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    CHAPTER I   

           INTRODUCTION  

Non-negative matrix factorization (NMF) is an unsupervised learning method for finding parts-

based decompositions. NMF was formally introduced as a method for face image 

decompositions1. In this setting, NMF yielded a decomposition of human faces into parts 

resembling features such as eyes, noses etc. The constraint of non-negativity is natural for a wide 

range of natural signals, such as pixel intensities, occurrence counts, amplitude spectra, and gene 

expressions. NMF has found wide application in many areas, and has for example been used in 

image processing1 to find meaningful features in image datasets; in text processing2 to find sets 

of words that constitute latent topics in emails; in audio processing3 to find separate mixtures of 

audio sources; and in bioinformatics 4 to find biologically meaningful cancer subtypes based on 

gene expressions. 

Variants of NMF have been proposed for different purposes. In image processing, it was 

noted early that NMF does not always result in parts-based representations when the face images 

are not well aligned or in presence of lighting variations5; sparse NMF was proposed to address 

this issue by incorporating sparsity constraint into the basic NMF method and has demonstrated 

success in yielding succinct representations for face images5,6. In data clustering and 

classification problems, it is essential to consider the geometrical structure (manifold) of the data 

space; graph-regularized NMF (GNMF) was proposed7 with the aim to find a new space 

representation such that the associated values at two data points are close to each other if they are 

connected in the graph. GNMF has demonstrated applications in pattern recognition 7 and tumor 

classification8 . Other treatments of NMF, to name a few, include particular choices of the cost 

function (i.e., measure of the distance or divergence between the original and the factorizing 
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matrices) to reflect the underlying data generative model9; NMF in a Bayesian framework that 

treats the non-negativity constraint as priors and derive efficient approximation of the NMF 

factors as the posterior density based on a Gibbs sampler10. 

In the context of tumor subtype classification, the utility of GNMF was demonstrated on 

classification problems based on exome-level mutation data8. Although exome sequencing 

provides comprehensive characterization of coding mutations, it is likely that a large portion of 

mutations are passengers, as it was estimated that few mutations in a patient are drivers (e.g. 

ranging from 2 to 8)11,12. Such passengers, if included in clustering analysis, may obscure 

clinically and biologically important mutations. In a recent study, it revealed that using a panel of 

important genes can achieve superior classification than using the full set of (exome-level) 

mutations13. We hypothesize that a hybrid approach of sparse coding and GNMF will enable 

automatic selection of important genes that can aid tumor subtyping and interpretation of the 

underlying pathways.  

 To test our hypothesis, we propose a new method and evaluate it on multiple simulated 

mutation cohorts. The rest of the thesis is organized as follows. In Chapter 2, we give a brief 

overview on various NMF methods. In Chapter 3, we introduce a new formulation, called sparse 

network-regulated NMF, along with the update rule, convergence properties and stopping 

criteria. In Chapter 4, we evaluate the performance of the proposed sparse network-regulated 

NMF using simulation studies. In Chapter 5, we demonstrate real data applications using 13 

major cancer types from The Cancer Genome Atlas (TCGA) dataset. In Chapter 6, we 

summarize the study and discuss future directions. 
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             CHAPTER II   

       OVERVIEW OF NMF ALGORITHMS  

2.1 Formulation 

Given a data matrix X of dimensions M×N with nonnegative entries, NMF is the problem of 

finding a factorization 

X ≈ WH = 𝑋       (1) 

where W and H are matrices with non-negative entries and dimensions of M×K and K×N, 

respectively. K is usually chosen such that MK+KN << MN, hence achieving dimension 

reduction of the data space X. The basis matrix W represents higher-level features of the data, 

and the coefficient matrix H represents loading coordinates of data points in the new space 

spanned by the basis vectors. The factorization (1) can be formulated as a minimization problem 

                                                                                                                        min!,!!! | 𝑋 −𝑊𝐻 |!!       (2) 

where F indicates Frobenius norm, i.e., ||𝑋||! = |𝑥!"|!!,!  . More generally, the factorization 

(1) can be formulated as the following: 

                                                    min!,!!! 𝑑 𝑋 𝑊𝐻 = 𝐷 𝑋 𝑋 = 𝑑(𝑥!"|𝑥!")!
!!!

!
!!!     (3) 

where 𝑑(𝑥|𝑦) is a cost function. Popular choices are the squared Euclidean distance, Kullback-

Leibler (KL) divergence, and Itakura-Saito (IS) divergence, which are defined respectively as9: 

                                                                                                          𝑑!" 𝑥 𝑦 =    !!(𝑥 − 𝑦)
!        (4a) 

                                                                                                        𝑑!" 𝑥 𝑦 =   𝑥𝑙𝑜𝑔 !
!
− 𝑥 + 𝑦      (4b) 

                                                                                                        𝑑!" 𝑥 𝑦 =    !
!
− 𝑙𝑜𝑔 !

