
A DATA-DRIVEN APPROACH TO OPTIMAL RESOURCE MANAGEMENT FOR

LARGE-SCALE DATA PROCESSING PLATFORMS

By

Wei Yan

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Science

August 2015

Nashville, Tennessee

Approved:

Professor Yuan Xue

Professor Aniruddha S. Gokhale

Professor Bradley A. Malin

Professor Douglas C. Schmidt

Dr. Amr A. Awadallah

ACKNOWLEDGEMENTS

During my Ph. D journey at Vanderbilt, I had the great pleasure of working with an

amazing group of talented people.

Foremost, I would like to express my deepest appreciation and thanks to my advisor,

Professor Yuan Xue, who has guided me as a passionate, inspirational, and supportive

mentor throughput my graduate study. This work would not have been possible without

her support and patience. I want to express sincere gratitude to my dissertation commit-

tee: Professor Aniruddha S. Gokhale, Professor Bradley A. Malin, Professor Douglas

C. Schmidt and Dr. Amr A. Awadallah. I appreciate their advice and guidance.

I would also like to thank my colleagues at VANETS group and the Institute for

Software Integrated Systems. They are like families sharing frustration, joy and hope. I

will never forget their help and encouragement. I am very thankful to my friends here,

with whom I have had a great time at Vandy.

Most importantly, I want to express my deepest gratitude to my parents and wife Li

Li. I would not have come this far without their love and support. This work is dedicated

to them.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . ii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter

I. INTRODUCTION . 1
Problem Statement . 2

Optimal Resource Management within a Data Processing Job 3
Optimal Resource Management across Data Processing Jobs 5

Contributions of this Dissertation 7
Outline of Dissertation . 9

II. BACKGROUND AND RELATED WORK 11
The Large-Scale Data Processing Ecosystem 11

The MapReduce Framework 11
The Interactive Ad Hoc Query Systems 13
Other Large-Scale Data Processing Systems 15

Existing Resource Management within a Data Processing Job . . . 15
Data Skew Problem in MapReduce 16
Existing Skew-Avoidance Solutions in MapReduce 19

Existing Resource Management across Data Processing Jobs 24

III. SCALABLE AND ROBUST KEY GROUP SIZE ESTIMATION FOR
REDUCER LOAD BALANCING IN MAPREDUCE 28

Motivation . 28
Sketch-based Key Group Size Profiling 32

Local Sketch . 32
Global Sketch . 34
Properties of Sketch-based Profiling 34

Sketch-based Load Balancing Algorithm 36
Optimal Sketch Packing Algorithm 37
Performance Analysis . 40

Implementation with Hadoop . 41
Experimental Evaluation . 42

Experiment Setup . 42

iii

Simulated Environment . 45
Amazon Elastic MapReduce Environment 52

Chapter Summary . 57

IV. SCALABLE LOAD BALANCING FOR MAPREDUCE-BASED RECORD
LINKAGE . 58

Motivation . 58
Background . 62

Record Linkage . 62
Blocking-based Record Linkage in MapReduce 63

Sketch-based Profiling and Load Balancing Solution 65
Sketch-based Data Profiling 66
Cell Block Division Algorithm 68
Cell Range Division Algorithm 70
Performance Analysis . 72

Experimental Evaluation . 74
Experiment Setup . 75
Performance of CB and CR algorithms 76
Performance under Various Data Skew 79
Performance under Number of Reducers 80
Experiments with Sketch Size 80
Experiments with Various Types of Sketches 80
Comparison with optimal sketch packing Algorithm 81

Chapter Summary . 81

V. COORDINATED RESOURCE MANAGEMENT FOR LARGE SCALE
INTERACTIVE DATA QUERY SYSTEMS 85

Motivation . 85
Query Model . 88

Example of Query Execution 88
Query Model . 90

Optimal Resource Allocation . 93
Problem Formulation . 93
Resource Allocation Problem 97
Optimal Resource Allocation Algorithm 98

Simulation Results . 100
Convergence . 101
Performance Comparisons 101
Weighted Workload . 103

Evaluation . 104
Setup . 104
Query Profiling . 105

iv

Rate Convergence . 106
Performance Comparisons 106
Data Placement Structure 108

Chapter Summary . 110

VI. CONCLUSION AND FUTURE WORK 114
Summary of Contributions . 114
Discussion and Future Directions 117

BIBLIOGRAPHY . 119

v

LIST OF TABLES

Table Page

III.1. Summary for experimental datasets used in Chapter III 44

IV.1. Summary for experimental datasets used in Chapter IV 76

V.1. Query rate and utility comparison for the simulation workload with
w

i

= 1 for queries. 101

V.2. Query rate and utility comparison for the simulation workload with
various weights for queries. 104

V.3. Query rate comparison for TPC-DS workload. 112

V.4. Query rate comparison for TPC-DS2 workload. 113

vi

LIST OF FIGURES

Figure Page

II.1. The MapReduce workflow. 12

II.2. Impala architecture. 14

III.1. An example of reduce-phase skew caused by hashing-based partition
in MapReduce framework. 30

III.2. An example of local Count-Min sketch update (w = 9 and d = 4). . . 33

III.3. The optimal sketch packing algorithm. 38

III.4. Implementation of the optimal sketch packing algorithm with Hadoop. 43

III.5. Key group size estimation for various datasets. 46

III.6. Reduce-phase imbalance ratio for three small datasets. 47

III.7. Reduce-phase imbalance ratio for three Zipf datasets. 49

III.8. Reduce-phase imbalance ratio with different data arrival sequences. . 50

III.9. Reduce-phase imbalance ratio with different memory spaces. 51

III.10. Reduce-phase imbalance ratio with different sketches. 52

III.11. Job running time and reduce-phase imbalance ratio with PageRank
and Inverted Indexing applications. 53

III.12. Reduce-phase imbalance ratio under various settings. 55

IV.1. Workload ranking for the DBLP-1 dataset. 59

IV.2. An example of blocking-based record linkage using MapReduce. . . 64

IV.3. The workflow of MapReduce-based record linkage facilitated by sketch-
based profiling. 65

IV.4. An example of the FastAGMS sketch update process (w = 9 and d = 4). 67

vii

IV.5. An example of cell block division. 70

IV.6. An example of cell range division. 71

IV.7. Job running time for DBLP datasets. 77

IV.8. Reduce-phase imbalance ratio for DBLP datasets. 78

IV.9. Reduce-phase imbalance ratio under various settings. 79

IV.10. Reduce-phase imbalance ratio in comparison to optimal sketch pack-
ing algorithm. 81

V.1. An example database schema with tables student, course and score. . 89

V.2. Two example SQL queries Q1 and Q2. 90

V.3. Query execution plans for Q1 and Q2. 91

V.4. Examples of how query fragments execute in the cluster. 92

V.5. The iterative process of resource price update. 99

V.6. Convergence of the Optimal algorithm on simulation workload with
w

i

= 1 for all queries. 102

V.7. Normalized aggregate CPU/memory consumption for Q
i

2 Q for
TPC-DS workload. 106

V.8. Query rates for Q
i

2 Q for TPC-DS workload. 107

V.9. Aggregate utility for
P20

i=1 Ui

(x
i

) for TPC-DS workload. 108

V.10. Normalized aggregate CPU/memory consumption for Q
i

2 Q for
TPC-DS2 workload. 109

V.11. Query rates for Q
i

2 Q for TPC-DS2 workload. 110

V.12. Aggregate utility for
P20

i=1 Ui

(x
i

) for TPC-DS2 workload. 111

viii

CHAPTER I

INTRODUCTION

Managing and analyzing data at a large scale has become a key skill driving business

and science. The total big data management and analysis market reached $11.59 billion

in 2012 and is predicted to be $47 billion by 2017 [68]. Companies like Google, Face-

book, and Yahoo! maintain and process petabytes of data, including web/software logs,

click streams, customer interactions, and other types of information. Advanced analysis

techniques (such as data mining, statistical modeling and machine learning) are now ap-

plied routinely to big data to drive automated processes for applications like spam and

fraud detection, advertisement placement, web documents analysis and customer rela-

tional management. They can lead to cost savings and higher revenue. However, success

in the big data era is about more than the ability to process large amount of data. It is

about retrieving revenue from these huge datasets in a timely and cost-effective manner.

To perform large-scale big data processing in a cost-effective manner, several com-

panies have developed distributed data storage and processing systems on large clusters

of shared-nothing commodity servers, including Google’s File Systems [31], Bigtable [14],

MapReduce [25], Yahoo!’s Pig system [61], Facebook’s Hive system [65], and Mi-

crosoft’s Dryad [39]. The MapReduce [25] framework and its open source implementa-

tion Hadoop [64] are becoming increasingly popular in the enterprise setting as well as

in scientific and academic settings. The development of cloud computing especially lets

people easily rent computing resources on-demand, bill on a pay-as-you-go basis. As an

example, the New York Times used 100 Amazon Elastic Computing Cloud (EC2) [75]

instances and a Hadoop application to process 4 TB of raw image TIFF data into 11

million finished PDFs in the space of 24 hours at a computation cost of about $240 [74].

1

However, MapReduce [25] is not a silver bullet, and there has been much work

probing its limitations [52], both from a theoretical [3, 41] and empirical perspective,

mainly by exploring classes of algorithms that cannot be efficiently implemented with

it [9, 13, 28, 92] (e.g., iterative computing, interactive analytics). Fortunately, more

large-scale data processing systems have been proposed, developed and deployed. For

instance, Dremel [56] and its open source implementations (Apache Drill [6], Cloud-

era’s Impala [19] and Facebook’s Presto [63]) support interactive analytics by intro-

ducing massive parallel processing (MPP) mechanisms. Spark [89] provides more ef-

ficient iterative/streaming/interactive analytics by introducing in-memory computation.

Pregel [54] and its open source implementation Giraph [7] provide programming model

for iterative graph processing, and Storm [66, 78] can support stream processing.

Problem Statement

In such a shared cluster, computing resources are allocated to various data process-

ing jobs. Each machine runs (or may run) a CPU-intensive, one or more MapReduce

jobs, and more random applications. This has the advantages of statistical multiplexing

of physical resources and centralized asset management, as well as workload-specific

benefits, such as sharing of common datasets and intermediate computational results.

Nevertheless, such sharing environments present new resource management challenges.

First, the workload of data processing jobs depends on the input data – not only the data

size, but more importantly, the internal data structure and semantics, which is usually

unknown a priori. Second, unlike traditional dedicated clusters, data processing jobs in

sharing clusters are highly diverse in terms of their resource and performance require-

ments. Optimal resource management is needed to ensure high resource utilization and

2

optimize the performance for each job with minimum expenditure. We call this the

“optimal resource management problem in large-scale data processing platforms”.

In this dissertation, we solve this problem from two perspectives: within a data

processing job, and across data processing jobs. For a single job, we want to optimize

its performance (e.g., job completion time) under its allocated resources. For multiple

jobs, we want the computing resources to be allocated and utilized efficiently and meet

each job’s performance requirements with minimum expenditure.

Optimal Resource Management within a Data Processing Job

The objective of optimal resource management within a data processing job is to

optimize the job performance using its allocated resources, such as minimize the job

completion time.

Large-scale data processing systems provide a good abstraction of distributed op-

erations over a cluster of machines. For example, in MapReduce, users only need to

implement map and reduce functions. The underlying run-time system achieves par-

allelism by partitioning the data and processing different partitions concurrently using

multiple machines. It is clear from the success of large-scale data processing systems

that parallelism is an effective mean to achieve dramatic speedup and scaleup.

However, the basic techniques that large-scale data processing systems use for ex-

ploiting parallelism is vulnerable to the presence of skew in the underlying data. Simply

put, if the underlying data is sufficiently skewed, load imbalance in the resulting paral-

lel task execution will swamp any of the gains due to the parallelism and unacceptable

performance will result.

In addressing the skew problem for a data processing job, we use MapReduce as

our target application. Arguably, MapReduce is one of the most important classes of

3

applications. Thus, the problem is narrowed down to optimizing a MapReduce job’s

performance with the presence of skew. We measure a MapReduce job’s performance

as its completion time.

Fundamentally, a MapReduce job is executed through two primary phases. In the

map phase, a function is applied in parallel to data from various input datasets. This

function yields intermediate results in the form of a list of key-value pairs. Pairs with

the same key are subsequently grouped together and allocated to a reduce task based on

a partition function. In the reduce phase, the reduce tasks run in parallel over each key

group to produce the final results. When the intermediate key groups are not uniformly

distributed, load skew may occur at the reducer phase.

Reduce-phase skew may arise from two sources. First, the hash-based key-group-

to-reducer assignment mechanism, as adopted by the default partition function, may not

pack the key groups for even load. We refer to this factor as partition skew. Second,

the workload of certain key groups may be significantly larger than others and exceed

the balancing capacity of the partition function. These are called expensive key groups

and even if one such group is assigned to a particular reduce task, that task will still be

a straggler in the reduce phase.

In response to reduce-phase skew, a general skew-handling solution is to do a signif-

icant amount of preprocessing (called profiling) in order to profile the data distribution

and compute a new workload assignment plan designed to minimize load imbalance.

To solve partition skew, a packing operation can be adopted that packs key groups into

several sets, each of which has even workload. For expensive key groups, key group

division is required, which divides expensive key groups into subgroups first and then

performs the packing operation. However, there still are two major challenges that make

it hard to implement such a skew-handling solution.

4

• First, the input data is huge. The profiling process needs to build a profile that

captures the data distribution information. For example, in a database join, this

profile contains the number of records for each join key. However, it is impossible

to maintain an accurate profile for MapReduce applications as they always have

to process millions or billions of records. Maintaining such “big data” would

introduce much overhead. A scalable data structure is needed to capture the data

distribution information through data profiling.

Additionally, as the input data is huge, it may take a substantial amount of time

to build the profile if the profiling process operates on entire data. This additional

overhead may diminish the benefits coming from achieving reduce-phase load

balancing. To overcome this problem, we need to build an efficient sampling

strategy to fast the profiling process.

• Second, the reduce function is a black box. For the relational operators such as

join and aggregate, the semantics are well understood, and many specialized tech-

niques to handle the skew problem are available [26]. In contrast, in MapReduce,

the reduce function is implemented by users and the system has no idea of the

semantics. This issue brings two challenges: (1) key group workload estimation:

the system cannot calculate the workload for each key group; (2) key group divi-

sion: the system does not know how to perform the key group division without

losing the original semantics.

Optimal Resource Management across Data Processing Jobs

The objective of optimal resource management across data processing jobs is to

schedule jobs/tasks to optimize their performance and achieve high resource utilization.

5

In this dissertation, we choose large-scale interactive ad hoc queries as our target appli-

cation.

Interactive ad hoc data query over massive datasets has recently gained significant

traction. Massively parallel data query and analysis frameworks (e.g., Dremel [56], Im-

pala [19]) are built and deployed to support SQL-like queries over distributed and par-

titioned data in a clustering environment. In these systems, each query is first compiled

into a plan tree, which is then decomposed into several query fragments. Each fragment

is dispatched to the machines where its data blocks locate, and each machine gets one

or more fragments, Depend on the query semantics (i.e., SQL operation), the execution

of each query is then converted into a set of coordinated tasks including data retrieval,

intermediate result computation and transfer, and result aggregation. As a result, each

query consumes different amount of resource (e.g., CPU, memory, bandwidth) at each

machine.

Since significant benefits can often be realized by sharing the cluster among multiple

clients, a principal challenge here is the development of efficient resource management

mechanism to support concurrent multiple interactive queries. Coordinated manage-

ment of multiple resources in clustering environment is critical to provide a guarantee

on service-level agreement (SLA) for each client. Without any resource coordination,

query tasks may create system bottleneck, leading to long query’s response time, low

resource utilization, and unfairness among different clients.

To alleviate the resource collision between different queries and maximize the clus-

ter utilization, we need a coordinated resource management solution. Three major chal-

lenges need to be solved when designing such a resource management framework.

• First, this framework needs to capture the various resource consumption for each

query at different machines. As we discussed above, each query is converted into a

6

set of tasks, and each task performs different SQL operations on different datasets.

This makes each query consumes various resources at different machines. With-

out considering this characteristic, the resource management framework cannot

management the cluster resources efficiently.

• Second, the framework should maximize the cluster resource utilization. This in-

cludes two-fold requirements: given the per-query resource consumption profile,

(1) minimize the available resource fragments (utilize the resource as much as

possible), and (2) alleviate the resource collision between different queries (avoid

the some machines overloaded).

• Thirdly, the framework should consider the performance requirements coming

from the client-side. Modern production clusters normally require to implement

certain type of client-side performance requirements. For example, certain fair-

ness objectives(proportional, max-min, etc) are always required, in which the

cluster resources are shared among various queries in a fair sharing way. To be

practical, the resource management solution needs to provide an interface for tak-

ing inputs of client-side performance requirements.

Contributions of this Dissertation

The high level contribution of the dissertation is twofold. First, we have demon-

strated our optimal resource management approach for a single MapReduce job. We first

deploy a scalable profiling mechanism, utilizing a scalable data structure called sketch to

capture the data distribution information. And then we utilize the built sketches to direct

the process of assigning key groups to reducers in a load balancing manner. Second, we

have built an utility-based optimization framework for coordinating resource allocation

7

for large-scale interactive data query systems. We first profile the resource consumption

for each query at different machines, and then put the “profile” into a price-based algo-

rithm. This algorithm can find a unique “maximum utility” allocation point, at which

point the cluster resource utilization is Pareto-optimal. Meanwhile, certain client-side

performance requirements can be achieved when we choose appropriate utility functions

for queries.

The detailed main contributions of the dissertation are:

• In Chapter III, we study the reduce-phase skew problem in MapReduce and pro-

pose a sketch-based profiling approach to capture the key group size statistics. In

particular, we compress the key group sizes into a two-dimensional array called

sketch. An optimal sketch packing algorithm is developed that operates bin pack-

ing operation on top of the sketch to provide a load balancing solution. This

approach can solve the partition skew for applications whose key group workload

is proportional to its key group size. Details are illustrated in Chapter III.

• In Chapter IV, we study the reduce-phase skew in record linkage application [58,

43]. A record linkage application involves two types of datasets (dataset R and

data S) and performs join-like operation. Its reduce-phase skew is always caused

by expensive key groups. The optimal sketch packing algorithm cannot be de-

ployed here directly as it can only solve partition skew, while expensive key

groups requires key group division.

To mitigate such reduce-phase skew, we first profile the data distribution of each

type of dataset using sketch structure, and perform sketch multiplication to esti-

mate key group workload. Then we perform sketch cell division on top of the built

sketches to mitigate skew from expensive key groups and achieve reduce-phase

load balancing in record linkage application. Details are illustrated in Chapter IV.

8

• In Chapter V, we study the coordinated resource management problem in a multi-

tenant cluster that supports interactive ad hoc queries over massive datasets. We

adopt a utility-based optimization framework where the objective is to optimize

the resource utilization, coordinate among multiple resources from different ma-

chines, and maintain certain fairness among different clients.

Concretely, each client is associated with a utility, which corresponds to the query

rate it is able to issue. The objective of the optimal resource allocation is to

maximize the aggregate utility of all clients, subject to the cluster resource con-

straints. We solve this utility-based resource allocation problem via a price-based

approach. Here, a “price” signal is associated with each type of resource (e.g.,

CPU, memory) for each machine. For each query, we: (1) collect resource prices

from the machines where the query runs its fragments; (2) adjust a new query

rate based on the updated prices such that the query’s “net benefit”, the utility

minus the resource cost, is maximized. For each machine, we: (1) collect the new

rates for queries that run fragments on current machine; (2) update the price for

each type of resource based on the availability. The resource prices and query

rates are updated iteratively, until reaching a “maximum utility” point. Details are

illustrated in Chapter V.

Outline of Dissertation

The dissertation is organized as follows. Chapter II introduces the large-scale data

processing ecosystem and the existing literatures related with the work in this disserta-

tion. Chapter III and IV present two approaches to achieve reduce-phase load balancing

9

for various MapReduce applications. Chapter V studies the coordinated resource man-

agement for large-scale interactive query systems. Finally, we conclude and discuss

possible areas for future work in Chapter VI.

10

CHAPTER II

BACKGROUND AND RELATED WORK

In this chapter, we take a closer look at our target environment, the large-scale data

processing ecosystem. We also investigate related work regarding load balancing in

MapReduce, and resource management for large-scale interactive query systems.

The Large-Scale Data Processing Ecosystem

The MapReduce Framework

MapReduce [25] was proposed to simplify large-scale data processing on distributed

and parallel architectures, particularly clusters of commodity hardware. The main idea

of this programming model is to hide details of the data distribution and the load bal-

ancing and let users focus on data processing. A MapReduce program consists of two

primitives, map and reduce, as shown below:

map:: (k1, v1)! list(k2, v2)

reduce:: (k2, list(v2))! list(v3)

Users can implement their processing logic by specifying customized map and re-

duce functions written in a general-purpose language Java or Python. The map function

is invoked for every key-value pair (k1, v1) in the input data to output key-value pairs

of the form (k2, v2). The reduce function is invoked for every unique key k2 and cor-

responding values list(v2) in the map output. The reduce outputs key-value pairs of the

form list(v3).

11

DFS

Input

Input

Input

…

…

…

Output

Output

Output

…

DFS Mappers Reducers

(k1,v1) list(k2,v2) list(v3)

(k2, list(v2))

Figure II.1: The MapReduce workflow.

Figure II.1 illustrates the execution flow of a MapReduce job. The MapReduce job

execution can be decomposed further into phases with map and reduce tasks. In the

map phase, input data is divided into equal-size chunks (64 MB by default) and each

data chunk is processed by a map task; the intermediate outputs of the map tasks are

collected locally and grouped based on their key values. Based on a (default hashing

or user-defined) partition function, these key groups are allocated to the appropriate

reducers depending on their keys. Once the map phase is completed and the intermediate

results have been transferred to the reducers, the reduce phase begins. In this phase, the

reduce function is applied in parallel to each key group and produces the final results.

