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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Various types of carbon nanomaterials such as nanodiamonds, graphene, and 

carbon nanotubes have opened new frontiers in research. Arranging in different 

dimensions, carbon nanomaterials possess specific electrical,1-4 mechanical,5-7 and 

chemical properties8-10 at the nanoscale, which have made them functional in a variety of 

applications such as transistors,11-13 photovoltaics,14-16 sensors,17-19 etc. However, carbon 

nanomaterials alone may not meet device specifications. Hence other types of functional 

nanomaterials should be incorporated to fabricate nanocomposites for improved 

performance. Besides, with the inherent ultralow density frameworks,20-21 manufacturing 

of carbon nanomaterials faces multiple scalability challenges.22 Therefore, it is crucial to 

design efficient manufacturing approaches for fabricating carbon nanocomposites in a 

scalable fashion for wider applications.  

1.2 Carbon Nanocomposites for Energy Storage 

1.2.1 Need of Energy Storage 

The energy consumption worldwide is projected to increase from about 350 

quadrillion Btu in 1990 to exceed 800 quadrillion Btu in 2040 according to the U.S. 

Energy Information Administration. Among traditional energy sources, fossil fuels 

provide the largest amount of energy (see Figure 1.1), but they are being depleted quickly 

and can cause severe environmental problems upon burning, such as greenhouse gases, 

which contribute to climate changes, water pollution, and air pollution.  
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Figure 1.1 World energy consumption breakdown by energy sources in 2015.23  

1.2.2 Current Status and Challenges 

Research interests in carbon nanomaterials have been developing since the 

discovery of graphene in 2004. After the lithium-ion secondary battery was invented by 

John Goodenough and later commercialized by Sony in early 1990s, researchers have 

been investigating  the application of carbon nanomaterials for energy storage. Carbon 

nanomaterials such as graphene and carbon nanotubes have high electrical conductivity, 

high surface area, and tunable surface chemistry, and thus can be favorable in multiple 

kinds of energy storage systems such as capacitive24-25 and electrochemical energy 

storage.26-28 In a conventional lithium-ion battery (see Figure 1.2) that is composed of 

graphite anode and lithium cobalt oxide cathode, the theoretical capacity of graphite is 
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only ~372 mAh/g. Despite research efforts focused on modifying the surface chemistry, 

doping, or defects of graphitic carbon, the achieved capacity and corresponding energy 

density is still far behind DOE’s target (500 Wh/kg). Moreover, traditional methods of 

producing carbon nanomaterials such as vapor deposition method are still costly. 

Recently, electrochemical growth of carbon nanotubes from ambient carbon dioxide has 

been developed.29-32 The concept of turning greenhouse gases into valuable carbon 

nanotubes at low-cost and high efficiency will encourage an enormous revisitation of 

carbon nanomaterials for many applications. As an alternative to lowering the production 

cost, researchers may also synthesize nanocomposites combining carbon nanomaterials 

with other promising electrochemical storage materials such as sulfur,33-34 tin,35-37 and 

phosphorus38-40 to suit high-energy applications.  

 

Figure 1.2 Scheme of a common lithium-ion battery.41 
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1.3 Carbon Nanocomposites for Environmental Applications 

1.3.1 Heavy Metal Pollution 

Heavy metals such as lead (Pb), chromium (Cr), and cadmium (Cd), are elements 

commonly found in nature. In many  industries, waste effluents usually contain at least 

one or several heavy metal ions that can be harmful to the ecosystem and human body if 

not been managed properly. Among those, Cr has demanded serious attention due to the 

extreme toxicity of hexavalent chromium Cr (VI). Since Cr (VI) is soluble in water and 

has high mobility, lack of proper management will cause Cr (VI) to diffuse into soil and 

plants. Existence of Cr (VI) has been detected the  tanning, paint, and welding industries, 

and studies have shown that exposure to Cr (VI) can cause respiratory tract irritation or 

lung cancer. 

1.3.2 Current Status and Challenges 

Carbon nanomaterials have been widely used for heavy metal removal in 

wastewater streams. Several strategies have been reported for wastewater treatment such 

as adsorption,42-43 filtration,44-45 and reduction.46-47 The removal efficiency of heavy metal 

ions is strongly related to pH,48 temperature,49 concentration,50 contact time,51 etc. 

Adsorption and filtration are absolute physical processes, and the removal efficiency is 

directly related to the surface area of different carbon nanomaterial adsorbents. The  

reduction process usually involves chemical reactions and has been demonstrated with Cr 

(VI) removal capacity close to 100%, however, it is considered an energy intensive 

process compared to adsorption and filtration.Therefore, it is important to design 

approaches that can enable carbon nanomaterials to efficiently remove heavy metal from 

aqueous solution with high removal efficiency and low energy input. Moreover, 
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incorporating other nanomaterials to make nanocomposites can potentially improve the 

removal efficiency and charge efficiency of heavy metal removal. 

1.4 Nanomanufacturing of Carbon Nanocomposites 

Despite the fact that carbon nanomaterials have many potential applications for 

energy storage and environmental management due to their unique physical and chemical 

properties, there are still challenges in manufacturing, since the macroscale assembly of 

these nanostructures often compromises these desirable properties. Thus, scalable 

techniques to assemble appropriate carbon nanomaterials with other energy storage 

candidates into composites have become crucial. Meanwhile, most high-energy materials 

themselves have a series of problems for real application. Low electrical conductivity and 

large volume expansion due to conversion or alloying mechanisms are always expected. 

Such volume expansion can result in delamination or fracture of electrodes and loss of 

electrical contact, which can further result in severe pulverization and capacity fade.52-54 

By incorporating carbon nanomaterials in nanocomposites, the conductivity of electrodes 

can be greatly improved. With comprehensive understanding of the reaction mechanism 

and proper structural design, carbon materials can serve as structural confinement to 

prevent the undesirable volume expansion, thus  prolonging cycle life and stabilizing 

capacity. In addition, to be able to achieve large-scale fabrication, less energy intensive 

techniques, simple fabrication process, and low-cost supplementary materials need to be 

developed. 

Moreover, 3D free-standing CNT sponges with large porosity and hierarchical 

pores involve all the desired features that promise macro-scale manufacturing and 

engineering for composite electrode materials with ultrahigh loading. The hierarchical 
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porous structure promises mass-transfer, high surface area and chemically reactive sites. 

The freestanding nature of 3D CNT sponges can also ensure structural integrity during 

further processing and direct fabrication into electrode materials freeof binder materials 

and current collectors, which improves energy density and reduces the cost of battery 

manufacturing. The ultralight weight characteristics of 3D CNT sponges are also 

preferable for applications in portable devices, electric vehicles, and aircrafts. For next-

generation energy storage devices, if the above two approaches can be combined 

effectively to make battery electrodes, the areal loading of active materials and energy 

density of the battery can both be improved and far surpass the properties of 1D raw 

powder-like CNTs and 2D pre-formed CNT films. 

1.5 Organization of dissertation 

This dissertation contains 6 main chapters. 

Chapter 2 investigates the interactions at carbon-ionic liquid interface of a solid-state 

supercapacitor, which can lead to significant modification of the operation voltage of the 

device. This chapter highlights the importance of understanding chemical properties at 

supercapacitor interfaces to engineer voltage and energy capability. 

Chapter 3 introduces a novel synthesis of interconnected foams of helical carbon 

nanofibers (CNFs) with ultra-high yield and desired structural, morphological, and 

physcial properties for stable sodium storage.  

Chapter 4 illustrates the reaction mechanism between different carbon nanomaterials and 

different state sodium-phosphorus alloying products, that provide insights into building 

better red phosphorus-carbon composite anodes for high-capacity and high-energy 

sodium ion batteries (SIBs). This presents a mechanistic roadmap to guide the design of 
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red P-carbon composite anodes  toward high theoretical sodium ion capacity (2596 

mAh/g) while simultaneously addressing chemical interactions that compromise 

performance stability. 

Chapter 5 demonstrates the broad capability to exploit interactions at different length 

scales in 2D materials to manufacture macroscopic functional materials containing hybrid 

black phosphorus/graphene (BP/G) heterostructured building blocks using electrophoretic 

deposition (EPD). This chapter provides insightful discussions on how controllable co-

processing of 2D materials can enable material control for stacking and building block 

assembly relevant to broad future applications of 2D materials.    

Chapter 6 demonstrates a strategy to produce high areal loading and areal capacity sulfur 

cathodes by using vapor phase infiltration of low-density carbon nanotube (CNT) foams, 

revealing high specific capacity, high sulfur areal loading, and high areal loading. This 

chapter highlights a new technique broadly adaptable to a diverse group of 

nanostructured building blocks where pre-formed low-density materials can be vapor 

infiltrated with sulfur and mechanically compressed to exhibit simultaneous high areal 

and gravimetric storage properties.  This provides a route for scalable, low-cost, and high 

energy density sulfur cathodes based on conventional solid electrode processing routes. 

Chapter 7 presents an electrochemical reduction process for hexavalent chromium (Cr 

(VI)) removal using compressed CNT foam electrodes. Besides achieving high removal 

efficiency of >90%, this work also discusses the importance of consideration of total 

energy input and charge efficiency of the system, and provides future insights in how to 

achieve high Cr (VI) removal efficiency while maintain low energy input and high charge 

efficiency, which is further meaningful for a sustainable environment. 
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Chapter 8 summarizes all the work and provides future outlooks.  
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CHAPTER 2 

GRAPHENE COATED POROUS SILICON FOR SOLID-STATE 
SUPERCAPACITORS 

2.1 Introduction 

Electric double-layer capacitors (EDLCs) have commanded significant interest in 

recent years owing to the advanced capability to synthesize nanostructures with 

extraordinary surface area and electrochemical stability, such as graphene, carbon 

nanotubes, and other carbon-based nanomaterials.24, 55-57 Whereas a battery or 

pseudocapacitor exhibits charge storage driven by reversible redox processes at the 

electrode-electrolyte interface, EDLCs, or more loosely termed supercapacitors, represent 

electrochemical energy storage through ions that assemble at the interface of a conductive 

material. The feature that distinguishes supercapacitor energy storage versus less-

reversible Faradaic storage is the electrochemical voltage window that separates non-

Faradaic capacitive ion storage at lower voltages from Faradaic processes occurring at 

high voltages. An EDLC is strictly required to operate within this voltage window, and its 

total maximum energy density can be approximated to scale with the square of the 

voltage window based on the formula adapted from energy stored in electrostatic 

capacitors.58-59 

In this framework, research efforts aimed to improve the energy density or power 

capability of EDLC devices have connected materials with ultrahigh surface area, such as 

graphene, with wide voltage window electrolytes such as BF4-containing ionic liquids.60-

63 These systems have been shown to operate over voltage ranges in excess of 4 V in 

some cases,64 providing a significant boost in stored energy compared to materials 

employing organic-based electrolytes.65-67 Energy density calculations based on active 
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electrode mass and assuming the validity of electrostatic capacitance equations yield 

energy densities above 80 Wh/kg for lightweight, high surface area materials such as 

graphene. However, studies carried out that employ identical electrolytes with apparently 

similar forms of carbon, such as single-walled carbon nanotubes (SWCNTs) and 

graphene, exhibit varying reported values for the maximum operating voltage of the 

devices64-65, 68-70 – the feature upon which the energy density directly depends. For 

example, operating voltages that ranging from 2 to 4 V are reported for graphene and 

SWCNT electrodes coupled with 1-ethyl-3-methylimidizolium tetrafluoroborate 

(EMIBF4) ionic liquid electrolytes.71-73 Whereas the electrochemical window should vary 

as the electrode-electrolyte interface chemistry is modified, it is not as evident why this 

should occur for chemically-similar electrode-electrolyte interfaces. Until now, a full 

understanding of processes occurring at the electrode-electrolyte interface in EDLC 

devices remains elusive and challenged by the vast number of electrode materials and 

electrolytes that are usually the focus of research efforts in this area.  

On this note, a significant research effort in battery systems has been devoted to 

studying the solid-electrolyte interphase (SEI) region that forms at the electrode-

electrolyte interface and directs the charge storage via surface electrochemical redox 

processes.74-75 This SEI layer is dependent on the chemical interaction of the electrolyte 

or solvent and the electrode material and can dominate the performance of electrodes 

produced with nanostructured materials. Whereas EDLCs operate in the absence of 

Faradaic reactions, the chemical nature of the interface between electrolytes and 

electrodes in supercapacitors remains an area that is difficult to study and poorly 

understood. However, in an analogous manner to batteries, this interface directly 
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mediates the onset of chemical processes that defines the total energy storage capability 

of the device. 

In this work, we demonstrate that non-covalent pi-pi interactions76 between 

EMIBF4 ionic liquid electrolytes and a carbon electrode surface can impact charge 

transfer processes that dictate the operating voltage window of the device. This builds 

from an observation that electrolytes produced by combining EMIBF4 ionic liquids with 

polyethylene oxide (PEO) lead to enhancements of the non-Faradaic electrochemical 

window. We characterize this effect using ex-situ Raman spectroscopy and 

electrochemical impedance spectroscopy, and based on these results we propose this 

being due to steric hindrance from the PEO of imidazole pi-pi stacking at the carbon-

electrolyte interface. This observation underlines the importance of understanding 

chemical interfaces even in devices that store charge in the absence of chemical redox 

processes. 

2.2 Methods 

2.2.1 Porous silicon templated 3-D interconnected graphene fabrication 

To generate controlled materials to be tested for electrochemical supercapacitors, porous 

silicon materials providing high surface area were used as catalytic templates for the 

growth of few-layered coatings of carbon, with few-layered properties similar to 

graphene.77-81 This leads to as-grown carbon material interfaces that are assembled on a 

high surface area support that can be tested in the absence of chemical or liquid 

processing effects, which are known to leave residues on carbon materials.82 Porous 

silicon was produced using highly boron-doped silicon wafers and electrochemical 

etching in an AMMT porous Si etching system. The etching process lasted for 180 
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seconds under a current density of 45 mA/cm2 in a 3:8 (v:v) hydrofluoric acid (HF) (50% 

H2O by volume)and ethanol solution. Scanning electron microscopy (SEM) confirmed 

that the resulting porous silicon film has a porosity of ~75% and a height of ~4 µm. The 

porous silicon was rinsed with ethanol and stored in an Ar glove box for further carbon or 

graphene growth. The growth process was performed by chemical vapor deposition 

(CVD) in a Lindberg Blue 1” tube furnace with the porous silicon piece placed at the 

center of the tube. The furnace was ramped up to 650 ℃ in the presence of constant gas 

flow of 1 SLM of Ar and 200 SCCM of H2. 10 SCCM acetylene was added when the 

temperature reached 650 ℃ and the furnace was immediately ramped up to 750 ℃ and 

held for 10 minutes. Finally, the furnace was ramped up to 850 ℃ and held for another 

10 minutes, the acetylene and H2 were then turned off and the furnace was cooled down 

to room temperature under Ar flow. The resultant conformal coating of graphene like 

carbon was characterized through SEM and TEM (Figure 2.1a) and this was found 

similar to that reported in previous studies carbon growth on silicon.77-80, 83 Samples were 

cut into ~1 cm x 1 cm pieces for supercapacitor testing. 

2.2.2 Solid-state supercapacitor fabrication 

Ionic liquid-containing polymer electrolyte was synthesized by first mixing 8 g propylene 

carbonate (PC) and 0.5 g polyethylene oxide (PEO, 900,000 M.W.) in glass containers 

and heated on a hot-plate at 55 ℃ until the mixture became uniform, viscous and 

translucent. EMIBF4 was then added to the solution in quantities of 4.5, 1.16, 0.5, and 

0.21 g to form PEO-EMIBF4 solutions with 90, 70, 50 and 30 wt% EMIBF4. As PC was 

evaporated during the following procedure, only PEO and EMIBF4 remained in the 
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electrolyte. The resulting polymer electrolyte mixtures were sandwiched between two ~1 

cm x 1 cm pieces of porous silicon to form a symmetric device.81 Electrolyte infiltration 

and PC evaporation were achieved by placing the device in a vacuum oven at 50 ℃ 

overnight until the polymer had fully cured as evidenced by the polymer turning from 

translucent to opaque white. The 100 wt% EMIBF4 device was fabricated by adding 1 

drop of pure EMIBF4 to wet a Celgard 1180 separator and place in between two pieces of 

porous electrodes. 0 wt% EMIBF4 (pure PEO) control device was fabricated by directly 

pouring the PEO in PC solution onto porous electrode pieces, sandwiching, and vacuum 

infiltrating as discussed previously. 

Figure 2.1. (a) SEM with inset TEM image of the porous silicon material with the carbon 

layer interfaced with the electrolyte; (b) Schematic illustration of the supercapacitor 
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device; (c) CV comparison and (d) corresponding electrochemical voltage window of 

devices with different ratios of EMIBF4 and PEO in the electrolyte.  

 

2.2.3 Electrochemical tests of solid-state supercapacitor 

Galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical 

impedance spectroscopy 80 were performed on a Metrohm Autolab Multichannel 

analyzer. Each device was placed in an MTI split flat cell. The devices were then 

pretreated using galvanostatic charge/discharge measurements at 1.5 A/g from 0 V to 2.5 

V, after which CV scans were performed at a rate of 100 mV/s to different upper voltage 

limits ranging from 2.0 to 4.5 V. EIS measurements were performed under a frequency 

range of 1 MHz to 10 mHz around zero bias with a signal amplitude of 10 mV. The 

equivalent circuit model for each device was built by fitting the impedance data using the 

Autolab’s NOVA testing and analysis software. After EIS measurements, rate tests were 

performed by galvanostatic charge/discharge measurements for three cycles each at 

several current densities ranging from 2.5 to 24 A/g. The voltage range is from 0 V to just 

under each device’s estimated electrochemical window. To calculate the effective mass 

of electrode materials, the carbon mass was directly measured after coating using a semi-

microbalance, and porosity, surface area, and height of porous silicon were used to 

determine silicon mass based on the known density of silicon. As the carbon layer is the 

active storage interface, calculations isolate both the graphene material mass as well as 

the combined carbon-silicon material mass for normalized performance assessment. 

2.2.4 Cross-sectional Raman spectroscopy 

To carry out ex-situ cross-sectional Raman spectroscopy, solid-state supercapacitors with 
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different EMIBF4 ratios (> 0 wt%) were first tested via 5 galvanostatic charge/discharge 

cycles at 1.5 A/g with a voltage range from 0 V to 2.5 V. Then the device was cleaved 

and placed normal to an incident laser beam for Raman studies. Raman spectroscopy of 

solid-state supercapacitor cross sections were taken by using a Renishaw inVia 

MicroRaman system with 532 nm laser excitation. Area mapping of the porous silicon 

region was carried out in each device to enable statistical certainty in the reported 

measurements. 

