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CHAPTER 1

Introduction

Together the Antarctic and Greenland ice sheets (AIS and GrlS respectively) are the
largest source of freshwater on the planet. The two ice sheets are among the
principal contributors to sea level rise and they contain ice with the capacity to raise
the global sea level 70 meters [van den Broeke et al., 2011]. Over the past two
decades GrIS mass loss has contributed an estimated eight millimeters to sea level
rise, corresponding to almost 3000 Gigatonnes of mass loss [Vaughan et al.,
2013](Figure 1). Ice sheet mass balance (MB) is heuristically defined in the

following equations [van den Broeke et al., 2009]:

(1) MB:(Z—Af:SMB—D

where the rate of change of mass (C;—Ag) is defined as the difference between surface
mass balance (SMB [Gt yr-1]) and the ice discharge (D). SMB is a value determined

by the contribution of processes involved in accumulation and ablation.

(2) SMB = Snow + Rain— Sublimation — Runoff
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Figure 1 shows combined results for two decades from 18 studies that estimate the mass
balance of the Greenland ice sheet. The increasing uncertainty band reflects the high
density of studies rather than a decrease in physical knowledge over time [Vaughan et al.,
2013].

Remote sensing methods for estimating mass balance gather physical
measurements that approximate mass flux from individual processes defined in (2).
Three independent techniques, altimetry, gravity-change, and the mass budget
method [Ewert et al., 2012; Rignot et al., 2011], measure dynamic properties of ice
sheets in an effort to quantify the mass balance. Researchers using the altimetry
approach [Howat et al., 2011; Krabill et al., 2004; Pritchard et al., 2009; Rignot et al.,
2008] employ satellite sensors to measure changes in surface elevation of an ice
sheet over time and calculate the effective volume and mass changes. Error
associated with this method is due the lack of accurate mass-shape relationships,
which lead to incorrect assumptions for the spatial variation of ice density

throughout the sheet. As a metric for the magnitude of uncertainty, Pritchard et al.

[2009] presented calculated volumetric glacier discharge from an altimetry study



that contain a range of uncertainties from 10 to 60 %. Recent studies address this
source of error by simultaneously measuring changes in gravity in order to verify
ice density variability [Sasgen et al., 2012].

Independently, the gravity-change method estimates changes in mass from
temporal fluctuations of gravity. If we assume that most of the interior is
approximately homogeneous, then spatial variations in the strength of Earth'’s
gravitational field exist due to density differences of material in the lithosphere (on
average the top 50 km of crust and mantle). Processes associated with point
measurements of gravity anomalies are difficult to ascertain, because the strength of
the field is affected by a vertical profile of material between the instrument and the
center of Earth’s mass. By considering a vertical profile as one point on the surface
of a sphere (Earth), we mask the vertical location of a density anomaly source.
Nevertheless, ice sheet gravimetry studies became more feasible with the launch of
the twin satellites, collectively referred to as GRACE (Gravity Recovery and Climate
Experiment), that function to detect gravity anomalies as they orbit Earth at 15
revolutions per day [Ewert et al., 2012; Rignot et al., 2011; Sasgen et al., 2012; van
den Broeke et al., 2009]. Despite the increase in data availability, studies using
gravimetry to calculate mass loss rates (Table 1) do not agree with each other.
Measureable changes in elevation and density (gravity) are affected greatly by
precipitation and the associated accumulation, yet neither method is able to
independently quantify the impact of these processes. Therefore precipitation
measurement techniques from our research will have the greatest impact when

applied to calculations of mass balance using the mass budget method.



Author Method/sensor GRACE solution Period Trend

Volume [km? yr—!] Mass [Gtyr—!]

Krabill et al. (2000)" Airborne LA 06/94-05/99 -51

Zwally et al. (2005) ERS1/2 04/92-10/02 +11 £ 03
Slobbe et al. (2009)" ICESat 02/03-04/07 ~139 + 68
Rignot and Kanagaratnam (2006 ) InSAR 2005 —224 441

Chen et al. (2006)* GRACE CSR 04/02-11/05 -219 £ 21
Ramillien et al. (2006)* GRACE CNES 07/02-03/05 -118 + 14
Luthcke et al. (2006)* GRACE Mascon 01/03-12/05 -101 £ 16
Wouters et al. (2008)* GRACE CSR 02/03-01/08 179 £ 25
Velicogna (2009)* GRACE CSR 04/02-02/09 230+ 33
Slobbe et al. (2009)* GRACE CSR 04/02-06/07 -218 £18
Slobbe et al. (2009)* GRACE GFZ 08/02-06/07 ~168 £ 05
Present study’ ICESat 09/03-03/08 —-205+11 —185 £ 28
Present study™ GRACE GFz 08/02-06/09 -191 £ 21

Table 1 shows results of selected mass balance studies over the past twenty years. This
collection of estimates shows the level of uncertainty between studies is high even for
studies that obtain the same data sets for the same periods in time [Ewert et al., 2012].

