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CHAPTER I 

 

INTRODUCTION 

 

A Wheeled Mobile Robot (WMR) is a robotic mobile platform mounted with motors, 

sensors and a micro-processor or an onboard computer. Driven by the motors through the 

driving wheels, the WMR can move autonomously based on the sensory feedback and the 

control logic programmed into the onboard computer. Due to its mobility, sensing 

capability and autonomous decision without the involvement of human, WMRs have been 

extensively used in various applications such as in transportation, planetary exploration, 

intelligent surveillance, mining and military operations. Different kinds of WMR have 

different motion capabilities, which can be applied to different areas. Usually WMRs can 

be classified into nonholonomic WMRs and holonomic WMRs depending on their 

kinematic constraints. If the controllable degrees of freedom are equal to the total degrees 

of freedom then the robot is said to be holonomic. Holonomic robots are allowed to 

immediately move in any direction without the need to turn first. Because of such 

capability, holonomic robots are used in surveillance and soccer games where motion 

flexibility is required. However, note that, the holonomic robots require special wheels 

capable of moving omnidirectionally. Thus their versatile mobility comes at the expense 

of complex mechanical design and construction. On the other hand, if the controllable 

degrees of freedom are less than the total degrees of freedom then the robot is said to be 

nonholonomic. Not every path in the work space is achievable for a nonholonomic robot. 
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However such robots are widely used in exploration and transportation where motion 

flexibility is not a big concern. Nonholonomic mobile robots use regular wheels and are 

easy to design and build. Most mobile robot literatures are based on nonholonomic 

mobile robots. In this dissertation, the entire research is based on a nonholonomic 

differential drive WMR with two independently actuated wheels and a caster wheel.  

While the WMR performance has been improved over the years for conventional 

applications (e.g., low speed maneuvering in a structured environment), it remains a 

challenge to operate a WMR at a high speed in an unstructured environment. When a 

WMR is operated at a high speed or on a slippery surface, wheel slip or skid will occur, 

both of which we call wheel slip in general. However, most of the works in the literature 

assume an ideal model for a WMR, with pure rolling constraint and without lateral 

motion at the wheels, and do not take wheel slip into account. Slip usually occurs for 

wheeled vehicles and is common in car driving when people try to make a sharp turn or a 

stop. This is because the static friction or the rolling friction is not capable of providing 

adequately high acceleration or deceleration. Wheel slip could be disastrous when people 

drive on highway while raining. However, for a race car driver it could be beneficial if 

slip is properly dealt with, e.g., slip can be used advantageously to gain speed during 

acceleration, or to increase maneuverability in cornering while maintaining a competitive 

speed. 

In real dynamic environment, uncertain surface characteristics, dynamic obstacles, and 

high maneuverability requirement may all introduce slip and even instability. While it is 

necessary to study wheel slip effect for a WMR, wheel slip cannot be introduced without 
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the dynamics of the WMR and the traction forces. On one hand, as pointed out in this 

dissertation, when wheel slip is introduced into a nonholonomic WMR model, the WMR 

becomes an under-actuated system. For such a system, usually controlling all the degrees 

of freedom sacrifices the maneuverability, while only two degrees of freedom can be 

controlled if maneuverability is the main concern. Thus, studying slip is meaningful in 

real WMR applications because slip builds a connection between control and 

maneuverability. On the other hand, traction forces are generated due to wheel slips and 

are the direct driving forces for a WMR. Traction forces govern the dynamics of the 

whole WMR, so that the maneuverability of the WMR can be improved if the traction 

forces can be controlled properly. From experimental data, traction forces have been 

found to be nonlinearly dependent on wheel slips as shown in next Chapter. Traction 

force is approximately proportional to wheel slip when slip is within a certain amount, 

whereas the traction force is saturated and even starts to reduce when excessive slip 

occurs. Since the traction force determines the acceleration of the WMR, which 

represents the maneuverability of the WMR, controlling the traction force to its maximum 

improves the maneuverability whenever it is required, which will be investigated in this 

dissertation. 

By extending the number of WMRs from single to multiple, more potential 

applications emerge. To name a few, there are formation control and pursuit-evasion 

problems. Formation control is a type of coordination of a group of autonomous robots 

where these robots are required to accomplish certain task while maintaining a desired 

geometric pattern. Moving in formation has the advantages of reducing the system cost, 
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increasing the robustness and efficiency of the system while providing redundancy, 

reconfiguration ability and structure flexibility for the system [1]. In a high speed 

formation control problem, wheel slip is inevitable and the introduction of slip may lead 

to instability of each robot and affect interconnection between one another. However, to 

the best of our knowledge, none of the work in the literature has introduced wheel slip to 

the problem and studied the slip effect, which will be investigated in this dissertation. 

Pursuit-Evasion (P-E) problem is a family of problems in which one group of agents 

attempt to track down agents of another group in an environment. A typical example is a 

predator chases a prey animal around until the prey is captured. The problem becomes 

interesting and complicated because the agents evolve against one another in a continuous 

and open-ended way. The problem can be classified into non-game based and game based 

problems. The game-based problem, for two players, is a zero-sum game where the 

players have completely opposite interest. In a high speed game problem, wheel slip is 

inevitable. The introduction of slip may change the pursuit and evasion behavior and even 

lead to instability of the players. However, there is no work in the literature that has 

studied slip effect and pursuit evasion behavior for players subject to wheel slip, which 

will be investigated for WMR players in this dissertation. 

In this thesis, the effect of wheel slip to a WMR is investigated. The applications of 

single WMR control, multiple WMR formation control and game-based pursuit-evasion 

problem are selected to study the wheel slip effect. In these applications, new control 

approaches are investigated for the WMR subject to wheel slip. Three types of controls, 

which are σ -process based discontinuous feedback control, input-output linearization 

 4



technique and sliding mode control, are developed to investigate the slip effect for such a 

WMR in different applications. The σ -process based discontinuous feedback control is 

applied to regulate the WMR to a given configuration. Input-output linearization 

technique is applied to linearize the WMR model and design linear control for path 

following and position tracking tasks. Sliding mode control is applied both to design 

observer to estimate the traction forces and to drive the lateral force to its maximum 

during turning motion. In addition, in the game-based P-E problem, based on the motion 

capability of a WMR subject to wheel slip, the concept of equivalent kinematic model for 

the pursuer is proposed to facilitate the study of the P-E behavior in the presence of slip. 

The scope of this dissertation is as follows. In Chapter II, we present individual WMR 

model with wheel slip dynamics. We show that when both lateral and longitudinal wheel 

slip are introduced, the WMR model becomes an underactuated system with a second 

order nonholonomic constraint. In Chapter III, we propose a discontinuous feedback 

controller to achieve regulation control of the WMR, apply input-output linearization 

technique to achieve position tracking and path following control of the WMR and 

propose a sliding mode-based controller to achieve turning control for the WMR in 

various applications. In Chapter IV, we investigate slip effect in individual WMR 

application where we apply input-output linearization technique to the path following 

control task. In Chapter V, we investigate slip effect in multiple WMR formation control 

application where we apply input-output linearization technique to the formation control 

tasks. In Chapter VI, we investigate slip effect in a game-based P-E problem where we 

apply sliding mode technique to the WMR turning control and introduce the concept of 
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equivalent kinematic model to approximate the pursuer’s model such that pursuit-evasion 

behavior can be analyzed easily. Chapter VII summarizes the contribution and presents 

future work of the thesis. 
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CHAPTER II 

 

DYNAMIC MODELING OF A WMR SUBJECT TO WHEEL SLIP 

 

As nonholonomic WMRs have been increasingly applied to high speed operations in 

unstructured environments, wheel slip becomes an issue when ideal rolling assumption is 

not satisfied. In the ideal rolling constraint, the wheels of the WMR are assumed to roll 

without slipping. This first order nonholonomic constraint reduces the dimension of the 

state space and wheel torque has the direct control of the overall second order dynamics 

[2]. This ideal rolling constraint is violated when the WMR is either accelerating, or 

decelerating, or cornering at a high speed. If the slip is not considered, a given task may 

not be completed and a stable system may even become unstable due to the slip. Once 

wheel slip cannot be ignored, traction forces play a role in the overall dynamics. 

There are a few recent papers that present approaches to model wheel slips in both 

WMR community and vehicle engineering community. In WMR community, [3] is one of 

the earliest works that considers slip in the WMR dynamic model. The authors considered 

small values of slip ratios on which traction force is linearly dependent. They then 

developed a slow manifold approach to design output feedback control law. In [4] 

anti-slip factor was introduced to represent the percentage of a wheel’s angular velocity 

that reflects the wheel’s forward speed. This same factor also represents the percentage of 

the wheel’s driving force reflected effectively by the road friction. The road friction was 

considered as unmodeled dynamics. Neural network technique was applied to realize 
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optimal velocity tracking control. In [5] slip states are introduced into a generalized 

WMR kinematic model. In [6] slip is considered as a small, measurable, bounded 

disturbance in the WMR kinematic model, and a kinematic control law is developed to 

overcome the disturbance. In [7] longitudinal traction force is included in an omni- 

directional WMR model by externally measuring the magnitude of slip. However, the 

ideal WMR model is used in control design for simplicity. In [8] lateral traction force is 

introduced that was linearly dependent on lateral slip, and applied a steering control 

approach to lateral position tracking control for a bicycle model. In [9] longitudinal slip 

dynamics is considered in an omni-directional WMR model. However in the control law 

derivation, pure rolling was assumed to obtain a relationship between the driving torque 

and the traction force. In [10] both longitudinal and lateral traction are introduced which 

were approximated to be linearly dependent on longitudinal and lateral slip, respectively, 

for a reduced unicycle model for a four-wheel-drive WMR. In the controller design, slips 

and steering torque were control input to be designed first, and then by assuming that tire 

dynamics is significantly faster than the WMR dynamics, driving torque was designed to 

control the vehicle. In summary, in the above-mentioned works, either the slip has not 

been properly modeled to present slip effect for a nonholonomic WMR, or a nonlinear 

traction force model is not considered in control design so that the effect of traction forces 

to the WMR due to variation of slip can not be investigated. In this dissertation, we want 

to properly model wheel slip in the overall nonholonomic WMR dynamics, investigate 

the effect of the nonlinear traction forces to the WMR due to variation of slip, and exploit 

the slip and traction force such that the maneuverability of the WMR can be improved for 

 8



various applications. 

In vehicle engineering community, usually traction forces are modeled rigorously for 

four-wheel vehicle systems. However, in many works they do not consider nonholonomic 

constraint equations in their model of the vehicle dynamics as found in [12][13][14]. This 

is mainly because position control is not a main concern and they focus more on engine, 

drive train and transmission dynamics and control than the vehicle body dynamics. 

However, in this dissertation, we focus more on the WMR body dynamics and control in 

applications where position control is a main concern. 

In this dissertation, the WMR subject to wheel slip is modeled as in Fig. 2.1, where Pc 

is the center of mass of the WMR, P0 is the center of the wheel shaft, d is the distance 

from Pc to P0, b is the distance from the center of each wheel to P0. F1 and F2 are the 

longitudinal traction forces for wheel1 and wheel2, respectively. F3 is the lateral traction 

force. To take the slip effect into account, dynamic model needs to be studied instead of 

kinematic model. The equations for the dynamic WMR model are derived from Newton’s 

Law shown in (2.1). 

 

φ  

F3   

F 1  

F2  

2b  

Pc  

Y   
X   

d  

Po  

wheel2   

wheel1    

  
Fig. 2.1.  WMR model subject to wheel slip. 
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where m is the robot mass, I is its moment of inertia, Iw is the moment of inertia of each 

wheel about the wheel axis, r is the wheel radius, φ  is the orientation of the WMR, iθ  is 

the angular displacement of the i-th wheel, iτ  is the wheel torque applied to the i-th wheel. 

Eq. (2.1a) represent the entire WMR dynamics in the plane motion while (2.1b) represent 

the spinning dynamics of the wheels. 