!
− 1       (4c) 

All cost functions are positive and have a single minimum at 0 when 𝑥 = 𝑦. 
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2.2 Statistical Perspective 

NMF can be recast from a statistical perspective. The choice of a certain cost function 𝑑(∙ | ∙) to 

measure the fit between 𝑥!" and 𝑥!" implies certain assumptions about how 𝑥!" is generated 

from 𝑥!". It was already pointed out 9,14 that Euclidean, KL and IS NMF underlie the following 

generative models: 

                                                                                                        𝑥!"~𝑁(  𝑥!",𝜎!)     EU-NMF  (5a) 

                                                                                                        𝑥!"~𝑃𝑜𝑖𝑠(  𝑥!")     KL-NMF  (5b) 

                                                                                                        𝑥!"~Γ(𝑎,𝑎/  𝑥!")   IS-NMF   (5c) 

where 𝑁,𝑃𝑜𝑖𝑠, Γ refer to the Gaussian, Poisson and Gamma distribution, respectively. In other 

words, NMF based on Euclidean distance underlies an additive Gaussian noise; NMF based on 

Kullback-Leibler divergence underlies a Poisson noise; NMF based on Itakura-Saito divergence 

underlies a multiplicative Gamma noise. Assuming these generative models, NMF algorithms 

can be seen as computing a maximum likelihood estimate (MLE) of the non-negative factorizing 

matrices. For example, NMF of X into WH based on Euclidean distance is equivalent to the 

MLE of the mean (WH) under a Gaussian model; when KL-divergence is used, NMF of X into 

WH is equivalent to the MLE of the mean under a Poisson model; when IS divergence is used, 

NMF of 𝑋!𝑋 (not X) into WH is equivalent to the MLE of W and H under a Gamma model. Of 

note, sometimes there may be interpretability ambiguity when the MLE of the Gaussian model 

does not guarantee non-negativity or when a Poisson model is used for real-valued data9. 

Bayesian treatment of NMF can easily avoid the interpretation ambiguity problem. In 

Bayesian frameworks, parameters are treated as priors and appropriate densities can be chosen in 

accordance with our beliefs about the parameters. Moreover, Bayesian NMF can utilize powerful 

Bayesian tools for estimating the posterior density and obtain uncertainty estimate. In the work15 
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of Schmidt et al. (2009), the proposed Bayesian NMF features 1) an exponential distribution as 

the prior to ensure non-negativity; 2) an efficient Gibbs sampler to approximate the posterior 

density of the NMF factors; and 3) order selection via marginal likelihood estimation15.  

 

2.3 Algorithms 

Non-negative matrix factorization is a nonlinear optimization problem. The objective function 

(2) is convex in W or H but not both. Hence it is unrealistic to expect an algorithm to find the 

global optimum. Various numerical approaches have been proposed, including multiplicative 

algorithms1,4,7, alternating least squares algorithms (ALS)6,16, to name a few. Given the large 

number of parameters to estimate (KN+KM), convergence to a local minimum is only 

guaranteed for some algorithms. Multiplicative update algorithms are well supported by 

convergence theories, and have been popular and standard methods.  

In the following, we briefly introduce basics on the multiplicative algorithms. In our 

proposed method, we also use a multiplicative update rule. 

 

2.3.1 Multiplicative Algorithms 

Lee and Seung first proposed to use multiplicative iterative algorithm to search for the local 

minima of NMF1. The multiplicative approach has been well described15: it updates each 

parameter by multiplying its value at previous iteration by the ratio of the negative and positive 

parts of the derivative of the criterion w.r.t. this parameter, namely, 𝜃 𝜃. [∇!(!)]!
[∇!(!)]!

    where 

∇𝑓 𝜃 = [∇𝑓(𝜃)]! −    ∇𝑓 𝜃 ! and the summands are both nonnegative. This ensures non-

negativity of the parameter updates, given that the initialization values are non-negative. A fixed 
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point of the algorithm implies either ∇𝑓 𝜃∗ = 0 or 𝜃∗ = 0. Under EU-NMF it leads to the 

following updates1 

                                                                                                                              𝑤!"   𝑤!"   
(!"!)!"
(!"!!)!"

       (6a) 

                                                                                                                              ℎ!"   ℎ!" .
(!!!)!"
(!!!")!"

     (6b) 

where 𝑤!" and ℎ!" are the entries of matrices W and H. It has been pointed out that the update 

equations of EU-NMF, KL-NMF and IS-NMF can be re-written into unified coupled equations 

with one parameter to indicate the specific NMF variant9 

Of note, given the multiplicative iteration, the W and H matrices may not be sparse, 

containing lots of low values close to zero but not exactly 0. On the other hand, once an element 

becomes zero, it will remain at 0. Locking at ‘0’s too early may lead to a poor solution path.   