In order to consider contributions from the processes in (1), the mass budget
method combines data sets from multiple instruments on either side of the ice sheet
‘grounding line’ [Rignot et al., 2011]. This line defines the boundary between the
media (solid rock or ocean water) that make contact with the bottom of the ice
sheet. The mass contribution direction (increase or decrease) for associated
processes depends on the location with respect to the ‘grounding line’; processes
that add mass are classified under surface mass balance (SMB) processes, while ice
sheet discharge processes detract mass from the system. Despite the process
inclusive nature of this method, SMB calculations have standard errors of up to 24%
of the average SMB (417 Gt year!) [van den Broeke et al., 2011]. By increasing the
accuracy of frozen precipitation measurement, the measurement algorithms
proposed in this research have the potential to be used to increase our knowledge of
the global SLR contribution due to ice sheet mass loss.

Current measurement methods of frozen precipitation contain variable
uncertainty and the inability to distinguish microphysical properties of snowflakes
en masse contributes to the error [Kulie et al., 2013]. Properties of individual ice

particles, such as habit and density, vary as functions of relative humidity,



temperature, presence of convection, and other atmospheric conditions that
fluctuate over time and space. Spatially extensive snowfall data collection is
simplified by remote sensing; in particular recent studies examine the response of
radar reflectivity to frozen precipitation [Kneifel et al., 2011; Kulie et al., 2010;
Nowell et al., 2013]. The most advanced techniques measure scattering properties
of frozen hydrometeors at different wavelengths. By comparing reflectance profiles
at these wavelengths, the studies attempt to determine the impact of particle size,
shape-mass relationships, and other microphysical properties on radar reflectance
to increase the accuracy of snow mass measurements.

Radar retrieval methods for frozen precipitation were originally adopted
from successful techniques developed to study liquid precipitation. Mass-Diameter
relationships for rain droplets are physically straightforward due to the nearly
spherical, constant density nature of the drops [Seliga and Bringi, 1976]. Scientists
working with rainfall measurement use forward modeling methods to determine
particle volume from radar reflectivity based on robust data relating Rayleigh
scattering to particle size distributions (PSD, Section 4). These distributions are
defined as the expected concentration of particles within a given volume of air
versus liquid equivalent diameter and they are always plotted on semi-log axes in
order to make exponential distributions visually distinguishable.

Forward modeling techniques have also been applied to snowfall
measurements. The consistency of droplet shape allows accurate determination of
liquid precipitation mass; however Kajikawa and Heymsfield [1989] observed that a

majority of snowflakes are irregular aggregates. Forward modeling of reflectivity



signatures from snowflakes using the methods developed for liquid precipitation
oversimplify particle irregularity to spheroids in scattering calculations, which
contributes to an estimated 50-75% error in snowfall mass measurement accuracy
[Kneifel et al., 2011]. The development of snowflake measurement, presented by
Nowell et al. [2013], has led to two classes of shape simplification: irregular
aggregates and non-aggregates (broadly referred to as aggregation state). There are
two dominant growth processes that define ice particle aggregation state, diffusion
and aggregation. Information connecting the impact of growth processes on PSD
shape is presented in chapter 4.

Our goal is to use the MASC (Multi-Angle Snowflake Camera)[Garrett et al.,
2012], aremote sensing instrument, to measure and record two-dimensional
particle information simultaneously from three different positions about the same
vertical axis. We have developed autonomous software to process image triplets
from the MASC and return physical measurements of snowflakes throughout a
precipitation event. We believe that the aforementioned growth processes should
influence the shape of particle size distributions and focus our research into a three-
pronged hypothesis:

e Measurements of falling snow near ground level will produce a
distribution that is not simply exponential, but a combination of
shapes that depend on aggregation state distributions

e Non-aggregate particles will follow a log-normal distribution

e Aggregation creates enough large particles to populate an

exponential distribution.