Slip is modeled as slip angle (sr) and slip ratio (sa), 

i

ii
i v

vrsr −
=

θ& , )(tan 1

v
sa η&−=               (2.2) 

where vi is the longitudinal speed of the center of the i-th wheel,  is the 

forward velocity, 

2/)( 21 vvv +=

η&  is the lateral speed of the center of each wheel. They satisfy the 

following nonholonomic constraints [15] 

φφφ &&&& byxv cc ++= sincos1            (2.3) 

φφφ &&&& byxv cc −+= sincos2            (2.4) 

φφφη &&&& dxy cc −−= sincos            (2.5) 

Note that, unlike classical nonholonomic constraints of WMR, the above constraints 

allow both longitudinal and lateral slips. 

In order to model the slip, traction forces and design controllers, we need to have the 

knowledge of slip and dependency of traction forces on slip. To measure the slip, different 

combinations of sensors and estimation techniques have been used in the literature. In [16] 
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Kalman filter is adopted to estimate the slip using the data collected from wheel encoder, 

global positioning system (GPS) and inertial measuring unit (IMU). In [17] the amount of 

slip is predicted by comparing current imagery data with hitory. In [18] a purely 

proprioceptive navigation strategy is presented using gyro, accelerometers and wheel 

encoders. The states (i.e., slip accelerations) were estimated using the extended Kalman 

filter.  

Usually the analytical dependency of traction forces on slip is difficult to formulate due 

to wheel temperature, thread pattern, camber angle and so on. However, the general 

behaviors of this dependency for rubber tire have been reported in [19]. In [20] an 

excellent review of current trends in modeling traction forces is provided using different 

methods, e.g., empirical, semi-empirical and analytical methods. Specifically, piecewise 

linear model, Buckhardt model, Rill model, Dahl model, Lugre model and Pacejka model 

or known as magic formula are discussed therein.  

The Magic formula model is an elegant, semi-empirical model based on curve fitting. It 

has been widely accepted in industry and academia to generalize the model of both 

longitudinal and lateral traction forces. It was introduced in [21] and has been revised 

several times since then. This model has the advantage of accuracy, simplicity and ability 

to be interpreted over other models. Due to this reason, we employ the Magic formula 

model to model traction forces. In this model, the lateral and longitudinal traction forces 

are functions of slip angle and slip ratio as 

( )( )( )( ) vSSKSKKSKKKF +−+= −−
33

1
43

1
21 tantansin   (2.6) 

where S is a function of slip angle for the lateral traction force or slip ratio for the 
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longitudinal traction force. All other variables Ki, i=1,…,4 and Sv are constants and 

determined from the curve fitting process of the empirical data. Fig. 2.2a shows an 

example of lateral traction forces with friction coefficient 0.7 and 0.3, respectively. Fig. 

2.2b shows an example of longitudinal traction forces with friction coefficient 0.7 and 0.3, 

respectively. 

Since Fi (i=1,2) is a functions of sri(i=1,2), sri(i=1,2) is a function of (i=1,2) and 

(i=1,2) is a function of 

iθ&

iθ&& iτ (i=1,2), (i=1,2) becomes a function of iF& iτ (i=1,2), as 

shown in (2.7). Thus after taking a derivative of (2.1a), it becomes a third order system 

with iτ  as the input. Note that since F1 and F2 are the only control inputs to (2.1a), 

(2.1a) becomes an underactuated system with a second order nonholonomic constraint. 
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Fig. 2.2a Lateral traction for friction coefficients 0.7 and 0.3. Fig. 2.2b Longitudinal traction for friction coefficients 0.7 and 0.3. 
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CHAPTER III 

 

CONTROLLER DESIGN FOR THE WMR SUBJECT TO WHEEL SLIP 

 

In the WMR control literature, many control algorithms have been developed based on 

the nature of the WMR model and the applications of the WMR. Since most WMRs have 

nonlinear models, they are either nonlinearly controlled or linearly controlled after 

linearization. Backstepping control [22], Lyapunov-based control [23], sliding mode 

control [24], observer-based control [25] are typical nonlinear control approaches. 

Input-state linearization control [26], input-output linearization control [27][2][28] are 

typical linearized control approaches. 

Once wheel slip dynamics and traction forces are introduced into the WMR model, due 

to the nonlinear dependence of the traction force upon wheel slip, control design becomes 

more difficult. Slip that is greater than a certain amount leads to traction force saturation, 

where slip dynamics is open-loop unstable [29][30] and may cause instability of a WMR. 

However, slip or traction force can be controlled such that the motion pattern of a WMR 

can be optimized. In vehicle control, for example, wheel slip determines the traction force 

upon which the maneuverability of a vehicle relies. Wheel slip can be controlled to 

enhance the maneuverability of a vehicle, e.g., Antilock Braking System (ABS) control. 

The goal of ABS control is to maintain the longitudinal traction force at its maximum 

during deceleration. Direct approaches drive the longitudinal traction force to its 

maximum using sliding mode-based extremum seeking control (ESC) [31][32][33] 
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without knowing the optimal slip ratio or the analytic function of the longitudinal traction 

force, while indirect approaches [29][30][34][35] drive the wheel slip to its optimal value, 

derived from estimation or sensors, where the longitudinal traction force is maximal. 

However, there is little research that considers the effect of lateral traction force on the 

motion of a WMR, which will be investigated in this chapter. 

In this section, three control strategies are developed for the WMR subject to slip. They 

are σ -process discontinuous feedback control, sliding mode control and input-output 

linearization technique. In σ -process discontinuous feedback control, the WMR need to 

move to a desired static configuration. In sliding mode control, the WMR need to make a 

sharpest possible turn where the lateral traction force is maintained at its maximum. In 

input-output linearization technique, the WMR is controlled to achieve path following 

and position tracking tasks. 

 

3.1 σ -process based Discontinuous Feedback Control 

When both lateral and longitudinal slip dynamics are introduced into WMR overall 

dynamic model, the overall WMR model becomes a third order underactuated dynamic 

system with second order nonholonomic constraints. Such a model is quite different from 

typical ideal WMR’s dynamic model in the sense that the second order nonholonomic 

constraint does not reduce the dimension of the state space. It has been shown that such a 

system is not asymptotically stabilizable to a given equilibrium solution using a 

time-invariant continuous feedback [38]. Therefore those control approaches for an ideal 

WMR dynamic model, such as backstepping technique in [36][22][37], observer based 
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controller in [25], cannot be applied to this model. However, such a system is 

asymptotically stabilizable to a desired equilibrium using time-invariant discontinuous 

feedback laws. In the literature, surface vessel is such a system that researchers have been 

working on. Surface vessel is modeled in local coordinates that is fixed on the system. It 

is actuated in surge and yaw direction, while non-actuated in sway direction. In [38] a 

discontinuous coordinate transformation named σ -process is applied to transform an 

underactuated surface vessel system into a discontinuous one in which the design of 

feedback control laws is easily carried out. Then, transforming back into the original 

coordinates yields discontinuous feedback laws which asymptotically stabilize the 

original system to the desired configuration with exponential convergence rate. In 

[39][40][41] the surface vessel model equations are transformed into a chained form 

where either discontinuous or time-varying feedback control law can be designed to 

asymptotically drive the system to zero. In [42] a tracking control law is developed for an 

underactuated surface vessel. 

In this section, we transform the WMR dynamics in (2.1a) into local coordinates that is 

fixed on the WMR such that the non-actuated sidewise dynamics is explicit. We then 

apply the σ -process to transform the system into a discontinuous one, design a feedback 

control law and transform back to the original coordinates which yields a discontinuous 

controller. 

3.1.1 Control law derivation 

First we assume both slip ratio and slip angle are quite small and thus the traction force 

in (2.6) can be linearly approximated as follows [10], 
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where α >0 and β <0 are constants. 

For real commercial WMRs, we can only control the forward velocity v and the angular 

velocity w instead of wheel torques. In the pure rolling case, there is a mapping between 
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However, when the pure rolling is relaxed and slip is introduced, this mapping does not 

have physical meaning anymore. Now when we give command v and w to the WMR, we 

are essentially giving command  and  derived from mapping (3.2) to control the 

WMR dynamics (2.1a) instead of WMR kinematics. In the following steps, we consider 

 and  as control inputs and design feedback law to control the dynamic model as in 

(2.1a). 

1θ& 2θ&

1θ& 2θ&

The kinematic model of the WMR is  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

10

0

/2/1/2/10
2/12/10

001

100
0sincos
0cossin

100
0sincos
0cossin

v
v

bbw
vy

x η
φφ
φφη

φφ
φφ

φ

&&

&

&

&

   (3.3) 

where x0, y0, φ  denote the configuration of point P0 in Fig. 2.1, and since 

φφ sin,cos 00 dyydxx cc +=+= , the dynamic model in (2.1a) can be transformed into 

FCM =+ υφυ )( && ,  (3.4) 

where , , Tvv ][ 21ηυ &= ][ 213 FFFF =
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When we define new state variables z1, z2, z3, z4, z5, z6 as 
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we will have a new set of equations as 
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++=
θαηφ
&

&&        (3.13) 

As stated in [38], such a system cannot be exponentially stabilized at an equilibrium 

using smooth feedback, and it is not asymptotically stabilizable to a desired equilibrium 

solution using time-invariant continuous feedback. Define z=(z1,z2,z3,z4,z5,z6)T∈M, and 

the set of equilibrium manifold Me={z∈M|z4=z5=z6=0}, follow [38] and one can prove 

that the system described by (3.6-3.11) is strongly accessible on M, and it is small-time 

locally controllable at any equilibrium ze∈Me. 

Now we design a time-invariant discontinuous feedback control law for the above 
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system. We focus only on the problem of feedback stabilization to the origin, i.e., ze=0. 

3.1.1.1 Stabilization of the reduced system 

We first study the following reduced order system, which is obtained by considering 

the subsystem in (3.6-3.9), letting (z5+z6, z5-z6) to be the control variables (v1,v2): 
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Consider the above reduced system in (3.14-3.17). Restricting consideration to z3≠ 0, 

we apply the σ -process in [38] 
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We design the feedback law to be 

Exlxl /)(v 32211 −−=  ,                                           (3.23) 

DxByyk /)(v −= 41112  ,                                           (3.24) 

where k1>0 and l1, l2 are the gains, to derive the reduced closed loop system 

111 yky −=&                                                     (3.25) 
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The x-dynamics can be rewritten as 
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It can be seen that if 0<l1<l2 and 0)|||)(|( 1
2

1
11 <+++ −− γγβ

D
bBBAk , the eigenvalues 

of matrix A1 can be assigned arbitrarily on the left-hand side of the phase plane. Note that 

0)|||)(|( 1
2

1
11 <+++ −− γγβ

D
bBBAk  can be satisfied when set an upper bound for the 

WMR’s forward velocity. Clearly, the y1-dynamics is globally exponentially stable at y1=0. 

Moreover, since matrix A2(t) and h1(t) go to zero as ∞→t (note that , 

representing the lateral traction term, will disappear when z

)|||(| 1
2

1
1

−− + γγ

3 converges to zero), and  

∫
∞

∞<
0 2 )( dttA , ∫

∞
∞<

0 1 )( dtth , 

the x dynamics can also be globally exponentially stable at the origin x=0 when matrix A1 

is a Hurwitz matrix [43]. 

Note that in the (z1,z2,z3,z4) coordinates the control law takes the form of  
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and the reduced closed-loop system becomes  
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It can be shown that both the trajectory (z1(t),z2(t),z3(t),z4(t)) and (v1(t),v2(t)) are 

bounded for all  and they converge exponentially to zero. Moreover, the control law 

in (3.32-3.33) drives the system in (3.35-3.38) to the origin, while avoiding the set 

0≥t

  }0),,(,0|),,,{( 42134321 ≠== zzzzzzzzN . 