 

2.4 Regularization 

In regression, various regularization methods have demonstrated their utility for variable 

selection, especially in the ‘high dimensional data small sample size’ scenarios. Lasso penalizes 

a least squares regression by the sum of the absolute values (𝐿!-norm) of the coefficients17. The 

form of this penalty encourages sparse solutions (i.e., many coefficients equal to 0). Elastic net 

combines both lasso and ridge penalties and has demonstrated a superior performance than lasso 

while enjoying a similar sparseness of representation18. Elastic net encourages a grouping effect, 

where strongly correlated predictors tend to be in (or out) the model together and the regression 

coefficients tend to be equal18. Fused lasso penalizes the 𝐿!-norm of both the coefficients and 

their successive differences, leading to sparse and smooth coefficients for features ordered in 

some particular way19. Fused lasso has demonstrated its utility in analysis of genomic copy 
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number data. Both elastic net and fused lasso could be thought of as special cases of group lasso, 

which provides a more flexible framework to incorporate constraints on pre-defined groups of 

variables20.  

Graph-regularized NMF is similar to group lasso in spirit. This is done by constructing a 

nearest neighbor graph, incorporating the graph structure into the objective function of matrix 

factorization7: 

𝑚𝑖𝑛!!!,!!!   𝑋 −𝑊𝐻 !
! +   𝜆  𝑡𝑟𝑎𝑐𝑒 𝑊!𝐿𝑊      (7) 

where ∙ ! denotes the matrix Frobenius norm, 𝜆 is the regularization parameter, 𝐿 is the graph 

Laplacian21 of a k-nearest neighbor graph. In the context of tumor subtyping, each basis vector of 

W represents a ‘metagene’, a collection of genes as the functional unit underlying a subtype. 

This penalization encourages similar weights for genes if these genes are known to connect or 

interact in a common pathway8.   
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          CHAPTER III   

      SPARSE NETWORK-REGULATED NMF  

With the same motivation as in penalized regression, we propose a new formulation of NMF to 

allow the control of both sparsity and graph structure on the basis matrix. We call this method 

sparse network-regulated NMF (sgNMF), implemented in two steps. 

 

Step One 

Step one learns the basis representation under the graph constraint. We used the iterative 

algorithm proposed by Cai et al.7 to find solutions W and H. Briefly, we re-write the equation 

(7), apply Lagrange multiplier, take partial derivative w.r.t. W an H, and apply Karush-Kuhn-

Tucker (KKT) condition to obtain the following update steps: 

                                                                                                                              𝑤!"   ←   𝑢!"   
(!!!!  !  !")!"
(!"!!!!"#)!"

    (8a) 

                                                                                                                              ℎ!"   ←   ℎ!"   
(!!!)!"

(!!!!!)!"
    (8b) 

This is a multiplicative update rule. The proof of convergence has been demonstrated7. The 

stopping criterion was set when the absolute difference in values of the objective function 

between two consecutive iterations is less than 0.1. 

 

Step Two 

Step two applies a lasso-like constraint to modify W and solves for H that minimizes the 

reconstruction error. Specifically, given the solution W obtained from step one, all entries below 

threshold 𝛼 (𝛼 > 0) are set to exactly 0, and the rest entries subtract 𝛼. Denote the resulting 



	
   9	
  

matrix as 𝑊!. The coefficient matrix 𝐻! is solved by least squares and then set the negative 

values to zero to ensure non-negativity: 

𝐻 = 𝑊!
!𝑊!

!!𝑊!
!𝑋

𝐻!      𝐻 ≥ 0                 (9) 

It is our interest to test whether the clustering based on the new 𝐻! will improve compared to the 

clustering based on the original 𝐻. 

We are aware that a potential drawback of the proposed sgNMF is that it does not 

simultaneously control sparsity and graph structure. However, a lasso-like constraint is infeasible 

to realize given a multiplicative update rule that scales the results, giving lots of low values close 

to zero rather than setting them to exactly 0. Then why not use other update algorithms? The 

reason we chose the multiplicative algorithm over other algorithms is that, other algorithms such 

as gradient descent algorithms and alternating least squares (ALS) algorithms suffer from their 

own problems when used to obtain numerical solutions of NMF. The difficulty of gradient 

descent algorithms comes in choosing the step size to ensure convergence and non-negativity; 

the ALS algorithms suffer from convergence partially due to the ad hoc implementation of 

nonnegativity22. Furthermore, penalization is hard to implement within ALS. For these reasons, 

we chose a compromised strategy to use multiplicative rule to control graph structure followed 

by a sparseness correction to control sparsity.  
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     CHAPTER IV   

       SIMULATION STUDIES    

4.1 Simulation Setup  

We choose to use simulation to assess the ability of sgNMF to recover true subtypes from 

somatic mutation profiles. For most cancers, the true subtypes are unknown. For a few cancer 

types that do have known subtypes such as colon rectal cancer and breast cancer, the subtype 

classifications are based on gene expressions23 [http://sagebase.org/case-studies/colorectal-

cancer-subtyping-consortium/]. The substantial difference in the two molecular data types makes 

it inappropriate to set one as the golden standard for the other to compare. Therefore, we set out 

to use synthesized data to carry out systematic evaluations of the sgNMF method. We simulate 

somatic mutation cohorts as follows.  