Hadoop [64] is the most popular open-source implementation of a MapReduce frame-

work that follows the design laid out in the original paper. A number of companies use

Hadoop in production deployments for applications such as web indexing, data mining,

report generation, log analysis, machine learning, and financial analysis. Infrastructure-

as-a-Service cloud platforms like Amazon EC2 [75] have made it easier than ever to

run Hadoop workloads by allowing users to instantly provision clusters and pay only

for the time and resources used. A combination of features contributes to Hadoop’s in-

creasing popularity, including fault tolerance, data-local scheduling, ability to operate

12

in a heterogeneous environment, handling of straggler tasks1, as well as a modular and

customizable architecture.

The Interactive Ad Hoc Query Systems

The MapReduce [25] framework plays an important role in large-scale data process-

ing. However, MapReduce is not a silver bullet and still has its own limitations. Due to

latency, most MapReduce applications are developed for batch workloads, which take

minutes to hours to finish. To provide a tool for large-scale interactive data analysis over

massive datasets, Google developed Dremel [56]. Dremel is a system that supports the

interactive analytics of very large datasets over shared clusters of commodity machines.

Dremel can execute many queries over large datasets that would ordinarily require a

sequence of MapReduce [25] jobs, but at a fraction of the execution time. Dremel’s ar-

chitecture borrows the concept of a serving tree used in distributed search engines [24].

A Dremel query gets pushed down the tree and is rewritten at each step. The result of

the query is assembled by aggregating the replies received from lower levels of the tree.

Dremel provides a high-level, SQL-like language to express ad hoc queries. In contrast

to layers such as Pig [61] and Hive [65], it executes queries natively without translating

them into MapReduce jobs. Another important feature is that Dremel adopts a novel

columnar storage format, which enables it to read less data from secondary storage and

reduce CPU cost due to cheaper compression.

Cloudera Impala [19] is an open-source implementation of Dremel by bringing real-

time, ad hoc query capability to Hadoop, complementing traditional MapReduce batch

processing. Impala is an open-source full-integrated, state-of-the-art MPP SQL query

1A straggler is a task that performs poorly typically due to faulty hardware or misconfigurations.

13

Impalad

Client

Query Planner

Query Coordinator

Query Executor

Local Storage

Impalad

Query Planner

Query Coordinator

Query Executor

Local Storage

Impalad

Query Planner

Query Coordinator

Query Executor

Local Storage

Fully MPP
Distributed

Local
Direct Read

Metadata
Cluster

Figure II.2: Impala architecture.

engine designed specifically to leverage the flexibility and scalability of Hadoop. Im-

pala’s goal is to combine the familiar SQL support and multi-user performance of a

traditional analytic database with the scalability and flexibility of Apache Hadoop.

This dissertation uses Impala as the target interactive query system. As illustrated

in Figure II.2, the system has two main tiers. The topic tier is the user interface. To

support ad hoc queries, Impala provides a programming interface that is consistent with

the standard SQL model. The core is the query processing tier. It is implemented as

a long running daemon on each machine and submits its own queries. This daemon

process (i.e., Impalad in Figure II.2) comprises the query planner, query coordinator,

and the query execution engine. After fetching the data location information from the

metastore, the local query planner compiles the query into a pipeline execution plan,

consisting of several query fragments. The query coordinator dispatches these query

fragments to other machines, where each fragment is executed by the query execution

engine to process over the local data. All local processing results are assembled together

at the query coordinator and returned to the client.

14

Other Large-Scale Data Processing Systems

Pregel [54] provides a programming model for iterative graph processing. In Pregel,

programs are expressed as a sequence of iterations, in each of which a vertex can receive

messages sent in the previous iteration, send messages to other vertices, and modify its

own state and that of its outgoing edges or mutate graph topology. The vertex-centric

approach is reminiscent of MapReduce in that users focus on a local action, processing

each item independently, and the system composes these actions to lift computation to

a large dataset. The high-level organization of Pregel programs is inspired by Valiant’s

Bulk Synchronous Parallel model [80]. Giraph [7] originated as the open-source coun-

terpart to Pregel.

Storm [66, 78] is a real-time fault-tolerant and distributed stream data processing

system. The basic Storm data processing architecture consists of streams of tuples flow-

ing through topologies. A topology is a directed graph where the vertices represent

computation and the edges represent the data flow between the computation compo-

nents. Vertices are further divided into two disjoint sets – spouts and bolts. Spouts are

tuple sources for the topology, pulling data from upstream (like Kafka [46]). On the

other hand, bolts process the incoming tuples and pass them to the next set of bolts

downstream.

Existing Resource Management within a Data Processing Job

With given resources, the completion time of a data processing job depends on its

last finished task. To fully utilize the benefits from parallelism, a general approach

is to balance the workload assigned to concurrent tasks. However, load imbalance is

common in large-scale data processing, and may diminish the benefits from parallelism.

15

In this section, we will review this problem and existing load balancing solutions in

MapReduce.

In MapReduce, a task is identified as an outlier if its time to finish is longer than

1.5x the median task duration in its phase [5]. In production clusters, 25% of phases

have more than 15% of their tasks as outliers. 80% of the runtime outliers last less

than 2.5 times the phase’s median task duration, with a uniform probability of being

delayed by between 1.5x to 2.5x. The tail is heavy and long – 10% of the tasks take

up more than 10x the median duration. By carefully measuring a large MapReduce

cluster, Ananthanarayanan et al. [5] identify three main causes of outliers: machine

characteristics, network characteristics and data skew. We will mainly focus on data

skew in this proposal.

Data Skew Problem in MapReduce

In MapReduce, data skew refers to the problem that some map/reduce tasks cost

longer time because of their input data. Kwon et al. [48] present a detailed analysis of

the data skew problem, which can be grouped into two categories (map-phase skew and

reduce-phase skew).

Map-Phase Skew

Map-phase skew refers to the problem that some map tasks take longer time than

other map tasks in the same phase. The map-phase skew has three different causes:

expensive record, heterogeneous maps and non-homomorphic maps.

Expensive record: Map tasks typically process a collection of records , one-by-one.

Ideally, the processing time does not vary significantly from record to record. However,

depending on the application, some records may require more CPU and memory to

16

process than others. These expensive records may simply be larger than other records,

or the map algorithm’s running time may depend on the record’s value.

Heterogeneous maps: MapReduce is a unary operator, but can be used to emulate

an n-ary operation by logically concatenating multiple datasets into a single input file.

Each dataset may need to be processed differently, leading to a multi-modal distribution

of task running times. For example, SkewedJoin [38] is one of the join implementations

in the Pig system [61]. Each map task in SkewedJoin distributes frequent join keys from

one of the input datasets in a round-robin fashion to reduce tasks, but broadcasts joining

records from the other dataset to all reduce tasks. These two algorithms exhibit different

running times because the map tasks that perform the broadcasts do more I/O than the

other map tasks.

Non-homomorphic map: One of the key features of the MapReduce framework is

that users can run arbitrary code as long as it conforms to the MapReduce’s map and

reduce interfaces, and typical initialization and cleanup. Such flexibility enables users

to push, when necessary, the boundaries of what map and reduce phases have been

designed to do: each map output can depend on a group of input records, i.e., the map

task is non-homomorphic. For example, although the conventional join algorithm in

MapReduce requires both map and reduce phases, if the data are sorted on the join

attribute, the join can be implemented directly in the map phase using a sort-merge

algorithm. In this scenario, a map task may run what is normally reduce logic such as

aggregation or join, consuming a group of records as a unit rather than a single record as

in a typical MapReduce application. Thus, the map tasks may experience reduce-phase

skew discussed in the following section.

17

Reduce-Phase Skew

Reduce-phase skew refers to the problem that some reduce tasks take longer time

than other reducer tasks in the same phase. There are two types of reduce-phase skews:

partition skew which is unique to reducer, and expensive key groups which is analogous

to the expensive record in map-phase skew.

Partition skew: In MapReduce, the outputs of map tasks are distributed among re-

duce tasks via hash partitioning (by default) or some user-defined partitioning logic.

The default hash partitioning is usually adequate to evenly distribute the data. However,

reduce-phase skew can still arise in practice. Consider the inverted indexing application,

each map task processes several documents and outputs terms as intermediate data. If

the hash function partitions the intermediate data based on the first letter of a term, re-

ducers processing more popular letters are assigned a disproportional amounts of data,

which induces reduce-phase skew.

Expensive key groups: In MapReduce, each reduce task processes a sequence of

(key, set of values) pairs. As in the case of expensive records processed by map, ex-

pensive (key, set of values) pairs can skew the runtime of reduce tasks. Since reduce

operates on key groups instead of individual records, the expensive input problem can

be more pronounced, especially when the reduce is a holistic operation that requires

memory proportional to the size of the input data. A holistic reduce may load the entire

associated values with a reduce key in memory and run complex algorithms (e.g., find

clusters in a multi-dimensional input data using a spatial index, perform complex joins,

and analyze the activities of a user given a subgraph of social network).

The running time of a holistic reduce that runs a complex algorithm can significantly

vary per reduce key. For example, the reduce function of MapReduce-based record

linkage (Chapter IV) performs a similarity calculation for records within key groups.

18

Although all reduce tasks are extremely well balanced in terms of the reduce keys, there

is a factor of 44 difference between the maximum and the average task running time.

This suggests that some reduce keys are more expensive to process than others.

Existing Skew-Avoidance Solutions in MapReduce

In this section, we survey skew-avoidance solutions to mitigate reduce-phase skew

in MapReduce. Skew-avoidance solutions always involve a data profiling phase, which

collects the data distribution information (in terms of key group size) and then assigns

workload to reducers in a load balancing manner.

We organize existing solutions from two perspectives: profiling mechanism (accu-

rate or approximate), and supported applications (application-transparent or application-

specific). An accurate profiling mechanism collects accurate size for each key group,

while approximate profiling only provides an approximate estimation for key group size.

Application-transparent solutions are designed to achieve reduce-phase load balancing

for most MapReduce applications, while application-specific solutions are built for some

particular applications (e.g., join operation, record linkage application). We review each

part in the following sections.

Different from skew-avoidance solutions, SkewTune [49] is a type of skew-handling

mechanism that adopts a work-stealing mechanism to mitigate reduce-phase skew at

runtime. SkewTune dynamically monitors the task execution and estimates the remain-

ing time for each task. Whenever a machine becomes idea, SkewTune mitigates work-

load from other overloaded machines to the idle ones. SkewTune always involves with

several rounds of moving workload across different machines, which can take a non-

trivial amount time and consume network bandwidth, especially with a large dataset.

19

Additionally, SkewTune can only work with key group granularity and cannot handle

skew caused by expensive key groups.

Application-Transparent Solutions

We further divide application-transparent solutions into supporting simple applica-

tions and supporting complex applications. Most application-transparent transparent

solutions are designed for very simple applications (e.g., PageRank, inverted indexing),

which can use key group size to represent the key group workload. That is, the workload

of a key group is proportional to its size.

Ibrahim et al. [37] propose a reduce-phase load balancing solution called LEEN to

support simple MapReduce applications. LEEN first profiles the size for each key group,

and then performs a bin packing operation on these key groups. Key groups are grouped

into several partitions, and each reducer will be assigned to one partition. [27, 34]

follow the same approach. However, there remains several hurdles to translating such

an approach into practice. (1) The first problem corresponds to scalability. Specifically,

when the number of key-value pairs is large, significant overhead will be incurred during

the profiling phase. (2) A second, more substantial problem, arises when the number of

key groups is huge. In this case, the data structure that maintains the profile of the key

group sizes can impose extremely high memory requirements. (3) A third problem is

that the algorithm which operates on this data structure (and utilizes the key group size

profile) for the design of an optimal partition function incurs non-trivial computational

overhead. (4) A fourth problem is that this approach works on key group granularity,

and cannot mitigate skew caused by expensive key groups.

To build a scalable solution, Gufler et al. [33] present TopCluster, which builds a

key group histogram with k buckets devoted to the top-k frequent keys and 1 bucket

devoted to all remaining keys. TopCluster provides a way to estimate key group size with

20

acceptable memory requirement. However, such a top-k histogram cannot be deployed

to mitigate load imbalance as it only has size information for the top-k key groups. The

remaining key groups still may skew the reducer loads. We further analyze TopCluster’s

limitations in mitigating reduce-phase skew in Chapter III, and propose a new sketch-

based profiling mechanism which compresses all key group sizes in a sketch structure

instead of only top-k. Through such an approach, our approach can deliver stable load

balancing performance.

Ramakrishnan et al. [67] provide another scalable load balancing solution by intro-

ducing progressive sampling. This approach works in an efficient way as it only builds

the data profiles use a small subset of the key-value pairs. Additionally, this approach

also supports key group division which can mitigate skew caused by expensive key

groups. However, its key group division is very simple as it directly divides key-value

pairs with an expensive key group into several subgroups and assumes this operation

does not hurt the original reduce function semantics. However, this assumption cannot

be satisfied by most MapReduce applications. For example, in a join operation, the di-

rect division of records with the same key into two parts may cause some record pairs

to be dropped.

The progressive sampling mechanism introduced in [67] provides an efficient way

to fast the profiling phase.

Application-Specific Solutions

There are also several solutions that work for special types of applications. The join

is one of the most common operations in MapReduce, and there are many different ways

to implement a join operation. Pig [61], a declarative layer of Hadoop, implements an

algorithm proposed in the parallel database literature [26] to handle data skew in a join

algorithm. Blanas et al. [11] surveyed and compared different join implementations in

21

MapReduce. Okcan et al. [60] studied a theta-join in MapReduce. In general, these

algorithms adopts a simple sampling mechanism with a sampling rate (such as, 5%) to

profile the data distribution.

Record linkage is another join-like MapReduce application. In record linkage, records

are divided into several key groups and records within each key group are compared with

each other to generate record pair similarities. Kolb et al. [43] implement a load bal-

ancing solution for record linkage application. This approach profiles the number of

records within each key group in an accurate way, and then assigns each reducer with

same amount of record pairs. However, the solution proposed in [43] is not scalable

because it adopts accurate profiling. We propose a scalable solution for record linkage

in Chapter IV.

Speculative Execution in MapReduce

Besides data skew, other factors cause some tasks to be slower, such as heteroge-

neous environment (e.g., machine, network, etc.). Even when each task is assigned with

even load, stragglers may still exist. MapReduce itself has a general mechanism called

speculative execution to alleviate the problem of stragglers. When a MapReduce job

is close to completion, the job master schedules backup executions of the remaining

in-progress tasks. The task is marked as completed whenever either the primary or the

backup execution completes.

MapReduce’s speculative execution identifies the straggler according to workload

completed and assumes that tasks make progress linearly. However, this assumption

does not always hold, especially in heterogeneous environment. Zaharia et al. [90]

propose a speculative task scheduling algorithm called Longest Approximate Time to

End (LATE). LATE predicts the remaining time for each running task and identifies the

22

task with the maximum remaining time as the straggler. The completion time of a task

is predicted by tracking task progress instead of work completed.

Both of the above solutions duplicate stragglers at the end of each phase when free

slots are available. Mantri [5] introduces a probability-based restart algorithm which at-

tempts to identify straggler tasks as early as possible. Mantri uses two variants of restart,

the first kills a running task and restarts it elsewhere, the second schedules a duplicate

copy. Mantri restarts only when the probability of restarting a new task costing less time

is very high. Mantri kills and restarts a task if its remaining time is so large that there is

a more than even chance that a restart would finish sooner. The “kill and restart” scheme

drastically improves the job completion time without requiring extra slots. However, the

current job scheduler incurs a queuing delay before restarting a task, that can be large

and high variant. Hence, Mantri considers scheduling duplicates. Scheduling a dupli-

cate results in the minimum completion time of the two copies and provides a safety net

when estimates are noisy or the queuing delay is large. However, it requires an extra slot

and if allowed to run to finish, consumes extra computation resource that will increase

the job completion time if outstanding tasks are prevented from starting. Hence, when

there are outstanding tasks and no spare slots, Mantri schedules a duplicate only if the

total amounting of computation resource consumed decreases. By scheduling duplicates

conservatively and pruning aggressively, Mantri has a high success rate of its restarts.

In general, compared with skew mitigation, these approaches work from another

perspective and focus on task scheduling solution. However, as they doesn’t balance the

load assigned to each task, a reduce task may still take longer time compared to others

even we restart it in another place. Thus, balance the task load is an essential step to

achieve reduce-phase load balancing.

23

Existing Resource Management across Data Processing Jobs

With the development of the big data applications, various resource management

frameworks have been proposed and deployed in production clusters, including Hadoop

YARN [81], Omega [73] and Mesos [36]. A popular resource allocation mechanism

adopted by these systems is fair sharing [88, 32, 10].

Originally, MapReduce was aimed at large (generally periodic) batch jobs. As such,

the natural goal would be to decrease the completion time required for a batch win-

dow. For such scenarios, a simple job scheduling scheme as First In, First Out (FIFO)

works very well. However, the use of MapReduce has evolved (in the natural and stan-

dard manner) towards more user interaction. There are now many more ad-hoc query

MapReduce jobs, and they share cluster resource with the batch work. For users who

submit these queries, expecting quick results, schemes like FIFO does not work well.

This is because a large job can starve a small, user-submitted job which arrives even

a little later. To avoid such a starvation, a fair sharing [87, 88] mechanism was intro-

duced by Hadoop to achieve fairness among jobs. Quincy [40] is a flow-based fair-share

scheduler for Dryad [39], which is a more generalized variant of the MapReduce frame-

work. It maps the scheduling problem to a graph in which edge weights and capacities

represent data locality and fairness, and then it uses standard optimization solvers to

find a schedule. Sandholm and Lai [70] use user-assigned and regulate priorities to opti-

mize the MapReduce schedule by adjusting resource share dynamically and eliminating

bottlenecks.

YARN inherits the scheduling mechanism directly from MapReduce, and its RM

runs the scheduler, supporting FIFO and fair scheduling (implemented as fair sched-

uler [72] and capacity scheduler [71]). As discussed above, fair sharing is designed to

run heterogeneous applications as a shared, multi-tenant cluster in an operator-friendly

24

manner while maximizing the throughput and the utilization of the cluster. The YARN

fair scheduler maintains multiple queues, and shares resources fairly among these queues.

Each job is submitted to one queue. Queues can be arranged in a hierarchy to divide re-

sources and configured with weights to share the cluster in specific proportions. YARN

is capable of scheduling multiple resource types (e.g., memory, CPU). By default, the

fair scheduler achieves fairness only on memory. It can be configured to schedule with

both memory and CPU, using the notion of dominant resource fairness [32].

In fair sharing, when one queue does not need its full guaranteed share, the excess is

split between other queues having running applications. This let the scheduler guarantee

capacity for queues while utilizing resources efficiently when these queues don’t contain

applications.

Sometimes a queue may need to take its sharing resource back from other queues

due to resource shortage of its own jobs. The scheduler typically replies on preemption

to coordinate such resource fair sharing. Specifically, preempting a task means termi-

nating the task and using the resources to schedule a different task. By default YARN

does not deploy any work-preserving preemption, and leaves this work to the AM. Sev-

eral works [4, 15] have discussed possible work-preserving preemption for particular

workload.

Curino et al. [23] introduce a reservation-based scheduling algorithm for YARN. In

this approach, a resource description language is proposed that provides a more powerful

way for each job to specify its resource requirements. Besides the amount of resources

needed, this language supports more features including time window and dependency.

This new scheduling algorithm gives the system flexibility in allocating resource across

several jobs, while also allowing it to plan ahead and determine whether it can satisfy

any given job’s resource request.

25

Different from the central design of the YARN scheduler, Google’s Omega sys-

tem [73] introduces a shared-state scheduling approach. Omega consists of several in-

dividual schedulers, each of which is implemented with different policies. There is no

central resource allocator in Omega, and all of the resource-allocation decisions take

place in the schedulers. Omega maintains a master copy of all resource allocations in

the cluster called a cell state. Each scheduler is given a private, local frequently-updated

copy of cell state that is uses for making scheduling decisions. Each scheduler updates

its local resource allocation with the master copy, and which also takes care of the con-

flict if multiple schedulers allocate the same resource.

Sparrow [62] is another newly developed scheduling algorithm for large-scale data

processing systems. Sparrow provides a decentralized, randomized sampling approach

that provides near-optimal performance while avoiding the throughput and availability

limitations of a centralized design. Sparrow consists several distributed running sched-

ulers, and each task is submitted to a randomly selected scheduler. Each machine is

treated as an indivisible resource, and maintains a waiting queue containing its allo-

cated tasks. For a new incoming task, the scheduler checks the queue size for randomly

selected machines, and assigns the task to the machine with the least queue size.

[82, 83, 84] has mainly focused on global optimization for MapReduce jobs with

respect to system-centric performance metrics that are ignored by the fair sharing. How-

ever, for systems with significant sharing (especially multi-tenant clusters), though,

these approaches also present limitation. Global optimizations are not targeted to be

consistent with each job’s individual resource valuations. Optimizations are performed

as though all jobs are equally important while ignoring individual job value of the re-

sources which vary based on the immediacy, importance, the resource demands of the

job’s computing needs. Thus, in allocating resources to competing jobs, these solutions

26

are unlikely to deliver the greatest value to the jobs for a given set of resources. Dif-

ferent from the above solutions, our approach jointly consider the per-job performance

requirement and the entire cluster utilization.

Another set of work is market-based resource allocation mechanisms [86]. Re-

searchers have proposed using economic approaches to resource allocation in computer

systems. Tools offered by microeconomics for addressing competition and pricing are

thought useful in handling computing resource allocation problem. And the pricing-

based methods can reveal the true needs of clients who compete for the shared resources

and allocate resource more efficiently. The application of market-based resource allo-

cation ranges from computer networking [86], distributed file systems [47], distributed

database [76] to computational job scheduling problems [59, 18].

27

CHAPTER III

SCALABLE AND ROBUST KEY GROUP SIZE ESTIMATION FOR
REDUCER LOAD BALANCING IN MAPREDUCE

In this chapter, we first look at the reduce-phase skew problem in MapReduce, where

reduce tasks are often assigned imbalanced load (in terms of key groups). Even though

several approaches [37, 43, 60] have been proposed to solve the reduce-phase skew

problem, most of the solutions are not scalable and cannot be deployed with “big data”.