3.1.1.2 Stabilization of the complete system 

Now we study the problem of asymptotic stabilization of the complete system in 

(3.6-3.11), with u1 and u2, instead of x5 and x6, as control inputs. However, the integrator 

back-stepping approach developed for smooth systems cannot be directly applied here to 

derive control inputs due to the discontinuous nature of the system. 

Consider the controllers satisfying the following equations: 

)()),,,(v()()( 1432116521 zszzzzzzKzuzu +−+−=+        (3.39) 

)()),,,(v()()( 2432126521 zszzzzzzLzuzu +−−−=−      (3.40) 

where v1 and v2 are feedback laws for reduced system, and s1 and s2 correspond to their 

time derivatives along (3.6-3.11) 
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The idea is to implement the control law in (3.33-3.34) through the integrators by 

choosing gains K and L appropriately. 

Consider the coordinate transformation 
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Then, it can be shown that the close-loop system can be written as 
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where   LtKt ebDweEwbxkxlxl −− −+−−−=′ 20101132211γ

and . LtKt ebDweEwxlxlbxk −− ++−−=′ 20103221112γ

The (y1,w1,w2)-dynamics is globally exponentially stable at (y1,w1,w2)=(0,0,0). It can be 
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shown that if K>k1 and (i.e. 01010 ≥wy 0/)/( 102201605030 ≥+++ EzlEzlzzz ) then 

)(~
2 tA  and h2(t) go to zero as ∞→t  and  

∫
∞

∞<
0 2 )(~ dttA , ∫

∞
∞<

0 2 )( dtth . 

Thus, for any initial condition (y10,x0,w10,w20) satisfying 010 ≠y  and , both 

the trajectory ( ) and the control ( ) are bounded for all 

 and converge exponentially to zero. Furthermore, the trajectory 

( ) is bounded for all  and converges exponentially 

to zero. 

01010 ≥wy

)(),(),(),( 211 twtwtxty )(),( 21 tutu

0≥t

)(),(),(),(),(),( 654321 tztztztztztz 0≥t

3.1.2 Simulation results 

We present simulation results to validate our discontinuous controller on the WMR 

model that include slip dynamics. For the simulation task, the WMR parameters (refer to 

Fig. 2.1) are as follows: b=0.24m; d=0.05m; r=0.095m; mr=16kg; mw=0.5kg; Irz=0.537; 

Iwy=0.0023kgm2; Iwz=0.0011kgm2. We apply our proposed controller to the stabilization 

problem that is subject to both lateral and longitudinal slips. The traction curve slope 

parameters are 12,20 −== βα .  

We set the origin as the desired configuration and simulate the problem with the initial 

position of the WMR ]0,1,2[],,[ 000 −−=φyx , initial forward velocity 00 =υ  and initial 

angular velocity 00=ω . The control gains are: K=0.5, L=0.5, k1=0.044, l1=1, l2=2. 

In Fig. 3.1 we observe that the WMR trajectory converges to the origin. Fig. 3.2 is the 

WMR configuration, where we observe that the WMR is able to converge to the origin 

with monotonically decreasing φ . The lateral and longitudinal slip velocities are shown 

in Fig. 3.3 and Fig. 3.4. It can be seen that the left side wheel needs more slip to generate 
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more traction than the right wheel for the WMR to take a right turn. Fig. 3.5 shows the 

control inputs  and , respectively. We observe that both the control inputs are 

bounded and converge to zero asymptotically. 
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Fig. 3.1 WMR trajectory       Fig. 3.2 WMR configuration 
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       Fig. 3.3 Lateral slip velocity    Fig. 3.4 Longitudinal slip velocity for both wheels 
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Fig. 3.5 Control inputs for wheel1 and wheel2 
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3.2 Sliding Mode Control 

Sliding mode control is a standard approach to tackle the parametric and modeling 

uncertainties of a nonlinear system. It is a nonlinear control method that switches the 

dynamics of a nonlinear system by application of high-frequency switching control. The 

state-feedback control law switches from a continuous structure to another based on the 

current system states. Multiple control structures are designed so that the system 

trajectories move toward the boundaries of the control structures, i.e., sliding surface, and 

move along the sliding surface thereafter. Sliding mode approach transforms a 

higher-order system into a first-order system by designing the sliding surface, thus the 

control can be very simple. Lyapunov function method is applied to guarantee the 

stability of the nonlinear system. The main strength of sliding mode is its robustness. 

Since the control can be as simple as a switching between two states, it needs not be 

precise and will not be sensitive to parameter variations that enter the system. 

Additionally, since the control law is not continuous, the sliding surface can be reached in 

finite time. 

3.2.1 Control Law Derivation 

In an ABS control system of a vehicle, wheel slip has been controlled via sliding mode 

to maintain the longitudinal traction force at its maximum [32], such that the vehicle can 

stop with highest possible deceleration. In this dissertation we apply sliding mode to 

control a WMR to drive its lateral traction force to its maximum and maintain it during 

turning, such that the WMR can make a sharpest possible turn. If the optimal wheel slip is 
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known, where the traction force is maximal, slip can be controlled directly to maintain at 

its optimal value. However, when both the optimal lateral slip velocity and the analytic 

form of the lateral traction force are unknown, we apply a sliding mode-based extremum 

seeking control (ESC) approach such that the WMR conducts turning with maximum 

lateral traction force, which gives a minimum allowed radius of curvature for given 

forward velocity [44]. In addition, the longitudinal traction force is estimated via a sliding 

mode-based observer in [32] using the information of angular velocities of the wheels. In 

this dissertation, we design a sliding mode based observer to estimate the lateral traction 

force that will be used in the ESC design, using the information of angular velocities of 

both the robot and the wheels. 

Since the WMR is not actuated in the lateral direction, the lateral traction force is 

controlled indirectly by controlling the longitudinal traction forces for the two wheels, 

and the longitudinal traction forces are controlled by the wheel torques. In the following 

section we design longitudinal traction forces both to control the lateral traction force 

towards its maximum and to control the forward velocity. The longitudinal traction forces 

are then controlled by designing input torque via standard sliding mode which is omitted 

in this dissertation. 

3.2.1.1 Optimum Search Algorithm for Lateral Traction 

Differentiating the lateral traction F3 with respect to time along the trajectories of the 

system (2.11)-(2.55) we obtain 
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Define an error variable  where  is an upper bound of FrFFe 33 −= rF3 3. Then the 

dynamics for e is governed by 
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where  

vdv
I

d
M

FFF
Mv

FFvA /)()1()(),,,,( 22
2

32121 ηφηφηφη &&&&&&& ++−+++−= , (3.47) 

I
dbB −= ,             (3.48) 

and u1 is the new control input defined as u1=F1-F2. 

We design the sliding surface as 

∫+=
t

ees
0

dτλ , (3.49) 

where 0>λ  . If s converges to a constant, the sliding motion satisfies 

0
d
d

→+ e
t
e λ ,            (3.50) 

and the lateral traction force can be made to its maximum with a proper selection of λ . 

To obtain the control law to let s converge to a constant, first we rewrite (3.49) together 

with (3.46) as 
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Let AAA Δ+=  where A  represent the nominal part of A whereas the unknown part 

AΔ  is bounded by AA δ≤Δ . Design the control law as 

))((1
1 sABu Φ+−= − γ ,            (3.52) 

where NA+= δγ  with N>0,  

and )/2sin(sgn)( απss =Φ , a periodic switching function [31][32], which periodically 

search the traction force neighborhood to determine the control direction. This selection 
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guarantees that s converges to αk  for some integer k, which depends on the initial 

condition and , if the following sliding mode existence condition is satisfied: rF3
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If it is assumed that the explicit dependence of traction on time is negligible, and keep in 

mind that AA δ≤Δ , the sliding mode existence condition turns into 

eN
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sa
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22

3

)( &
.             (3.54) 

Thus in sliding mode, the lateral traction force will converge to  until it enters a 

region where the gradient is so small that the condition (3.53) cannot be satisfied. When 

(3.53) is not satisfied, the traction is close to its maximum and it will behaves arbitrarily. 

However, for a given and 

rF3

rF3 λ , we can select a sufficiently large N such that this region 

around the maximum can be made arbitrarily small. In future simulations we select 

λ =0.5 and α =0.5. 

3.2.1.2 Forward Velocity Control 

From (2.1-2.5) we obtain that the forward velocity is governed by 

)(21 φηφ &&&& dMFFvM +++= ,                 (3.55) 

which we rewrite as 

)(2 φηφ &&&& dMuvM ++= ,                   (3.56) 

where  u2 is the new control input defined as u2=F1+F2. 

We design sliding surface as 

rvvs −=  ,                   (3.57) 

where is the desired speed. If s converges to zero, v will converge to . The sliding rv rv
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surface is governed by 

),()( 22 ηφφηφ &&&&&& C
M
ud

M
us +=++= .             (3.58) 

Let CCC Δ+=  where C represents the nominal part of C whereas the unknown part 

is bounded by CΔ CC δ≤Δ . 

Design the control law as 

)sgn(2 sMkCMu +−=  ,                    (3.59) 

where  μδ += Ck  with 0>μ , such that s converges to zero. 

3.2.1.3 Lateral Traction Observer 

The realization of the ESC algorithm requires the knowledge of the lateral traction 

force. We assume this quantity cannot be measured directly, so we develop an observer 

which allows us to obtain lateral traction force using the measurements of the robot 

angular velocity  and the wheel angular velocity . This observer is based on the 

equivalent control method, which has been used to develop observer for longitudinal 

traction force in ABS control in [32]. 

φ& iθ&

From (2.1) we obtain the dynamic equation 

rdFbbIIr w 32121 )()( −−=−+ ττθθφ &&&&&& .              (3.60) 

Now we define a new variable )( 21 θθφζ &&& −+=
Ir

bIw , which turns (3.60) into 

rdFbIr 321 )( −−= ττζ& .                   (3.61) 

We define an estimate  which satisfies ζ̂

VrdbIr −−= )(ˆ
21 ττζ&  .                 (3.62) 

The function V is picked as 

)sgn(ζNV −=             (3.63) 
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where ζζζ ˆ−=  is a tracking error of ζ  and N>0 is a sufficiently large constant. 

Subtracting (3.62) from (3.61) we obtain 

3)sgn( rdFrdNIr −−= ζζ&  .                (3.64) 

If N is selected such that }max{ 3FN > , ζ  converges to the sliding surface 0=ζ . On 

sliding surface the equivalent value of variable )sgn(ζNV −=  is equal to F3

3FVeq =  .               (3.65) 

As shown in [32], the equivalent value of the high frequency switching signal can be 

obtained by applying a low pass filter 

1
1)(
+

=
sT

sH
f

 ,              (3.66) 

where Tf is the constant which suppresses the high frequency signal. Since this chattering 

only occurs in the lateral traction force observer loop, it will not affect the entire system. 

The estimate of the lateral traction force out of the filter will be used in the ESC 

algorithm. 

3.2.1.4 Longitudinal Traction Force Tracking 

From previous sections A and B, we obtain desired F1 and F2 to control lateral traction 

force and forward velocity. Now, we design iτ  to enable Fi to track desired Fi using 

sliding mode control, which is omitted in this dissertation. 

3.2.2 Simulation Results 

Refer to section 4.2 for simulation results. 
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3.3 Input-Output Linearization Technique 

 

3.3.1 Path Following Control 

In Chapter II, wheel slip dynamics was modeled in a WMR’s overall dynamics. 

Although such a system with nonholonomic constraints is not input-state linearizable, it 

may be input-output linearizable if proper outputs are chosen [2]. In this section, we 

choose two outputs h1 and h2 for the look-ahead point Pl on the WMR. h1 is defined as the 

shortest distance from the look-ahead point to the desired path. h2 is defined as forward 

velocity of the WMR, which is the velocity component of the look-ahead point along the 

x-axis on the WMR local frame. The input-output linearization was also applied to 

approach path following control for the WMR in [15].  

