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SUMMARY 

 

 The overall focus of this dissertation was to design and validate methods for the 

computational modeling of ligands in complex with G protein-coupled receptors (GPCRs) 

and apply the methods to the modeling of allosteric modulators in metabotropic glutamate 

receptor subtype 5 (mGlu5). 

 Chapter I introduces the importance of GPCRs as a target for drug development, 

with mGlu5 being an especially important target for disorders of cognitive function. The 

introduction discusses the structural information known about mGlu5 and other GPCRs up 

until this point and highlights computational modeling in combination with experimental 

data as a strategy towards elucidating new structural information on GPCR drug targets 

that do not have an experimentally determined structure. Portions of Chapter I came from 

a review entitled “Allosteric modulation of metabotropic glutamate receptors: structural 

insights and therapeutic potential” written by Karen Gregory, Elizabeth Dong, Jens Meiler 

and Jeff Conn. The author of this dissertation contributed all portions of review regarding 

structural information on metabotropic glutamate receptors as well as the computational 

modeling results. 

 Chapter II outlines the currently established protocol for docking small-molecules 

into comparative models of proteins using the Rosetta protein prediction software suite. 

Chapter II is based on the publication entitled “Small-molecule ligand docking into 

comparative models with Rosetta” by Steven Combs, Sam DeLuca, Stephanie DeLuca, 

Gordon Lemmon, David Nannemann, Elizabeth Nguyen, Jordan Willis, Jonathan 

Sheehan and Jens Meiler. While compilation of this work was a collaborative effort 

between eight co-first authors, the protocol on which this work was based was developed 

and presented by the author of this dissertation. The author of this dissertation also 

generated the modeling and docking data and analysis presented in this work. 



xvii 
 

 Chapter III presents specific tailoring of the Rosetta comparative modeling and 

docking protocol to GPCRs. It also presents a thorough benchmark that evaluates the 

accuracy of modeling the ligand-receptor complex with a set of 14 Class A GPCRs. 

Chapter III is based on the publication entitled “Assessment and challenges of ligand 

docking into comparative models of G protein-coupled receptors” by Elizabeth Nguyen, 

Christoffer Norn, Thomas Frimurer and Jens Meiler. The author of this dissertation 

developed the initial strategy for this work, designed the experiments and generated the 

comparative models. Collaborative efforts in data analysis and writing of the text resulted 

in co-first authorship between the first two authors of this paper. 

 Chapter IV presents the first application of the comparative modeling and docking 

protocols to mGlu5. The computational modeling is used to understand how MPEP as well 

as picolinamide and nicotinamide allosteric modulators based on the MPEP scaffold 

interact with the receptor. In particular, we examined why particular receptor mutations 

cause a switch in modulator function. Chapter IV is based on the publication entitled 

“Probing the metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulator 

(PAM) binding pocket: discovery of point mutations that engender a “molecular switch” in 

PAM pharmacology” by Karen Gregory, Elizabeth Nguyen, Sean Reiff, Emma Squire, 

Shaun Stauffer, Craig Lindsley, Jens Meiler and Jeff Conn. The author of this dissertation 

contributed all aspects of computational modeling to this work, interpreted in light of the 

mutagenesis data performed by Dr. Karen Gregory. 

 Chapter V continues the investigation of how allosteric modulators bind to mGlu5, 

but expands across four diverse chemical scaffolds. This chapter was written for the 

dissertation. Computational studies were interpreted in light of mutagenesis data 

performed by Dr. Karen Gregory and SAR data collected by Chrysa Malosh. Contributions 

from this work are being incorporated into a manuscript in preparation entitled 

“Investigating the binding modes of mGlu5 allosteric modulators from diverse scaffolds” by 
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Elizabeth Nguyen, Karen Gregory, Chrysa Malosh, Jeffrey Mendenhall, Brittney Bates, 

Meredith Noetzel, Emma Squire, Eric Turner, Kyle Emmitte, Shaun Stauffer, Jason 

Manka, Ya Zhou, Mark Turlington, Andrew Felts, Craig Lindsley, Jeff Conn and Jens 

Meiler. 

 Chapter VI discusses the preparation of an mGlu5 construct with a cysteine-less 

background for the collection of structural restraints that would aid in the interpretation of 

the computational modeling of mGlu5. This chapter was written for the dissertation. The 

majority of the experiments presented in this chapter were performed by the author of this 

dissertation, with experimental work supplemented by Dr. Karen Gregory and Emma 

Squire as indicated in the text. Compound synthesis was performed by Shaun Stauffer, 

Aspen Chun, Ya Zhao and Craig Lindsley. This work will be incorporated into a future 

manuscript that applies the cys-less receptor to the collection of experimental structural 

restraints.  

 To overcome the limitations of comparative modeling, Chapter VII presents 

improvements upon the BioChemical Library membrane protein structure prediction 

method (BCL::MP-Fold) for de novo of membrane proteins by incorporating sequence-

based residue exposure prediction. While this work has yet to be widely applied to GPCRs, 

it is a major step forwards in computational modeling for targets with no available structural 

templates as it allows for the generation of unique membrane protein topologies. This 

chapter was written for this dissertation, but will be prepared as a manuscript entitled 

“Incorporation of sequence-based exposure prediction in de novo membrane protein 

structure prediction” by Elizabeth Nguyen, Jeffrey Mendenhall, Brian Weiner, Kelly 

Gilmore and Jens Meiler. 

 Chapter VIII provides the major conclusions for this work and how it relates to the 

current findings in the field. This chapter was written for the dissertation. 
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 The Appendix includes supplemental figures, detailed command lines, scripts and 

experiments not described in the manuscript for the work presented in Chapter I through 

Chapter VII. In addition, the Appendix includes an application of the GPCR comparative 

modeling and docking protocol to the Class A GPCR, P2Y12. This section is based on a 

publication entitled “Identification of determinants required for agonistic and inverse 

agonistic ligand properties at the ADP receptor P2Y12” by Philip Schmidt, Lars Ritscher, 

Elizabeth Dong, Thomas Hermsdof, Maxi Coester, Doreen Wittkopf, Jens Meiler and 

Torsten Schoeneberg. The author of this dissertation provided the computational 

modeling presented in light of experimental studies performed by Philip Schmidt and Lars 

Ritscher. The final section of the Appendix outlines the alignment method used in the BCL, 

which was evaluated and benchmarked by the author of the dissertation and is based on 

the publication entitled “BCL::Align-sequence alignment and fold recognition with a 

custom scoring function online” by Elizabeth Dong, Jarrod Smith, Sten Heinze, Nathan 

Alexander and Jens Meiler. 
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CHAPTER I 

 

INTRODUCTION 
 

 

Part of the work presented in this chapter was published in (Gregory, Dong, Meiler, & 

Conn, 2011) 

 

G protein-coupled receptors as therapeutic targets 
 

The diverse range of physiological function within the human body is made 

possible by the efficiency of communication that occurs between cells. This 

communication is driven by signals transmitted through molecules such as 

neurotransmitters, hormones or growth factors, as well as external stimuli such as light or 

odor. These signals are captured by G protein-coupled receptors (GCPRs), a family of 

proteins that sit within the cell membrane and trigger a downstream cascade of proteins 

necessary to carry out the specified function. At this moment, in fact, the rhodopsin 

receptor is allowing your eyes to process light as you read these words while GABA and 

glutamate receptors are allowing you to understand and remember these ideas. 

Angiotensin and adrenergic receptors are working to regulate your blood pressure as well 

as your urinary and digestive systems.  

There are more than 800 GPCRs encoded by the human genome, which makes it 

the largest protein family in the human proteome (Stevens et al., 2012). GPCRs have been 

further categorized by sequence similarity by the International Union of Pharmacology 

(IUPHAR) into three main classes: class A rhodopsin-like, class B secretin-like and class 

C metabotropic glutamate-like (Foord et al., 2005). Class A is by far the largest with 700 

members and contains receptors that bind opsins, olfactory molecules, opioids, 



2 
 

neurotransmitters and hormones (Katritch, Cherezov, & Stevens, 2013). Class B receptors 

primarily bind neuropeptides and other peptide hormones. Class C includes the 

metabotropic glutamate, GABAB and calcium-sensing receptors. The classification of the 

frizzled and smoothened receptors of Class F as GPCRs is still controversial. Although 

they have distinct signaling properties through the hedgehog pathway, members of Class 

F are still able to couple to G proteins (Chong Wang, Wu, et al., 2013). Within each class, 

receptors share over 25% sequence similarity, but there is less than 25% sequence 

similarity across classes (Jacoby, Bouhelal, Gerspacher, & Seuwen, 2006).  

Despite their divergent sequences, however, the overall structure and function of 

all GPCRs is quite similar. GPCRs have seven transmembrane (TM) helices that are 

connected by flexible intra- and extra-cellular loop regions which often play an important 

role in ligand binding. When a ligand, whether it be a small molecule or peptide, binds the 

receptor, downstream signaling via a G protein catalyzes GDP-GTP exchange, which then 

further modulates downstream proteins. The conformational switch from an inactive to 

active state occurs when TM5 and TM6 undergo an outward “swinging” motion to expose 

the G protein binding site on the intracellular side of the receptor (Katritch et al., 2013).  

Because of their key functional roles, GPCRs are a common drug target. In fact, 

about 30% of today’s drugs target GPCRs (Overington, Al-Lazikani, & Hopkins, 2006). 

Traditionally, drugs are developed to bind the receptor at the same site as the endogenous 

ligand, known as the orthosteric site. One of the key problems with such drugs, however, 

is that multiple GPCR subtypes that bind the same ligand are localized to different organ 

systems in the body. As a result, targeting a disease localized to a specific organ system 

is difficult to achieve with a drug that binds the orthosteric site. Carvedilol, for example, 

binds to a number of alpha- and beta-adrenergic receptors. While it is primarily used to 

treat heart failure and hypertension, common side effects are seen across multiple organ 
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systems including dizziness, fatigue, hyperglycemia, diarrhea, weight gain and muscular 

weakness (Frishman, 1998).  

One way to enforce subtype selectivity and reduce side effects is to design drugs 

that bind in a site other than the endogenous ligand binding site, one that is unique to the 

receptor being targeted. This site is known as the allosteric binding site (Milligan & Smith, 

2007). Ligands that bind to an allosteric site and enhance receptor activity are known as 

positive allosteric modulators, or PAMs. Ligands inhibiting receptor activity are known as 

negative allosteric modulators, or NAMs. Neutral allosteric ligands also exist, which do not 

modulate receptor activity. Allosteric modulators are more difficult to develop than 

orthosteric ligands because often, there is no known chemical scaffold to build from. 

However, there have been two GPCR allosteric modulators that have in fact been 

marketed for use: cincalcet targets the Calcium-sensing receptor to treat 

hyperparathyroidism (Lindberg et al., 2005) and maraviroc targets CCR5 to treat HIV 

infections (Dorr et al., 2005). The exciting potential for the discovery of other GPCR 

allosteric modulators has inspired the work presented in this dissertation. 

 

Targeting the metabotropic glutamate receptor subtype 5 for cognitive function 
disorders 

 
Arguably, one of the most well studied GPCR families with respect to allosteric 

modulation are the metabotropic glutamate receptors, or mGlus. The mGlus are sub-

classified into class C GPCRs along with Calcium-sensing (CaSR), GABAB, pheromone 

and taste receptors. Most class C GPCRs are distinguished by their large extracellular N-

terminal domain, termed the Venus Flytrap domain (VFD), that contains the endogenous 

ligand binding site as shown in Figure 1 (Pin, Galvez, & Prézeau, 2003). Allosteric 

modulators therefore target the transmembrane helical region of the receptor. There are 

eight mGlu subtypes that are classified into three major groups based on sequence 
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homology, pharmacological properties, and coupling to different second-messenger 

pathways. Group I includes mGlu1 and mGlu5; group II, mGlu2 and mGlu3; and group III, 

mGlu4, mGlu6, mGlu7 and mGlu8. mGlus of the same group show ~70% sequence identity 

whereas between groups this percentage falls to ~45% (Conn & Pin, 1997). Group I mGlus 

preferentially couple to activation of the Gq/11 family of G proteins activating 

phosphoinositide hydrolysis as the major signaling mechanism. In contrast, group II and 

group III mGlus preferentially couple to Gi/o and inhibition of adenylyl cyclases. Members 

of each group have a unique pharmacological profile and can be selectively activated by 

specific agonists or allosteric modulators that have no effects on members of the other 

groups (Gregory et al., 2011). 

 

 

Figure 1 
Schematic of the metabotropic glutamate receptor structure. 
The large N-terminal extracellular domain where the endogenous ligand (glutamate) binds at the 
orthosteric site is also known as the Venus Flytrap Domain (VFD). The VFD is connected to the 
transmembrane region via a cysteine-rich domain. Allosteric ligands bind within the hepta-helical 
transmembrane domain.  
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The metabotropic glutamate receptor subtype 5 (mGlu5) is involved in mammalian 

cognitive function through diverse signaling pathways that modulate synaptic plasticity 

(Hollmann & Heinemann, 1994). As a result, it was speculated that mGlu5 involvement in 

learning and memory might make it a suitable target for cognitive function disorders such 

as Fragile X Syndrome and schizophrenia.  

Fragile X syndrome (FXS), a disorder caused by a trinucleotide (CGG) repeat 

expansion in the FMR1 gene on the X chromosome, results in mental retardation, autism, 

seizures, anxiety and physical abnormalities (Hagerman et al., 2009). Studies with FMR1 

knockout mice suggest that mGlu5 signaling is increased in FXS, leading to an increase in 

long-term depression (LTD) of neuronal synapses in the hippocampus but no change or 

a decrease in long-term potentiation (LTP) (Dӧlen & Bear, 2008). These studies lead to 

the hypothesis that negative modulators of mGlu5 could repair the balance between LTD 

and LTP in the hippocampus and reduce the cognitive defects seen in FXS. Indeed, it has 

been shown that administration of MPEP, an mGlu5 NAM (Table 1), to FXS mice reduces 

anxiety and seizures (Yan, Rammal, Tranfaglia, & Bauchwitz, 2005). 

