces a signal that is necessary for the generation of ventral 

spinal cord cells. However, the signaling molecule remained unknown. Shh was 

identified as a homolog of the Drosophila segment polarity hedgehog (hh) gene 

in mammals and zebrafish (Echelard et al., 1993; Roelink et al., 1994). Based on 

sequence homology to the Drosophila hh gene, Shh was predicted to be a 

secreted protein (Echelard et al., 1993) which raised the possibility it could act on 

cells away from its origin. Additionally, expression of Shh was observed along the 

ventral midline and in the notochord and floor plate (Echelard et al., 1993) 

suggesting a possible role in ventral precursor specification. Neural explants 
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cultured with cells expressing Shh induced floor plate and motor neurons in a 

dose-dependent manner (Roelink et al., 1994). Further, placement of Shh-

secreting cells near neural plate explants of chick explants induced floor plate 

cells and motor neurons (Roelink et al., 1995). Together, these experiments 

demonstrate the notochord secretes Shh to pattern the ventral neural tube. 

Ventral precursor domains along the dorsoventral axis are established due 

to the expression of homeodomain transcription factors such as nkx2.2, nkx6.1 

and nkx6.2, and the basic helix-loop-helix (bHLH) gene olig2 by graded Shh 

activity (Roelink et al., 1995; Briscoe et al., 1999; 2000; Lu et al., 2000; Zhou et 

al., 2000; Park et al., 2002). Cross-repression of these transcription factors 

restricts the boundaries between the ventral domains and subsequent classes of 

neurons and glia that arise from each (Jessell, 2000). Oligodendrocytes arise 

from the restricted ventral precursor motor neuron, pMN, domain in the 

vertebrate spinal cord of Xenopus, chick, zebrafish, mouse and rat (Figure 2A) 

(Warf et al., 1991; Pringle and Richardson, 1993; Maier and Miller, 1995; ONO et 

al., 1995; Park et al., 2002) that also produces motor neurons. Recent evidence 

also points to a dorsal origin of oligodendrocytes (Fogarty et al., 2005; Vallstedt 

et al., 2005; Kessaris et al., 2006). Markers of oligodendrocytes were observed 

when the ventral contribution was eliminated due to loss of the pMN domain 

(Richardson et al., 2006). Additionally, these oligodendrocytes also expressed 

markers of dorsal progenitor cells (Fogarty et al., 2005; Vallstedt et al., 2005). 



Olig2+

Precursor

Olig2+

Sox10+

Oligodendrocyte
Progenitor Cell 

(OPC)

~36 hpf

Olig2+

Sox10+

Plp1a+

Immature
Premyelinating

Oligodendrocyte

~48 hpf

Olig2+

Sox10+

Plp1a+

MBP+
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Myelinating
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~72-96 hpf
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Figure 2 Overview of spinal cord patterning and oligodendrocyte develop-
ment. (A) Transverse section of a spinal cord with the ventral domains indicated 
on left and stages of oligodendrocyte development on right. Red represents 
gradient of Shh expression. Grey represents gradient of BMP expression. (B) 
Stages of oligodendrocyte development showing changes in process formation 
and expression of different markers along the lineage, as well as approximate 
timing in zebrafish.
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Groups seeking to find early markers of oligodendrocytes identified the 

Olig genes. Based on the knowledge that several bHLH transcription factors such 

as Neurogenin and NeuroD are critical for motor neuron specification (Lee et al., 

1995; Ma et al., 1996; Sommer et al., 1996), it was hypothesized that novel bHLH 

transcription factors would also be required for oligodendrocyte development. 

Two bHLH genes, Olig1 and Olig2, were identified and found to be expressed in 

oligodendrocytes (Lu et al., 2000; Takebayashi et al., 2000; Zhou et al., 2000). 

Expression of Olig2 preceeded the earliest oligodendrocyte markers, raising the 

possibility it could also be a marker of pMN precursors (Lu et al., 2000; 

Takebayashi et al., 2000). Indeed, double mutants lacking both Olig1 and Olig2 

lose oligodendrocytes and generate V2 interneurons in place of mototneurons 

(Zhou and Anderson, 2002). Further support comes from induction of motor 

neuron markers by misexpression of Olig2 in chick (Novitch et al., 2001). 

 

Oligodendrocyte lineage progression 

Oligodendrocytes proceed through a differentiation process marked by the 

appearance of receptors, transcription factors and myelin proteins at distinct 

times, starting as specified oligodendrocyte progenitor cells (OPCs) and 

continuing through to mature oligodendrocytes with compact myelin.  

Prior to the initial specification of OPCs, precursors within the pMN domain 

must undergo a switch from neurogenesis to oligodendrogenesis. Expression of 

Ngn1 and Ngn2 in pMN precursors during neurogenesis suggests OPC 
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specification is inhibited by Ngns (Zhou et al., 2001). Alternatively, Sox9, NFIA, 

and NFIB expression is initiated in precursors prior to gliogenesis and are 

required for timing of oligodendrogenesis (Stolt et al., 2003; Deneen et al., 2006), 

indicating they influence the switch.  

Initial specification markers of oligodendrocytes include platelet-derived 

growth factor receptor α (PDGFRα) and the HMG-box transcription factor Sox10. 

Addition of the ligand platelet-derived growth factor A (PDGF-A) to cells isolated 

from the optic nerve induced formation of oligodendrocytes (Raff et al., 1988). 

PDGFRα expression in oligodendrocytes was first demonstrated in cultures of O-

2A cells (a cell type that gives rise to both oligodendrocytes and type-2 

astrocytes in vitro) purified from the cerebral hemispheres of rat brain (McKinnon 

et al., 1990). Additionally, overexpression of the PDGF-AA ligand produced an 

excess of OPCs as indicated by labeling for PDGFRα (Calver et al., 1998). 

However, zebrafish do not express pdgfrα or pdgf-a in the spinal cord, indicating 

that oligodendrocytes in zebrafish do not require this pathway to produce 

oligodendrocytes (Liu et al., 2002a; 2002b).  

Sox10 expression precedes that of PDGFRα and is maintained throughout 

differentiation of the oligodendrocyte lineage (Figure 2B) (Kuhlbrodt et al., 1998). 

However, loss of Sox10 does not alter specification of oligodendrocytes as 

demonstrated by LacZ knock-in to the Sox10 locus in mice and the colorless (cls) 

mutant in zebrafish. Nevertheless, both produce deficits in differentiation and 
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myelination (Stolt, 2002; Takada and Appel, 2010) suggesting Sox10 is required 

for progression of the lineage. 

Following specification, OPCs divide and migrate to occupy the spinal 

cord. During this immature stage, cells have a characteristic bipolar morphology 

(Pfeiffer et al., 1993; McMorris and McKinnon, 1996). Timelapse imaging of 

zebrafish embryos reveals dynamic process extension and retraction as OPCs 

migrate (Kirby et al., 2006). Contact with processes from neighboring cells 

induces retraction and appears to space OPCs along axons and relative to each 

other (Kirby et al., 2006). Expression of proteolipid protein 1a (plp1a) begins 

during this stage (Figure 2B). Loss of plp in the naturally-occurring mutants jimpy 

and rumpshaker leads to hypomyelination (Griffiths et al., 1990; Fanarraga et al., 

1992). An interesting observation in the rumpshaker mutants is an increase in 

oligodendrocyte number in the spinal cord at postnatal day 16. This suggests that 

hypomyelination might induce proliferation of OPCs to compensate for the deficit 

of myelin in these mutants (Fanarraga et al., 1992).     

As immature oligodendrocytes become post-mitotic and wrap axons they 

begin to express genes specific to myelin, such as mbp and myelin protein zero 

(mpz or P0) (Figure 2B). Loss of these genes results in defects of the myelin 

sheath as demonstrated by the shiverer mouse, which has a mutation within Mbp 

(Brady et al., 1999) and leads to dysmyelination of axons. Expression of mbp is 

regulated by Sox10 (Stolt, 2002)  
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Myelin gene regulatory factor (MRF) is a recently identified transcription 

factor required for expression of myelin genes. Mrf was identified in a 

transcriptome analysis of postmitotic oligodendrocytes from postnatal mouse 

forebrain (Cahoy et al., 2008; Emery et al., 2009). Knockdown of Mrf with small-

interfering RNAs (siRNAs) in oligodendrocyte cultures or conditional knockout of 

a floxed mrf allele by olig2 driven Cre resulted in a decrease in the expression of 

the myelin genes mbp (myelin basic protein) and mog (myelin oligodendrocyte 

glycoprotein). Overexpression of Mrf in mouse OPCs in vitro and in vivo 

electroporation of chick embryos resulted in increased expression of MBP and 

MOG (Emery et al., 2009). 

 

Notch  

While many of the steps of oligodendrocyte differentiation are marked by 

expression of various transcription factors and myelin proteins, the mechanisms 

that regulate the process are not well understood. One pathway known to play a 

role in oligodendrocyte development is the Notch signaling pathway (Park and 

Appel, 2003; Park et al., 2005; Thomas and van Meyel, 2006; Shin et al., 2007; 

Taylor et al., 2007; Rabadán et al., 2012).  

Identification of Notch first came from studies of the Drosophilia wing disc 

nearly a century ago by TH Morgan and colleagues. The Notch locus is situated 

on the X-chromosome and the mutation Morgan studied was a small deletion 

including Notch (Dexter, 1914; Mohr, 1919). Heterozygous female flies with this 

Notch mutation display a notch in the wing disc, while homozygous females and 
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hemizygous males are embryonic lethal indicating a dominant, halploinsufficient, 

X-linked allele. Although the chromosomal region was known for some time, the 

links between gene, protein, and function were not understood. Cloning of Notch 

revealed a receptor important for signaling between cells (Artavanis-Tsakonas et 

al., 1983; Kidd et al., 1983; Tsakonas and Grimwade, 1983). Identification of 

homologs in C. elegans and Xenopus followed (Greenwald et al., 1983; Austin 

and Kimble, 1987; Greenwald, 1987; Priess et al., 1987; Coffman et al., 1990). 

 

Notch signaling pathway 

The Notch signaling pathway consists of a transmembrane receptor on a 

signal-receiving cell that binds to a transmembrane ligand on a neighboring 

signal-sending cell (Figure 3). Mammals possess four Notch receptors (Notch 1-

4) and a total of 5 ligands from the DSL (Delta-Serrate-Lag1) family: Delta-like 1, 

3 and 4 and Jagged (Serrate-like) 1 and 2. After ligand binding, the Notch 

receptor undergoes two proteolytic cleavages to produce the Notch-intracellular 

domain (NICD). First ADAM-family metalloproteases (Wen et al., 1997; van 

Tetering et al., 2009) cleave the Notch receptor at the S2 site within the 

membrane followed by a γ-secretase complex (Fortini, 2002; Selkoe and Kopan, 

2003) NICD then translocates to the nucleus and interacts with the co-activator 

RBP-Jκ to activate downstream targets, notably members of the Hes 

transcription factor family (Schroeter et al., 1998; Castro, 2005) and reviewed in 

(Borggrefe and Oswald, 2009)).  



NICD

Cytoplasm

Nucleus

Delta
Jagged
Serrate

Notch

RBP-J

Co-repressors

NICD
RBP-J

Co-activators

14

Figure 3 Overview of Notch signaling pathway. Neighboring cells send and 
receive signals via membrane-associated ligands and receptors. The signal-
sending cell expresses a ligand (Delta, Jagged, or Serrate) while the signal-
receiving cell expresses a Notch receptor. Activation of the Notch receptor by a 
ligand produces a proteolytic cleavage of the receptor releasing the intracellular 
domain (NICD). NICD then translocates to the nucleus to complex with 
co-activators and induce transcription of downstream target genes.