3.3.1.1 Control law derivation 

Based on the dynamic model presented in Chapter II, we approach the path following 

control problem of a WMR. Referring to Fig. 2.1, the coordinates of the look-ahead point 

l are given by, P

xl = x + l cosc φ  

y = y + l sinl c φ    (3.67) 

Let the output equation be represented by a vector y, where, 

( ) ( )[ ]qhqhhy &21==    (3.68) 

where  and . T
cc yxq ],,[ φ= Tvv ],,[ 21ηυ &=

Since any set of paths can be constructed through a combination of circular and 

straight-line segments [45], we develop explicit equations for ( )qh1  for both circular and 
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straight-line paths. For a circular path ( )qh1  can be formulated as follows, 

( ) ( ) ( )( ) Ryyxxqh flfl −−+−= 22
1   (3.69) 

Pf = x f , y f( )  is the instant center of circular path with respect to an inertial frame and R 

is the instantaneous radius of the circular path. Points ( )lll yxP ,=  (the look-ahead point) 

and  (the center of mass) are related through (3.69). ( ccc yxP ,= )

As for a straight-line path, the output equation becomes, 
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where all  are constants used to describe the straight-line. From (3.69-3.70), 

we see the shortest distance between the look-ahead point and the path can be taken as the 

absolute value of . After the introduction of longitudinal slip, the forward velocity of 

the WMR can be written as follows, 

Ci, i =1,2,3

1h

( ) φφ sincos2 cc yxqh &&& +=
 
.                                        (3.71) 

Now, we proceed to develop a nonlinear controller based on the feedback linearization 

technique. The decoupling matrix for feedback linearization for the above output 

equations are differentiated until the input terms appear in the output equations such that, 
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As an example, for the straight-line path, 
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=  is known as the Jacobian matrix and we can use them to compute the 
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decoupling matrix,  as follows, Φ
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   (3.73) 

We utilize the decoupling matrix to establish the input-output feedback linearization as 

shown below, 
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If we represent (3.74) in the form of qVUy &&&&&& += , where  is a function of q&&& F&  as in (2.1) 

and F&  is a function of wheel torque as in (2.7), we can have dynamics between input 

and output as τQPy +=&&& . If we design a new control input to be τQPud += , the system 

is linearized to be , for which we can design a linear controller as, duy =&&&

eKeKeKyu pvidesiredd +++= &&&&&&   (3.75) 

where actualidesiredi hhe __ −=  and Ki, Kv and Kp are control gains for the linear system. 

Then the torque input to the original nonlinear system becomes 

( PuQ d −= −1τ )                                                    (3.76) 

3.3.1.2 Simulation results 

Refer to Case III in section 4 for simulation results. 

3.3.2 Position Tracking Control 

3.3.2.1 Control Law Derivation 

We choose x and y coordinates of the look-ahead point Pl in Fig. 2.1 as the outputs to 

be controlled, which is . Then following the steps in Section 

3.3.1, the system will be feedback linearized and linear control law will be derived in the 

form of (3.76). 
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3.3.2.2 Simulation Results 

Straight Line Tracking. Figure 3.6 shows the WMR tracking a desired trajectory 

{(x,y)|x=1,y=3t} with the WMR’s center starting from ]0,0,2[],,[ 000 −=φyx  (the dotted 

line is the path of the look-ahead point). The control gains are kp1=kp2= 1600, kv1=1600, 

kv2=1600, ki1=3, ki2=3, initial speed is 3m/s, same as the desired speed, and the ground 

friction coefficient is 0.3. We observe in Fig. 3.7 that the position tracking error converges 

to zero. In Fig. 3.8 we observe that the WMR’s lateral slip converges to zero at its steady 

state. The maximal lateral slip is about 1.5m/s, and the corresponding slip angle can be 

calculated from (2.2) to be about 26 degree, meaning that the lateral force is in saturation 

at that time. This shows that even though the lateral force is saturated, the system is still 

able to accomplish the tracking task. Obviously in the cases where the lateral force is 

never saturated (either low desired velocity or high surface friction coefficient), the 

tracking task can be accomplished as well. 

Circular Tracking. Figure 3.9 shows the WMR tracking a desired trajectory 

{(x,y)|x=5cos(0.2t), y=5sin(0.2t)} with the WMR’s center of mass starting from 

]0,0,0[],,[ 000 =φyx . The control gains are kp1=kp2=16e+4, kv1=16e+4, kv2=16e+4, ki1=3, 

ki2=3, initial speed is 1m/s, same as the desired speed, and the friction coefficient is 0.3. 

We observe in Fig. 3.10 that the tracking error converges to zero. In Fig. 3.11 we observe 

that the lateral slip converges to a value whose corresponding lateral force is not 

saturated. 

In Fig. 3.12, the WMR tracks a trajectory {(x,y)|x=5cos(t), y=5sin(t)} with the 

WMR’s center starting from ]2/,0,5[],,[ 000 πφ =yx . The initial speed is 5m/s, same as the 
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desired speed. The control gains are same as above. We observe in Fig. 3.12 that the 

WMR does not have a good tracking. From Fig. 3.13 we see that the lateral slip is in the 

region where the lateral force is always in saturation. The lack of traction force explains 

the bad tracking behavior. 
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Figure 3.6. Straight line tracking      Figure 3.7. Position tracking error 
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Figure 3.8. Lateral slip        Figure 3.9. Circular tracking 
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Figure 3.10. Tracking error         Figure 3.11. Lateral slip 
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Figure 3.12. Circular tracking        Figure 3.13. Lateral slip 
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CHAPTER IV 

 

APPLICATION I: SINGLE ROBOT CONTROL 

 

4.1 Single Robot Path Following Control 

In this section, we investigate how wheel slip affects the performance of individual 

WMR. We focus on three different path following control cases and compare the effect of 

slip. From now on, we call the WMR model with slip information the slipping model, and 

WMR model without the slip information the no-slipping model. And we call the WMR 

controller with slip information the slipping controller, and the WMR controller without 

slip information no-slipping controller. Case I is for WMR with no-slipping model and 

no-slipping controller. Case II is for WMR with slipping model and no-slipping controller. 

Case III is for WMR with slipping model and slipping controller. In these three cases, all 

the WMR models are input-output linearizable. Therefore the path following control can 

be applied to them. To focus on comparing slip effect in these cases, it is better to let all 

other information be as much same as possible. First, they have the same path and desired 

speed to follow. Second, their linearized close-loop models are the same in the frequency 

domain. Last, we let their initial condition and the surface friction coefficient to be the 

same. 

Case I: No-slipping model with no-slipping controller 

In this case, the WMR, with no-slipping model and no-slipping controller, starts at 

point ]0,0,0[],,[ 000 =φyx  and follows an L-shape path with an initial speed of 2.5m/s, 

 36



which is also the desired speed. The L-shape path consists of straight line 

L1={(x,y)|y=0,x<10} and L2={(x,y)|x=10,y>=0}. In the linearized close-loop model, the 

transfer functions for distance and velocity inputs are 
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,  (4.1) 

and we choose the control gains kp=9, kv1=3, kv2=1. Since there is no wheel slip, the WMR 

is able to take a sharp turn in a stable manner, which can be observed in Fig. 4.1. 
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Fig. 4.1 L-shape cornering for single WMR with no-slipping model and no-slipping controller 
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         Fig. 4.2 Forward velocity          Fig. 4.3 Distance from the desired path 
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  From Fig. 4.2 and Fig. 4.3 we observe that, starting from the corner point, it takes the 

WMR only about 5 seconds to converge to the stable state. 

Case II: Slipping model with no-slipping controller 

  In this case, the WMR with slipping model and no-slipping controller follows the same 

L-shape path as in Case I with the same initial speed and desired speed of 2.5m/s. The 

control gains are kp=9, kv1=3, kv2=1, which are same as those in Case I. The surface 

friction coefficient is 0.3, which represents a slippery surface. Since the controller does 

not know the slip and it controls the WMR as if there is no slip, the WMR is subject to 

unstable behavior, which can be observed in Fig. 4.4.  
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Fig. 4.4 L-shape cornering for single WMR with slipping model and no-slipping controller 
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Fig. 4.5 Dotted area in Fig. 4.4      Fig. 4.6 Forward velocity  
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Fig. 4.7 Lateral slip velocity      Fig. 4.8 Slip angle 
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  Fig. 4.9 Robot orientation    Fig. 4.10 Resultant tangential force along heading direction 

We observe in Fig. 4.4 and Fig. 4.5 that the WMR falls into instability after it starts 

cornering. From Fig. 4.6 we observe that the WMR’s forward speed is reduced to below 

zero, meaning that the WMR is moving backward at that moment, which we will explain 

shortly. In Fig. 4.7-4.8, we observe that the lateral slip is so much that the slip angle 

enters the region where lateral traction is reducing as slip angle increases (see Fig. 2.2). In 

Fig. 4.9, the orientation shows that the WMR swings back and forth in an unstable 

manner. Fig. 4.10 shows the component of the resultant tangential force along heading 

direction of the WMR, which is derived as follows. 
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Fig. 4.11 Derivation of resultant force in Fig. 4.10 

In Fig. 4.11, the dotted curve is the WMR’s path, α  is the angle between actual 

velocity and positive x-axis. flong1, flong2 and flat are obtained from the simulation results. 

fnorm is the resultant normal force, ftan is the resultant tangential force and M is the 

resultant torque. The component of the tangential resultant force along the heading 

direction is calculated as 

ααα sin)cossin)(( 21 latlonglongresult ffff −+= . (4.2) 

This resultant force is consistent with the velocity profile in Fig. 25 in such a way that 

when the force is negative the velocity is decreasing, and when the force is positive the 

velocity is increasing. If we compare this resultant force with the corresponding force in 

Case I, the velocity decrease can be properly explained. In Case I, the lateral traction 

force does not contribute to fresult, and fresult equals to the driving force, meaning that the 

driving force is entirely employed to drive the WMR forward. However in Case II, the 

lateral traction force contributes a negative term to fresult. Because the controller does not 

know this contribution, it does not generate enough driving force either to drive the WMR 

or to balance the lateral traction effect. As a result, the actual force to drive the WMR 

becomes less than required and even negative along with decreasing velocity. Afterwards, 
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as the lateral slip starts to reduce, lateral traction force becomes smaller and longitudinal 

traction force dominates in the resultant force. Then the WMR is able to gain its speed 

again. 

Case III: Slipping model with slipping controller 

In this case, the WMR with slipping model and slipping controller follows the same 

L-shape path as in Case I with the same initial and desired speed of 2.5m/s. The surface 

friction coefficient is 0.3, which is a slippery surface. The control gains in the linearized 

close-loop model are Kp=450, Kv1=159, Kv2=50, Ki1=53, Ki2=51. These control gains are 

derived by letting the frequency response of the close-loop model in Case III be the same 

with that in Case I. The transfer functions for distance and velocity inputs in the 

close-loop model in Case III are 
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To let (4.1) and (4.3) have same frequency response, we need to find a number a>>1 

such that 
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We set a=50, hence Kp=a*kp=450, Kv1=a*kv1+kp=159, Kv2=a*kv2=50, Ki1=a+kv1=53, 

Ki2=50+kv2=51.  
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Fig. 4.12 L-shape cornering for a single WMR with slipping model and slipping controller 
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 Fig. 4.13 Distance from desired path      Fig. 4.14 Forward velocity 
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   Fig. 4.15 Lateral slip velocity     Fig. 4.16 Slip angle 

From Fig. 4.12-4.14 we observe that the WMR’s outputs converge to desired outputs, 

however, it takes longer time to converge than in Case I. Fig. 4.15-4.16 show lateral slip 
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velocity and slip angle, respectively. Compared to Case II, the forward velocity is not 

reduced by too much, and this can be explained as, since the controller knows that the 

lateral traction force plays a role in fresult, it generates more driving force to balance the 

effect of lateral traction and stops the velocity from reducing too much. This increase in 

the driving force also increases the resultant normal force. Eventually, the lateral slip is 

much less than that in Case II, which keeps the WMR in stable motion. This simulation 

proves the effectiveness of the controller for the WMR model with slip. 