To mitigate these limitations, we introduce a sketch-based data structure for capturing

MapReduce key group size statistics and present an optimal packing algorithm which

assigns the key groups to the reducers in a load balancing manner. We perform an

empirical evaluation with several real and synthetic datasets over two distinct types of

applications. The results show that our load balancing algorithm can strongly mitigate

the reduce-phase skew. It can decrease the overall job completion time by 45.5% of the

default settings in Hadoop and by 38.3% in comparison to the state-of-the-art solution.

We begin by motivating the need for reduce-phase load balancing and discuss the

limitations of existing approaches in Section III.1. Our system and approach are dis-

cussed and analyzed in detail in Section III.2 and III.3. Then, we discuss the implemen-

tation with Hadoop in Section III.4 and demonstrate the evaluation results with various

applications in Section III.5. We finally summarize this chapter in Section III.6.

Motivation

A MapReduce job is executed through two primary phases. In the map phase, a

function is applied in parallel to data from various input datasets. This function yields

intermediate results in the form of a list of key-value pairs. Pairs with the same key

28

are subsequently grouped together and allocated to a reduce task based on a partition

function. In the reduce phase, the reduce task runs in parallel over each key group to

produce the final result.

Despite its merits, MapReduce suffers from certain limitations. One of the most

significant issues is referred to as the reduce-phase skew problem [48]. This occurs when

a varying number of intermediate key-value pairs are assigned to reducers, thus skewing

the load in the reduce phase. It has been shown that this problem can lead to suboptimal

performance of many applications executed over the MapReduce framework [43, 60,

91].

In the MapReduce framework, the reducer workload is computed as the sum of

workload of all key groups assigned to it. The key group workload, in turn, is a func-

tion of its size. As a result, the load at the reducers depends on two factors: (1) the key

group size (i.e., the number of records within each key group), and (2) the partition func-

tion, which assigns a key group to a reducer. The default partition function adopted by

MapReduce leverages a hash function to perform the key-group-to-reducer assignment.

In this function, the hash value of a key is directly mapped to the index of a reducer

through a simple modulo operation. Depending on the distribution of key group sizes,

this hashing-based partition function can lead to highly skewed workload distribution at

the reducers, which deteriorates MapReduce performance.

Figure III.1 presents an example that demonstrates the current blind hashing parti-

tion. In this example, we have 7 key groups represented by k1 through k7, and each key

group has different number of records (i.e., key-value pairs). According to the hashing

partition (here we assume the hashing function is (i mod 3) for key group k
i

), the 3

reducers have imbalanced workload. The reducer 1 needs to process 96 key-value pairs,

while the reducer 3 only has 42 key-value pairs. This imbalanced workload distribution

29

k1: 23

k2: 33

k3: 10

k4: 16

k5: 53

k6: 32

k7: 54

i mod 3, for ki

partition function

k1: 23 k4: 16 k7: 54

Reducer 1

k2: 33 k5: 53

Reducer 2

k3: 10 k6: 32

Reducer 3

86

42

93

Sum of reducer workload

Figure III.1: An example of reduce-phase skew caused by hashing-based partition in
MapReduce framework.

prolongs reduce execution on some reducers (reducer 1 here), and degrades the system

performance.

To mitigate reduce-phase skew, recent methodologies [33, 37] have augmented the

MapReduce framework by profiling key group sizes and designing a new partition func-

tion based on the profiling statistics. However, there remain several hurdles to translating

such an approach into practice. The first problem corresponds to scalability. Specifi-

cally, when the number of key-value pairs is large, significant overhead will be incurred

during the profiling phase. A second, more substantial problem, arises when the number

of key groups is large. In this case, the data structure that maintains the profile of the

key group sizes can impose extremely high memory requirements. A third problem is

that the algorithm which operates on this data structure (and utilizes the key group size

profile for the design of an optimal partition function) incurs non-trivial computational

overhead.

30

To summarize, in order to recognize and mitigate the reducer-phase skew, we believe

the MapReduce framework can be significantly enhanced through: (1) a data represen-

tation (or summary) and estimation method for the distribution of key group sizes; (2) a

load balancing key-group-to-reducer assignment method that is specialized to the data

representation.

Additionally, the following properties are desirable for such a representation and

load balancing strategy:

• Scalable: As discussed above, when the number of key groups is very large, it

is unrealistic to maintain the sizes of all key groups in memory. Thus, a scalable

representation is needed, where the memory cost and the computation cost are

independent of the number of key groups. In addition, this scalable representation

should introduce a bounded approximation error regardless of the skew in the data

and yield highly accurate load balancing strategy.

• Efficient: The process for building the representation should be accomplished in

a reasonable amount of time, without incurring additional overhead. Specifically,

the construction should only make one pass over the intermediate key-value pairs.

• Robust: The key-value pairs are generated in a streaming manner at the mappers,

such that the system cannot anticipate the order of their arrival. Thus, the repre-

sentation should be robust to any arrival order (i.e., changing the arrival order of

the key-value pairs should not change the final representation).

• Mergeable: The MapReduce framework contains multiple mappers, each of which

may emit a large volume of key-value pairs. It is inefficient to send all local key-

value pairs to a central point to build the representation. A desirable approach is

to have each mapper build its local representation, which can later be merged for

31

Algorithm 1 Update operation for local Count-Min sketch CL

Require: A new coming key-value pair with key k
Require: A local sketch CL with size d⇥ w

1: for i = 1! d do
2: CL

[i, h
i

(k)] CL

[i, h
i

(k)] + 1

3: end for

a global representation. This merged global representation should be equal to the

one that is built directly on all key-value pairs.

Sketch-based Key Group Size Profiling

In this section, we introduce the notion of sketch [22, 21, 69] into the MapReduce

framework as a data structure for summarizing key group sizes and present a distributed

method for its construction. Here we use Count-Min sketch [22] in our implementation,

as it provides the most efficient performance to do load balance. We also discuss and

evaluate other popular sketches (i.e., FastAGMS sketch [21]) in Section III.

Local Sketch

To leverage the sketch structure for key group sizes in the MapReduce framework,

we first build a local sketch using map tasks. Specifically, a local sketch CL is a two-

dimensional array of counters with d rows of length w, which are indexed by a set of

pairwise independent hash functions H = {h
i

, i = 1, 2, . . . , d}. Each hash function h
i

maps an intermediate key k into a hashing space of size w; i.e., h
i

(k) 2 {1, 2, . . . , w}.

Initially, all of the counters in the array are set to zero.

CL

[i, j] = 0, for all i 2 {1, 2, ..., d}, j 2 {1, 2, ..., w}.

32

k

h1

hd
+1

+1

+1

+1

Figure III.2: An example of local Count-Min sketch update (w = 9 and d = 4).

When a new key-value pair with key k is emitted at a mapper, the local sketch at

this mapper is updated according to Algorithm 1. Essentially, the arrival of this new

key-value pair increments the value of d counters by 1 in the local sketch. The positions

of these counters are specified by the hash functions that are associated with this sketch,

where the index of the hash function i specifies the row and the hash value h
i

(k) of key

k under function h
i

specifies the column.

Figure III.2 illustrates this update process. Here, a key-value pair with key k is

mapped to a counter in each row i (i 2 {1, 2, ..., d}) by the hash function h
i

and incre-

ments the counter by 1. A local sketch can be established in an online fashion where

the mapper progressively updates the sketch because it processes the input records and

emits intermediate key-value pairs.

Let S
k

represent the number of key-value pairs with key k emitted at a mapper. Then,

its constructed local sketch CL can be represented as follows.

CL

[i, j] =
X

8k:hi(k)=j

S
k

.

In this representation, counter CL

[i, j] holds the sum of the sizes from all key groups

whose keys k are mapped by hash function h
i

to value j.

Since each hash function can be evaluated in constant time, an update to the sketch

requires time O(d) for each intermediate key-value pair emitted at the mapper.

33

Global Sketch

After the map phase is complete and the local sketches are constructed, the global

sketch can be constructed from each mapper’s local sketch to summarize the global key

group sizes. This task can be performed at a central central point, such as a reducer in

our implementation. Specifically, to build a global sketch, the following steps need to

be performed:

• Local sketch preparation at mappers. Each mapper maintains a local sketch CL

as discussed in Section III. To be mergeable, each local sketch agrees to the same

configuration, including the values of d and w and the definition of hash functions

H.

• Communication. Each mapper sends CL to the single reducer.

• Global sketch construction. The reducer aggregates all of the local sketches

to compose a global sketch. Let M be the number of mappers. Given local

sketches CL

1 , ..., CL

M

of size d ⇥ w, the aggregated global sketch CG is also a

two-dimensional array of size d ⇥ w, where each entry CG

[i, j] sums the corre-

sponding local sketch entries.

CG

[i, j] =
MX

l=1

CL

l

[i, j], for all i 2 {1, ..., d}, j 2 {1, ..., w}.

We denote the aggregation operation as CG

=

P
M

l=1 C
L

l

.

Properties of Sketch-based Profiling

This sketch-based key group size summary fits well in the MapReduce framework

and offers the following advantages.

34

• Scalable and efficient. The memory overhead is O(dw) at both the mappers and

the reducer. Additionally, the communication overhead is bounded by O(dwM).

The update operation in Algorithm 1 requires O(d) time for each data element

(i.e., an intermediate key-value pair) at each mapper. The aggregate operation

overhead at the reducer is bounded by O(dwM). All overhead are independent of

the number of key groups.

• Robust to the data arrival sequence. Given a set of key-value pairs, the sketch is

invariant to the order of the data. This property directly stems from the facts that i)

each sketch is a linear projection of the original data and ii) the update operation

of one data item is independent from others.

• Mergeable. Given a set of key-value pairs, the global sketch can be established

by the aggregation of local sketches that are constructed from mutually exclusive

and collectively exhaustive subsets. This property is formally specified in the

following proposition.

Proposition 1 Let P be the set of key-value pairs and C(P) be its sketch. Con-

sider any partition of set {P1,P2, ...,PM

} where
S

M

l=1 Pl

= P and 8l 6= h,P
l

TP
h

=

;. Let C(P
l

) be the sketch of P
l

. Then C(P) =

P
M

l=1 C(P
l

).

The latter two properties are a significant contrast from the best previously known

approach for estimating key group sizes; i.e., TopCluster [33]. In TopCluster, the final

histogram estimation of the key group sizes is influenced by both (1) the order and (2)

the number of local histograms at the mappers.

The probability property of the sketch structure provides a mathematical guarantee

for accurate estimation on key group sizes and has been widely adopted for data stream

35

processing. In Count-Min sketch [22], an estimation for the group size of key k is given

by

ˆS
k

= min

1id

CG

[i, h
i

(k)].

The key group size estimation error bound is given in the following lemma. The

proof of this lemma follows directly from the results in [22].

Lemma 1 The size estimate ˆS
k

of key group k has the following guarantees: S
k

 ˆS
k

,

and with probability at least 1 � �, ˆS
k

 S
k

+ "S. Here � = 1/ed, " = e/w, and S is

the total number of key-value pairs.

However, this key group size estimation method cannot be directly applied to design

the key-group-to-reducer assignment algorithm. In Count-Min sketch, the key must be

supplied to obtain the group size estimation. Since the key information is lost in the

aggregation of the sketch, we either need to record it in a separate data structure (which

introduces additional storage overhead) or make another pass of the input data, which

eliminates the benefit of one-pass profiling. In the next section, we investigate a load

balancing mechanism that directly operates on the sketch structure.

Sketch-based Load Balancing Algorithm

In this section, we investigate the design of the partition function, which maps the

intermediate key to a reducer index, based on the key group size information as sum-

marized in the global sketch. Formally, let K be the key space and R be the number of

reducers. A partition function � : K ! {1, 2, ..., R} maps key k to the index of the

desired reducer r = �(k) 2 {1, 2, ..., R}. We assume the reducer load is proportional

36

to its input key group sizes. As such, the load at reducer r can easily be derived as

S(r) =
P

k:�(k)=r

S
k

, where S
k

is the size of key group k.

By designing the partition function (�) in this manner, we aim to to balance the

load at different reducers (i.e., to minimize the maximum reducer load). Formally, the

objective can be stated as follows.

min

�
max

1rR

S(r).

The performance of a load balancing algorithm can be evaluated using the reduce-

phase load imbalance ratio �, which is the ratio between the maximum reducer load and

the average reducer load. Formally, � is defined as follows.

� =

max

1rR

S(r)

RP
r=1

S(r)/R

.

Optimal Sketch Packing Algorithm

To address this objective, we introduce an optimal sketch packing algorithm. This

algorithm works directly on the global sketch without the need for knowledge of the

intermediate keys. As a result, the algorithm is scalable to a large number of key groups.

As shown in Figure III.3, the basic operation in the optimal sketch packing algorithm

is very similar to the key group packing algorithm. Instead of working over the key

groups, the optimal sketch packing algorithm works over the counters in each row in

the sketch. As discussed before, the sketch contains d rows, while each row contains w

counters. Each row can be treated as a linear projection of the original key groups. Since

w is very small compared to the data space |D|, the optimal sketch packing algorithm

can utilize the key group packing algorithm (Algorithm 2) directly. The optimal sketch

37

packing algorithm …
.

key groups

key group packing

1

2

d optimal sketch packing

sketch

Figure III.3: The optimal sketch packing algorithm.

Algorithm 2 Key Group Packing Algorithm
Require: Key group sizes S

k

, k 2 K
Require: Number of reducers R

1: sort(S
k

, k 2 K)
2: for all k 2 K do
3: r selectLeastLoadedReducer()
4: S(r) S(r) + S

k

5: �(k) r
6: end for
7: return �

packing repeats this process for each row and chooses the one with the minimum reduce-

phase imbalance ratio.

Algorithm 3 presents the details of the optimal sketch packing algorithm. In this

algorithm, �
min

records the current minimum reduce-phase imbalance ratio. It is ini-

tialized to R, which is the maximum reduce-phase imbalance ratio. The �

min

variable

records the sketch-cell-to-reducer mappings in as the current best solution.

As shown in Figure III.3, the basic operation in the optimal sketch packing algorithm

is very similar to the key group packing algorithm. As illustrated in Algorithm 2, the key

group packing algorithm adopts bin packing mechanism [20] and works on key groups

38

Algorithm 3 Optimal Sketch Packing Algorithm
Require: Global sketch C with size d⇥ w
Require: Number of reducers R

1: �
min

 R
2: �

min

 NULL
3: for i = 1! d do
4: // Use key group packing algorithm to pack each row

5: � keyGroupPacking(C[i][1...w], R)
6: // Calculate imbalance ratio and update min

7: � calculateImbalanceRatio(�, C)
8: if � < �

min

then
9: �

min

 �
10: �

min

 �

11: end if
12: end for

directly. As discussed above, maintaining all key group sizes is impractical in reality,

which makes key group packing algorithm difficult to deploy.

The sketch contains d rows, while each row contains w counters. Each row can be

treated as a linear projection of the original key groups. Since w is very small compared

to the data space |D|, we can deploy packing algorithm on each row in the sketch. Thus,

we propose an optimal sketch packing algorithm, which repeats the packing operation

for each row and chooses the one with the best load balancing performance (the one

with the minimum reduce-phase imbalance ratio �).

Algorithm 3 presents the details of the optimal sketch packing algorithm. In this

algorithm, �
min

records the current minimum reduce-phase imbalance ratio. It is ini-

tialized to R, which is the maximum reduce-phase imbalance ratio. The �

min

variable

records the sketch-cell-to-reducer mappings in as the current best solution.

39

Performance Analysis

Here we analyze the memory, communication and computational complexities of

our optimal sketch packing algorithm, and the load balancing performance in terms of

the reduce-phase imbalance ratio.

Proposition 2 The memory complexity of the optimal sketch packing algorithm is O(dw),

the communication cost is O(mdw), and the time complexity is O(dw log(w) + dRw).

Here the d and w represent the sketch depth and width, m is the number of mappers and

R is the number of reducers.

Proof 1 Each map task maintains a local sketch, which takes O(dw) memory. The

global sketch is also a d ⇥ w array, and the memory cost is also O(dw). Thus, the

memory complexity of the optimal sketch packing algorithm is O(dw).

For communication, each map task sends its local sketch to a central controller. The

sketch size is d⇥ w, thus the communication cost is O(mdw) for m map tasks.

For the local sketch update, each update process involves with d counters, the time

complexity for update is O(d).

Every time the optimal sketch packing algorithm sends one row in the sketch to

the key group packing algorithm to perform pack operation. The time complexity for

packing one row is O(w log(w)+Rw). This process is repeated a total of d times; thus,

the total time complexity for the optimal sketch packing algorithm is O(dw log(w) +

dRw).

Theorem 1 The optimal sketch packing algorithm is a (2 +

eR

w

)-approximation algo-

rithm, with probability at least 1� �.

Proof 2 Once the optimal sketch packing algorithm assigns the counter for an arbitrary

row i in the sketch, each reducer will receive several counters. Let us say that reducer s

40

received the maximum workload and counter C[i, j] is the last one it was assigned. Let

L
st

be the workload of reducer s before it received C[i, j]. When counter C[i, j] was as-

signed, the workload of its reducer was no larger than other reducers, so every reducer

at that time had a workload larger than L
st

. Thus, the maximum reducer workload is:

MAX
app

= L
st

+ C[i, j]

 N � C[i, j]

R
+ C[i, j]

=

S

R
+ (1� 1

R
)C[i, j].

Now, if we let L
max

be the workload of the maximum key group, it can be seen that

C[i, j]  L
max

+ "S, with probability at least 1� �. As such, it follows that:

MAX
app

 S

R
+ (1� 1

R
)(L

max

+ "S)

 MAX
opt

+ (1� 1

R
)(MAX

opt

+ "RMAX
opt

).

From which, it can then be deduced that:

MAX
app

 (1 + (1� 1

R
)(1 + "R))MAX

opt

.

Therefore, the load balancing performance ratio is:

⇢ = 1 + (1� 1

R
)(1 + "R)  2 + "R = 2 +

e⇥R

w
.

Implementation with Hadoop

41

We implement our profiling and load balancing solutions in Apache Hadoop [64].

The overall implementation involves two MapReduce jobs, as shown in Figure III.4. An

additional profiling MapReduce job needs to be executed before the real job, to sample

the data, build the sketch and compute the sketch-cell-to-reducer assignment.

A block-level sampling technique is introduced to reduce the extra running overhead

brought by the profiling job. In Hadoop, input data is stored in Hadoop File System

(HDFS) as equal-sized data blocks (64 MB in default). The block-level sampling tech-

nique randomly selects a small percent of data blocks to build the sketch. In comparison

to the record-level sampling technique, the block-level sampling has a better running

efficiency with similar accuracy [50]. As shown in our experimental analysis, a 5%

block-level sampling rate delivers good load balancing performance for all applications

and datasets evaluated in this study.

In the profiling job, each mapper processes the sampled input data blocks and builds

its local sketch. All local sketches are sent to one reducer, where the global sketch is

generated. Our optimal sketch packing algorithm is also deployed at this reducer. The

output of the profiling job is a sketch-cell-to-reducer mapping. Along with the set of

hash functions that are used to build the sketch, this mapping will be used as the new

partition function for the real job to direct the shuffle (i.e., reducer assignment) phase.

Experimental Evaluation

Experiment Setup

Applications and Dataset. We investigate two real world applications to assess the

performance of MapReduce jobs using our load balancing mechanism: PageRank [12]

42

…

Map Reduce

Profiling Job

…

…

Map Reduce

Partition function

Output

Real Job

Input

Figure III.4: Implementation of the optimal sketch packing algorithm with Hadoop.

and Inverted Indexing [51]. We evaluate PageRank using three real datasets: Flickr1,

YouTube2 and Twitter. Each dataset represents a directed or undirected graph, where

the rank of each vertex is computed via PageRank algorithm. We also use three syn-

thetic datasets, whose data size distribution follows a Zipf distribution3 to evaluate the

impact of skew on the algorithm performance. Inverted Indexing is evaluated using

two additional datasets: DBLP4 and Wikipedia5. Each dataset contains several publi-

cations/documents, where an inverted index is built for each word. Table III.1 provides

summary statistics of the real datasets.

Running Environments. We conduct experiments in both simulated and real MapRe-

duce cluster environments. In the simulated environment, we evaluate the accuracy

and the performance of the sketch-based solution in estimating the key group size and

achieving reducer-phase load balancing. The three datasets with relatively small sizes

(i.e., DBLP, Flickr, and YouTube) are evaluated in this environment.

1http://snap.stanford.edu/data/web-flickr.html
2http://snap.stanford.edu/data/com-Youtube.html
3For a given Zipf distribution with parameter z, the number of records in the k

th key group is propor-
tional to k

�z .
4http://dblp.uni-trier.de/xml
5http://dumps.wikimedia.org/enwiki/

43

Table III.1: Summary for experimental datasets used in Chapter III

Application Dataset # of key groups # of key-value pairs

PageRank

Flickr 105,938 4,633,896
Youtube 1,134,890 5,975,248
Twitter 40,104,238 1,539,743,478

Inverted Indexing DBLP 482.810 11.127.479
Wikipedia 14,180,286 1,487,606,462

We use the Amazon Elastic MapReduce service6 for the experiments over the two

massive datasets, Twitter and Wikipedia. In this environment, 20 m1-medium instances

are used with a separate master instance. Each instance has 1 vCPU and 2 ECU with

4 GB of memory and 410 GB disk. The HDFS block size is set to 64 MB and each

instance is configured to run at most two map tasks and two reduce tasks concurrently.

We disable the speculative task execution feature to better analyze the running time of

each task. By default, each MapReduce job is configured with 40 reducers.

Baseline Algorithms. We compare our optimal sketch packing (SP) algorithm with

the following approaches.

• The Hadoop default (HD) algorithm, which uses the hashing partition function for

key group assignment.

• The key group packing (KP) algorithm (Algorithm 2), which performs packing

algorithm on all key groups with accurate sizes.

• The state-of-the-art TopCluster (TC) algorithm, which builds a histogram to track

the k most frequent key groups.

• The sampling-based (Sample) solution. This sampling approach is different from

the block-level sampling we discussed in Section III. In this approach, we sample

6http://aws.amazon.com/elasticmapreduce/.

44

the intermediate key-value pairs generated by map tasks, and maintains a sampled

key group sizes in memory. After that, we deploy key group packing algorithm

on the sampled key groups. For the key groups not contained in the samples,

we use the default hash function as the partition function. As already known, a

simple sample rate cannot ensure the memory cost. To be fair, for each group

of experiment, we try several different sample rates to discover the one with the

same memory cost as TC and SP.