Schizophrenia is a psychiatric illness characterized by positive symptoms (thought 

disorder, delusions, hallucinations, and paranoia), negative symptoms (social withdrawal, 

anhedonia, apathy, and paucity of speech) and cognitive impairments (Conn, Lindsley, & 

Jones, 2009). Current antipsychotics have little or no efficacy in treating the negative and 

cognitive symptoms associated with schizophrenia, but a strategy targeting mGlu5 aims to 

relieve cognitive impairments as well as positive symptoms (Conn et al., 2009). Recent 

studies suggest that antagonists of the N-methyl-D-aspartate (NMDA) receptor, such as 

phencyclidine (PCP) and ketamine, produce the same cluster of symptoms seen in 

schizophrenic patients (Conn et al., 2009, Tsai & Coyle, 2002). Conversely, ligands that 

enhance NMDA receptor function have proven to be efficient in the treatment of 

schizophrenia (Lindsley et al., 2006). While direct agonists of NMDA receptors are 
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typically neurotoxic, the mGlu5 receptor has been identified as a closely associated 

signaling partner with NMDA receptors in the forebrain, leading to the hypothesis that 

activators of mGlu5 may lead to the amelioration of symptoms associated with 

schizophrenia (Conn et al., 2009). CPPHA (Table 1) is an example of a PAM of mGlu5 

which has no effect on glutamate affinity, but acts as a receptor agonist (O’Brien et al., 

2004).  

Several studies have now reported positive and negative allosteric modulators for 

mGlu5 (see Table 1), providing an exciting and novel approach to mGlu5-specfic 

therapeutic agents that can be used to improve cognitive function. These activators and 

inhibitors of mGlu5 can subtly alter transmission in glutamatergic circuits in a 

therapeutically beneficial manner, making such compounds exciting potential treatments 

for a variety of CNS-related disorders. The majority of compounds that have been 

discovered, however, rarely enter preclinical studies due to low solubility, potency and 

selectivity. While high-throughput screening methods can identify more therapeutic 

candidates by testing hundreds of thousands of compounds per day, the cost and time of 

drug development would be greatly reduced if existing drugs could be modified to increase 

specificity and affinity. To carry out this structure-based drug development, further studies 

are necessary to understand exactly how these allosteric modulators bind mGlu5 and 

which residues are critical for their interaction. This information will help develop 

derivatives with improved chemical properties to further support the therapeutic potential 

of such molecules. 

  



7 
 

Table 1 
Therapeutic indications for mGlu5 in CNS disorders and examples of allosteric modulators.  

Therapeutic 
indication Intervention 

Representative Allosteric Modulators 

Compound Chemical Name 

Anxiety, 
Fragile X 
Syndrome, 
chronic pain, 
depression, 
migraine, 
Parkinson’s 
disease 
levodopa-
induced 
dyskinesia 

NAM MPEP 
(Spooren et al., 2000) 

 
Fenobam 

(Porter et al., 2005) 

2-Methyl-6-(phenylethynyl)pyridine 

 
 

N-(3-chlorophenyl)-N’-(4,5-dihydro-1-
methyl-4-oxo-1H-imidazole-2-yl)urea 

 

Schizophrenia, 
cognition 
disorders 

PAM ADX47273 
(Schlumberger et al., 

2009) 
 

CDPPB 
(Uslaner et al., 2009) 

 
CPPHA 

(Zhao et al., 2007) 

S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-
phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-

1-yl}-methanone 

 
 

3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-
yl)benzamide 

 
 

N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-
2H-isoindol-2-yl)methyl]phenyl}-2-

hydroxybenzamide 
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Detecting the binding site for allosteric modulators 
 

Unique experimental studies have been developed to determine where allosteric 

modulators bind mGlu5. The first step is to confirm that a ligand is indeed binding to an 

allosteric site. One way of determining that a putative allosteric modulator is not binding 

the orthosteric site of an mGlu is through the use of chimeric receptors. Chimeric receptors 

are often constructed by exchanging the VFD of the receptor for which a modulator is 

selective with that of a different subtype that the ligand does not affect. If the ligand 

remains active at the chimeric construct, its activity must then be localized to the 

transmembrane region or C-terminal region, i.e. an allosteric site. Chimeric receptors were 

first used to determine agonist selectivity of orthosteric ligands (Takahashi, Tsuchida, 

Tanabe, Masu, & Nakanishi, 1993) and have now become increasingly useful for 

determining an allosteric mode of action. CPCCOEt was characterized as an allosteric 

modulator of mGlu1 using a chimeric CaSR and mGlu1 construct (Bräuner-Osborne, 

Jensen, & Krogsgaard-Larsen, 1999) as well as using chimeras with other mGlus 

(Gasparini et al., 2001, Litschig et al., 1999). This strategy has proved effective for 

characterization of numerous NAMs and PAMs, with chimeric receptor constructs often 

used as the first step in the validation of an allosteric mechanism (Carroll et al., 2001, 

Knoflach et al., 2001, Maj et al., 2003, Mitsukawa et al., 2005, Pagano et al., 2000). 

 Another method of confirming allosteric binding is to eliminate the extracellular 

VFD from the receptor altogether through the construction of a ‘headless’ mGlu. The 

headless receptor lacks the N-terminal extracellular VFD but retains an intact 

transmembrane region and a functional C terminus (Goudet et al., 2004). Headless mGlus 

behave like wild-type receptors in terms of G protein coupling and can be positively or 

negatively regulated by ligands, like any other class A GPCR. However, they no longer 

respond to orthosteric ligands. In the headless receptor, PAMs acts as agonists and NAMs 

become inverse agonists. Because these allosteric modulators retain activity in cells 
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expressing the headless receptor, these constructs are useful tools to identify allosteric 

ligands (Y. Chen et al., 2007). The headless construct of mGlu5 has been used to localize 

the binding site of the mGlu5 allosteric modulators MPEP, VU29 and CPPHA to the 

transmembrane domain (Y. Chen et al., 2007, Y. Chen, Goudet, Pin, & Conn, 2008). 

Chimeric and headless receptors constructs are useful for delineating the location of 

allosteric binding sites and investigating allosteric interactions, however, they do not 

provide detailed structural information. 

 Localization of an allosteric modulator’s activity can be narrowed down further to 

functionally important residues and binding determinants using site-directed mutagenesis. 

Second messenger assays are commonly used in conjunction with mutagenesis to probe 

the binding site of GPCRs. The Ca2+ fluorescence assay is commonly used, which 

measures the release of Ca2+ stores from the endoplasmic reticulum due to activation of 

a Gαq-coupled GPCR (Emkey & Rankl, 2009). This measurement is often carried out using 

a fluorometric imaging plate reader (FLIPR), which measures the intensity of Ca2+ 

sensitive dye that has been added to the cells. Compared to measurements done with the 

receptor alone, PAMs will demonstrate an increase in percent maximum fluorescence and 

shift the concentration response curve to the left while NAMs will do the opposite (Conn 

et al., 2009). This technology has allowed for rapid assessment of the functional effect of 

ligands binding mGlu5. 

While second messenger assays are useful for probing the functional effect of a 

mutation on the interaction between an orthosteric agonist and allosteric modulator, 

radioligand binding based studies can be used to quantify the influence of a mutation on 

the affinity of an allosteric modulator. Such efforts have been greatly facilitated by the 

development of radioligands for mGlu allosteric sites. The selective mGlu5 radioligands 

[3H]-M-MPEP (Gasparini, Kuhn, Pin, & others, 2002), [3H]methoxy-PEPy (Cosford, Roppe, 

et al., 2003) and [3H]-methoxymethyl-MTEP (Cosford, Roppe, et al., 2003), provide the 
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opportunity for the characterization of the MPEP binding site on mGlu5. In addition, 

inhibition binding experiments can be used to determine if a novel allosteric modulator is 

competitive for known allosteric sites. A summary of mutational studies that have 

determined functionally critical residues and binding determinants of PAMs and NAMs of 

mGlu receptors is found in Table 2. 



 
 

Table 2:  
Functionally critical residues and binding determinants of PAMs and NAMs of group 1 mGlu receptors. 
 Positive Allosteric Modulators (PAMs)                            Negative Allosteric Modulators (NAMs) 
 mGlu1 mGlu5 mGlu1 mGlu5 

7TM 
position** 

CPPHA 
Ro 67-
7476 

CPPHA 
VU-
29 

DFB 
EM-

TBPC 
CFMMC 

LY45606, 
YM298198 FTICD 

CPCCOEt MPEP fenobam 

TM1    
1.42 F599  F585         
TM3    
3.29          R648 R648 
3.36  S668   P655     P655* P655* 
3.39  C671   S658     S658* S658* 
3.40      Y672    Y659* Y659* 
TM4    
4.45            
4.46            
4.55       I725     
EC2    
45.51      N747      
45.54     N734 N750      
TM5    
5.47  L757   L744 L757     L744* 
5.48            
5.50       N760 N760†    
TM6    
6.43     T781     T781 T781* 
6.47     W785 W798 W798 W798†  W785* W785* 
6.51     F788 F801* F801 F801  F788* F788* 
6.55     Y792 Y805* Y805 Y805  Y792 Y792* 
TM7     
7.32     M802 T815* T815 T815 T815 M802*  
7.35         A818 S805*  
7.40    A810 A810     A810* A810* 

Table compiled by Dr. Karen Gregory  *Residues implicated in binding have been determined using selective allosteric radioligands  
**The position of each residue in the mGlu 7TMD is given by the Ballesteros and Weinstein numbering system (Ballesteros & Weinstein, 
1995), which allows for the comparison of equivalent positions within GPCRs. The first number represents the TM helix and the second 
number is its position relative to a highly conserved residue in the group A GPCRs from that TM, assigned the number 50.Highly 
conserved residues (assigned to position 50) are from the bovine rhodopsin sequence: N551.50, D832.50, R1353.50, W1614.50, 
C18745.50, P2155.50, P2676.50, P3037.50. Residues in extracellular loop 2 are labeled ‘45’ to indicate location between helix 4 and 5. 
† Effects LY456066 only  

1
1
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Structural analysis of G protein-coupled receptors 
 

While mutagenesis studies allow for the identification of residues that are important 

to the function and binding of an allosteric modulator, it is difficult to know if these effects 

are due to a direct interaction between the ligand and receptor or if they are due to global 

changes in receptor conformation. There have been studies where a point mutation distal 

to a ligand binding site resulted in a dramatic change in ligand binding affinity (Baugh et 

al., 2010, El Omari, Liekens, Bird, Balzarini, & Stammers, 2006, Rod, Radkiewicz, & 

Brooks III, 2003). However, structural studies can reveal the direct interactions between a 

ligand bound to a receptor at an atomic level. In nuclear magnetic resonance (NMR) 

spectroscopy, resonance frequencies of distinct nuclei in a ligand-protein complex are 

measured in response to pulses from an external magnetic field. Multidimensional NMR 

experiments can be designed to determine ligand affinity and specificity, as well as 

identification of specific residues responding directly to ligand binding (Goldflam, Tarragó, 

Gairi, & Giralt, 2012). In electron paramagnetic resonance (EPR), the change in free 

electron spin of a ligand tagged with a methane-thio-sulfonate (MTSL) spin label bound to 

a cysteine can indicate direct interaction between the ligand and receptor (Loo & Clarke, 

1997). X-ray crystallography is the most common approach used to determine a 3-

dimensional structure of a ligand-receptor complex. After over-expression and 

solubilization of a receptor and addition of the ligand, a receptor-ligand complex can 

undergo crystallization under specific conditions. An X-ray diffraction pattern of the 

resulting crystallized complex then yields a model of the receptor and ligand in real space 

after Fourier transform (McPherson, 1991).  

Crystal structures of the N-terminal domains of mGlu1, mGlu3 and mGlu7 have 

provided extensive information about how the endogenous ligand, glutamate, binds 

mGlu5. The N-terminal VFD of the mGlus is made up of two lobes (Kunishima et al., 2000, 

Muto, Tsuchiya, Morikawa, & Jingami, 2007, Tsuchiya, Kunishima, Kamiya, Jingami, & 
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Morikawa, 2002). This forms a clam shell-shaped structure, with the glutamate binding 

site residing between the two lobes, as seen in Figure 1. Evidence suggests that the 

mGlus dimerize via interactions between their VFDs. When glutamate binds, the globular 

domains close into a stable conformation with glutamate inside (Bessis et al., 2000, 

Kunishima et al., 2000, Tsuchiya et al., 2002). The conformational changes induced by 

glutamate binding at the VFD are transmitted via a cysteine-rich domain. The cysteine-

rich domain, unique to class C GPCRs (with the exception of the GABAB receptor which 

does not have one), links the VFD to the transmembrane-spanning α-helices by a 

conserved disulfide bridge (see Figure 1), subsequently promoting coupling to intracellular 

G proteins and activation of second messenger pathways (X. Liu et al., 2004, Muto et al., 

2007, Rondard et al., 2006). 

 To understand the interaction between allosteric ligands and mGlu5, however, it is 

important to obtain structural information about the hepta-helical transmembrane domain 

in which they bind. This has proven to be very difficult. The first structural determination 

of the seven transmembrane-helical region of a GPCR was bovine rhodopsin in 2000 

(Palczewski et al., 2000). Because they are large in size, have extremely flexible loop 

regions and are very difficult to solubilize as membrane proteins, more experimentally 

determined GPCR structures were slow to follow. With advances in protein engineering 

and x-ray crystallography, however, the last six years have seen an exponential growth in 

the number of available GPCR X-ray crystal structures. As of June 2013, there have been 

17 unique GPCR X-ray crystal structures determined (Katritch et al., 2013), as seen in 

Table 3. All the experimentally determined structures of GPCRs have been from Class A, 

with the exception of the latest crystal structure of Smoothened from Class F.  