2.2.5 Other characterizations 

Differential scanning calorimetry (DSC) tests were performed on pure EMIBF4 and 

EMIBF4 with carbonized porous silicon in a sealed Al pan. The sample pan and reference 

pan were set in the differential scanning calorimeter (TA Instruments). The samples were 

all heated up to 100 °C from room temperature and cooled down to -100 °C and go back 

to room temperature at a rate of 10 °C /min and repeated for two cycles. Ar gas was 

flown during measurement. Fourier-transform 

2.3 Results & Discussion 

Solid-state devices were fabricated by infiltrating graphene coated porous silicon 

electrodes with polymer electrolytes composed of PEO and EMIBF4. A scheme showing 

the configuration of the supercapacitor device is in Figure 2.1b. The use of this electrode 

material is based on highly reliable device-to-device performance from the templated 

silicon that enables fundamental studies, and freedom from any chemical processing 

residues or effects that often challenge the robust repeatability of supercapacitors 

produced with freestanding graphene electrodes. To compare performance, the mass ratio 
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of PEO-EMIBF4 in the electrolyte was varied, which was observed to have a significant 

effect on the measured device properties. Cyclic voltammetry (CV) measurements were 

performed using a scan rate of 100 mV/s. In the latter case, chemical processes are 

dictated by an activation energy that leads to an exponential rise in current at the onset of 

irreversible, Faradaic chemical processes. We estimated the electrochemical window by 

taking the voltage value above which drastic increase in current  would be seen. CV 

results shown in Figure 2.1c indicate that the electrochemical window is strongly 

correlated to the PEO-EMIBF4 ratio, with CV curves ranging from 100 wt% EMIBF4 to 

30 wt% EMIBF4. Although EMIBF4 is well-known for its electrochemical window near 4 

V, the electrochemical window of our porous silicon templated graphene devices with 

pure EMIBF4 electrolyte is near 2.7 V. However, as PEO is combined with EMIBF4 and 

when the PEO concentration increases, the electrochemical window also increases 

(Figure 2.1d). In all cases, the trend of PEO-EMIBF4 modification of the electrochemical 

window is evident outside of device-to-device variation that is based on measurements of 

at minimum 3-5 devices. For 30 wt% EMIBF4 device, the electrochemical window of the 

supercapacitors reaches ~3.5 V. A pure EMIBF4 device exhibited an electrochemical 

window of ~ 1.3 V and for 50 wt% EMIBF4 device, the electrochemical window is 

measured to be 1.4 V – which is within the measurement error, implying no change to the 

electrochemical window. This control comparison indicates that the observed increase in 

the electrochemical window with increasing polymer ratios is directly related to the 

interface between the carbon coating and the PEO-EMIBF4 electrolyte. 

To further assess the origin of this effect we performed electrochemical 

impedance spectroscopy 80 on several devices with PEO polymer electrolytes having 90, 
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70, 50, and 30 wt% EMIBF4. All of the polymer based devices exhibited two semicircles 

in the high-frequency regime in the Nyquist plot shown in Figure 2.2a, which is 

represented by an equivalent circuit model shown in Figure 2.2b. The first semicircle is 

attributed to an electrolyte pinhole effect, which is commonly observed in polymer-based 

electrolytes due to tiny microvoids that form in the electrolyte,84-85 and corresponds to R1 

in Figure 2.2b. Consistent with this notion, the device with 100 wt% EMIBF4 on the other 

hand exhibited only one semicircle since the electrolyte is a pure ionic liquid. The second 

semicircle in the polymer based devices and the only semicircle in the 100 wt% EMIBF4 

device represents the charge transfer process that occurs between ions in the electrolyte 

and the double-layer and is denoted as the charge transfer resistance (Rct), whose value 

generally corresponds to the diameter of this semicircle. Based on the depressed 

semicircles in each process, we used a constant phase element (CPE) in the equivalent 

circuit model instead of a double layer capacitor (Cdl) to achieve better fitting. The low-

frequency sloped line in the Nyquist plot is represented by the Warburg impedance which 

is related to ion diffusion and transport through the electrolyte to the electrode/electrolyte 

interface. Finally, we also represent both leakage behavior caused by self-discharge 

(Rleak) and the bulk solution resistance (Rs) of the electrolyte in the equivalent circuit 

model in Figure 2.2b. The values obtained by fitting the data for varying levels of PEO 

relative to EMIBF4 ionic liquid in electrolytes are shown in Table 2.1. 

EMIBF
4
 ratio 100 wt% 90 wt% 70 wt% 50 wt% 30 wt% 

R
s
(Ω) 4.1 27.5 14.5 26 27 

R
1
(Ω) 0 6 9.2 10.2 11.1 

R
ct
(Ω) 25.2 38.4 70.2 76.3 115 

Warburg 
(mMho) 45 58 56 61 54 
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R
leak
(Ω) 1.00E+06 1.00E+06 1.00E+06 1.00E+06 1.00E+06 

χ
2
 0.136 0.031 0.068 0.017 0.031 

Table 2.1. Numeric values of different parts in the equivalent Randle circuit for devices 

with different EMIBF4 ratios. 

As we have shown that the carbon-electrolyte interface is the most important 

toward understanding the effect of the PEO on the observed variations in the 

electrochemical window, the value of Rct gives insight into how the resistance changes 

with different concentrations of PEO in the electrolyte. Shown in Figure 2.2c is Rct 

plotted as a function of EMIBF4 concentration in a PEO-EMIBF4 solid state electrolyte. 

Notably, the value of Rct exhibits a significant dependence on the EMIBF4 (PEO) 

concentration in the electrolyte and varies from ~26 Ω to ~115 Ω in a consistent manner 

when the electrolyte is varied from pure EMIBF4 to 30 wt% EMIBF4. Importantly, such a 

trend is not evident in Rs, which increases significantly upon the addition of polymer (4.3 

Ω to 27.5 Ω), but does not vary consistently or widely across the different PEO-EMIBF4 

concentrations studied. This indicates that the presence of PEO plays a role to strongly 

influence the carbon-electrolyte interface and that this role can be distinguished from 

resistive contributions from the polymer solid state electrolyte itself.   
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Figure 2.2. Electrochemical impedance spectroscopy 80 of supercapacitor devices with 

varying EMIBF4 ratios; (a) Nyquist plot of the supercapacitor devices; (b) illustration of 

the equivalent circuit utilized to analyze the measured EIS characteristics, and (c) charge 

transfer resistance (Rct) as a function of EMIBF4 ratio with the gray dotted line indicating 

fitted trend of Rct with different EMIBF4 ratios (with adjusted R2=0.95).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

 

In order to address how the electrochemical window is correlated to this 

electrode-electrolyte interface, we utilized cross-sectional Raman spectroscopy on the 

coated porous silicon electrodes to specifically address the chemical and physical 

changes to the carbon layer that arise from different polymer-ionic liquid interfaces. 

Since the carbon-electrolyte interface is correlated to the varying electrochemical 

window, Raman spectroscopy can identify changes to the carbon material based on the 
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Raman spectroscopic signatures of carbon. For each device, large area maps of the cross 

section of the porous region of the electrodes were performed in order to develop a 

statistical representation of the Raman characteristics of the electrodes. As shown in 

Figure 2.3a, the resulting Raman spectra exhibits a D-band that corresponds to defects-

activated or sp3 hybridized carbon species (1344 cm-1) and an in-plane vibrational mode 

that corresponds to the stretch mode of planar C-C species (1604 cm-1).86 Notably, the D 

band of this material is broader than planar graphene, which can be partly attributed to 

the 3-D nanoscale curvature of the surface that requires defects to mediate the conformal 

curvature of the few-layered carbons. To address the effect of differing polymer-ionic 

liquid ratios on the carbon material interface, the ratio of the D and G peak intensities 

was calculated based on maps over the porous region. Interestingly, despite the fact that 

each device was cycled inside the electrochemical window in the absence of Faradaic 

reactions, and each device contains the same starting carbon material, the ID/IG ratios 

showed a consistent linear decrease with increasing PEO concentration relative to 

EMIBF4 (Figure 2.3b). Previous reports, including a recent report using molecules with 

imidazole groups,87 have demonstrated that pi-pi stacking or non-covalent 

functionalization on the carbon surface is correlated with a weak increase of the D band 

due to the greater out-of-plane or sp3 configuration of carbon atoms.87-89 Since EMIBF4 

contains imidazole groups that give rise to pi-pi stacking between aromatics and the 

carbon surface, this explains the observed trend in the Raman spectra in Figure 2.3b. In 

the case of pure EMIBF4, a greater effect of pi-stacking on the observed Raman spectra is 

observed as evidenced by a greater ID/IG ratio. When PEO is present, the PEO chains 

provide a steric hindrance at the electrode-electrolyte interface that inhibits pi-stacked 
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configurations (Figure 2.4). The observation that the ID/IG ratio scales linearly with PEO 

concentration reflects the linear proportionality between the number of PEO chains near 

the electrode surface and the effect of these chains on steric hindrance of the pi-stacked 

EMIBF4. This explanation is further confirmed by control experiments that utilize the 

same electrode structure and electrolyte, but using a porous silicon-electrolyte interface 

instead of a carbon-electrolyte interface. In these experiments, no increase of the 

electrochemical voltage window was observed with increasing PEO concentration, 

supporting the important role of non-covalent interactions on the voltage window of the 

carbon-electrolyte electrochemical interface. Also, no change in the Raman spectra is 

observed while changing the PEO-EMIBF4 ratio when there is only porous silicon-

electrolyte interface. Recent simulations have also confirmed the potential for pi-stacking 

on charge transfer energetics from ionic liquids and solid surfaces, even though this has 

not been experimentally realized.90 Notably, comparison of Raman data, charge transfer 

interface resistances, and the voltage window as a function of PEO concentration all 

result in a linear relationship, strongly supporting the correlation between pi-pi stacking 

at the carbon-electrolyte interface and the measured voltage window of the device.  
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Figure 2.3. (a) Representative cross-sectional Raman spectra of the carbon-electrolyte 

interface showing the D and G modes of the carbon. (b)  ID to IG intensity ratios for 

devices with different EMIBF4 ratios. 
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Figure 2.4. Schematic illustration of (top left) pi-stacking between EMI+ ions and a 

silicon-supported carbon surface. (bottom left) Illustration of the role that PEO polymer 

plays in disrupting the pi-stacked configuration of electrolyte at the carbon-electrolyte 

interface through steric hindrance. In both cases, energy diagrams on the right represent 

the observation that pi-stacked configuration lead to lower operating voltage windows 

(∆V) than cases where the PEO sterically inhibits pi-stacking.  

 

This effect of pi-stacking is also evident based on the measured device 

performance of supercapacitors with varying concentrations of PEO. Shown in Figure 

2.5a is the specific capacitance as a function of the total charging rate for galvanostatic 

charge-discharge measurements. In all cases, these numbers are normalized to both (1) 

the mass of carbon active storage interface, and (2) the combined carbon – porous silicon 

mass (total mass). Notably, the carbon materials remain supported by the porous silicon 

template to maintain a high level of consistency among device results.  As a result, 

dissolving the porous silicon would activate additional surface area for double layer 

storage and would improve performance over that shown in Figure 2.5a.  However, since 

the porous silicon templated devices exhibit an identical porous structure in all cases, 

evident trends can be associated to scale with the total concentration of PEO in the 

electrolyte. The decrease of capacitance with higher PEO concentrations can be 

understood through the conventional capacitor relationship of C = εε0A/d. In this case, 

the presence of PEO at the electrode-electrolyte interface can adversely impact both the 

dielectric constant of the double layer as well as the average distance of the Stern layer 

from the electrode surface due to pi-stacking effects. Therefore, this result is consistent 
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with the outcome of Raman and EIS analysis that implies that pi-stacking at the 

electrode-electrolyte interface plays a role in the double layer formation. Notably, due to 

the ideal structure of porous silicon materials that template the carbon layer, the specific 

capacitance is accessible at extraordinarily high rates greater than 20 A/gcarbon.    

                          

Figure 2.5. (a) Specific capacitance as a function of the charging rate for electrochemical 

supercapacitors having identical electrode structure, but with varying PEO-EMIBF4 

electrolyte ratios;  (b) Ragone curve calculated based on eq (1) for identical device 

configurations as that in (a).   
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To better understand the impact of pi-stacking on the energy and power capability 

of these devices, we characterized the energy density and power density based on 

galvanostatic charge-discharge data taken at different rates (Figure 2.5b). To characterize 

the energy density, we integrated the discharge curve using  

𝐸 = 𝐼! 𝑉(𝑡)𝑑𝑡!
!    (1) 

where Ic is the charging current and V(t) is the discharge profile as a function of time. We 

then calculated the power density by using P=E/△t where △t is the total discharge time. 

In the case of ideal device performance, the energy density approximation of E = ½CV2 

holds true. However, recent efforts have demonstrated that this relationship can 

significantly overestimate the energy density for any (real) non-ideal device by up to a 

factor of 2,78, 81 leaving eq (1) to provide the exact energy density measured from the 

device. From Figure 2.5b, two regimes can be identified in terms of energy-power 

performance. The first regime involves a large energy density that is enabled by 

extending the voltage window to the highest values due to steric hindrance effects at the 

electrode-electrolyte interface. The second regime involves a large specific capacitance 

but lower voltage window due to the ideal pi-stacked interface between EMIBF4 and 

carbon that minimizes the distance between the Stern layer and the carbon surface. 

However, the effect of steric hindrance to increase the voltage window and the role of pi-

stacking to increase specific capacitance leads to a maximum energy density that is 

approximately the same for both extreme cases – near 10 Wh/kg based on the total silicon 

and carbon mass. Nonetheless, this highlights the notion that the energy and power 

performance of an electrochemical supercapacitor can be tuned by modifying the carbon-
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electrolyte non-covalent interactions – a powerful tool in future efforts engineer and 

control the performance of electrochemical capacitor devices.    

2.4 Conclusion 

Our work reveals that non-covalent interactions at the carbon-electrolyte interface 

can strongly impact the operating voltage, and hence the total energy and power density 

of an electrochemical supercapacitor. Specifically, ex-situ Raman spectroscopy maps and 

impedance spectroscopy analysis elucidates the role of pi-pi stacking between imidazole 

species in the ionic liquid and the carbon surface – an effect that is shown to be only 

notable for carbon-ionic liquid interfaces. Pi-pi stacking effects lead to a stronger 

chemical interaction between the carbon and electrolyte, leading to a lower barrier for 

charge transfer reactions and a lower operating voltage of the device. Steric hindrance 

due to the incorporation of PEO chains near the electrode-electrolyte interface disrupt the 

pi-stacked configurations, and enhance the electrochemical window by over 25%. Such 

effects are also found to lower the specific capacitance due to the increased distance of 

the stern layer from the carbon surface. Our results indicate for the first time that pi-pi 

stacking at the electrolyte-carbon interface can influence performance of electrochemical 

capacitors, and this is enabled by the precision of porous silicon fabrication that enables 

templating of interconnected 3-D graphene structures with a natively high surface area. 

The understanding of interfacial processes on electrochemical capacitor performance 

enables practical tools that can be leveraged to design and optimize high performance in 

practical electrochemical capacitor templates. Such ideas can open a new paradigm for 

graphene or carbon based supercapacitors where high performance at industry scales is 

dictated by understanding of fundamental interfacial processes that control key 
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parameters as opposed to the iteration toward systems that exhibit high performance but 

lack the foundation of understanding to enable repeatability at large scales. 
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CHAPTER 3 

HELICAL CARBON NANOFIBERS FOAM GROWN WITH ULTRAHIGH YIELD 
FOR HIGH CAPACITY SODIUM-ION BATTERIES 

3.1 Introduction 

As emerging technological areas such as electric vehicles and robotics are 

evolving to incorporate portable and rechargeable energy storage systems, the demands 

on cost, safety, and performance of battery technology are rapidly increasing. Sodium-ion 

batteries (SIBs) stand out as a promising platform to replace lithium-ion batteries due to 

the significantly increased earth abundance of sodium compared to lithium that can 

enable battery technology to penetrate grid-scale storage applications. However, 

numerous challenges in transitioning from lithium-ion to sodium-ion storage systems 

have been isolated.91-92 Chiefly, as the radius of sodium ions is nearly 1.3X larger than 

that of lithium ions, simply using the same host electrode materials (crystalline carbons 

and metal oxides) leads to poor performance for SIBs. Studies have shown the maximum 

sodium capacity of graphitized carbon anodes to be < 35 mAh/g, which is over 10X 

lower than that possible with the same materials using lithium ions.93 

Despite a number of studies centered on the sodium storage capability of carbons, 

the sodium storage mechanism in these materials remains controversial and a dynamic 

area of ongoing research. Early studies highlighted a house of cards type model 

consisting of two key storage modes for sodium in carbons: (1) storage of ions in 

between graphene layers which corresponds to the sloping voltage profile during 

sodiation; (2) ions filling the micro/nanopores (“pore-filling”) in the carbons at lower 

potentials 94-97. More recent experiments have highlighted the sodium storage behavior of 

a series of psuedographite materials derived from sustainable sources, such as banana 
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peels, emphasizing the critical optimization of porous nanodomains, defects, and 

intercalation for sodium storage 98-100. These studies propose that the nanodomains in the 

carbon are critical to enable high capacity filling of the Na+, which is correlated with the 

higher voltage component of the insertion curve. Lotfabd et al. carefully study the storage 

mechanism, observing no signature of reversible pore filling and a dilated interlayer 

spacing associated with sodium intercalation 100. On the other hand, Bommier et al. 

carefully study defect-controlled hard carbons and conclude the (higher voltage) sloping 

voltage profile during sodium insertion is correlated to the defect content of the material, 

and similarly propose a surface reaction that leads to pore-filling of turbostratic 

nanodomains at lower voltages 101. Alternatively, other routes have highlighted the 

mechanism for solvent cointercalation 102-103 of Na+ species in carbon materials that 

enables extraordinary cycling and rate capability while still maintaining up to 150 mAh/g 

sodium storage capacities, as recently demonstrated for few-layered graphene 104. 

Whereas researchers have reported a variety of carbon nanomaterials, usually based from 

defect-containing and/or hard carbons, to have attractive sodium storage properties 105-113, 

the engineering of carbon nanostructures to enable optimize sodium ion storage 

properties remains an area ripe for discovery and understanding.  Further, a 

comprehensive understanding of sodium storage in carbons, which is likely to be 

dependent on the chemistry and physical characteristics of the carbons, remains elusive.   

On another front, the growth, assembly, and energy applications of carbon 

nanomaterials in three-dimensional self-organized structures has been primarily centered 

on the science and applications of small diameter and high quality carbon nanotubes 

(CNTs) due to improved properties of these materials over their more defective 
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counterparts 114-115. CNT-based interconnected solids or foams with elbows and defect-

containing morphologies that stray from linear CNTs have been an emerging focus of 

recent research efforts 116-118. The ability to engineer the defect content and structural 

properties of CNTs and carbon nanofibers (CNFs) in as-grown solids represents a 

research area that can extend the versatility of 3D foam structures of carbon 

nanomaterials to applications such as oil recovery, sensing, and other energy applications. 

Notably, based on recent advances in the understanding of sodium ion batteries 98, 101, 

such architectures should be ideally suited for this application.  

Here we demonstrate the ability to pretreat nanoscale nickel materials using 

electrochemical oxidation to activate ultrahigh yield growth performance of high defect-

content helical CNF materials. The CNF material can be directly incorporated as an 

anode into a sodium ion battery, exhibiting excellent sodium ion storage capacity and 

cycling capability attributed to a combination of defects and nanoporous regions in the 

carbons. Our efforts further use Raman spectroscopy to highlight the mechanistic benefit 

of the high-defect content tortuous bends in helical CNF materials to enable stable, high 

capacity anode cycling performance. 