Note that we only evaluate the key group packing algorithm in our simulated en-

vironment, where the input datasets are small. For the two massive datasets, it is not

pragmatic to hold the accurate sizes for all key groups in memory, and the program will

throw OutOfMemory exception.

Sketch and Profile Settings. In most experiments, the sketch structure is set with

size w = 1000 and d = 5, which requires less than 1 MB memory. For TopCluster

algorithm, we configure it with k = 5000, which leads to a similar memory usage for

fair comparison. For both algorithms, we adopt a block-level sampling strategy that

samples the HDFS blocks at a 5% sampling rate.

Simulated Environment

Key Group Size Estimation

Though key group sizes are not directly used for load balancing, they serve as a

basis of our load balancing algorithm. This allows us to derive important insight into the

performance of the load balancing algorithm. Thus, we first evaluate the performance

of sketch in terms of its key group size estimation.

These experiments use four real datasets to assess the extent to which the techniques

can estimate key group sizes. In Figure III.5, we rank key groups according to their real

45

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

K
ey

 g
ro

u
p
 s

iz
e

Key group size ranking

Accurate
Sketch

(a) Flickr

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

K
ey

 g
ro

u
p
 s

iz
e

Key group size ranking

Accurate
Sketch

(b) Youtube

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

K
ey

 g
ro

u
p
 s

iz
e

Key group size ranking

Accurate
Sketch

(c) DBLP

Figure III.5: Key group size estimation for various datasets.

size (Real) and mark the estimated size using Count-Min sketch as Sketch. As shown

in Figure III.5, sketch provides an accurate estimation for highly ranked key groups

(which have large sizes). And, the performance of the sketch-based method is directly

correlated with the degree of data skew [69]. Of all the datasets, sketch achieves the

best performance on the DBLP dataset (shown in Figure III.5(c)). This is in line with

the observation that DBLP has the most skewed distribution of key group sizes.

Reduce-Phase Load Balancing

We compare the performance of our SP algorithm with HD, TC, Sample and KP.

This set of experiments is deployed with three real datasets and three synthetic datasets.

46

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 40 80 120 160 200

Im
b
al

an
ce

 r
at

io

of reducers

HD
TC

Sample
SP
KP

(a) Flickr

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 40 80 120 160 200

Im
b
al

an
ce

 r
at

io

of reducers

HD
TC

Sample
SP
KP

(b) Youtube

 0

 2

 4

 6

 8

 10

 12

 14

 16

 40 80 120 160 200

Im
b
al

an
ce

 r
at

io

of reducers

HD
TC

Sample
SP
KP

(c) DBLP

Figure III.6: Reduce-phase imbalance ratio for three small datasets.

Each synthetic dataset is composed of 50 million key-value pairs, organized in 5 million

groups. We vary the Zipf parameter z 2 {0.6, 0.8, 1.0}. To evaluate the algorithm

performance with different scenarios, we vary the number of reducers from 40 to 200.

For each group of experiments, we record the number of intermediate key-value pairs

assigned to each reducer as a representation of the reducer workload. Then, we calculate

the reduce-phase imbalance ratio.

Figure III.6 shows the results with the three real datasets. Since HD utilizes a hash

function as its default setting, its performance largely depends on the input data and

cannot provide any assurance over the reducer load. The TC algorithm can provide

some assurance, but it only tracks the top-k key groups, as such, its performance is also

47

limited. The Sample approach only has limited information about the key group sizes,

and most key groups cannot be sampled by given a limited space. Thus its performance

is also limited. Our SP algorithm requires much less memory than KP while deliver-

ing competitive load balancing. In all cases, SP significantly outperforms HD, TC and

Sample.

In Figures III.6(a), III.6(b), our SP algorithm maintains an imbalance ratio close to

1.0. In Figure III.6(c), the imbalance ratio is always much larger than 1. This is because

the key group size distribution is highly skewed and there exists an expensive key group

whose workload exceeds the average. Whereas we assign this expensive key group, the

assigned reducer would become a straggler.

Figure III.7 presents the results of synthetic datasets, which further validate the su-

periority of SP. In Figures III.7(a), where the input dataset has low skew, all four algo-

rithms exhibit similar performance. In Figure III.7(b), where the dataset has medium

skew, SP performs much better than HD, TC and Sample. In Figure III.7(c), where the

input dataset has high skew and a particular key group dominates most of the workload,

none of the five algorithms can mitigate the reduce-phase skew.

Generally, our SP algorithm provides much better load balancing compared to the

default approach of Hadoop, the state-of-the-art TC algorithm and the Sample approach.

Furthermore, the SP algorithm can achieve a load balancing performance that is close to

the KP algorithm in most situations.

Robust to Data Sequence

As discussed earlier, the distributed streaming data model dictates that robustness

is a core requirement for composing an appropriate MapReduce data representation. In

this section, we perform several experiments to evaluate our SP algorithm’s performance

under different data arriving sequences and compare them to the TC algorithm.

48

 0

 0.5

 1

 1.5

 2

 2.5

 3

 40 80 120 160 200

Im
b
al

an
ce

 r
at

io

of reducers

HD
TC

Sample
SP
KP

(a) Zipf 0.6

 0

 1

 2

 3

 4

 5

 6

 40 80 120 160 200

Im
b
al

an
ce

 r
at

io

of reducers

HD
TC

Sample
SP
KP

(b) Zipf 0.8

 0

 5

 10

 15

 20

 25

 30

 40 80 120 160 200

Im
b
al

an
ce

 r
at

io

of reducers

HD
TC

Sample
SP
KP

(c) Zipf 1.0

Figure III.7: Reduce-phase imbalance ratio for three Zipf datasets.

We generate two types of datasets from the original Flickr, Youtube and DBLP

datasets. We sort key groups according to their sizes either in an increasing order (I)

or a decreasing order (D), which generate two new data streams for each dataset. We

deploy our SP algorithm and the TC algorithm over those data streams and examine

their reduce-phase workload imbalance ratios. The results are presented in Figure III.8.

As shown in the figure, our SP algorithm is robust to data arrival sequence and show

stable performance. On the other hand, the TC algorithm is highly sensitive to the data

arrival order. For Figure III.8(c), as DBLP dataset contains expensive key groups, there

is not obvious performance difference between different algorithms.

49

 0

 0.5

 1

 1.5

 2

 2.5

 3

 40 80 120 160 200

Im
b
a
la

n
c
e
 r

a
ti

o

of reducers

TC-D

TC-I

SP-D

SP-I

(a) Flickr

 0

 0.5

 1

 1.5

 2

 2.5

 3

 40 80 120 160 200

Im
b
a
la

n
c
e
 r

a
ti

o

of reducers

TC-D

TC-I

SP-D

SP-I

(b) Youtube

 0

 2

 4

 6

 8

 10

 12

 14

 40 80 120 160 200

Im
b
a
la

n
c
e
 r

a
ti

o

of reducers

TC-D

TC-I

SP-D

SP-I

(c) DBLP

Figure III.8: Reduce-phase imbalance ratio with different data arrival sequences.

An interesting observation is that the TC algorithm performs much better with in-

creasing ordered data than decreasing order. This is because that the TC algorithm

utilizes a stream summary algorithm [57] to track the top-k key groups. The stream

summary algorithm works better with increasing ordered data. We refer readers to [57]

for more implementation details.

Impact of Storage Space

As approximate approaches, the performance of the TC, Sample and SP algorithms

depends on the given memory space. Here we investigate the impact of memory spaces

on the reduce-phase imbalance ratio.

50

 0

 0.5

 1

 1.5

 2

 2.5

 3

10
3

10
4

Im
b
al

an
ce

 r
at

io

Memory space

TC
Sample

SP

(a) Flickr

 0

 0.5

 1

 1.5

 2

 2.5

 3

10
3

10
4

10
5

10
6

Im
b
al

an
ce

 r
at

io

Memory space

TC
Sample

SP

(b) Youtube

Figure III.9: Reduce-phase imbalance ratio with different memory spaces.

Figure III.9(a) and III.9(b) illustrate the results for Flickr and Youtube datasets. The

results shows that the SP algorithm can perform much better with an increasing memory

space.

Comparison of Different Sketches

In our implementation, we select Count-Min sketch [22] as the data summary. There

are other types of sketch implementations, such as the FastAGMS sketch [21]. Here we

compare these two different sketches’ performance.

The major difference between the Count-Min and FastAGMS sketches is how the

values are updated. The Count-Min sketch always does +1 for each update (as shown

in Figure III.2), while the FastAGMS sketch does +1 or -1 (depends on another hash

function).

Figure III.10 illustrates the reduce-phase imbalance ratio with three different datasets

and 200 reducers. The results show that FastAGMS sketch cannot achieve reduce-phase

load balancing and the imbalance ratios are very high. This is because the FastAGMS

sketch cannot maintain the key group workload information. A combination of +1 and

-1 generates 0 workload, although it is 2 key-value pairs.

51

 0

 50

 100

 150

 200

Flickr Youtube DBLP
Im

b
a
la

n
c
e
 r

a
ti

o

Dataset

FastAGMS

CountMin

129.2

105.1

119.4

1.0 1.1
8.3

Figure III.10: Reduce-phase imbalance ratio with different sketches.

Amazon Elastic MapReduce Environment

To perform experiments with massive-sized datasets and evaluate the job running

time, we use the Amazon Elastic MapReduce Service.

Overall Job Running Time

In this section, we compare our SP algorithm with the HD and TC algorithms using

two groups of experiments: 1) PageRank over the Twitter dataset and 2) Inverted Index-

ing over the Wikipedia dataset. In comparison to HD, both SP and TC introduce another

MapReduce job (profiling) to build a data profile. As such, their overall job running

time also includes the time spent in the profiling job. For each group of experiments,

we record the running time of the two MapReduce jobs (i.e., profiling and real) and

calculate the reduce-phase imbalance ratio of the real job.

Figure III.11(a) summarizes the reduce-phase imbalance ratio. The results further

validate that our SP algorithm outperforms both HD and TC algorithms, especially when

facing millions or billions of key groups. The TC algorithm operates packing operation

over the top-k key groups, as such, it can improve the default HD algorithm. However,

for applications having millions of key groups, balancing only the top-k key groups is

52

 0

 1

 2

 3

 4

 5

PageRank InvertedIndexing

Im
b
al

an
ce

 r
at

io

Application

HD
TC
SP

(a) Reduce-phase imbalance raio

 0

 1

 2

 3

 4

 5

HD TC SP

R
u
n
n
in

g
 t

im
e

(1
0
0
0
s)

Algorithm

Map1
Reduce1

Map2
Reduce2

(b) PageRank with Twitter data set

 0

 1

 2

 3

 4

 5

HD TC SP

R
u
n
n
in

g
 t

im
e

(1
0
0
0
s)

Algorithm

Map1
Reduce1

Map2
Reduce2

(c) Inverted Indexing with Wikipedia data set

Figure III.11: Job running time and reduce-phase imbalance ratio with PageRank and
Inverted Indexing applications.

insufficient, and the reduce-phase imbalance ratio is still very high. Our SP algorithm

summarizes all key group sizes in the sketch, which largely keeps the original key group

workload information. This mechanism helps the SP algorithm largely balance the re-

duce workload for both applications, and its reduce-phase imbalance ratio is close to

1.0.

Figure III.11(b) and Figure III.11(c) illustrates the entire job running time for PageR-

ank and Inverted Indexing applications. Here Map1 and Reduce1 refer to the profiling

job, and Map2 and Reduce2 refer to the real job. As our SP algorithm can balance

the reduce-phase workload, it can largely reduce the job running time. In comparison

53

to the HD algorithm, the SP algorithm can reduce the job running time by 51.4% and

39.6%. Additionally, the profiling job of both the TC and SP algorithms incur only a

small additional cost (5.7% in average) in comparison to the whole job running time.

Impact on Number of Reducers

In a production cluster, different MapReduce jobs may have different number of

reducers, according to their workload and cluster resources. In this section, we evaluate

the impact of number of reducers on the performance of the SP algorithm.

Figure III.12(a) illustrates the reduce-phase imbalance ratio when the number of

reducers varies from 40 to 200. The results show that, for both PageRank and Inverted

Indexing applications, our SP algorithm delivers stable performance with an imbalance

ratio close to 1.

Impact of Sketch Size

According to the analysis in Section III, the performance of the SP algorithm de-

pends on R and w, where R is the number of reducers and w is the sketch width. Given

a fixed R, we evaluate the impact of the sketch width w.

Here we fix R = 40 and d = 5, and vary w from 50 to 1000. Figure III.12(b) shows

that the imbalance ratio is inversely correlated with the sketch width. This phenomenon

is also reflected in our theoretical analysis – when the number of reducers is close to the

sketch width, the benefit of our SP algorithm will diminish. Our empirical study shows

that, when the sketch width is set to 10 to 20 times that of the number of reducers, it

leads to the best performance.

54

 0

 0.5

 1

 1.5

 2

 2.5

 3

 40 80 120 160 200

Im
b
al

an
ce

 r
at

io

of reducer number

PageRank
InvertedIndexing

(a) Various reducer numbers (sketch size is 1000*5
and sampling rate is 5%)

 0

 0.5

 1

 1.5

 2

 2.5

 3

50 100 500 1000

Im
b
al

an
ce

 r
at

io

Sketch width

PageRank
InvertedIndexing

(b) Various sketch sizes (reducer number is 40 and
sampling rate is 5%)

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.1 0.5 1 5

Im
b
al

an
ce

 R
at

io

Sampling rate (%)

PageRank
InvertedIndexing

(c) Various sampling rates (sketch size is 1000*5
and sampling rate is 5%)

Figure III.12: Reduce-phase imbalance ratio under various settings.

Impact of Sampling Rate

Block-level sampling is introduced to reduce the running time of profiling job, as

discussed in Section III. Here, we investigate the impact of the sampling rate. Fig-

ure III.12(c) illustrates the reduce-phase imbalance ratio under different block-level

sampling rates. As the sampling rate increases, the sketch is more adept at capturing

the real data distribution. As such, our SP algorithm performs much better. The empir-

ical study also shows that a 5% block-level sampling rate is sufficient to deliver good

load balancing performance.

55

Comparison with Online Approach

Our implementation in Section III introduces an additional profiling MapReduce job

to build the sketch. We name this approach as an “offline” approach. Another alternative

is to use an “online” approach. Here we briefly describe the operation of the online

approach and validate our choice of an offline approach using empirical study.

The online approach does not need a profiling job. By changing the implementation

inside Hadoop, the online approach lets each map task in the real job build its local

sketch and send the local sketch to the Hadoop central controller (i.e., JobTracker in

Hadoop). After the map phase completes, the central controller runs the SP algorithm

and sends the generated sketch-cell-to-reducer mappings back to each mapper, where it

is used to dispatch the key groups to corresponding reducers. Instead of introducing a

profiling job, this online approach introduces a profiling phase between map phase and

reduce phase to do the profiling job.

To investigate the efficiency of these two mechanisms, we conduct a comparison

study between them. As the implementation of the online approach requires the mod-

ification of the Hadoop source code, which is not supported by the Amazon Elastic

MapReduce service, we implement the online approach in a private cloud environment7

with similar configurations.

We calculate the ratio of the profiling running time compared to the whole job run-

ning time. For the offline approach, the profiling job takes 5.2% and 6.3% of total run-

ning time for PageRank and Inverted Indexing, respectively. For the online approach,

these ratios increase to 21.8% and 23.3%. The online profiling approach nearly doubles

the running time of the map phase.

7ISISCloud with https://cloud.isis.vanderbilt.edu/horizon/.

56

The reason is that, in the online profiling approach, all the mapper outputs are stored

at local disks during profiling and sketch construction period. Up on receiving the

sketch-cell-to-reducer mappings, each mapper reorganizes its local mapper outputs. Ac-

cording to the Hadoop design, each mappers output is organized into several files, and

each file contains all the intermediate data sent to one reducer. This mechanism intro-

duces another round of disk I/O operation, thus increasing cost when processing mas-

sive datasets. An alternative is to store all mapper outputs in memory, until receiving

the sketch-cell-to-reducer mappings from the central controller. However, this alterna-

tive is impossible when we process massive datasets where each mapper has several GB

outputs.

Chapter Summary

In this chapter, we introduced a scalable and robust load balancing solution for

MapReduce framework based on a novel sketch-based data structure. We implemented

and integrated our solution within Hadoop. Experimental studies using PageRank and

Inverted Indexing over real and synthetic datasets show that our solution outperforms

both Hadoop default implementation and the current state-of-the-art solution.

57

CHAPTER IV

SCALABLE LOAD BALANCING FOR MAPREDUCE-BASED RECORD
LINKAGE

In Chapter III, we illustrate how to utilize sketch-based profiling approaches to solve

the reduce-phase skew problem in a scalable way. In this chapter, we further investigate

how to deploy sketch-based profiling to solve the skew with more complex applications,

such as record linkage [58].

This chapter is organized as follows. We first motivate the need for solving skew

problem in MapReduce-based record linkage and analyze the limitations of existing

approaches in IV.1. Then we present our approach in Section IV.2, with an experimental

evaluation in Section IV.3. We summarize the chapter in Section IV.4.

Motivation

The integration of data from multiple sources (i.e., record linkage1), where dupli-

cates are merged or removed, is critical to ensure big data repositories are managed ef-

ficiently and effectively. Traditional single-machine architectures for record linkage hit

significant performance barriers when applied to big data, leading to extremely long run-

ning time and high resource consumption [45]. Recently, several techniques [44, 60, 85]

have been proposed to parallelize the record linkage process based on the MapReduce

platform [25]. In these techniques, the datasets are partitioned into several blocks using

blocking keys by the map tasks and assigned to parallel reduce tasks, where the record

pairs are constructed for comparison.

1In the literature, record linkage is also referred to as deduplication, entity resolution, merge-purge
and name matching [29]

58

10
0

10
2

10
4

10
6

10
8

10
10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

B
lo

c
k
 w

o
rk

lo
a
d

Rank

(a) Block workload

10
0

10
2

10
4

10
6

10
8

10
10

 0 10 20 30 40 50 60 70 80

R
e
d
u
c
e
r

w
o
rk

lo
a
d

Rank

(b) Reducer workload

Figure IV.1: Workload ranking for the DBLP-1 dataset.

A common issue faced by these approaches is reduce-phase data skew, which oc-

curs when the block workload is non-uniformly distributed. Figure IV.1(a) illustrates

an example of block workload2 ranking for the DBLP-1 dataset (We refer readers to Ta-

ble IV.1 for details regarding this dataset). When such data skew occurs, the reducer that

receives the highest workload requires a significantly longer amount of time to complete

its task compared to its peers. As a result, an overall prolonged reduce-phase running

time is introduced, which diminishes the benefits realized through parallelization. Fig-

ure IV.1(b) shows an example of the reducer workload ranking when we deploy the

DBLP-1 dataset in MapReduce using 80 reducers. Here the most loaded reducer takes

44x more workload than the average. To address this problem, it has been suggested that

the size of blocks can be profiled and leveraged for skew avoidance. More specifically,

block size profiles have been used to design subkey schemes [55], block division strate-

gies [43], and record pair allocation methods [43] to balance the load of the reducers.

However, establishing an accurate profile for block sizes is extremely challenging

for massive datasets with millions or billions of block keys. For example, when one

attempts to establish a per-block size profile for large datasets, such as the DBLP-10 or

2Here the workload is measured as the number of record pairs in each block.

59

DBLP-20 (again, we refer the readers to Table IV.1 for details regarding these datasets),

the profile needs to record the size for over 5 million blocks. As a result, the program

crashes when the profile is loaded onto a virtual machine that assigns 1 GB memory for

each task3. In general, when blocking keys are linked to the input data, the blocking

key’s value domain can be extremely large and challenging to predict a priori. This

clearly limits the applicability of precise profiling, which establishes accurate per-block

size information, and its associated load balancing approaches to big datasets where

millions to billions of blocks are the norm.

In this chapter, we introduce scalable reduce-phase load balancing solutions for

record linkage over the MapReduce framework. To do so, we address two specific prob-

lems: (1) how to design an efficient data structure that summarizes the block-related

load information and (2) how to leverage information recorded in this structure to as-

sign records to reducers so that their loads are balanced. To address the first problem, we

introduce a sketch-based data profiling method [21] for capturing block size statistics.

For context, informally, a sketch is a two-dimensional array of cells, each indexed by

a set of pairwise independent hash functions. For the second problem, we present two

load balancing algorithms – cell block division and cell range division – that directly

operate on sketch-based data profiles to achieve reducer load balancing.

Chapter III also introduced a sketch-based solution to capture key group size statis-

tics and presents optimal sketch packing algorithm which assigns the key groups to the

reducers in a load balancing manner. However, the optimal sketch packing algorithm

cannot be deployed to support traditional record linkage applications for several rea-

sons. First, the optimal sketch packing algorithm assumes the key group workload is

proportional to its size, which is not appropriate in this situation due to the fact that

3In the current generation of MapReduce/Hadoop (i.e., YARN [81]), 1 GB is the default allocated
memory for each task.

60

record linkage is, in effect, a join operation. Furthermore, the optimal sketch packing

algorithm works on the granularity of key groups and treats each key group as an indi-

visible unit. This characteristic makes the sketch packing algorithm a generalized load

balancing solution which is appropriate for several applications (e.g., PageRank and in-

verted indexing, etc.), but also limits its performance with highly skewed datasets (as

demonstrated in Figure III.6(c)). Datasets used in record linkage applications are of-

ten highly skewed. In the example shown in Figure IV.1(a), where the maximum block

takes 55% of total workload. We name this type of block (key group) the expensive

block (key group). Wherever the optimal sketch packing algorithm assigns this expen-

sive block, that reducer would be the straggler. These two reasons limit the optimal

sketch packing algorithm performance on the record linkage application.

The main contributions of our work are summarized as follows.

• First, our sketch-based data profiling method is (1) scalable with the size of the

input data and the number of blocks and (2) efficient for construction, such that

each update takes only constant time.

• Second, our proposed cell block division and cell range division algorithms can

efficiently divide expensive blocks without losing any record pairs that need to be

compared.