Most GPCR structures have also been crystallized with either an agonist or 

antagonist small-molecule or peptide bound within the transmembrane helices. Agonist-

bound experimental structures of rhodopsin, A2Ar and beta-adrenergic receptor have 
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identified a trend of a ligand-mediated conformational change involving TM3 and TM6 

during activation (Katritch et al., 2013). However, the specific residues critical to ligand 

activation vary across each receptor. A receptor-specific model, then, is necessary for 

ligand-based studies of a particular complex. In the absence of an experimentally 

determined structure, as is the case with mGlu5, computational modeling has been shown 

to provide substantial insight into ligand-protein interactions (Congreve, Murray, & 

Blundell, 2005). 

 
Table 3:  
Distinct G protein-coupled receptor experimental structures deposited in the Protein Data 
Bank as of June 2013.  
Details of the highest resolution structure for each unique receptor is reported. 

Protein name PDBID Resolution (Å) Ligand 

Rhodopsin (bRh) 
(Okada et al., 2004) 

1U19 2.20 Retinal 
(inverse agonist) 

Beta2-Adrenergic (B2Ar) 
(Cherezov et al., 2007) 

2RH1 2.40 Carazolol 
(partial inverse agonist) 

A2A adenosine (A2Ar) 
(Jaakola et al., 2008) 

3EML 2.60 ZM241385 
(antagonist) 

CXCR4 chemokine (CXCR4) 
(B. Wu et al., 2010) 

3ODU 2.50 IT1t 
(antagonist) 

Dopamine D3 (D3R) 
(Chien et al., 2010) 

3PBL 2.89 Eticlopride 
(antagonist) 

Histamine H1 (H1R) 
(de Graaf et al., 2011) 

3RZE 3.10 Doxepin 
(antagonist) 

M2 muscarinic acetylcholine (M2R) 
(Haga et al., 2012) 

3UON 3.00 3-quinuclidinyl-benzilate 
(antagonist) 

S1P1 sphingosine 1-phospate (S1P1R) 
(Hanson et al., 2012) 

3V2Y 2.80 ML056 
(antagonist) 

Beta1-Adrenergic (B1Ar) 
(Warne, Edwards, Leslie, & Tate, 2012) 

4AMJ 2.30 Carvedilol 
(inverse agonist) 

M3 muscarinic acetylcholine (M3R) 
(Kruse et al., 2012) 

4DAJ 3.40 Tiotropium 
(inverse agonist) 

Kappa-opioid (KOR) 
(H. Wu et al., 2012) 

4DJH 2.90 JDTic 
(antagonist) 

Mu-opioid (MOR) 
(Manglik et al., 2012) 

4DKL 2.80 β-FNA 
(antagonist) 

N/OFQ opioid (NOP) 
(A. A. Thompson et al., 2012) 

4EA3 3.01 C-24 
(antagonist) 

Delta-opioid (DOR) 
(Granier et al., 2012) 

4EJ4 3.40 Naltrindole 
(antagonist) 

5-hydroxytryptamine 1B (5HT1B) 
(Chong Wang, Jiang, et al., 2013) 

4IAR 2.70 Ergotamine 
(agonist) 

5-hydroxytryptamine 2B (5HT2B) 
(Wacker et al., 2013) 

4IB4 2.70 Ergotamine 
(agonist) 

Smoothened (SMO) 
(Chong Wang, Wu, et al., 2013) 

4JKV 2.45 LY2940680 
(antagonist) 
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Current computational methods for G protein-coupled receptor structure 
prediction 

 
In his work with ribonuclease A leading up to the 1972 Nobel Prize in chemistry, 

Christian Anfisen postulated that the native structure of a protein was unique, stable and 

a kinetically accessible minimum of the free energy. In addition, he hypothesized that a 

protein’s native structure is determined only by its amino acid sequence (Anfinsen, 1973). 

Not long after Anfisen’s discovery, computational methods began to develop which sought 

to model the structure prediction process and its structural outcomes in silico (Moult, 

2006). It has proven to be a difficult challenge, however, as predicted by Cyrus Levinthal 

in 1969. In his thought experiment, Levinthal illustrated that for a 100 residue protein, 

where each residue has just 10 different conformations, the number of possible protein 

conformations is 10100. If a protein samples all of these possible conformations, even at 

just picoseconds each, it would still take longer than the age of the universe to fold this 

single protein (Levinthal, 1969).  

At over 300 residues and with the extra complication of being embedded in a 

membrane, modeling the 7TM helical region of GPCRs is a particularly difficult challenge. 

This work addresses these challenges through comparative modeling and de novo protein 

structure prediction with the use of membrane-specific scoring functions. Development 

and application of two specific protein structure prediction software suites were involved 

in these studies. The unified Rosetta software package performs de novo protein structure 

prediction, ligand docking, and structure prediction of biological macromolecules and 

macromolecular complexes (Das et al., 2009, Kuhlman et al., 2003, Meiler & Baker, 2006, 

Rohl, Strauss, Chivian, & Baker, 2004). The BioChemistry Library Project 

(BCL::Commons) was designed to perform de novo protein structure prediction with 

sparse experimental restraints and also has a large toolkit of cheminformatic and machine 

learning methods (Dong, Smith, Heinze, Alexander, & Meiler, 2008, Karakas et al., 2012, 
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Sliwoski, Lowe, Butkiewicz, & Meiler, 2012, Woetzel et al., 2012, Woetzel, Lindert, 

Stewart, & Meiler, 2011). 

Comparative modeling of a target protein relies on the assumption that there exists 

a structurally similar protein that can be used as a template. Despite the low sequence 

identity between the different classes of GPCRs, confirmation of a common hepta-helical 

architecture in the mGlu transmembrane region provides support for the use of class A 

templates as a starting point for comparative modeling (Bhave et al., 2003). Once a 

structural template has been identified, its coordinates are used as a scaffold for the highly 

conserved secondary structure regions of the target protein. Variable loop regions are 

then rebuilt and the protein model can then undergo full energy minimization (D. Baker & 

Sali, 2001). In Rosetta, loop regions are rebuilt using a cyclic coordinate descent algorithm 

(Canutescu & Dunbrack, 2009, Chu Wang, Bradley, & Baker, 2007). For residues in the 

loop regions, - angles of backbone segments of homologous sequence amino acid 

fragments from the Protein Data Bank (PDB) are introduced. After the fragment 

substitution, slight changes in the - angles are considered to close breaks in the protein 

chain. The resulting full sequence models are subjected to side chain repacking and 

gradient minimization of , , and  angles until the Rosetta energy score converges to a 

minimum value. The high-resolution energy function includes knowledge-based terms 

representing solvation, electrostatic interactions, van der Waals attraction/repulsion, and 

hydrogen bonding terms (Qian et al., 2007). Full details regarding the comparative 

modeling process is the focus of Chapters II and III.  

It is possible that the 7TM region of the Class C mGlu5 has a modified structure 

compared to the Class A templates. The recent experimentally determined structure of 

Smoothened, a Class F GPCR with less than 10% sequence similarity to Class A GPCRs, 

has many of its own unique features including an extended TM6, an inward-facing tip of 
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TM5 and lack of helical kinks in TM 5, 6 and 7 as seen in Figure 2 (Chong Wang, Wu, et 

al., 2013). In such cases where a unique fold is predicted and no template is available, de 

novo protein structure prediction from the primary sequence can be employed. Rosetta 

builds up a protein model using three and nine residue fragments from the Protein Data 

Bank that are homologous to the sequence of the target protein (Bradley, Misura, & Baker, 

2005, Simons et al., 1999, Simons, Kooperberg, Huang, & Baker, 1997). Rosetta folds a 

protein from a continuous chain, which becomes computationally limiting for proteins 

larger than 100 residues due to the exponential growth of non-local contacts that are 

necessary to sample. BCL::Fold is able to de novo fold large proteins and sample unique 

protein topologies by breaking apart the chain into distinct secondary structure elements 

(SSE) before sampling (Karakas et al., 2012, Weiner, Woetzel, Karakaş, Alexander, & 

Meiler, 2013). Further discussion of BCL::Fold is discussed in Chapter VII. 

Both comparative modeling and de novo structure prediction have been 

extensively optimized for soluble proteins, but only recently have methods been modified 

to model membrane proteins. Recently, an implicit membrane potential was added to 

Rosetta that models the membrane as two parallel planes separated by 60 Å (Yarov-

Yarovoy, Schonbrun, & Baker, 2005). The Rosetta Membrane energy function rewards 

the exposure of hydrophobic residues to the membrane region, dense packing of helices 

within the membrane and placement of helices perpendicular to membrane. The energy 

function penalizes such moves as allowing loops to dip into the membrane. In BCL::Fold, 

the scoring function is also adjusted for membrane proteins by first simulating an apolar 

membrane environment and then rewarding preferred SSE orientations and agreement of 

amino acid placement in the membrane based on sequence prediction (Weiner et al., 

2013). These membrane-specific scoring functions have made it possible to model 

GPCRs using existing computational methods. 
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Figure 2 
Comparing the structures of GPCRs from Class A and Class F.  
Experimentally determined structures from X-ray crystallography for bovine rhodopsin from 
Class A in grey (PDB ID: 1U19) and Smoothened from Class F in blue (PDB ID: 4JKV) are 
overlaid for comparison. Smoothened, a Class F GPCR with less than 10% sequence similarity 
to Class A GPCRs, has many of its own unique features including an extended TM6, an inward-
facing tip of TM5 and lack of helical kinks in TM 5, 6 and 7. 

 

Computational methods for small-molecule docking 
 

The value of a GPCR model is extended further when used in combination with 

ligand docking algorithms to predict binding modes. Such ligand docking studies can be 

used to identify critical residues for binding and receptor modulation which are valuable in 

the optimization of existing ligands as therapeutic agents. Docking into comparative 

models have even been shown to obtain hit rates during virtual screening that exceeded 

those using X-ray crystal structures (Tang, Wang, Hsieh, & Tropsha, 2012).  Ligand 

docking is best accomplished as an iterative process, occurring concurrently with 

experimental studies that validate the residues in the ligand binding site. RosettaLigand is 
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a module of the Rosetta software suite that focuses on the interactions between protein 

and small molecules (Davis & Baker, 2009, Lemmon & Meiler, 2012, Meiler & Baker, 

2006). Both protein and ligand flexibility is considered, as well as multiple ligand 

conformations. After a rigid body orientation of the ligand is performed in the initial binding 

site, a Monte Carlo sampling of rotamers for both the ligand and receptor side chains in 

the binding site are explored until an energy minimum is reached. The scoring terms in 

the Rosetta energy function are primarily knowledge-based and include a Lennard-Jones 

potential, solvation potential, inter-atomic electrostatic interactions, long and short-range 

hydrogen bind potentials and preference towards Dunbrack rotamer and Ramachandran 

bond angles (Meiler & Baker, 2006). A variety of other ligand docking algorithms exist. 

FlexX uses geometric hashing for ligand placement and scores binding modes using 

chemical descriptor models (Rarey, Kramer, Lengauer, Klebe, & others, 1996). Glide uses 

systematic sampling (Friesner et al., 2004) while GOLD uses genetic algorithms (Verdonk, 

Cole, Hartshorn, Murray, & Taylor, 2003). However, Rosetta is one of the few programs 

that integrate the ability to construct protein models and perform ligand docking with both 

ligand and receptor flexibility in a single framework with an integrated energy function. 

 

Predicting interactions between G protein-coupled receptors and small molecules 
by combining experimental data with computational predictions 

 
The advantage of computationally modeling of protein-ligand interactions is its 

speed, cost-efficiency and most importantly, its ability to sample accurate results 

(Schneider & Fechner, 2005). However, determining the most accurate model from the 

thousands of energy-minimized models that are created is not possible without validation 

from experimental data. Computational modeling is most valuable when performed 

concurrently with experimental studies that validate structural models and ligand binding 

conformations (D. Baker & Sali, 2001). Such models are then able to propose mechanisms 
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for protein-ligand interactions which are valuable in the optimization of existing drugs 

towards more effective therapeutic agents (Schneider & Fechner, 2005).  

 Predictions from computational models of mGlu5 have already been verified by 

experimental results throughout literature. The location of the allosteric site in mGlu5 was 

first predicted using molecular modeling of the receptor with rhodopsin. Residues initially 

predicted to be within the allosteric binding site were chosen based on where cis-retinal, 

an inverse agonist, binds in bovine rhodopsin (Palczewski et al., 2000). Several residues 

critical for cis-rhodopsin binding were verified to also be important for binding of mGlu 

allosteric ligands by several experimental studies, validating the computational model 

(Malherbe, Kratochwil, Knoflach, et al., 2003, Malherbe, Kratochwil, Zenner, et al., 2003).  

Further probing of the allosteric site through site-directed mutagenesis identified 

several more key binding determinants for allosteric modulation by MPEP and fenobam 

(Table 2). These residues have been mapped onto a comparative model at mGlu5 and 

were found to be on TMs 3, 6 and 7, as seen in Figure 3 (Malherbe, Kratochwil, Zenner, 

et al., 2003, Malherbe et al., 2006, Pagano et al., 2000). Similarly, functionally important 

residues for positive allosteric modulation by CDPPB and VU29 show a similar distribution 

(Y. Chen et al., 2008, Mühlemann et al., 2006). CDPPB was shown to inhibit allosteric 

binding of the MPEP analog [3H] methoxyPEPy in a competitive manner (Y. Chen et al., 

2007). In addition, point mutations reducing the binding of MPEP also decrease the ability 

of CDPPB to potentiate mGlu5 response to glutamate (Y. Chen et al., 2007). These results 

suggests that CDPPB, along with its derivative VU29, share a common or overlapping 

binding site with MPEP (Y. Chen et al., 2007, Kinney et al., 2005). Figure 3C demonstrates 

the clustering of these residues on the top half of the TMs, located on the inside face of 

the helices.  
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Figure 3 
Functionally critical residues and binding determinants for mGlu allosteric modulators 
mapped onto the hepta-helical transmembrane domain of β2-adrenergic receptor X-ray 
crystal structure (2RH1) backbone.  
The residues reported in Table 2 are shown here, mapped onto a model of mGlus based on the 
β2-adrenergic receptor. Shown in sticks is the backbone beta-carbon of functionally important 
residues & binding determinants. A) mGlu1, B) mGlu2, C) mGlu5, D) residues from mGlu1, mGlu2 
and mGlu5 and E) side view of residues from mGlu1, mGlu2 and mGlu5. Highlighted are: residues 
functionally important for CPPHA (blue) or other PAMs (cyan), residues important for NAMs 
functionally (orange) and through binding (red), and residues important for both PAMs and NAMs 
functionally (light green) or both PAM function and NAM binding (dark green). In D and E, 
residues important for both mGlu1 and mGlu5 allosteric modulation are in black. The sequence 
alignment used to determine the placement of residues is found in the Appendix, Figure 42. 