 

4.2 Single Robot Sharp Turning Control 

Applying the sliding mode technique in Chapter III, we show turning control 

simulation results in this section. Let the WMR start from the configuration [0,0,0] with 

initial and desired velocity 2m/s. The friction coefficient is 0.3. The sliding mode control 

law controls the robot to make a turn at almost constant curvature in Fig. 4.17. Fig. 4.18 

shows the lateral slip velocity which stays close to optimal slip value where maximum 

traction force occurs. In Fig. 4.19 we observe that the actual lateral traction force oscillate 

closely to the maximum value indicated in Fig. 6a. The estimated lateral traction force 

from the observer tracks the actual force nicely. Fig. 4.20 shows the wheel torque that 

generates switching control input for the WMR. 
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 Fig. 4.17 Turning control trajectory   Fig. 4.18 Lateral slip velocity in turning control 
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 Fig. 4.19 Actual and observed lateral traction force  Fig. 4.20 Wheel torques 
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CHAPTER V 

 

APPLICATION II: MULTI-ROBOT FORMATION COTNROL 

 

In this section, we focus on investigating the effect of wheel slip for multiple WMRs 

formation. We take leader-follower formation control as a specific example, where there 

are three WMRs, the leader is governed by path following control and the other two 

followers are governed by ψ−l control [46]. Briefly, the ψ−l control is for a follower 

WMR to preserve desired inter-distance l and relative angle ψ  to its leader. In [46] 

ψ−l  control was applied to follower WMRs kinematic model. In [47] velocity control 

inputs were derived for follower WMR having kinematic model subject to ψ−l control, 

and backstepping technique was applied to derive torque control input for the follower’s 

dynamic model. In [48] ψ−l control was applied to follower WMR kinematics to 

derive velocity control input, and in order to track this velocity Lyapunov based approach 

was applied to derive torque control input for WMR dynamics. Since our WMR system 

with slip dynamics is an underactuated system as mentioned in last section, backstepping 

technique is not applicable. We apply input-output linearization to derive the 

ψ−l control law for follower WMRs when outputs l and ψ are chosen.  

We investigate how the WMR formation evolves during the leader’s path following 

task, and how the formation changes subject to slip effect. We focus on three cases of 

formation control and compare slip effect between them. In Case I each WMR in the 

formation has no-slipping model and no-slipping controller. In Case II each WMR has 
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slipping model and no-slipping controller. In Case III each WMR has slipping model and 

slipping controller. To focus on comparing slip effect in these cases, it is better to let all 

other information be as much same as possible. First, in these three cases the leader 

WMRs have the same path to follow and the desired inter-distance and relative angle for 

corresponding follower WMRs are the same. Secondly, the linearized close-loop models 

of the WMRs are same with each other in the frequency domain. Lastly, we let their 

initial condition, desired velocity, surface friction coefficient to be the same. 

Case I: Formation with WMRs having no-slipping model and no-slipping controller 

In this case, the leader WMR starts at point ]0,0,0[],,[ 000 =φyx  and follows an 

L-shape path with an initial speed of 2.5m/s, which is also the desired speed. The L-shape 

path consists of straight line L1={(x,y)|y=0,x<10} and L2={(x,y)|x=10,y>=0}, which is 

same as that in Chapter III. The other two follower WMRs start from [-4,4,0], [-4,-4,0] 

and follow the leader while preserving desired inter-distance 5m and relative angle 4/π , 

4/3π  to the leader. The controller for leader is same as that in Case I in Chapter III. The 

controller for the follower WMRs are ψ−l controller. It depends on the states of the 

follower WMR and its leader. It is easy to show that, when we take second order 

derivative of the outputs l and ψ , the torque input appears. Then the transfer functions 

for desired l and ψ  in the linearized close-loop model are 

paav

ap
ang

dpdv

dp
dis

ksks
k

sH

ksks
k

sH

++
=

++
=

2

2

)(

)(

, (5.1)

and we choose the control gains kpd=0.5, kvd=2 and kpa=0.5, kva=2, respectively. 
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In Fig. 5.1 we observe the trajectories of three WMRs follow an L-shape path while 

preserving a triangular formation. In Fig. 5.2 it shows the shape distortion along the way. 

Shape distortion is quantitatively determined as follows. 

Definition 5.1[49] The configuration is the set of landmarks on a particular object. 

The configuration matrix X is the k×m matrix of Cartesian coordinates of the k 

landmarks in m dimensions. 

Definition 5.2 An m×m rotation matrix satisfies  and m
TT I=ΓΓ=ΓΓ 1=Γ . The set 

of all m×m rotation matrices is known as the Special Orthogonal group SO(m). 

Definition 5.3 The jth row of the Helmert sub-matrix H is given by 

2/1)}1({   ),0,...,0,,,...,( −+−=− jjhjhhh jjjj  

and so the jth row consists of hj repeated j times, followed by jhj and then k-j-1 zeros, 

j=1,…,k-1. 

For k=3 the full Helmert matrix is explicitly 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

6/26/16/1
02/12/1

3/13/13/1
FH

 

and the Helmert sub-matrix is  

⎥
⎦

⎤
⎢
⎣

⎡

−−
−

=
6/26/16/1

02/12/1H
. 

Definition 5.4 The size-and-shape of a configuration matrix X is all the geometrical 

information about X that is invariant under location and rotation (rigid-body 

transformations), and this can be represented by the set [X]S given by 

, where X)}(:{][ mSOXX HS ∈ΓΓ= H=HX. 
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Definition 5.5 The Procrustes distance dP is obtained by matching the Helmert 

coordinates XH1 and XH2 of X1 and X2 as closely as possible over rotations. Thus 

Γ−=
∈Γ 21)(21 inf),( HHmSOP XXXXd , where inf stands for infimum. 

This Procrustes distance represents shape distortion in our formation control task, 

where X1 is the configuration matrix for three WMRs in the actual formation, and X2 is 

the configuration matrix for three WMRs in the desired formation. Both X1 and X2 are 

3×3 matrices. 
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Fig. 5.1 WMR formation in Case I 
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Fig. 5.2 Shape distortion in Case I 

Case II: Formation with WMRs having slipping model and no-slipping controller 

In this case, everything related to the task is the same as in Case I except that each 

WMR has slipping model. The friction coefficient is 0.3. The triangular formation 

evolution and shape distortion during L-shape path following can be observed in Fig. 5.3 

and Fig. 5.4. 
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Fig. 5.3 WMR formation in Case II 
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Fig. 5.4 Shape distortion in Case II 

Case III: Formation with WMRs having slipping model and slipping controller 
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In this case, everything related to the task is the same as in Case II except for the 

controllers of the WMRs. Here they all have slipping controllers. In output feedback 

linearization, we have to take third order derivative of the outputs l and ψ  to observe 

the torque input. The transfer functions for desired l and ψ  in the linearized close-loop 

model are 

apavai

ap
ang

dpdvdi

dp
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+++
=

23

23

)(

)(

,          (5.2) 

and the control gains Kpd=50, Kvd=200.5, Kid=102 and Kpa=50, Kva=200.5, Kia=102, 

respectively. These control gains are derived by letting the frequency response of the 

close-loop model in this case same with that in Case I. To do so, we need to find a 

number a>>1 such that 

apavaiapav

dpdvdidpdv

KsKsKsksksas

KsKsKsksksas

+++=+++

+++=+++
232

232

))((

))((
. 

We set a=100, hence K =a*k =50, K =k *a+k =200.5, K =a+k =102, 

K =a*k =50, K =k *a+k =200.5, K =a+k =102

pd pd vd vd pd id vd

pa pa va va pa ia va . 

The formation evolution and shape distortion during L-shape path following can be 

observed in Fig. 5.5 and Fig. 5.6. 
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Fig. 5.5 WMR formation in Case III 
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Fig. 5.6 Shape distortion in Case III 
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CHAPTER VI 

 

APPLICATION III: GAME-BASED PURSUIT-EVASION PROBLEM 

 

From the optimization point of view, P-E problem can be classified into one-sided 

optimization problem, which is non-game based, and two-sided optimization problem, 

which is game based. One-sided optimization problem is an optimal control problem 

where an objective function is optimized for one player, while in two-sided optimization 

problem an objective function needs to be maximized by one player and to be minimized 

by the other player simultaneously. 

In the literature of non-game-based P-E problems, a randomized pursuer strategy is 

applied to locate an unpredictable evader and to capture it in a visibility-based P-E 

problem in [50]. Dynamic programming is applied to find solution in a class of herding 

problem in [51], and in multi-player P-E problem in [52] where cumulant-based control is 

used. In [53] nonlinear model predictive controller is applied to an evasive UAV in an 

aerial P-E problem to help evasion. In [54] a graph theoretic approach is proposed to 

multi-player P-E problem. In [55] a time-optimal pursuit strategy is proposed in a P-E 

game and the pursuer takes the worst analysis to capture the evader in a time-efficient and 

robust fashion even when the evader is intelligent. 

Game-based P-E problem is the focus of this dissertation. A game-based P-E problem 

is a non-cooperative zero-sum game problem for two players, a pursuer and an evader, 

who have completely opposite interests. The pursuer tries to capture the evader while the 
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evader tries to avoid being captured. The game arises in numerous situations. Typical 

examples are search and capture missions, missile guidance to chase an aircraft and 

aircraft dogfight missions etc. 

The first P-E game was the Homicidal Chauffeur game which was studied in 1960s 

[56]. In this game, the pursuer has higher speed than the evader while the evader does not 

have turning constraint as the pursuer does. The game is to find regions of initial 

conditions in game space that guarantee either capture (capture region) or escape (escape 

region) and to provide optimal strategy for each player. Guaranteed capture means that 

when the game starts from capture region, no matter what strategy the evader has, there 

always exists a strategy for the pursuer to achieve capture. Guaranteed escape means that 

when the game starts from escape region, no matter what strategy the pursuer has, there 

always exists a strategy for the evader to avoid being captured. The game solution 

provides the optimal strategy for the pursuer and the evader to follow in order for each to 

achieve their conflicting goals. Since the evader in the Homicidal Chauffeur game does 

not have turning constraint, which is not a realistic assumption, the game of two identical 

cars [57][58] has been studied with both players having turning constraints. In this game 

it is not possible to solve for the optimal strategy for the two players. In stead, the 

backward reachable set in the game space is solved for to describe the dependency of the 

game result on the initial conditions [57]. Capture is guaranteed to occur when the game 

starts from this set while escape is guaranteed when the game starts from the complement 

of this set. Generally computation of reachable set is used to verify and validate system 

design by catching every potential failure mode. Different from simulation, which only 
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checks a single trajectory of a system each time, reachable set is a way of checking the 

entire group of trajectories at once. Backward researchable set is a set of all states, 

starting from which trajectories can reach a given final set of states. In this game the final 

set of states represents a set of all possible states in the game space at the moment of 

capture. 

In this dissertation, we focus on the two P-E game problems with the pursuer having 

fully dynamic model subject to wheel slip and we explore new autonomous approaches to 

the problems. In the Homicidal Chauffeur problem, as a first approach to solve the 

problem with wheel slip, we present an input-output linearization based feedback 

controller to compensate for the wheel slip such that capture is still possible. We then 

present an improved controller that employs extremum seeking control technique to 

maximize the lateral traction force in the curve segment for the pursuer, in order to 

minimize the travel in this segment and thus minimize the capture time. We then seek the 

capture region of the Homicidal Chauffeur game and the backward reachable set of the 

game of two identical cars. In doing so, we propose a conceptually equivalent kinematic 

model for the pursuer. Exploring the maximum capability of such a WMR in stable 

turning motion, we define its equivalent kinematic model as having the same maximum 

allowed turning curvature at a given speed. We also apply sliding mode-based extremum 

seeking control technique to practically identify the maximally allowed turning curvature 

for the WMR. Once such an equivalent model is obtained, the P-E game with the pursuer 

having fully dynamic model can be reduced to a kinematic P-E game, which will be 

solved using the algorithms in [56][57]. The solution in [56] gives capture region and 
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optimal play strategies for the Homicidal Chauffeur game with the equivalent kinematic 

pursuer. The solution in [57] gives backward reachable set for the game of two identical 

cars with the equivalent kinematic pursuer. 