 

4.1.1 Mutation Cohorts 

For each sample, we indicated a gene as 1 if it mutated and zero otherwise. The number of 

patients per cohort and the number of mutations per patient follow the ovarian cancer mutation 

dataset from TCGA. We first permuted for each patient the mutation profile while keeping the 

per-patient mutation frequency invariant. This was to generate a background with no subtype 

signal. Then, a network-based signal was added to the patient-by-mutation matrix as follows. 

First, we established a set of network modules (i.e., connected components enriched for edges 

shared within modules) in an input network using a fast spectral clustering algorithm. The input 

network we chose is HumanNet24 v.1 with top 10 percent of the most confident edges and 11 

nearest-neighbors; we used the R package ‘mclust’ for module detection based on the fast 

spectral clustering. Of the 120 modules detected, we focused on modules of size below 150 
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genes. Next, we divided the patient cohort randomly into four equal-sized subtypes (four was 

selected as reasonable owing to the four expression-based subtypes that have been identified for 

glioblastoma, ovarian and breast cancers11,25-27). Each subtype was assigned a network module 

that had size s ranging from 10 to 150 genes; these modules are denoted as driver modules. In 

order to estimate the appropriate size of driver modules (i.e., cancer pathways), we examined the 

known cancer pathways in the NCI-Nature pathway interaction database28. The database of NCI-

nature has curated 136 cancer pathways with sizes ranging 2-139 and a medium of 34.  

We assume zero overlap (no shared genes) between these driver modules. For each 

patient, we reassigned a fraction of the patient’s mutations 𝑓 to genes covered by the driver 

module that characterizes the patient’s subtype. A plausible range for the number of driver 

mutation in a tumor was recently proposed to be between 2 to 8 driver mutations12. We note that 

a fraction of 4% corresponds to between 2 and 9 mutations (median of 3), which is consistent 

with the aforementioned estimate.  

 

4.1.2 Controlling Subtype Signals  

We varied the strength of subtype signals by controlling the ‘cancer pathways’ that determine the 

subtypes. This was done by controlling the size and connectivity of the modules underlying the 

subtypes (Table 1). Module connectivity is measured by graph density, i.e., the number of edges 

divided by the number of edges if the graph is fully connected. A highly connected module is 

expected to have stronger signals than a module that is less connected. We divided the modules 

based on the quantile of the connectivity level; within each level, module sizes were chosen to 

generate either an equal size distribution or a step-down size distribution. Table 1 lists multiple 
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simulated cohorts whose subtypes were assigned based on modules of different connectivity 

levels and sizes. 

 

4.2 Network-based Stratification 

We performed subtype classification of the pseudo tumors using the network-based classification 

(NBS) framework developed by Hofree et al.8. Tumor classification was done by applying the 

original NBS (with GNMF) as well as the modified NBS (with sgNMF). The resulting partitions 

were compared with the true simulated subtypes to compare the two approaches and assess the 

effect of the sparse constraint. We used adjusted random index29 to compare two partitions.  

 NBS was recently proposed to overcome the challenge in classification on somatic 

mutations by leveraging information provided in protein-protein interaction networks (PPI)8. 

Briefly, NBS uses label propagation on PPI to assign higher values to non-mutated genes that are 

closer to genes (in PPI) that harbor mutations. This guilt-by-association principle governed by 

genetic networks has many applications for biological discovery utilizing prior knowledge.  For 

somatic mutations in genes, this principle fits well with the underlying biology: driver genes are 

often interacting directly or indirectly in common pathways and mutations in different genes in 

the same pathway are likely to cause genetically similar tumor30. NBS has been applied on 

several cancers using exome-level mutation data and showed improved association of subtypes 

with clinical outcomes than using mRNA data. In general NBS provides a unified framework to 

further investigate tumor subtyping by integrating somatic mutations with biological 

networks8,13. 
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4.2.1 Network Propagation 

Let X0 be the initial gene × patient matrix (M ×N), and A be the symmetric adjacency matrix 

representing gene-to-gene interaction network (M×M). The network propagation process is 

carried out by the following iterative algorithm8: 

                                                        𝑋!!! = 𝑎   ∙ 𝐴 ∙ 𝑋! + (1− 𝑎) ∙ 𝑋!    (10) 

We set 𝑎 = 0.7 as previously described 8. The propagation function was run iteratively until Ft 

converges (|Ft+1 -Ft| < 0.001). Following the propagation, quantile normalization was applied to 

Ft to ensure each patient follows the same distribution for the smoothed mutation profile. We use 

F to denote the final normalized and smoothed mutation matrix. 