 
 

 As these studies show, comparative models have been successfully utilized to 

generate hypotheses for mutagenesis-based studies and allow for three-dimensional 

visualization of these regions of the receptor. These models have inspired the first rounds 

of experimental studies, which have begun to collect detailed information about the binding 

site of various allosteric modulators (Table 2). This data, together with the growing number 

of available GPCR structural templates, can lead to information-rich comparative models 

for the transmembrane region of a class C GPCR developed in the absence of a crystal 

structure. The studies presented in the remainder of this work demonstrate the strength 

of the integrating computational structure prediction of GPCRs with experimental studies. 
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This work is will aid in the identification of novel chemotypes and optimization of allosteric 

modulators to improve their specificity and potency for use as therapeutic agents. 
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CHAPTER II 

 

SMALL-MOLECULE LIGAND DOCKING INTO COMPARATIVE MODELS 
WITH ROSETTA  

 

 

This work is based on publication (Combs, DeLuca, S.L., DeLuca, S.H., Lemmon, 

Nannemann, Nguyen, Willis, Sheehan & Meiler, 2013). 

 

Summary 
 

 Structure-based drug design is frequently used to accelerate the development of 

small-molecule therapeutics. While substantial progress has been made in X-ray 

crystallography and nuclear magnetic resonance (NMR) spectroscopy, the availability of 

high-resolution structures is limited due to the frequent inability to crystallize or obtain 

sufficient NMR restraints for large or flexible proteins. Computational methods can be used 

to both predict unknown protein structures and model ligand interactions when 

experimental data is unavailable. This paper describes a comprehensive and detailed 

protocol using the Rosetta modeling suite to dock small-molecule ligands into comparative 

models. In the protocol presented here, the comparative modeling process, including 

sequence alignment, threading, and loop building, is reviewed. In addition, criteria that can 

improve the ligand docking results are discussed. Next, docking a small-molecule ligand 

into the protein comparative model is covered. Finally, and importantly, a strategy for 

assessing model quality is presented. The entire protocol is presented on a single example 

selected solely for didactic purposes. The results are therefore not representative and do 

not replace benchmarks published elsewhere. A tutorial is also provided in the Appendix 

so that the user can gain hands-on experience in using Rosetta. The protocol is 
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anticipated to take 5-7 hours, with additional time allocated for computer generation of 

models. 

 

Introduction 
 

The Rosetta software suite focuses on computational modeling and analysis of 

protein structures and is free for non-commercial users. It has enabled notable scientific 

advances in computational biology, including de novo protein design, enzyme design, 

ligand docking, and structure prediction of biological macromolecules and macromolecular 

complexes (Das & Baker, 2008, Davis & Baker, 2009, Davis, Raha, Head, & Baker, 2009, 

Kuhlman et al., 2003, Misura, Chivian, Rohl, Kim, & Baker, 2006, Rohl, Strauss, Chivian, 

et al., 2004, Rohl, Strauss, Misura, Baker, & others, 2004, Siegel et al., 2010, Yarov-

Yarovoy et al., 2005). The broad spectrum of applications available through Rosetta allows 

for multiple computational problems to be addressed in one software framework. In this 

protocol, we discuss how Rosetta can be used to create a comparative model of a protein 

and extend this application by introducing ligand docking with comparative models. Ligand 

docking into comparative models (Davis & Baker, 2009, Davis et al., 2009, Misura et al., 

2006) is a common technique used in structure-based drug design and provides an 

excellent introduction to the Rosetta software suite (Kaufmann, Lemmon, DeLuca, 

Sheehan, & Meiler, 2010). The protocol, which is outlined in Figure 4, is generalizable and 

will extend to a majority of protein-ligand systems. To aid in the understanding of Rosetta-

specific language, a glossary has been provided in the Appendix.  

Small-molecule docking into comparative models allows for structure-based drug 

design and hypothesis generation for protein/ligand systems for which there is no high-

resolution structure. In such cases, there is frequently a homologous structure that has 

been structurally characterized at sufficient resolution for ligand docking and which can be 

utilized as a template for comparative modeling of the target protein. Several studies have 
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proven the utility in ligand docking into comparative models. Here, we provide a 

generalized protocol and tips for improving the success of ligand docking into comparative 

models. Furthermore, we use a single piece of software for comparative modeling and 

ligand docking. Therefore, the scoring function used remains the same throughout the 

process, and minimal processing is necessary between steps.  

 

 

Figure 4 
Outline of Rosetta modeling protocol. 
This flowchart summarizes the complete protocol for docking small-molecule ligands into 
comparative models using Rosetta 3.4. 
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Comparative modeling with Rosetta 
 

One of the most common applications of Rosetta is protein structure prediction via 

de novo structure prediction and comparative modeling (Kaufmann et al., 2010, Rohl, 

Strauss, Chivian, et al., 2004). When only the primary sequence of a protein is known, de 

novo structure prediction can sometimes be used to predict the protein’s tertiary structure. 

However, to date, Rosetta has been shown to successfully fold only small, soluble proteins 

(fewer than 150 amino acids) and performs best if the proteins are mainly composed of 

secondary structural elements (alpha-helices and beta-strands) (Meiler & Baker, 2003). 

Helical membrane proteins between 51-145 residues were predicted within 4Å of the 

native structure (Yarov-Yarovoy et al., 2005). Accurate prediction of larger and/or more 

complex proteins can be achieved with the addition of experimental data, such as NMR 

chemical shifts and distance data (Lange et al., 2012, Lange & Baker, 2012, Rohl, 2005). 

Further, only sequences of very small proteins (up to 80 residues) have been predicted to 

atomic-detail accuracy (Bradley, Malmstrӧm, et al., 2005, Bradley, Misura, et al., 2005, 

Das et al., 2007). Therefore, whenever an experimental structure of a related protein is 

available, comparative modeling is the method of choice. 

Comparative modeling refers to the elucidation of the tertiary fold of a protein, 

guided by the known structure of another, often homologous, protein. The unknown 

structure is commonly called the “target,” while the protein of known structure, upon which 

the primary sequence of the target is threaded, is termed the “template.” The known 

template structure reduces the conformational search space by providing a protein 

backbone scaffold; areas where the template and target sequences diverge significantly 

are typically remodeled and refined via the loop building application. Although the 

application is known as “loop building,” a “loop” is defined here as any area where the 

backbone is to be rebuilt de novo, which most often occurs in flexible regions but can also 
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include secondary structural elements. Comparative models have played a major role in 

aiding experimental design and the interpretation of experimental results. They can be 

employed to help predict structure-function relationships (Kaufmann et al., 2009), predict 

binding pockets for ligands during structure-based drug design (Lees-Miller et al., 2009), 

and aid in the determination of target residues for site-directed mutagenesis (Fortenberry 

et al., 2011, Keeble et al., 2008). 

In addition to Rosetta, Modeller (Eswar, Eramian, Webb, Shen, & Sali, 2008) is 

often used to generate comparative models. Comparative modeling with Modeller is highly 

automated and, as with Rosetta, works best for cases in which the sequence identity 

between the target sequence and the template structure is 30% or greater. It works by 

optimizing the comparative model’s satisfaction of spatial restraints derived from one or 

multiple templates. Comparative modeling in Rosetta (Misura et al., 2006) is a multiple-

step process that requires more input from the user; specifically, user-defined alignment 

and loop definitions are taken into account throughout the process. These definitions can 

be provided to Modeller but are not necessary for the program to generate a model.  

 

Ligand docking with RosettaLigand and comparison to other ligand docking software 
 

After a comparative model of the target protein has been constructed, 

computational ligand docking can be performed. Small-molecule ligand docking 

applications attempt to predict the protein/small-molecule binding free-energy, as well as 

critical binding interactions (Perola, Walters, & Charifson, 2004). These predictions can 

provide structural information of a ligand binding site (Davis et al., 2009), filter high-

throughput screening libraries for likely hits (Ballester, Westwood, Laurieri, Sim, & 

Richards, 2010, Carlsson et al., 2011), or guide de novo drug design (Schneider et al., 

2009, Schneider & Fechner, 2005). The protocol presented here details the process for 
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small-molecule ligand docking and focuses on locating critical residues for binding a 

specific ligand.  

RosettaLigand requires input structures of a receptor (protein) and a ligand (small 

molecule) (Davis & Baker, 2009, Meiler & Baker, 2006). Because it does not perform 

binding pocket detection, the user must have prior knowledge of the location of the binding 

site. Other programs, such as SURFNET (Laskowski, 1995), LIGSITE (Huang & 

Schroeder, 2006), and PocketDepth (Kalidas, Chandra, & others, 2008), can be used to 

identify the ligand binding site before using RosettaLigand for small-molecule docking. 

Ligand and receptor side chain conformations are explored through Monte Carlo sampling 

of rotamers (Dunbrack Jr & Karplus, 1993). Predicted protein-ligand interactions are 

deemed favorable and are accepted if they improve the Rosetta energy score, described 

below (Davis & Baker, 2009). Backbone flexibility of the protein is modeled via a gradient-

based minimization of phi and psi torsion angles (Z. Li & Scheraga, 1987). Performing 

ligand docking on an ensemble of ligand conformations and protein backbones can be 

used to increase the conformational space sampled if the protein-ligand interaction does 

not fit the simple lock-and-key paradigm (Siegel et al., 2010). Previously, Davis, et al. 

assessed RosettaLigand’s accuracy via both retrospective and prospective benchmark 

studies (Davis & Baker, 2009). In 54 of 85 cases (64%), RosettaLigand’s top scoring pose 

was within 2.0Å root mean square distance (RMSD) from the native pose. These results 

include backbone and side chain flexibility, as well as ligand flexibility, through conformer 

selection and torsion angle adjustments. 

Ligand docking algorithms can be categorized based on their scoring function and 

search methodology. RosettaLigand uses a knowledge-based scoring function derived 

from statistical analysis of the Protein Data Bank (PDB) (Simons et al., 1997). The 

conformational search of the binding site is accomplished using a Metropolis Monte Carlo 

algorithm (Davis & Baker, 2009, Davis et al., 2009, Kuhlman et al., 2003, Metropolis, 
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Rosenbluth, Rosenbluth, Teller, & Teller, 1953, Misura et al., 2006, Rohl, Strauss, Misura, 

et al., 2004, Siegel et al., 2010). There are a wide range of search methodologies and 

scoring functions used by different ligand docking applications. Search strategies include 

geometric hashing (FlexX) (Rarey et al., 1996), genetic algorithms (GOLD) (Verdonk et 

al., 2003), and systematic sampling (Glide) (Friesner et al., 2004). Different scoring 

functions include physics-based force fields (Dock) (Ewing, Makino, Skillman, & Kuntz, 

2001), chemical descriptor models (FlexX) (Rarey et al., 1996), and knowledge-based 

potentials (RosettaLigand (Davis & Baker, 2009, Meiler & Baker, 2006), DrugScore 

(Gohlke, Hendlich, Klebe, & others, 2000)).  

A 2009 study compared the performance of the RosettaLigand docking method to 

nine other commonly used ligand docking programs (Dock, Dockit, FlexX, Flo, Fred, Glide, 

GOLD, LigandFit, MOE, and MVP) (Davis et al., 2009). Ligand docking algorithm 

performance was compared using a benchmark set of 136 ligands and eight target 

receptors provided by Glaxo-Smith-Kline. This study demonstrated that RosettaLigand 

performance was similar to or better than other ligand docking algorithms. This study used 

crystallographic protein structures as input rather than homology models. Kaufmann, et 

al. demonstrated the predictive power of Rosetta ligand docking into Rosetta-built 

comparative models (Kaufmann et al., 2009). In another study, RosettaLigand and 

AutoDock 4.0 were used to dock twenty protein-ligand complexes (Davis & Baker, 2009). 

In ten cases, RosettaLigand’s flexible backbone docking protocol found top-scoring 

models under 2.0Å RMSD. In contrast, AutoDock identified only four such structures. 

However, the authors note that RosettaLigand consumed significantly more computational 

resources (40-80 CPU hours per input) than AutoDock (5-22 CPU hours per input).  
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Applying the comparative modeling and ligand docking protocols to a single problem 
 

To illustrate the entire comparative modeling and ligand docking protocol on a 

single example, including a detailed analysis, we selected a target protein that has been 

co-crystallized with a small-molecule ligand and where an experimental structure of a 

distantly related homolog is available to serve as a template. We also selected a relatively 

small protein and ligand to facilitate rapid reproduction of the protocols by the reader. 

Specifically, T4-lysozyme in complex with 1-methylpyrrole (PDB ID: 2ou0) (Mobley et al., 

2007) was chosen as the target and P22-lysozyme (PDB ID: 2anv) (Mooers & Matthews, 

2006) as the template. Note that this selection was made with the above-mentioned 

didactic priorities in mind and not to find an optimal system to benchmark the accuracy of 

Rosetta. Throughout the chapter, we will refer to dedicated benchmark papers relevant 

for the individual steps to serve as references for expected Rosetta performance. 

Additionally, Kaufmann and Meiler recently performed a benchmark of ligand docking into 

comparative models with Rosetta, to which the reader is encouraged to refer for further 

information concerning RosettaLigand’s performance for ligand docking into comparative 

models (Kaufmann & Meiler, 2012). 