 

6.1 Game-based P-E problem without Wheel Slip 

 

6.1.1 Case I: Homicidal Chauffeur game 

In the Homicidal Chauffeur game, the pursuer P moves at a fixed speed v1, and its 

radius of curvature is bounded by a given quantity R. It steers by selecting the value of 

this curvature at each moment. The evader E moves at a fixed speed v2 (v2<v1) and it 

steers, at each moment, by choosing its direction of travel. Abrupt changes in this choice 

are allowed. Each player knows the other’s relative location and orientation at each 

moment. Capture occurs when the distance PE ≤ l, a given quantity. When initial 

conditions are given in the capture region, the optimal play strategy for each player can be 

obtained as shown in [56].  

To solve this game, individual kinematics equations for two players are integrated into 

2-D kinematics represented in terms of the evader’s relative location to the pursuer, i.e., 

the evader’s coordinates in game space, which lowers down the number of state variables. 

The 2-D kinematics in game space is, 

ψφ

ψφ

cos

sin

21
1

2
1

vvx
R
vy

vy
R
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+−=

+−=

&

&

                             (6.1) 

where x, y are the evader’s coordinates in game space, 1≤φ  is the control variable for the 
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pursuer and ψ  is the moving direction of the evader in game space. 

It has been proved in [56] that if the following inequality (6.2) is satisfied, the entire 

game space is the capture region. However if the inverse of (6.2) is satisfied, only a 

limited area is the capture region, as shown in Fig. 6.1. 

1)(sin)(1 12 −+−> − γγγ
R
l                               (6.2) 

where 
1

2

v
v

=γ . To take an example of the problem, we let v1=2m/s, v2=0.5m/s, R=2m, and 

l=0.5m. 
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Fig. 6.1. Capture region for the case where (6.2) is not 

satisfied. The circle is where capture occurs. 
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Fig. 6.2 Pursuit evasion paths in Homicidal Chauffeur 

game: red line is evader’s path; blue curve is pursuer’s 

path.  
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Since (6.2) is satisfied, the entire game space is the capture region. In addition, we 

assume the evader is initially right behind the pursuer within a short distance, as located 

at e0=[0,0] and p0=[0,1,
2
π ] in Fig. 6.2. Under optimal play, the pursuer first goes away 

from the evader, enlarges the distance in between until the pursuer reaches p1 and the 

evader reaches e1 simultaneously, then makes a turn and goes straight to the evader; while 

the evader at first follows the pursuer to e1 and then escapes from it after the pursuer 

reaches p1. More details on deriving the optimal play strategies are omitted as they are 

elaborated in [56]. 

6.1.2 Case II: Game of Two Identical Cars 

In the game of two identical cars, the pursuer P and the evader E have fixed speed v1 

and v2, respectively, and their radii of curvature are bounded by given quantities R1 and R2, 

respectively. They steer by selecting the value of their curvatures at each moment. Each 

player knows the other’s relative location and orientation at each moment. Capture occurs 

if two cars come within distance l of one another. However, it is indicated in [58] that 

only given the initial conditions, the optimal play for the two players can not be derived. 

In stead, the backward reachable set in the game space is the alternative to study the P-E 

behavior. 

To solve this game, 3-D kinematics in game space is established as 

12

11
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sin
cos

ωωψ
ωψ

ωψ

−=
−=

++−=

&

&

&

xvy
yvvx

,                    (6.3) 

where x, y are the evader’s coordinates in game space, 1ω , 2ω  are angular velocities for P 

and E, respectively, and ψ  is the moving direction of the evader in game space. 

 58



Take an example of this game from [57], where v1=v2=5m/s, R1=R2=5m, l=5m and 

m/s1=≤
i

i
i R

vω . The calculated backward reachable set using the toolbox in [59] is shown 

in Fig. 6.3, where x, y, phi represent the coordinates of the evader relative to the pursuer. 

The backward reachable set will be larger for 1ω  with larger upper bound while smaller 

for 1ω  with smaller upper bound. Additionally, when P starts from p0=[0,0,0] and E starts 

from e0=[6,-11, 
2
π ], meaning that the initial state is in the backward reachable set, the 

pursuit evasion paths are shown in Fig. 6.4 where the pursuer takes pure pursuit [60] 

strategy, in which the pursuer tries to point its head directly towards the evader, and the 

evader tries to move away from the evader to maximize the distance.  

 
Fig. 6.3 Backward reachable set when v1=v2=5, R1=R2=5, l=5 and 121 ≤= ωω   
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Fig. 6.4 Pursuit evasion paths in the game of two identical cars: red line 

is the evader’s path; dashed blue curve is the pursuer’s path. 

The optimal play and the backward reachable set need to be solved for the Homicidal 

Chauffeur game and the game of two identical cars, respectively. The value function of a 

game is defined as the cost of a trajectory that starts at initial state, evolves with inputs 

and ends at the final state. Note that we are only interested in whether or not capture 

occurs, therefore there is only terminal cost and no running cost. The pursuer selects its 

control action that tries to maximize the cost while the evader tries to minimize the cost, 

which leads to the optimal cost, a saddle solution of the game. This optimal cost 

corresponds to optimal inputs for both players. The optimal inputs can be derived 

analytically in the Homicidal Chauffeur game [56]. In the game of two identical cars, the 

solution to the game can be characterized using Hamilton-Jacobi-Isaacs (HJI) theory. 

More precisely, the Hamiltonian of the system is the H function shown in (6.4). The 

inputs that correspond to the optimal Hamiltonian are the optimal inputs. While it is not 

possible to solve for the optimal inputs, backward reachable set can be solved instead. Let 

),,( 21 ωωxfx =&  be the compact form of (6.3) and V(x,t) be the value function of the 
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game. It has been shown in [57] that the solution of V(x,t) to the HJI PDE 

0))],(,(,0min[),( =+ txVDxHtxVD xt ,                     (6.4) 

where , ),,(minmax),( 21
21

ωω
ωω

xfppxH T=

is the boundary of the backward reachable set when t=0. It is difficult to determine the 

solution to (6.4) either analytically or numerically, however numeric approximation of the 

solution can be obtained by various techniques. Viscosity solution to (6.4) has been proved 

in [57] to be the value function of the game. A family of algorithms called level set methods 

have been designed to compute approximations to the viscosity solution to (6.4). The 

Hamiltonian term, time derivation term and special derivation term in (6.4) are computed 

using Lax-Friedrichs approximation, a second order TVD RK approximation and a fifth 

order WENO spatial approximation, respectively. For the definition of above techniques, 

please refer to [57]. 

 

6.2 Game-based P-E with Wheel Slip 

 

6.2.1 Slip effect for the Homicidal Chauffeur game 

Assuming the pursuer is a WMR subject to wheel slip, we show examples of how 

wheel slip affects the P-E behavior and what possible approaches to the problem are. One 

approach to P-E problem on slippery surface is to develop an input-output 

linearization-based controller that takes into account the WMR model with slip in (2.1). 

With such a controller the pursuer is trying to constrain itself on the nominal pursuit path 

indicated by the optimal play strategy in Section 6.1.1, while the evader has the same 
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kinematics and evasion strategy as in kinematic game. For the straight line segments, we 

select the orientation φ  and the forward velocity v of the pursuer as the outputs. For the 

curve segment, we select its angular velocity and forward velocity as the outputs, 

linearize the model, design a linear controller, and control the pursuer to track their 

desired values indicated by optimal play strategy updated at each moment based on 

current states. When the full model of the pursuer is introduced as in (2.1), the bound of 

the curvature, which represents the bound of the angular velocity of the wheels, is 

replaced by the bound of the wheel torque. We want to see how well the pursuer with 

wheel slip can follow the nominal pursuit path. The desired forward velocity for the 

pursuer is chosen to be 2m/s. Surface friction coefficient is 0.3 in this case. With the 

control gains properly selected, simulation result is shown in Fig. 6.5. We observe that the 

pursuer tries to follow the nominal pursuit path, while compensating the wheel slip, and 

eventually captures the evader. More details about input-output linearization technique 

and dynamic path following control applied on the WMR is omitted here as it can be 

found in [61][2][43]. 
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Fig. 6.5 Pursuit evasion paths in the Homicidal Chauffeur 

game subject to pursuer’s wheel slip when friction 

coefficient is 0.7: red line is evader’s path; blue curve is 

pursuer’s path. 
 

In addition, we define a near-optimal solution to the P-E problem in the sense that, the 

time it takes the pursuer to capture the evader at a constant speed is minimized. Since the 

pursuit path can be decomposed into straight line and curve segments, to minimize the 

curve segment is to minimize both the pursuit path and the capture time. In this section, 

we apply sliding mode-based ESC to maximize the lateral traction force of the pursuer 

when it is in the curve segment such that this segment is minimized. For straight line 

segments, we use the same input-output linearization technique to control the same 

outputs - orientation φ  and forward velocity v of the pursuer - as discussed above. The 

evader has the same kinematics and evasion strategy as before. The friction coefficient is 

0.3. The P-E paths are shown in Fig. 6.6. It is observed that the pursuer takes a sharp turn 

to capture the evader, which has better performance than in the first approach. Since the 

control technique we use in straight line segment is trivial, now we focus on the results in 

the curve segment, which corresponds to the time from 1.3s to 3.5s. When , rF3 λ , and 

α are selected as -57N·m, 0.5, and 0.5, respectively, the actual lateral traction force 
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moves to its maximum and stays in the small region around the maximum as shown in 

Fig. 6.7. The maximum of the lateral traction force can be observed in Fig. 2.2. The 

output of the observer is a very good estimate of the force. However, the lateral traction 

force for output feedback control case in this duration is far from its maximum. Figure 6.8 

is the forward velocity with chatter as it is controlled by sliding mode. In Fig. 6.9 the 

lateral slip velocity moves to its optimum and stays around it, which corresponds to 

optimal slip angle, while the lateral slip velocity for the output feedback control case is 

much less than the optimum. Fig. 6.10 is the angular velocity of each wheel and Fig. 6.11 

is the applied torque for each wheel in which we set its bound at 1.24N·m. 
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Fig. 6.7 The lateral traction force and its estimate from the 

observer for ESC in the curve segment, and the lateral 

traction force for output feedback control in the same time 

window.

Fig. 6.6 Near-optimal pursuit evasion paths with pursuer 

on a slippery surface: red line is evader’s path; dashed 

blue curve is pursuer’s path.  
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Fig. 6.8 WMR forward velocity in the curve section Fig. 6.9 Lateral slip velocity for ESC in the curve 

segment, and lateral slip velocity for output feedback 

control in the same time window.  

1.5 2 2.5 3 3.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

time(s)

w
he

el
 to

rq
ue

(N
m

)

wheel1
wheel2

 1.5 2 2.5 3 3.5

16

18

20

22

24

26

time(s)

w
he

el
 a

ng
ul

ar
 v

el
oc

ity
(ra

d/
s)

wheel1
wheel2

Fig. 6.11 Wheel torque in the curve section. Fig. 6.10 Wheel angular velocity in the curve section.  

We simulate the problem in Fig. 6.12 in which capture does not occur when the friction 

coefficient is 0.1. In this simulation, initial conditions are the same as in Section 6.1.1 

except that v1=1m/s. Note that when the pursuer starts to make a turn, the instant 

curvature indicates that the game is in escape region, so that the evader does not have to 

move right away and still can avoid capture by moving sidewise when the pursuer 

approaches close enough. Note that in Fig. 6.12 when P is at p1 and E is at e1 they have 

the shortest distance from each other. This simulation shows that even with slip-based 

controller, capture still may not happen. 
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Fig. 6.12 Pursuit evasion paths in the Homicidal Chauffeur 

game subject to pursuer’s wheel slip when friction 

coefficient is 0.1: red line is evader’s path; blue curve is 

pursuer’s path. 
 