3.2 Methods 

3.2.1 Preparation of CNF growth substrate 

To grow helical CNF foams, commercially purchased Ni nanowires (Figure 3.1a) were 

soaked in 0.1 M NaOH (Sigma Aldrich) overnight (~18 h) and rinsed with deionized 

water (18 MΩ, obtained from a Millipore Milli-Q system). Electrochemical oxidation 

process 119-120 of pre-soaked Ni nanofoam was performed in deionized water initially 

under 30 V, using two same pieces of Ni nanofoams as both counter and working 
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electrode. 0.1 M NaOH was added dropwise and stirred mildly until the current reached 

to ~ 5 mA. Then DC potential was maintained for 30 min. After oxidation, the nanofoams 

were rinsed with deionized water until neutral pH was achieved. The working electrode 

was used for further characterization and as a high yield substrate for CNF growth. 

Figure 3.1b shows a SEM image of a representative electrochemically textured Ni 

material used as a precursor to grow helical CNFs. Notably, whereas our efforts build 

upon the use of Ni nanowires to optimize CNF yield, we observe this process to be 

universally applicable to any Ni material morphology to produce an oxidized and 

textured surface.  

 

Figure 3.1. SEM images of (a) network of untreated Ni nanowires and (b) 

electrochemically oxidized network of Ni nanowires with a spiky surface that enables 

activation for high-yield helical CNF growth. 

3.2.2 Helical CNF growth 

A few mg (less than 1 mg) of the pretreated Ni nanowire material was placed into an 

alumina crucible, and placed into the central region of a chemical vapor deposition 

(CVD) system comprising a Lindberg Blue 1” tube furnace. To assess the ability for the 

oxidized Ni nanowires to maintain their textured surface morphology under reduction, we 
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first analyzed this point. The furnace was first ramped up to 500 ℃ under 400 sccm Ar. 

Then 200 sccm of H2 were introduced and kept for 20 minutes for reduction of oxidized 

and textured surface of the pretreated Ni nanowires. Then H2 was turned off and the 

furnace was cooled down to room temperature under Ar flow. To grow the helical CNFs, 

the growth process is performed by using the same set-up in Lindberg Blue 1” tube 

furnace. The furnace was ramped up to 500 ℃ again under 100 sccm Ar. Then 50 sccm 

H2 and 2.5 sccm acetylene was introduced for 30 minutes for helical CNF growth. After 

growth process finished, H2 and acetylene were turned off and the sample was cooled 

down to room temperature under Ar. As a control material, the same process was carried 

out on a Ni nanowire material with no electrochemical texturing, and hence a smooth 

surface morphology. 

3.2.3 Material characterization and battery measurements 

Scanning electron microscopy (SEM) imaging of the Ni nanowires, electrochemically 

oxidized Ni nanowires, and helical CNF materials was performed using a Zeiss Merlin 

Scanning Electron Microscope. Transmission electron microscopy (TEM) 

characterizations of CNFs were performed by using an FEI Osiris TEM. Raman 

spectroscopy of carbon nanofibers was conducted on a Renishaw inVia MicroRaman 

system with 785 nm laser excitation. Ex-situ Raman analysis was achieved by using a 

homemade air tight system with a glass slide on top as observation window. 

To produce battery electrodes, the CNFs were mixed with conductive carbon black 

(TIMCAL SUPER C45) and poly(vinylidene difluoride) (PVDF, Alfa Aesar) as binder 

with mass ratio 80:10:10. Then the mixed electrode materials were dissolved in N-methyl 

pyrrolidinone (NMP) and sonicated for 1 h to form a slurry. The slurry was drop-casted 
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onto a stainless steel surface and dried in vacuum oven at 100 ℃ overnight. All 

electrochemical measurements were performed in CR 2032 type coin cells assembled in 

Ar-filled glove box. Sodium metal (Sigma Aldrich) was used as counter electrode. 1 M 

NaPF6 (Strem, 99%) in ethylene carbonate (EC)/diethyl carbonate (DEC) (Sigma 

Aldrich, 99%/>99%) with volume ratio 4:6 was used as electrolyte. A Whatman grade 

GF/F glass fiber microfiber filter (Sigma Aldrich) was used as separator. Cyclic 

voltammetry (CV) measurements were performed on a Metrohm Autolab Multichannel 

analyzer from 0.01-3 V at a scan rate of 0.1 mV/s. Galvanostatic charge/discharge was 

performed on an MTI 8 channel battery analyzer between 0.01-3 V with a current density 

of 100 mA/g. Various current densities of 50, 100, 200, 500, and 1000 mA/g were 

applied for rate study. 

3.3 Results & Discussion 

The nucleation and growth of carbon nanotubes (CNTs) and carbon nanofibers 

(CNFs) is correlated to the formation of active nanostructured particles of catalytic metal 

on surfaces that support growth. Whereas numerous and broad efforts have been carried 

out to understand the types of catalyst materials and support layers to sustain catalytic 

growth of carbon nanostructures 114, the effect of surface morphology – especially with 

extreme nanoscale texturing, on such growth processes is not well understood. In this 

effort, we studied the growth of carbon nanostructures on electrochemically textured Ni 

nanostructures in order to explore the capability to directly grow an engineered carbon 

nanomaterial that can be incorporated as a sodium ion battery anode. Nanotextured Ni 

material used for helical CNF growth is shown in Figure 3.1a. During electrochemical 

oxidation in water, the electric field applied to the Ni nanowires leads to nucleation and 
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growth of pyramidal oxide nanocrystals on the surface of the Ni, leading to a uniform 

distribution of surface spikes (Figure 3.1b). Using such materials to grow carbon 

nanostructures is based on the premise that pretreatment of metal surfaces can be 

instrumental to enable or enhance catalytic activity from surface through mechanisms 

such as oxide surface reconstructions 121. In this manner, we performed growth studies 

under conditions where the thermal reduction of the electrochemically pretreated “spiky” 

Ni nanowires maintains the spiky surface on a catalytic metal growth template that can 

hence impact the yield of catalytic growth.  

To grow foams of helical CNFs, both the electrochemically textured and untreated 

Ni nanowire materials were used to compare the resulting growth performance. A key 

observation in our studies is that pretreated, oxidized Ni nanowires with spiky surface 

features lead to the growth of ultrahigh yield foams of carbon nanostructures. Whereas 

both the treated and untreated Ni materials lead to CNF growth, the size and mass of the 

CNF foam materials grown from the pretreated Ni templates are significantly greater than 

that observed from untreated Ni templates. As an example, with 0.48 mg spiky Ni 

nanostructures used in CVD growth, the resulting mass of bulk free-standing carbon 

foam composed of CNFs was 17.46 mg (3538 wt% increase). Similarly, with 0.83 mg 

untreated Ni materials in the same growth process, the mass of carbon foam was 13.49 

mg (1525 wt% increase). The high yield of CNFs based on Ni template before and after 

CVD growth is visually shown in Figure 3.2b and Figure 3.2c. This trend was 

consistently observed in numerous experiments. Such increased yield with oxidative 

pretreatment has been observed with stainless steel and attributed to oxygen 

reconstruction on the surface to enhance growth yield 121. In our case, whereas we 
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anticipate growth occurs from Ni metal surfaces, the electrochemically-induced 

reorganization of metal into a textured morphology increases the total amount of catalytic 

metal exposed to C2H2 precursor at the onset of nucleation, leading to overall greater 

catalytic activity from the same total mass of metal catalyst-containing materials. 

Specifically for battery applications, the ultrahigh yield of this process leads to a material 

that can be directly incorporated into a battery anode without need for further processing, 

as the carbon mass is significantly greater than that of the mass of the catalytic metals.  

                      

Figure 3.2. (a) Schematic illustration of the improved yield achieved from textured (pre-

treated) Ni nanowire substrates. (b-c) Pictures of nanowires prior to growth (b) and after 
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growth (c) from pretreated textured Ni surfaces. This leads to an evident high yield of a 

compact foam of helical CNF materials.  

 

 To characterize nanocarbon materials in the foams during the growth process, 

SEM and Raman spectroscopic analysis was performed (Figure 3.3). Notably, both the 

electrochemically pretreated (spiky) and untreated Ni nanowires led to the catalytic 

growth of the same types of CNF materials based on SEM analysis and Raman 

spectroscopic characterization (Figure 3.3a-b) indicating growth conditions and not 

substrate pretreatment led to the resulting helical CNF materials. Overall, a wide 

distribution of CNF diameters were observed in SEM, with the majority of CNFs (> 

80%) exhibiting arms or helical architectures representative of a high defect 

concentration in the carbon material. Raman spectroscopy analysis (Figure 3.3b) on 

foams grown from both pretreated Ni materials and untreated Ni materials indicates a 

similar intensity ratio and peak position of the D and G bands in both samples (e.g. ID/IG 

≈ 1.6), indicating a high defect content that is necessary for such arms and twists in the 

helical CNFs to form. A close-up view of a single representative helical CNF (Figure 

3.3c) indicates the tortuous arrangement of carbon with nanopores at the high defect-

containing elbow areas that are well-suited for sodium storage. High magnification TEM 

analysis of the graphitic ordering (Figure 3.3d) and the helical bends (Figure 3.3e) 

confirms a turbostratic arrangement of carbon in the form of CNFs with pores and ridges 

at elbows and bends in the materials. Overall, based on previous discussion on the 

mechanistic foundation of sodium storage processes in carbon materials, the high defect 

content of these materials combined with the accessible pores on the interior of the CNFs 
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makes these materials ideally suited for Na-ion batteries.  

 

 

 

Figure 3.3. (a) Zoomed-out SEM image of as-grown CNFs showing fiber diameters and 

morphology. (b) Raman spectra from CNFs grown both from untreated Ni Nanowire 

materials and pretreated (oxidized) Ni nanowires. TEM images of (c) a single helical 

CNF, (d) CNF carbon material with small diameter features, and e) ‘elbow’ area of 

helical CNF. 

 

To study the performance of these materials in batteries, coin cells were produced 

with foam materials in half-cell configurations with a Na metal counter electrode. 

Galvanostatic charge/discharge measurements were used to explore the sodium ion 

storage properties of CNFs. Figure 3.4a (solid lines) showed the 1st cycle 

charge/discharge comparison of CNFs grown from both pretreated (high-yield) and 
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untreated (low-yield) Ni nanostructures. For high-yield helical CNF foams, a high 

capacity of 1008 mAh/g upon initial discharge was measured with a reversible capacity 

of 283 mAh/g for the 2nd cycle (Figure 3.4a; dotted lines). The large irreversible capacity 

in the 1st cycle is attributed to the solid-electrolyte interphase (SEI) formation108 due to 

the irreversible decomposition of electrolyte on the first cycle105 and irreversible Na 

absorption at defect sites.100 Following the first cycle, the charge-discharge performance 

exhibits a high Coulombic efficiency indicating a stable SEI layer formed in the first 

cycle. A similar observation was made for the CNFs grown from untreated Ni nanofoams 

(low-yield), except the total magnitude of capacity is lower due to the greater percentage 

of dense Ni metal in the nanofoam anode. In both cases, the majority of the sodium 

storage capacity can be attributed to the higher voltage sloping region in the charge-

discharge curves. This region is correlated with the origin of irreversible capacity in 

sustainable pseudographite materials100 and further associated with defects from 

controlled studies of hard carbons.101 To further analyze the details of sodium storage 

electrochemistry, cyclic voltammetry measurements were carried out on helical CNF 

foam materials following the initial SEI formation. In these cases, similar results to that 

observed in galvanostatic data is apparent, with a sodium insertion/extraction redox 

couple that occurs generally below 0.5 V vs. Na/Na+, with a sloping region below 1 V, 

and a strong contribution from the low-voltage insertion/extraction at lower voltages.  

Both materials show identical performance, except that the higher yield CNF foam leads 

to better specific storage capability due to a higher yield growth process. Notably, the 

origin of these electrochemical features remains a topic of controversy that has proven 

difficult to controllably establish likely due to the different chemical and physical 
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characteristics that carbon materials exhibit (e.g. defect density, crystallinity, nanodomain 

size and density, etc.).  Recent work by Bommier et al.101 proposes the high voltage 

sloping region to be correlated to the defect density of the carbons, and Lotfabd et al.100 

correlate this sloping region to irreversible capacity that is likely associated with defects.  

However, insertion at lower voltages has been correlated to underpotential (plating) 

deposition of metal into turbostratic nanodomains101 or reversible intercalation into the 

carbons.100  Across many studies, researchers observe a varying contribution to the 

reversible capacity associated with the higher voltage sloping characteristics and the 

lower voltage plateau.  Recent studies have correlated the high voltage sloping 

characteristic to stable cycling performance with no capacity fade measured over 600 

cycles.32  From our data, we observe two apparent characteristics associated with 

insertion.  Between ~ 1 V to 0.3 V vs. Na/Na+, we observe a sloping profile that we 

associate with defect mediated storage that occurs at higher voltages due to the favorable 

energetics of sodium storage at defect sites.  At lower voltages (< 0.3 V), we observe a 

distinct insertion characteristic attributed to underpotential deposition associated with 

filling of nanopores observed in helical CNFs through TEM analysis (Figure 3.3).   

Cycling performances of CNFs are shown in Figure 3.4c. For helical CNFs grown 

with high yield (pretreated Ni nanowires) and cycled as batteries at 100 mA/g, 

Coulombic efficiency was higher than 95% after the 5th cycle and capacity retention ~98 

% was maintained until 200 cycles. A similar observation was made for helical CNFs 

grown on untreated Ni materials, except with a lower total capacity during cycling 

consistent with other data. This implies that after stable SEI layer formation in these 

materials, the helical foams exhibit excellent cycling performance. Further, rate 
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capability measurements were performed at rates between 50 mA/g and 1000 mA/g, with 

a moderate stable capacity above 120 mAh/g at the fastest rates, indicating good rate 

performance.  

 

Figure 3.4. (a) Charge/discharge profiles of the 1st (dotted lines) and 2nd (solid lines) 

cycle at rate of 100 mA/g, (b) CV profiles showing the reversible storage performance of 

helical CNF anodes (100 mV/s), (c) cycling performance and Coulombic efficiency of 

helical CNFs at 100 mA/g, and (d) rate capability from charge-discharge tests at rates 

from 50 – 1000 mA/g.  

 

To better understand the mechanistic sodium storage behavior of helical CNF 

foams, Raman characterization was performed on cells in the absence of air exposure 
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both before and after sodiation of the CNF materials. Prior to sodium insertion, the 

Raman modes of the helical CNFs match those shown in Figure 3.3b, with a similar D 

and G band intensity representative of a significant presence of sp3 defective carbon in 

the CNFs. After sodiation, the D band exhibits a blue shift to a peak center of ~ 1315 cm-

1 and G band red shifts to a peak center ~ 1590 cm-1. There was no significant change in 

ID to IG ratio, indicating that sodiation does not lead to the notable formation of additional 

defect sites, but rather maintains the carbon coordination inherent to the pristine material. 

However, both the D and G bands exhibited peak broadening after sodiation. This similar 

behavior was observed in multiple subsequent tests. Similar qualitative peak shifting and 

broadening phenomena has been reported from in-situ Raman assessments of EMI+ 

intercalation in activated carbon.122 In this study, the D peak blue shift was explained as 

the disappearance of ring breathing modes at edges of crystalline domains, while the G 

peak red shift was explained through charge transfer. Notably, the peak shifts that are 

observed in our material are not generally consistent with that typically observed for both 

Li+ and Na+ intercalation in crystalline carbons,104, 123-124 where ordered intercalation 

compounds evolve from dilute staging processes. Specifically, Raman modes of ordered 

stage 4 through stage 1 compounds in graphite materials are clearly distinguishable.123 

However, in contrast to this, our results for fully sodiated helical CNFs indicate only 

minor modification of the D and G band Raman signature that does not appear to reflect 

staging effects in a carbon intercalation compound (Figure 3.5). This would imply that 

the sodium storage in the helical CNFs does not appear to form an ordered intercalation 

compound of NaxC1-x.  This is in general agreement with recent simulation studies that 

emphasizes positive formation energy for high capacity sodium intercalation compounds 
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in graphite indicating that, without some perturbation to the graphite lattice energetics, a 

high capacity staged sodium-graphite compound is thermodynamically prohibited.125 

However, Lotfabd et al.100 describe an initial irreversible capacity associated with 

residual metal atoms maintaining positions at carbon defect sites that will provide local 

charge-transfer induced strain fields which may assist in overcoming energetic barriers of 

intercalation into pristine graphite.  Whereas our results do not rule out staging associated 

with local sodium storage near or at defect sites, the high specific capacity (greater than 

that for NaC8) and lack of an ordered staged compound is likely to indicate the role of the 

low-voltage pore filling in the storage mechanism of helical CNFs, as discussed by 

Bommier et al.101 We therefore interpret this asymmetric Raman response and 

broadening to be a result of mechanical stresses and charge transfer at the carbon-sodium 

interface associated with the insertion and extraction of sodium from the material. Based 

on previous Raman studies 126-127 this response can be explained by local tensile stresses 

and charge transfer associated with sodium interfaces with carbon – either at defect sites 

or at filled pore sites. This leads to a system where capacities approaching ordered 

compounds such as LiC6 can be achieved through a combination of defect sites that 

provide local storage and “on-ramps” to embedded pores, as well as micropore domains 

that facilitate local plating. Notably, this is also distinguished from co-intercalation103 

which does form ordered compounds containing Na+, carbons, and solvent molecules 

with an appreciable storage capacity.  Further studies building upon pioneering 

techniques, such as the scotch tape method 128, can lead to direct assessments of the 

interplay between defects, pores, intercalation and/or underpotential deposition processes 

that are likely strongly correlated to the physical and chemical properties of the carbon 
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materials that is evident from careful past studies.  However, in this work we emphasize 

that helical CNF materials provide an excellent template for high capacity sodium 

storage, and combined with the versatility of controlled growth processes, can enable 

insight into the controversial and diverse intercalation mechanisms observed so far in a 

series of different carbon materials. 

                  

Figure 3.5. Raman analysis of helical CNFs before (black) and after (red) sodiation. The 

solid curves are Lorentzian fits. Data has been normalized to the D peak for clarity. Inset 

is a scheme highlighting one possible explanation for the observed shifts, noting this 

observation deviates from that expected from a highly ordered intercalation compound. 

3.4 Conclusion 

In summary, we have demonstrated an approach to electrochemically pretreat Ni 

nanowire precursors to form textured growth surfaces that yield solid foams of helical 

CNFs with ultrahigh yield. These helical CNFs provide a combination of defect sites and 

nanoporous regions in the bends and arms which activates their function for optimized 
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sodium storage. With ultrahigh yield growths, we demonstrate the ability to directly 

incorporate as-grown CNF foam materials as anodes in sodium ion batteries, with high 

reversible capacity exceeding 280 mAh/g and stable cycling performance for 200 cycles. 

We use Raman spectroscopy to assess the storage properties of this material, and 

highlight a mechanism of storage that is distinguished from conventional staging 

processes combining both pore filling and defect activated storage, in correlation with 

previous reports. This work provides a comprehensive connection between controlled, 

high-yield growth of carbon nanomaterials and direct incorporation of this material into 

sodium battery electrodes – an approach scalable to low-cost battery manufacturing 

processes.  