 

Usage of experimental restraints during Rosetta modeling and analysis 
 

Incorporation of experimental data into structure prediction and analysis has been 

shown to improve the quality of the final model or ensemble of models (Alexander, Al-

Mestarihi, Bortolus, Mchaourab, & Meiler, 2008, Hirst, Alexander, Mchaourab, & Meiler, 

2011, Meiler, Baker, & others, 2005, Rohl, 2005). Numerous types of experimental data 

have been incorporated into such protocols, including electron density from X-ray 

crystallography (DiMaio et al., 2011) and electron microscopy, NMR distance and 

orientation data (Meiler et al., 2005, Shen et al., 2010), EPR distance data (Alexander et 

al., 2008, Hirst et al., 2011),crosslinking restraints (Herzog et al., 2012), small angle X-ray 
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scattering data (Grishaev, Guo, Irving, & Bax, 2010),  and deuterium exchange mass 

spectrometry data (Pandit et al., 2012). While these types of data are more often applied 

to de novo protein structure elucidation, they can also be of some utility in the building of 

loops (Rathmann et al., 2012), reorientation of domains during comparative modeling, or 

identification of residues involved in ligand binding. 

 

Caveats and challenges 
 

As with all computational techniques, there are caveats associated with using 

Rosetta for comparative modeling and ligand docking. While comparative modeling can 

be used to model large proteins more reliably than de novo structure prediction methods, 

it is limited by the availability of high-quality structural templates in the PDB. Finite 

computational resources can also limit the size of conformational spaces that can be 

searched (A. R. Leach, Shoichet, & Peishoff, 2006). The comparative modeling and ligand 

docking processes discussed in this protocol allow for protein backbone movement; 

however, these models represent only static structures of local energy minima. For 

consideration of dynamics, conformational changes, and large-scale changes due to 

induced-fit or conformational flexibility during ligand docking, molecular dynamics 

simulations have been shown to be useful (A. R. Leach et al., 2006).  

Despite these limitations, Rosetta has been employed to produce protein models 

that have proven invaluable where no experimentally determined protein structure exists 

(S. Combs, Kaufmann, Field, Blakely, & Meiler, 2010, Lees-Miller et al., 2009, Smith, 

Vanoye, George, Meiler, & Sanders, 2007). The tutorial presented in the Appendix, which 

uses T4-lysozyme as a simple example, provides a generalized workflow for comparative 

modeling and ligand docking in the Rosetta framework and demonstrates its ability to 

model accurate protein structures. 
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Availability 
 

Rosetta is available through software licenses processed by the RosettaCommons 

(www.rosettacommons.org). Licenses for academia and non-profit institutions are free of 

charge. The Rosetta software suite can be installed on a Linux or OSX operating system 

(see Appendix). This setup allows other researchers to adopt the described protocol for 

their biological system of interest. 

 

Experimental design 
 

An overview of the entire protocol is summarized as a flowchart in Figure 4. The 

protocol matches that of the tutorial, which is provided in the Appendix. 

 

Template selection 
 

In Rosetta, construction of a comparative model for a desired target protein can be 

divided into distinct steps. First, an experimentally determined structure (template) must 

be identified. The quality of a comparative model is heavily dependent on the 

experimentally determined structure that is chosen as a template for the final model. If a 

low-quality, low-resolution template structure is chosen, the resulting models will also be 

low-quality. The following discussion provides insight into the process of identifying a 

proper template for comparative modeling.  

A template can be located by BLAST (www.ncbi.nlm.nih.gov/BLAST/), which 

searches the PDB for proteins with high sequence identity. When arriving at the BLAST 

server online, use “protein blast,” and under “Database,” choose to search the “Protein 

Data Bank (PDB),” which contains all experimentally determined protein structures. A 

modified version of BLAST, PSI-BLAST allows for the identification of distant members of 

a protein family using position-specific scoring matrices (PSSMs) (Altschul et al., 1997). 
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Conversely, Pattern Hit Initiated BLAST (PHI-BLAST) treats two occurrences of the same 

pattern within the target sequence as two independent sequences and is useful for filtering 

out false positives when pattern occurrences are random (Z. Zhang et al., 1998). PSI-

BLAST is the most commonly used method for identifying homologous proteins. While 

there is no strict cut-off value for what is considered homologous, proteins with at least 

30% sequence identity to the target protein and a BLAST e-value, the probability of seeing 

the alignment by chance, of less than 10−5, are suitable metrics for identifying homologous 

templates. 

Note that, while BLAST, PSI-BLAST, and PHI-BLAST are commonly used for 

detecting homologs, other homology detection tools, have been shown to be more 

accurate. For example, HHPred (Sӧding, Biegert, & Lupas, 2005) and HMMER3 (Eddy, 

2011, Eddy & others, 2009) employ profile Hidden Markov Models (HMMs) to perform 

multiple sequence alignments. Like simple sequence profiles, profile HMMs contain 

information concerning amino acid frequencies in each column of a multiple sequence 

alignment, but they also contain information about the frequency of insertions and 

deletions at each column. Therefore, methods that use profile HMMs potentially can be 

more sensitive than methods that use simple sequence alignments (e.g., BLAST, PSI-

BLAST). 

Sometimes, homologous, experimentally determined structures cannot be 

identified for use as templates, in which case homology modeling is not applicable. 

However, as structure is better conserved evolutionarily than sequence, proteins with low 

sequence identity can have similar folds. In this case, 3D-fold recognition meta-servers, 

such as Phyre (Kelley & Sternberg, 2009) can be used. Phyre constructs a “fold library” 

via three steps: 1) combining a library of proteins of known structure from the Structural 

Classification of Proteins (SCOP) database (Murzin, Brenner, Hubbard, & Chothia, 1995) 

with new entries from the PDB, 2) scanning the sequences against a non-redundant 
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sequence database, and 3) constructing a sequence profile from the previous step. When 

a query sequence is submitted to the server, Phyre produces a sequence profile of the 

query with potential homologs by running PSI-BLAST, generates a consensus secondary 

structure prediction of the query after running a plethora of secondary structure prediction 

methods, and performs a profile-profile alignment of the results from PSI-BLAST and 

secondary structure prediction by scanning these inputs against the fold library. The 

resulting alignments are scored and ranked (Bennett-Lovsey, Herbert, Sternberg, & 

Kelley, 2008). Once a suitable template has been identified, a sequence alignment should 

be performed between the target and template sequences. 

Additional considerations should be taken into account when ligand docking into a 

comparative model. It has been demonstrated that ligand docking into templates of 

experimentally determined holo structures is more likely to be successful than docking into 

apo structures. Further, use of a holo structure as a template was more predictive of 

success than the overall template-to-target sequence identity or sequence similarity of 

residues in the binding site. Ligand-bound template structures in which the ligands are 

similar to the target ligand should be prioritized; particular emphasis should be on ligands 

that share functional group placement to the target ligand. Finally, in order to obtain a 

diversity of models that span the probable conformations of the target, multiple templates 

should be identified and carried through the comparative modeling process. Then, ligand 

docking should be performed into each template. For example, if five potential template 

structures are identified, then there will be ligand-docked complexes with each of these 

five templates. Given that sequence similarity alone is not a reliable predictor of success 

a priori, ranking comparative models using templates chosen based on sequence 

similarity is often futile (Kaufmann & Meiler, 2012). 
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Sequence alignment and threading 
 

Once a template, or templates, has been identified, the primary sequence of the 

target protein is threaded onto the three-dimensional (3D) backbone of the template 

structure according to a sequence alignment of the two proteins. If the alignment of the 

two proteins results in a gap during alignment, the gap regions, which are usually indicated 

as dashes (“-“) or spaces (“ “) in the alignment text file, are marked as loops in the newly 

generated threaded PDB file (Figure 5). Further, the Cartesian coordinates for the gap 

region are set to 0.000 and the occupancy column is set to −1.00. For information on the 

PDB file format, see www.pdb.org/docs.html. Regions between secondary structure 

elements and areas where there is low confidence in the sequence alignment between 

the target and template proteins are then reconstructed via a loop building protocol 

(Canutescu & Dunbrack, 2009, Coutsias, Seok, Jacobson, & Dill, 2004, Mandell, Coutsias, 

& Kortemme, 2009). These “loop” regions, which refer to any sequence to be re-built de 

novo, can be rebuilt using a fragment insertion-based or an analytic method (see below).  

 

Defining loop regions 
 

The loop definitions are chosen from the alignment between the target and 

template sequences. Regions having at least one of the following characteristics should 

be rebuilt as loops: 1) long coil regions with low sequence identity found in both template 

and target sequences, 2) regions with discrepancies in secondary structural elements 

between the template and target secondary structure prediction (i.e., a beta-sheet in the 

template was predicted to be a loop in the target), or 3) missing density after threading the 

target sequence onto the template. This process is illustrated in Figure 5. 
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Figure 5 
Criterion for selecting regions for de novo loop building. 
A) The target sequence is threaded over the template backbone; the initial structure is shown in 
beige. There are twelve amino acids from the target sequence that do not have a corresponding 
amino acid from the template sequence (amino acids 44-55). The resulting alignment produces 
an insertion into the backbone of the template structure. To rebuild missing density, two anchor 
points, N- and C-terminal from the missing region, are chosen to remain fixed. The flanking 
amino acids of the areas of missing density (K43 and G56, highlighted in red) are chosen as the 
initial anchor points. Rosetta will perform de novo loop building in the area of missing density. B) 
The two anchor points are repositioned, allowing enough space to rebuild the twelve amino 
acids. In addition to the twelve-residue insertion, the region highlighted in red will be rebuilt with 
the de novo loop modeling protocol. C) During de novo loop rebuilding, secondary structure is 
also taken into consideration. Target residues 39-50 and 31-33 are both predicted to have 
secondary structural elements, but the template sequence does not contain secondary structural 
elements at these positions. Therefore, the loop to be built is extended to include residues 39-
50 and 31-33. The final anchor points, G28 and K60, are chosen, allowing 31 amino acids to be 
rebuilt (shown in red).   
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Rosetta includes two loop-building algorithms. Cyclic coordinate descent (CCD), 

inspired by inverse kinematic applications in robotics, adjusts residue dihedral angles to 

minimize the sum of the squared distances between three backbone atoms of the moving 

N-terminal anchor and the three backbone atoms of the fixed C-terminal anchor 

(Canutescu & Dunbrack, 2009, Chu Wang et al., 2007). The advantages of CCD are its 

speed and its ability to close a loop over 99% of the time. Conversely, kinematic loop 

closure (KIC) analytically determines all mechanically accessible conformations for torsion 

angles of a peptide chain using polynomial resultants (Coutsias et al., 2004, Mandell et 

al., 2009). While KIC has been shown to recover loops from experimentally determined 

structures more accurately, it relies heavily on the location of the N- and C-terminal 

anchors and may not be an ideal choice for comparative modeling. 

Rosetta loop building via CCD uses fragment libraries for generating loop 

coordinates for missing density in the threaded model. The fragment file is comprised of 

the target sequence divided into 3- and 9-amino acid overlapping sequence windows. 

There are 200 peptide fragments for each sequence window. After dividing the target 

primary sequence into 3- and 9-amino acid sequence windows, both Robetta and the 

fragment picker (Gront, Kulp, Vernon, Strauss, & Baker, 2011) application query a 

structural database of non-redundant proteins (G. Wang & Dunbrack, 2003) for each 

peptide sequence and store the corresponding Cartesian coordinates and secondary 

structure information in fragment files. For more detailed background and information on 

this application, see Gront, et al. (Gront et al., 2011) or go to 

www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/dc/d10/app_fragment

_picker.html. Fragments can also be generated using NMR data using RosettaNMR (Rohl, 

2005). For details on the procedure, please visit 

spin.niddk.nih.gov/bax/software/CSROSETTA/. 
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In this comparative modeling protocol, loop building takes place in two stages. In 

the first stage, a fast, low-resolution remodeling step with CCD consisting of broad 

sampling of backbone conformations is performed. In the second stage, the model is 

represented in all-atom detail and evaluated by Rosetta's all-atom scoring function. While 

it often makes little difference if loop building is performed in the absence or presence of 

the target ligand, it may be beneficial to manually place the ligand in the binding site of the 

threaded model a priori. This is especially true if the ligand is expected to interact with 

predicted loop regions. 

 

All-atom refinement of the comparative model 
 

Finally, the newly built model of the target protein undergoes refinement using the 

Rosetta all-atom scoring function (see below) to yield an all-atom protein model (Bradley, 

Malmstrӧm, et al., 2005). Both comparative modeling and ligand docking in Rosetta 

involve an all-atom refinement of the protein. The protocol used for structural refinement, 

visually described in Figure 6, is often referred to as “relax.” The goal of the relax protocol 

is to explore the local conformational space and to energetically minimize the protein. 

During this process, local interactions are improved by iterative residue side chain 

repacking, in which new side chain conformations, or “rotamers,” are selected from the 

Dunbrack library (Leaver-Fay, Kuhlman, & Snoeyink, 2005), and gradient-based 

minimization of the entire model, where the energy of the model is minimized as a function 

of the score. These small structural changes are evaluated according to the all-atom 

scoring function and are sampled in a Metropolis Monte Carlo (Metropolis et al., 1953) 

method. The relax protocol has been shown to dramatically lower the overall energy of the 

Rosetta model and is essential to achieving atomic detail accuracy (Bradley, Misura, et 

al., 2005, Rohl, Strauss, Misura, et al., 2004). 
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Figure 6  
An overview of Rosetta energetic minimization and all-atom refinement via the relax 
protocol.  
A) Simplified energy landscape of a protein structure. The relax protocol combines small 
backbone perturbations with side chain repacking. The coupling of Monte Carlo sampling with 
the Metropolis selection criterion (Metropolis et al., 1953) allows for sampling of diverse 
conformations on the energy landscape. The final step is a gradient-based minimization of all 
torsion angles to move the model into the closest local energy minimum. B) Comparison of 
structural perturbations introduced by the repack and minimization steps. During repacking, the 
backbone of the input model is fixed while side chain conformations from the rotamer library 
(Dunbrack & Cohen, 1997) are sampled. Comparison of the initial (transparent yellow) and final 
(light blue) models reveals conservation of the R135 rotamer but changes to the R11 and E15 
rotamers. Minimization affects all angles and changes the backbone conformation. 
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Choosing a receptor model for ligand docking 
 

The quality of each comparative model is evaluated by a scoring function 

consisting of solvation, electrostatic interactions, van der Waals attraction/repulsion, and 

hydrogen bonding terms (Bradley, Misura, et al., 2005, Jones, Taylort, & Thornton, 1992). 