 

4.2.2 Network-regularized NMF 

This step can be deemed as an application of GNMF on mutation data (see equation 7). The 

value K controls the dimension reduction, and we used K=3,4,5,6 in this study. L is the graph 

Laplacian of a k-nearest-neighbor network. We chose k=11 as previously described8. 𝜆 is the 

regularization parameter and the value was set by parameter tuning (see below). The iteration 

was run until the objective function converges (|Xt+1 -Xt | < 0.1).  

 

4.3 Tuning Parameters 

Selection of the regularization parameters should be very careful to gain a balance between 

sparseness and discrimination. During iterations, under the multiplicative rule, once an element 

in W or H becomes 0, it must remain 0. Thus, a strong penalty 𝜆 in equation (2) may cause a 

solution path to settle early to a poor solution. The value of 𝛼 controls the degree of sparseness in 

the basis matrix. The larger the 𝛼, the more succinct the W representation is and the larger the 
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departure from the original solution. This may cause large residuals in approximating the original 

matrix. We first tried a coarse combination of 𝜆 and 𝛼 covering a wide range. The initial results 

suggest the use of a more focused region with a finer spacing. Specifically, we used a grid of 

𝜆×𝛼 with a total of 105 combinations, whereas 𝜆 =10, 5, 4, 3, 2,1, 0.8, 0.7, 0.6, 0.5, 0.2, 0.1, 

0.05, 0.01, 0.001 and 𝛼 =0.1, 0.08, 0.005, 0.02, 0.01, 0.005, 0.001 (most elements in W is small). 

We used classification accuracy in simulated data to guide the choice on parameter values. 

 

4.4 Results 

4.4.1 Proof of Concept 

As a proof of concept, we first tested our method on a cohort with strong signals determining the 

subtypes. Specifically, we picked four modules to represent the cancer pathways with size <50 

and high connectivity (top 1, 2, 3, 12, respectively) among the 120 modules. Table 2 lists the size 

and connectivity of the modules characterizing the subtypes. In these scenarios, the classification 

accuracy was mostly >98% if 𝜆 is small (close to 2). The sparseness constraint also produced 

sparse basis vectors. With 𝛼=0.05, the metagene corresponding to each subtype contains 40, 36, 

41, 24 non-zero values, respectively. These non-zero values characterize the major contributing 

genes for each metagene. There is a good overlap between the detected metagenes and the cancer 

pathways underlying the subtypes (Table 2). For subtype II-IV, each ‘cancer pathway’ was 

totally covered by the corresponding metagene. For subtype I, the metagene failed to cover the 

whole ‘cancer pathway’ but was also enriched with the ‘cancer genes’ (37/40). In short, the 

metagenes demonstrated good sensitivity and specificity to recover the underlying cancer 

pathways. In contrast, without the sparse constraint, the metagenes are dense, each containing 



	
   15	
  

more than 14,000 non-zero elements (out of 16179), although the top genes are still in the cancer 

pathways.  

 

4.4.2 Tuning Parameters 

We consistently observed that, the optimal or sub-optimal classification accuracy occurred in the 

region [0.001,1]×[0.001, 0.05] of the 𝜆×𝛼 parameter space. Furthermore, the change in the 

classification accuracy over this parameter subspace is relatively small (min, median and max of 

the accuracies were shown in Table 3). For most cases, the max - min difference is less than 0.1, 

regardless of whether sparsity was imposed or not (Table 3). In terms of the relative contribution, 

we observed a more decisive effect of 𝜆 on the classification accuracy while only a minor effect 

of 𝛼. This is not surprising, as our two-step design restricts the role of 𝛼 in step one, and the need 

to balance sparsity and good approximation favors small 𝛼 in step two, leading to small changes 

in the resulting coefficient matrix. Based on the simulated data we chose setting 𝜆=1 and 𝛼=0.05 

in other analyses. 