The remainder of this work is structured as follows: chapter 2 contains
information about the MASC, the analysis software that we developed, and
laboratory experiments conducted to learn about the MASC. Chapter 3 displays
information gathered from our laboratory experiments used in snowflake analysis.
Physical evidence that supports our hypothesis is provided via explanation of
particle microphysics in chapter 4. The 5t chapter breaks our results into 3 parts:
particle segregation, the impact of aggregation state on particle size distribution
shape, and comparing our results to accepted publications. Finally, conclusions and

future work are presented in chapter 6.



CHAPTER 2

Instruments and Methods

2.1 The MASC

In the Multi-Angle Snowflake Camera, three cameras are positioned in the same
horizontal plane each separated by a 36° rotation about the center, like edges of a
decagon [Garrett et al., 2012]. The MASC collects three images simultaneously; each
image is a projection of the three-dimensional optical field. The MASC software is
designed to collect large data sets of ice particles in a short amount of time. Prior to
development of the MASC, snowflake image measurements were done individually using
a time consuming and labor-intensive process. The use of infrared (IR) sensors to detect
falling objects and trigger the cameras minimizes user interaction required for data
acquisition. Figure 2 is a top down schematic of the MASC; particles that fall through the
ring near point D trigger the cameras (A, B, and C). The images record information of
snowflakes in the visible spectrum, which we use to identify local size distribution of
snowflakes during a precipitation event. The automated capture creates easily obtainable,
very large data sets; one event (3-4 hours long) in Boulder, CO produced over three

thousand image triplets.
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Figure 2. Top down schematic of the MASC. Points A,B,and C are cameras and point D
is the center of the IR detection zone. The infrared detectors are located on the decagon edges
directly above (positive direction on y-axis) the x-axis on either side of the MASC ring.

2.2 Data analysis methods

If triggered at maximum frequency (2 Hz), the MASC is capable of collecting
up to 7200 image triplets in an hour. The magnitude of these data sets motivated

me to create autonomous software for individual particle measurement. Our goal is



to isolate and identify the snowflake responsible for triggering the MASC (hereby
referred to as the ‘trigger flake’) within all three cameras and record two-
dimensional measurements of each snowflake. Figure 3 outlines that process in
principal.

The MASC software assigns a sequential “tag” to each image triplet; the tag,
date, and time are embedded in the filename (and used to match image triplets). It
is important to note that the software is designed so the user can use any function
independently on an individual MASC image; therefore each image in a triplet is
processed separately. By applying IDL’s LABEL_REGION function, we can isolate
pixels that belong to the same snowflake and create a separate image for each flake.
Raw image coordinates of isolated snowflakes are used to narrow the search for the
trigger flake by excluding flakes outside of the two-dimensional trigger zone
(represented by the red band in Figure 3.B). Accepted snowflakes have their images
sent to a function that measures and stores physical information in identical data
structures.

The first item in the structure (flake_img) is an 800x800 pixel image of the
snowflake centered at [400,400]. The next four parameters are linear
measurements of the particle in pixels; x width and y_width are the maximum
horizontal and vertical dimensions of the particle. rmax corresponds to the semi-
major axis of an ellipse and is measured as the absolute maximum one-dimensional
measurement of the particle while rmin (semi-minor axis)is the largest width of the
particle when measured perpendicular to the direction of rmax. ASR is the aspect

ratio, which we define as the ratio between rmin and rmax. ARR is the area ratio,

10



defined as the ratio between pixels within a snowflake and pixels within the
snowflake’s circumscribing circle (diameter = rmax). Angle is the orientation of
rmax measured in degrees counter-clockwise from horizontal. x_off and y_off are
the horizontal and vertical pixel coordinates of the snowflake within the raw image.
Sharpness is a ratio that is used to determine how in focus a particle is, we will
explicitly define this parameter later in the section. The last item in the structure
(fname) is a string containing the file name of the raw image that contains the
snowflake.