45 
 

CHAPTER 4 

CARBON-RED PHOSPHORUS COMPOSITE ANODES FOR EFFICIENT SODIUM-
ION BATTERIES 

4.1 Introduction 

Sodium ion batteries (SIBs) have attracted a great deal of focused research as an 

attractive alternative to Li-ion battery technology due to the low cost and earth abundance 

of sodium compared to lithium.92, 129 However, unlike the diverse choices of anodes 

available in lithium batteries, a critical challenge for Na-ion battery chemistries resides in 

developing anode materials with high energy densities and appropriately low redox 

potentials versus Na/Na+.130-131 Among all anode materials reported for SIBs, phosphorus 

stands out as one of the most promising candidates due to the highest theoretical capacity 

(2596 mAh/g) delivered in a 3-electron involved alloying reaction to form Na3P. Among 

the three common allotropes of phosphorus, red phosphorus (red P) is the most attractive 

for SIBs as a result of its relatively low cost and non-toxic nature. However, challenges 

exist in poor electrical conductivity and large volume expansion (~300 %) during 

sodiation. Recent efforts have focused on using carbon materials such as carbon black,132 

graphene,133 carbon nanotubes (CNTs),38 and mesoporous carbon to address the above 

issues.134 Especially for carbon materials that can form three-dimensional conductive 

networks, have been demonstrated as good candidates to accelerate electron transfer 

process, alleviate volume change of alloying-type anodes, and prevent agglomeration of 

active materials for electrochemical energy storage devices.135 However, despite the 

multitude of methods being used to make red P-carbon composites, mechanistic 

understanding of why carbon materials with similar graphitic nature exhibit varying 

electrochemical performances after mixing with red P still remains elusive. In spite of 
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some hypotheses, including enhanced binding between phosphorus and carbon atoms,133, 

136 successful confinement of red P,137 and uniform distribution of red P into carbon 

matrix,134 there is still a lack of fundamental understanding in the Na-red P 

alloying/dealloying process, and how carbon defects influence the reversibility of this 

reaction. 

Outside of phosphorus anodes for SIBs, carbon scaffolds are also widely used for 

other battery electrodes to engineer the stability of insulating, high capacity active 

materials.  One example is in the case of lithium-sulfur (Li-S) batteries where similarly 

low conductivity of sulfur, large volume expansion upon lithiation, and high-order 

polysulfide (Li2Sn, 4≤n≤8) dissolution present challenges that remain at the forefront of 

current research efforts.138-139 Sulfur-carbon composites have been recently designed to 

overcome these challenges and achieve durable and high capacity battery 

performance.139-145 To achieve stability, the carbon scaffold must be designed to enable 

high mass loading, enable physical confinement of polysulfides during the transition from 

soluble higher order polysulfides to insoluble low-order polysulfides, and enable strong 

polar sites to bind soluble polysulfides.  Notably, carbon defect sites that include both 

dopants and sp3 hybridized carbons have been demonstrated to play a beneficial role in 

binding soluble polysulfides and improving cycling performance.146-151 Additionally, 

carbon nanomaterials such as nanospheres and nanofibers have been shown to enable 

sufficient surface area for deposition of low-order insoluble polysulfides and enable 

structural confinement within the scaffold.152-156 Overall, research studies conducted in 

the past few years in Li-S batteries have documented the evident role that the scaffold can 

play in the battery chemistry, inspiring our efforts in this study to address the mechanistic 
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role of carbon interaction with red phosphorus to yield stable anodes with exceptionally 

high sodium storage capacity.   

 In this work we emphasize a mechanistic role for the carbon scaffold in 

phosphorus anodes that is opposite from that in Li-S batteries in that carbon defect sites 

lead to the growth of irreversible alloying products to accelerate capacity decay during 

cycling.  By carefully controlling the defect density using sp2 hybridized carbon 

SWCNTs and sp3 hybridized SWCNHs combinations, our work demonstrates two 

distinct alloying regions – one denoted as the stable alloying region (0.40 and 0.15 V) 

that is not strongly influenced by the chemical properties of the carbon scaffolds, and the 

other denoted the unstable alloying region where defects facilitate the continuous 

formation of irreversible Na3P products.  This work provides mechanistic insight into 

concepts that must be taken account in the rational design of carbon-phosphorus scaffolds 

for sodium ion batteries and presents a platform to engage surface engineering routes157 

to improve and enable durable and high capacity sodium ion battery anodes.     

4.2 Methods 

4.2.1 Electrode preparation 

The electrode was prepared by hand grinding commercial red phosphorus (red P) (99%, 

Sigma Aldrich) with single wall carbon nanohorns (SWCNHs) (Carbonium), single wall 

carbon nanotubes (SWCNTs) (HiPco purified, NanoIntegris), and SWCNT/SWCNH 

(50%/50%) with a mass ratio of 1:1 for 1h. 

4.2.2 Electrochemical test 

Pure red P, SWCNH-red P, SWCNT/SWCNH-red P, and SWCNT-red P were mixed 
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with sodium carboxymethyl cellulose (CMC) (Sigma-Aldrich, average Mw ~90,000) as 

binder and conductive carbon black (TIMCAL, SUPER C45) with a mass ratio of 7:2:1. 

Then the mixed electrode materials were dissolved in N-methyl-pyrrolidinone (NMP) and 

sonicated for 1h to form uniform slurry. The slurry was drop-casted onto a stainless steel 

surface and then dried in vacuum oven at 100 ℃ overnight. All electrochemical tests 

were performed in CR 2032 coin-type cells assembled in Ar-filled glovebox. 1 M 

NaClO4 (Sigma-Aldrich, ≥98.0%) in ethylene carbonate (EC)/diethyl carbonate (DEC) 

(Sigma-Aldrich, 99%/>99%) with 1 to 1 volume ratio was used as electrolyte with 

additional 10 vol% 4-Fluoro-1,3-dioxolan-2-one (FEC) (Alfa Aesar, 98%) as electrolyte 

additive to help form stable solid-electrolyte interphase (SEI). A Whatman grade GF/F 

glass fiber microfiber filter (Sigma-Aldrich) was used as separator. Pure sodium was used 

as counter and reference electrode. Galvanostatic charge/discharge was performed 

between 0.001 and 2 V at a current density of 200 mA/gcomp. Rate studies were performed 

at current densities of 200, 400, 1000, and 2000 mA/gcomp. 

4.2.3 Material Characterization 

Scanning electron microscopy (SEM) images of SWCNH, SWCNT, SWCNH-red P, 

SWCNT/SWCNH-red P, and SWCNT-red P were acquired by a Zeiss Merlin Scanning 

Electron Microscope. Raman characterizations were performed by using a Renishaw 

inVia Raman spectrometer with a 532 nm laser. For characterizations of different 

alloying products, batteries were immediately opened inside the Ar filled glovebox 

during 2nd discharging process at different cut-off voltages of 0.30 V, 0.20 V, and 0.001 

V, and electrodes were rinsed with DEC solvent carefully before transferring for ex-situ 

scanning transmission electron microscopy (STEM) study on a FEI Transmission 
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Electron Microscope. 

 

4.3 Results & Discussion 

To investigate the role of carbon defects and carbon nanostructure properties on 

the electrochemical reaction in red phosphorus composites, three distinct composite 

compositions were prepared using SWCNTs and SWCNHs. SWCNHs are all-carbon 

allotropes with a tubule structure and a conical cap at the end, and aggregate into 

spherical particles during synthesis with diameter between 60 to 120 nm, as shown in 

SEM image in Figure 4.1a.  SWCNHs exhibit a significant presence of sp3 hybridized 

carbon defects embedded into the sp2 hybridized carbon matrix.  In contrast, SWCNTs 

(HiPCO) are rolled graphene sheets with diameter typically below 1.0 nm that arrange in 

bundles as observed in SEM (Figure 4.1b).  SWCNTs exhibit virtually no presence of sp3 

hybridized carbon and are therefore fully based on defect-free sp2 hybridized carbon 

species.  In a carbon-red P composite structure containing SWCNHs, increasing the ratio 

of SWCNHs relative to SWCNTs does not change the all-carbon nature of the material, 

but leads to a greater defect density and slightly decreases electrical interconnectivity due 

to the geometric characteristics of SWCNHs. To characterize the role that defects play in 

red P-carbon composites, we specifically compared films of SWCNTs, SWCNHs, and 

1:1 composite SWCNT/SWCNH mixtures.  Raman spectroscopy with 532 nm excitations 

(Figure 4.1c) elucidates the sp2 hybridized carbons evident in the G-mode (~ 1590 cm-

1)158-159 and the out-of-plane sp3 hybridized carbon atoms induced by defects in the D-

mode (~ 1320 cm-1)160-163 for carbon composite materials in this work. The intensity 

ratios of D peak to G peak (ID/IG) confirm the highest defect content in SWCNHs, 
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lowest/negligible defect content in SWCNTs, and an average in the 1:1 

SWCNT/SWCNH composite. Following grinding to impregnate these different carbon 

materials with red P, the composite materials were characterized by SEM (Figs. 1d-1e).  

In these images, carbon materials form three-dimensional networks that prevent 

agglomeration of red P, and red P appears well-mixed with the carbons in each case, with 

slightly modified film geometry in the composites containing SWCNHs due to their 

spherical shape, instead of rope-like geometry of SWCNTs, which is pointed out in 

images using white circles.  

 

Figure 4.1 SEM images of pristine (a) SWCNHs and (b) SWCNTs. (c) Raman spectra of 

SWCNH, SWCNT/SWCNH, and SWCNT using 532 nm excitations. SEM zoom-in view 
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of (a) SWCNH-red P, (b) SWCNT/SWCNH-red P, and (c) SWCNT-red P with white 

arrows indicating geometrical modifications upon adding SWCNHs, and dotted circles 

indicating interconnected structure. 

 

 To assess the electrochemical performances of pure red P and carbon-red P 

composites, galvanostatic charge/discharge tests were performed. Pure red P has 

inherently low electrical conductivity. After mixing with polymer binder and conductive 

carbon, the red P anode alone showed an initial discharge capacity of 900 mAh/gcomp and 

then degraded to less than 50 mAh/gcomp in the following charge cycle. This is due to the 

large volume expansion (~300 %) during alloying with sodium, which further leads to 

severe electrode pulverization. The SWCNH-red P, SWCNT/SWCNH-red P, and 

SWCNT-red P composites with similar loadings exhibit capacities of 1167, 1477, 1521 

mAh/gcomp from the 1st discharge, respectively, and 490, 640, 867 mAh/gcomp from the 

successive charge. The improved electrochemical performances demonstrate the 

successful role of carbon materials as conductive matrix and mechanical buffer for red P, 

even though distinctions exist in this comparison regarding the effectiveness of the 

different composite electrodes and their relative performance. This directed us to pursue a 

more comprehensive understanding of the mechanistic roles the carbon materials play in 

the chemical alloying reaction associated with sodium storage in red P.  
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Figure 4.2 (a) 2nd-cycle galvanostatic discharge curve of different red P-carbon 

composites at a current density of 200 mA/gcomp with insets indicating different alloying 

products. (b) Ex-situ STEM elemental spectra of Na and P for different alloying products 

for SWCNT-red P anode. (c) differential charge (dQ/dV) curve derived from 2nd 

discharge. 

 

 To carefully examine the alloying states during charge/discharge, the three 

composites are compared based on their 2nd cycle discharge to eliminate effects from 

solid electrolyte interphase formation observed in the first discharge. As shown in Figure 

4.2a, the carbon-red P composites undergo an alloying reaction with sodium ions and first 

form shallow, then medium, and finally deep alloying products during discharging from 2 

V to 0.001 V. We note that although there is no available evidence to experimentally 

prove each distinctive phase, theoretical studies using density functional theory (DFT) 

calculations indicate three thermodynamically stable sodium-phosphate stoichiometric 

phases below 0.6 V, denoted as NaP, Na5P4, and Na3P.164 Here the formation of different 

phases is indicated with representative features of the discharge curve, along with the ball 

and stick models in Figure 4.2a indicating different Na to P ratios characteristic of the 

alloying states. Ex-situ STEM EDS elemental spectra were performed on different 
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alloying products to further confirm the transition of Na to P ratio upon discharging as 

seen in Figure 4.2b. To further characterize the electrochemical properties of each phase, 

differential capacity (dQ/dV) curves derived from discharge curves after the 1st cycle 

were analyzed. For illustration of the alloying process, the dQ/dV plot of only the 

SWCNT-red P composite at 2nd discharge cycle was shown in Figure 4.2b. Indicated 

with different shading, three distinctive peaks were observed which corresponded directly 

to the three alloying states and their products: NaP (red, shallow), Na5P4 (purple, 

medium), and Na3P (blue, deep), respectively. The position of each peak implies the 

voltage at which each alloying state is formed. The area of each peak suggests the 

specific capacities delivered by the formation of each phase.  
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Figure 4.3 (a) differential charge (dQ/dV) curve derived from 2nd discharge with stable 

alloying products (NaP+Na5P4) formation highlighted. (b) Specific capacities delivered 

by stable alloying products. (c) Changes in overpotential upon cycling for two stable 

alloying products. (d) Overpotential for two stable alloys vs. Raman ID/IG ratio. (e) to (g) 

Schematic illustration of resistance differences between different carbon-red P 

composites due to the carbon geometry. 

 

 To better understand the evolution of the alloying phases for the different 

composites, the specific capacity delivered by only these alloy regions and corresponding 
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overpotential for each phase is plotted for the first 10 cycles .  Assessment of these results 

leads to a straightforward delineation of the stable alloy phases as mostly independent of 

the carbon materials (Figure 4.3) and the unstable Na3P alloy phase whose performance is 

strongly correlated to the carbon surface properties (Figure 4.4).  In this spirit, we 

identify the stable alloy region (Figure 4.3a) to include NaP and Na5P4 formation. 

Specific capacities delivered by these two phases are 410, 534, 734 mAh/gcomp in the 2nd 

cycle for SWCNH-red P, SWCNT/SWCNH-red P, and SWCNT-red P and degradations 

of 20%, 8%, and 4% were observed from the 2nd to 5th cycle (Figure 4.3b), respectively. 

By the 10th cycle, the capacities delivered by stable alloy region for all three composites 

maintain more than 50% compared to the 2nd cycle. Notably, for all three carbon 

composite materials, the degradation that occurs during cycling of the stable phase 

alloying capacity seems to follow the same trend, only offset by the differences in initial 

capacity, which is due to solid electrolyte interphase (SEI) formation on different 

electrode architectures.  To better understand this, overpotential measurements on the two 

stable alloying phases of all three composites were calculated using the difference in peak 

positions between charge and discharge from dQ/dV curves and indicate minimal change 

for NaP and Na5P4 for the three different composites with less than 10 mV for NaP phase, 

and 20 mV for Na5P4 phase (Figure 4.3c).  For SWCNH-red P composite, the 

overpotential of NaP phase can only be monitored up to 5 cycles, which is because the 

NaP peak in dQ/dV plot becomes nearly unobservable. The differences in defect densities 

for different composites contribute to minimal changes (within 50 mV) in average 

overpotential as shown in Figure 4.3d. An additional key difference between the carbon 

composites is highlighted in this case in the overpotential for the alloying reactions to be 
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higher for SWCNH-red P composites in comparison to SWCNT-red P composites, and 

we attribute this to the poor electrical conductivity of SWCNHs. Schematic 

representation of the SWCNH composite (Figure 4.3e) reveals the spherical geometry 

providing the contact only at point locations where spheres come in contact limiting the 

number of continuous pathways between SWCNH-red P composite and current collector 

reflected as resistance in the cell. Void spaces in between spherical aggregates that are 

filled by red P (confirmed through SEM Figure 4.1d) do not provide electron pathways. 

After SWs are introduced (Figure 4.3f) more electron pathways are available because of 

the high aspect ratio and length that provides more electrical interconnections and 

pathways for electrons to the current collector. During hand grinding of SWs with red P, 

red P does not fill the empty spaces but instead forms a conformal coating on the outside 

of tube bundles, and exhibits more preferable contact between the composite and current 

collector with more electron pathways available and in turn lower resistance compared to 

the other composites (see Figure 4.3g). Whereas this is not a chemical mechanism for 

steering the alloying reaction in the same manner as defect density, the native electrical 

connectivity of SWCNTs in the composite leads to improved electron transfer to the 

insulating red P, resulting in lower overpotentials for alloying reactions as demonstrated 

in Figure 4.3e-g.  However, in this stable alloying regime involving the formation of NaP 

and Na5P4 phases, our results overall indicate good stability and consistency of all three 

composite electrodes without significant chemical influence from the carbon materials.   
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Figure 4.4 (a) dQ/dV curve derived from 2nd discharge with unstable alloying product 

(Na3P) formation being highlighted. (b) Specific capacities delivered by unstable alloying 

product formation. (c) Changes in overpotential upon cycling for the unstable alloying 

product for different red P-carbon composites. (d) Schematic illustration underlying the 

carbon defect-dominated unstable alloy formation and increased resistance that leads to 

irreversible alloying/dealloying process. (e) Cycling performance of different carbon-red 

P composites at a current density of 200 mA/gcomp. 
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 In contrast to this, in the unstable alloy region (Figure 4.4a) where the final 

alloying Na3P phase is formed, the specific capacities delivered by Na3P formation 

during discharge show values of 273 mAh/gcomp for SWCNH-red P, and 272 mAh/gcomp 

for SWCNT/SWCNH-red P in the 2nd cycle compared to 214 mAh/gcomp for the SWCNT 

composite. However the composites containing SWCNHs exhibit drastic degradation 

(Figure 4.4b) whereas the SWCNT-red P composite showed only minimal degradation.  

Furthermore, the differences between the composites containing SWCNHs (defects) and 

those without SWCNHs are evident by comparing overpotentials (Figure 4.4c).  Similar 

trends of degradation based on different carbon-phosphorus composite anodes with 

different defect densities have also been observed in lithium ion batteries (LIBs) 

system.165 Whereas the initial overpotential differences can be attributed to different 

electronic properties of each composite material (Figure 4.3c), the overpotential for Na3P 

phase shows dramatic increases of 51 mV for SWCNT-red P, 67 mV for 

SWCNT/SWCNH-red P, and 97 mV for SWCNH-red P from 2nd to 5th cycle (Figure 

4.4c) compared to less than 20 mV changes with cycling in the stable region. This 

qualifies the designation of the Na3P phase as an unstable alloy region, and these results 

indicate the strong dependence of the stability of the alloying products in this region to 

the defect properties of the carbons.  The mechanism behind this observation is presented 

and discussed in Figure 4.4d.  Previous reports have shown that defects of graphitic 

materials are highly reactive sites for binding sodium ions due to the delocalized nature 

of electrons.166-168 Recently, theoretical calculations showed that a single Na vacancy can 

lead to fast electron transfer in Na3P phase, which has a semiconducting behavior.164, 169 

The abundant defect sites on the horns of SWCNHs initiate Na3P formation during the 



59 
 

2nd discharge, leading to higher capacity contribution in the unstable alloy region. 