 

4.4.3 Pathway Connectivity and Classification Accuracy 

We observed a positive relationship between classification accuracy and connectivity of the 

pathway sets. This is expected, because a densely connected pathway enables the effect of 

mutations to propagate through the common pathway via gene-gene interaction. Thus, the 

common pathway will be picked and the (pseudo) tumors are clustered together despite that the 

driver mutations are from different genes. As shown in Table 3, once the connectivity is above 

0.1 for all modules (cohort 16), the signal will be strong, resulting in high classification accuracy 

(>98%); when the connectivity level is close to 0.05, often times the cohort achieved sufficiently 
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good classification accuracy (>86%). This occurred regardless of the sparsity constraint (Table 

3). We also commented that graph connectivity is not the single factor determining the subtype 

signals. For example, cohort 6 and 7 had similar connectivity but differed substantially in 

classification accuracy (Table 3). This is probably because cohort 6 has larger modules. By 

definition of graph density, it is much harder for a large subnetwork than a small one to reach 

certain edge density, and for the same connectivity larger modules usually have more effective 

label propagation. Another example that is more difficult to explain is by comparing cohort 11 

and 12. Now cohort 11, which had smaller modules of lower connectivity, achieved much higher 

classification accuracy than cohort 12 (Table 3).  

 

4.4.4 Effect of Sparseness Constraint 

We observed a limited effect of sparseness constraint on the classification accuracy across all 

simulations. Imposing sparsity introduced a small amount of disturbance to the original solution 

W, and more often led to a classification that is slightly better (Table 4). It was less often that the 

final classification became worse or remained unchanged, especially when the subtype signals 

are strong and the original classification is already good (see cohort 13, 14, 16 in Table 4).  

In summary, our simulation studies suggest the two following points. First, the GNMF 

method works as expected, the sparse constraint has mixed impacts on the classification accuracy 

and often times led to a slightly better solution. Since NMF algorithms produce local optimums 

by design due to the non-convex property, the run-to-run variations should exceed the variations 

by imposing the sparseness constraint. In practical use, we recommend to use GNMF combined 

with consensus clustering (see below) to achieve robust classification and applying the 
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thresholding to obtain sparse representation of the basis vectors to aid interpretation of pathways. 

This can be thought of as a modified NBS strategy.  
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         CHAPTER V   

           APPLICATIONS TO REAL DATA 

We applied the modified analysis strategy as recommend at the end of last chapter to 13 tumor 

types from TCGA cohorts. In addition to clustering patterns, we also perform survival analysis to 

identify clinically relevant subtypes. Finally, we used CRC as an example to apply sparse coding 

to obtain a list of genes most responsible for the detected subtypes.  

 

5.1 Mutation Data 

We collected mutation data on solid tumors of 13 major cancer types profiled by exome-

sequencing and investigated previously30 (http://cancergenome.broadinstitute.org). We focus on 

mutations that are non-synonymous, occurred on splice sites or stop codons (termed “functional” 

mutations). In contrast, the non-functional mutations refer to synonymous mutations and 

mutations in intronic or intergenic regions. Samples with fewer than 6 functional mutations in 

exomes were discarded. Finally, we are left with a total of ~4000 samples (Table 4).  

 

5.2 Consensus Clustering 

In order to achieve robust clustering, we used consensus clustering31 to generate the final 

clustering of patients. Specifically, we ran network-regulated NMF using a random sample 

without replacement of 80% patients to construct a clustering, and repeat this process 50 times. 

The collection of 50 clustering results was used to construct the similarity matrix, which records 

the frequency with which each pair of patients was observed to share the same membership 

among all replicates. Hierarchical clustering with average linkage was generated based on the 

similarity matrix using the R “NMF” package.  
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5.3 Survival Analysis  

Survival analysis was performed using the R “survival” package. Kaplan-Meier survival curves 

were plotted for each NBS subtype and log-rank tests were performed to test the association of 

subtypes with survival.  

 

5.4 Results 

Figure1-3 show the clustering pattern of 8 cancer types (BRCA, CRC, GBM, HNSC, KIRC, 

LUAD, OV, UCEC) for different ranks (K=2,3,4,5). The clustering patterns are clear, and all 

tumor types have at least one clear clustering pattern for certain K. Other five cancers types had 

less clear clustering patterns and were not shown.  

Figure 4 shows the NBS subtypes and survival for six cancer types (BRCA, CRC, GBM, 

HNSC, KIRC, UCEC). The p-values from log-rank tests are shown for each cancer type. Despite 

the clear pattern of clustering, none of the p-values are significant. The best case is GBM, whose 

p-value is marginal (0.03). After correction for multiple testing, none of the cancer types had 

subtypes that are associated with survival. The reasons are several folds. First, subtypes based on 

molecular profiles do not necessarily result in distinct survival or other clinical demonstration. 