• Third, our theoretical analysis shows that our load balancing algorithms have a

bounded load balancing performance, as well as computational complexity.

• Fourth, we perform an empirical study using several real-world and synthetic

datasets to demonstrate that our algorithms, which are limited to a fixed mem-

ory size, can achieve near-optimal load balancing performance in comparison to

61

precise profiling which maintains all block sizes in memory, and incurs only a

very small running time overhead.

Background

Record Linkage

Record linkage is the process of matching records on specific entities (e.g., “John

Smith” and “J. Smith” may refer to the same person.) in disparate sources. Large-scale

record linkage frameworks involve three fundamental data-intensive steps [29]. The

first step is blocking, which uses a quick coarse-grained similarity filtering strategy to

produce subsets (i.e., blocks) of the record pair set, each of which contains pairs that

likely correspond to the same entity (i.e., candidate record pairs). As a commonly used

blocking strategy, each input record is assigned with a blocking key k; records with

the same k are grouped together into a block4. Only records within the same block

are compared with each other in the ensuing comparison step. This step involves the

assessment of multiple fields between a pair of records to produce a similarity vector.

The third step is classification, which determines the match status of each record pair

based on their similarity vectors and outputs the set of matches and non-matches.

As in [43] and [44], we focus on optimization for the first two steps because the final

classification step can utilize several existing statistical strategies that are independent

of the scale of the problem [30]. Thus, the whole process can be described as: given

two sets of records R and S, compute the similarity vector for each pair of records

from different datasets with the same blocking key. We refer to the similarity vector

4For various blocking mechanisms, we refer readers to [16].

62

for records r
↵

and r
�

as x = [x1, x2, ..., x
t

] with t components that correspond to the

t comparable fields. Each x
i

corresponds to the level of agreement of the ith field of

the records r
↵

and r
�

. x
i

is computed using a similarity function sim, such as the edit

distance or Q-gram distance. For example, records {John, Smith, Nashville} and {Jon,

Smyth, Nashville} would generate a similarity vector [0.75, 0.80, 1.00] when we use

edit distance to calculate the similarity.

Blocking-based Record Linkage in MapReduce

Recently proposed approaches [44, 60, 85] have favored a common design to support

the blocking-based record linkage process over MapReduce. In this design, datasets

are partitioned by map tasks into several blocks using blocking keys and subsequently

assigned to parallel reduce tasks, where record pairs are constructed for comparison.

Figure IV.2 illustrates an example of this process, where field a acts as the blocking key.

Records with the same blocking key are sent to the same reducer, where the similarity

vectors are built.

A common issue faced by the current design of record linkage protocols over the

MapReduce framework is reduce-phase data skew. When the block size distribution is

highly skewed, the default MapReduce hash-based key group assignment mechanism

can assign some reducers a much higher workload than others. This results in a pro-

longed reduce-phase running time. For example, in Figure IV.2, the first reducer needs

to compare 7 record pairs, while the other two reducers only have to compare 2 and

4. Data skew manifests because of an imbalanced distribution of block sizes and the

MapReduce default hashing partition mechanism.

To achieve reduce-phase load balancing, existing solutions introduce an additional

MapReduce job to establish a block size profile [43, 55] which records the number of

63

M
ap

M
ap

1" R1#

1" R2#

2" R3#

2" R4#

3" R5#

3" R6#

4" R7#

a b key value

G
roup by key

R
educe

R
educe

1" …..."

1" ……"

2" …..."

2" ……"

3" ……"

3" ……"

4" ……"

R1#

R2#

R3#

R4#

R5#

R6#

R7#

1" …..."

1" ……"

1" …..."

2" ……"

3" ……"

3" ……"

4" ……"

S1#
S2#
S3#
S4#
S5#
S6#
S7#

1" S1#
1" S2#
1" S3#
2" S4#
3" S5#
3" S6#
4" S7#

1" R1#R2##
S1#S2#S3#

4" R7#S7#

2" R3#R4##
S4#

3" R5#R6##
S5#S6#

R
educe

(R5#S5)" (0.4,"0.9,"…)"

(R5#S6)" (0.6,"0.7,"…)"

(R6#S5)" (0.2,"0.9,"…)"

(R6#S6)" (0.8,"0.5,"…)"

(R3#S4)" (0.5,"0.6,"…)"

(R4#S4)" (0.1,"0.2,"…)"

(R1#S1)" (0.3,"0.2,"…)"

(R1#S2)" (0.6,"0.4,"…)"

(R1#S3)" (0.1,"0.5,"…)"

(R2#S1)" (0.3,"0.7,"…)"

(R2#S2)" (0.2,"0.4,"…)"

(R2#S3)" (0.1,"0.3,"…)"

(R7#S7)" (0.6,"0.5,"…)"

 pair similarity

Figure IV.2: An example of blocking-based record linkage using MapReduce.

records within each block. This profile can then be used to design subkey [55], block

division [43], or record pair allocation [43] schemes so that the load at the reducers can

be balanced. For instance, in [43], a MapReduce job is included to build a block size

matrix for the number of records within each block. A global index is then reported

for each record pair and each reducer is assigned with an index range of equal length,

thus achieving load balancing across reducers. A major limitation of the aforementioned

block-based size profiling method is its scalability. In reality, datasets to be linked can

be extremely large – on the order of millions or billions. Thus, given current computing

architectures, it is impossible to maintain a precise block size matrix in a space-limited

environment.

In this chapter, we seek an approximate data profiling method that is both memory-

and time-efficient. For such a method to scale to massively-sized datasets, the memory

cost should be independent of the number of blocks and the processing time should be

64

…

Map Reduce

Profiling

Dataset

…

…

blocking
sketch

building

Map Reduce

load
balancing

similarity
computation

sketch

Similarity
vector

Comparison

R

S

Figure IV.3: The workflow of MapReduce-based record linkage facilitated by sketch-
based profiling.

linear (or sublinear) in the size of the input dataset. Moreover, the data profile should

introduce a bounded approximation error and yield a highly accurate load balancing

strategy, regardless of the data skew.

Sketch-based Profiling and Load Balancing Solution

Figure IV.3 illustrates the overall design of our system with a depiction of linking

two datasets R and S. Similar to the approaches adopted in [43], our design is based

on two rounds of MapReduce jobs. The profiling job analyzes the input datasets and

provides the load estimation in terms of sketch for input datasets R and S. The load

information is supplied by map tasks into the second MapReduce job (comparison),

where load balancing strategies are applied to perform the actual record linkage task.

65

Sketch-based Data Profiling

We first describe the centerpiece of our approach – how to build, and achieve load

balancing based upon, the sketch. A sketch [21, 22] is a data structure that provides

space-efficient summaries for massive, rapid-rate data streams. Here, we use the sketch

data structure to estimates block sizes for the input data. Specifically, we use the

FastAGMS sketch [21] because it provides the most accurate estimation for the size

of join operation5 [69], regardless of data skew. We also evaluate other type of sketches

in Section IV, such as Count-Min sketch [22], to verify this statement.

To estimate the workload in terms of record-pair comparisons within each block, we

maintain two FastAGMS sketches for datasets R and S, which we refer to as C
R

and C
S

,

respectively. Each FastAGMS sketch C 2 {C
R

, C
S

} maintains a two-dimensional array

of cells with d rows of width w, which are indexed by a set of pairwise independent hash

functions H = {h
i

|i = 1, . . . , d}. Each hash function h
i

maps a blocking key k into a

hashing space of size w (i.e., h
i

(k) 2 {0, 1, . . . , w � 1})6. The FastAGMS sketch also

maintains a family of ±1 four-wise independent hash functions G = {g
i

|i = 1, . . . , d}7.

This family of hash functions preserves the dependencies across the counters.

Each cell of the sketch carries a counter. Initially, all of the counters in the array are

set to zero.

C[i, j] = 0, for all i 2 {1, ..., d}, j 2 {1, ..., w}

When a new blocking key k is emitted, the counters are updated as shown in Algo-

rithm 4.

C[i, h
i

(k)] = C[i, h
i

(k)] + g
i

(k), for all i 2 {1, ..., d}

5Record linkage can be treated as a join operation where the blocking key act as the join key.
6
hi(k) = (aik + bi) mod w.

7
gi(k) =

⇢
1 if (aik3 + bik

2 + cik + di) mod 2 = 0
�1 otherwise .

66

Algorithm 4 Update operation for FastAGMS sketches C
R

and C
S

1: function UPDATE(r, C
R

, C
S

,H,G)
2: // calculate blocking key

3: k calculateBKV(r)
4: // update sketch

5: if r 2 R then
6: for i = 1! d do
7: C

R

[i, h
i

(k)] C
R

[i, h
i

(k)] + g
i

(k)
8: end for
9: else if r 2 S then

10: for i = 1! d do
11: C

S

[i, h
i

(k)] C
S

[i, h
i

(k)] + g
i

(k)
12: end for
13: end if
14: end function

k

g1(k)

gd(k)

g2(k)

g3(k)

h1

hd

Figure IV.4: An example of the FastAGMS sketch update process (w = 9 and d = 4).

Specifically, for each row i, h
i

(k) determines the cell to be updated, and g
i

(k) de-

cides whether to increment or decrement the counter in the corresponding cell. Fig-

ure IV.4 illustrates this update process with w = 9 and d = 4. Here, a key-value pair

with key k is mapped to a counter in each row i (i 2 {1, 2, ..., d}) by the hash function

h
i

and increments the counter by g
i

(k).

The sketches C
R

and C
S

are constructed based upon the same parameters (i.e.,

d, w,H,G). Each sketch provides an approximate summary of block sizes L(k) for

each dataset, where the sizes of multiple blocks are compressed into one cell. Recall

that the record linkage workload in terms of record pair comparisons is the product of

the block sizes from these two datasets L
R

(k) ⇥ L
S

(k). To estimate this workload, we

67

consider the inner product of the sketches, which is accomplished through two steps. In

the first step, we choose the median value of the row inner products. Formally, the row

inner product is provided by:

C i

=

wX

j=1

C
R

[i, j]⇥ C
S

[i, j], i 2 {1, 2, ..., d}

Let the value of row i = ✓ be the median value among these d row inner products.

In the second step, we use this row to build a counter array C✓ with width w as follows.

C✓

[j] = C
R

[✓, j]⇥ C
S

[✓, j], for all j 2 {1, ..., w}

The array C✓ provides the estimation of the record-pair comparison workload within

blocks and will be applied in load balancing algorithms.

Implementation in MapReduce. The map tasks of the profiling job build local

sketches (CL

R

and CL

S

) based on the input records from the two datasets. Once com-

pleted, the local sketches are sent to one reducer, where they are combined to build the

final sketch (C
R

and C
S

). Sketch combination is straightforward: local sketches with

the same sizes are combined by summing them up, entry-wise.

The outputs of the profiling job are the final inner product sketch C✓, as well as the

corresponding row vectors from the sketches of the two datasets C
R

[✓] and C
S

[✓]. Our

load balancing algorithms work directly on these values.

Cell Block Division Algorithm

The C✓ from the profiling job is loaded by each map task in the comparison job

before processing the input records. As noted earlier, C✓ provides an estimation of

the record comparison workload, where each cell carries the estimated workload for

68

multiple blocks. Let ˆL represent the estimated overall workload, then ˆL =

P
w

j=1 C
✓

[j].

The average reducer workload can then be estimated as ˆL/n, where n is the number of

reducers.

Since C✓ contains w cells, a simple idea that might come to mind is to pack these

cells into n partitions and assign each reducer its own partition. However, some cells

may have a workload larger than the average ˆL/n, so a division procedure is required

for large cells (i.e., the function DivideCell in Algorithm 5). For each cell in C✓, if its

estimated workload is larger than average, we divide it into several subcells; otherwise,

we keep the cell as a single subcell. Lines 4–9 in Algorithm 5 illustrate the process of

calculating subcells. All subcells are maintained in a set S . Finally, a packing operation

is performed on the set S . The result � is a mapping from subcells to reducers.

Figure IV.5 presents an example of cell block division with w = 4 and an estimated

workload of 10. C✓ contains four cells, and their workload is {1⇥1, 2⇥3, 1⇥1, 2⇥1}.

Now assume there are three reducers and the estimated average workload is 4. Notice,

cell C✓

[2] is larger than the average, so it is divided into two subcells. In our implemen-

tation, we always follow row-based division, such that cells are divided along the axis

correspond to R. After division, S has five (sub)cells. Next, we perform the packing

operation, where each (sub)cell is assigned to the reducer with the minimum workload.

Based on the mappings �, the map tasks in the comparison round identify the corre-

sponding reducers for each record r, to which r needs to be sent (implemented in func-

tion GetReducer in Algorithm 5). First, the corresponding cell j for the given record r is

calculated (line 19). For each record from dataset R, as we perform row-based division,

we only need to send r to one reducer. Since each cell is divided into D[j] subcells with

the same size, we can randomly select a subcell and obtain its reducer (lines 22 – 24).

For each record from S, we need to send it to all reducers that map to the current cell

(lines 26 – 27).

69

1"

2"

2"

3"

4"

4"

R

1" 2" 2" 2" 3" 4"
S

Cθ[1] Cθ[2] Cθ[3] Cθ[4]

T3

T1

T1

T3

T2

Figure IV.5: An example of cell block division.

For example, in Figure IV.6, assume record r is hashed to C✓

[2] which has two

subcells. If r comes from dataset R, we randomly select one subcell and send r to

reducer T1 or T2. On the other hand, if r is from S, we send r to both reducers T1 and

T2.

Through such a cell block division approach, we can limit the maximum cell work-

load and achieve better load balancing performance. In Figure IV.5, the maximum re-

ducer workload is 4 (reducer T1). If no division introduced, the reducer that is assigned

with C✓

[2] would become the straggler and have a workload of 6.

Cell Range Division Algorithm

While the cell block division algorithm divides large cells, it may still lead to imbal-

anced reducer workloads due to variation in the size of the subcells. To account for this

problem, we now present a more sophisticated pair-based load balancing strategy that

strives to generate a uniform number of pairs for all reduce tasks.

70

1"

2" 3" 4"

5" 6" 7"

8"

9"

10"

1"

2"

2"

3"

4"

4"

R

1" 2" 2" 2" 3" 4"
S

Cθ[1] Cθ[2] Cθ[3] Cθ[4]

T3

T2

T1

Figure IV.6: An example of cell range division.

Each map task processes C✓ and can therefore enumerate the workload per cell. We

label each record pair in C✓ with a global index, and divide all record pairs into n equal-

length ranges (lines 4 – 8 in Algorithm 6). For a given cell C✓

[j], the overall number of

record pairs in all preceding cells has to be added as an index offset, which we maintain

the offset in an array O (lines 9 – 13). To further simplify the process, our cell range

division mechanism treats each row in a cell C✓

[j] as a unit and thus does not divide it.

Figure IV.6 presents an example of the cell range division with w = 4 and an esti-

mated workload of 10. Each record pair is labeled with an index from 1 to 10. Let the

reducer number be 3 and the set of record pairs be divided into three ranges. Reducers

T1, T2, and T3 will process the record pairs with indexes in the ranges [1,4], [5,8] and

[9,10], respectively.

The function GetReducer in Algorithm 6 determines the reducers that record r is

sent to. First, we find the corresponding cell for r. Next, we calculate the start and end

indices for record pairs that are related to r. If r comes from dataset R, we randomly

71

select a row for r in its corresponding cell. The start index o1 is calculated as all pre-

ceding record pairs (line 21), and the end index o2 is the end of the selected row (line

22). Each record from S needs to be sent to all reducers that map to current cell (lines

24 – 25). Finally, we determine the reducers by supplying the start and end record pair

indexes (line 28).

For example, in Figure IV.6, assume a record r is hashed to C✓

[2]. If r comes from

R, we randomly select a row in C✓

[2], and send r to reducer T1 or T2. If r comes from

S, we need to send r to both reducers T1 and T2.

Performance Analysis

Here we analyze the memory and computational complexity of our proposed algo-

rithms, and the load balancing performance.

Proposition 3 The memory complexity of our profiling method is O(d⇥ w), where d is

number of rows and w is the width. The computational complexity of sketch update is

O(d).

Proof 3 In the profiling job, each map/reduce task maintains two sketches with size dw,

thus its memory complexity is O(dw). The outputs of the profiling job are C✓, C
R

[✓] and

C
S

[✓], each of which is an array with width w. The map tasks in the comparison job

load them into memory and thus introduce a cost of O(w). As a result, the total memory

complexity is O(dw).

Since each update process involves d counters, the computational complexity is

O(d).

As in [43, 60], we measure the load balancing performance as the reduce-phase

imbalance ratio.

72

Definition 1 Reduce-phase imbalance ratio ⇢: Let L
i

represent the workload of reducer

T
i

, the imbalance ratio ⇢ is calculated by normalizing the maximum reducer workload

by the average workload.

⇢ =

max

n

i=1 LiP
n

i=1 Li

/n

To analyze the maximum reducer workload in our algorithms, we bound the esti-

mated workload ˆL.

Lemma 2 According to the analysis in [21], the workload estimation ˆL for two FastAGMS

sketches C
R

and C
S

with size d⇥w guarantees that ˆL 2 (L± "||R||2||S||2), with prob-

ability at least 1 � �. Here, " = e/w, � = 1/ed, e is the base of the natural logarithm,

L is the accurate workload, and ||.||2 is the L2-norm.

Next, we analyze the load balancing performance bound for the reduce-phase im-

balance ratio of our proposed algorithms in the following theorems.

Theorem 2 The reduce-phase imbalance ratio of the cell block division algorithm is at

most (2� 1
n

)(1 +

�
L

), with a probability of at least 1� �, where � = "||R||2||S||2.

Proof 4 Suppose reducer s receives the maximum workload and subcell sc is the last

one it is assigned. Let L
s

be the workload of reducer s before it receives sc. When

subcell sc is assigned, the workload of its reducer is no larger than the other reducers,

so every reducer has a larger workload than L
s

. Thus, the maximum reducer workload

is

L
max

= L
s

+ L
sc


ˆL� L

sc

n
+ L

sc

=

ˆL

n
+ (1� 1

n
)L

sc

Since each subcell has a workload less than ˆL/n, it can be stated that

L
max


ˆL

n
+ (1� 1

n
)

ˆL

n
= (2� 1

n
)

ˆL

n

73

Now, let � = "||R||2||S||2. It is the case that

L��  ˆL  L+�

and the imbalance ratio is at most

⇢ =

(2� 1/n)ˆL/n

L/n
 (2� 1/n)(L+�)

L
= (2� 1

n
)(1 +

�

L
).

Theorem 3 The reduce-phase imbalance ratio of the cell range division algorithm is at

most 1 + �
L

with a probability of at least 1� �, where � = "||R||2||S||2.

Proof 5 Let � = "||R||2||S||2. Then, it is the case that

L��  ˆL  L+�,

with a probability at least 1� �. Since each reducer has been assigned estimated work-

load of ˆL/n, the maximum reducer workload L
max

= (L + �)/n. As a result, the

imbalance ratio is at most

⇢ =

(L+�)/n

L/n
= 1 +

�

L
.

Experimental Evaluation

74

Experiment Setup

Dataset. Our evaluation is performed with two classes of datasets, the details of

which are shown in Table IV.1. The first is based on the DBLP dataset8, which has

approximately 1.2 million publications. In this dataset, we use the first two words of the

publication title as the blocking key. To scale up our evaluation, we increase the dataset

size to � times, where � 2 {1, 5, 10, 20}. Specifically, for each record in the dataset, we

generate � duplicates, each of which has a new blocking key by adding a random letter

to the old blocking key. Through this approach, we can increase the number of blocks

when increasing the dataset size. We refer to these datasets as DBLP-�, where DBLP-1

represents the original dataset.

The second class of datasets, which we refer to as Synth-↵, is synthesized from the

DBLP-20 dataset by manipulating the block size distribution. Specifically, we use a

Zipf distribution and vary the skew parameter ↵ 2 {0.5, 1.0, 1.5, 2.0}9. We first fix the

number of blocks and record pairs for all the datasets. For a given ↵, we calculate the

number of record pairs inside each block, and extract the records from the corresponding

block in the DBLP-20 dataset. The original dataset acts as R in our experiment, while

the dataset S for linkage is generated from R by making random modifications [17]

(e.g., deletion, insertion, et al.) to the fields other than the blocking key.

Running Environments. All experiments were performed on a 40-node cluster

running Hadoop 1.0.1 with a separate master node. Each node has one 2.4 GHz Intel

Core2 CPU with 2 GB of memory. The HDFS block size was set to 64 MB and each

node was configured to run at most two map tasks and two reduce tasks concurrently.

8http://dblp.uni-trier.de/xml
9For a given ↵, the number of record pairs in the k

th block is proportional to k

�↵. As such, ↵ is a
proxy for the amount of data skew simulated.

75

Table IV.1: Summary for experimental datasets used in Chapter IV

Dataset Records (million) Blocks (million) Pairs (billion)
DBLP-1 2.5 0.6 0.5
DBLP-5 12.6 3.3 1.8

DBLP-10 25.2 5.7 4.0
DBLP-20 50.4 7.9 16.9
Synth-0.5 416 5.0 10.0
Synth-1.0 226 5.0 10.0
Synth-1.5 32.8 5.0 10.0
Synth-2.0 21.6 5.0 10.0

We disabled the speculative task execution feature to better analyze the running time of

each task. By default, each MapReduce job is configured with 80 reducers.

Baseline Algorithms. We evaluate four algorithms: (1) the Hadoop default (HD)

algorithm, which uses the hash-based partition function for key group assignment; (2)

the pair-based (PR) algorithm [43], which utilizes the precise block profile; (3) our

cell block division (CB) algorithm (Algorithm 5); and (4) our cell range division (CR)

algorithm (Algorithm 6).

The performance of the algorithms is measured in terms of (1) job running time,

which is the entire running time including both profiling and comparison rounds; (2)

imbalance ratio of reducer workload in the comparison job, which is calculated by

normalizing the maximum reducer workload by the average reducer workload. Here, the

reducer workload is measured as the number of record pairs received by each reducer.

Sketch and Profile Settings. Unless stated otherwise, the sketch structure is set to

w = 10000 and d = 10, which requires less than 1 MB of memory.