6.2.2 Slip effect for the game of two identical cars 

In the game of two identical cars, we simulate the problem in Fig. 6.13-6.14 in which 

capture occurs when the friction coefficient is 0.7 while does not occur when the friction 

coefficient is 0.1. Note that in Fig. 6.14 when P is at p1 and E is at e1 they have the 

shortest distance from each other. 
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Fig. 6.13 Pursuit evasion paths in the game of two identical 

cars subject to pursuer’s wheel slip when friction 

coefficient is 0.7: red line is evader’s path; blue curve is 

pursuer’s path. 

Fig. 6.14 Pursuit evasion paths in the game of two identical 

cars subject to pursuer’s wheel slip when friction 

coefficient is 0.1: red line is evader’s path; blue curve is 

pursuer’s path. 
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It is shown in the above example that the introduction of wheel slip may break the rule 

that governs the behavior of the players in a P-E game. Therefore we want to find a 

solution to the game when fully dynamic model and wheel slip are introduced. If a game 

system has a fully dynamic model, the model can be transformed into a higher 

dimensional system of first order ODEs and treated as a kinematic model such that the 

algorithms in [57] can be applied to solve the HJI equation. The highest dimension that 

has been observed in the literature is four as in the aircraft landing example [62], where 

the computation takes several days. However, as the dimension becomes larger, the 

algorithms become computationally infeasible [63]. For example in the game of two 

identical cars, if the pursuer has a fully dynamic model subject to wheel slip, the model 

can be transformed to a system of nine dimension, which makes the computation 

extremely time consuming. Therefore, we want to simplify the problem by certain 

approximation. Physical behavior of the WMR pursuer subject to wheel slip is studied. 

Based on the behavior level approximation we propose a conceptually equivalent 

kinematic model for P-E game such that the algorithms in [57] can be applied. 

 

6.3 Equivalent Kinematic Model for the Dynamic WMR Subject to Wheel Slip 

 

6.3.1 Equivalent Kinematic Model 

In this section, a kinematic model is defined to be equivalent to a dynamic WMR 

subject to wheel slip if its lower bound of the radius of curvature is the same as the 

dynamic model’s minimum allowed radius of curvature in stable motion at a given speed. 
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For the dynamic WMR, it has been shown in [29][30] that the slip dynamics is open loop 

unstable when the WMR operates at wheel slip values to the right of the peak of the 

friction curve. Thus when seeking the equivalent kinematic model, we require the 

dynamic WMR to operate always at the wheel slip values to the left of the peak of the 

friction curve. 

Minimum allowed radius of curvature at a given speed: 

When the WMR takes a turn at constant forward and angular velocity, the resultant 

tangential force is zero, the resultant normal force entirely contributes to the centripetal 

acceleration, and the resultant external moment is zero. For kinematic model, it is assumed 

that the normal force can be as much as needed for turning. Thus the radius of curvature can 

be theoretically arbitrarily small. However for the dynamic WMR subject to wheel slip, the 

dynamics is governed by (6.5) where the normal force is limited by traction forces.  
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Assume both the optimal lateral slip velocity optη&  and the corresponding maximum lateral 

traction force are known, for given forward speed v, the minimum allowed radius of 

curvature is 

)max(
cos)(

3

22

F
vM

R opt θη&+
=  where 

v
optη

θ
&

=)tan( .  (6.6) 

Since F3 is a function of optη&  and v, R is a function of optη&  and v. To control the 

WMR to imitate its equivalent kinematic model, we apply input-output linearization 

technique to control its forward velocity and angular velocity to track the given forward 
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velocity and the maximum allowed angular velocity from (6.6), respectively. 

6.3.2 Control Approach to Determine Minimum Allowed Radius of Curvature 

This approach is introduced in Section 3.2, where the minimum turning radius of the 

WMR model is derived by controlling the WMR to make a sharpest possible turn. Sliding 

mode based extremum seeking technique is applied to control the lateral traction force to 

maintain at its maximum during turning. The radius of curvature derived here is more 

practical as it comes from real experiment. Since both radii of curvature obtained in 

Section 6.3.1 and 6.3.2 correspond to maximum lateral traction, they are approximately 

equal to each other for the same surface characteristic. However, it has been shown in [44] 

that this sliding mode-based approach enables the lateral traction force to converge faster 

to its maximum than the optimal slip tracking control. 

 

6.4 Capture Region and Backward Reachable Set of the P-E Games with the Equivalent 

Kinematic Pursuer 

In this section, we show the equivalent kinematic model of the dynamic WMR pursuer 

at various speeds on surfaces with various characteristics. Using the equivalent kinematic 

models, we show the capture region for the Homicidal Chauffeur game and the backward 

reachable set for the game of two identical cars. 
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6.4.1 Equivalent Kinematic Model of the Dynamic WMR Pursuer 

 

TABLE I 

EQUIVALENT KINEMATIC MODEL FOR DYNAMIC WMR 

Velocity (m/s) Friction Coefficient Max (F3) (N) optη&  (m/s) Radius of Curvature (m)

1 0.1 17.6 0.18 1 

53 0.18 0.3 1 0.3 

2 0.1 17.6 0.36 3.9 

2 0.3 53 0.36 1.3 

3 0.1 17.6 1.1 8.8 

3 0.3 53 1.1 2.9 

Let the maximum allowed speed of the WMR be 3m/s. At this speed, when the friction 

coefficient is 0.3 and the lateral traction force is as defined in (2.6), it is seen from (6.6) 

and Fig. 2.2 that the minimum radius of curvature is R=2.9m, where M=17kg. For more 

speed and friction coefficient options, the equivalent kinematic models are shown in 

Table I. 

6.4.2 Capture Region in the Homicidal Chauffeur Game with Equivalent Kinematic 

Pursuer 

For the game with dynamic WMR pursuer, given v1 and v2, when (6.6) is substituted 

into (6.2), the entire game space is the capture region if (6.7) is satisfied and on the other 

hand the capture region is a limited area in the game space if (6.7) is not satisfied. 

1)(sin)(1
cos)(

)max( 12
22
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 where 
1

)tan(
v
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θ
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=  (6.7) 

Assuming v2=0.5m/s and l=0.24m, which is the WMR’s radius, for all the cases in Table I 

for the pursuer, the entire game space is the capture region. However, when we select 

higher v2, e.g., v2=1.5m/s, then for the cases where v1=2m/s and friction coefficient is 0.3, 

the capture region is a limited area as shown in Fig. 6.15. 
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Fig. 6.15 Capture region for the case where (22) is not satisfied. The 

circle is where capture occurs. 
 

6.4.3 Backward Reachable Set in the Game of Two Identical Cars with Equivalent 

Kinematic Pursuer 

In this game, we take two examples with two different pursuers from Table I where 

v1=2m/s, friction coefficient=0.3 and v1=3m/s, friction coefficient=0.1, respectively. In 

the first example, the corresponding R1=1.3m and we take v2=2m/s, R2=2m, 

1
2

2
2 =≤

R
vω , l=0.48m. The backward reachable set is shown in Fig. 6.16. In the second 

example, the corresponding R1=8.8m and we take the same parameters for the evader as in 

last example. The backward reachable set is shown in Fig. 6.17. 
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Fig. 6.17 Backward reachable set when v1=3m/s, v2=2m/s, 

R1=8.8m, R2=2m, l=0.48m, 12 ≤ω , 34.01 ≤ω . 

Fig. 6.16 Backward reachable set when v1=v2=2m/s, 

R1=1.3m, R2=2m, l=0.48m, 12 ≤ω , 54.11 ≤ω  
 

 

6.5 Simulation Results 

We verify the capture region and the backward reachable set for the reduced P-E game 

by selecting the WMR pursuer subject to wheel slip and its equivalent kinematic model, 

applying a general pursuit strategy, selecting initial conditions from inside the capture 

region or the backward reachable set, and simulating the capture scenario. We can also 

simulate the escape scenario by selecting initial conditions from outside the capture 

region or the backward reachable set. By comparing the behavior of the dynamic WMR 

pursuer and its equivalent kinematic model, we verify the equivalence by seeing 

insignificant difference between them. 
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6.5.1 Homicidal Chauffeur game with the WMR pursuer subject to wheel slip and its 

equivalent kinematic model 

We take a capture and an escape scenario from the examples in Section 6.2. First we 

take v1=1m/s, friction coefficient=0.3, equivalent R1=0.3m, v2=0.5m/s and l=0.24m. It 

has been shown that in this case the entire game space is the capture region. In Fig. 6.18, 

Fig. 6.19 and Fig. 6.20, we select initial positions as p0=[0,0,0] and e0=[2,0]. When pure 

pursuit strategy is applied to the pursuer, and the evader moves along a sinusoidal 

trajectory, the simulations show the capture scenario for both the WMR pursuer subject to 

wheel slip and its equivalent kinematic pursuer. We notice that the pursuit and evasion 

paths in these two figures are very close to each other. Then we take v1=2m/s, friction 

coefficient=0.3, equivalent R1=1.3m, v2=1.5m/s and l=0.24m. It has been shown in Fig. 

6.15 that when the two players start with a distance far enough in between, the game is in 

escape region. We select the initial positions as p0=[0,0,0] and e0=[0.5,0]. Fig. 6.21, Fig. 

6.22 and Fig. 6.23 show the escape scenario for both the WMR pursuer subject to wheel 

slip and its equivalent kinematic pursuer when pure pursuit is applied to the pursuer. Note 

that in these two figures, when P is at p1 and E is at e1, they come within the shortest 

distance of each other, while either before or after that the distance is larger. When P 

comes back to E again after a wide turn, E can avoid capture using the same moving 

strategy. 
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Fig. 6.19(a). Capture scenario for dynamic WMR pursuer 

subject to wheel slip governed by sliding-mode based 

extremum seeking control technique. 

Fig. 6.18(a). Capture scenario for dynamic WMR pursuer 

subject to wheel slip governed by velocity tracking control. 
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Fig. 6.19(b). Lateral slip velocity for dynamic WMR 

pursuer subject to wheel slip governed by sliding-mode 

based extremum seeking control technique. 

Fig. 6.18(b). Lateral slip velocity for dynamic WMR 

pursuer subject to wheel slip governed by velocity tracking 

control. 
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Fig. 6.18(c). Lateral traction force for dynamic WMR 

pursuer subject to wheel slip governed by velocity tracking 

control. 

Fig. 6.19(c). Lateral traction force for dynamic WMR 

pursuer subject to wheel slip governed by sliding-mode 

based extremum seeking control technique.  
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Fig. 6.20. Capture scenario for equivalent kinematic pursuer 
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Fig. 6.22(a). Escape scenario for dynamic WMR pursuer 

subject to wheel slip governed by sliding-mode based 

extremum seeking control technique. 
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Fig. 6.21(a). Escape scenario for dynamic WMR pursuer 

subject to wheel slip governed by velocity tracking control 
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Fig. 6.21(c). Lateral traction force for dynamic WMR 

pursuer subject to wheel slip governed by velocity tracking 

control. 
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Fig. 6.21(b). Lateral slip velocity for dynamic WMR 

pursuer subject to wheel slip governed by velocity tracking 

control 
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Fig. 6.22(c). Lateral traction force for dynamic WMR 

pursuer subject to wheel slip governed by sliding-mode 

based extremum seeking control technique. 
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Fig. 6.22(b). Lateral slip velocity for dynamic WMR 

pursuer subject to wheel slip governed by sliding-mode 

based extremum seeking control technique. 
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Fig. 6.23. Escape scenario for equivalent kinematic pursuer  

6.5.2 The game of two identical cars with the WMR pursuer subject to wheel slip and its 

equivalent kinematic model 

We take a capture and an escape scenario from the examples in Section 6.3. We take 

v1=2m/s, friction coefficient=0.3, equivalent R1=1.3m, v2=2m/s, R2=2m and l=0.48m. 