Different pathways could present similar clinical symptoms when they are disturbed. Second, 

somatic mutations only capture one source of genomic aberrations. Each of the multiple data 

types such as gene expression, DNA methylation and copy number etc., each contains its own 

unique information, and solely relying on mutation data may miss other important pieces of 

information. Third, the survival data used in the analysis may not be of good quality. For 

example, the follow-up times were generally short in the TCGA CRC cohort, which affects the 
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quality of the survival data. Finally, the samples were collected and profiled at one time point 

and the patients were followed up for a period of time during which, some medicine or therapies 

were administered such that the survival will not reflect the molecular profiles when they were 

collected.  
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  CHAPTER VI    

   SUMMARY 

In summary, we proposed a new formulation to incorporate sparse coding into the graph-

regulated NMF in order to improve accuracy of classifying tumor subtypes. Due to the lack of 

well-established subtypes for most cancer types, we set out to simulate mutation cohorts with 

underlying driver cancer pathways. We evaluated new method over a spectrum of simulated 

mutation cohorts varying in signals of determining the subtypes. We found that the sparseness 

constraint more often led to slightly better solutions. Such limited effect is in part due to the two-

step design of our algorithm in forcing the sparse representation. Furthermore, in tuning the 

regularization parameters, we identified a parameter region in which the classification accuracy 

was qualitatively better for all simulated cohorts we examined. We recommend using the original 

NBS for subtype detection and sparse coding for interpretation of the pathways underlying the 

detected subtypes. For illustration purpose, we applied this analysis strategy to several tumor 

types from TCGA, and identified clustering patterns for eight cancer types including BRCA and 

CRC. Our association analysis revealed that the majority of the NBS subtypes are not associated 

with survival. We provided potential reasons why no association between the NBS subtypes and 

survival were detected. Finally, using CRC as an example, we provide a list of genes most 

responsible for the subtypes detected using sparse coding.   
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TABLES 

 

Table 1: Size and connectivity of the simulated cancer pathways characterizing the 

subtypes in the simulated mutation cohorts. 

Simulated 
Cohortsa 

Cancer Pathway 

Size Connectivity 
I          II       III       IV I           II         III        IV 

1 127     131     153     87 0.003   0.002   0.002   0.001 
2 59      68      87      127 0.003   0.002   0.001   0.003 

    
3 55      52      53      53 0.01    0.009   0.007   0.004 
4 77      62      73      73 0.01    0.005   0.004   0.003 
5 37      33      34      32 0.014   0.009   0.007   0.006 

    
6 104     116     106     117 0.05    0.049   0.047   0.045 
7 70      80      89      81 0.05    0.046   0.033   0.021 
8 50      56      62      69 0.047   0.04    0.036   0.032 
9 32      38      31      36 0.044   0.034   0.019   0.016 

10 151     94      62      26 0.05    0.042   0.036   0.015 
11 104     80      56      36 0.05    0.046   0.04    0.016 

    
12 108     92      89      99 0.054   0.052   0.053   0.068 
13 60      65      67      68 0.101   0.063   0.058   0.054 
14 40      42      40      48 0.099   0.098   0.097   0.09 
15 108     46      35      60 0.054   0.118   0.19    0.101 
16 49     31     35    14 0.12    0.17    0.19     0.43 

a Cohorts were divided into 4 blocks by connectivity:1-2, connectivity≤0.003; 3-5, 

0.003<connectivity  ≤0.01; 6-11, 0.01<connectivity≤0.05; 12-16, connectivity>0.05. 
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Table 2: Simulated ‘cancer pathways’ and the pathways (‘metagenes’) detected by sparse 

coding combined with the NBS approach 

Subtype 
Cancer Pathway Metagene Overlap between 

metagene and 
cancer pathway Size Connectivity Size 

I 49 0.12 40 37 
II 31 0.17 36 31 
III 35 0.19 41 35 
IV 14 0.43 24 14 

Classification accuracy of 100% using  𝜆 =1 and 𝛼 =0.05 
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Table 3: A region of regularization parameters identified to have relatively stable 

classification accuracy 

Simulated 
Cohorts 

Classification Accuracy 

w/o sparsity constraint w. sparsity constraint  
min, median, maxa min, median, maxa 

1 0.044   0.058   0.066 0.028   0.074   0.079 
2 0.114   0.12    0.123 0.082   0.112   0.126 

  
  

3 0.413   0.557   0.631 0.299   0.542   0.685 
4 0.172   0.268   0.301 0.149   0.288   0.338 
5 0.88    0.914   0.923 0.206   0.923   0.94 

  
  

6 0.906   0.948   0.948 0.804   0.991   0.991 
7 0.501   0.559   0.57 0.418   0.574   0.589 
8 0.532   0.861   0.948 0.245   0.904   0.948 
9 0.889   0.914   0.939 0.426   0.939   0.948 

10 0.52    0.568   0.578 0.371   0.547   0.561 
11 0.858   0.898   0.914 0.719   0.922   0.931 

  
  