As with template selection, it is difficult, if not impossible, to identify the single model that 

will ultimately provide the correct ligand-docked model. Therefore, as before, multiple 

structures resulting from comparative modeling should be used as receptors for ligand 

docking. These models are selected by pooling all models from each template and then 

selecting a small percentage of those models within each pool that fall below a certain 

energy cutoff. These top-scoring models are then clustered (see Appendix), and the 

cluster centers are carried forward into ligand docking. Clustering ensures that a 

maximally diverse set of models is used. 

 

Ligand docking into comparative models 
 

Next, the small molecule to be docked is placed into the binding site of each 

Rosetta model. For the best results, the target ligand is initially placed in a similar position 

to small molecules found in the original template structures. Ideally, biochemical 

information, such as results obtained from mutagenesis studies, can be used to inform the 

docking by restricting the conformational sampling space. If water molecules and co-

factors are known to bind to the receptor, they can be added to the comparative models 

and docked simultaneously (Lemmon & Meiler, 2012), For simplicity, this feature is not 

demonstrated in our tutorial. 

The Rosetta ligand docking algorithm first translates the ligand within a sphere 

having a user-specified radius (Davis & Baker, 2009, Meiler & Baker, 2006). These 

translations are repeated until the ligand’s geometric center sits in a position not occupied 

by atoms in the receptor. These translations are followed by up to 1,000 cycles of random 
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rotation. A conformation resulting from rotation, in which the attractive and repulsive 

scores fall below a threshold value, is chosen for further refinement. Alternatively, if the 

position and orientation of the ligand is known, particularly if the target protein/ligand 

complex is highly homologous to an experimentally determined structure, then the 

translation/rotation movements described above may not be necessary and can be 

omitted.  

In the high-resolution refinement step, six cycles of side chain rotamer sampling 

are coupled with small (0.1Å, 0.05 radians) ligand movements. Each cycle includes 

minimization of ligand torsion angles with harmonic constraints, where 0.05 radians of 

movement is equal to one standard deviation.  Amino acid side chains are repacked using 

a backbone-dependent rotamer library (Dunbrack Jr & Karplus, 1993). During refinement, 

the weight of Rosetta’s repulsive score term is decreased, thus preventing model rejection 

due to minor inter-atomic clashes. In a final energy minimization step, side chain rotamer 

sampling is coupled with minimization of backbone torsion angles.  This is conducted with 

harmonic constraints on the alpha-carbon atoms (0.2Å standard deviation).  

Several metrics can be employed to evaluate the results obtained from ligand 

docking. The most common evaluation method is analysis of the Rosetta energy, which is 

measured in Rosetta energy units (REU). Generally, models having lower, more negative 

Rosetta energies are considered to be more native-like (Raman et al., 2009). Another way 

in which binding modes can be confirmed is by comparing them to experimental data; 

further, these restraints can be employed to guide the modeling process (see Appendix). 

Alternatively, the models can be clustered in order to group the models by structural 

similarity (see Appendix). Clustering and score analysis reduce the data from thousands 

of models to a manageable number necessary to carry out an accurate, meaningful 

analysis.  
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Experimental data can also be used to filter out models during post-processing. 

Post hoc analysis allows for incorporation of data not easily represented as a restraint 

during model building. By performing rank-order predictions of binding energies, enzyme 

activities, or mutational effects and comparing these to known biochemical data, the 

correct model can be differentiated from those that do not agree with experimental 

observations (S. Combs et al., 2010, Kaufmann et al., 2009, Nannemann, Kaufmann, 

Meiler, & Bachmann, 2010). If restraints are not available, validation of the model is 

typically encouraged–and done--via experiments inspired by the computational results. 

 

The Rosetta Energy Function 
 

The energy, or scoring, function in Rosetta is derived empirically through analysis 

of observed geometries of a subset of proteins in the PDB. The measurements include, 

but are not limited to: radius of gyration, packing density, distance/angle between 

hydrogen bonds, and distance between two polar atoms. The measurements are 

converted into an energy function through Bayesian statistics (Dunbrack & Cohen, 1997, 

Simons et al., 1997).  

The scoring function in Rosetta can be separated into two main categories: 

centroid-based scoring and all-atom scoring. The former is used for de novo structure 

prediction and initial rounds of loop building (Rohl, Strauss, Misura, et al., 2004, Simons 

et al., 1999, 1997). The side chains are represented as “super-atoms,” or “centroids,” 

which limit the degrees of freedom to be sampled while preserving some of the chemical 

and physical properties of the side chain. Although this centroid-based scoring function is 

important for de novo structure prediction, the structure prediction protocol is not covered 

within the scope of this article. 

The all-atom scoring function represents side chains in atomic detail. Like the 

centroid-based scoring function, the all-atom scoring function is comprised of weighted 
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individual terms that are summed to create a total energy for a protein. Most of the scoring 

terms are derived from knowledge-based potentials. The scoring function contains 

Newtonian physics-based terms, including a 6-12 Lennard-Jones potential and a solvation 

potential. The 6-12 Lennard-Jones potential is split into two terms, an attractive term 

(fa_atr) and a repulsive term (fa_rep) for all van der Waals interactions (Kuhlman & Baker, 

2000, Neria, Fischer, & Karplus, 1996). The solvation potential (fa_sol) models water 

implicitly and penalizes the burial of polar atoms (Lazaridis & Karplus, 1999). Inter-atomic 

electrostatic interactions are captured through a pair potential (fa_pair) (Simons et al., 

1999), and an orientation-dependent hydrogen bond potential for long range and short 

range hydrogen bonding (hbond_sc, hbond_lr_bb, hbond_sr_bb, hbond_bb_sc, 

respectively) (Gordon, Marshall, & Mayot, 1999, Wedemeyer & Baker, 2003). In addition 

to the electrostatic terms, the Rosetta all-atom scoring function contains terms that dictate 

side chain conformations according to the Dunbrack rotamer library (fa_dun) (Dunbrack 

Jr & Karplus, 1993, Dunbrack & Cohen, 1997) preference for a specific amino acid given 

a pair of phi/psi angles (p_aa_pp), and preference for the phi/psi angles in a 

Ramachandran plot (rama)(Ramachandran, Ramakrishnan, & Sasisekharan, 1963, Rohl, 

Strauss, Chivian, et al., 2004, Wedemeyer & Baker, 2003).  

 

The Rosetta Options File 
 

The Rosetta options file allows users to pass specific protocol-related parameters 

to a specific Rosetta application. The options file is often called the “flags” file. Options 

can be accessed via the command line, placed within a file, or some combination of both. 

Below is an example of a Rosetta options file. Note that lines beginning with # are 

comments and are ignored when running Rosetta. Words in <> indicate where, in a 

specific case, the actual path to the necessary file would go (with no <>). 
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-database <database> #database location 
-in 
    -file 
 -s <protein.pdb> #name of PDB file 
-out 
-prefix <desired_prefix> #desired output prefix of results files 
-packing 
-ex1 #use extra rotamer conformations chi 1 
-ex2 #use extra rotamer conformations chi 2 
-repack_only #prevents Rosetta from performing design 

 

The space formatting of the options file is critical. In the example above, each new 

“namespace” (e.g., database, in, out, packing) starts a new line, and the “subspaces” (e.g., 

file) are indented by a space or a tab. However, tabs and spaces cannot be mixed within 

the same file. An alternate format for the options file is: 

 
-database <database>  
-in:file:s <protein.pdb>  
-out:prefix <desired_prefix> 
-packing:ex1 
-packing:ex2 
-packing:repack_only 

 

In the above example, subspaces are designated by a colon (e.g. ex1 is a 

subspace option of the namespace packing; therefore, -packing:ex1.). If using 

RosettaScripts (Fleishman et al., 2011), which requires the input of an XML file, the options 

specified in this XML file override the options specified in the options file or those passed 

over the command line; therefore, it is important to avoid conflicting or contradicting 

options.  

 

RosettaScripts XML File 
 

RosettaScripts is an XML (Extensible Markup Language) scriptable interface to the 

Rosetta software with a variety of movers, scoring functions, and filters that can be tailored 

to a custom protocol (Fleishman et al., 2011). Movers are defined as steps in the protocol 

that can change the conformation of the system being modeled, or “pose.” Examples of 
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movers include docking, loop building, and gradient-based minimization. Filters are 

utilized to decide if a given pose should proceed to the next step of the protocol. 

RosettaScripts protocols are versatile and can consist of a “mix-and-match” set of user-

defined movers, filters, and scoring functions. This allows for complete customization of a 

protocol without manually editing the Rosetta source code. Because the RosettaScripts 

interface is able to access methods found throughout the Rosetta software suite, the user 

can instruct Rosetta to complete different tasks with a single XML file instead of running 

separate applications. The XML file is divided into five sections: scoring functions, filters, 

movers, constraints, and protocols. The format is shown below with generic names given 

for each section. For UserScoreFunctionName, UserFilterName, and UserMoverName 

the user can choose a name for the scoring function or filter. For RosettaMoverName, the 

name of the mover, as well as the options that accompany it, must be specified. Further 

information can be found at 

www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/Movers_(RosettaScri

pts).html. 

 

<ROSETTASCRIPTS> 
      <SCOREFXNS> 
   <UserScoreFunctionName weights=“standard”/> 
      </SCOREFXNS> 
      <FILTERS> 
   <UserFilterName name=“filter”/> 
      </FILTERS> 
      <MOVERS> 
   <RosettaMoverName name=“UserMoverName” score=Scorefxnname/> 
             <RosettaMoverName name=“userMoverName1” score=Scorefxnname/> 
             <RosettaMoverName name=“UserMoverName2” score=Scorefxnname/> 
      </MOVERS> 
      <APPLY_TO_POSE> 
      </APPLY_TO_POSE> 
      <PROTOCOLS> 
   <Add mover_name=“UserMoverName”/> 
             <Add mover_name=“UserMoverName1” filter_name=“UserFilterName”/> 
             <Add mover_name=“UserMoverName2”/> 
       </PROTOCOLS> 
</ROSETTASCRIPTS> 

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/Movers_(RosettaScripts).html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/Movers_(RosettaScripts).html
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This generic XML file combines three separate movers that are scored by a user-

defined scoring function (UserScoreFunctionName), where UserMoverName1 will be 

repeated until UserFilterName is satisfied. The input protein, the pose, steps through each 

mover iteratively until the final step is completed. The output is the final score of the pose 

and is given as a score file and/or the 3D coordinates of the final pose. 

 

Anticipated results 
 

For most applications of this protocol, biological systems will be used in which the 

structure of the protein or position of the docked ligand is not known, and results can only 

be compared to experimental data. In these cases, analysis of the results is best done 

using protein metrics and clustering. However, it is often beneficial to characterize the 

model population with respect to a single representative model in a fashion analogous to 

comparison to a crystal structure. In these cases, the best-scoring structure is often used. 

Protein metrics are specific properties of the models. These can include van der 

Waal’s packing, hydrogen bonds, and electrostatic interactions. Protein metrics can be 

tested with online servers or Visual Molecular Dynamics (VMD) (Humphrey, Dalke, & 

Schulten, 1996). The Rosetta energy function aims to minimize the energy of the protein 

with these properties in mind. In the case of ligand docking, the interface_delta score 

provides a measure of binding energy between the ligand and receptor. The 

interface_delta score is defined as the contribution to the total score for which the 

presence of the ligand is responsible. 

Clustering refers to the process in which structurally similar models with a specified 

root mean square distance (RMSD) to each other are placed into groups, or clusters. After 

aligning the protein coordinates of all RosettaLigand models, RMSDs between all pairs of 

ligand-binding modes are computed. In order to assess the differences between the ligand 

binding modes, the RMSD of the ligand position must be calculated without ligand 
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superposition. In the presented tutorial, comparative models were superimposed. Since 

RosettaLigand docking does not alter the global position of the protein, ligand RMSDs can 

be calculated without additional protein superposition. The RMSD is computed as:  

𝑅𝑀𝑆𝐷(𝐴, 𝐵) = √(
1

𝑁
∑ 𝑑(𝑎𝑖−𝑏𝑖)

2𝑁
𝑖 ), 

where A refers to the first structure, B refers to the second structure, N is the number of 

atoms, a is an atom in structure A, b is an atom in structure B, and d is the Euclidean 

distance. Superposition of the complex must be performed prior to calculation of the ligand 

RMSD. The RMSD values are then used to cluster the models into structurally similar 

groups. The lowest-energy models in the largest clusters are considered to be the most 

“native-like” because 1) these binding modes were highly sampled by Rosetta and 2) are 

energetically favorable as determined by Rosetta’s score function. Because the Rosetta 

score function is largely knowledge-based, Rosetta-built low-energy models are 

considered to recapitulate what is found to be energetically favorable in nature. 

Although a Rosetta clustering application exists for protein structures (see 

Appendix), clustering small-molecule ligands is currently not possible within Rosetta. 

Alternative tools to cluster ligands include the BioChemical Library, or BCL 

(www.meilerlab.org/index.php/bclcommons), 3DLigandSite (Wass, Kelley, & Sternberg, 

2010), Canvas by Schrödinger, the VcPpt extension for AutoDock Vina from BiochemLab 

Solutions (biochemlabsolutions.com) (Morris et al., 2009), the ptraj tool in the AMBER 

suite (http://ambermd.org) (Case et al., 2005), and RDKit (rdkit.org).  

In the example presented in the tutorial, bcl::ScoreProtein was used to compute 

RMSD values between ligands, and bcl::Cluster was used to cluster the top ten percent 

of ligands into structurally similar bins with a cluster girth cutoff of 2Å. The binding mode 

with the lowest interface_delta score from the largest cluster is often chosen as a 

representation of Rosetta’s best prediction for the ligand docking experiment (Figure 8). 

http://ambermd.org/
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Because of the imperfect nature of the Rosetta scoring function, it is possible that Rosetta 

ranks an incorrect binding mode better than the correct binding mode (Figure 8B). For this 

reason, it is suggested that after clustering, the lowest-energy models from each of the 

top five clusters are considered as putative binding modes. Kaufmann, et al. describe how 

biochemical data, such as mutagenesis studies, can be used to select from among several 

low-scoring, RosettaLigand-predicted binding modes (Kaufmann et al., 2009). 