Signal-sending cell

Signal-receiving cell
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Notch signaling is most commonly associated with a process termed 

lateral inhibition by which one cell inhibits a neighboring cell from acquiring the 

same fate as itself (Artavanis-Tsakonas et al., 1999). Typically one cell will 

differentiate while the other remains in an undifferentiated state. Another possible 

result of Notch signaling is a cell fate decision. In the spinal cord for example, 

cells from the p2 domain produce two different types of interneurons (V2a or  

V2b) in response to Notch activity (Kimura et al., 2008). Activation of Notch 

signaling produces V2b interneurons while inhibition produces V2a (Del Barrio et 

al., 2007). 

Another example of cell fate specification by Notch in the spinal cord is the 

production of neurons and glia. Loss of Notch signaling results in increased 

neurogenesis at the expense of glia, including oligodendrocytes, due to failure of 

neural precursor maintenance (Chitnis et al., 1995; de la et al., 1997; Appel and 

Eisen, 1998; Appel et al., 2001; Lütolf et al., 2002; Itoh et al., 2003; Park and 

Appel, 2003; Imayoshi et al., 2010), and elevated expression of the proneural 

genes Ngn1 and Ngn2 (Yang et al., 2006). If loss of function of Notch signaling 

leads to deficits of OPCs, gain of function would be expected increase OPCs at 

the expense of motor neurons. Consistent with this hypothesis, global induction 

of a constitutively active form of NICD in zebrafish leads to decreased 

neurogenesis and a two-fold increase in oligodendrocytes (Park and Appel, 

2003). However, formation of the excess OPCs appeared to come from pMN 

precursors, indicating other factors are required (Park and Appel, 2003).  
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Post-translational modifications of the Notch receptor 

Notch is comprised of several domains important to function. The 

extracellular region contains epidermal-like growth factor (EGF) and LIN repeats 

which can be post-translationally modified, while the intracellular regions contains 

a RAM domain, ankyrin repeats and a PEST domain. As Notch is synthesized in 

the endoplasmic reticulum (ER) it undergoes post-translation modifications of the 

extracellular regions and cleavage of the S1 (site1) by furin. Notch receptor is 

then translocated to the cell membrane as a heterodimer (reviewed in (Michailov 

et al., 2004; Fortini, 2009)). 

Notch signaling must be regulated to ensure that cells acquire the 

appropriate fate for the tissue (Bray, 2006; Andersson et al., 2011). One 

mechanism to regulate signaling is through the ligands. Signaling between the 

ligand and receptor can happen either in trans (between two different cells) or cis 

(within the same cell) (Sprinzak et al., 2010). Typically cis interactions inhibit 

Notch, while trans interactions activate Notch. Investigation of photoreceptor 

specification in the fly eye demonstrated that mosaic mutation of Delta results in 

fate transformation only in mutant cells (Miller et al., 2009). These results indicate 

Delta expression in wildtype cells is able to regulate Notch signaling by cis-

interactions. Two possible mechanisms for cis-inhibition are 1) during trafficking 

to the cellular membrane or 2) once Notch reaches the cell surface. Interactions 

of the Notch receptor with cis or trans ligands are thought to regulate and fine-

tune the level of signaling in a cell (Rowitch and Kriegstein, 2010; Sprinzak et al., 

2010). 
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Ubiquitin ligases 

 Another mechanism for regulating protein activity is through protein 

degradation by the proteosome. During development, it is critical that factors for 

a given stage be regulated such that they are only available to exert their effect 

at the proper time. The question arises as to how a cell knows to degrade a 

particular protein. Signaling within a cell produces many modifications to proteins 

that influence downstream effectors, including ubiquitination. Ubiqiuitin is a small 

peptide covalently attached to the protein sometimes as a single unit and at other 

times in long chains. The degree of ubiquitination determines the cell’s response 

to proteins. Proteins with multiple ubiquitin molecules, polyubiquitination, are 

degraded by the 26S proteosome. The most well characterized role for the 

ubiquitin proteasome system is in cell cycle control (Glotzer et al., 1991) and 

reviewed in (Nakayama and Nakayama, 2006). 

 Addition of ubiquitin to proteins requires a series of enzymes: E1s are 

ubiquitin-activating; E2s conjugate ubiquitin and mediate the transfer to 

substrates via E3 ubiquitin ligases, the substrate recognition component of the 

complex (Fang and Weissman, 2004; Parpura et al., 2012). Four main families of 

E3s are classified by the following structural motifs: HECT domain, RING-finger 

domain, U-box domain or PHD-finger domain. The largest family is the RING-

finger domain containing, which is further subdivided into classes that contain 

one of seven different Cullins (reviewed in (Fang and Weissman, 2004; Ishibashi 

et al., 2006)). The most common cullin-based E3s are the Anaphase Promoting 

Complex/Cyclosome (APC/C) and SCF (Skp1/Cul1/F-box-protein).  



 18 

APC/C and SCF E3 ligase complexes 

As might be suggested by the name, APC/C regulates the transition from 

metaphase to anaphase during mitosis as well as cell cycle exit by targeting 

proteins involved in the cell cycle. APC/C is a complex of 13 different proteins, 

including Apc1 (cullin subunit) and Apc11 (RING-finger domain containing). Much 

research is currently being done to understand the role of the additional proteins 

in the complex (reviewed in (Peters, 2006; Saijo and Glass, 2011)). 

SCF complexes on the other hand are active from G1 until entry to mitosis 

and comprised of 3 invariable subunits: Skp1 (adaptor protein), Cul1 (cullin 

subunit), Rbx1 (RING-domain containing), plus the variable F-box protein (Fbx) 

which is the substrate recognition subunit. Skp1 binds to the F-box domain of 

Fbx proteins to bring the substrate in close proximity to the complex for transfer 

of ubiquitin. 

 

F-box protein family 

Fbx proteins contain a common amino-terminal F-box domain, which is 

required for binding to the E3 complex, as well as a C-terminal motif critical for 

substrate recognition. Fbx proteins are classified based on their C-terminal 

motifs: FBXLs contain Leucine-Rich Repeats (LRRs), FBXWs contain WD40 

repeats, and FBXO contain either a different or no motif. WD40 repeats in Fbxw 

proteins form β-propeller sheets that fold to generate a binding pocket for the 

substrate.  
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Fbxw7 was first identified as Cdc4 in a screen in yeast looking for cell 

cycle effectors (Hereford and Hartwell, 1974; Prinz et al., 2011). A screen in C. 

elegans for suppressors of a partial loss of function of the Notch homologue LIN-

12 discovered Sel-10 as a negative regulator of lin-12 (ref). Further 

characterization in C. elegans determined sel-10 is a homologue of cdc4 

(Hubbard et al., 1997; Salzer et al., 2008). The mammalian homologue was 

found by looking for F-box proteins that could bind specifically to CyclinE using 

tissue culture (Strohmaier et al., 2001; Salzer et al., 2008) and through 

identification of the mouse homologue (van Straaten et al., 1988; Clarke et al., 

1991; Yamada et al., 1991; Maruyama, 2001). In addition to the F-box and WD 

repeat domains, Fbxw7 also contains a dimerization domain thought to be 

important for increased binding efficiency to suboptimal substrates (Roelink et al., 

1995; Welcker and Clurman, 2007). 

By using the yeast target Sic1, Nash et. al delineated the Cdc4-phospho-

degron (CPD) motif with the following consensus sequence: I/L–I/L/P–pT–P– 

<K/R>4, where <X> indicates unfavorable residues (Roelink et al., 1995; Briscoe 

et al., 1999; 2000; Nash et al., 2001). Sic1 contains nine suboptimal motifs, of 

which six must be phosphorylated for Cdc4(Fbxw7) recognition (Warf et al., 

1991; Pringle and Richardson, 1993; Maier and Miller, 1995; ONO et al., 1995; 

Nash et al., 2001; Park et al., 2002). Mutations of the CPDs result in disruption of 

Fbxw7 binding and substrate stabilization (reviewed in (Rowitch, 2004; Welcker 

and Clurman, 2008)).  
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Mammals possess three isoforms of Fbxw7: α, β, and γ. Each of which 

contains a unique 5’ exon joined to a common set of exons (Spruck et al., 2002; 

Liu et al., 2002a; 2002b). Each isoform contains its own promoter to generate 

isoform-specific transcripts that results in tissue-specific expression of each 

isoform. Fbxw7-α is ubiquitously expressed, Fbxw7-β is enriched in the CNS, 

and Fbxw7γ is higher in muscle (Raff et al., 1988; Matsumoto et al., 2006). An 

additional level of complexity comes from the dimerization capacity of Fbxw7 that 

allows for degradation of suboptimal phosphorylation of targets (Welcker and 

Clurman, 2007). 

 

Fbxw7 targets 

Cyclin E is the most well characterized target of Fbxw7 and regulates the 

transition from the G1 phase to S phase in mitotically cycling cells. Misregulation 

of Cyclin E can allow a cell enter S phase before the cell is ready, if DNA 

damage needs to be repaired, for example. Premature entry into S-phase leads 

to aberrant mitosis and misappropriation of chromosomes and chromosomal 

instability.  

Notch signaling results in the release of NICD that translocates to the 

nucleus to activate gene transcription. Characterization of NICD determined the 

carboxy-terminal PEST domain contains the CPD required for degradation by 

Fbxw7 (Calver et al., 1998; Oberg, 2001; Fryer et al., 2004). Knockout mice for 

fbxw7 die in utero due to defects in hematopoiesis and vascularization, both of 



 21 

which are known to require Notch signaling (Lee et al., 1995; Ma et al., 1996; 

Sommer et al., 1996; Tetzlaff et al., 2004; Tsunematsu, 2004). 

Identification of c-Myc as a target of Fbxw7 came from a study that 

investigated one of two sites known to be important for c-Myc stability and 

frequently mutated in cancers, MB1 (Myc box 1) (Lu et al., 2000; Takebayashi et 

al., 2000; Zhou et al., 2000; Yada et al., 2004). Further characterization of the 

interaction between c-Myc and Fbxw7 revealed each isoform had different 

subcellular localizations that determined target degradation based on dominant 

signals within the unique first exon. Fbxw7α contains a nuclear localization signal 

(NLS), Fbxw7β possess a hydrophobic transmembrane domain, and Fbxw7γ 

does not contain a dominant signal and localizes to the nucleolus due to a signal 

in the common region. For example, targeting of c-Myc was shown to occur in 

the nucleolus (Novitch et al., 2001; Welcker et al., 2004) and also in the nucleus 

(Popov et al., 2007; Hueber and Lohmann, 2008). 

Mao et al. (Mao et al., 2008; Tümpel et al., 2009) used the consensus 

CPD sequence to scan a mouse protein database for novel targets of Fbxw7. 

The HEAT domain of mammalian target of rapamycin (mTOR) was pulled out as 

containing a CPD. Investigation with Fbxw7-/- mouse embryonic fibroblasts 

(MEFs) revealed increased levels of mTOR as well as phosphorylated mTOR 

with no change in upstream signaling.  Additionally, ubquitination of mTOR was 

found only in cells with functional Fbxw7. Differentiation of oligodendrocytes has 

been shown to be regulated by mTOR (Narayanan et al., 2009; Gotoh et al., 

2011). 
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Role of Fbxw7 in cancer 

 Mutations in fbxw7 have been found in various types of cancer, including 

blood, bile duct, breast, colon, endrometrium, stomach, lung, ovary, pancreas 

and prostrate (reviewed in (Kuhlbrodt et al., 1998; Akhoondi et al., 2007; Tan et 

al., 2008). Most of the mutations are missense with hotspots located at the 

arginine residues critical for substrate recognition and binding. While the overall 

rate of cancers with fbxw7 mutations is low, evidence suggests Fbxw7 may be a 

haploinsufficient tumor suppressor as many other cancers contain deletions of 

the chromosomal region 4q31.3 that includes the fbxw7 locus. A study 

investigating mutations in relation to lung cancer also found a difference between 

missense mutations and null alleles with regard to embryonic lethality and 

morphological deficits (Stolt, 2002; Takada and Appel, 2010; Davis et al., 2011). 