Performance of CB and CR algorithms

We first evaluate the performance of the CB and CR algorithms using the DBLP

datasets. Figure IV.7 shows the running time of each phase. No results are shown for

76

 0

 0.5

 1

 1.5

 2

 2.5

HD PR CB CR

R
u
n
n
in

g
 T

im
e

(x
1
0
0
0
s) MapProfiling

ReduceProfiling
MapComparison

ReduceComparison

(a) DBLP-1

 0

 0.5

 1

 1.5

 2

 2.5

HD PR CB CR

R
u
n
n
in

g
 T

im
e

(x
1
0
0
0
s) MapProfiling

ReduceProfiling
MapComparison

ReduceComparison

(b) DBLP-5

 0

 0.5

 1

 1.5

 2

 2.5

HD CB CR

R
u
n
n
in

g
 T

im
e

(x
1
0
0
0
s) MapProfiling

ReduceProfiling
MapComparison

ReduceComparison

(c) DBLP-10

 0

 2

 4

 6

 8

 10

HD CB CR
R

u
n
n
in

g
 T

im
e

(x
1
0
0
0
s) MapProfiling

ReduceProfiling
MapComparison

ReduceComparison

(d) DBLP-20

Figure IV.7: Job running time for DBLP datasets.

the PR algorithm in the experiments with the DBLP-10 and DBLP-20 datasets because

the program crashed on account of an OutOfMemory exception. In other words, the

precise block size profile could not be maintained in memory.

In comparison to HD, the other three algorithms introduce another MapReduce job

(profiling) to build a data profile. As such, their overall job running time also includes

the time spent in the profiling job. It can be seen that PR, CB and CR, which balance

the load among reducers, all significantly reduce the job running time compared with

the HD algorithm.

Figure IV.7(a) and IV.7(b) show that PR, CB and CR have similar running time. Fur-

ther, CB and CR require less time in the ReduceProfiling and MapComparison (which is

77

 0

 10

 20

 30

 40

 50

1 5 10 20
Im

b
a
la

n
c
e
 r

a
ti

o

DBLP-β

HD

PR

CB

CR

Figure IV.8: Reduce-phase imbalance ratio for DBLP datasets.

particularly noticeable in Figure IV.7(b) with 34.1% reduction). This is because our al-

gorithms operate on the sketch (which are time-efficient for construction and retrieval),

while PR maintains a hash table in memory (whose operation time increases dramati-

cally with its size when collisions occur).

In comparison to HD, the profiling job in the CB and CR algorithms introduces 3%

extra running overhead on average. However, the entire running time is reduced by

71.56% and 70.73%, respectively.

We also report the number of record pairs processed by each reducer and calculate

the reduce-phase imbalance ratio. Both CB and CR achieve nearly optimal reducer-side

load balancing with an imbalance ratio around 1.1 as shown in Figure IV.8. Moreover,

in comparison to PR, our algorithms increase the imbalance ratio by only 2.5%, which

indicates that only a very small load balancing performance penalty is introduced by

approximate data profiles. The imbalance ratio of HD highly depends on the input data

and is always much higher than the other algorithms.

78

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 1 1.5 2

Im
b
al

an
ce

 r
at

io

Synth-α

CB
CR

(a) Data skew

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 80 160 240 320 400

Im
b
a
la

n
c
e
 r

a
ti

o

Number of reducers

CB

CR

(b) Reducer number

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

100 500 2000 5000 10000

Im
b
a
la

n
c
e
 r

a
ti

o

Sketch width

CB

CR

(c) Sketch size

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 5 10 20

Im
b
a
la

n
c
e
 r

a
ti

o

DBLP-β

CB-CountMin

CR-CountMin

CB-FastAGMS

CR-FastAGMS

(d) Sketch type

Figure IV.9: Reduce-phase imbalance ratio under various settings.

Performance under Various Data Skew

We further evaluate CB and CR under various data skew scenarios using the Synth-

↵ datasets. In this study, we mainly focus on the reduce-phase imbalance ratio in the

comparison MapReduce job, which has 80 reducers. As shown in Figure IV.9(a), CB

and CR have similar performance. The imbalance ratio remains around 1.25. Since

both CB and CR divide large cells, their performance is highly stable with respect to the

amount of skew of the dataset.

79

Performance under Number of Reducers

We now study the influence of the number of reducers n in a fixed cloud environment

of 40 nodes. We evaluate CB and CR with the DBLP-20 dataset, and vary the reducer

number from 80 to 400. As shown in Figure IV.9(b), both CB and CR maintain stable

performance as the number of reducers increases.

Experiments with Sketch Size

Here we fix the number of sketch rows to d = 10 and vary the width w from 100

to 10000. Figure IV.9(c) shows that the imbalance ratio is inversely correlated with the

sketch width. This phenomenon is also reflected in our theoretical analysis – when the

number of reducers increases, the workload estimation error decreases. Our empirical

study shows that the best performance is achieved when the sketch width is set between

50 to 100 times that of the number of reducers.

Experiments with Various Types of Sketches

In this chapter, we use the FastAGMS sketch [21] as the default implementation of

sketch data structure because it provides the most accurate workload estimation [69].

Yet, there are also other sketch implementations, such as Count-Min sketch [22]. Thus,

in this study, we deploy Count-Min sketch in our CB and CR algorithms and compare

the results with the default FastAGMS implementation. We evaluate this variation of our

method using the DBLP-� datasets, and calculate the reduce-phase imbalance ratio for

each group of experiment. As anticipated, Figure IV.9(d) indicates FastAGMS sketch

performs significantly better than Count-Min sketch.

80

 0

 10

 20

 30

 40

 50

1 5 10 20
Im

b
a
la

n
c
e
 r

a
ti

o

DBLP-β

CB

CR

SP

Figure IV.10: Reduce-phase imbalance ratio in comparison to optimal sketch packing
algorithm.

Comparison with optimal sketch packing Algorithm

As discussed in Section IV, C✓ provides an estimation of the record comparison

workload, where each cell carries the estimated workload for multiple blocks. Since C✓

contains w cells, a simple idea is to deploy the optimal sketch packing algorithm to pack

these cells into n partitions and assign each reducer with one partition.

Here, we evaluate the optimal sketch packing approach (SP), in comparison to the

cell subdivision strategy invoked by our CB and CR algorithms. To do so, we use the

DBLP-� datasets with 80 reducers. Figure IV.10 shows the reducer workload imbalance

ratio. Since the SP algorithm does not divide cells, its performance is limited by the data

skew. For instance, in the DBLP-1 dataset where the maximum block requires 55% of

the entire workload, the maximum reducer workload is 44x (⇡ 80⇥55%) more than the

average.

Chapter Summary

In this chapter, we presented a scalable solution to achieve load balanced record

linkage over the MapReduce framework. The solution contains two low-memory load

81

balancing algorithms that work with a sketch-based approximate data profiles. We per-

formed a theoretical and an empirical analysis on both real-world and synthetic datasets

to demonstrate that, compared with the state-of-the-art solution, our algorithms have

nearly the same load balancing performance while requiring much less memory.

82

Algorithm 5 Cell Block Division Algorithm

1: function DIVIDECELL(C✓, n)
2: // calculate estimated workload

3: ˆL P
w

j=1 C
✓

[j]
4: // calculate division number for each cell

5: for j = 1! w do
6: D[j] Math.ceil(C✓

[j]⇥ n/ˆL)
7: subcells[] createSubCells(row, j,D[j])
8: S S [subcells
9: end for

10: // perform packing operation on (sub)cells

11: sort(S)
12: for all subcell 2 S do
13: reducerID selectMinLoadedReducer()
14: �(subcell) reducerID
15: end for
16: end function

17: function GETREDUCER(r,H, ✓, D,�)
18: // cell index for current record r in row ✓

19: cell h
✓

(r)
20: // assign record to reducers

21: if r 2 R then
22: // send to one reducer

23: rand random(D[cell])
24: reducerID getReducerID(�, cell, rand)
25: else if r 2 S then
26: // send to all reducers related to current cell

27: reducerIDs getAllReducerID(�, cell)
28: end if
29: end function

83

Algorithm 6 Cell Range Division Algorithm

1: function DIVIDERANGE(C✓, n)
2: // calculate estimated workload

3: ˆL P
w

j=1 C
✓

[j]
4: // assign each range to one reducer

5: avg ˆL/n
6: for i = 1! n do
7: � � [{[(i� 1)⇥ avg + 1, i⇥ avg], i}
8: end for
9: // calculate offset of each cell

10: O[1] 0

11: for j = 2! w do
12: O[j] O[j � 1] + C✓

[j � 1]

13: end for
14: end function

15: function GETREDUCER(r,H, ✓, C✓, C
R

[✓], C
S

[✓], O,�)
16: // cell index for current record r in row ✓

17: cell h
✓

(r)
18: // calculate the start and end indexes

19: if r 2 R then
20: rand random(C

R

[✓, cell])
21: o1 O[cell] + C

S

[✓, cell]⇥ rand
22: o2 o1 + C

S

[✓, cell]
23: else if r 2 S then
24: o1 O[cell]
25: o2 O[cell] + C✓

[cell]
26: end if
27: // assign record to reducers

28: reducerIDs getReducerIDs(�, o1, o2)
29: end function

84

CHAPTER V

COORDINATED RESOURCE MANAGEMENT FOR LARGE SCALE
INTERACTIVE DATA QUERY SYSTEMS

In Chapter III and IV, we discussed how to achieve reduce-phase load balancing

for a single MapReduce job. In this chapter, we investigate the problem of optimizing

resource management across multiple jobs. We take interactive ad hoc queries as an

example application here.

The chapter is organized as follows. We first motivate the need for solving resource

management for interactive ad hoc data queries. In Section V.1, we review the system

architecture, as well as the query model. In Section V.2, we formulate the resource

allocation problem and propose our solution. We investigate the performance of our

optimal resource allocation algorithm via 1) simulation in Section V.3 and 2) a real

cluster using TPC-DS workload [1] in Section V.4. We summarize the chapter in Section

V.5.

Motivation

Large-scale interactive data analysis has grown increasingly important in many do-

mains for data exploration, decision making and strategy planning. Performing data

analysis over massive datasets with interactive response time requires a high degree of

parallelism. The recent design of Dremel [56] has demonstrated such capability through

massively parallel computing over a shared-nothing parallel data storage architecture.

Based on similar design, several open source systems are built and widely deployed

in production clusters, including Cloudera Impala [19], Apache Drill [6], Linkedin

Tajo [53], and Facebook Presto [63]. These systems support SQL-like queries over

85

distributed data in a clustering environment and largely democratize big data by pro-

viding easy data access for users without any distributed system background, who are

previously locked away from large datasets.

In these systems, each query is first compiled into a plan tree, which is then decom-

posed into several query fragments (refer to Figure V.3 for an example). Each fragment

is dispatched to the machines where its data blocks are located, and each machine is as-

signed one or more fragments. Depending on the query semantics (i.e., SQL operation),

the execution of each query is then converted into a set of coordinated tasks, including

data retrieval, intermediate result computation and transfer, and result aggregation. For

load balancing purposes, the root of the query plan tree can be any machine in the cluster

that runs a daemon interacts with clients and coordinates the pipelines between compu-

tation stages. As such, each query consumes a different amount of resources (e.g., CPU,

memory, and I/O) at each machine.

Since significant benefits can often be realized by sharing the cluster among mul-

tiple clients, a principal challenge here is the development of efficient resource man-

agement mechanisms to support concurrent interactive queries. Coordinated manage-

ment of multiple resource of the cluster environment is critical to provide a guarantee

on service-level agreement (SLA) for each client. Without any resource coordination,

query tasks may create a bottleneck in the system, leading to long query’s response time,

low resource utilization, and unfairness among different clients.

To address the aforementioned problem, this paper studies coordinated resource

management in a multi-tenant cluster that supports interactive ad hoc queries over mas-

sive datasets. We adopt a utility-based optimization framework where the objective is to

optimize resource utilization, coordinate among multiple resources from different ma-

chines, and maintain fairness among different clients.

86

Concretely, each client is associated with a utility, which corresponds to the query

rate it is able to issue. The objective of the optimal resource allocation is to maximize the

aggregate utility of all clients, subject to the cluster resource constraints. We solve this

utility-based resource allocation problem via a price-based approach. Here, a “price”

signal is associated with each type of resource for each machine. For each query, we:

(1) collect resource prices from the machines where the query runs its fragments; (2)

adjust a new query rate based on the updated prices such that the query’s “net benefit”,

the utility minus the resource cost, is maximized. For each machine, we: (1) collect

the new rates for queries that run fragments on current machine; (2) update the price

for each type of resource based on the availability. The resource prices and query rates

are updated iteratively. We prove that there exists a unique “maximum utility” rate

allocation, at which point the cluster resource utilization is Pareto-optimal. Meanwhile,

certain fairness objectives (e.g., max-min, and proportionality) can be achieved when

we choose appropriate utility functions for queries.

The major contributions of this chapter are

• To the best of our knowledge, this is the first work that identifies and addresses

the coordinated resource management problem for massively parallel data query

in a clustering environment.

• From a theoretical perspective, this paper provides a model for concurrent queries

that are executed in a distributed manner in a clustering environment and captures

its performance using a utility-based resource management framework. This al-

lows for a price-based solution which converges to the optimal point, at which the

aggregate utility of all queries is maximized.

• From a practical perspective, we implement our proposed resource management

solution over open source Impala system [19], and evaluate it in both simulated

87

environment and a real cluster using TPC-DS workload. Experimental results

shows significant gain of our solution, in comparison to others.

Query Model

Example of Query Execution

To better understand the parallel query processing system, its resource usage pattern

and resource management requirement, here we introduce a simple example with three

tables shown in Figure V.1. Each table is divided into several data blocks, stored at

different machines in the cluster. For example, in Figure V.4, data blocks belonging

to the table student are stored in four machines {M1, M2, M4, M5}. Feasible data

placement structures include row-stores, column-stores [8], and hybrid-stores [35].

There are two queries Q1 and Q2 in Figure V.2. The objective of query Q1 is to get

the maximum score for each course, and query Q2 is to retrieve the top-10 student names

with the highest average scores. As every machine in the cluster runs a coordinator, the

client can connect to any machine and submit Q1 or Q2. The query planner at the

selected machine compiles the submitted query into a query execution plan and chops

that plan into several fragments. After retrieving the data location information from the

metastore, the coordinator dispatches each query fragment to the machines that stores

its input data.

Figure V.3 illustrates the query execution plans for Q1 and Q2. Here, we explain how

Q2’s query plan works. Query Q2 has three query fragments. The fragment F23 scans

table score’s data blocks and broadcasts the results to machines that running fragment

F22. Fragment F22 first scans table student’s data blocks, and then joins the results with

88

Table: student

student_id name

1 Tom

2 John

3 Larry

Table: score

id student_id course_id score

1 1 1 94

2 2 2 85

3 1 2 90

4 3 1 80

5 2 2 83

Table: course

course_id name

1 algebra

2 database

Figure V.1: An example database schema with tables student, course and score.

the data coming from F23. All local join results are aggregated and returned to the query

coordinator, where the fragment F21 works. Fragment F21 aggregates all local results,

and return the final results to the client.

Figure V.4 illustrates an example how Q1 and Q2 execute in a cluster with five ma-

chines. Three tables are stored across the cluster. Query Q1 chooses machine M5 as its

coordinator, while Q2 chooses M1. The query planner at M1 calculates the execution

plan for Q2 and chops it into three fragments. And then the query coordinator dispatches

these fragments to different machines based on the data location information. For exam-

ple, fragment F22 is sent to machines {M1, M2, M4, M5}, as table student’s data blocks

are stored in these machines.

89

SELECT student.name, avg(score.score) as ss
FROM student, score
WHERE student.student_id = score.student_id
GROUP BY student.name
ORDER BY ss DESC LIMIT 10

SELECT course_id, max(score)
FROM score
GROUP BY course_id

Q1:

Q2:

Figure V.2: Two example SQL queries Q1 and Q2.

Query Model

In this paper, we consider a set of m queries, denoted as Q = {Q1, Q2, ..., Qm

}.

Each query Q
i

is submitted by a client to retrieve different data information, e.g., moni-

toring the top-10 active users in the last 10 minutes. To get the up-to-date information,

Q
i

needs to be submitted periodically. Let x
i

represent the streaming rate of Q
i

, e.g.,

6 query/hour means Q
i

is submitted every 10 minutes. Although Q
i

can choose a dif-

ferent machine as its query coordinator each time, for performance stability and load

balancing, we let each query always chooses the same machine and attach queries to

machines evenly. We collect all streaming rates into a rate vector x = (x
i

, 1  i  m).

We consider the cluster containing n machines, denoted as M = {M1,M2, ...,Mn

}.

As we discuss in Section V, each query is chopped into several query fragments, and

each fragment runs across a set of machines. As a result, each query consumes a dif-

ferent amount of resources at each machine. For example, in Figure V.4, query Q2

consumes some resources at M1 as its fragments F21 and F22 run on M1. Fragment

F22 would consume disk I/O resource when scanning the table student data, and con-

sume CPU, memory and network I/O resources when receiving table course data shuf-

fled from other machines. As F21 needs to aggregate results coming from machines

that run F22, it would also consume some CPU, memory and network I/O resources.

90

Aggre

Hash
Join

Table
Student

Table
Score

Aggre

Aggre

Table
Score

Top N

Aggre

F21

F22

F23

F11

F12

Q1 Q2

Figure V.3: Query execution plans for Q1 and Q2.

To differentiate different types of resources, for each machine M
j

, we use a vector

C
j

= (Ck

j

, 1  k  p) to describe its available resources. Here Ck

j

represents the

capacity of resource type k at M
j

, and we consider p types of resources in total.

Now, we define a Q ⇥ M matrix A, where A
ij

= (Ak

ij

, 1  k  p) represents

the resource vector requested by query Q
i

at machine M
j

. A gives the resource usage

pattern of queries. It follows that the aggregate resource usages of all queries that run

on machine M
j

should not exceed its resource capacity C
j

. For example, in Figure V.4,

assume M2 has 16 GB memory, one Q1 needs 4 GB and one Q2 need 6 GB, the cluster

cannot run two Q1 and two Q2 queries at the same time, as it would overflow M2’s

memory resource.

91

M1 M2 M3 M4 M5

Table Student

Table Course

F22 F23 F21

Q2 Coordinator

Q1 Coordinator

F12 F11

Q2

Q1

Table Score

Figure V.4: Examples of how query fragments execute in the cluster.

Formally, such a capacity constraint is expressed as follows:

mX

i=1

A
ij

· x
i

 C
j

, 81  j  n (V.1)

Here we explain the query model using the example discussed in Section V. Ac-

cording to Figure V.4, we assume the following resource consumption matrix A with

p = 2 (i.e., CPU and memory) for example queries Q1 and Q2:

A1 =

0

BBBBBBBBBBB@

0 0

1 2

1 3

0 0

5 3

1

CCCCCCCCCCCA

A2 =

0

BBBBBBBBBBB@

4 3

1 3

1 3

2 2

2 3

1

CCCCCCCCCCCA

We also assume each machine (M1-M5) has C
j

= (10, 10), 1  j  5.1

1Note that each resource is illustrated as aggregate resource. That is, for a machine with 10 GB
memory, its memory resource is described as 10 GB � s. For a query consumes 5 GB memory and runs
2 second at a machine, its memory request at that machine is 10 GB � s.

92

If the example cluster only runs Q1, the maximum streaming rate for Q1 is 2. The

value is bounded by the CPU resource at machine M5, as Q1 consume 5 CPU resource

at M5.

Optimal Resource Allocation

In this section, we first formulate the resource allocation problem, and then illustrate

our optimal algorithm.

Problem Formulation

We associate each query Q
i

2 Q with a utility U
i

defined as a function of its stream-

ing rate x
i

. We make the following assumptions about U
i

(x
i

).

• A1. On the interval I
i

= [x↵

i

, x�

i

], the utility function U
i

(x
i

) is increasing, strictly

concave, and twice continuously differentiable.

• A2. The curvatures of U
i

are bounded away from zero on I
i

: �U 00
i

(x
i

) � 1/
i

>

0.

• A3. U
i

is additive, so that the aggregated utility of rate allocation x = (x
i

, Q
i

2
Q) is

P
m

i=1 Ui

(x
i

).

The goal of resource allocation in the cluster is to make resource allocation deci-

sion x wisely, so that the aggregate utility
P

m

i=1 Ui

(x
i

) is maximized. So the optimal

resource allocation problem can be formulated as the following constrained nonlinear

optimization problem:

P: maximize
mX

i=1

U
i

(x
i

), (V.2)

93

subject to
mX

i=1

A
ij

· x
i

 C
j

, 81  j  n, (V.3)

over x
i

2 I
i

. (V.4)

We now demonstrate that, by optimizing toward such an objective, both optimal

resource utilization and certain fairness objectives can be achieved among all queries.

Pareto Optimality

With respect to optimal resource utilization, we show that the resource allocation

is Pareto optimal if the optimization problem P can be solved. Formally, the Pareto

optimality is defined as follows:

Definition 2 Pareto optimality. A rate allocation x = (x
i

, Q
i

2 Q) is Pareto optimal if

it satisfies the following two conditions: 1) x is feasible, i.e., x � 0 and V.3 holds, and

2) 8x0 which is feasible, if x

0 � x, then x

0
= x. In the second condition, the � is defined

such that, two vectors x and x

0 satisfy x

0 � x, if and only if for all Q
i

2 Q, x0
i

� x
i

.

Proposition 4 A rate allocation x is Pareto optimal, if it solves the problem P, with

increasing and strictly concave utility functions U
i

(x
i

), for Q
i

2 Q.

Proof 6 Let x be a solution of the problem P. If x is not Pareto optimal, then there must

exist another solution x

0 6= x, which satisfies constraint V.3 and x

0 > x. As the utility

function U
i

(x
i

) is increasing and strictly concave, we have
P

m

i=1 Ui

(x0
i

) >
P

m

i=1 Ui

(x
i

).

This leads to a contradiction, as x is the solution to P and hence maximizes
P

m

i=1 Ui

(x
i

).

Fairness

By choosing appropriate utility functions, the optimal resource allocation can imple-

ment different fairness models among the queries. We next illustrate this fact using two

commonly adopted fairness models: weighted proportional and max-min fairness.