12 0.61    0.636   0.914 0.603   0.645   0.879 
13 1         1          1 0.956   1       1 
14 0.991  1          1 0.965   1       1 
15 0.574   0.601   0.621 0.56    0.586   0.6 
16 0.982  1          1 0.991   1     1 

a The min, median and max of the classification accuracy resulting from 50 parameter 

combinations: 𝜆𝜖{1, 0.8, 0.7, 0.6, 0.5, 0.2, 0.1, 0.01, 0.001} and 𝛼𝜖 {0.05, 0.02, 0.01, 0.005, 

0.001}. w/o, without; w., with.  
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Table 4. Classification efficiency with and without sparseness constraint for various 

parameter combinationsa  in the simulation data 

Simulated 
Cohorts 

Difference in Classification Accuracy                
(Sparse - Original) 

Frequencya 

Sparse 
is 

Better 

Original 
is 

Better 
Equal 

Min 1st Qu. Median 3rd Qu. Max 
1 -0.027 0 0.014 0.023 0.041 50% 50% 0% 
2 -0.034 -0.018 -0.008 0.002 0.045 29% 71% 0% 
3 -0.334 0.005 0.044 0.103 0.165 56% 44% 0% 
4 -0.1 -0.013 0.015 0.057 0.111 54% 46% 0% 
5 -0.709 -0.007 0.013 0.026 0.068 54% 40% 6% 
6 -0.144 0 0.035 0.043 0.094 45% 46% 10% 
7 -0.137 -0.003 0.01 0.023 0.062 70% 28% 2% 
8 -0.447 0 0.012 0.059 0.184 55% 42% 3% 
9 -0.478 -0.006 0.004 0.032 0.059 44% 45% 11% 
10 -0.165 -0.093 -0.021 -0.007 0.021 27% 73% 0% 
11 -0.203 -0.027 0.009 0.041 0.082 46% 52% 2% 
12 -0.082 -0.01 0.009 0.019 0.059 53% 46% 1% 
13 -0.082 0 0 0 0 24% 31% 45% 
14 -0.044 0 0 0.009 0.009 40% 30% 30% 
15 -0.035 -0.036 0 0.011 0.036 49% 48% 4% 
16 -0.062 -0.009 0 0 0.018 30% 31% 39% 

a Parameter combinations: 𝜆𝜖{1, 0.8, 0.7, 0.6, 0.5, 0.2, 0.1, 0.01, 0.001} and 𝛼𝜖 {0.05, 

0.02, 0.01, 0.005, 0.001}, a total of 50 combinations. 
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Table 5: Mutation data and clinical data from TCGA cohorts 

Cancera Sample size 

(# mutations≥6) 

Survival 

 

Grade 

 

Stage 

BLCA 99 X X  

BRCA 849 X   

CRC 233 X   

ESO 140 X X Missing 67% 

GBM 288 X   

HNSC 372 X X X 

KIRC 414 X X  

LUAD 391 X   

LUSC 176 X   

MEL 118    

MM 200    

OV 313 X X X 

UCEC 247 X X X 

Total 4008    
aBLCA-Bladder urothelial carcinoma; BRCA-Breast invasive carcinoma; CRC-Colorectal carcinoma; 

ESO-Esophageal adenocarcinoma; GBM-Glioblastoma multiforme; HNSC-Head and neck squamous cell 

carcinoma; KIRC-Kidney renal clear cell carcinoma; LUAD-Lung adenocarcinoma; LUSC-Lung 

squamous cell carcinoma; MEL-Melanoma; MM-Multiple myeloma; OV-Ovarian serous 

cystadenocarcinoma; UCEC-Uterine corpus endometrial carcinoma 

X marks availability of the clinical data type (survival, tumor stage, tumor grade).  
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Table 6: Top genes responsible for discriminating the CRC NBS subtypes 

NBS 
subtypea Gene 

I KRAS, APC, RASSF2, RASGRP2, RAP1GDS1,  
PIK3CG, PTHLH, SHOC2, PIK3K5, WNT1 

II TTN, MYOM2, MYBPC3, SYNE1, NEB, ANKRD23,  
ANKRD1, MYPN, SCN10A, SUNC1 ANK1, CACNA1A 

III TP53, PARC, E4F1, RCN2, SSTR3, ANKRD2,  
CABLES1, TP53BP2, EI24, APC 

a assume K=3 
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FIGURE LEGEND 

 

Figure 1: The clustering pattern of BRCA and CRC for rank K=2,3,4,5.  

 

 

 

Figure 2: The clustering pattern of GBM, HNSC and KIRC for rank K=2,3,4,5.  

 

 

 

Figure 3: The clustering pattern of LUAD, OV and UCEC for rank K=2,3,4,5.  

 

 

 

Figure 4: Subtypes and the associated survival for BRCA, CRC, GBM, HNSC, KIRC 

and UCEC. P-values from the tests of association between subtype and survival were 

shown.  
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FIGURES  

 

 
Figure 1 
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Figure 2 
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Figure 3 
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Figure 4. 