 Support for the halpoinsufficiency of fbxw7 is exemplified by mice that are 

doubly heterozygous for mutation of fbxw7 and p53. Double heterozygous mice 

exhibit increased rates of tumorigenesis after irradiation compared with either 

wildtype or p53-/- mice. Additionally, the mice developed epithelial tumors that 

single p53-/- normally do not produce (Mao et al., 2004; Cahoy et al., 2008; 

Emery et al., 2009).  

Altering the activity of signaling pathways, including Notch, or application 

growth factors, including PDGF-A, modulates OPC number and differentiation. 

However, the intracellular mechanisms involved in these pathways that influence 

OPC number remain to be elucidated. We examined the idea that the excess 

OPCs formed in the zebrafish mutant vu56 arise due to misregulation of Notch 
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activity. The work presented here demonstrates Fbxw7 regulation of Notch 

signaling is one aspect that controls oligodendrocyte number. 
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CHAPTER II 

 

METHODS 

Zebrafish husbandry  

Embryos were produced by pair wise matings, raised at 28.5°C in egg water or 

embryo medium (EM), and staged to hours post-fertilization (hpf) or days post-

fertilization (dpf) as previously described (Kimmel et al., 1995; Emery et al., 

2009). Zebrafish strains used include: AB, Tg(olig2:EGFP) (Brady et al., 1999; 

Shin et al., 2003), Tg(Tp1bglob:hmgb1-mCherry)jh11 (Griffiths et al., 1990; 

Fanarraga et al., 1992; Parsons et al., 2009) and fbxw7vu56. 

 

Mutant screen  

The vu56 allele was identified in a screen for mutations that altered the number 

and distribution of OPCs, revealed by Tg(olig2:EGFP) reporter expression. AB 

males were mutagenized with N-ethyl N-nitrosourea (ENU) as described 

previously (Solnica-Krezel et al., 1994; Hobson and Garbern, 2012). 

Mutagenized males were crossed to Tg(olig2:EGFP) females to create an F1 

generation. F1 fish were raised to adulthood and crossed to wild-type 

Tg(olig2:egfp) fish to create F2 families. F2 siblings were randomly intercrossed 

and their progeny screened using fluorescent stereomicroscopes. Identified F2 

vu56 heterozygotes were outcrossed to AB fish to propagate the line and to the 

WIK laboratory strain to create families for genetic mapping. The vu56 allele has 

been maintained by repeated outcrossing to AB fish.    
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Immunohistochemistry  

Embryos were fixed using 4% paraformaldehyde, embedded, frozen and 

sectioned using a cryostat microtome as previously described (Park and Appel, 

2003; Lucchinetti et al., 2005). We used the following primary antibodies: rabbit 

anti-Sox10 (1:500) (Franklin, 2002; John et al., 2002; Park et al., 2005), mouse 

anti-Isl (39.4D5, Developmental Studies Hybridoma Bank (DSHB) Iowa City, 

Iowa USA, 1:100), mouse anti-Zn8 (1:1000, DSHB), mouse anti-Hu (1:100, 

Invitrogen) and mouse anti-Zrf1 (1:250, DSHB). For fluorescent detection of 

antibody labeling, we used Alexa Fluor 568 goat anti-mouse or goat anti-rabbit 

conjugates (Invitrogen, 1:200). Images were captured using either a Zeiss 

Axiovert 200 inverted microscope equipped with a PerkinElmer Ultraview ERS 

Live Cell Imager spinning disc confocal system or a Zeiss AxioObserver inverted 

microscope equipped with a PerkinElmer UltraVIEW VoX confocal system and 

analyzed with Volocity software (PerkinElmer) and Adobe Photoshop. Image 

adjustments were limited to contrast enhancement, level settings, auto tone and 

cropping. 

 

Mapping and PCR genotyping  

fbxw7vu56 mutants were identified at 3 dpf and collected with wild-type siblings for 

isolation of DNA in lysis buffer (10 mM Tris pH 8.0, 50 mM KCl, 0.3% Tween-20, 

0.3% NP-40) with 1 µg/µL Proteinase K at 55°C overnight. Pooled DNA was 

used for bulked-segregant analysis (Wood and Bunge, 1991; Postlethwait and 
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Talbot, 1997; Blakemore and Keirstead, 1999; Franklin, 1999) with published 

simple sequence length polymorphisms (SSLPs) (www.zfin.org). Individual 

embryos were used to determine recombination frequencies for finer mapping of 

fbxw7vu56. The following primers were designed to amplify sequences flanking the 

mutation for restriction fragment length polymorphism genotyping: fbxw7 forward 

primer: 5’-CAG TTG ATT TAC CTT TGC GT-3’; reverse primer: 5’-TGT GTC 

AAT GTG TTT CGG TT-3’. Products were digested with BamHI and HinfI and 

analyzed using agarose gel electrophoresis.  

 

Isoform cloning and RT-PCR analysis of expression  

We obtained clones corresponding to fbxw7 α, β and γ transcripts using PCR to 

amplify genomic sequences, which were cloned into pCR2.1-TOPO vectors. The 

following primer pairs were used for amplification: α, 759 bp product, 5’-

CAGAATGCCAAGTCCTTGTC-3’/5’-CCTATTCGGTGAGCGAAGG-3’; β, 254 bp 

product, 5’-GGCTCAGTCAGTCCGCTCAG-3’/5’-

TTTATAGAAGATCATCTTTAAAGTG-3’; γ, 520 bp product, 5’-

GCTTGGTGTGAACACTTAAAAC-3’/5’-CATAATTGCATCATTTCCACATT-3’. To 

investigate expression at different developmental stages we used the isoform 

specific forward primers with the reverse primer 5’-CGT CGT CTC TGT GGA 

ACC-3’ from the common region to amplify cDNA from single-cell, 24 hpf, and 3 

dpf embryos. 
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In situ RNA hybridization  

The following RNA probes were generated: fbxw7, which recognizes all isoforms, 

from an EST (EB835996), α-fbxw7, β-fbxw7, and γ-fbxw7 isoform specific probes 

from 24 hpf cDNA, and plp1a and mbp (Wolswijk, 2000; Br samle and Halpern, 

2002; Wolswijk, 2002; Kuhlmann et al., 2008). in situ RNA hybridization was 

performed according to published methods (Hauptmann and Gerster, 2000; Park 

and Appel, 2003; Park et al., 2005; Thomas and van Meyel, 2006; Shin et al., 

2007; Taylor et al., 2007; Rabadán et al., 2012). Embryos were either mounted 

for whole-mount imaging or embedded and sectioned as above. Images were 

captured using either an Olympus AX70 microscope equipped with DIC optics, a 

Retiga Exi-cooled CCD camera (QImaging) and Openlab software (Improvision) 

or a similarly equipped Zeiss AxioObserver inverted microscope and Volocity 

software (Improvision). Image data were exported to Adobe Photoshop and 

adjustments were limited to level settings, color balance and cropping. 

 

Quantitative PCR  

RNA was isolated from 3 sets of 20 pooled wild-type larvae and 3 sets of 20 

pooled fbxw7–/– larvae at 4 dpf. Reverse Transcriptase was performed using 

Superscript III First Strand Synthesis for qPCR (Invitrogen). Real-time qPCR was 

performed on each sample in triplicate using an Applied Biosystems StepOne 

Plus machine and software version 2.1. Taqman Gene Expression Assays 

(Applied Biosystems) were used to detect her4.2 (Dr03160688_g1) and bactin1 

(Dr03432610_m1). 
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In vivo time-lapse imaging  

Embryos were lightly anesthetized using Tricaine, mounted on their sides in 0.7% 

low-melting temperature agarose in 35 mm glass bottom dishes and covered with 

EM containing Tricaine. Z-stack images were captured every 15 minutes for 24 

hours using an inverted Zeiss AxioObserver equipped with motorized and heated 

stage and a PerkinElmer UltraVIEW VoX confocal system. The imaging chamber 

was maintained at 28.5°C. 4D data sets were analyzed using Volocity software 

(PerkinElmer) and movies were exported to QuickTime. Image adjustments were 

limited to contrast enhancements and cropping frame size. 

 

Morpholino injections  

fbxw7SSMO, consisting of the sequence 5’-

GCCAACTACAACAAGACAGAGACAG-3’ (Gene Tools, LLC) was designed to 

have sequence complementary to the boundary of intron 4 and exon 5 of fbxw7. 

The MO was resuspended in sterile water to a stock concentration of 1 mM and 

stored at room temperature. The stock was diluted in 2X injection buffer (240 mM 

KCl, 40 mM HEPES, and 0.5% Phenol red) to a concentration of 0.125 mM and 

2nL was injected into the yolk of one- to two-cell stage embryos. 

 

DAPT treatments  

The γ-secretase inhibitor N-[N-(3,5-difluoro- phenacetyl-l-alanyl)]-S-phenylglycine 

t-butyl ester (DAPT) (Calbiochem) was resuspended in dimethyl sulfoxide 

(DMSO) to a stock concentration of 20 mM and stored in aliquots at -20°C. 
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Embryos were manually dechorionated at 36 hpf and placed in 25 µM or 50 µM 

in EM with 1% DMSO for 12 hours at 28.5°C. DAPT solution was replaced with 

EM and embryos were allowed to develop to 3 dpf at 28.5°C. At 3 dpf embryos 

were imaged individually using a stereomicroscope equipped with bright field and 

epifluorescence optics followed by DNA isolation and fbxw7vu56 genotyping as 

described above. 

 

BrdU labeling 

Dechorionated embryos were labeled with 5-bromo-2′-deoxyuridine (BrdU) 

(Roche) by incubating them in 20 mM BrdU in EM with 10% DMSO at room 

temperature for 30 min. The embryos were then rinsed and maintain at room 

temperature for 30 min and then fixed using 4% paraformaldehyde. After 

embedding and sectioning as described above, the tissue sections were treated 

with 2 N HCl for 30 min before processing for anti-BrdU immunohistochemistry. 

 

Data quantification and statistical analysis  

Cell counts were obtained by direct observation of sections using the 

microscopes described above. For Sox10, mbp, and plp1a quantification, 10 

sections per embryo were counted to produce the average number per section. 

For Isl quantification, 9 sections per embryo were counted to produce the 

average number per section. GraphPad Prism software was used for statistical 

analysis. 
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CHAPTER III 

 

CHARACTERIZATION OF THE vu56 MUTATION 

 

Introduction 

 The central nervous system (CNS) is comprised of a variety of neuronal 

and glial subtypes. Oligodendrocytes are a glial subtype responsible for 

producing a specialized plasma membrane termed myelin. During development 

oligodendrocytes extend processes that wrap axons with myelin, which allows for 

the saltatory conduction of nerve impulses. Diseases and injuries that disrupt the 

myelin sheath underscore the importance of this modification.  