When an image contains multiple snowflakes within the trigger zone (Figure
3.C) we use the sharpness parameter to quantify the focus of each snowflake and
isolate which snowflake triggered the MASC. The edge of an out-of-focus particle is
characterized by a ‘fuzzy’ boundary created by a shallow gradient of gray-scale
brightness values instead of a sharp contrast between brightness values of the
particle and black background. The Sobel-filter is an image-processing tool that
approximates brightness gradients across images; Figure 4(sobel+raw) displays 4
raw snowflake images juxtaposed with their sobel filtered images. We define
sharpness as the ratio between the sum of all pixels in a Sobel-filtered image and the
sum of all pixels in an un-altered image. Within the software flowchart (Figure 3.D),
we segregate some snowflakes by their sharpness to give readers a sense of
magnitude for this parameter. The software ranks snowflakes from the same image
by their sharpness value and chooses the highest rank as the trigger flake. The
snowflake software processed 2540 unique image triplets from the Boulder

deployment, but only 60% of these triplets were used. (Table 2) The software

11



design ignores images when there are no snowflakes in the trigger zone (Figure 3.B)
or when snowflake brightness is too low to resolve well. This failsafe was
implemented to maintain autonomy during processing. Software accuracy of 88%
was determined by visual inspection of 3 snowflake images from each triplet.

After processing the images collected from Boulder, we need to convert
maximum linear dimension (Rmax) into liquid water equivalent diameter (D).
Previous research present snowflake measurements with this property in order to
reduce variation due to slight changes in atmospheric conditions. Conceptually Dk
is the diameter of a sphere of liquid water created by melting a snowflake, therefore
this property is closely connected to mass and is not affected by variable density in
particle crystal structure. The mass of a snowflake has been empirically connected

to Rmax and D is calculated by the mass-volume relationship of a sphere of water:

(3) Mass, ~0.022* Rmax™*!
_ 6*Mass_ -
(4) D= (n.*—pw)

12
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Figure 3 is a schematic flowchart designed to give readers an understanding of the
snowflake software processes/algorithm. Starting with an image triplet (A) from the MASC,
the software isolates and identifies snowflakes within the red trigger zone in section B.
Physical measurements of each particle are calculated and used to determine which
snowflake triggered the cameras. The sharpness factor is the primary parameter used in
selecting this snowflake, and section D of this figure show 4 set of particles separated by
sharpness values.

Figure 4. Adding all pixel values within the top images (sobel filtered) and dividing by the
sum of pixels in the bottom images (raw) calculate the sharpness factor. Values greater than
1.0 are correlated with snowflakes that are in focus. Our theory is that fuzzy images will
show less contrast between pixels within the snowflake, which corresponds to a darker (or
lower valued) sobel filtered image. Dividing by the sum of pixels in the raw image will
normalize extreme values collected in the sobel images.

2540 1016 1524 1342 88%

Table 2 is organized to display accuracy results of the snowflake software.

2.3 Laboratory experiments

In the laboratory we are able to measure and control the size and shape of
objects captured by the MASC. Therefore, we designed experiments to create

datasets used to give us more information about the instrument behavior in unique
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situations. The following experiments contribute more to understanding the
instrument than our research goals, and as such the presented details are
intentionally succinct. Early experiments used a suspended water bottle and
programmable valve to release droplets of an ink and water solution; during this
phase we were testing how often the IR trigger system failed while also collecting
image triplets of water spheroids. In another set of experiments, we dropped a ball
bearing of known dimensions through the MASC camera ring and recorded
information from the raw images. These experiments were used to define important
parameters in the analysis software, and are explained in chapter 3. To learn about
MASC susceptibility to missing information from irregularly shaped particles, we
created and imaged objects from modeling clay and interconnected gears. In these
experiments, we wanted to see how different each particle looks between the three

cameras and how this can contribute to measurement error with the MASC.

2.4 The Boulder deployment
On March 17, 2014 we set up the MASC in Boulder, Colorado at the NCAR

(National Center for Atmospheric Research) Marshall field site. The instrument was
stationed a few meters from a trailer and tethered to the ground with guy-wires.
Data cables ran from the MASC to computers inside the trailer where images were
stored. We captured around 2700 image triplets over two snowfall events (March
28 and April 2-3) and the MASC was removed on April 24, 2014. Figure ___ contains
hourly temperature profiles plotted with a histogram showing the number of times

the cameras were triggered.