The appropriate RMSD cutoff for clustering will vary depending on the 

characteristics of the protein binding site and the ligand being docked. In this example, 

due to the ligand size, a conservative cluster RMSD cutoff of 2Å was used. If larger ligands 

are used, the cluster cutoff can be increased to 3 to 5Å (S. Combs et al., 2010). To 

determine the size of the cluster RMSD cutoff, multiple RMSDs can be tested. Once the 

clusters have been generated, the cluster sizes (i.e., the number of models in each cluster) 

can be measured. If any single cluster contains a large percentage of the total models 

used, a larger cutoff may be used.  

In addition to clustering ligands, experimental data can be used to determine the 

correct ligand binding mode. Kaufmann, et al. used the relative rank of ligand energies 

from analogs of serotonin to determine the binding mode of serotonin into a Rosetta-built 

comparative model of the human serotonin transporter (hSERT) (Kaufmann et al., 2009). 

Experimental binding affinities were correlated to the rank of each small-molecule in the 

binding pocket of hSERT. With the same comparative model, Combs, et al. performed 

computational mutagenesis of the hSERT binding pocket to determine the binding mode 

of S- and R-citalopram (S. Combs et al., 2010). 

In the example of MR3 docked into a comparative model of T4-lysozyme 

demonstrated in this tutorial, results from Rosetta can be compared with the crystal 

structure from the PDB (PDB ID: 2ou0). By computing RMSDs between models generated 

by Rosetta and the experimentally determined, or native, structure, the accuracy of the 
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models can be evaluated. The methods used to generate these RMSD values can be 

found in the Appendix.  

 

 

Figure 7 
Building loops in comparative models of T4-lysozyme.  
Loops were rebuilt in comparative models of T4-lysozyme using P22-lysozyme as a template as 
detailed in STEPS 1-13 of the protocol. A) The RMSD of Cα atoms between 10,000 models and 
the native protein (PDB ID: 2ou0) was computed over the full protein (black) and the core 
residues of T4-lysozyme (gray). The top 10% of models by Rosetta energy are shown here. 
Generally, a low Rosetta energy correlates with a low RMSD. For comparison, the Rosetta 
energy for the energy-minimized native crystal structure is shown in red. B) Five of the lowest 
energy models are seen in comparison to the native structure (shown in gray). 

 

 

Plotting the interface_delta score vs. RMSD of the ligand models, as shown in 

Figure 8, demonstrates that a local minimum exists in a different binding site from that 

observed in the native crystal structure. Often, when a small ligand is docked into a large 
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binding pocket, several local energy minima in which the ligand can bind are detected. 

Rosetta is able to identify alternative binding pockets besides that which is found in the 

crystal structure. However, the binding mode closest to that of the crystal structure still 

ranks within the top three percent of the total docked binding modes. An energy funnel is 

often observed in score vs. RMSD plots, indicating the presence of a single energy 

minimum. However, the energy funnel in Figure 8 is poorly formed, which is not surprising 

given the nature of the complex. 
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Figure 8 
Docking MR3 into comparative models of T4-lysozyme. 
The MR3 ligand was docked into the ten lowest-energy comparative models of T4-lysozyme as 
detailed in STEPS 17-22 of the protocol. A) 10,000 binding modes were clustered by RMSD 
using applications available in the bcl::Commons. The largest five clusters are shown, with the 
interface_delta score plotted against the RMSD to the native ligand binding mode (shown in 
black). Generally, the largest clusters are also those with the lowest RMSD to the native binding 
mode. B) The RMSD between 10,000 binding modes and the native binding mode (shown in 
red) was computed. The top ten percent of models by interface_delta score are shown here. 
Sub-angstrom binding modes are within the top ten percent of models, but Rosetta also identifies 
an alternative lower-energy binding mode within the site. C) The lowest RMSD binding mode 
(orange) is closer to the native binding mode (gray) than the lowest-energy binding mode of the 
largest cluster (magenta) and the lowest-energy binding mode overall (cyan). 
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The results from the modeling example presented in the tutorial point to the 

challenges associated with docking a small, symmetric ligand into a relatively large binding 

pocket. Obtaining the correct binding conformation and position of the ligand is further 

hampered by the low confidence of the comparative model. However, the results also 

show that Rosetta is capable of sampling the correct binding conformation and assigning 

this conformation a relatively low energy according to the knowledge-based scoring 

function. Further, in a situation in which the binding conformation is unknown, Rosetta may 

be used to predict potential interacting residues. The predicted model will then need to be 

tested experimentally to confirm its validity. 
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CHAPTER III 

 

ASSESSMENT AND CHALLENGES OF LIGAND DOCKING INTO 
COMPARATIVE MODELS OF G PROTEIN-COUPLED RECEPTORS 

 

 

This work is based on publication (Nguyen, Norn, Frimurer, & Meiler, 2013). 

 

Summary 
 

The rapidly increasing number of high-resolution X-ray structures of G protein-

coupled receptors (GPCRs) creates a unique opportunity to employ comparative modeling 

and docking to provide valuable insight into the function and ligand binding determinants 

of novel receptors, to assist in virtual screening and to design and optimize drug 

candidates. However, low sequence identity between receptors, conformational flexibility, 

and chemical diversity of ligands present an enormous challenge to molecular modeling 

approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone and 

side-chain conformational space with Rosetta can be leveraged to meet this challenge. 

This study performs unbiased comparative modeling and docking methodologies using 14 

distinct high-resolution GPCRs and proposes knowledge-based filtering methods for 

improvement of sampling performance and identification of correct ligand-receptor 

interactions. On average, top ranked receptor models built on template structures over 

50% sequence identity are within 2.9 Å of the experimental structure, with an average root 

mean square deviation (RMSD) of 2.2 Å for the transmembrane region and 5 Å for the 

second extracellular loop. Furthermore, these models are consistently correlated with low 

Rosetta energy score. To predict their binding modes, ligand conformers of the 14 ligands 

co-crystalized with the GPCRs were docked against the top ranked comparative models. 
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In contrast to the comparative models themselves, however, it remains difficult to 

unambiguously identify correct binding modes by score alone. On average, sampling 

performance was improved by 103 fold over random using knowledge-based and energy-

based filters. In assessing the applicability of experimental constraints, we found that 

sampling performance is increased by one order of magnitude for every 10 residues 

known to contact the ligand. Additionally, in the case of DOR, knowledge of a single 

specific ligand-protein contact improved sampling efficiency 7 fold. These findings offer 

specific guidelines which may lead to increased success in determining receptor-ligand 

complexes. 

 

Introduction  
 

Being able to model the complex interactions between receptors and small 

molecule ligands offers immense opportunities for the basic biochemical understanding of 

signaling processes and for the development of pharmacological tool compounds and 

drugs that modulate receptor function. The human genome encodes for approximately 

800 G protein-coupled receptors (GPCRs) that orchestrate the communication between a 

cell and its surroundings – an obvious place for small molecule drugs to interfere 

(Lagerstrӧm & Schiӧth, 2008). While more than 26% of our current small molecule drugs 

target Class A GPCRs alone (Overington et al., 2006), structure-based drug discovery has 

played a limited role in developing these molecules. GPCRs have been the subject of 

many structural, comparative modeling and docking studies. However in many cases, 

models are affiliated with high uncertainty and inaccuracy. Primary reasons include a lack 

of adequate template structures, the existence of multi-conformational states which 

require intense conformational sampling of not only the protein side chain but also 

backbone conformational space, in combination with the large variety of ligands that 

interact with GPCRs, including very flexible molecules which are notoriously challenging 
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subjects for accurate docking (Kufareva, Rueda, Katritch, Stevens, & Abagyan, 2011, 

Michino, Abola, Dock, & others, 2009). Nevertheless, increasing the availability of reliable 

GPCR models for structure-based drug discovery would be beneficial in the development 

of novel, potent and subtype-selective molecules. Since the landmark publication by 

Rasmussen et al. in 2007 (Rasmussen et al., 2007), the number of experimentally 

determined GPCR structures has been increasing rapidly and now totals to 18 distinct 

GPCR structures that are recorded in the Protein Data Bank (PDB). While this is still just 

a small subset of the GPCR space, it provides a more substantial basis for comparative 

modeling and docking simulations. 

Despite the increase in experimental structural information, it remains difficult to 

predict ligand-binding conformations in comparative models of GPCRs for all except the 

receptors most similar to those which have been determined experimentally (Beuming & 

Sherman, 2012, Kufareva et al., 2011, Michino et al., 2009). This difficulty originates in 

part from the necessity of sampling both receptor and ligand flexibility which, due to the 

necessarily approximate nature of the force fields and protein-less/ligand-less sampling 

methods, results in the sampling of biologically irrelevant conformations. This complicates 

discrimination between the global minimum energy conformation (GMEC) and the local 

minimum energy conformations (LMEC) of the binding complex, as deeper sampling 

reveals many different energy-equivalent binding modes. The reason for the difficulty in 

GMEC and LMEC discrimination is, as discussed by Fleishman and Baker (Fleishman & 

Baker, 2012), related to the small energy gap in ligand binding, which moreover is 

challenging to measure as it is often mediated by polar contacts and water molecules. 

For GPCRs, the ligand docking problem is even more difficult for three reasons. 

Firstly, the alignment is not trivial, as the transmembrane helices occasionally contain 

bulges and kinks and the length of the transmembrane helix is not conserved. Secondly, 

GPCRs are able to assume multiple different conformations with approximately the same 



57 
 

energy, as demonstrated by studies on the beta-adrenergic receptors (K.-Y. M. Chen, 

Zhou, Fryszczyn, & Barth, 2012, Nygaard et al., 2013). Thirdly, three extracellular loops 

must be modeled, as they often contact the ligand and are involved in ensemble 

stabilization in some receptors (Klco, Wiegand, Narzinski, & Baranski, 2005, Schwartz & 

Rosenkilde, 1996). 

At the same time, improved algorithms and high-performance computing 

revolutionize our ability to sample protein conformational space swiftly, enhancing the 

possibility to accurately dock ligands into comparative models (Kaufmann & Meiler, 2012). 

This, combined with the increasing number of available templates, allows us to assess the 

applicability of rapid Monte Carlo Metropolis (MCM) sampling as implemented in the 

Rosetta suite of programs for GPCR comparative modeling and docking (Leaver-Fay et 

al., 2011). Specifically, we address the accuracy of backbone placement in 

transmembrane and extracellular loops, sampling of ligand binding modes and side-chain 

conformations in the binding site, and strategies to select accurate models from the large 

conformational space sampled. 

 

Methods 
 
 

Database generation 
 

The highest resolution experimental structure for each unique GPCR in the Protein 

Data Bank (PDB) at the time of writing was chosen for comparative modeling and ligand 

docking, as shown in Table 4. This includes the following G protein-coupled receptors: 

rhodopsin (Okada et al., 2004), β1-adrenergic (Warne et al., 2008), β2-adrenergic 

(Cherezov et al., 2007), A2A adenosine (Jaakola et al., 2008), CXCR4 chemokine (B. Wu 

et al., 2010), dopamine D3 (Chien et al., 2010), histamine H1 (Shimamura et al., 2011), 

S1P1 sphingosine 1-phosphate (Hanson et al., 2012), M2 muscarinic acetylcholine (Haga 



58 
 

et al., 2012), M3 muscarinic acetylcholine (Kruse et al., 2012), mu-opioid (Manglik et al., 

2012), kappa-opioid (H. Wu et al., 2012), N/OFQ opioid (A. A. Thompson et al., 2012) and 

delta-opioid (Granier et al., 2012). Comparative models were constructed of each GPCR 

using the other 13 structures as templates. Ligand docking was performed with the small 

molecules crystallized within each receptor (Figure 43). A flowchart demonstrating the full 

protocol carried out in this study is shown in Figure 9. Full command lines for each step 

are included in the Appendix. 

 

Figure 9 
Flowchart of the comparative modeling and ligand docking protocol.  
For each step in the protocol, the name of the application or method used to execute each step 
is included. Where multiple methods are mentioned, the results from the method in italics were 
carried on to the next step. 

 



 
 

Table 4 
G protein-coupled receptor experimental structures and their ligands used in this study. 
Data collected from the Protein Data Bank.  