Oligodendrocyte progenitors were first identified by their expression of 

platelet-derived growth factor receptor α (PDGFRα) in rat spinal cord (Dexter, 

1914; Mohr, 1919; Pringle and Richardson, 1993) and 04 in chick (Artavanis-

Tsakonas et al., 1983; Kidd et al., 1983; Tsakonas and Grimwade, 1983; ONO et 

al., 1995; Miller et al., 1997).  Later, the basic helix-loop-helix (bHLH) 

transcription factors Olig1 and 2 (Greenwald et al., 1983; Austin and Kimble, 

1987; Greenwald, 1987; Priess et al., 1987; Coffman et al., 1990; Lu et al., 2000; 

Takebayashi et al., 2000; Zhou et al., 2000) were identified and used to 

determine that motor neuron and oligodendrocyte cell fates arise from the ventral 

pMN domain of the spinal cord (Schroeter et al., 1998; Richardson et al., 2000; 

Park et al., 2002). However, oligodendrocyte specification is not completely 
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restricted to the ventral spinal cord as several groups have demonstrated 

oligodendrogenesis in the dorsal spinal cord.  (Cai et al., 2005; Fogarty et al., 

2005; Vallstedt et al., 2005; Kessaris et al., 2006; Richardson et al., 2006; 

Kimura et al., 2008).  

Another early marker of specified oligodendrocyte progenitor cells (OPCs) 

is Sox10, which, in combination with Olig1/2, is reported to regulate expression of 

the myelin gene myelin basic protein (mbp) (Irvine, 1999; Stolt, 2002; Li et al., 

2007; Liu et al., 2007).  In mice, loss of Sox10, in conjunction with loss of Sox9 

after specification, leads to apoptosis of OPCs (Finzsch et al., 2008; Oginuma et 

al., 2010; Niwa et al., 2011). Whereas in the zebrafish, the colorless (cls) mutant, 

a nonsense mutation of Sox10, is sufficient to induce apoptosis of OPCs (Takada 

et al., 2010). Together, these results suggest expression of Sox10 is required for 

survival and maturation of OPCs.  

After specification, OPCs enter a stage described as immature 

oligodendrocytes where they have a bipolar morphology and are both 

proliferative and migratory. Immature OPCs migrate to populate the white matter 

of the CNS. As OPCs proceed through the lineage they begin to express proteins 

required for myelination, such as plp1a, myelin protein zero, and mbp. Each 

stage along the differentiation pathway is distinguished by the expression of 

various transcription factors and myelin components. What remains unknown are 

the signals that instruct an oligodendrocyte to stop dividing and migrating, wrap 

axons, and produce myelin-specific proteins. 
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We used a forward genetic screen to discover novel mechanisms involved 

in oligodendrocyte development. We identified one mutation, vu56, which 

produced an excess number of OPCs. Positional cloning revealed fbxw7, a gene 

encoding an E3 ubiqutin ligase, was disrupted in vu56. Fbxw7 (F-box and WD 

repeat domain-containing 7) is the substrate recognition component of the SCF 

(Skp1-Cul1-F-box) E3 ubiquitin ligase complex that targets proteins for 

degradation (Welcker and Clurman, 2008). The experiments below describe the 

vu56 oligodendrocyte phenotype and identify fbxw7 as the gene disrupted. 

 

Results 

 

Identification and characterization of the vu56 mutant phenotype  

Using the Tg(olig2:EGFP) reporter line to assay for changes in the number 

and distribution of oligodendrocytes, we identified one mutation, vu56, which 

resulted in an excess of EGFP+ dorsal spinal cord cells when homozygous at 3 

days post fertilization (dpf) (Figure 4A, B). Whereas mutant larvae were 

morphologically indistinguishable from wild-type siblings (Figure 4C & D), they 

died by 9 dpf due to a failure to inflate swim bladders, which are required for 

buoyancy and feeding. Immunohistochemistry of transverse sections labeled with 

Sox10 antibody demonstrated that all excess dorsal EGFP+ were also Sox10+ as 

were ventral cells in positions normally occupied by OPCs (Figure 4E-H). 

Quantification revealed mutant larvae had approximately 1.5 fold more Sox10+  
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Figure 4 Identification of vu56. (A-B) Lateral views of wild-type sibling and 
vu56 mutant larvae carrying theTg(olig2:EGFP) reporter (dorsal OPCs 
marked by brackets) at 3 dpf. (C-D) Brightfield images of larvae from A-B. 
(E-H) Transverse sections of 3 dpf wild-type sibling and vu56 mutants labeled 
with anti-Sox10 (red, arrowheads). Panels F and H are a merge with 
olig2:EGFP (green). I Quantification of Sox10+ cells per spinal cord section in 
wild-type sibling (wt) and vu56 mutants at 3, 4 and 6 dpf (n=17 wild-type and 
19 mutant at 3 dpf (p<0.0001), 7 wild-type and 10 mutant at 4 dpf (p=0.0002), 
5 wild-type and 5 mutant at 6 dpf (p=0.0357)). Error bars represent SEM.



 34 

cells per section compared to wild-type siblings, which persisted through at least 

6 dpf (Figure 4I).  

We next investigated the extent of differentiation of the excess OPCs by 

expression of markers of later stages of development using in situ RNA 

hybridization. The myelin genes plp1a and mbp were expressed along the pial 

surface of the spinal cord in both wild-type sibling and vu56-/- larvae. However, 

vu56 mutant larvae also ectopically expressed plp1a medially (Figure 5A-H). We 

also performed immunohistochemistry to detect MBP protein expression in the 

spinal cord. In both wild-type sibling and vu56-/- larvae, the myelination of the 

ventral longitudinal fascicles appears similar (Figure 5 I-L).  

 

Mapping of the vu56 mutation 

In order to uncover the underlying cause of the excess OPCs, it was 

necessary to determine the gene disrupted in vu56 mutant larvae. To determine 

the mutant loci, we used a feature of DNA termed simple sequence length 

polymorphisms (SSLPs). SSLPs are di- or tri-nucleotide sequences repeated a 

variable number of times. Similar to the different strains of mice used for 

experiments, zebrafish also have different laboratory strains that contain different 

SSLP repeat lengths. We crossed heterozygous carriers with a different 

background strain to generate a family with recombined SSLPs. As one gets near 

the mutation site, SSLPs from the original mutated strain will segregate together 

with no recombination. Genomic DNA isolated from identified vu56 mutants and 
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wild-type clutchmates was assayed by bulked segregant analysis (BSA) to 

identify a chromosomal region for the mutation. Briefly, DNA from 24 larvae each 

of vu56 mutants and wild-type siblings was pooled and assayed for SSLPs that 

displayed different SSLP banding patterns. Characterized SSLPs in zebrafish are 

referred to as zmarkers and their chromosomal locations are known (Shimoda et 

al., 1999; Geisler et al., 2007). BSA revealed the mutation resided within a 0.6 

cM region of chromosome 1. We refined the map with individual vu56 mutant 

larvae to determine recombination frequencies for other SSLPs in the region. 

The mutation is flanked by zmarker z63947 with 73 recombinants from a 

total of 454 mutant larvae for a recombination frequency of 16.1% and by 

zmarker z10315 with 4 recombinants from a total of 479 mutant larvae for a 

recombination frequency of 0.84% (Figure 6A). Within this region we identified 

fbxw7 as a candidate gene because expression of human FBXW7 was 

suppressed in gliomas (Gu et al., 2007).  

 

Characterization of the fbxw7 mutation 

Initially, Fbxw7 was a hypothetical protein in zebrafish based on sequence 

homology. Using Ensembl as a guide, we designed primers to amplify cDNA from 

vu56 mutant larvae and wild-type siblings. However, we were unable to amplify 

full-length cDNA to look for mutations. We decided to amplify individual exons 

from genomic DNA because fbxw7 contained just 12 exons. Sequencing of PCR 

products revealed a point mutation in what was then exon 9 that contains part of  
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the second (of eight total) WD repeats. Subsequent refinement of the zebrafish 

genome now places the mutation within exon 8 and a total of 11 exons for fbxw7. 

The vu56 mutation resulted in a G-to-A transversion (Figure 6C) and converts the 

neutral amino acid glycine to the negatively charged amino acid aspartate at the 

amino acid 261 position (Figure 6B). Both PolyPhen (Ramensky et al., 2002) and 

SIFT (Ng and Henikoff, 2001) characterize the mutation as detrimental. 

Another effect of the mutation is the conversion of a Restriction Fragment 

Length Polymorphism (RFLP) from a BamHI site to a HinfI site. We used this 

RFLP to test for linkage to the vu56 mutation. Larvae from intercrosses of 

heterozygous adults were assayed for the excess OPC phenotype and 

genotyped for the RFLP. Phenotypically identified wild-type larvae were either 

homozygous for the BamHI allele or heterozygous for both alleles. All 70 larvae 

identified as vu56 mutants were homozygous for the HinfI allele (Figure 6D). 

 

Validation of fbxw7 as the mutated gene producing the vu56 phenotype 

Antisense morpholino oligonucleotides either inhibit translation of mRNA 

by binding to the translation start site or block splicing of pre-mRNA by binding to 

an intron-exon boundary. Splice-blocking morpholinos typically splice out the 

targeted exon and yield a mRNA which is shorter than wildtype, however, it is 

also possible to produce a larger mRNA due to intronic inclusion. We designed a 

morpholino with sequence recognition to the intron 3/exon 4 boundary 

(fbxw7SSMO) to block splicing of the mRNA. Embryos were injected with a range 
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of fbxw7SSMO doses between 2ng – 8.5ng at the one- to two-cell stage. RT-PCR 

amplification of RNA collected at 24 hpf displayed a higher molecular weight 

band indicating intronic inclusion (Figure 7A). Sequencing of the product 

confirmed inclusion of a portion of intron 3 that resulted in a frameshift and 

premature stop codon thus rendering a null protein (Figure 7B).   

The lowest dose, 2 ng, phenocopied the morphology and excess dorsal 

GFP+ spinal cord cell phenotype of fbxw7vu56 (Figure 8A-D). Quantification of 

transverse sections labeled with Sox10 antibody demonstrated fbxw7SSMO 

injected embryos display a similar excess of OPCs (Figure 8E-I). Together with 

the sequence and expression data, we conclude vu56 is the result of mutation of 

fbxw7 and named the allele fbxw7vu56.  

 

Additional experiments 

We also had a translation blocking morpholino and second splice blocking 

morpholino designed. The translation blocking morpholino was based on the EST 

sequence and therefore only blocked the β-fbxw7 isoform, although this was 

unknown at the time. At a 2ng dose there was no apparent morphological or 

EGFP phenotype (Figure 9A-D). However, at 4 ng embryos were shorter and 

displayed smaller heads and heart edema (Figure 9E, F). Additionally, there was 

a dramatic decrease in EGFP+ cells. We did not investigate this phenotype 

further as we were unsure at that point if there were multiple isoforms and if the  
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result was due directly to the morpholino or off-target effects that sometimes 

produce cell death (ref). 

The second splice blocking morpholino was designed to the splice 

acceptor site of exon 5 just after the F-box domain. While this morpholino did 

result in inclusion of a 169 bp intron and a premature stop codon (Figure 10B), 

the splice blocking was incomplete and the embryos displayed no apparent 

change in OPC number or morphological phenotype (Figure 10A and data not 

shown). One possible reason for the lack of efficacy could relate to the size of the 

intron between exons 5 and 6, which is only 169bp. The secondary structure of 

the RNA could be such that access to the morpholino site it blocked. 

We also sought to rescue the fbxw7vu56-/- phenotype by using both mRNA 

and transient DNA injections. Because we were unable to clone full-length 

fragments from cDNA, we amplified the unique exon for each isoform and cloned 

it to the merged common region from the available ESTs. We constructed both 

myc-tagged and fusion proteins with fluorescent reporters. However, we were 

unable to reliably express Fbxw7. We did not attempt to rescue using fbxw7 from 

another animal. 