15



March 28 Snowfall in Boulder
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Figure 5 shows histograms of captured images (left axis) over time for the MASC.
Over-plotted on each diagram is the temperature (right axis) recorded during
snowfall. We can see that most images were captured early during April 3.
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CHAPTER 3

Sensitivity Studies

3.1 Vertical trigger zone

Preliminary experiments were conducted by releasing a single 9525 um
diameter ball-bearing 44 times over the center of the MASC to characterize its
physical limitations. Spatial extent of the vertical trigger zone (different from the top
down trigger zone) was defined by locating the vertical position of the ball-bearing
center within each image collected. The histogram in Figure 6 relates vertical
location of the ball-bearing to the IR diodes, we expect that trigger particles will be

located within a predictable band on each MASC image.
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Figure 6. Histogram: ball-bearing vertical position within MASC image. IR diode schematic
included to give spatial perspective of the vertical trigger zone. We were able to determine
the vertical location of the IR diodes because they appear in the edges of images from the
outside cameras.
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3.2 Image resolution

Pixel resolution of the MASC was then addressed by measuring the ball
bearing within each using the snowflake measurement software. We record the
largest measurable diameter in pixels and assume that this diameter must be less
than or equal to the ball bearing diameter due to the object’s spherical shape. The
histograms in Figure 7.A,B,C show the variability of measurements between the

three cameras of the MASC.
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Figure 7. Histograms used to define pixel resolution where bins are measured ball bearing
diameter in pixels. We combine the 3 distributions together because our software is
designed to process each image regardless of position.

The final histogram (Figure 7.D) presents a measured diameter mean and

standard deviation of 309 and 14.6 pixels respectively. A resolution of 30.8252
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um/pixel is determined by dividing the actual diameter (9525 um) by the mean

measured diameter.
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CHAPTER 4

Precipitation Microphysics

4.1 Particle Size Distributions
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Figure 8 is the seminal particle size distribution for aggregate snowflakes[Gunn and
Marshall, 1958]. The distributions are plotted on semi-log axes, which is why the
exponential distributions appear to have linear relationships.

The first PSD was presented for liquid precipitation by Marshall and Palmer
[1948] and studies with frozen precipitation then adopted the same method of

presentation starting with Gunn and Marshall [1958] (Figure 8). As mentioned
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previously, these distributions are plotted on semi-log axes because exponential
distributions appear as straight lines. Sekhon and Srivastava [1970] empirically
defined the following relationship for PSDs for snow that vary based on

precipitation rate (R):

(5) N, =Nge "
(6) N,(m”mm™)=3.8x10°R""
(7 A(cm™)=25.5R7"*
(8) D,(cm)=0.144R"*

where Npis the number of particles expected at a given size within a volume
of air. Dieis the liquid equivalent diameter of a particle, while A is an empirical
parameter that is defined only by precipitation rate.

An underlying exponential distribution has important implications for
particle observations. When the number of observations is high enough, we expect
to see most particles smaller than the mean recorded value. As particle size
increases past the mean particle count should decrease dramatically and we may
see gaps where no particles of a given size are recorded. The following subsection
provides physical evidence that suggests an exponential distribution may not fully

describe snowfall PSDs.

4.2 Precipitation processes

Information about the processes controlling ice particle growth gives a
physical justification for our hypotheses. The snowflakes captured during the

Boulder deployment exhibit evidence of three distinct growth processes: diffusion,
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riming, and aggregation. The schematic below (Figure 9) provides visual

compliments to the following growth process descriptions.

Particle Growth

-= -20°C
Liquid
Riming — Water
Aggregation Present
------------------- ==-=- (Cloud Base

Figure 9 is a schematic that introduces snowflake growth processes. Particles growing by
diffusion (top of diagram) will have delicate branching structures (and a number of other
habits). Around -20°C liquid water can be present in a cloud (blue shading), where riming
and aggregation can occur. In a system where all three processes occur, a variety of
irregular snowflake shapes are produced (bottom of diagram).

Early in diffusive particle growth, water vapor diffuses short distances
through a cloud towards an ice particle and deposits on the surface. Intricate crystal
patterns can develop during growth, as branches are added and interconnected over
time. As particles continue to grow it takes more mass to increase the size of a
particle, which translates to a decrease in the rate at which a particle’s maximum
linear diameter (or particle size) increases. Therefore, snowflakes that grow only by
diffusion will be constrained within a specific time-dependent size range. Consider
a hypothetical scenario where all ice particles in a system begin growing by

diffusion at the same time; once precipitation begins the particle masses will be
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centered around a mean, resembling a Gaussian distribution. In reality, ice particle
growth is initiated throughout the lifetime of a cloud, which contributes to the large
number of small particles required to create an exponential distribution. In order to
classify a distribution as exponential particles much larger than the mean must
exist, but we mentioned that the largest particles grown by diffusion are grouped
around a mean value. As our hypothesis suggests, this physical evidence implies that
particles growing by diffusion will populate a PSD with a log-normal shape.