However, upon charging for SWCNH-containing composites, the Na3P that effectively 

formed on discharge cannot be dealloyed and is then stored in the composite as an 

irreversible product. The existence of this product acts as a resistive barrier for electron 

transfer, which is observed as increased overpotential with subsequent cycles. Defective 

sites now coated with irreversible products are deactivated, meaning less Na3P formation 

and rapid degradation of this alloy region. However, for SWCNT-red P, the non-

defective nature of carbon does not provide specific activated sites for Na3P formation, 

which corresponds to a more moderate 2nd discharge capacity in this region compared to 

the other two composites. This leads to cycling without production of irreversible 

products, and provides a surface that favors the reversible alloying/dealloying process.  

In this manner, our results specifically elucidates that an ideal composite anode for red P 

will involve a surface site in the composite material that enables robust charge transfer 

between the conductive host material and Na3P alloy phase.  Our results indicate that this 

is accomplished with SWCNTs, which can be related to the capability of sp2 carbon 

defects to enable reversible charge transfer to Na3P products without excessive Na3P 

formation that limits the reversible charge transfer reaction.  This provides the 

mechanistic foundation for the improved capacity measured for SWCNT-red P 

composites versus those containing SWCNHs (Figure 4.4e).. Overall, our studies not 

only shed light on fundamental considerations for Na-P alloying dealloying evolution, but 

also provide insights into future engineering of carbon/red P composites for SIB anodes.  

For example, surface engineering routes157 employing ultrathin coatings to stabilize Na3P 

surface products and provide fast charge transfer to enable the reversibility of these 
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products can enable anodes for Na-ion batteries that can leverage the extraordinarily high 

theoretical capacity of P in a durable cell configuration. 

4.4 Conclusion 

In summary, we utilize red P – carbon composites with controlled defect density to 

investigate the underlying mechanistic role that carbon defects play in the reversible 

alloying reaction of red P with Na.  Our results elucidate stable alloying phases that 

include both NaP and Na5P4 that form in the range 0.4 – 0.15 V vs. Na/Na+ which exhibit 

reversibility that does not appear correlated with the defect content of the carbon matrix.  

However, below 0.15 V we emphasize the formation of the final alloying product of Na3P 

to occur in an unstable alloying regime, where the presence of defects in the carbon 

composite matrix lead to charge transfer barriers toward reversible alloying reactions 

with Na.  Our work presents critical insight that effective composites for red P anodes 

that are able to maintain simultaneous durability and capacity approaching the theoretical 

limit of 2596 mAh/g will effectively leverage approaches to enable reversible charge 

transfer specifically tailored to the alloying reaction to form Na3P.  Our results suggest 

this as the mechanism for why sp2 hybridized carbon is better suited as a reversible host 

material for red P anodes, but we envision future efforts that can leverage surface 

engineering routes to further improve performance in this unstable alloying regime. 
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CHAPTER 5 

GRAPHENE-BLACK PHOSPHORUS HETEROSTRUCTURED BUILDING BLOCKS 
ASSEMBLED FOR SODIUM-ION BATTERIES 

5.1 Introduction 

Phosphorus has been reported as a promising candidate for sodium-ion battery 

(SIB) anodes due to the highest theoretical capacity of 2596 mAh/g among all the SIB 

anodes.170-173 There are three common allotropes of phosphorus including white, red, and 

black phosphorus. White phosphorus is toxic and unstable in the ambient environment. 

Red phosphorus (red P) is cheap and abundant, but the amorphous structure, insulating 

property, and flammable nature make it less desirable for battery application. Unlike 

these two allotropes, black phosphorus (BP) is the most thermodynamically stable form, 

which is synthesized using cheap red P as raw material. Early syntheses of BP end up 

with high cost and low yield due to the required high pressure and high temperature 

environment and addition of expensive catalysts.174-176 However, increasing research 

efforts have been developed recently on facile synthesis of BP that results into large-scale 

and environmental friendly production, and estimated low cost of less than 1 US dollar 

per gram, which makes BP promising for sustainable access and further applications.177-

180 Previous reports have shown electronic properties of BP highly attractive for next-

generation electronic devices.181-184 Recent studies have also demonstrated that 2D few-

layer BP can enable both the highest capacity and fast ion-diffusion channels during the 

alloying process with sodium.185-190  

To obtain 2D thin-layer BP, two common methods employed are mechanical 

exfoliation191-193 and solution-based sonication/exfoliation194-196.  For the specific 

application of battery materials, both methods produce a material that still requires binder 
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and conductive carbon additives in addition to the processed BP. Hence, multi-step 

processing must be performed to collect enough exfoliated materials from solution for 

electrode fabrication.188, 197 Additionally, the volume expansion that is involved in the 

sodiation of black phosphorus has been reported to be above 300%, which can lead to 

electrode fracturing and capacity degradation upon cycling.198-199 Thus, it is crucial to 

have mechanical buffering materials in the system that can accommodate the large 

volume expansion without undergoing local cracking or mechanical failure – 

emphasizing the need for complex electrode design strategies.  

In this regard, architectures of 2D materials involving stacking have been reported 

recently for their capability to enable high rate performance, improve cycle life, and 

control the electrochemistry of battery electrodes.200-201   The stacking of 2D materials is 

a novel nanomanufacturing strategy where the overall properties of stacked 2D 

heterostructures can compensate for the bottlenecks or limitations associated with either 

one of the 2D materials in the stack.202-203  The stacking of 2D materials can also enable 

novel electronic,113, 204 phononic,205 or optical properties206-207 that are differentiated from 

the individual 2D materials themselves. Graphene is often an excellent candidate as a co-

stacking material due to its high electronic conductivity,208 mechanical strength,209 and 

fast reaction kinetics.200 High-yield and low-cost production of graphene from graphite 

can be achieved by solution-based exfoliation process for further applications.210-212 In 

the specific case of 2D BP, pioneering efforts that demonstrate stable anode cycling 

performance attributed this performance to van der Waals stacking between graphene and 

BP that occurs during vacuum filtration to fabricate electrodes.188 Building from these 

efforts, methods to controllably engineer this beneficial BP/G architecture in bulk, such 
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as by exploiting interactions between different 2D nanomaterials during solvent 

processing, can enable highly tailored approaches to produce functional 2D structures in 

a scalable manner, which can then be coated onto desired surfaces and used for diverse 

applications.   

In this spirit, here we demonstrate co-exfoliation of 2D graphene and BP 

materials to produce 2D heterostructured material in N-methyl-pyrrolidone (NMP) 

solvents. We demonstrate the resulting heterostructure formation to be due to the 

favorable electrostatic surface interaction between 2D BP and graphene materials 

dispersed in NMP solvents.  These co-exfoliated heterostructured materials are then 

assembled onto conductive surfaces using electrophoretic deposition (EPD), which can 

be used as an effective way to produce thick coatings of 2D materials from dilute 

solutions.  We then assess these heterostructured BP/G coatings as anodes in sodium ion 

batteries with no additional additives or binders, and observe a discharge capacity of 

2365 mAh/gP at a current density of 100 mA/gP, which maintains a reversible capacity of 

1297 mAh/gP after 100 cycles.  Our work gives insight into pathways for bulk processing 

of complex heterostructured 2D materials with application toward highly energy dense 

batteries. 

5.2 Methods 

5.2.1 Co-exfoliation of graphene and black phosphorous 

12 mg of black phosphorous (crystal pieces from Smart Elements) and 12 mg of graphene 

(Graphene X from cheaptubes) were added into 40 mL N-methyl-pyrrolidinone (NMP). 

The solution was sonicated in ice bath by inserting the sonicator (Sonics, VCX750, 30% 

amplitude) probe into the centrifuge tube sealed with PDMS and Parafilm for minimizing 
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air exposure. The sonication process is set to be 3s pulse on and 3s pulse off to avoid 

excessive heating for 5 hrs. After sonication, the solution was left overnight for further 

use. For comparison, BP and G were individually probe sonicated in NMP solution with 

the same initial concentration of 0.6 mg/mL. 

5.2.2 Electrode assembly by electrophoretic deposition 

Electrophoretic deposition (EPD) was performed by using two identical stainless steel 

pieces (316 stainless steel coil from Trinity Brand Industries, 0.006 inch thick) with a size 

of 0.8 cm×3 cm as working and counter electrodes. Electrodes were immersed into 12 

mL co-exfoliated solution in a plastic tube with an immersion depth of 2.5 cm. 200 V 

constant voltage was applied to the electrodes, and the corresponding current was 

recorded by a sourcemeter (Keithley 2400) integrated with a LabView data acquisition 

software. 

5.2.3 Electrochemical test 

Coin-cell type batteries were fabricated in an Ar-filled glovebox with O2 level <0.5 ppm 

for electrochemical tests. Co-exfoliated BP/G on stainless steel by electrophoretic 

deposition was cut into ~0.8 cm×0.7 cm and applied as anode materials by directly 

cutting the stainless steel. Whatman grade GF/F glass microfiber was used as separator. 1 

M NaPF6 (Sigma Aldrich, 98%) in ethylene carbonate/diethyl carbonate (EC/DEC, 1/1 

v/v, Sigma-Aldrich, 99%/>99%) with 10 vol% 4-Fluoro-1,3-dioxolan-2-one (FEC) (Alfa 

Aesar, 98%) was used as electrolyte. Sodium metal (Strem Chemicals, 99.95%) was used 

as counter electrode. Electrochemical charge/discharge was performed on a MTI battery 

testing system with current densities of 100 mA/gP, 200 mA/gP, 500 mA/gP. 
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5.2.4 Material characterization 

The morphology of electrodes with co-exfoliated BP/G deposited on stainless steel was 

characterized by using a Zeiss scanning electron microscope (SEM), The zeta potential 

and hydrostatic sizes of different exfoliated solution was measured on a Malvern 

Zetasizer Nano ZS instrument. The morphology of co-exfoliated BP/G in NMP solution 

and after EPD on steel were further characterized by a FEI Osiris transmission electron 

microscope (TEM). Crystallographic analysis of bulk BP, exfoliated BP, co-exfoliated 

BP/G, bulk G, exfoliated G was performed by using a Scintag XGEN 4000 to obtain X-

ray diffraction pattern using Cu Kα 1.542 Å. 

5.3 Results & Discussion 

To investigate the solution assembly of 2D BP and graphene materials, BP and G 

were co-exfoliated in NMP solution by probe sonication. A schematic representing the 

observed co-exfoliation process via probe sonication is shown in Figure  1a. After 5-hr 

probe sonication in an ice bath, the initial clear solution with BP and G at the bottom 

became a uniform dark solution.  To understand the solution properties of the resulting 

co-exfoliated solutions, zeta potential measurements were performed on exfoliated BP, 

BP/G and G in NMP solution respectively.  Zeta potential measurements indicate the 

resulting surface charge on the exfoliated nanosheets in solution, with the BP in NMP 

showing the lowest average value of -31 mV, G in NMP of 1 mV, and BP/G in NMP of -

8 mV (Figure 5.1b).  This result emphasizes a key outcome of co-exfoliation in that the 

BP/G solution exhibits uniform and widely different surface charge properties than either 

the BP in NMP or G in NMP solutions individually.  The measured zeta potential of 

BP/G in NMP solution indicates neutralized surface charge on the solvent shell-wrapped 
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nanosheets (Figs. 1c and 1d).  This results from the interaction of heterostructures formed 

by the interaction between negatively charged exfoliated BP and positively charged 

exfoliated G surfaces,213-214 leading to electrostatic-driven aggregation and 

heterostructure formation that act to neutralize surface charge in solution (Figs. 1 and 

2).215-217 This observation is further supported by measurement of the hydrostatic size 

distribution of co-exfoliated BP/G in NMP compared to exfoliated BP in NMP and 

exfoliated G in NMP. Following co-exfoliation, BP/G dispersed in NMP solution was 

characterized by transmission electron microscopy (TEM) (Figure 5.1e), with the inset 

plot showing the diffraction pattern indicating three lattice spacings of 2.1 Å, 2.6 Å, and 

9.3 Å, which corresponds to graphene (1100),218-219 black phosphorus (111),220 and 

increased graphene d-spacing due to the presence of some initial oxygen-containing 

functional groups on the surface.221-222 Scanning TEM energy dispersive X-ray 

spectroscopy (STEM EDS) elemental mapping confirms the stacking of 2D thin sheets of 

BP and G, which confirmed the self-assembly between exfoliated BP and exfoliated G in 

solution (Figure 5.1f-1h).  Notably, this technique for forming 2D heterostructured BP/G 

materials is distinguished from prior work188 in that our approach leverages fundamental 

particle-particle electrostatic interactions in solution to drive heterostructure formation 

rather than drying effects at an interface that cause separate 2D materials to stack into 

thick sheets.  By forming suspensions of heterostructures based on equilibrium 

electrostatic-driven processes in solution, we overcome scaling limitations of drying-

induced heterostructure formation across interfaces that can be highly sensitive to factors 

such as drying rate, and enable a new versatile platform for large-scale processing of 

heterostructured 2D materials that can be broadly implemented into manufacturing-scale 
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processes.   

 

Figure 5.1 (a) Schematic illustration of the co-exfoliation of BP/G in NMP solution 

assisted by probe sonication. (b) Average zeta-potential measured on exfoliated BP in 

NMP, co-exfoliated BP/G in NMP, and exfoliated G in NMP. (c)-(d) Schemes of solution 

assembly process between exfoliated BP and G driven by electrostatic force. (e) High-

resolution TEM image of BP/G in solution with the inset showing the diffraction pattern 
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of the characterized area, inset scale bar equals 2 nm-1, and (f)-(h) TEM EDS elemental 

mapping of the characterized area (all scale bars equal 5 µm). 

 

To assemble the BP/G heterostructured 2D materials into functional coatings, we 

utilized electrophoretic deposition (EPD).  The set-up was shown schematically in Figure 

5.2a, and involved two identical stainless steel electrodes immersed into the solution with 

a voltage of 200 V applied between the electrodes.  Unlike other methods for assembly of 

2D material films,223-224 EPD is known to enable complete removal of solution-dispersed 

materials into uniform films that can be used in applications.225 Figure 5.2b shows the I-t 

curve for the deposition, transformation from a dark to clear solution after 1400 seconds 

with a corresponding uniform film formation during the deposition of BP and BP/G was 

observed. However, for graphene, the low absolute value of Zeta potential resulted into 

no color change in solution before and after deposition, and minimal patchy graphene 

coating during EPD process. The initial higher slope of the I-t curve and shorter time 

needed to deposit an identical concentration, and hence mass, of 2D materials between 

the three curves can be explained by the difference in the electrophoretic mobility (µ) of 

exfoliated sheets.  This is calculated using the Smoluchowski equation:  

𝜇 =
𝜀𝜀!𝜁
𝜂  

which can be applied to rigid particles with high aspect ratio.226-227 Here, ε is the 

dielectric constant of the solution, 𝜀! is the permittivity of free space, ζ is the zeta-

potential of the dispersion, and η is the viscosity of the dispersion. Using the measured 

average zeta-potential value, the calculated electrophoretic mobility for exfoliated BP in 

NMP, BP/G in NMP and G in NMP is 5.2×10-9, 1.4×10-9, and 1.5×10-10 m2V-1s-1, with 
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deposition mechanism illustrated in Figure 5.2c-e. For exfoliated BP in NMP, 2D BP 

nanosheets were rapidly assembled on the stainless steel electrode during EPD. For co-

exfoliated BP/G in NMP, the pre-assembled nanosheets in solution maintained their 

structure through deposition where drying led to a thick layer of heterostructured BP/G 

material.  Notably, control studies aimed to analyze sedimentation indicates no apparent 

sedimentation after 48 hours for the BP and BP/G solution, which is much longer than the 

timescale over which deposition takes place. Massive sedimentation was observed for the 

graphene solution after 12 hours. After EPD of co-exfoliated BP/G in NMP, the 

deposited materials on stainless steel electrode was characterized by scanning electron 

microscopy (SEM). The structure and morphology of the materials from top-down view 

were shown in Figure 5.2f, with multiple micron-sized sheets stacked together. SEM 

EDS elemental mapping results shown in Figure 5.2g-i indicate uniform distribution of 

exfoliated BP and G on stainless steel. TEM dark field image and corresponding EDS 

elemental mapping of the co-exfoliated materials after EPD are shown in Figure 5.2j and 

2k-m, respectively. Exfoliated BP nanosheets were uniformly distributed in between 

exfoliated G, and formed sandwich-like heterostructures as a result of solution-driven 

assembly during co-exfoliation of BP and G and electric field-driven assembly during 

EPD. 
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Figure 5.2 (a) Schematic illustration of the EPD process to assemble 2D heterostructures. 

(b) Deposition I-t curve for exfoliated BP, co-exfoliated BP/G, and exfoliated G in NMP 

solution. (c)-(e) Proposed deposition mechanism for the three different 2D materials 

studied. (f) SEM top-down view of the deposited materials on stainless steel electrode, 
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and (g)-(i) SEM EDS elemental mapping results of the area in (f), all scale bars represent 

2 µm. (j) Dark-field TEM image of the material after deposition, and (k)-(m) TEM EDS 

elemental mapping of the BP/G heterostructure, all scale bars represent 500 nm. 

 

To further characterize the properties of the exfoliated materials deposited by 

EPD, X-ray diffraction (XRD) was performed on bulk BP, bulk G, exfoliated BP, 

exfoliated G, and co-exfoliated BP/G (Figure 5.3a). Bulk BP exhibited three 

characteristic peaks around 17˚, 34˚, and 52.5˚ that correspond to (020), (040) and (060), 

which confirmed its orthorhombic structure.220 Bulk graphite displayed a broad peak 

around 26.7˚ and 43˚, which corresponds to the interlayer spacing of (002) and (100), 

respectively.228-229 After exfoliation, BP showed another characteristic peak around 26˚ 

that corresponds to the (021) lattice.230-231 Exfoliated G maintained similar features in 

XRD patterns to that of graphite. For the co-exfoliated BP/G, several peaks around 17˚, 

26.7˚, 34.6˚, and 35.4˚ demonstrated the existence of highly crystalline exfoliated G and 

exfoliated BP. The disappearance of peaks within the range of 40˚ to 45˚ and 50˚ to 55˚ 

could possibly due to the assembly and formation of 2D heterostructure. The Raman 

spectroscopy of co-exfoliated BP/G shown in Figure 5.3b indicated the distinctive 𝐴!! , 

𝐵!!, and 𝐴!!  peaks of BP centered at 363 cm-1, 440 cm-1 and 467 cm-1.232-234 The D and G 

peaks centered at 1347 cm-1 and 1582 cm-1 are characteristic peaks for graphitic carbon. 

The presence of a D peak is attributed to edge effects of small flakes during solvent 

exfoliation process in NMP.159, 235 
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Figure 5.3 (a) XRD patterns of bulk BP, bulk G, exfoliated BP, exfoliated G, and co-

exfoliated BP/G, and (b) Raman spectra of BP/G heterostructured materials assembled 

through EPD. 