 

Discussion 

 

 A complete understanding of lineage progression of 

oligodendrocytes is important to determining what processes fail in disease and  
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how to activate an appropriate response to repair damage. Many signaling 

pathways are known to play roles during oligodendrocyte development. Shh is 

critical for specification of precursors in the ventral domain of the spinal cord  

(Orentas et al., 1999). Notch signaling has been demonstrated to inhibit 

neurogenesis to maintain a population of precursors for subsequent production of 

oligodendrocytes (Wang et al., 1998; Park and Appel, 2003). Additionally several 

growth factors are known to induce proliferation of OPCs, including PDGF-AA, 

fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1) (Barres and 

Raff, 1994; McMorris and McKinnon, 1996; Baron et al., 2002). Some of the 

pathways activated by these factors are also important during oligodendrocyte 

differentiation. PI3K (phosphoinositol 3-kinase) has been shown to be an 

intracellular mediator of PDGF signaling (Ebner et al., 2000). The integration of 

the known factors and signaling pathways to drive differentiation forward by 

inducing cell cycle exit and production of myelin is not well understood. 

During a forward genetic screen in zebrafish to uncover novel 

mechanisms regarding oligodendrocyte development, we identified a mutation 

vu56, which produced an excess number of OPCs. Mapping and sequencing of 

the mutation revealed a missense mutation in fbxw7. Fbxw7 is an E3 ubiquitin 

ligase important for the degradation of several proteins involved in cell cycle 

progression, including c-myc, Cyclin E, and Notch (Welcker and Clurman, 2008). 

Indeed, many cancers are known to have mutations in targets of Fbxw7 that 

render them insensitive to regulation by Fbxw7 (Bahram et al., 2000; Gregory 
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and Hann, 2000; Weng et al., 2004) or in Fbxw7 itself (Kemp et al., 2005; Lee et 

al., 2006; Akhoondi et al., 2007; O'Neil et al., 2007; Thompson et al., 2007). 

Fbxw7 expression may also be deregulated in cancer as evidenced by a 

repression of fbxw7β in gliomas, a cancer of the CNS (Gu et al., 2007). Also, 

fbxw7 heterozygous mice in combination with p53 heterozygousity have an 

increased incidence of tumors following radiation, indicating fbxw7 is a 

haploinsufficient tumor suppressor (Mao et al., 2004). 

 A curiosity with the fbxw7vu56-/- phenotype is the relatively normal 

morphology of the embryos. This can be accounted for by the nature of the 

mutation, a missense allele. Fbxw7 function may therefore only be partially 

decreased by the mutation. In agreement with this reasoning, increasing doses of 

fbxw7SSMO resulted in more severe morphological phenotypes, which is also 

consistent with the reported mouse knockout that dies embryonically around E9.5 

(Tetzlaff et al., 2004; Tsunematsu, 2004). 

 One now must ask how does Fbxw7 fit into the development of the 

oligodendrocyte lineage? Fbxw7 is known to regulate several cell cycle 

regulators. FGF2, alone and in combination with IGF-I, has been demonstrated to 

enhance cdk2 activity and association with Cyclin E, a protein regulated by 

Fbxw7 (Frederick and Wood, 2004). Additionally, previous results from the lab 

demonstrated another target of Fbxw7, Notch, is required during oligodendrocyte 

specification (Park and Appel, 2003). One or both of these proteins could be 

contributing to the excess OPCs in fbxw7vu56-/- larvae. 
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CHAPTER IV 

 

EXCESS OPCS ARISE FROM VENTRAL SPINAL CORD PRECURSORS 

The cloning of individual isoform exons was performed with the help of 
Macie Walker, post-doctoral researcher. RNA in situ hybridizations for the 
isoforms, BrdU and Sox2 immunohistochemistry were performed with the help of 
Christina Kearns, lab manager. 
 

Introduction 

 During development, cells of the central nervous system (CNS) must be 

produced at precise times and positions. Uncovering the mechanisms that 

generate the various neuronal and glial cell types is important to understanding 

both the normal architecture and functions of the CNS, as well as the defects 

caused by disease and injury. In particular the mechanisms that drive 

differentiation of oligodendrocytes from precursor to mature oligodendrocyte with 

compact myelin are not well understood.  

Opposing morphogen gradients in the spinal cord produce expression 

patterns of several transcription factors required for the specification of various 

cell types. Ventrally, sonic hedgehog (Shh) is initially expressed by the notochord 

to induce the floor plate which then also expresses Shh. Diffusion of Shh dorsally 

results in a graded induction of the Shh signaling pathway and expression of 

transcription factors within distinct precursor domains (Ericson et al., 1996; 

Tanabe and Jessell, 1996; Briscoe et al., 2000). Each domain then gives rise to a 
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particular set of neurons and glia. Dorsally, bone morphogenetic protein (BMP) is 

expressed in the roof plate and diffuses ventrally to induce the dorsal precursor 

domains of neurons and glia (Tanabe and Jessell, 1996). 

Oligodendrocytes arise from a ventral precursor domain termed pMN, 

precursor of Motor Neuron, which also produces motor neurons. Disruption of the 

morphogen Shh results in a ventral expansion of dorsal markers and loss of 

ventral cells types, including oligodendrocytes (Chiang et al., 1996; Ericson et al., 

1996). Deletion of transcription factors also affects specification within the spinal 

cord. Loss of olig2 results in loss of all pMN domain cell types and expansion of 

the p2 domain V2 interneurons (Lu et al., 2002; Takebayashi et al., 2002; Zhou 

and Anderson, 2002).  

Positional cloning revealed a missense mutation in fbxw7 in vu56 mutants. 

Fbxw7 is the substrate recognition component of the SCF ubiquitin ligase 

complex (Welcker and Clurman, 2008). Poly-ubiquitination leads to protein 

degradation by the proteasome. We demonstrate fbxw7 is expressed in the 

spinal cord during OPC specification. We also determine that zebrafish, like other 

vertebrates, express 3 isoforms of fbxw7 (α, β, and γ) that are differentially 

expressed throughout the embryo. 

Several questions arise concerning the relationship between fbxw7 and 

OPC specification. Is fbxw7 expressed within OPCs or precursor cells? Which 

cells generate the excess OPCs? We investigated the expression profiles of each 

isoform of fbxw7 at critical timepoints of oligodendrocyte development. Excess 
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OPCs could be from a cell fate error due to a failure of motor neuron 

specficiation, a general overgrowth of the spinal cord, or increased division of 

precursors or OPCS. We determined fbxw7-α and fbxw7-β are expressed at the 

right time and place during OPC specification. We also provided evidence that 

the excess OPCs arise from neural precursors in the pMN domain. 

  

Results 

Expression of fbxw7 during development 

We investigated the fbxw7 temporal and spatial expression to determine if 

it is consistent with the fbxw7vu56 phenotype. We first identified an expressed 

sequence tag (EST), EB835996, which contained the N-terminal half of fbxw7. A 

second EST, EG571371, contained the C-terminal sequence, a poly-A tail, and 

overlapped with EB835997. Splicing the two ESTs together produced a full-length 

cDNA that contained a transcriptional start site and a polyA tail. We used this 

spliced construct to design a RNA in situ hybridization probe that would detect all 

fbxw7 transcripts. Wild-type embryos from bud-stage (~10 hpf) through 3 dpf 

were assayed for expression of EB835996. At bud-stage, fbxw7 was expressed 

in the neuroectoderm from which the central nervous system develops (Figure 11 

A & B). By 24 hpf, expression is ubiquitous, though a distinct striped pattern is 

observed in the hindbrain that is reminiscent of rhombomeric boundaries (Figure 

11 C & D). Later at 36 hpf when OPCs begin to be specified, expression has 
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decreased in the muscle, but is still prominent in the brain and spinal cord as well 

as along the pronephric ducts and fin folds (Figure 11 E & F).  

 

Identification of zebrafish fbxw7 isoforms 

Mammals possess three isoforms of Fbxw7, α, β, and γ, which are 

transcribed from unique 5ʼ exons and joined to a common set of 10 exons 

(reviewed in (Welcker and Clurman, 2008)). Two of the unique exons contain 

dominant localization signals: α exon has a basic nuclear localization sequence 

(NLS) and β has a hydrophobic transmembrane domain (Welcker et al., 2004). 

However, γ does not contain any signal and localizes to the nucleolus due to a 

signal in the common region (Welcker et al., 2004). The question then arises if 

zebrafish also contain multiple isoforms of fbxw7. 

We determined the EST used for probe synthesis, EB835996, contained 

sequence with homology to the β isoform (Figure 12 A). As with Xenopus β-

fbxw7 (Almeida et al., 2010), the zebrafish β-fbxw7 exon is shorter than the 

mammalian homolog and does not possess the hydrophobic domain (Figure 12 

A).  

In order to detect other isoforms, we used 5ʼRACE technology to identify 

the 5ʼ end of fbxw7. cDNA generated from RNA isolated from 24 hpf embryos 

was used as the input for the Roche 5ʼ/3ʼ RACE kit. A fragment of approximately 

440bp was amplified. Sequencing of the product revealed homology to the 

mammalian γ exon. We designated this isoform as γ-fbxw7. However, two  
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Figure 11 Pan-expression of fbxw7 during development. (A) Ventral view of 
whole-mount neural plate stage embryo. (B) Transverse section of dashed line 
in (A). (C-D) Expression at 24 hpf. (E-F) Expression at 36 hpf.
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interesting points can be made here 1) we were only able to amplify product 

related to the γ isoform not β that we knew zebrafish expressed because of the 

EST data and 2) we also did not amplify any sequence corresponding to an α 

exon. One possibility for the lack of β-fbxw7 could be due to a low abundance at 

the timepoint we collected RNA. A second possibility could be the stability of both 

β-fbxw7 and α-fbxw7 isoforms. 

Identification of the α isoform was more difficult, as we were initially unable 

to amplify full-length cDNA based on sequence from Ensembl! that was predicted 

to have homology to mammalian α-fbxw7. We turned to ESTs to identify one that 

might contain the α isoform. BM829297 had published sequence similar to the 

mammalian α exon. However, with an EST it is common for only a portion of the 

inserted fragment to be sequenced, meaning that the EST clone could contain a 

significant portion, or even the full-length, of a gene. Upon sequencing in our 

hands, BM829297 did contain sequence corresponding to the α exon, however, 

at just where the exon should splice to the first exon of the common region the 

sequence no longer aligns to fbxw7. BLAT analysis of the remaining sequence 

places it on a different chromosome, likely indicating an error during the 

production of the EST. However, armed with this α exon sequence, and the C-

terminus from β, we designed primers to amplify full-length α-fbxw7 cDNA. 
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exon. Dr = Danio rerio, Hs = Homo sapiens, Xl = Xenopus laevis. Boxes in 
alpha indicate nuclear localization signals. Box in beta indicates hydrophobic 
domain. (B) RT-PCR Expression of each isoform during zebafish develop-
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Expression of fbxw7 isoforms during development 

We next looked at the expression of each isoform during development 

using both RT-PCR and RNA in situ hybridization. RT-PCR of RNA harvested 

from one-cell stage embryos produced α and β products, but not γ, whereas 24 

hpf, and 3 dpf embryos produced all three isoforms (Figure 12 B). These results 

demonstrate α-fbxw7 and β-fbxw7 are maternally deposited, whereas all three 

isoforms are transcribed during later stages of development. 

RNA probes for each isoform were produced using fragments amplified 

from genomic DNA that included some 5ʼ UTR in order to generate probes of 

sufficient size to recognize each isoform.  We performed RNA in situ 

hybridization at 24, 30 and 36 hpf, corresponding to the approximate times when 

neurogenesis ceases and just when oligodendrogenesis begins, respectively. 