94

Definition 3 weighted proportional fairness. A vector of rates x = (x
i

, Q
i

2 Q) is

weighted proportional fair with the vector of weights w
i

if it satisfies the following two

conditions: 1) x is feasible, and 2) for any other feasible vector x

0
= (x0

i

, Q
i

2 Q), the

aggregated of proportional changes is zero or negative:

mX

i=1

w
i

x0
i

� x
i

x
i

 0 (V.5)

Proposition 5 A rate allocation x is weighted proportional fair with the weight vector

w
i

, if and only if it solves the problem P, with U
i

(x
i

) = w
i

logx
i

for Q
i

2 Q.

As shown in [42], by the optimality condition V.2, this proposition can be derived

according to the following relation:

mX

i=1

@U
i

@(x
i

)

(x
i

)(x0
i

� x
i

) =

mX

i=1

w
i

x0
i

� x
i

x
i

< 0 (V.6)

which is strict inequality follows from the strict concavity of U
i

(x
i

).

Definition 4 max-min fairness. A vector of rates x = (x
i

, Q
i

2 Q) is max-min fair if it

satisfies the following two conditions: 1) x is feasible, and 2) for any Q
i

2 Q, increasing

x
i

cannot be achieved without decreasing the fair share x
i

0 of another query Q
i

0 2 Q

that satisfies x
i

� x
i

0 .

Proposition 6 A rate allocate x is max-min fair if and only of it solves the problem P,

with U
i

(x
i

) = �(�logx
i

)

✓, ✓ !1 for Q
i

2 Q.

Again, these results straightforwardly follow their counterparts in [42]. The remain-

der of this paper largely seeks to solve the optimal resource allocation problem P with

the given utility function.

95

By assumption A1, the objective function V.2 is differentiable and strictly concave.

Also, the feasible region of constraint V.3 is compact. By nonlinear optimization the-

ory, there exists a maximizing value of argument x for the above optimization problem,

which can be solved by Lagrangian method. Let us consider the Lagrangian form of this

optimization problem:

L(x,µk

) =

mX

i=1

U
i

(x
i

)�
pX

k=1

µk

(Ak · x� Ck

). (V.7)

Here µk

= (µk

j

,M
j

2M) is the vector of Lagrangian multipliers. Equation V.7 can

be further derived as follows:

L(x,µk

) =

mX

i=1

U
i

(x
i

)�
nX

j=1

pX

k=1

µk

j

(

mX

i=1

A
ij

x
i

� Ck

j

)

=

mX

i=1

U
i

(x
i

)�
mX

i=1

x
i

nX

j=1

pX

k=1

µk

j

A
ij

+

nX

j=1

pX

k=1

µk

j

Ck

j

(V.8)

We then define new vectors �k

= (�k

i

, 1  i  n), where 1  k  p as follows:

�k

i

=

nX

j=1

µk

j

A
ij

(V.9)

Now, V.8 becomes

L(x,µk

) =

mX

i=1

U
i

(x
i

)�
mX

i=1

x
i

pX

k=1

�k

i

+

nX

j=1

pX

k=1

µk

j

Ck

j

=

mX

i=1

U
i

(x
i

)�
pX

k=1

�kx +

pX

k=1

µkC.

(V.10)

For µk, µk

j

is the price of resource k at machine M
j

. Consequently, for �k, �k

i

is the

summation of prices of all machines that Q
i

has assigned tasks, or in other words, the

96

price of each type of resource that Q
i

has to pay. This vector corresponds to the resource

constraint stated in V.3.

The vector of prices (µ1, µ2, ..., µp

) will be used as incentives so that localized self-

optimizing decision can implement the global optimum.

Resource Allocation Problem

Solving the objective function V.2 requires global coordination of all queries. Here

we first look at the dual problem of P as follows:

D : min

µ

k�0,1kp

D(µk, 1  k  p). (V.11)

where

D(µk, 1  k  p) = max

x
L(x,µk

)

= max

x

mX

i=1

(U
i

(x
i

)�
pX

k=1

�k

i

x
i

| {z }
�(xi)

) +

nX

j=1

pX

k=1

µk

j

Ck

j

. (V.12)

Since �k

i

is the price for resource k of query Q
i

, it is clear that
P

p

k=1 �
k

i

x
i

is the over-

all cost for Q
i

. Then, �(x
i

) is Q
i

’s “benefit”, i.e., the difference of its utility and cost.

By the separation nature of Lagrangian form, maximizing L(x,µk

) can be decomposed

into separately maximizing �(x
i

) for each query Q
i

2 Q. Now, we have

D(µk, 1  k  p) =

mX

i=1

max

xi2Ii
{�(x

i

)}+
nX

j=1

pX

k=1

µk

j

Ck

j

. (V.13)

97

By Assumption A1, U
i

is strictly concave and twice continuously differentiable.

Therefore, a unique maximizer of �(x
i

) exists when

d�(x
i

)

dx
i

= U 0
i

(x
i

)�
pX

k=1

�k

i

= 0. (V.14)

We define the maximizer as below:

x
i

(µk, 1  k  p) = argmax

xi2Ii
{�(x

i

)} = [U 0�1
i

pX

k=1

�k

i

]

x

�
i

x

↵
i
. (V.15)

By Assumption A1, I
i

= [x↵

i

, x�

i

] is the feasible region of U
i

(x
i

). Therefore, x
i

must

be no greater than x�

i

and no less than x↵

i

. Since U
i

is concave and the constraint V.3

is linear. there is no duality gap. Also, the optimal prices for Lagrangian multipliers

(µk, 1  k  p) exist, denoted as (µk⇤, 1  k  p). If (µk⇤ � 0, 1  k  p) are

optimal, then x
i

(µk⇤, 1  k  p) is also primal optimal, given that x
i

is primal feasible.

Now, we can claim that once the optimal prices (µk⇤, 1  k  p) are available, the

optimal rate x⇤
i

can be achieved by solving V.15. The role of (µk⇤, 1  k  p) is two-

fold. First, they serve as the pricing signal for a query Q
i

to adjust its rate x
i

. Second,

they decouple the primal problem P (global utilization optimization) into individual rate

optimization by each query Q
i

2 Q.

Optimal Resource Allocation Algorithm

We solve the problem D using the gradient projection method. In this method,

(µk, 1  k  p) are adjusted in opposite direction to the gradient OD(µk, 1  k  p):

µk

j

(t+ 1) = [µk

j

(t)� �
@D(µk

(t), 1  k  p)

@µk

j

]

+, 1  k  p. (V.16)

98

Machine
Mj

Query Q1 Query Qn

Query Qi

x1(t+1) xn(t+1)

xi(t+1)

Price update

µj
k(t+1), 1 ≤ k ≤ p µj

k(t+1), 1 ≤ k ≤ p

µj
k(t+1), 1 ≤ k ≤ p

Rate adaptation

Figure V.5: The iterative process of resource price update.

� is a step size. Substituting V.15 into V.14, we have

D(µk, 1  k  p) =
mX

i=1

(U
i

(x
i

(µk, 1  k  p))

�
pX

k=1

�k

i

x
i

(µk, 1  k  p)) +
nX

j=1

pX

k=1

µk

j

Ck

j

.

(V.17)

D(µk, 1  k  p) is continuously differentiable since U
i

is strictly concave. Thus,

it follows that

@D(µk, 1  k  p)

@µk

j

= C
j

�
mX

i=1

x
i

(µk, 1  k  p), 1  k  p (V.18)

Substituting V.18 into V.16, we have

µk

j

(t+ 1) = [µk

j

(t) + �(

mX

i=1

x
i

(t)A
ij

� Ck

j

)]

+, 1  k  p. (V.19)

Equation V.19 reflects the law of supply and demand. If the demand for resource

at machine M
j

exceeds its supply C
j

, the resource constraint is violated. Thus, the

resource price (µk

j

, 1  k  p) is raised. Otherwise, (µk

j

, 1  k  p) is reduced.

99

Algorithm 7 Resource price update by machine M
j

: at times t=1,2,...

1: Receive rates x
i

(t) from all queries Q
i

2 Q
2: // update price for each type of resource

3: for k = 1! p do
4: µk

j

(t+ 1) = [µk

j

(t) + �(
P

m

i=1 xi

(t)A
ij

� Ck

j

)]

+

5: end for
6: Send (µk

j

(t+ 1), 1  j  p) to all queries Q
i

2 Q

Algorithm 8 Query rate adaptation by query Q
i

: at times t=1,2,...

1: Receive resource prices (µk

j

(t), 1  k  p) from (M
j

, 1  j  n)
2: for k = 1! p do
3: �k

i

 P
n

j=1 µ
k

j

Ak

ij

4: end for
5: // adjust rate

6: x
i

(t+ 1) x
i

(�k

i

, 1  k  p)
7: Send x

i

(t+ 1) to all machines M
j

2M

This price-based iterative solution can be interpreted as follows. Each machine sets

its resource price vector µ
j

, under which each query will maximize its surplus to use

resource. Based on all the returned x
i

, each machine aims to update the price vector

iteratively, such that x produced by the surplus-maximizing queries will eventually con-

verge to the optimal resource allocation.

Such a process is illustrated in Figure V.5, and the Algorithm 7 and 8 illustrate the

implementation details of the resource price update and query rate adaptation.

Simulation Results

In this section, we present the simulation results of our optimal resource manage-

ment algorithm to verify the design. We assume 10 queries Q = {Q1, ..., Q10}, and

5 machines M = {M1, ...,M5}. We consider two types of resources (p = 2) in our

simulation, representing CPU and memory. The resource capacity for each machine is

100

Algorithm x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
P10

i=1 Ui

(x
i

)

Optimal 748 387 569 704 450 636 688 418 1000 660 64.02

Fair 568 568 568 568 568 568 568 568 568 568 63.42

FIFO 560 640 548 542 549 570 585 573 549 547 63.40

Table V.1: Query rate and utility comparison for the simulation workload with w
i

= 1

for queries.

(16, 64), representing 16 CPU cores and 64 GB memory. We simulate a 1-hour time

period, where the per-machine aggregate resource is 57,600 core-s and 230,400 GB-s.

For the per-machine resource requirement for each query, we randomly generate values

between (1 core-s, 1 GB-s) and (16 core-s, 64 GB-s). The minimum and maximum rate

requirements of queries are {x↵

i

= 1 query/hour and x�

i

= 1000 query/hour}, for all Q
i

.

It is obvious that the minimum rate requirement can be guaranteed.

Convergence

We first illustrate the convergence of the price update mechanism. Here the util-

ity function of each query Q
i

is set as U
i

(x
i

) = w
i

logx
i

, where represents weighted

proportional fairness. We set w
i

= 1 for all queries, and the step size � = 2⇥ 10

�11.

As shown in Figure V.6, the algorithm converges to a global cluster equilibrium

within around 600 iterations. The final optimal rates of all queries (labeled as Optimal)

are shown in Table V.1.

Performance Comparisons

In this set of experiments, we show how our algorithm (Optimal) achieves better

performance in comparison with fair sharing and FIFO mechanisms. For the fair sharing

mechanism (Fair), we refer to the solution which assigns an equal streaming rate for all

101

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900 1000

R
at

e
(*

1
0

2
)

Iteration

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

(a) Query rate for Qi 2 Q

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800 900 1000
P

ri
ce

 (
*
1
0

-5
)

Iteration

M1 M2 M3 M4 M5

(b) CPU price for Mj 2M

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800 900 1000

P
ri

ce
 (

*
1
0

-6
)

Iteration

M1 M2 M3 M4 M5

(c) Memory price for Mj 2M

Figure V.6: Convergence of the Optimal algorithm on simulation workload with w
i

= 1

for all queries.

102

queries. Under the given resource constraints for the given example cluster setup, the

maximum allowed streaming rate for each query is 568 query/hour. For the latter FIFO

mechanism (FIFO), we build a query generator which randomly selects a query from the

query candidate set (including all queries initially). The randomly selected query will be

adopted by the cluster only if it requests less than the available resource2; otherwise, we

remove this query from the candidate set. The generator continuously generates queries

until the candidate set is empty.

Table V.1 illustrates the comparison results for these three algorithms. The aggregate

utilities of the Fair and FIFO mechanisms are 63.42 and 63.40, which are suboptimal

to the result 64.02 of our Optimal mechanism.

Higher aggregate utility also means high cluster resource utilization ratio. We cal-

culate the cluster CPU/memory utilization for all mechanisms. The numbers for our

Optimal solution are 79.3% CPU usage and 93.8% memory usage, which are higher

than the Fair (71.2% CPU usage and 86.8% memory usage) and FIFO (71.4% CPU

usage and 86.6% memory usage).

Weighted Workload

Different from the above experiments that assume w
i

= 1 for all queries, here we

attach a different weight for each query. The first third of the queries have w
i

= 1,

the next third has 2, and the last third has 3. We re-run the three mechanisms (Optimal,

Fair, and FIFO). Table V.2 illustrates the results. Under the weighted setup, our Optimal

algorithm still performs much better than the Fair and FIFO, in terms of aggregate

utility, and cluster resource utilization.

2For the example illustrated in Section V, if the cluster already accepts two Q2, it cannot accept Q2

anymore as the M1 only has 2 core� s, while each Q2 requests 4 core� s at M1.

103

Algorithm x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
P10

i=1 Ui

(x
i

)

Optimal 552 237 234 867 410 751 814 640 1000 799 136.31

Fair 265 265 265 530 530 530 795 795 795 795 134.52

FIFO 585 577 570 583 586 586 578 564 570 530 133.24

Table V.2: Query rate and utility comparison for the simulation workload with various
weights for queries.

Evaluation

In this section, we explore the performance of our optimal resource allocation algo-

rithm using a TPC-DS workload [1] on a real cluster.

Setup

Hardware configuration

For the experiments presented in this section, we use a 11 machine cluster. One of

the machines hosts the metastore. The remaining 10 machines are designed as “com-

pute” machines. Each machine in the cluster is configured with 4 CPU cores and 8 GB

memory.

Software configuration

For our experiments, we use Impala version 1.4.0 on top of CDH-5.1. Each compute

machine runs an impalad daemon, which accepts query requests and coordinate query

executions.

Workload

Our workload is a variant of the Transaction Processing Performance Council’s

decision-support benchmark (TPC-DS) [79]. The TPC-DS benchmark was designed

104

to model multiple users running a variety of decision-support queries including report-

ing, interactive OLAP, and data mining queries. All of the users run in parallel; each

user run the queries in series in a random order. The benchmark models data from a re-

tail product supplier about product purchases. We use a subset of 20 queries [1] that was

selected in an existing industry benchmark, published by Impala developers. For better

readability, here we rename the query able to Q1 to Q20. We use a TPC-DS database

with a scale factor of 100 GB. We were not able to scale to larger TPC-DS datasets be-

cause of Impala’s limitation to require the workload’s working set to fit in the cluster’s

aggregate memory.

Query Profiling

As we discussed in Section V, each query is decomposed into several fragments, and

each fragment is dispatched to the machines containing the corresponding data blocks.

Here we first profile the resource consumption at different machines for each query.

We submit each TPC-DS query independently, and collect the peak CPU/memory

consumption and running time for that query at different machines, whose product can

be measured as the aggregate resource consumption. For example, for a query consum-

ing 2 GB memory and running 10 seconds at a particular machine, its memory resource

consumption at that machine is 20 GB-s. Although each query can randomly select one

machine as its query coordinator, we choose a pre-determined machine for each query

in order to profile the resource consumption during coordination. Figure V.7 illustrates

the normalized aggregate CPU/memory consumption across all machines. Results show

that different queries require different amount of CPU/memory resources. This is be-

cause that some queries need to process large amount of data blocks, while some others

only need to process fewer.

105

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
o

n
su

m
p

ti
o

n

Query ID

CPU
Memory

Figure V.7: Normalized aggregate CPU/memory consumption for Q
i

2 Q for TPC-DS
workload.

Rate Convergence

We first evaluate the performance of our optimal resource allocation algorithm at

converging to the optimal point. Here we use the resource requests profiled in Sec-

tion V. We set the minimum and maximum rate requirements to 1 query/hour to 300

query/hour, and the step size is 10�7. As shown in Figure V.8, the algorithm converges

to a global resource equilibrium within about 200 iterations, and the streaming rate for

each query becomes stable.

Performance Comparisons

Similar to the simulation experiments presented in Section V, here we deploy a set of

comparison experiments with other different mechanisms. Note that in current Impala

implementation, the client can issue as many queries as possible to the cluster. However,

some queries may be canceled due to resource oversubscription. For example, if too

106

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900 1000

R
at

e

Iteration

Q1
Q2
Q3
Q4

Q5
Q6
Q7
Q8

Q9
Q10
Q11
Q12

Q13
Q14
Q15
Q16

Q17
Q18
Q19
Q20

Figure V.8: Query rates for Q
i

2 Q for TPC-DS workload.

many queries are dispatched to one machine, and that machine cannot provide enough

memory space to run all, some queries will be marked as failed and canceled.

We conduct experiments using Optimal, Fair and FIFO.

• For Optimal, we use the streaming rate calculated in Section V and illustrated in

Figure V.8.

• For Fair, we let each query client submit their queries with an equal streaming

rates. For example, Fair(10) represents that all query clients can submit their

queries 10 times in 1-hour interval.

• For FIFO, we build a query generator which randomly select one query from

{Q1, ..., Q20} and submit to the cluster, with an interval of 10 per minute.

For each group experiment, we keep the cluster running for 1 hour, and record the

number of queries that have finished successfully. We only count the successful finished

queries when calculating the streaming rate for each query. Table V.3 illustrates the

actual streaming rate for each query. Results show that our Optimal achieves a higher

107

average streaming rate than Fair and FIFO. And for Fair, we can also find out that

simply increasing the issuing rate cannot get a higher streaming rate, i.e., Fair(300)

performs worse than Fair(30). This is because in Impala, too many queries submitted

may cause some machines overloaded (e.g., out of memory); and if that happens, all

queries execute at those machines would be canceled and marked as failed.

We also calculate the aggregate utility for each group experiment, and Figure V.9

presents the results. Our Optimal receives a better utility than the others.

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

Optimal Fair(14) Fair(30) Fair(40) Fair(50) Fair(100)Fair(300) FIFO

U
ti

li
ty

Algorithm

Figure V.9: Aggregate utility for
P20

i=1 Ui

(x
i

) for TPC-DS workload.

Data Placement Structure

In database area, columnar data organization is always introduced to reduce disk

I/O, and enable better compression and encoding schemes that significantly benefit an-

alytical queries [77, 2]. Impala has also implemented its own columnar storage format,

108

namely Parquet [8], and the aforementioned TPC-DS benchmark has been already op-

timized using Parquet. For better illustrating our optimal resource allocation algorithm

with different setup, we build another TPC-DS benchmark by removing this columnar

optimization. We name this new benchmark as TPC-DS2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
o

n
su

m
p

ti
o

n

Query ID

CPU
Memory

Figure V.10: Normalized aggregate CPU/memory consumption for Q
i

2 Q for TPC-
DS2 workload.

We re-measure the per-machine resource consumption for each query, illustrated in

Figure V.10. We run our optimal resource allocation algorithm using the new profiled

results, and reset the I
i

to [1 query/hour, 100 query/hour]. The query rate convergence

process is shown in Figure V.11.

We also deploy the comparison experiments to compare our Optimal algorithm with

the Fair and FIFO. Table V.4 records the streaming rates. Compared to Table V.3, the

rates have been largely reduced. This is because that, without columnar optimization,

each query takes more time to finish. Figure V.12 illustrates the aggregate utility, and

our Optimal mechanism performs much better than others.

109

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900 1000

R
at

e

Iteration

Q1
Q2
Q3
Q4

Q5
Q6
Q7
Q8

Q9
Q10
Q11
Q12

Q13
Q14
Q15
Q16

Q17
Q18
Q19
Q20

Figure V.11: Query rates for Q
i

2 Q for TPC-DS2 workload.

Chapter Summary

In this chapter, we target the problem of optimal resource allocation for massively

parallel data query. We model this problem as an utility maximization problem, and

present a pricing-base solution. It is proven that our algorithm can converge to an op-

timal point, at which the aggregate utility is maximized. We implement out algorithm

in the open source Impala system and conduct a set of experiments in a clustering envi-

ronment using the TPC-DS workload. Experimental results show that our coordinated

resource management solution can increase the aggregate utility by at least 15.4% com-

pared with simple fair resource share mechanism, and 63.5% compared with the FIFO

resource management mechanism.

110

 10

 15

 20

 25

 30

 35

 40

Optimal Fair(2) Fair(5) Fair(8) Fair(10) FIFO

U
ti

li
ty

Algorithm

Figure V.12: Aggregate utility for
P20

i=1 Ui

(x
i

) for TPC-DS2 workload.

111

A
lg

or
ith

m
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9
x

1
0

x

1
1

x

1
2

x

1
3

x

1
4

x

1
5

x

1
6

x

1
7

x

1
8

x

1
9

x

2
0

O
pt

im
al

93
28

15
29

10
30

0
23

7
23

7
37

30
0

4
38

3
11

10
4

42
35

16
2

7

Fa
ir

(1
4)

14
14

14
14

14
14

14
14

14
14

14
14

14
14

14
14

14
14

14
14

Fa
ir

(3
0)

26
18

22
27

20
30

26
21

30
28

29
17

28
17

26
27

28
27

30
14

Fa
ir

(4
0)

27
10

25
28

17
39

26
15

29
26

36
19

25
8

37
35

31
28

34
6

Fa
ir

(5
0)

15
13

46
37

14
30

30
8

49
15

46
33

40
5

32
29

14
43

46
26

Fa
ir

(1
00

)
12

9
20

46
21

8
18

29
37

54
14

18
0

24
12

32
63

79
36

57
4

Fa
ir

(3
00

)
25

9
42

27
15

22
16

11
31

14
31

2
30

1
2

80
49

30
69

0

FI
FO

13
13

12
11

19
16

13
12

12
16

15
16

12
15

13
22

14
20

18
17

Table V.3: Query rate comparison for TPC-DS workload.