We select initial conditions from inside and outside the backward reachable set in Fig. 

6.16, respectively. For the initial conditions inside the backward reachable set, We select 

initial position as p0=[0,0,0] and e0=[3,0,π ]. Fig. 6.24, Fig. 6.25 and Fig. 6.26 show the 
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capture scenario for both WMR pursuer subject to wheel slip and its equivalent kinematic 

pursuer, when pure pursuit is applied to the pursuer. For the initial conditions outside the 

backward reachable set, We select initial position as p0=[0,0,0] and e0=[5,0,π ]. Fig. 6.27, 

Fig. 6.28 and Fig. 6.29 show the escape scenario for both WMR pursuer subject to wheel 

slip and its equivalent kinematic pursuer, when pure pursuit is applied to the pursuer. Note 

that when P is at p1 and E is at e1 in Fig. 6.27 and Fig. 6.28, and when P is at p and E is at 

e in Fig. 6.29, the two players come within the shortest distance of each other. After P 

reaches p and E reaches e, the two players are moving along the same direction and 

capture will never happen as long as E is moving straight. 
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Fig. 6.25(a). Capture scenario for dynamic WMR pursuer 

subject to wheel slip governed by sliding-mode based 

extremum seeking control technique. 
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Fig. 6.24(a). Capture scenario for dynamic WMR pursuer 

subject to wheel slip governed by velocity tracking control 
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Fig. 6.24(c). Lateral traction force for dynamic WMR 

pursuer subject to wheel slip governed by velocity tracking 

control. 
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Fig. 6.24(b). Lateral slip velocity for dynamic WMR 

pursuer subject to wheel slip governed by velocity tracking 

control. 
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Fig. 6.25(c). Lateral traction force for dynamic WMR 

pursuer subject to wheel slip governed by sliding-mode 

based extremum seeking control technique. 

0 0.2 0.4 0.6 0.8
-0.2

-0.15

-0.1

-0.05

0

time(s)

la
te

ra
l s

lip
 v

el
oc

ity
(m

/s
)

Fig. 6.25(b). Lateral slip velocity for dynamic WMR 

pursuer subject to wheel slip governed by sliding-mode 

based extremum seeking control technique. 

 79



0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x-position(m)

y-
po

si
tio

n(
m

)

p0 p e0

e

 
Fig. 6.26. Capture scenario for equivalent kinematic pursuer 

 

0 1 2 3 4 5
-2

-1

0

1

2

3

4

x-position(m)

y-
po

si
tio

n(
m

)

p0
p

e

e0
p1

e1

Fig. 6.28(a). Escape scenario for dynamic WMR pursuer 

subject to wheel slip governed by sliding-mode based 

extremum seeking control technique. 
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Fig. 6.27(a). Escape scenario for dynamic WMR pursuer 

subject to wheel slip governed by velocity tracking control 
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Fig. 6.27(c). Lateral traction force for dynamic WMR 

pursuer subject to wheel slip governed by velocity tracking 

control. 
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Fig. 6.27(b). Lateral slip velocity for dynamic WMR 

pursuer subject to wheel slip governed by velocity tracking 

control. 
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Fig. 6.28(c). Lateral traction force for dynamic WMR 

pursuer subject to wheel slip governed by sliding-mode 

based extremum seeking control technique. 
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pursuer subject to wheel slip governed by sliding-mode 

based extremum seeking control technique. 
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CHAPTER VII 

 

CONTRIBUTIONS AND FUTURE WORK 

 

7.1 Contributions 

In this dissertation, we investigate the effect of wheel slip on the control problems of a 

nonholonomic WMR and present a framework that can control a WMR in the presence of 

wheel slip. We then apply this framework to several single WMR applications (i.e., 

regulation, tracking, path following, sharp turning) and multi-WMR applications (i.e., 

formation control and game-based P-E problem). There are several contributions of this 

research that span both theory and applications. 

First, we model the dynamics of a WMR subject to both longitudinal and lateral wheel 

slips. This model integrates the WMR main body dynamics, wheel spinning dynamics, 

nonholonomic constraints and traction force model into a combined compact dynamic 

model in the world coordinates. This model is different from ideal models of 

nonholonomic WMRs [2] in that it introduces slip constraints and traction force model 

into the overall dynamics, which allows more realistic interaction with the environment. 

This model is also different from other models with slip constraints in that in those 

models either the slip is considered as a perturbation to the WMR dynamics [3][4][6], or a 

nonlinear traction force model is not considered in control design so that the effect of 

traction forces to the WMR due to variation of slip can be investigated [7][8]. The model 

in this dissertation is one of the first attempts that properly models wheel slips, captures 
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the nonlinear effect of traction forces to the control of a nonholonomic WMR, and 

enables control of positions, velocities and traction forces for the WMR. 

Second, we investigate the effect of wheel slip for a single WMR by designing two new 

controllers and modifying a standard controller for various control problems. We design a 

σ -process based discontinuous feedback controller for the regulation problem. The 

introduction of wheel slip transforms the WMR into an underactuated system. Thus all 

the existing control algorithms for the WMR without slip do not work when slipping is 

allowed to take place. It has been shown that such a system is not asymptotically 

stabilizable to a given equilibrium solution using a time-invariant continuous feedback 

[38]. However, such a system is asymptotically stabilizable to a desired equilibrium using 

time-variant discontinuous feedback laws. In the literature, the σ -process based 

discontinuous control law has been developed for the control of a surface vessel, a typical 

underactuated system modeled in local coordinates. We transform the dynamics of the 

WMR into local coordinates and modify this σ -process based discontinuous control law 

for our WMR model such that the control law can be applied to regulation control of the 

WMR with slip. This is the first time in the literature that a control law is designed for an 

underactuated nonholonomic WMR subject to wheel slip to address the regulation control 

problem. We then modify a standard input-output linearization technique based controller 

and apply it to tracking control and path following control problems for the WMR to 

investigate and accommodate the slip effect. This standard controller has been applied to 

various control problems for WMRs without wheel slip [2]. However, there is no work in 

the literature that has applied such a controller to a nonholonomic WMR to investigate the 
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slip effect. We observe the stability in these control problems when the controller that has 

slip information is applied as well as the instability in these problems when the controller 

that has no slip information is applied. We then design a sliding mode based ESC that 

enables the WMR to make the sharpest possible but stable turn, which directly improve 

the maneuverability of the WMR subject to wheel slip. In the literature the sliding mode 

based ESC has been designed for ABS of a vehicle to optimize the longitudinal traction 

forces, without having the knowledge of optimal longitudinal slip and analytic form of the 

longitudinal traction forces, so that the vehicle can make a stop with highest possible 

deceleration [32]. In this work, a sliding mode based observer is designed to estimate the 

longitudinal traction forces using the angular velocity information of the wheels. In this 

dissertation, we design a sliding mode based ESC to optimize the lateral traction force, 

without having the knowledge of optimal lateral slip and analytic form of the lateral 

traction force, so that whenever the WMR needs to make a turn it can make a sharpest 

possible turn at minimum turning radius without losing stability. Here we design a sliding 

mode based observer to estimate the lateral traction force using the combined information 

of the angular velocities for both the wheels and the WMR. This is the first time in the 

literature that the effect of slip is investigated for turning control problems for a WMR 

and the maneuverability of the WMR is improved by designing a controller that optimizes 

the lateral traction force such that the turning radius is minimized. 

Third, we investigate the effect of wheel slip for multi-WMR coordination in formation 

control problems. Formation control is an important area of application for multiple 

WMRs and many control algorithms have been designed for WMRs without slip 
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[46][47][48]. However as we have shown in this dissertation, when these formation 

control algorithms are applied to cases where slip is not negligible (e.g., slippery surface), 

they tend to fail and the formation is broken. There is no work in the literature to our 

knowledge that has designed controllers for multiple WMRs to investigate and 

accommodate the slip effect in formation control problems. We apply the standard 

input-output linearization technique to design controllers for various formation control 

problems. We show that by applying a controller that takes slip into consideration, the 

formation control problem can be stabilized. 

Fourth, we investigate the effect of wheel slip for game-based P-E problems. In the 

literature there are two typical zero-sum game-based P-E problems (i.e., Homicidal 

Chauffeur game and the game of two identical cars), in which both players have 

kinematic constraints and have completely opposite interests [56][57]. When slip is 

introduced into the players, the P-E behavior may change and the rule that governs such a 

behavior may be inadequate. However, there is no work in the literature that has 

investigated slip effect for game-based P-E problems. In this dissertation, we assume that 

the pursuer is a WMR which has wheel slip. We apply input-output linearization 

technique to design a control law for the pursuer in the Homicidal Chauffeur game to 

follow the game-based solution updated at each moment based on current kinematic state 

information, which achieves capture. We then apply the sliding mode based ESC to the 

pursuer in the Homicidal Chauffeur game such that in the curve segment the pursuer can 

make a sharpest possible turn and spend minimum time. Therefore the capture 

performance is improved by minimizing the overall capture time. We then investigate the 
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P-E behavior by studying the capture region of the Homicidal Chauffeur game and the 

backward reachable set of the game of two identical cars where the pursuer is subject to 

wheel slip. Since it is not possible so far to derive an analytic game based solution for the 

two games, we seek approximated solutions by studying the connections between 

kinematic games and dynamic games. We study the maximum turning capability of a 

WMR subject to wheel slip at various speeds. The minimum turning radius at a given 

speed can be achieved by applying the sliding mode based ESC. Based on this minimum 

turning radius, we propose a conceptually equivalent kinematic model for the pursuer at a 

given speed, such that each game can be reformulated to its kinematic form and we can 

study the P-E behavior by applying the solution to kinematic games. Applying the 

equivalent kinematic model to the pursuer, we derive the capture region and optimal play 

strategies for the Homicidal Chauffeur game and the backward reachable set for the game 

of two identical cars. We show by increasing the friction coefficient of the surface that the 

capture region and the backward reachable set converge to their kinematic solution and 

thus validate the concept of kinematic equivalence. 

In summary, in this dissertation we develop new tools and framework to understand the 

effect of wheel slip in the control of a WMR and show how the presented approach allows 

solutions in various important WMR applications. 

 

7.2 Future Work 

This dissertation present the results of initial investigation into the control of a WMR 

subject to wheel slip and opens opportunities for further research in several directions. 
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First, the model of the WMR subject to wheel slip and the designed controllers need to 

be verified in experiments. Several research groups have been looking into techniques to 

measure slips in real-time and developing various techniques to estimate slips and traction 

forces [16][17][18]. Their research will need to be synergistically combined with the 

proposed control techniques in this dissertation to develop realistic slip-based controllers 

for WMR in the future. Such robust control methods will be useful in many realistic 

applications. 

Second, from the optimal control perspective, new optimality criteria can be formulated 

considering wheel slip. The optimal control problems for a WMR can be represented in 

the light of wheel slip, which relaxes kinematic constraints. For example, Dubin’s curve is 

an optimization problem for a WMR without slip, where the goal is to find a curve of 

minimum distance that connects two given configurations. Once slip is introduced, the 

problem becomes finding a new Dubin’s curve in the light of slip and its corresponding 

traction force, which is nonlinearly dependent on slip, speed of the WMR and friction 

coefficient. More generally, if a kinematic constraint is possible to be relaxed in a general 

dynamic system, the optimization problem for the original system becomes a new 

problem. 

Third, vehicle control is a major application where wheel slip is involved. In platoon 

control of automated highway systems, for example, safety is important, which is 

guaranteed by preserving proper distances between vehicles. However, when braking 

occurs for the leader vehicle, each following vehicle in the platoon need to deal with slip 

and time delay while maintaining proper distance from others. In this case, slip based 
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control could play an important role in managing time delay and maintaining distance 

from others. 
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