 

To evaluate the benefit of heterostructured BP/G materials, coin-cell battery 
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electrodes were prepared by directly cutting the stainless steel electrode after EPD 

without adding binder or conductive carbon additive.  Whereas BP has been recently 

demonstrated to have the highest known sodium storage capacity compared to all host 

insertion anodes, the large volumetric expansion associated with sodium alloying with BP 

leads to rapid capacity degradation.  Here, the use of EPD combined with bulk solution 

processing enables thick electrodes composed of microscopically heterostructured 

building blocks.  Electrode thickness was characterized under SEM cross-sectional 

imaging, and measured as ~140 µm. To test these materials, Na-BP/G metal half cells 

were fabricated and tested using galvanostatic charge/discharge measurements between 

0.02 to 1.5 V.  Figure 5.4a shows charge/discharge profiles collected at a current density 

of 100 mAh/gP.  The 1st-cycle discharge capacity was measured to be 2622 mAh/gP .  

This is slightly higher than the known theoretical capacity of BP (2596 mAh/g) due to the 

high surface area of BP/G structures and the formation of the solid-electrolyte interphase 

(SEI) layer at the electrode-electrolyte interface in the carbonate electrolyte. Using a 

fluoroethylene carbonate (FEC) additive, the 1st-cycle Coulombic efficiency was 

measured as 75.6%, which is higher than reports without FEC electrolyte additive.236 

From the results in Figure 5.4, it is evident that the BP/G heterostructures lead to 

improved electrochemical performance compared to BP materials prepared in the same 

way.  We attribute this to the ability of the BP/G network to better accommodate the 

volume expansion associated with the sodium alloying reaction with BP. Comparing the 

capacity measured in our heterostructured BP/G material to other reports on BP at 

currents of 100, 200, and 500 mA/gP (Figure 5.4b),40, 188, 197, 237 our work showed the 

highest specific capacity of 2365 mAh/gP at 100 mA/gP current density.  Further, 
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compared to other reports of layered and heterostructured materials tested for Na-ion 

battery anodes (Table 5.1) at comparable cycling rates, including graphene,200 graphene 

oxide,238 MoS2/graphene,239 and other layered materials240-242, our results demonstrate 

promising capacities for high performance sodium batteries. Galvanostatic tests at 

different current densities were also carried out for 100 cycles (Figure 5.4c). The stable 

cycling with maintained capacities of 1297, 1009, and 623 mAh/gP at 100, 200 and 500 

mA/gP after 100 cycles demonstrated the effective role of G in the 2D BP/G 

heterostructured anode as a buffering matrix to accommodate BP volume expansion. This 

elucidates the role of the heterostructure toward improved cycling, which has been 

observed in other 2D material/graphene hybrid structures used in Na-ion batteries.239, 241 

Xie et al. observed that heterostructured MoS2/graphene materials enabled improved 

cycling performance up to 300 cycles for Na-ion batteries.201 Our results demonstrate that 

hybrid architectures for BP/G materials can therefore enable stable high capacity 

performance with more suitable electrochemical potentials for coupling into a Na-ion cell 

compared to 2D TMDs.243 

Table 5.1. Electrochemical performances comparison with other layered materials and 

heterostructures as sodium-ion battery anodes. 

SIB Anode 1st cycle Cycling 
Graphene 
[Ref 79] 

270 mAh/g at 200 
mA/g 

~118 mAh/g at 1200 mA/g for 
8000 cycles 

RGO paper 
[Ref 238]  

500 mAh/ganode at 
100 mA/g 

~100 mAh/g at 100 mA/g for 
1000 cycles 

MoS2/Graphene paper 
[Ref 239] 

943 mAh/gtotal at 25 
mA/g 

214 mAh/g at 100 mA/g for 5 
cycles 

2D MXene/SnS2 
[Ref 240] 

882 mAh/g at 100 
mA/g 

407 mAh/g at 100 mA/g for 200 
cycles 
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Few layer SnS2 on few 
layer RGO 
[Ref 241] 

~850 mAh/g at 100 
mA/g 

649 mAh/g at 100 mA/g for 6 
cycles 

 469 mAh/g at 800 mA/g for 1000 
cycles 

Porous 2D MXene 
[Ref 242] 

641 mAh/g at 100 
mA/g 

180 mAh/g at 100 mA/g for 200 
cycles 

This work* 1183 mAh/gtotal at 
100 mA/g 

648 mAh/gtotal at 100 mA/g for 
100 cycles 

 

 

 

Figure 5.4 (a) Galvanostatic charge/discharge profiles for 2D BP/G heterostructure 

anode at current density of 100 mA/gP between 0.02-1.5 V. (b) Specific capacities 

obtained by BP electrode at different current densities in this work compared to those in 

other literatures. (c) Cycling performance at different current densities up to 100 cycles. 
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Overall, our results pave the way toward the ability to prepare highly functional 

materials composed of 2D heterostructured building blocks by exploiting the native 

electrostatic interactions of 2D materials during exfoliation or liquid processing.  

Whereas here we show the effectiveness of this technique for batteries, leveraging the 

exceptional sodium alloying capacity of 2D BP nanosheets, we expect this approach to be 

useful for other applications such as multifunctional composites, flexible electronics, 

filtration and water purification, and optoelectronic devices, among others.  The ability to 

simultaneously control organization of nanostructures from the microscale where 2D 

materials can stack into heterostructured building blocks, to the macroscale where the 

building blocks can be controllably formed into 3D functional materials represents an 

exciting frontier in nanomanufacturing that builds the foundation of future technologies 

for 2D or other nanostructured materials. 

5.4 Conclusion 

In summary, our work demonstrated how combining co-exfoliation of BP/G 2D materials 

can lead to heterostructured building blocks that can be controllably assembled into thick 

and functional films using EPD.  Due to the high specific sodium alloying capacity of BP 

materials, we demonstrate this material to enable high specific capacities of 2365 

mAh/gP, 1894 mAh/gP, and 1456 mAh/gP at 100, 200, and 500 mA/gP rates, respectively.  

These heterostructured electrodes were shown to exhibit stable cycling performance of 

the BP due to the ability to accommodate the volume expansion associated with sodium 

alloying into the BP/G heterostructured material network.  Collectively, our work gives 

promise to manufacturing heterostructured 2D materials at two length scales 
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simultaneously: first the control over stacking based on the electrostatic interaction of 2D 

materials in solution to produce heterostructured building blocks, and second the ability 

to deposit such heterostructured materials in thick functional coatings through 

electrophoretic deposition.  In combination, this route gives promise to overcome 

materials and scaling challenges for next-generation applications, and we demonstrate 

this idea here in the context of efficient sodium battery anodes.  
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CHAPTER 6 

SULFUR VAPOR-INFILTRATED 3D CARBON NANOTUBE FOAM AS HIGH 
AREAL CAPACITY LITHIUM-SULFUR BATTERY CATHODES 

6.1 Introduction 

Lithium-sulfur (Li-S) battery cathodes are a promising replacement for lithium-

ion cathodes due to earth abundance and low cost of sulfur, non-toxic nature of cathode 

materials, and extraordinary theoretical capacity (~1675 mAh/g) many times that of 

traditional cathodes.138-139, 142, 145, 244-247 The high theoretical energy density (~2600 

Wh/kg) of Li-S batteries is about 3~5 times higher than conventional Li-ion batteries.246, 

248-250 However, to achieve mass performance approaching this theoretical value, the 

insulating nature of sulfur, large volume expansion, and polysulfide dissolution remain 

challenges.142, 156, 245, 251-252 Specifically, the electrochemical reaction between lithium and 

sulfur first results in high-order polysulfides (HOPSs; Li2S8, Li2S6, and Li2S4) that are 

soluble in widely used ether-based electrolytes and lead to sulfur mass loss from the 

cathode. The irreversible loss of HOPSs in the electrolyte leads to poor conversion of 

low-order polysulfides (LOPSs, Li2S2 and Li2S), and result into poor capacity and 

cyclability.248, 253-256 Previous research has focused on using several strategies to solve 

these problems, with conductive composite material fabrication,151, 253, 257-261 structural 

confinement design,146, 155, 262-265 polar binding additives,261, 266-269 and additional 

interlayer configuration.270-272  

Whereas these advances continue to emerge, an engaging area of research has 

focused on developing routes to maintain the high gravimetric capacity associated with 

stable sulfur cathodes in electrode architectures where high areal loading and high areal 

capacity are achieved.  This requires scaling-up of fundamental nanoscale design rules to 
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thick electrode architectures that are at minimum competitive with the areal capacity of 

commercial lithium-ion battery cathodes, which is generally between 2-4 mAh/cm2.142, 

247, 273-277 Achieving cathodes that maintain gravimetric capacity at substantially higher 

loading results in less external packaging weight, lower cost associated with expensive 

current collector materials, and better energy density at the cell level resulting from less 

inactive material.  However, design challenges emerge for high areal capacity electrodes 

that are not relevant in thinner electrode architectures and three separate approaches have 

been primarily used in state-of-the-art efforts.  The most widely utilized technique for 

fabricating sulfur cathode composites is melt infiltration, where bulk carbon and sulfur 

powder are heated (typically overnight) in a furnace to produce a composite.278-282  These 

are then mixed with binders and cast in thick slurry coatings to achieve high areal 

loading.  The critical limitation of this technique is the lack of control over the location of 

insulating sulfur deposits, which inhibit conductive carbon-carbon material interfaces that 

are critical to achieve full electrical connectivity of the thick electrode and full sulfur 

conversion.  Another prominent route has involved the use of interlayers,269, 283-284 where 

a thick interlayer or membrane is cast over typically elemental sulfur electrodes to 

overcome polysulfide shuttling, but only utilizing sulfur as active material.  The 

limitation of this approach is that researchers often achieve high areal capacities at the 

expense of including excess electrochemically inactive mass that lowers the total 

electrode gravimetric performance and compromises improvements in cell-level energy 

density over lithium-ion. Currently the most commonly accepted technique for high areal 

capacity electrodes is the use of a catholyte electrolyte where the carbon electrode is 

preformed, species known to be soluble are loaded into the electrolyte, and solid sulfur 
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deposits form at the host during operation.285-287  Whereas this technique yields the 

highest recorded areal capacity,285 the requirement of sulfur-containing electrolytes 

ushers in new challenges for packaging and manufacturing since cathode development is 

dependent upon electrolyte properties.   

In this work, we demonstrate a new technique, whereby we combine the benefit 

of a pre-formed carbon-based electrode that is a strength of the catholyte approach, with 

spatial control of sulfur infiltration at high mass loadings (~ 79 wt.%) directed by 

capillary thermodynamics, to produce a sulfur-carbon composite cathode.  As a host 

material we utilize carbon nanotube (CNT) foams, as these are low-density 

interconnected sponge-like materials that can be produced in thick structures using 

solution processing methodologies.288-292  The capillary loading of sulfur directs the 

infiltration on the interior of CNTs, leaving conductive CNT-CNT electrical pathways 

unimpeded by insulating sulfur deposits to enable accessible thick electrode geometries.  

Further, after vapor infiltration we mechanically compress these low-density materials 

into electrodes that maintain density above 0.2 g/cm3 and overcomes limitations of highly 

porous and low volumetric density electrode designs.  Based on this approach, we 

observe electrodes that exhibit high areal capacities of 19.3 mAh/cm2 at mass loading of 

19.1 mg/cm2 with gravimetric capacity of 1039 mAh/gS.  Whereas this is among the 

highest composite cathode performance reported to date, second only to one report on 

catholyte-infiltrated cotton,285 our calculations emphasize this areal capacity to be at a 

level where significantly improved areal capacity is less important to the packaged cell 

energy density compared to the degree of sulfur utilization which is proportional to 

energy density. 
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6.2 Methods 

6.2.1 Fabrication of 3D CNT foam 

Multi-wall carbon nanotubes (MWCNTs) (diameter~8-15 nm, length~10-50 µm, ash<1.5 

wt%) were added into ethanol to form a ~2.4 mol/L solution. The solution was sonicated 

for 3-5 minutes by a probe sonicator (Sonics, VCX750, 30% amplitude) to form a 

flocculent. The process of solvent exchange was then performed by adding ultrapure 

Milli-Q water (18.2 Mohm) into the MWCNTs solution, and followed by pipetting the 

solvent out several times until the flocculent was uniformly distributed in water-based 

solution. Then the solution was chilled to -80 ℃ for an hour, and then transferred 

immediately into a vacuum chamber. Vacuum-drying was carried out to ensure all of the 

ice directly sublimates. After drying overnight, a fluffy and light-weight CNT foam with 

porous structure was achieved. 

6.2.2 Sulfur vapor-phase infiltration into 3D CNT foam as cathode materials 

Sulfur powder and 3D CNT foam were placed separately inside a sealed stainless-steel 

reaction chamber, with the 3D CNT foam suspended ~1 mm above the sulfur reservoir. 

The chamber was then heated up to 175 ℃ for 3 hours. After the chamber cooled down, 

sulfur infiltrated 3D CNT foam was taken out and pressed and cut into electrodes by 

razor blade with a size ~4 mm x 4 mm. 

6.2.3 Characterization 

The morphology and structure of pristine foam, sulfur infiltrated foam, and pressed sulfur 

infiltrated foam were characterized by Zeiss Merlin Scanning Electron Microscope 

(SEM) and FEI Transmission Electron Microscope (TEM). Elemental mapping was 
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performed by SEM and STEM energy dispersive X-ray spectroscopy (EDS). The mass 

loading of sulfur was measured by massing the carbon foam before and after sulfur 

infiltration, and confirmed through themogravimetric analysis (TGA). 

6.2.4 Electrochemical tests 

The pressed sulfur infiltrated foam with a size of ~4 mm x 4 mm was directly applied as 

cathode material, and then assembled into CR 2032 type coin cell inside Ar filled 

glovebox with lithium foil as counter electrode, 2500 Celgard separator, and 1M LiTFSi 

(Sigma Aldrich, 99.95%), 0.25 M LiNO3 (Sigma Aldrich, 99.99%) in a dimethoxyethane 

(DME, Sigma Aldrich, anhydrous 99.5%) and 1,3-dioxolane (DOL, Sigma Aldrich, 

anhydrous 99.8%) with a volume ratio of 1:1 as electrolyte. Galvanostatic 

charge/discharge tests were performed at 0.1 C (1 C = 1675 mA/g) between 1.8 to 2.6 V. 

6.3 Results & Discussion 

Three dimensional (3D) CNT foams were fabricated by vacuum freeze-drying of 

water-dispersed CNTs to result in a freestanding and lightweight foam as shown in the 

photograph in Figure 6.1a with a scheme shown in Figure 6.1b. A typical low-density 

foam shown in Figure 6.1e has a dimension of ~1.8 cm x 0.9 cm x 0.8 cm and a weight of 

7.0 mg. The backbone of the CNT foam involves flake-like CNT sheets (Figure 6.1c, 

6.1f) composed of interconnected CNTs (Figure 6.1d, 6.1g) and is a result of material 

agglomeration in solution prior to freeze-drying. The hierarchical porous structure of the 

3D CNT foam ranges from macropores in-between the carbon flakes where ice was 

removed during the vacuum freeze-drying process, to meso- and micropores that results 

from interconnected CNTs to provide high surface area.   
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Figure 6.1. (a) Ultra-light CNT sponge with a size of ~1.5 cm x 0.8 cm x 0.2 cm standing 

on a dandelion. Schematic illustration (b) bulk 3D CNT foam, (c) carbon microscale 

morphology formed during solution processing, and (d) interconnected CNTs that make 

up structure corresponding to SEM imaging. (e) Photograph of a typical 3D CNT foam. 

SEM images of (f) the 3D CNT foam with carbon flakes at the microscale, and (g) 

interconnected CNTs with meso- and microporous features at the nanoscale. 

 

To infiltrate sulfur into the 3D CNT foam, the foam was placed on a steel mesh 

and suspended ~ 1 mm above a sulfur reservoir inside a small sealed steel vessel.  

Infiltration was carried out by heating the vessel to 175 ℃ for 3 hours, and utilizing the 

sulfur vapor generated from molten sulfur within the free space inside the reaction 

chamber. The high vapor pressure within the small chamber drives sulfur to be condensed 

onto the CNTs via capillary effect.  Unlike melt infiltration, where a liquid is placed in 

contact with the cathode material for duration that most commonly extends overnight, 

this technique involves a shorter duration of exposure, no physical contact between sulfur 

and CNT foam, and no excess or wasted sulfur material.  SEM energy dispersive x-ray 
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spectroscopy (EDS) mapping of the sulfur-3D CNT foam (Figure 6.2a) confirms uniform 

loading of sulfur into the CNT foam (Figure 6.2b and 6.2c). The visible macroporous 

features function to enable uniform and rapid penetration of the sulfur vapor into the 

CNT material and to achieve uniform high mass loading.  Transmission electron 

microscopy (TEM) and scanning TEM EDS (STEM EDS) elemental mapping confirms 

the uniform loading of sulfur on nanoscale features (Figure 6.2d-2e). The scheme in 

Figure 6.2f specifically demonstrates sulfur filling the interior of CNTs during the 

isothermal vapor-phase infiltration process, which occurs due to thermodynamic capillary 

condensation. Here the surface tension of the sulfur on the interior of CNT maintains a 

negative radius of curvature that leads to pressure difference (∆P = 2σ/r, r < 0 ) 

compared to the vapor environment, and then leads to rapid continuous filling until the 

interior pressure saturates.151, 293 Besides rapid interior filling, sulfur also forms 

condensation on the exterior of CNTs due to capillary.294 STEM EDS elemental mapping 

of an individual CNT (Figure 6.2g-2i) demonstrates this observed mode of filling. In the 

line scan, the narrowed sulfur peak relative to carbon peak confirms the existence of 

sulfur on the interior of the tube.  
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Figure 6.2. a) SEM image of zoomed-in view of sulfur-3D CNT foam. SEM EDS 

elemental mapping of (b) carbon and (c) sulfur (with scale bars = 50 µm). d) TEM image 

of sulfur-filled CNTs with EDS elemental mapping of e) carbon and sulfur (with scale 

bar indicating 50 nm). (f) Schematic illustration of capillary-driven sulfur filling the 

interior of tube and partially coating the exterior of CNT during vapor-phase infiltration. 

(g) TEM line scan of a single CNT filled with sulfur, and corresponding STEM EDS 

elemental mapping of (h) carbon and (i) sulfur (with scale bars = 10 nm). (j) TGA data 

for sulfur loading onto the 3D CNT foam. 

 

Further analysis of the sulfur-3D CNT foam demonstrates a mass loading of 79 

wt.% as confirmed through thermogravimetric analysis (TGA) along with areal loading 

reaching 19.1 mg/cm2 (Figure 6.2j). Whereas the interior of the CNT is favorable for 

capillary filling, this high gravimetric loading combines coating on exterior surfaces and 
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interior surfaces, the former of which have a lower radius of curvature, causing slower 

capillary condensation.294 While achieving high mass loading, the interior filling promise 

a much thinner exterior coating that will not result into insulating CNT-CNT junctions 

compared to traditional melt-infiltration method. Notably, this is extremely high areal 

loading compared to current state-of-the-art in composite cathodes formed in the solid 

state.    