112

A
lg

or
ith

m
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9
x

1
0

x

1
1

x

1
2

x

1
3

x

1
4

x

1
5

x

1
6

x

1
7

x

1
8

x

1
9

x

2
0

O
pt

im
al

8
3

8
3

1
62

11
2

40
3

76
1

11
2

4
22

17
5

82
1

Fa
ir

(2
)

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

Fa
ir

(5
)

4
5

5
5

5
5

4
5

5
5

5
4

5
5

5
5

5
5

5
5

Fa
ir

(8
)

1
4

6
4

3
6

5
5

6
5

6
0

5
4

5
6

6
5

6
1

Fa
ir

(1
0)

1
6

8
4

5
7

4
3

8
4

6
0

4
6

4
5

3
6

5
0

FI
FO

3
1

1
3

4
2

6
3

2
9

5
1

1
1

3
2

5
9

6
2

Table V.4: Query rate comparison for TPC-DS2 workload.

113

CHAPTER VI

CONCLUSION AND FUTURE WORK

Big data analysis has collected much attention recently and several large-scale data

processing systems have been developed, as well as deployed, to support various data

processing applications. Optimal resource management is an essential requirement to

optimize resource utilization and job performance. The work presented in this disserta-

tion provides fundamental results towards addressing the challenges involving resource

management within a job and across multiple jobs.

Summary of Contributions

Resource management is a challenging problem in a large-scale processing system.

As shown in this dissertation, it often requires significant effort to understand the job

requirement (both in resource and performance) and allocate the cluster resources in an

efficiently way. The underlying principle of the work presented in this dissertation is the

use of a data-driven approach for resource management. That is, we first understand the

input jobs better by profiling the input data and runtime resource consumption for each

job/task, and then we use that profile to optimize the resource utilization. Here, we take

a moment to summarize the contributions of this dissertation.

First, we studied the problem of optimal resource management for a single data

processing job. We use MapReduce as our target application and optimize the job com-

pletion time with the given allocated resource. In the real world, data is often highly

skewed, which may cause workload imbalance among parallel running tasks. In this

dissertation, we study the problem of reduce-phase skew in MapReduce applications,

114

where reduce tasks are often assigned imbalance load (in terms of key groups). We

proposed two techniques to manage skew in MapReduce.

• We introduce a sketch-based data structure for capturing MapReduce key group

size statistics and present an optimal packing algorithm which assigns the key

groups to the reducers in a load balancing manner. We perform an empirical eval-

uation with several real and synthetic datasets over two distinct types of applica-

tions. The results show that our load balancing algorithm can strongly mitigate the

reduce-phase skew. It can decrease the overall job completion time by 45.5% of

the default settings in Hadoop and by 38.3% in comparison to the state-of-the-art

solution.

• The above sketch-based solution can help solve the skew problem for most MapRe-

duce applications. However, it cannot be deployed to some complex MapReduce

applications, whose task workload is not directly depended on the data size (like

record linkage application). To solve this problem, we further study the sketch-

based solution and perform load balancing mechanisms for record linkage ap-

plication. We propose two load balancing algorithms to work over sketch-based

profiles while solving the data skew problem associated with record linkage. We

provide an analytical analysis and extensive experiments (using Hadoop), with

real and controlled synthetic data sets, to illustrate the effectiveness of our so-

lution. The experimental results show that our load balancing algorithms can

decrease the overall job completion time by 71.56% and 70.73% of the default

settings in Hadoop using a set of DBLP data sets, which have 2.5 to 50.4 million

records.

Second, we studied the optimal resource management across multiple data process-

ing jobs. We use interactive ad hoc query systems as our target application. Interactive

115

ad hoc data query systems becomes more and more popular, and allow users run queries

directly on Hadoop-type systems. However, without carefully designed coordination,

resource collisions may happen. As a result, query tasks may create system bottlenecks,

leading to long query response times, low resource utilization, and unfairness across

different clients.

We adopt a utility-based optimization framework to solve this coordinated resource

management problem in a multi-tenant cluster that supports interactive ad hoc queries

over massive datasets. The objective here is to optimize the cluster resource utilization,

coordinate among multiple resources from different machines, and maintain fairness

among different clients. Concretely, each client is associated with a utility, which cor-

responds to the query rate it is able to issue. The objective of the optimal resource allo-

cation is to maximize the aggregate utility of all clients, subject to the cluster resource

constraints.

We solve this utility-based resource allocation problem via a price-based approach.

Here, a “price” signal is associated with each type of resource (e.g., CPU, memory) for

each machine. For each query, we: (1) collect resource prices from the machines where

the query runs its fragments; (2) adjust a new query rate based on the updated prices

such that the query’s “net benefit”, the utility minus the resource cost, is maximized.

For each machine, we: (1) collect the new rates for queries that run fragments on current

machine; (2) update the price for each type of resource based on the availability. The

resource prices and query rates are updated iteratively until converge. We implement

our algorithm in the open source Impala system and conduct a set of experiments in a

clustering environment using the TPC-DS workload. Experimental results show that our

coordinated resource management solution can increase the aggregate utility by at least

15.4% compared with simple fair resource share mechanism, and 63.5% compared with

the FIFO resource management mechanism.

116

Discussion and Future Directions

The work presented in this dissertation has initiated several discussions and moti-

vated several further work in area of resource management in large-scale data process-

ing systems. Here we mainly discuss the work which can help enhance our resource

management framework move to production.

The most straightforward future work is to extend I/O bandwidth as a resource to the

coordinated resource management framework for large-scale interactive ad hoc query

systems. In Chapter V, we deploy a set of experiments which mainly consider CPU

and memory as the resources to be allocated. However, when we move to a produc-

tion cluster, disk and network bandwidth become critical, especially for the query sys-

tems. In such systems, each query task needs to read and write data from local disk,

which consumes disk bandwidth. Additionally, data shuffling and aggregation happen

between different concurrent query tasks, which requires network bandwidth. By taking

disk and network bandwidth into consideration, the coordinated resource management

framework presented in Chapter V can be strengthened and perform better in production

clusters.

Besides the I/O bandwidth management, another key advancement needed for pro-

duction clusters is to include the data change to the coordinated resource management

framework. In production clusters, data is keeping updated. As presented in Chapter V,

the approach deployed depends on the pre-profiled per-query resource consumption.

That is, we collect the resource consumption for each query at different machines and

utilize the associated profile to calculate the optimal resource allocation. Such a mecha-

nism has a limitation that, in production clusters, the data processed by each query keeps

changing. Using a static, predetermined resource consumption profile may bring devi-

ation to the resource allocation results. An online approach can be developed to solve

117

this limitation. That is, we track the resource consumption for each query in real time,

and recalculate the optimal resource allocation every given interval. By always using

the latest resource consumption profile, the algorithm can avoid an outdated profile and

generate a more accurate resource allocation mechanism.

The resource allocation mechanism delivered in Chapter V provides a maximum

streaming rate for each query. In most production clusters, the resources are shared

among multiple departments instead of single queries. Each department is assigned a

dedicated resource pool and all queries coming from one department will be submitted

to the department’s own resource pool. To ensure high performance of the algorithm

in this scenario, we need to upgrade the solution from the query-level to the resource-

pool level. That is, we need to build a resource consumption profile for each resource

pool, instead of for a single query. The calculated results will determinate the number

of queries accepted by each resource pool.

Another future work is to develop a universal resource management framework that

supports various data processing frameworks. The work communicated in this disserta-

tion is primarily designed to support resource management mechanisms for single-type

applications, such as for MapReduce applications, for data query systems. However,

the explosion in the complexity and variety of large-scale data processing systems has

fueled a shift from single-purpose clusters that only support one type of workload to

multi-purpose clusters running a mix of jobs. That is, batch computation (MapReduce,

Pregel) and interactive query (Dremel/Impala) may run together. Such sharing envi-

ronments present new resource management challenges. Different types of jobs use

different metrics to measure their performances. For example, batch computation jobs

are always measured by job completion time, why interactive query mostly cares about

throughput. The new designed resource management framework should consider this

performance diversity.

118

BIBLIOGRAPHY

[1] A TPC-DS like benchmark for Cloudera Impala.
https://github.com/cloudera/impala-tpcds-kit.

[2] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. Column-oriented
database systems. Proceedings of the VLDB Endowment, 2(2):1664–1665, 2009.

[3] Foto N Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D Ullman. Vision
paper: Towards an understanding of the limits of Map-Reduce computation. arXiv
preprint arXiv:1204.1754, 2012.

[4] Ganesh Ananthanarayanan, Christopher Douglas, Raghu Ramakrishnan, Sriram
Rao, and Ion Stoica. True Elasticity in Multi-tenant Data-intensive Compute Clus-
ters. In Proceedings of the 3rd ACM Symposium on Cloud Computing (SOCC),
pages 24:1–24:7, 2012.

[5] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica,
Yi Lu, Bikas Saha, and Edward Harris. Reining in the Outliers in Map-reduce
Clusters Using Mantri. In Proceedings of the 9th USENIX Conference on Operat-
ing Systems Design and Implementation (OSDI), pages 1–16, 2010.

[6] Apache Drill. http://incubator.apache.org/drill/.

[7] Apache Giraph project. http://giraph.apache.org/.

[8] Apache Parquet. http://parquet.apache.org/.

[9] Pramod Bhatotia, Alexander Wieder, İstemi Ekin Akkuş, Rodrigo Rodrigues, and
Umut A Acar. Large-scale incremental data processing with change propagation.
In Proceedings of the 3rd USENIX conference on Hot Topics in Cloud Computing
(HotCloud), pages 18–18, 2011.

[10] Arka A Bhattacharya, David Culler, Eric Friedman, Ali Ghodsi, Scott Shenker, and
Ion Stoica. Hierarchical scheduling for diverse datacenter workloads. In Proceed-
ings of the 4th annual Symposium on Cloud Computing (SOCC), page 4, 2013.

[11] Spyros Blanas, Jignesh M Patel, Vuk Ercegovac, Jun Rao, Eugene J Shekita, and
Yuanyuan Tian. A comparison of join algorithms for log processing in MapRe-
duce. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 975–986, 2010.

[12] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web
search engine. In Proceedings of the 7th International Conference on World Wide
Web (WWW), pages 107–117, 1998.

119

[13] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. HaLoop:
Efficient iterative data processing on large clusters. Proceedings of the VLDB
Endowment, 3(1-2):285–296, 2010.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:
A distributed storage system for structured data. ACM Transactions on Computer
Systems, 26(2):4, 2008.

[15] Brian Cho, Muntasir Rahman, Tej Chajed, Indranil Gupta, Cristina Abad, Nathan
Roberts, and Philbert Lin. Natjam: design and evaluation of eviction policies for
supporting priorities and deadlines in MapReduce clusters. In Processings of the
4th ACM Symposium on Cloud Computing (SOCC), 2013.

[16] Peter Christen. A survey of indexing techniques for scalable record linkage
and deduplication. IEEE Transactions on Knowledge and Data Engineering,
24(9):1537–1555, 2012.

[17] Peter Christen and Agus Pudjijono. Accurate Synthetic Generation of Realis-
tic Personal Information. In Proceedings of the 13th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), pages 507–514, 2009.

[18] Brent Nee Chun and David E Culler. Market-based proportional resource sharing
for clusters. Computer Science Division, University of California Berkeley, 2000.

[19] Cloudera Impala. http://impala.io.

[20] Edward G Coffman, Jr, Michael R Garey, and David S. Johnson. An application of
bin-packing to multiprocessor scheduling. SIAM Journal on Computing, 7(1):1–
17, 1978.

[21] Graham Cormode and Minos Garofalakis. Sketching streams through the net: dis-
tributed approximate query tracking. In Proceedings of the 31st International Con-
ference on Very Large Data Bases (VLDB), pages 13–24, 2005.

[22] Graham Cormode and S. Muthukrishnan. An improved data stream summery: the
Count-Min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[23] Carlo Curino, Djellel E Difallah, Chris Douglas, Subru Krishnan, Raghu Ramakr-
ishnan, and Sriram Rao. Reservation-based Scheduling: If You’re Late Don’t
Blame Us! In Proceedings of the ACM Symposium on Cloud Computing (SOCC),
pages 1–14, 2014.

[24] Jeffrey Dean. Challenges in building large-scale information retrieval systems:
invited talk. In Proceedings of the 2nd ACM International Conference on Web
Search and Data Mining, pages 1–1, 2009.

120

[25] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. In Proceedings of the 10th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2004.

[26] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri.
Practical Skew Handling in Parallel Joins. In Proceedings of the 18th International
Conference on Very Large Data Bases (VLDB), pages 27–40, 1992.

[27] Prateek Dhawalia, Sriram Kailasam, and Dharanipragada Janakiram. Chisel: A
Resource Savvy Approach for Handling Skew in MapReduce Applications. In
2013 IEEE 6th International Conference on Cloud Computing (CloudCom), pages
652–660, 2013.

[28] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae,
Judy Qiu, and Geoffrey Fox. Twister: a runtime for iterative MapReduce. In
Proceedings of the 19th ACM International Symposium on High Performance Dis-
tributed Computing (HPDC), pages 810–818, 2010.

[29] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Du-
plicate Record Detection: A Survey. IEEE Transactions on Knowledge and Data
Engineering, 19(1):1–16, 2007.

[30] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of the
American Statistical Association, 64(328):1183–1210, 1969.

[31] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File Sys-
tem. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (SOSP), pages 29–43, 2003.

[32] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types. In Proceedings of the 8th USENIX Conference on Networked Systems De-
sign and Implementation (NSDI), pages 24–24, 2011.

[33] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load balancing in mapreduce
based on scalable cardinality estimates. In Proceedings of the 28th IEEE Interna-
tional Conference on Data Engineering (ICDE), pages 522–533, 2012.

[34] Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, and Alfons Kemper. Han-
dling Data Skew in MapReduce. In Proceedings of the 2011 International Confer-
ence on Cloud Computing and Services Sciences, pages 574–583, 2011.

[35] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang,
and Zhiwei Xu. RCFile: A fast and space-efficient data placement structure in
MapReduce-based warehouse systems. In Proceedings of the 27th International
Conference on Data Engineering (ICDE), pages 1199–1208, 2011.

121

[36] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Proceedings of the 8th USENIX
conference on Networked Systems Design and Implementation (NSDI), pages 22–
22, 2011.

[37] Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He, and Li Qi. LEEN:
Locality/Fairness-Aware Key Partitioning for MapReduce in the Cloud. In Pro-
ceedings of the 2nd IEEE International Conference on Cloud Computing Technol-
ogy and Science, pages 17–24, 2010.

[38] Skewed Join in Pig. http://wiki.apache.org/pig/PigSkewedJoinSpec/.

[39] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed Data-parallel Programs from Sequential Building Blocks. In Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems
(EuroSys), pages 59–72, 2007.

[40] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. Quincy: Fair Scheduling for Distributed Computing Clusters.
In Proceedings of the 22nd ACM SIGOPS Symposium on Operating Systems Prin-
ciples (SOSP), pages 261–276, 2009.

[41] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation
for MapReduce. In Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 938–948, 2010.

[42] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate control for communi-
cation networks: shadow prices, proportional fairness and stability. Journal of the
Operational Research society, pages 237–252, 1998.

[43] Lars Kolb, Andreas Thor, and Erhard Rahm. Load Balancing for MapReduce-
based Entity Resolution. In Proceedings of the 28th IEEE International Confer-
ence on Data Engineering (ICDE), pages 618–629, 2012.

[44] Lars Kolb, Andreas Thor, and Erhard Rahm. Multi-pass sorted neighbor-
hood blocking with MapReduce. Computer Science-Research and Development,
27(1):45–63, 2012.

[45] Hanna Kopcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution
approaches on real-world match problems. Proceedings of the VLDB Endowment,
3(1-2):484–493, 2010.

[46] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system
for log processing. In Proceedings of the 2011 SIGMOD Workshopon Networking
Meets Databases, 2011.

122

[47] James F. Kurose and Rahul Simha. A microeconomic approach to optimal re-
source allocation in distributed computer systems. IEEE Transactions on Comput-
ers, 38(5):705–717, 1989.

[48] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. A Study
of Skew in MapReduce Applications. In The 5th Open Cirrus Summit, 2011.

[49] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skew-
Tune: mitigating skew in MapReduce applications. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 25–36, 2012.

[50] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. Early accurate results for advanced
analytics on MapReduce. Proceedings of the VLDB Endowment, 5(10):1028–
1039, 2012.

[51] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon, and P. Bruce Berra. Index struc-
tures for structured documents. In Proceedings of the 1st ACM International Con-
ference on Digital Libraries, pages 91–99, 1996.

[52] Jimmy Lin. MapReduce is Good Enough? If All You Have is a Hammer, Throw
Away Everything That’s Not a Nail! Big Data, 1(1):28–37, 2013.

[53] LinkedIn Tajo. http://tajo.apache.org/.

[54] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-scale
Graph Processing. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), pages 135–146, 2010.

[55] N McNeill, Hakan Kardes, and Andrew Borthwick. Dynamic record blocking:
efficient linking of massive databases in MapReduce. In Proceedings of the 9th
International Workshop on Quality in DataBases, 2012.

[56] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivaku-
mar, Matt Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale
datasets. Proceedings of the VLDB Endowment, 3(1-2):330–339, 2010.

[57] Ahmed Metwally, Divyakant Agrawal, and Amr Abbadi. Efficient computation of
frequent and top-k elements in data streams. In Proceedings of the 10th interna-
tional conference on Database Theory (ICDT), pages 398–412, 2005.

[58] HB Newcombe, JM Kennedy, SJ Axford, and AP James. Automatic linkage of
vital records. Science, 130(3381):954, 1959.

123

[59] James Norris, Keith Coleman, Armando Fox, and George Candea. OnCall: De-
feating spikes with a free-market application cluster. In Proceedings of the 2004
International Conference on Autonomic Computing (ICAC), pages 198–205, 2004.

[60] Alper Okcan and Mirek Riedewald. Processing theta-joins using MapReduce. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 949–960, 2011.

[61] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig Latin: A Not-so-foreign Language for Data Processing. In Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 1099–1110, 2008.

[62] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: dis-
tributed, low latency scheduling. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP), pages 69–84, 2013.

[63] Presto. http://prestodb.io.

[64] Apache Hadoop project. http://hadoop.apache.org/.

[65] Apache Hive project. http://hive.apache.org/.

[66] Storm project. http://storm-project.net/.

[67] Smriti R Ramakrishnan, Garret Swart, and Aleksey Urmanov. Balancing reducer
skew in MapReduce workloads using progressive sampling. In Proceedings of the
3rd ACM Symposium on Cloud Computing (SOCC), page 16, 2012.

[68] Big Data Vendor Revenue and Market Forecast 2012-2017. http://goo.gl/OsqbwP/.

[69] Florin Rusu and Alin Dobra. Statistical analysis of sketch estimators. In Proceed-
ings of the 2007 ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 187–198, 2007.

[70] Thomas Sandholm and Kevin Lai. MapReduce optimization using regulated dy-
namic prioritization. In Proceedings of the eleventh international joint conference
on Measurement and modeling of computer systems, pages 299–310, 2009.

[71] Hadoop YARN Capacity Scheduler. http://goo.gl/297J8z/.

[72] Hadoop YARN Fair Scheduler. http://goo.gl/QiLDm0/.

[73] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
Omega: flexible, scalable schedulers for large compute clusters. In Proceedings
of the 8th ACM European Conference on Computer Systems (EuoSys), pages 351–
364, 2013.

124

[74] Prorated Supercomputing Fun! Self-Service. http://goo.gl/CiIDLZ/.

[75] Amazon Web Services. http://aws.amazon.com/.

[76] Michael Stonebraker, Paul M Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff
Sidell, Carl Staelin, and Andrew Yu. Mariposa: a wide-area distributed database
system. The VLDB Journal, 5(1):48–63, 1996.

[77] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cherni-
ack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil,
et al. C-store: a column-oriented DBMS. In Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB), pages 553–564, 2005.

[78] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, et al. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), pages 147–156, 2014.

[79] Transaction Processing Performance Council (TPC). TPC Benchmark DS Stan-
dard Specification. http://www.tpc.org/tpcds/spec/tpcds 1.1.0.pdf.

[80] Leslie G Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, 1990.

[81] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benhamin Reed,
and Eric Baldeschwieler. Apache Hadoop YARN: Yet Another Resource Nego-
tiator. In Processings of the 4th ACM Symposium on Cloud Computing (SOCC),
2013.

[82] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. ARIA: automatic
resource inference and allocation for mapreduce environments. In Proceedings
of the 8th ACM international conference on Autonomic computing (ICAC), pages
235–244, 2011.

[83] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. Two sides of a coin:
Optimizing the schedule of mapreduce jobs to minimize their makespan and im-
prove cluster performance. In Proceedings of the 2012 IEEE 20th International
Symposium on Modeling, Analysis & Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), pages 11–18, 2012.

[84] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. Orchestrating an
ensemble of MapReduce jobs for minimizing their makespan. IEEE Transactions
on Dependable and Secure Computing, 10(5):314–327, 2013.

125

[85] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity
joins using MapReduce. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 495–506, 2010.

[86] Y. Yemini. Selfish optimization in computer networks. In 20th IEEE Conference
on Decision and Control including the Symposium on Adaptive Processes, pages
374–379, Dec 1981.

[87] Matei Zaharia, Dhruba Borthakur, J Sen Sarma, Khaled Elmeleegy, Scott Shenker,
and Ion Stoica. Job scheduling for multi-user MapReduce clusters. EECS Depart-
ment, University of California, Berkeley, Technical Report USB/EECS-2009-55,
2009.

[88] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Delay scheduling: a simple technique for achieving lo-
cality and fairness in cluster scheduling. In Proceedings of the 5th European Con-
ference on Computer Systems (EuoSys), pages 265–278, 2010.

[89] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing (HotCloud), pages 10–
10, 2010.

[90] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy Katz, and Ion Stoica.
Improving MapReduce performance in heterogeneous environments. In Proceed-
ings of the 8th USENIX conference on Operating Systems design and Implementa-
tion (OSDI), pages 29–42, 2008.

[91] Xiaofei Zhang, Lei Chen, and Min Wang. Efficient multi-way theta-join processing
using MapReduce. Proceedings of the VLDB Endowment, 5:1184–1195, 2012.

[92] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. PrIter: a distributed
framework for prioritized iterative computations. In Proceedings of the 2nd ACM
Symposium on Cloud Computing (SOCC), page 13, 2011.

126