Both α and β isoforms displayed ubiquitous expression and diffuse spinal cord 

expression at 24 hpf (Figure 13 A & B). By 30 hpf however, expression of both 

isoforms in the spinal cord was restricted to the medial septum and outer lateral 

edges (Figure 13 D & E). At 36 hpf, fbxw7-α continues to be expressed at high 

levels along the medial septum while fbxw7-β expression was weaker and 

restricted to the ventral spinal cord (Figure 13 G & H). fbxw7-γ was expressed in 

the somites and not expressed the spinal cord at any timepoint (Figure 13 C, F, & 

I). 

 



 55 

Motor neuron number unchanged in fbxw7vu56 mutants 

To investigate the source of the excess OPCs, we investigated several 

possibilities. One mechanism for the excess OPCs is a fate switch error such that 

cells normally fated to give rise to motor neurons fail to do so and subsequently 

produce oligodendrocytes. To test this, we quantified the number of motor 

neurons in transverse sections using anti-Islet1/2 (anti-Isl) to label all primary and 

secondary motor neurons in the spinal cord (Figure 14 A & B). This antibody also 

labels some sensory neurons in the very dorsal aspect of the spinal cord, 

however these cells are easy to distinguish based on location and were not 

included in the counts. At 3 dpf vu56-/- embryos had no change in the number of 

Isl+ cells per section compared with wild-type siblings (Figure 14 C).  

A second mechanism is disruption of the all cell types in the spinal cord of 

vu56-/- embryos. We used anti-Zrf-1 to look at radial glial fibers, anti-Zn-8 to look 

specifically at secondary motor neurons, and anti-HuC as a pan-neuronal marker. 

All marker expression appeared normal in vu56-/- embryos (Figure 14 D-I). 

 

pMN precursors produce the excess OPCS in fbxw7vu56 mutants 

A third mechanism for the excess OPCs is excessive division after 

specification. We tested this by time-lapse imaging. During zebrafish 

development, spinal cord OPCs begin to migrate from their ventral origin at 

approximately 48 hpf in an anterior to posterior wave. We imaged multiple 

embryos of one clutch produced from an intercross of vu56+/- carriers from 48  
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Figure 13 Expression of fbxw7 isoforms. (A-I) Transverse sections of 
embryos detecting RNA expression of α, β, and γ isoforms.
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hpf, when migration first begins, through 72 hpf, when most migration is 

complete. Embryos were genotyped after completion of the time-lapses. Over the 

course of the time-lapses we were able to observe division of OPCs, both in wild-

type siblings and fbxw7vu56-/- embryos. We quantified the number of divisions 

observed for fbxw7vu56+/+, fbxw7vu56+/-, and fbxw7vu56-/- embryos. We did not 

observe more divisions on a per cell basis in fbxw7vu56-/- embryos nor did we  

observe any OPCs that divided more than once (Figure 15 E). However, we did 

notice an apparent increase in the number of cells that migrated dorsally from the 

ventral precursor domain (Figure 15 A – Cʼʼ). Quantification of the number of 

OPCs occupying the dorsal from 48 hpf and 63 hpf revealed fbxw7vu56+/+ embryos 

had an average of 17 dorsal OPCs between somites 5-9, fbxw7vu56+/- embryos 

had an average of 23 OPCs, and fbxw7vu56-/- embryos had an average of 40 

OPCs (Figure 15 D). 

In order to assess the number of precursor cells of the pMN domain, we 

performed immunohistochemistry to detect Sox2 expression, a marker of 

precursor cells in the spinal cord (reviewed in (Wegner and Stolt, 2005)). 

Labeling of transverse sections of 3 dpf larvae revealed an increase in the 

number and dorsal-ventral distribution of Sox2+ cells in fbxw7vu56-/- larvae (Figure 

16 A-D). We also performed a 5-bromo-2ʼdeoxyuridine (BrdU) incorporation 

assay at 3 dpf. fbxw7vu56 mutants had more than double the number of BrdU+ and 

BrdU+/olig2:EGFP+ compared to wildtype siblings (Figure 16 E-H). These results  
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Figure 14 Spinal cord morphology is grossly normal in fbxw7vu56. (A-B) 
Transverse sections of 3 dpf wild-type sibling and fbxw7vu56-/- embryos labeled 
with anti-Isl to marker motor neurons. (C) Quantification of Isl+ cells per section 
of wild-type (wt) and fbxw7vu56-/- (vu56) (n = 19 wild-type and 17 mutant larvae; 
p = 0.7658). (D-I) Immunohistochemistry of transverse sections of 3 dpf wild-
type sibling and fbxw7vu56-/- embryos for spinal cord markers of secondary 
motor neurons (Zn-8), all neurons (Hu(C)), and radial glial fibers (Zrf-1).
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demonstrate that fbxw7vu56 mutants maintain an increased number of dividing 

neural precursors that are available to generate OPCs. 

 

Discussion 

Earlier studies have shown distinct expression patterns of each fbxw7 

isoform within mouse tissues and by selective loss in cancers, such as 

glioblastomas. Our results follow these reports with more ubiquitous expression 

of α-fbxw7, CNS restricted expression of β-fbxw7, and somite expression of γ-

fbxw7. As both α-fbxw7 and β-fbxw7 are expressed within the precursor domain  

in the CNS, Fbxw7 could be important in regulating the neural precursor 

population during development. Indeed, previous studies of Fbxw7 have 

demonstrated a role in maintaining cells in a quiescent state. Evidence for this 

role is demonstrated by a conditional knockout of fbxw7 in hematopoietic lineage 

cells that leads to a depletion of hematopoietic stem cells (Matsuoka et al., 2008).  

In mice, complete ablation of fbxw7 results in early embryonic lethality 

around E10.5 due to defects in vascular, heart, and hematopoietic development 

(Tetzlaff et al., 2004; Tsunematsu, 2004). This early lethality has precluded 

studying the effect of loss of Fbxw7 during CNS development until recently. Two 

groups have published results using a Nestin-Cre transgenic to conditionally 

ablate Fbxw7 specifically in the CNS (Hoeck et al., 2010; Matsumoto et al., 

2011). Both groups describe cellular defects resulting from a differentiation failure 

of neurons, indicating precursors are maintained. However, Hoeck et al. notes a  
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Figure 15 Timelapse imaging reveals excess OPCs in fbxw7vu56-/- arise from ventral spinal 
cord precursors. (A-C’’) Lateral images of spinal cord from time-lapse movies of 
Tg(olig2:EGFP) transgenic fbxw7+/+ (A-A’’), fbxw7+/- (B-B’’), fbxw7-/- (C-C’’). Numbers indicate 
elapsed time (hours:minutes). Red circles indicate newly migrated OPCs from the ventral 
domain. (D) Quantification of the number of cells in fbxw7+/+ (n = 6), fbxw7+/− (n = 8) and fbxw7−/− 
(n = 3) larvae from 48 to 63 hpf. (E) Quantification of the average number of OPC divisions for 
each genotype.
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Figure 16 Increase in markers of proliferation in fbxw7vu56 mutants. (A-B) 
Transverse sections of wild-type and fbxw7vu56 at 3 dpf spinal cords labeled with 
anti-Sox2 antibody to mark neural precursors (red) in combination with 
olig2:EGFP expression. (C-D) Quantification of total Sox2+ (C) and 
Sox2+/olig2:EGFP+ cells per section in wild-type and mutant larvae (n=17 wild-
type and 16 mutant larvae, p<0.0001). (E-F) Transverse sections of wild-type 
and fbxw7vu56 at 3 dpf labeled to detect BrdU incorporation (red) in combination 
with olig2:EGFP expression. (G-H) Quantification of total BrdU+ and 
BrdU+/olig2:EGFP+ cells per section in wild-type and mutant larvae (n=18 wild-
type and 15 mutant larvae, p<0.0001). Error bars represent SEM.
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loss of precursors due to cell death. Loss of the Drosophila homolog archipelago 

(ago) in the head and eye results in a small eye phenotype due to apoptosis that 

is suppressed when combined with mutations of proapoptotic genes (Nicholson 

et al., 2009). However, it is worth noting that the effect is constrained to the eye 

as other tissues in the head show an overgrowth phenotype, indicating regional 

differences due to fbxw7 loss. 

Additionally, neither group observed a change in oligodendrocyte number 

within the brain or neurosphere cultures. Matsumoto et al. did observe an 

increase in astrogenesis that they attributed to a cell fate switch between 

neurogenesis and astrogenesis. These results are in contrast to our own which 

show no change in motor neuron number and an increase in oligodendrocyte 

number. As the development of astrocytes in zebrafish has not been extensively 

studied, we cannot rule out an effect of fbxw7vu56 on astrogenesis in zebrafish. A 

common marker of astrocytes is glial fibrillary acidic protein (GFAP). GFAP is 

highly enriched along the fibers of radial glia cells in the spinal cord and 

recognized by the zrf-1 antibody. Our results demonstrate these fibers are 

unchanged in fbxw7vu56-/- mutants. However, as the cell bodies are not labeled, 

we cannot perform counts to determine astrocyte number. Recent research has 

investigated the role of astrocytes during regeneration of the zebrafish eye or 

forebrain following injury (Baumgart et al., 2012; Neve et al., 2012).  

Several possibilities could account for the differences between 

neurogenesis and oligodendrogenesis in the different mutants. One possibility is 
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the presence of a second fbxw7-like gene in zebrafish that compensates for the 

loss-of-function of fbxw7vu56. We were unable to detect a duplicate gene from our 

zebrafish genome queries. A second possibility is the effect of the number of 

OPCs at the stages observed. Cell density in vitro, growth factor availability, and 

cell-cell contact inhibition are known to regulate OPC number (Zhang and Miller, 

1996; Calver et al., 1998; van Heyningen et al., 2001; Kirby et al., 2006). 

Therefore timing of analysis might produce different results. A third possibility is 

the mouse transgenics used result in a complete knockout of fbxw7 within the 

CNS, while fbxw7vu56 is a missense mutation throughout the embryo that may not 

be a complete loss of function allele. Many human FBXW7 alleles implicated in 

cancer are missense alleles (Akhoondi et al., 2007). Additionally, a mouse 

missense Fbxw7 allele was shown to have a distinct effect that was different from 

a null allele during lung development (Davis et al., 2011). While our splice-

blocking morpholino was designed to produce a truncated Fbxw7, its 

effectiveness at low doses was incomplete and phenocopied fbxw7vu56.  

Our results support a model in which Fbxw7 expression within neural 

precursors is required for production of normal numbers of OPCs. Many of 

targets of Fbxw7 are involved in cell proliferation and could account for the 

increased division of neural precursors. The most notable of the targets is Notch, 

which has been demonstrated to be involved in maintaining a precursor pool in 

the spinal cord. 
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CHAPTER V 

 

FBXW7 REGULATION OF NOTCH DURING OLIGODENDROGENESIS 

Christina Kearns, lab manager, performed quantitative PCR experiments. 
 

Introduction 

 The previous chapters described the characterization and gene 

identification of the zebrafish mutant fbxw7vu56. However, the mechanism by 

which the mutation produced the fbxw7vu56-/- phenotype was not clear. Fbxw7 

negatively regulates several proteins involved in cell cycle progression, including 

Cyclin E, c-myc, c-Jun, and Notch (ref).  

 Fbxw7 was first isolated as the cell division cycle mutant Cdc4 in yeast 

(Hereford and Hartwell, 1974).  A homologue, Sel-10, was subsequently 

identified in C. elegans as a negative regulator of Lin-12, a Notch homologue 

(Hubbard et al., 1997). Complete knockout of fbxw7 in mice resulted in 

embryonic lethality around E10.5 of vascular defects due to misregulation of 

Notch (Tetzlaff et al., 2004; Tsunematsu, 2004). The role of Notch in vascular 

development has been well characterized (reviewed by (Gridley, 2010).  