After sulfur infiltration, the cathode material is mechanically compressed into a 

densely packed carbon-sulfur composite.  This eliminates macroporous networks that are 

advantageous for sulfur infiltration, but consume large amounts of unutilized electrolyte 

in a packaged device configuration (Figure 6.3a).  The compressed cathode material was 

further cut into pieces for coin-cell battery fabrication (Figure 6.3b-3c). The mechanical 

integrity of the 3D CNT foam enabled ease of use for conventional processing, such as 

blade cutting, to prepare electrode samples.  SEM imaging of compressed cathodes reveal 

suppression of the CNT flake-like sheet structures, but the interconnected CNT structure 

at the nanoscale is maintained (Figure 6.3d, 6.3e). The uniform infiltration of sulfur in the 

CNTs was also maintained without any delamination after compression due to the 

uniform sulfur coating mechanism that preserves conductive CNT junctions (Figure 6.3f-

3g). The actual thickness of the compressed electrode inside the coin cell is about ~150-

200 µm.  
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Figure 6.3. (a) Scheme depicting the method to form compact CNT foam electrodes. 

Optical images of (b) compressed sulfur-infiltrated CNT foam and (c) compressed 

electrode that was directly cut from the compressed foam by razor blade to fit in a coin-

cell. (d) SEM image of mechanically compressed sulfur-3D CNT foam. (e) SEM image 

of interconnected CNTs in sulfur-3D CNT foam and corresponding EDS mapping of (f) 

carbon and (g) sulfur (with both scale bars indicating 1 µm). 

 

To assess the electrochemical performance of the sulfur-3D CNT foam with high 

areal loading, galvanostatic charge/discharge studies were performed on the compressed 

sulfur-3D CNT foam composite cathode at 0.1 C (1C=1675 mA/g; 3.2 mA/cm2). With an 

initial activation process, the sulfur-3D CNT foam delivered a discharge capacity 1039 
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mAh/gS in the 2nd cycle, which corresponds to an areal capacity of 19.8 mAh/cm2. To 

the best of our knowledge, this is the highest value compared to the state-of-the-art 

literature reporting performance for sulfur-3D carbon composite cathodes to date.  The 

remarkable sulfur utilization of our cathode results from uniform interior and exterior 

coatings of sulfur on CNTs, which provides enough surface area to sustain high 

gravimetric loading with the sulfur remaining in close enough proximity to conductive 

CNTs to produce thick and electrically accessible electrodes. The upper and lower 

voltage plateau on the discharge curves in Figure 6.4a represents the high order 

polysulfide (HOPS) and low-order polysulfide (LOPS) conversion processes, 

respectively. The LOPS/HOPS ratio is a comparison that reflects the cathode 

reversibility, and exhibits values from 2.2 on the 2nd cycle to above 2.4 on the 5th cycle, 

which demonstrates cycling stability and approaches the theoretical maximum value of 3.  

This performance implies a cathode architecture that is effective in both enabling high 

sulfur utilization with fast conversion kinetics to trap soluble polysulfides before 

significant outward diffusion of the electrode occurs.   

To compare the results from our cathodes to the trend of cathode development 

that has engaged a significant research crowd in the battery community, we plotted areal 

loading and capacity delivered by sulfur-3D carbon cathodes to several previous works 

selected for their notably high areal performance (Figure 6.4b).  Whereas our foams 

exhibit lower areal performance than cotton-derived carbon cathodes through the 

catholyte approach recently pioneered by the Manthiram group,285 our results exhibit 

higher areal loading and performance relative to all other previous reports and 

specifically the highest value compared to relevant solid sulfur-carbon composite routes 
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that remain most synergistic with conventional battery manufacturing methodology. 

Specific numbers and details for points on these curves are further shown in Table 6.1.  

To better understand the stability of this high areal performance, 100 consecutive charge-

discharge cycles were carried out (Figure 6.4c).  Notably, even after 100 cycles of testing, 

the CNT foam cathode delivered areal capacity of 9 mAh/cm2, which is over 2 times 

higher than the best commercialized Li-ion batteries and remains higher than the 

maximum performance of the majority of previous reports on sulfur cathodes. Moreover, 

the mechanical integrity of the composite foam electrode and porous interconnected 

network of CNTs were maintained after cycling. Further optimization on surface 

modification of CNTs could potentially allow stronger binding of polysulfides to better 

mitigate dissolution. 
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Table 6.1. Areal loading and areal capacities in high-loading Li-S battery cathodes in 

previously reported works.  

Cathode Material Areal Sulfur 
Loading (mg/cm2) 

Areal Capacity 
(mAh/cm2) Cycling rate 

Mesoporous carbon-
CNT-sulfur 

microspheres 
5 4 C/5 

Thick sulfur cathode 3.5 4.5 C/10 
3D sulfur-coated 
carbon fiber foam 16.5 16.3 C/10 

Sulfur infultrated-
MWCNT porous 

microspheres 
2.5 2.66 C/10 

3D carbon cotton 
infiltrated with 

catholyte 
61.4 56.05 C/10 

Layer-by-layer 
sulfur-porous carbon 

nanofiber 
11.4 11.3 C/5 

Li2S6 impregnated 
N,O-codoped porous 
hollow carbon fibers 

6.2 6.2 C/3 

Sulfur cathodes with 
CNF interlayer  1.4 2.1 C/5 

Sulfur-Nitrogen-
doped carbon 
composites 

5 6 C/10 

Nanopowder 
carbon-sulfur 

composite with 
graphene oxide 

interlayer 

1.2 1.4 C/2 
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Figure 6.4. (a) Galvanostatic charge/discharge curves of the sulfur-3D CNT foam at 0.1 

C. (b) Areal loading and areal capacities in high-loading Li-S battery strategies described 

in previously reported works (black: melt-infiltration method, blue: catholyte infiltration 
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method, yellow: interlayer method, and red: our work). (c) Cycling performance of sulfur 

sulfur-3D CNT foam at 0.1 C. (d) Scheme to demonstrate difference between traditional 

(melt-infiltrated) composite cathode sulfur-3D CNT foam composite cathode.  

 

To illustrate the design rationale of this electrode architecture that enables high 

areal performance, we compare our approach to the conventional solid-state composite 

approach in the literature that requires melt diffusion (Figure 6.4d). In previous studies, 

the use of melt diffusion leads to sulfur deposits that are uncontrollable by the long 

thermal treatment of bulk sulfur which results into thick coating onto host materials. 

These nanostructures are then processed into slurry electrodes without design control 

over charge transport pathways, which poses a challenge when achieving high 

gravimetric loading of insulating sulfur.  In contrast to this, the use of vapor infiltration 

into CNT foams alleviates the critical issues associated with this approach.  First, the 

formation of a low-density conductive solid from solution processing prior to sulfur 

infiltration embeds interconnected CNTs that provide a conductive skeleton for the 

electrode.  Next, the use of capillary thermodynamics to infiltrate sulfur into the CNT 

foams ensures a conformal sulfur coating on the interior and/or exterior of the CNT that 

by its mechanistic nature prevents the formation of thick, insulating deposits.  This is 

because the self-limiting coating process deactivates as the chemical potential of the 

coated sulfur approaches that of bulk liquid sulfur.  When compressed into a compact 

electrode, the sulfur remains electrically addressable and the thick CNT material remains 

interconnected and conductive to produce a high areal capacity electrode.   
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Figure 6.5. Energy density calculated assuming an ideal lithium metal anode, 

conservative packaging, and based on Li-S battery cathodes from our work compared to 

the work of other teams reporting high areal performance.  Packaging weight 

considerations include 32% for electrolyte (fixed), 10% for external/diagnostic packaging 

(fixed), 2% for separator (fixed), and 15% for current collectors that varies based on areal 

loading.  Here, “infinite” areal loading is the asymptotic limit where mass of current 

collectors is negligible relative to electrode active materials.  Lines running from left to 

right indicate constant areal loading with varying sulfur utilization. (Assuming 80 wt.% 

mass loading for all lines as ideal-case comparison)  This calculations emphasizes small 

gains in energy density can be widely offset by low sulfur utilization, making this a 

critical parameter for high areal loading strategies.     

 

Whereas areal capacity remains an important metric in efforts to develop stable 

cathode architectures for batteries with a target energy density > 500 Wh/kg, we note that 

at high areal capacities, it is critically important to consider sulfur utilization as a design 
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parameter for a Li-S battery.  To illustrate this, we show a plot of ideal energy density for 

a fully packaged Li-S battery, where the sulfur mass loading is assumed 80 wt.%, and 

sulfur cathode performance is coupled with an ideal Li metal anode (see Figure 6.5). The 

energy density is calculated as a function of sulfur utilization as well as areal 

performance.   

Energy density calculation 

Energy density was calculated based on full cell architectures involving pure Li metal 

anodes with ideal performance, external and internal packaging, and based on the 

measured cathode performance in our work and other works. The general basis for energy 

density is given by the following equation: 

E = Capacity x Voltage x Sulfur mass loading x Sulfur ratio in Li2S x packaging 

-Voltage: assuming 2.1 V for all for ideal-case comparison 

-Sulfur mass loading: assuming 80 wt% for all for ideal-case comparison, or the reported 

sulfur mass loading of other studies. 

-Sulfur ratio in Li2S: 0.69 (= !"#$%& !" !"#$"% !"#$% !" !"!! × !"#$"% !"#$% !"##
!"#$% !"## !" !"!!

, sulfur mass 

percentage in the final product Li2S) 

-Packaging: in a full battery system, we assume electrolyte+separator+packaging in total 

to account for 45 % of the weight (see ref. [56]). Except for the above elements, other 

packaging includes weight of current collector and active material yielding total 55% of 

the weight. For the “infinity loading” case where the mass of the collector is negligible to 

the mass of the active materials, the 55% weight should all be active cathode materials, 

so packaging should be 55%. In a practical future 18650 Li-S cell with 6 mg/cm2 areal 

loading, the weight percentage of cathode electrode materials is 15%.295 Based on this 
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assumption, a cell with x mg/cm2 areal loading, the cathode material ratio in other 

packaging will be: 55%−
! (!"

!"!)×!"%

!(!"
!"!)

, for example, the packaging factor for a 20 mg/cm2 

areal loading cell should be: 55%-4.5%=50.5%.  

Built into this calculation are the following packaging considerations: (1) an 

electrolyte composition of ~33 wt.% that is about double that of conventional Li-ion cells 

due to the increased electrolyte requirement from the polysulfide shuttling effect, (2) 

current collector composition of 15 wt.% that varies with areal loading, where at 

“infinite” areal loading the mass of the collector material is negligible compared to the 

electrode active material mass, (3) separator of ~2 wt.%, and (4) external packaging and 

battery diagnostics of ~ 10 wt.%.296  In all cases, it is assumed the ideal Li metal anode 

has areal capacity matching that of the cathode and exhibits ideal behavior – a concept 

currently the focus of broad and extensive research efforts.  On this plot, we present our 

results in comparison to other key work in noted references.  Importantly, this 

demonstrates the important principle that the highest measured areal loading does not 

directly correlate to the highest cell energy density.  In fact, our results with areal loading 

of 19.1 mg/cm2 demonstrate a simulated energy density that is superior to the result of 60 

mg/cm2 loading – the highest result in the literature.  This is due to the linear trend of 

increasing energy that correlates with sulfur utilization and the non-linear trend of 

increasing energy density with increasing areal loading.  In other words, at extremely 

high areal loading (> 20 mg/cm2), large increases in areal loading provide only minimal 

further increases to energy density due to the finite mass of the current collector material, 

whereas achieving higher sulfur utilization still linearly increases the total energy density.  

In this regard, the results reported by Manthiram’s team with areal loading ~ 30 mg/cm2 
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exhibits a higher sulfur utilization and significantly higher energy density than those of 

the cathodes with ~ 60 mg/cm2 areal loading,285 which are higher than our results and 

breaks common intuition in the research arena that high areal loading at the expense of 

sulfur utilization is acceptable.  Based on this idealized calculation, we deduce a 

simulated energy density of ~ 600 Wh/kg from our CNT foams and can be targeted to 

exceeding 700 Wh/kg theoretically by further improving the sulfur utilization, which 

provides a significant opportunity to engineer artificial interfaces on the anode side and 

maintain > 500 Wh/kg in a full cell configuration, which is a primary target of battery 

technology in coming years. 

6.4 Conclusion 

Here we demonstrate a strategy to use solution processing to generate low-density CNT 

foams, utilize capillary thermodynamics to infiltrate sulfur into these foams with high 

mass loading (79 wt.%), and condense the foams into compact electrodes that enable high 

areal loading and capacity (19.3 mAh/g at 19.1 mg/cm2).  Compared to melt-infiltration 

approaches where high areal capacity is bottlenecked by thick sulfur deposits formed at 

electrically conducting interfaces, our work builds upon the formation of a thick 

conductive CNT foam prior to vapor phase sulfur infiltration to preserve critical charge 

conduction pathways and enable electrical accessibility through thick electrodes. 

Whereas our findings are among the highest reported values of areal performance 

documented in the literature, our calculations that emphasize that further improvements 

to energy density are best achieved by improvement of sulfur utilization as opposed to 

current developmental trends of further widely increasing areal loading and capacity. 

Overall, this paves a route toward a practical battery architecture with > 500 Wh/kg 
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energy density that remains a key target for the battery community. Finally, we 

emphasize how the approaches used in this work can be broadened to include a variety of 

different nanostructured building blocks to broaden this technique a battery oriented 

nanomanufacturing scheme where capillary forming thermodynamics and nanomaterial 

building blocks in low-density 3-D architectures can be combined to form composite 

structures for a wide range of applications. 
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CHAPTER 7 

CARBON NANOTUBE FOAM FOR EFFICIENT ELECTROCHEMICAL REMOVAL 

OF CHROMIUM (VI) FROM AQUEOUS SOLUTION 

7.1 Introduction 

Carbon can be arranged into nanomaterials that possess unique electrical,1, 3 

mechanical,6-7 and chemical properties8-9 desired for small-scale applications while 

maintaining low-density. The nanoscale properties of carbon nanomaterials can be further 

engineered by incorporating other functional nanomaterials, which can result into 

synergistic effects that are beneficial for certain applications.297-301 However, macroscale 

assembly of these nanostructures often compromises the desired properties due to their 

low-density nature and poor interconnection.302-305 Thus, proper approaches and scalable 

techniques are crucial to assemble appropriate carbon nanomaterials and fabricate carbon 

nanocomposites into 3D architectures for large-scale applications such as solving 

environmental problems. 

Among many kinds of environmental problems, water pollution has been one of 

the biggest problems. Chromium is a primary heavy metal pollutant in contaminated 

water, which commonly exists in waste effluent of tanning, plating, and welding 

industries.306 Between the two common oxidation states of Cr, trivalent chromium-Cr 

(III) is an essential dietary element in human body, and is insoluble in water.307 While Cr 

(VI), is extremely toxic and carcinogenic, and can be diffused into groundwater and soil 

unrestrictedly.308 Exposure or uptake of Cr (VI) contaminated water can cause health-

threatening problems such as inflammatory skin,309 respiratory tract irritation,310 DNA 

damage,311 and lung cancer312. Considering the above disadvantageous effects of 
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chromium on the surroundings, it is thus essential to efficiently remove Cr (VI) from 

industrial waste.  

Previous research has reported several Cr (VI) removal approaches by using 

carbon nanomaterials.313-317 Because of the high surface area and desired surface 

chemistry, carbon nanomaterials have been demonstrated to achieve high Cr (VI) 

removal efficiencies by adsorption and reduction.317-319 Due to the absolute physical 

process, adsorption can be slow and may take up to several hours or even a day to reach 

maximum Cr (VI) removal efficiency.320-321 The powder-type carbon nanomaterials 

adsorbents have been reported effective in removing low-concentration Cr (VI) in 

aqueous solution (<10 mg/L)322-324 and often require further membrane filtration to be 

separated from the solution. However, when the waste effluent has a high concentration 

of Cr (VI), primary removal methods must be performed before trace metal adsorption. 

Reduction of Cr (VI) to Cr (III) has also been demonstrated as an effective process in Cr 

(VI) removal.325 Since Cr (III) is less toxic and insoluble in water, the final product which 

is usually Cr(OH)3 can be easily separated from the filtrated solution.326-327 Carbon 

nanomaterials that possess specific surface chemistry can be directly added to the 

solution or combined with other functional nanomaterials as reducing agents.317, 328-329 

Without external energy input, reduction of Cr (VI) only occurred on the surface of 

reducing agents, which led to comparatively lower removal efficiency.330-331 

Electrochemical reduction process, where an external current or voltage is applied to the 

system, usually combines electrosorption and reduction of Cr (VI), and has been 

demonstrated to achieve high Cr (VI) removal efficiencies close to 100% with high 

energy input332-333 and adjusted pH (to ~2).334-335 However, it is more practical to remove 
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Cr (VI) at neutral pH with low energy input ang high removal efficiency for further 

scalable water treatment. 

In this work, we demonstrate a low-energy input Cr (VI) removal process, 

combining CNT-based foam electrodes with electrosorption and electrochemical 

reduction to efficiently remove high concentration Cr (VI) in aqueous solution at neutral 

pH. We investigate the Cr (VI) removal efficiencies by varying the initial Cr (VI) 

concentration, reduction time, applied voltage, and composition of electrodes for the 

electrochemical reduction. The removal efficiencies for pristine CNT foam improve with 

increasing applied voltage and reduction time, while by increasing the Cr (VI) 

concentration from 20 to 40 to 60 mg/L, the removal efficiency exhibit an increase from 

91% to 95% and a slight decrease from 95% to 88%. The removal efficiencies of Cr (VI) 

by CNT foam increase with increasing applied voltage and reduction time. Besides 

pristine CNT foam electrodes, we also fabricated CNT-MoS2 composite foam by 

incorporating exfoliated MoS2 nanosheets into the foam architecture. For 60 mg/L Cr 

(VI) solution, the removal efficiency for CNT-MoS2 composite foam electrode increases 

to 90%. By further investigating the energy input for Cr (VI) removal process, we 

observed a decrease from 0.20 Wh to 0.16 Wh by using CNT-MoS2 composite foam 

electrodes due to the catalytic MoS2 nanosheets for oxygen evolution reaction, which 

promotes the reduction of Cr (VI) to Cr (III). Besides, we also calculated charge 

efficiencies, which dictate how many charges that were put into the electrochemical 

system have been effectively utilized for Cr (VI) reduction, and observed an efficiency of 

16% for CNT-MoS2 foam comparing to 12% for pristine CNT foam. As a conductive 

material with high surface area, the CNT foam promotes the electrosorption and 
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reduction of Cr (VI), and thus improves the removal efficiency without need of tuning 

solution pH comparing to other planar electrodes in Cr (VI) electrochemical reduction 

process.333 The simple set-up of our electrochemical reduction process prevented further 

multi-step processing such as filtrating out adsorbents or tuning the pH, which can be 

promising in further expanding to pilot scale for managing high concentration Cr (VI) 

waste effluents.  

7.2 Methods 

7.2.1 Carbon nanotube foam synthesis 

Multi-walled carbon nanotubes (MWCNTs) (outer diameter: 8-15 nm; length: 10-50 µm; 

specific surface area: 233 m2/g) are purchased from Cheap Tubes Inc. 200 mg MWCNTs 

were added to 40 mL ethanol solution in a 50 mL centrifuge tube. Sonication process was 

assisted by a probe sonicator (Sonics, VCX750, 30% amplitude) for 3 min to form the 

suspension, with a 3s on 3s off pulse to avoid excessive heating. Then solvent exchange 

process was performed by adding ultrapure Milli-Q water (18.2 Mohm) to the suspension 

and pipette the solvent out until a stable flocculated suspension was formed in a water-

based solution. The solution was further transferred to a freeze-dryer (BIOBASE BK-

FD10S), to first froze at -60 ℃ for 4 hours, and then dried under vacuum overnight until 

the ice sublimated. After drying, a free-standing three-dimensional CNT foam was 

achieved.  