Riming is a growth process where liquid water adheres to the surface of an
ice particle and freezes, obscuring intricacies within a growing crystal. In a system
where riming dominates, conical ‘graupel’ particles are abundant within the crystal
population. This process may contribute to PSD shape, but all particles analyzed
from the Boulder deployment contained some degree of riming. Therefore in our
study we are not able to determine the impact of riming on distribution shape.

Aggregation is the process of snowflake growth through collision and
cohesion of multiple particles. Despite what Figure 9 suggests, liquid water is not
mandatory for aggregation to occur. Ice particles created by this process are
irregularly shaped because particles of any size or shape join together with little
preference for orientation. As snowflakes continue grow in this system, they are
more likely to collide with other particles resulting in a higher probability for
aggregation. Therefore, ice particles grown in an aggregation dominant system are
more likely to fit in an exponential distribution with many small particles and few

very large particles.
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CHAPTER 5

Results

5.1 Separating zero-stage from multi-stage aggregates

During visual inspection, particles were separated into two categories
defined by aggregation state. Snowflakes classified as zero-stage aggregates (Figure
10.A) show no visual evidence of aggregation; 589 particles from the Boulder data
set were placed in this category. The remaining 763 snowflakes were categorized as
multi-stage aggregates (Figure 10.B). The software organizes analyzed snowflakes
in a time ordered array, making it easy to separate snowflakes and analyze

relationships between any parameters listed in Figure 3.

Figure 10 presents examples of multi-stage(B) and zero-stage aggregates(A). Not all multi-
stage aggregates are this large or complex, but these examples show the variability in
aggregate shapes. Most of the zero-stage aggregate particles look very similar to the ones
presented.
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The two distributions shown in Figure 11 provide evidence that the two
distributions are separate. These histograms are not plotted on a semi-log scale, in
order to preserve information about the tails of the distributions. Notice that the
zero-stage distribution appears to be distributed evenly around 2000 microns (2

mm) while the tail of the multi-stage distribution extends far past the mean.
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Figure 11 is a histogram of Rmax for the two aggregate state distributions. Notice that to
first order, particle size segregates the two states efficiently. The tails of each distribution
are very different, which encourages us to investigate PSD shape.

5.2 Size distributions of different aggregates

Before looking further into distributions of particles segregated by
aggregation state, we will provide evidence for the first part of our hypothesis by
looking at how our combined PSD deviates from a purely exponential distribution.

The combined distribution contains all snowflakes analyzed during the Boulder field
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campaign. Figure 12 is the observed combined PSD with a theoretical exponential

distribution plotted in black (9).
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Figure 12 is the PSD for the combined distribution of MASC observations with a theoretical
exponential distribution fitted where particle size is reported in Dig. The theoretical
distribution does not use particles smaller than 700 microns because they do not contribute
to the exponential behavior of the system.

In Figure 12, the observations and theoretical distribution begin separating
for particles with liquid equivalent diameter around 7 mm. If the underlying
theoretical distribution is indeed exponential, then we are heavily under sampling
small particles with our software. To some extent, the software does favor large
over very small particles since they have more reasonable sharpness factors and

really small particles are fuzzy in raw MASC images. We do not believe that this
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accounts for all of the discrepancy because particles with diameter between 5 and 7
mm (where the theoretical discrepancy is initiated) are too large to avoid detection
by our software. Therefore we investigate how aggregation states separately
contribute to the combined distribution to determine if it is purely exponential.

The multi-stage aggregate PSD (Figure 13) looks very similar to the
combined PSD, but observations of particles less than 9000 microns are significantly
lower. The theoretical exponential distribution (10) has a decay rate (or slope) that

is very similar to the combined PSD.
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Figure 13 is the PSD for the multi-stage distribution of MASC observations with a

theoretical exponential distribution fitted where particle size is reported in Diz. Notice that
the distribution between 300 and 1000 microns falls faster than the combined distribution.
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This distribution also fails to adhere strictly to an exponential distribution
for small particle size, but we expect these particles to exhibit such behavior. In
order to be visually categorized as multi-stage aggregates, the two particles need to
be large enough to be distinguishable from each other making smaller particles less
likely to be recognized as multi-stage. In addition, riming can obscure very small
multi-stage aggregates, which can explain some deviation from exponential
behavior.