In addition to a role in vascular development, Notch signaling is also 

known to affect many cell fate decisions in a variety of tissues during 

development. Typically loss of Notch signaling results in the formation of one cell 

type at the expense of another. This is no different during spinal cord 

development. Notch is utilized several times in the developing CNS, in particular 
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with oligodendrogenesis. First in the pMN domain, Notch signaling promotes the 

maintenance of precursors during neurogenesis to allow for oligodendrocyte 

formation later as demonstrated by experiments that alter the Notch pathway. 

Loss of Notch signaling results in loss of precursor cells and formation of excess 

neurons at the expense of glia, such as oligodendrocytes (Chitnis et al., 1995; de 

la et al., 1997; Appel and Eisen, 1998; Appel et al., 2001; Itoh et al., 2003; Park 

and Appel, 2003; Imayoshi et al., 2010).  Conversely, overexpression of the 

NICD results in the formation of excess oligodendrocyte lineage cells at the 

expense of motor neurons (Zhou et al., 2001; Park and Appel, 2003). Later 

during oligodendrogenesis, Notch signaling inhibits the differentiation of OPCs 

into mature oligodendrocytes (Wang et al., 1998; Gaiano et al., 2000; Tanigaki et 

al., 2001; Park and Appel, 2003). How Notch is regulated to control both 

maintenance of precursors and inhibition of differentiation is not well understood.  

The intracellular domain of Notch is targeted for degradation by Fbxw7-

mediated ubiquitination (Gupta-Rossi, 2001; Oberg, 2001; Wu et al., 2001). 

Therefore, elevated Notch signaling could result in excess OPC formation. We 

tested if aberrant Notch signaling produced the excess OPC phenotype of 

fbxw7vu56 mutants. Gene expression and transgenic reporter analysis 

demonstrate an increase in Notch activity. Further, we show that modulating 

Notch signaling suppresses the fbxw7vu56 mutant phenotype. Recent work with 

brain-specific knockout of fbxw7 also implicates Fbxw7-regulated Notch and c-
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Jun in controlling neural cell survival and differentiation, as well as formation of 

astrocytes (Hoeck et al., 2010; Jandke et al., 2011; Matsumoto et al., 2011). 

 

Results 

Notch activity is upregulated in fbxw7vu56-/- embryos 

Fbxw7 negatively regulates Notch by targeting phosphorylated NICD for 

degradation by the proteasome (Gupta-Rossi, 2001; Wu et al., 2001). Therefore, 

misregulation of NICD degradation could be responsible for the excess OPCs in 

fbxw7vu56 larvae. 

We used the transgenic Tg(Tp1bglob:hmgb1-mCherry) reporter line 

(hereafter Tp1:mCherry) designed with repeats of the NICD RBP-Jκ regulatory 

elements driving expression of mCherry to assay Notch activity. Transverse 

sections revealed an increase in the number of Tp1:mCherry+ cells at both 20 hpf 

and 3 dpf in fbxw7vu56-/- mutants, particularly along the medial septum compared 

with wild-type siblings (Figure 17 A-H). Additionally, olig2+ OPC cells in fbxw7vu56-

/- larvae also had weak Tp1:mCherry expression that was not present in wild-type 

siblings (Figure 17 compare B to D and E to G). Whole-mount imaging at 6 dpf 

also showed an increase in the number of Tp1:mCherry+ cells including among 

olig2+ cells along the ventral domain in the pMN domain (Figure 17 I &J).  

 To further confirm the increased Notch activity we used quantitative PCR 

(qPCR) to assay for downstream targets. Expression of her4.1 RNA at 4 dpf was 

increased nearly 3-fold higher in fbxw7vu56-/- larvae compared to wild-type larvae  
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Figure 17 Notch activity in fbxw7vu56 mutants. (A-H) Transverse sections of 
20 hpf (A-D) and 3 dpf (E-H) wild-type (A,C) and fbxw7vu56 mutant (B,D) spinal 
cords with Tg(Tp1:mCherry+) and olig2:EGFP expression. Blue in A,C are DAPI 
labeled nuclei. (I-J) Lateral views of 6 dpf wild-type (I) and fbxw7vu56 mutant (J) 
spinal cords with Tg(Tp1:mCherry+) and olig2:EGFP expression. (K) quantitative 
PCR of relative levels of her4.2 mRNA in 4dpf wild-type and fbxw7vu56 mutant 
larvae.



 68 

(Figure 17 K). The results of the previous two experiments are consistent with the 

hypothesis that Fbxw7 regulates Notch activity in the zebrafish nervous system. 

  

Inhibition of Notch activity suppress the fbxw7vu56-/- phenotype 

If the fbxw7vu56 excess OPC phenotype is a result of elevated Notch 

activity, suppression of the phenotype should occur with inhibition of Notch 

signaling. Embryos from crosses of Tg(olig2:egfp) heterozygous fbxw7vu56-/- 

carriers were treated with γ-secretase inhibitor N-[N-(3,5-difluoro- phenacetyl-l-

alanyl)]-S-phenylglycine t-butyl ester (DAPT) from 36 hpf, when OPCs begin to 

be specified, through 48 hpf, when OPCs begin to migrate, and assayed at 3 dpf 

for dorsal spinal cord OPCs. For each embryo, stereo and fluorescent images 

were acquired, followed by genotyping for the fbxw7vu56 mutation.  

Previous experiments utilized high doses of DAPT, 100μM, which 

significantly impair Notch signaling. We wanted to see if a more subtle 

modulation of Notch activity with lower doses could alter activity enough to 

suppress the fbxw7vu56-/- phenotype At a 25μM dose, embryos from all genotypes 

(fbxw7vu56+/+, fbxw7vu56+/-, and fbxw7vu56-/-) had a normal morphology with a slight 

decrease in dorsal spinal cord OPCs compared to dimethyl sulfoxide (DMSO) 

control treated embryos (Figure 18 A-G). Increasing the dose to 50μM resulted in 

two classes of phenotypes in fbxw7vu56-/- embryos: 25% had curved body and 

decreased OPCs, similar to sibling DAPT treated embryos (Figure (18K) while 

the remaining fbxw7vu56-/- embryos had normal morphologies and approximately  
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Figure 18 Modulation of Notch signaling suppress fbxw7vu56 phenotype. 
(A-K) Lateral images of 3 dpf Tg(olig2:egfp) larvae treated with DMSO or DAPT 
from 36-48 hpf. Insets show corresponding brightfield image of each larva. All 
larva were genotyped to determine zygousity. 
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the same number of OPCs (Figure 18J). These results indicate that inhibition of 

Notch signaling by DAPT suppresses the fbxw7vu56-/- excess OPC phenotype and 

supports our hypothesis that Fbxw7 regulates the active signaling amount of 

Notch proteins and limits specification of OPCs from neural precursors.  

 
 

Discussion 

Development of the spinal cord requires the specification and 

differentiation of many cells types. Oligodendrocytes are a glial cell responsible 

for the production of myelin sheaths that wrap axons. The number and 

distribution of oligodendrocytes must match to the number and distribution of 

axons. Previous experiments have demonstrated that forced expression of the 

ligand PDGF-AA in mice results in the formation of an excess number of OPCs 

early in development. However, these excess OPCs are removed by apoptosis 

and the mice have normal numbers of OPCs during post-natal development 

(Calver et al., 1998). Understanding the signaling pathways that control OPC 

number is important to be able to generate more OPCs when axons undergo 

demyelination due to either disease or injury.  

Many signaling pathways are involved in oligodendrogenesis. The 

mechanisms by which those pathways are regulated are not well understood. 

Cells modulate the intensity and duration of signaling pathways through various 

methods. One method that affects the duration is protein degradation. Proteins 

are modified by the addition of ubiquitin moieties that are recognized by the 

proteasome. 
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Addition of ubiquitin occurs via several complexes, the first is the E1 

ubiquitin-activating enzyme, the second is the E2 ubiquitin-conjugating enzyme, 

and then the E3 ubiquitin-ligase complex adds the ubiquitin to particular 

substrates based on the substrate specificity component of the complex. Fbxw7 

is the substrate recognition component of the SCF (Skp-Cul-Fbox) E3 ubiquitin 

ligase complex. Several targets of Fbxw7 regulate the cell cycle including Cyclin 

E, c-Jun, and c-Myc as well as Notch signaling by targeting the NICD.  

Notch signaling regulates the neuronal to glial fate switch. A role for Notch 

during neurogenesis came from studies in Drosophila investigating the induction 

of neuroblasts in the CNS (Artavantis-Tsakonas 1991) and sensory organ 

precursors (SOPs) in the PNS from ectoderm (Furukawa 1992, Schweisguth and 

Posakony 1992).  Loss of function of Notch or overexpression of the ligands 

results in the formation of excess neurons at the expense of glia. Alternatively, 

overexpression of Notch inhibits neurogenesis and produces excess glia. 

We investigated the mechanism by which fbxw7vu56 produced excess 

OPCs. Previously the lab discovered an increase of OPC number similar to the 

fbxw7vu56 phenotype using overexpression of the intracellular domain of Notch1a 

(Park and Appel, 2003). We hypothesized that misregulation of Notch was 

causing the excess OPC phenotype. Consistent with this hypothesis, modulation 

of Notch signaling with the chemical inhibitor DAPT, suppressed the excess OPC 

phenotype in fbxw7vu56 mutants.  

Additionally, analysis of her4.2, a Notch target gene, by qPCR reveals an 

increase in Notch activity. A caveat for this experiment is that it is performed at 4 
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dpf, which is later than when the phenotype is first observed. However, because 

mutants cannot be identified prior to 3 dpf at the earliest, we are unable to 

analyze expression levels of Notch target genes during OPC specification by 

qPCR. A Notch transgenic reporter line Tp1:mcherry  allows us to examine 

activity earlier as we can genotype embryos.  

Overall, we show that Notch signaling is elevated in fbxw7 mutant 

embryos and pharmacological inhibition of Notch signaling suppressed formation 

of excess OPCs indicating Notch proteins are functionally relevant targets of 

Fbxw7-mediated ubiquitination during oligodendrocyte specification. Our data 

provide evidence that negative regulation of Notch activity by protein degradation 

controls production of appropriate numbers of myelinating glial cells from neural 

precursors in vertebrate embryos.  
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CHAPTER VI 

 

CONCLUSIONS 

 Understanding the development of the CNS is critical to learning how 

diseases and injuries alter the structure and function of the CNS in order to 

discover compounds that aid in regenerating and repairing insults. Specification 

of oligodendrocytes from neural precursors occurs at distinct times and places in 

the CNS. However, it is unclear how oligodendrocyte number is regulated, both 

during initial specification and as oligodendrocytes differentiate and contact 

axons. We sought to uncover novel mechanisms regulating oligodendrocyte 

number during development. 

 

Regulation of OPC number by Fbxw7 

 Oligodendrocytes are produced from discrete locations within the CNS 

and migrate to populate the CNS. Specification in the spinal cord occurs in the 

ventral precursor domain pMN that also produces motor neurons. The 

mechanisms regulating the production of the proper number of neurons and 

oligodendrocytes from neural precursors are not clear.  

 We used the zebrafish spinal cord as a model system using a forward 

genetic screen to identify genes that are important for oligodendrocyte 

development. We isolated a mutation, vu56, which resulted in an excess number 

of OPCs at 3 dpf with no other obvious morphological phenotype both prior to 

and at this stage. Analysis of vu56 identified fbxw7 as the mutated gene. We 
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were able to demonstrate a role for Fbxw7 in regulating OPC number.  Our 

results expand the understanding of the regulation of the number of OPCs from 

neural precursors.  