7.2.2 Preparation of Cr (VI) solution and electrochemical reduction set-up 

Potassium dichromate (K2Cr2O7) (ACS, 99.0% min, Alfa Aesar™) was dissolved in 

ultrapure Milli-Q water (18.2 Mohm) to make artificial Cr (VI) aqueous solution with 
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concentration of 20, 40, and 60 mg/L. 20 mL of Cr (VI) solution in a 50 mL beaker was 

used for each electrochemical reduction process. The electrodes were fabricated by 

compressing the CNT foam onto a Cu tape (3 cm × 1.1 cm) with the bottom part (0.6 cm 

× 1.1 cm) being covered. Mass of compressed CNT foam on each Cu tape was controlled 

to ~5 mg. Two identical electrodes holding by alligator clips were dipped into the Cr (VI) 

solution with a distance of 0.5 cm in parallel. Voltage was applied to the two electrodes, 

and corresponding current profile was recorded by a sourcemeter (Keithley 2400).  

7.2.3 Characterization 

The morphology and structure of CNT foam and CNT-MoS2 composite foam were 

characterized by Zeiss Merlin Scanning Electron Microscope (SEM). Elemental mapping 

of composite foam was performed by SEM energy dispersive X-ray spectroscopy (EDS).  

UV-vis Spectroscopy of Cr (VI) solutions before and after electrochemical reduction was 

performed on a Varian Cary 5000 UV-vis NIR spectrophotometer (Agilent 

Technologies). Solution after electrochemical reduction was left overnight, and then top 

part was collected for UV-vis characterization. 

7.3 Results and discussion 

To synthesize three-dimensional CNT foam, probe sonication of CNT powders 

was first performed in ethanol solution to achieve a stable dispersion. DI water was then 

added to the solution for exchanging ethanol to water, and maintains a stable dispersion 

of CNTs in water. The water-based dispersion was transferred to the vacuum freeze-

drying for freezing at -60 ℃, after ice fully crystalizes, the frozen dispersion was dried 

under vacuum to let ice directly sublimates, thus to avoid structural interference on the 
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free-standing CNT foam. After adequate sublimation, the foam was compressed for 

further fabrication of electrodes for electrochemical reduction of Cr (VI). The above 

process was shown schematically in Figure 7.1a. Figure 7.1b showed photographs of 

freeze-dries CNT foam before and after compressing. SEM image of uncompressed CNT 

foam (see Figure 7.1c) indicated an interconnected carbon flake structure at the 

microscale. After compressed to foam electrodes, the macro-pores are eliminated and a 

compact film-like structure was formed (see Figure 7.1d). As can be seen in Figure 7.1e, 

the nanoscale feature of meso- and micro-pores and interconnected nanotubes are 

maintained after compressing.  

 

Figure 7.1. (a) Three-dimensional free-standing CNT foam synthesis scheme. (b) 

Photograph of a free-standing CNT foam and after compressed for electrode fabrication. 

SEM of (c) SEM of free-standing CNT foam with interconnected carbon network at 
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microscale, (d) compressed CNT foam at microscale, and (e) compressed CNT foam at 

nanoscale. 

 

The compressed CNT foam electrodes were placed on top of Cu tape partially for 

fabrication of electrodes for Cr (VI) reduction. Two identical electrodes were in parallel 

facing each other, and immersed into the solution with CNT foam electrode fully exposed 

to Cr (VI) solution (in Figure 7.2a). The other side of the electrodes is held by alligator 

clips that connected to a Keithley sourcemeter for monitoring the current profile upon 

time and set different applied voltages. It was observed that the solution with 60 mg/L Cr 

(VI) turned color from bright yellow to almost clear after electrochemical reduction (see 

Figure 7.2b). During the process, massive bubbles are observed on the cathode side. After 

15 V, 1 hr electrochemical reduction, yellow-colored flocculent was precipitated at the 

bottom of the container, which corresponds to the insoluble Cr (III) compounds as 

reduction products. Previous research have demonstrated that acidic conditions favors 

Cr(VI) reduction to Cr(III) where as neutral conditions is effective for Cr (III) 

precipitation in a combined electrocoagulation–electroflotation reactor using other 

electrodes such as iron.336-337 The UV-vis spectra shown in Figure 7.2c indicated specific 

peak around 350 nm exhibited a sharp decrease in intensity and slight shift to higher 

wavenumber. The decrease of peak intensity corresponded to a successful removal of Cr 

(VI) and reduction to Cr (III), as have shown in several previous studies.338-340 The low-

intensity UV-vis absorption spectra (blue curve in Figure 7.2c) indicated minimal residue 

Cr (VI) in the solution after electrochemical reduction. A peak shift of ~20nm could be 

due to the pH change during electrolysis process, which may affect the electronic charge 



105 
 

transfer and an energetically favorable state of Cr (VI) between multiple states such as 

dichromate (Cr2O7
2-) or chromate (CrO4

2-) ions.341 Based on concentration calibration, the 

Cr (VI) removal efficiency for 60 mg/L Cr (VI) solution was calculated to be 88%. To 

confirm that the high removal efficiency results from CNT foam instead of Cu tape, 

control experiment was done by using two identical Cu tapes for electrochemical Cr (VI) 

reduction. Only few bubbles were observed at the surface of Cu tapes staying steadily, 

and a Cr (VI) removal efficiency of only 44% for a 60 mg/L solution at 15 V for 1 hr 

reduction. Even when scaling up by doubling the amount of 60 mg/L Cr (VI) solution to 

40 mL, the CNT foam electrodes exhibited only a slight decrease in Cr (VI) removal 

efficiency from 88% to 74% comparing to Cu tape that resulted into a drastic decrease 

from 44% to 17%. 

 

Figure 7.2. (a) Schematic illustration of the electrochemical Cr (VI) reduction set-up. (b) 

Photograph and (c) UV-vis spectra of 60 mg/L Cr (VI) solution before and after 15 V, 1 

hr reduction. 

 

To study the effects of concentration, applied voltage, and reduction time on the 

removal efficiency of Cr (VI), multiple control experiments were performed using the 
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same electrochemical reduction set-up and same compressed CNT foam electrodes. In 

Figure 7.3a and 7.3d, The high removal efficiency at lower Cr (VI) concentrations (20 

and 40 mg/L) can be correlated to more efficient electrosorption initially and the 

following effective reduction electrochemically. As can be seen in Figure 7.3b and 7.3e, 

increasing applied voltage from 5 V to 10 V resulted into significant improvement (183% 

times higher) of Cr (VI) removal efficiency. When increased to 15 V, a slight 

improvement (4.3%) in removal efficiency was observed, which could possibly due to 

saturation in electrochemical reduction process. At same initial Cr (VI) concentration (60 

mg/L) and applied voltage (15 V), Cr (VI) removal efficiency was observed to increase 

slightly with the increase amount of reduction time, and reached 95% after 2 hrs (see 

Figure 7.3c and 7.3f). There were two main competing reactions during the 

electrochemical reduction process, electrolysis and Cr (VI) reduction: 

Anode:  2H!O →  O! + 4 H! 

Cathode: 4 H! + 4 e! → 2H! 

Cr VI reduction: Cr!O!!! + 14 H! + 6e!  → 2Cr!! + 7H!O 

It is obvious that Cr (VI) reduction is favorable at the anode side due to continuous 

generation of protons. While the high surface area nature of CNT foam electrodes 

promoted reactions at both anode and cathode sides. 
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Figure 7.3. UV-vis spectra and bar plot comparison of Cr (VI) removal efficiency of (a) 

(d) 15 V, 1 hr reduction for 20, 40 and 60 mg/L Cr (VI) solutions before and after, (b) (e) 
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60 mg/L Cr (VI) solution reduced at 5, 10, 15 V for 1 hr before and after, and (c) (f) 60 

mg/L Cr (VI) solution reduced at 15 V for 1, 1.5, 2 hrs before and after. 

 

Besides pristine CNT foam, we also fabricated CNT-MoS2 composite foam to 

investigate the Cr (VI) removal capabilities. With an initial exfoliation of bulk MoS2 in 

aqueous solution, the composite foam can be produced by similar vacuum freeze-drying 

method described in Figure 7.1 by simply mixing the MoS2 exfoliation with CNT 

dispersion before freezing. SEM images and corresponding EDS elemental mapping 

results indicated uniform distribution of MoS2 nanosheets within the CNT foam 

architecture, which ended up with ~5 wt% loading. For Cr (VI) removal experiment, 

CNT-MoS2 composite foam was used for 60 mg/L Cr (VI) solution at different applied 

voltages (see Figure 7.4a). At 15 V, an increased removal efficiency of 90% comparing 

to 88% for pristine CNT foam was observed. Cyclic voltammetry was performed on these 

two different foam electrodes in 60 mg/L Cr (VI) solution between 0 to 16 V at a scan 

rate of 100 mV/s. As can be seen in Figure 7.4b, a peak around 10 V was observed for 

both foam electrodes, which could be correlated to Cr (VI) reduction to Cr (III).342 A 

peak shift from ~11 V for CNT foam to ~9 V for CNT-MoS2 composite foam dictated the 

role of MoS2 nanosheets as efficient catalyst for oxygen evolution reaction that facilitates 

the reduction process and also lowers down the reduction energy. 
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Figure 7.4. (a) UV-vis spectra of Cr (VI) removal by CNT-MoS2 foam with initial Cr 

(VI) concentration of 60 mg/L for 1 hr electrochemical reduction at 5, 10, and 15 V. (b) 

Cyclic voltammogram of the electrochemical reduction of Cr (VI) by pristine CNT foam 

and CNT-MoS2 foam between 0 to 16 V at 100 mV/s scan rate. 

 

The total amount of energy input of the electrochemical reduction system in this 

work was calculated by using the applied voltage to multiply the integration of current 

profile. As plotted in Figure 7.5, this work required low energy-input and can still 

achieve high Cr (VI) removal efficiency around 90%, especially at high Cr (VI) 

concentration. The interconnected conductive CNT network that has high surface area 

stands out in comparison to other planar metal electrodes, which promotes the initial 

electrosorption of dichromate ions. MoS2 nanosheets act as catalytic materials for the 

reduction of Cr (VI).  
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Figure 7.5. Cr (VI) removal efficiency and energy input in previously reported 

electrochemical Cr (VI) reduction work and this work.  

7.4 Conclusion 

In summary, we demonstrate an electrosorption and a following electrochemical 

reduction process for hexavalent chromium (Cr (VI)) removal by using compressed 

CNT-based foam as electrodes. With the conductive nature and high surface area, the 

CNT foam exhibit a high Cr (VI) removal efficiency of 88% at 15 V for 1 hr reduction 

time for 60 mg/L Cr (VI) aqueous solution. When incorporating MoS2 nanosheets to 

fabricate composite CNT-MoS2 foam, we observed an increase in Cr (VI) removal 

efficiency to 90% and corresponding low energy input of 0.16 Wh and high charge 

efficiency of 16%. The synergistic effect of CNT foam and MoS2 nanosheets promotes 

the electrosorption of Cr (VI) and lowers down the Cr (VI) reduction energy, thus result 

into high Cr (VI) removal efficiency and charge efficiency at low energy input. The 
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manufacturing method of the macroscale foam architecture is promising for future pilot-

scale applications in solving environmental problems.  
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CHAPTER 8 

CONCLUSION AND LOOKING FORWARD 

8.1 Conclusion 

Here I demonstrated manufacturing of carbon nanocomposites based on different 

carbon nanomaterials for multiple energy storage systems including solid-state 

supercapacitors, sodium-ion battery anodes, red P-carbon composite for sodium-ion 

anodes, 2D black P-graphene heterostructured anodes for high capacity sodium-ion 

batteries, sulfur vapor-infiltrated CNT foam cathode for high areal performance Li-S 

batteries, and pristine and composite CNT foam electrodes for toxic Cr (VI) removal 

from water. 

In each chapter, a different electrochemical system or environmental system was 

well-studied including the current status, previous achievement, possible improvements, 

and future directions. The role of carbon nanomaterials in all the above systems are well 

investigated with respect to different reaction mechanisms, motivations, and goals. In 

Chapter 2, I investigated the interaction between graphene and polymer electrolytes at the 

electrode-electrolyte interfaces for solid-state supercapacitors. I observed the tunable 

electrochemical window by varying the ratio of ionic liquid and polymer in the solid-state 

electrolyte. With further characterizations, my observation turned into deep 

understanding of pi-pi stacking at the interface, and further guided me on device 

fabrication to achieve both high energy and power performances. 

 Supercapacitors are advantageous in several applications, however, to pursue a 

high energy route, I moved to batteries. Starting my first battery making experience here 
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at Vanderbilt, it was exciting to see the giant foam in the quartz tube after using CVD 

processing with oxidized Ni, with further applications as sodium-ion battery anodes 

which exhibit stable cycling and high capacity compared to other carbon nanomaterials, 

as demonstrated in Chapter 3. To continue on this high energy-route, I introduced 

phosphorus (both red and black) to the lab due to their high theoretical capacity. However, 

even though there have been several publications on red P composite anodes, there is still 

a lacking of understanding of the role of carbon in the sodium-red P alloying process. 

Using the different kinds of carbon nanomaterials in the lab, I made different red P-

carbon composite anodes, as described in Chapter 4. By analyzing electrochemical data 

carefully, I investigated the mechanism of reaction between carbon nanomaterials and 

different kinds of Na-P alloying products. Understanding of the new electrochemical 

system assisted by data analysis, I was able to guide the manufacturing of red P – carbon 

composite anodes to approach high theoretical sodium ion capacity (2596 mAh/g) while 

simultaneously addressing chemical interactions that compromise performance stability. 

Based on my understanding of the sodium-phosphorus system from the previous 

experience, I examined black phosphorus. (see Chapter 5) Inspired by EPD processes 

developed by a previous labmate, I decided to use the same technique for manufacturing 

2D heterostructured electrodes for sodium-ion batteries to tackle the challenges in 

previous research in material handling and processing. I successfully fabricated ultrathin 

electrodes with good electrochemical properties, and the fabrication technique was 

further expanded to another co-contributed work on fabricating an ultrathin black P 

mechanical strain energy harvester. (see publication list). Besides the sodium system, 

lithium-sulfur batteries are also attractive to me due to the similar nature of high energy 
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materials just like phosphorus. As part of the team developing high sulfur loading 

techniques, I was thrilled to witness a vapor-phase capillary-driven process that can result 

in high amounts of sulfur loading in very short period of time. Combining this idea with 

my previous patent before I came to Vanderbilt, “Carbon nanotube sponge and method 

for making the same, US Patent US 9,102,537 B2”, I came up with the idea of making 

3D free-standing CNT foam to load sulfur to achieve high areal performance, as 

described in Chapter 6. The final result was gladly as expected, and thanks to this work I 

got the chance to participate in two professional research conferences. Finally, at the last 

stage of graduate school, I developed new applications of CNT foam to be used for heavy 

metal-hexavalent chromium (Cr (VI)) removal. Energy and the environment are topics 

that are always bonded to each other. For a sustainable future, not only preserving energy, 

but also protecting the environment are indispensable. With the UV-vis facility in Dr. 

Rizia Bardhan’s lab (special thanks!), I was able to characterize the removal efficiency of 

Cr (VI) by electrochemical reduction. And as my last project, the excitement and 

enjoyable moments  helped me become a more passionate and independent researcher. I 

was able to achieve a high removal efficiency of ~90% by using the CNT-MoS2 

composite foam as electrodes with a low energy input of 0.16 Wh and high charge 

efficiency of 16% comparing to pristine CNT foam. 

8.2 Future of carbon nanocomposites for energy storage and environmental applications 

With the continuous efforts in lowering the production costs of carbon 

nanomaterials, their applications for energy storage can be promising especially in 

flexible devices where high energy density is not usually required. Instead, outstanding 

mechanical properties and stable storage capabilities will be desirable.  
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Besides, building upon the research findings in this dissertation, with more 

systematic understandings of different electrochemical systems such as high energy or 

high power systems, where small quantities of carbon nanomaterials can play a vital role 

in improving device performance, more and more practical and larger-scale applications 

of composite electrode materials based on carbon nanomaterials will open a new era of 

carbon. 

Again, with the development of the cost-effective production of carbon materials, 

they will offer exciting opportunities as adsorbent, membrane, or electrodes for efficient 

pollutant management such as wastewater treatment for heavy metal removal in which 

biodegradable nanocomposite design can be absolutely environmentally benign. 

8.3 Outlook of future projects 

With the expertise in carbon nanomaterials and skills in nanomanufacturing of 

carbon nanocomposites, a variety of promising future projects can be designed by 

combining current lab expertise in anode-free batteries, electrochemical carbon nanotube 

growth, desalination, and energy harvesting devices.  

Based on the fabrication method of three-dimensional carbon nanotube foam 

structures, different 3D architectures with highly porous features and high surface area 

can be achieved.  Some examples include: 1) Pre-treat the carbon nanomaterial precursor 

for desired wettability; 2) incorporate multiple nanomaterials to make nanocomposite 

foams for multifunctional applications; 3) post-treatment of three-dimensional carbon 

foam by annealing or polymer infiltration for strengthening the mechanical robustness for 

desired systems. 
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From the material cost point of view, with the currently developed 

electrochemical growth of carbon nanotubes from ambient carbon dioxide,29-30, 32, 343-344 

further fabrication of three-dimensional carbon nanotube foam structures can potentially 

be low-cost and more scalable.  

From the application point of view, in the anode-free type of battery, high energy 

density is an ultimate goal.345-347 To push the current status further, where two-

dimensional carbon films are used as seed layers for metal plating,347 a properly designed 

three-dimensional carbon foam architecture with good wettability and highly porous 

features can be introduced to achieve more uniform plating with projected higher energy 

density when compressing it into 2D film. Inspired from sulfur-vapor infiltration into 

carbon nanotube foams,33-34, 151, 294, 348 further experiments can be developed to even 

expand the idea to metal infiltration such as lithium or sodium for fabricating high-

performance metal anode battery with high energy density, high coulombic efficiency 

and improved safety.347 Based on the electrochemically-driven mechanical strain energy 

harvesting systems,299, 349-353 a flexible and compressible all-foam-based harvester can be 

implemented into shoes to harvest stepping energy. For environmental applications, 

composite foam architectures can be developed to improve heavy metal removal 

efficiency and improve the charge efficiency by incorporating catalytic nanomaterials or 

hydrophilic nanomaterials. 

From the manufacturing point of view, except for electrophoretic deposition71, 225-

226, 300, 354-355 and vacuum freeze-drying of foam fabrication,348 new approaches can be 

developed to improve the scalability and lower the cost of fabricating functional 

composite materials. For example, solution assembly that utilizes the differences in 
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surface charges of different materials for nanocomposite fabrication, roll-to-roll 

manufacturing of composite foam for structural applications, or flexible textile 

fabrication. 
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