The zero-stage aggregate PSD (Figure 14) is very different from other
distributions that we have presented. The limbs on either side of the distribution
mode are even and appear to be similarly spaced, which suggests a log-normal

distribution when we consider that this plot is on semi-log axes (11).
Log(N,)=5.70e *
D, —643.5
346.7

(11)
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Zero_stage Aggregate PSD

LT T T 1 | T 11 | T T | T T T | T T 1 | T T T_]
0 —e—oMASC Measurements ]
1000 = — Fitted Log—Normal 3

a
Z 100 & =
[e)) — .
S - =
A B 7
10 E

1 | I I . | I .| I | | L1 1 | L1 1

500 1000 1500 2000 2500 3000
Particle Size (microns)

Figure 14 is the PSD for the zero-stage distribution of MASC observations with a theoretical
log-normal distribution fitted where particle size is reported in Diz. The termination of
both tails is good evidence that an exponential distribution will not fit these observations.

Because the combined distribution encompasses both aggregation state
distributions, we calculated a theoretical distribution that is a log-normal
distribution with an exponential influence in the right tail (12) (Figure 15). We
need more snowfall observations before we can determine physical relationships

between this equation and atmospheric conditions.
Log(N )= —40.8e 2 +8.43-0.002904* D,

_ D, +88038
531.2

(12)
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Combined Aggregate state PSD
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Figure 15 is the PSD for the combined distribution of MASC observations with a unique
theoretical distribution fitted where particle size is reported in Dig. The distribution is
lognormal for small particle sizes and has an exponential tail as size increases. The zero-
stage distribution is plotted as well to lend perspective to how the new distribution looks
compared to a purely lognormal distribution.

5.3 Comparison with existing size distributions

To confirm our results, we compare the slopes of MASC exponential
distributions to published PSDs. Braham [1990] collected 19 particle size data of
frozen precipitation using a particle measuring probe mounted to a research
aircraft; the data was subsequently plotted by Matrosov [2007]and are shown as
black lines in Figures 16 and 17. Sekhon and Srivastava [1970] defined theoretical

relationships for PSDs that vary based on precipitation rate (R). (5)-(8)
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Snowflake Size Distributions
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Figure 16 compares the slopes of distribution from three different studies. The black lines
are the 19 distributions collected by [Braham, 1990] while the green lines are theoretical
distributions calculated by [Sekhon and Srivastava, 1970] that depend on precipitation rate.
Our observations are presented in red, gray and blue. The zero-stage distribution was
calculated with the same method as the other two distributions.
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Snowflake Size Distributions
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Figure 17 is identical to Figure 16, but the black distributions were removed to make
comparisons easier. Notice that the red and gray distributions are almost identical which
makes them difficult to distinguish.
Our multi-stage and combined distributions have slopes that fit within the
range of PSDs observed or calculated between the two studies, while an exponential
‘fit’ on the zero-stage distribution does not. The disagreement between our zero-

stage exponential fit and the other distributions is encouraging, since we do not

present this distribution as exponential.
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CHAPTER 6

Conclusions

During analysis of snowfall in Colorado, we found evidence that Particle Size
Distributions are not strictly exponential. Using software we developed for the
MASC, we measured particle information for snowflakes from 1500 image triplets.
We then visually segregated particles by aggregation state and create PSDs to
observe the distribution behavior. We hypothesize that particle growth processes
impose physical limitations on distributions of particles. Most importantly, particles
grown by diffusion only will not be able to grow large enough to enable an
exponential size distribution. Aggregation is a process where the rate of growth is
controlled by the number of collisions a particle experiences, therefore large
particles grow faster than smaller particles during aggregation. Here we present
evidence that the distribution of falling snowflakes may indeed be a combined
distribution composed of log-normal (non-aggregates) and exponential (aggregates)
distributions.

In order to further validate these findings and create a more robust dataset,
we will collect images from the MASC while it is deployed in Summit, Greenland and
Marquette, Michigan. By gathering information from different locations, we will
determine how distributions are affected by parameters such as temperature and
presence of liquid water. In addition, while the MASC is in Greenland it will be co-

located with vertically pointing radar. This allows us to directly compare
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reflectivity profiles to snowfall measurements in an attempt to address radar

retrieval uncertainty.
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