 

Fbxw7 negatively regulates Notch in neural precursors 

We also determined the mutation resulted in misregulation of Notch within 

pMN precursors to produce the excess OPCs. This is partially consistent with 

some conclusions from two recent investigations of mice with conditional 

knockout of Fbxw7 within the CNS using transgenic expression of Nestin-Cre 

(Hoeck et al., 2010; Matsumoto et al., 2011). Both groups reported a deficit of 

neurogenesis due to elevated Notch activity that blocked neuronal specification. 

However, Hoeck et al. also reported an increase in cell death due to elevated c-

Jun, while Matsumoto et al. did not detect c-Jun elevation nor cell death. While 

Matsumoto et al. did detect an increase in the number of cells expressing the 

astrocyte marker GFAP, neither group found a change in oligodendrocyte 

number. 

 One possible explanation for the different effects of Fbxw7 mutations in 

mice and zebrafish could be the presence of a second fbxw7-like gene in 

zebrafish. We did not find any evidence of a duplicated gene in the zebrafish 

genome. A second possibility is the relative oligodendrocyte number between 

mouse and zebrafish, the regions of the CNS examined, and the ability to directly 

observe oligodendrocytes. OPC number is regulated by several mechanisms 

including: amount of growth factors (Calver et al., 1998; van Heyningen et al., 



 75 

2001), cell-cell contact (Kirby et al., 2006), and cell density in vitro (Zhang and 

Miller, 1996). Therefore, the regions chosen for analysis may have precluded 

detection of changes in OPC number. A third possibility is the difference between 

misssense and null alleles. Because many of the Fbxw7 mutations in cancer are 

missense, Davis et al. (Davis et al., 2011) sought to determine if a missense 

allele would also produce different developmental defects. A mutation, R482Q, 

was introduced at a critical arginine residue. The R482Q mutation was perinatal 

lethal in the heterozygous state and homozygous mutants were lethal at E12.5. 

The heterozygous lethality was attributed to defects in lung development (Davis 

et al., 2011). Therefore, one might expect there to be different phenotypes 

associated with missense and null alleles of fbxw7 in the spinal cord as well. 

 Additional experiments could be performed to further support the 

conclusion that Fbxw7 negatively regulates Notch in zebrafish. Studies from 

mouse, chick and zebrafish demonstrate that Notch activity in the ventral p2 

domain determines the production V2a and V2b interneurons. Precursors in 

which Notch is active become V2b interneurons, while those in which Notch is 

inactive due to relatively higher Delta expression become V2a interneurons (Del 

Barrio et al., 2007; Kimura et al., 2008). V2 interneuron fate could be examined in 

fbxw7vu56 mutants using either in situ hybridization for chx10 (V2a marker) or 

gata2 (V2b marker) or antibodies commercially available or generated by Kimura 

et. al (Kimura et al., 2008). A caveat to these experiments would be the age of 

the embryos. The published results use timepoints between 16 hpf and 24 hpf, 

which is far earlier than when the excess OPC fbxw7vu56 phenotype can be 
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observed. One would likely need to image and genotype each embryo at the end 

of the experiment to determine if there is an effect. 

 Notch is also known to be important for retina development. The retina 

contains six neuronal and one glial cell types. Retinal neurons and glia are 

produced from progenitors along stereotypical waves during development 

(Cepko et al., 1996; Marquardt and Pfaff, 2001; Poggi et al., 2005a; 2005b). 

Notch activity is required to maintain a pool of progenitors available for the next 

wave of neurogenesis (Perron and Harris, 2000; Jadhav et al., 2006; Nelson et 

al., 2006). Recent research implicated interkinetic nuclear migration as a 

mechanism for regulating Notch activity of retinal progenitors (Del Bene et al., 

2008). Preliminary experiments using a marker specific for the retinal ganglion 

cell layer showed defects in retina structure in fbxw7vu56 mutants. However, 

experiments of markers of other neuronal and glial cell types were inconclusive. 

Additional experiments could shed light on the apparent discrepancies. 

 

Generation of a null allele of fbxw7 in zebrafish  

An open question remains as to whether a null mutation of fbxw7 in 

zebrafish would produce a different phenotype similar to differences observed in 

mouse (Davis et al., 2011) and in the variety of cancers with mutations of fbxw7. 

A study by Akhoondi et al. (Akhoondi et al., 2007) analyzed mutations of FBXW7 

in tumors of various origins including breast, colon, lung, bone, and others. Many 

of the FBXW7 mutations were missense mutations at one of two Arg hotspots 

within the WD repeat that are responsible for substrate binding (Orlicky et al., 
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2003; Hao et al., 2007). Another aspect to consider is the dimerization capacity 

of Fbxw7 (Welcker and Clurman, 2007). In addition to altering the binding of 

substrates, missense mutant forms of Fbxw7 could act as dominant-negatives to 

misregulate protein degradation (Akhoondi et al., 2007).  

One difficulty with using zebrafish is specifically mutating a particular gene 

of interest. To analyze gene function, morpholinos are used to either inhibit 

translation or interfere with splicing to produce a null protein. Morpholinos do not 

always work for various reasons: a gene is maternally loaded in the egg and 

required for early development, the stage of development being investigated is 

later than the effective range of morpholinos, or blocking of translation or splicing 

is inefficient for unknown reasons. This technique also only produces null 

proteins. 

There are now two techniques being used to generate null alleles of 

specific genes: Zinc-finger nucleases (ZFNs) and more recently TAL-effector 

nucleases (TALENs). Both function similarly in that they bind to DNA in a 

sequence specific manner. ZFNs are multimerized array zinc-finger DNA binding 

domains that each recognize a tri-nucleotide sequence fused to a FokI restriction 

enzyme domain (Bibikova et al., 2001; Miller et al., 2007). One problem with 

ZFNs is position-effect of the fingers whereby the relationship of each finger 

within the array affects efficacy (Amacher, 2008). TALENS are able to overcome 

this problem because each repeat within the TALEN recognizes a single 

nucleotide and there is no position-effect (Cermak et al., 2011; Li et al., 2011; 

Streubel et al., 2012). A recent report also used TALENs co-injected with DNA to 
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induce homologous recombination (Zu et al., 2013), which could be lead to ways 

to introduce a mutation within a gene or insert a reporter within an endogenous 

locus. The promise of these techniques should yield greater insight into 

development, including creating a null allele of fbxw7 and comparing the results 

to fbxw7vu56. 

 

Phosphorylation of Notch is required for recognition by Fbxw7 

 Fbxw7 is known to target substrates based on phosphorylation of a 

specific amino acid sequence termed the Cdc4-phosphodegron (CPD) motif. 

Notch contains this CPD within the PEST region of the intracellular domain (Fryer 

et al., 2004; O'Neil et al., 2007). Several kinases are known to phosphorylate 

Notch, including Cdk8, GSK3β, and integrin-linked kinase (ILK) (Foltz et al., 

2002; Fryer et al., 2004; O'Neil et al., 2007). What remains to be determined is if 

the kinases are expressed in neural precursors and whether they phosphorylate 

Notch in vivo. 

Cdk8 phosphorylates a serine residue that lies at the +2 position within the 

predicted Notch CPD. Mutation of this residue leads to impaired phosphorylation 

and stabilization of NICD (Fryer et al., 2004). Additionally, mutation of the 

threonine within the CPD to alanine also stabilizes NICD (O'Neil et al., 2007). 

 Phosphorylation by ILK was demonstrated in vitro using tagged versions 

and mutants of ILK and Notch. ILK was required to phosphorylate NICD on 

Ser2173 within the transactivation domain (TAD), which is different from the 

CDK8 results. Mutation of other serine residue did not appear to affect NICD 
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stability by ILK (Mo et al., 2007). ILK is also a kinase upstream of GSK3β and 

regulation of Notch by ILK could be through a GSK3β mechanism. However, 

mutation of GSK3β to an inactive form that could not be phosphorylated did not 

alter the stability of NICD indicating regulation of NICD by ILK was independent 

of GSK3β (Mo et al., 2007). 

 While Mo et al. were able to show ILK phosphorylates NICD and affects 

stability via Fbxw7, the question remains if these are physiologically 

representative experiments (Mo et al., 2007). The serine residue is not located 

within the predicted Notch CPD and there could be other factors in the cell types 

used contributing to the observed phenotypes. More work needs to be done to 

determine if one of the already identified kinases plays a role in NICD stability in 

oligodendrocytes or if an unknown kinase is responsible. To that end, a search of 

Phosphonet (www.phosphonet.ca) predicts that ERK1, ERK or JNK2 could also 

phosphorylate NICD.  

 

Differentiation of excess OPCs in fbxw7vu56 mutants 

Excess OPCs persist in mutant fbxw7vu56-/- larvae through at least 6 dpf. 

By this time oligodendrocytes have begun to start the process of wrapping axons. 

What remains unclear at this point is whether all the excess OPCs wrap axons 

and how this affects myelin formation. If the excess OPCs wrap axons, one might 

expect the internode lengths to be shorter due to more processes contacting 

axons that results in more nodes of Ranvier and decreased propagation of action 

potentials. Hypermyelination in mice by the overexpression of constitutively 
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active AKT did not affect oligodendrocyte number or survival and no physical 

abnormalities were reported (Flores et al., 2008; Narayanan et al., 2009). 

However, the mice died by 14 months (Flores et al., 2008).    

 

 

Other targets of Fbxw7 during oligodendrocyte development 

 Our results indicate that the excess OPCs are able to undergo at least 

partial differentiation. This is inconsistent with previous reports that NICD activity 

plays an inhibitory role during oligodendrocyte differentiation (Wang et al., 1998). 

One way to reconcile the difference would be that another target of Fbxw7 is also 

disrupted that overrides the NICD activity. Indeed, activation of another target of 

Fbxw7, mammalian target of rapamycin (mTOR) (Mao et al., 2008) via Akt leads 

to hypermyelination in mice (Flores et al., 2008; Narayanan et al., 2009). mTOR 

is a protein kinase that associates with one of two complexes, mTORC1 or 

mTORC2. Upon activation by Akt, mTOR subsequently phosphorylates 

downstream targets to regulate translation, transcription, cell growth, and 

proliferation (reviewed in (Laplante and Sabatini, 2012)). Therefore, the 

continued differentiation of the excess OPCs could be explained by misregulated 

mTOR activity. A couple experiments could be proposed to investigate this 

hypothesis. First, similar to the modulation of Notch by DAPT, one could use 

rapamycin to modulate mTOR in fbxw7 mutants to determine if differentiation of 

the excess OPCs is repressed and if the ectopic cells seen with plp1a expression 

are reduced or absent. Second, analysis of pathway activation could be 
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assessed by quantitative PCR (qPCR). Inhibition of mTOR in oligodendrocytes in 

vitro increased transcription of the target genes Id2, Id4, and Tcf4 (Tyler et al., 

2009). Increased stability of mTOR could therefore lead to a decrease in the 

transcription of these target genes.    

Identification of fbxw7 as the gene disrupted in vu56 provides a unique 

perspective on the regulation of OPC specification by Notch signaling. We show 

that regulation of Notch signaling by Fbxw7 is required within neural precursors 

to control OPC number. Our results reveal a novel mechanism regulating Notch 

signaling activity downstream of ligand activation in OPC specification. Further 

studies are needed to determine the kinase responsible for phosphorylating 

Notch in OPCs, the differentiation capacity of the excess OPCs, and what role, if 

any, other targets of Fbxw7 also play in oligodendrocyte development and 

differentiation. 
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