Protein name 
PDBID / 
Chain 

Loop 
length 

ECL1/2/3a 
Resolution 

(Å) Ligand 
Rotatable 

bonds 

Fold decrease in 
sampling efficiency 
when using ligand 

conformers b 

Waters 
within 
4Å c 

Contacts 
(pocket/ 
loops) d 

Rhodopsin (bRh) 1U19 / A 5/27/7 2.2 Retinal 5 4.0 1 19/6 
Beta1-Adrenergic 
(B1Ar) 2VT4 / B 6/26/6 2.7 Cyanopindolol 6 3.2 0 19/2 
Beta2-Adrenergic 
(B2Ar) 2RH1 / A 5/26/6 2.4 Carazolol 6 4.6 0 18/2 
A2A adenosine 
(A2Ar) 3EML / A 6/25/8 2.6 ZM241385 4 15.0 7 13/5 
CXCR4 chemokine 
(CXCR4) 3ODU / A 5/18/7 2.5 IT1t 7 68.1 7 

7/6 (+1N 
term) 

Dopamine D3 
(D3R) 3PBL / A 8/16/7 2.89 Eticlopride 7 6.6 N/A 20/2 
Histamine H1 
(H1R) 3RZE / A 6/17/5 3.1 Doxepin 3 3.1 N/A 18/1 
S1P1 sphingosine 
1-phospate 
(S1P1R) 3V2W / A 10/18/8 3.35 ML056 11 42.4 N/A 

21/5 
(+2N 
term) 

M2 muscarinic 
acetylcholine 
(M2R) 3UON / A 7/17/6 3 

3-quinuclidinyl-
benzilate 5 6.4 2 18/1 

M3 muscarinic 
acetylcholine 
(M3R) 4DAJ / A 7/17/7 3.4 Tiotropium 5 6.4 N/A 19/1 
Mu-opioid (MOR) 4DKL / A 7/20/6 2.8 β-FNA 8 27.2 4 15/0 
Kappa-opioid 
(KOR) 4DJH / A 5/22/4 2.9 JDTic 7 8.8 5 22/2 
N/OFQ opioid 
(NOP) 4EA3 / A 4/19/6 3.01 C-24 8 50.6 1 17/4 
Delta-opioid (DOR) 4EJ4 / A 4/19/7 3.4 Naltrindole 2 1.6 N/A 15/0 

aLoop lengths determined by DSSP.b Ligand conformers generated by MOE. The fold decrease in sampling efficiency is the uniform sampling 
efficiency within a 2.0 Å radius (USE2.0) for the bioactive ligand conformation divided by USE2.0 for ligand conformers. cNumber of water 
molecules bridging the receptor and ligand within 4 Å of the ligand crystallized in the binding pocket. d Number of residues in the receptor in 
contact with the ligand. Indicated is the number of contacts within the transmembrane region of the receptor binding pocket versus the loop 
or N-terminal regions. 
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Sequence alignment and threading 
 

The first step in constructing the models was performing a sequence alignment of 

the target sequence with a structural alignment of the other 13 GPCRs to be used as 

templates. A structure-based sequence alignment was generated of all 14 GPCR 

templates using MUSTANG (Konagurthu, Whisstock, Stuckey, & Lesk, 2006) as seen in 

Figure 44 (Figure 9, Step 1). The sequence of the target GPCR was then aligned with the 

profile of structurally aligned templates using CLUSTALW (J. D. Thompson, Higgins, & 

Gibson, 1994) (Figure 9, Step 2). The sequence of the target GPCR was then placed onto 

the helical backbone coordinates of each template structure (Figure 9, Step 3). Any 

missing density and variable loop regions were constructed using the ab initio cyclic 

coordinate descent protocol in Rosetta (Canutescu & Dunbrack, 2009, Chu Wang et al., 

2007) (Figure 9, Step 4). 

 

Building in missing density and extracellular loop regions in the comparative models  
 
 Missing density in the threaded models due to gaps or insertions in the sequence 

alignment were built in Rosetta using Monte Carlo Metropolis (MCM) fragment 

replacement combined with cyclic coordinate descent loop closure (Canutescu & 

Dunbrack, 2009, Chu Wang et al., 2007) (Figure 9, Step 4). Cyclic coordinate descent 

(CCD) was inspired by inverse kinematic applications in robotics and closes loops by 

minimizing the sum of the squared distances between three backbone atoms of the 

moving N-terminal anchor and the three backbone atoms of the fixed C-terminal anchor 

through the adjustment of dihedral angles. Its speed and its ability to close a loop over 

99% of the time gives CCD an advantage over other loop closure methods. In brief, loop 

regions defined by the user are chosen in a random order and for each loop, - angles 

of backbone segments from homologous sequence fragments from the PDB, excluding 
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those from the target experimental structure, are introduced into the loop regions. After 

the fragment substitution, small movements in the - angles are performed to close 

breaks in the protein chain. After each defined loop has been closed, resulting full 

sequence models were subjected to eight iterative cycles of side chain repacking and 

gradient minimization of , , and  angles using the Rosetta scoring function with an 

implicit membrane potential (Yarov-Yarovoy et al., 2005). A total of 200 models were 

constructed with each threaded model and the lowest energy model was chosen for a full 

remodeling of the extracellular loops (Figure 9, Step 5). Extracellular loops, as shown in 

Figure 45, were extensively rebuilt using both the cyclic coordinate descent loop closure 

method described above and the kinematic loop closure method described below. 

Approximately 1000 models were built for each target-template pair, resulting in a 

minimum of 13,000 comparative models per target structure. 

A limited benchmark over the comparative modeling of six GPCRs was performed 

to compare the results of the kinematic loop closure (KIC) method in Rosetta (Mandell et 

al., 2009) with CCD. KIC analytically determines all mechanically accessible 

conformations for six pivot torsion angles of a peptide chain using polynomial resultants. 

During kinematic loop closure, all mechanically accessible conformations for  and  

dihedral angle torsions from the first, middle and last residues in a loop segment, 

designated as pivot torsions, are sampled. The remaining torsion angles are randomly 

sampled using Monte Carlo minimization from Ramachandran probabilities of each amino 

acid. The six pivot torsions are solved analytically to close the loop. The protocol is 

performed for 720 rounds of high resolution loop closure and models accepted by the 

Metropolis criterion are subjected to side chain repacking and gradient minimization as 

described above. The data from the benchmark set comparing the two methods indicated 

that overall, CCD produced comparative models with an average root mean square 
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deviation (RMSD) of 2.0 Å over extracellular loops (ECL) 1 and 3, which was significantly 

lower than the average RMSD over ECL1 and 3 for KIC at 2.6 Å (Table 21). The difference 

between CCD and KIC for the average RMSD over the full receptor was even more striking 

at 3.8 Å and 6.9 Å respectively. Results from CCD loop modeling were consequently used 

for further analysis. 

 

Selection methods of comparative models for docking 
 
 Comparative models were filtered for ligand docking using two different methods 

(Figure 9, Step 6). Both methods partially build on the observation that receptor accuracy 

is correlated with the Rosetta energy function (Figure 46). The first method was based on 

clustering of the 10% best scoring structures. Clusters were determined based on pairwise 

RMSD of all C-alpha atoms using bcl::Cluster (Alexander, Woetzel, & Meiler, 2011) and a 

cluster radius of 3.0 Å. The best scoring models in each of the clusters were used for 

further analysis. The second method was created to avoid sampling of non-native ligand 

binding pocket conformations. Pocket residue positions were defined across all GPCRs 

as positions in the sequence alignment where C-alpha atoms of the residues had a 

distance of less than 4.0 Å to the ligand in at least one experimental structure. This yielded 

a list of 29 residue positions, which was reduced to 25 residue positions when the four 

residue positions at the top of transmembrane helices (TM) two and five were removed to 

avoid bias from structural alignment of the proteins. Pocket residues are shown in the 

alignment in Figure 44. Comparative models passed the filter only if C-alpha atoms of all 

pocket residues had an alignment equivalent pocket residue in another GPCR within a 

distance of a residue position specific cutoff. The cutoffs were chosen to be residue 

specific to represent varying flexibility in different parts of the receptor. The maximum 

distance between a specific pocket residue in any receptor and an equivalent pocket 

residue in any other GPCR, according to the alignment shown in Figure 44, was chosen 
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as a distance cutoff for that particular residue position. When applying the knowledge-

based filter, the self-experimental structure was not considered to avoid circular bias.  

 

Generation of ligand conformers 
 

In preparation for docking, ligand conformers were generated by MOE (Molecular 

Operating Environment, Chemical Computing Group, Ontario, Canada) using the 

MMFF94x force field and Generalized Born implicit solvent model (Figure 9, Step 7). 

Conformers were generated using 10,000 iterations of the Low Mode MD method (Labute, 

2010) with a redundancy cutoff of 0.25 Å. Energy cutoffs for ligand conformers were 

dependent on the number of rotatable bonds: 3 kcal/mol for 1-6 rotatable bonds, 5 kcal/mol 

for 7-9 rotatable bonds and 7 kcal/mol for 10-12 rotatable bonds (Perola & Charifson, 

2004). The RMSD distribution for the generated ligand conformers compared to the 

bioactive ligand conformation is shown in Figure 52. 

The ligand conformers were protonated as shown in Figure 43. These protonation 

states were determined based on the local environment in the individual experimental 

structures. In the case of ligand C-24, the protonation state is not what would be predicted 

without information from the experimental structure. We note that this adds some bias to 

the method. Likewise, the stereochemistry of the ligand (E)-IDT in CXCR4 was taken 

directly from the experimental structure. Of note, the experimental structure was 

determined with a mixture of (E) and (Z)-form, which cannot be clearly distinguished from 

the electron density (Raymond Stevens, personal communication).  

 

Docking ligands into a chosen ensemble of comparative models 
 
 Ligand docking into the comparative models was performed with Rosetta Scripts 

(Davis & Baker, 2009, Fleishman et al., 2011, Lemmon & Meiler, 2012, Meiler & Baker, 
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2006) (Figure 9, Step 8). Each ligand was allowed to sample binding modes in a 5.0 Å 

radius from the coordinate representing the center of the ligand binding mode as given in 

the experimental structure. This adds some bias to the sampling, as the smallest unbiased 

docking sphere enclosing all ligand binding conformations has a radius greater than 5.0 

Å. During the low-resolution phase of docking, rigid body orientation of the ligand centroid 

is performed through translation until the geometric center of the ligand is in a position not 

occupied by atoms in the receptor. High-resolution docking then begins with 1000 cycles 

of full rotational freedom until the attractive and repulsive forces fall below a threshold 

value. Six cycles of side-chain rotamer and ligand conformer sampling are then coupled 

with 0.1 Å, 0.05 radian ligand movements simultaneously in a Monte Carlo simulated 

annealing algorithm. All rotatable bonds within the ligand, except for planar conjugated 

bonds, were allowed full flexibility as indicated within the ligand parameters file. Ligand 

conformers are randomly chosen until the Monte Carlo criterion has been satisfied. A final 

minimization combines side-chain rotamer sampling with backbone torsion angle 

minimization with harmonic constraints on the C-alpha atoms. 

 The energy function used during the docking procedure contains terms for van der 

Walls attractive and repulsive forces, statistical energy derived from the probability of 

observing a particular side-chain conformation in the PDB, hydrogen bonding, electrostatic 

interactions between pairs of amino acids, and solvation assessing the effects of both 

side-chain/side-chain interactions and side-chain/ligand interactions. For each ligand, 

over 2,000 docked complexes were generated and evaluated in comparison to the 

experimental ligand binding mode using RMSD to the heavy atoms.  

 

Assessing the size of the ligand conformational space 
 

We propose a new measure to enable comparison of docking benchmark studies 

across targets and to test how the methods compare to random sampling – the uniform 



65 
 

sampling efficiency (USE2.0). The proposed measure is equivalent to the sampling 

frequency of better-than-2.0-Å-RMSD-binding-modes that would occur by random 

sampling in a 5.0 Å docking sphere with no occluding protein, given a set of ligand 

rotamers and full rotational and translational freedom. To calculate USE2.0, each i rotamer 

of the N rotamers in the generated ligand ensemble was aligned to the experimental 

structure and rotated along its principal axes (φ,θ,ψ) using M (40) uniform spacings. For 

sampling to be uniform, a correction factor, Cφ, is needed to account for the fact that the 

number of ways of choosing θ, given φ, is proportional to the circumference of the circle 

that θ draws on the φ,θ sphere (Bowie, 1997). The translation distance that increased the 

RMSD to 2.0 Å was determined for each rotamer-rotation set r(i,φ,θ,ψ). USE2.0 was then 

determined as the fraction between the volume of space containing binding modes below 

2.0 Å and sampled volume of the 5.0 Å (R) docking sphere. 

 

USE2.0 =∑∑∑∑ri,φ,θ,ψ
3 𝐶φ 𝑅3⁄

𝑀

ψ

𝑀
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𝑀
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𝛮
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The distribution of RMSDs that arise from uniform sampling of ligand conformations is 

nontrivial, dependent on the ligand size and on the generated conformers. For the ligands 

considered in this dataset, USE2.0 varies from 10-5 for DOR to 10-7 for S1P1.  

 

Enrichment of native-like binding modes using known contacts between the ligand and 
GPCR  
 
 When a mutation of a residue strongly affects ligand binding, this residue is often 

interpreted as having a direct contact to the ligand. To assess how this type of constraints 

enriches for the correct binding mode in our ligand-protein ensembles, we determined the 
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average enrichment through 10,000 iterations of n randomly chosen known contacts with 

n running from 0 to all known contacts for a particular receptor-ligand interaction. 

 

Ligand-protein evaluation through RMSD-based clustering and binding energy 
 

Results from the ligand docking study were evaluated using clustering on pairwise 

RMSD values calculated over the ligand heavy-atoms using bcl::Cluster with a 2.0 Å cutoff 

(Figure 9, Step 9). The lowest energy binding modes of the five largest clusters were 

chosen for further analysis. The coverage and accuracy of correct ligand-receptor contacts 

compared to the experimental structure was calculated on the top ranked models using 

SimiCon (Rueda, Katritch, Raush, & Abagyan, 2010). Contact coverage is calculated as 

the number of correct ligand contacts from the model divided by the total number of ligand 

contacts made in the experimental structure. Accuracy of correct contacts is calculated as 

the number of correct contacts divided by the total number of ligand contacts made in the 

model. 

All plots were made with the Python 2D plotting library, matplotlib (Hunter, 2007) 

and Prism 5.01 (GraphPad Software, San Diego, CA). The alignment figure was created 

used Aline (Bond & Schuttelkopf, 2009). Structural figures were created with PyMOL 

(PyMOL Molecular Graphics System, Version 1.5.0.4, Schrödinger, LLC).  

 

Results and Discussion 
 

The results are presented in four parts. In the first part, we discuss the accuracy 

of comparative models generated by sequential sampling algorithms of the 

transmembrane and loop regions. Secondly, we discuss methods to select the most 

accurate models for ligand docking. Thirdly, we assess the equivalency of the local 

minimum interaction energy conformation (LMIEC) with the lowest energy that we sample 



67 
 

and the experimental ligand binding mode and ask how much receptor flexibility can be 

sampled before the lowest energy LMIEC deviates from the experimental ligand-protein 

complex. In the fourth part, we assess the sampling efficiency of native-like ligand binding 

modes by docking the ligand ensemble into the ensemble of comparative models. Various 

methods used to identify native-like ligand binding modes in the resulting ensembles are 

explored. 

 

Templates of higher sequence identity produce more accurate comparative models  
 

We generated 13,000 comparative models of each receptor through minimization 

and loop building in a sequential fashion as described in the Methods section. To assess 

the parameters which determine comparative model accuracy in the initial receptor 

ensemble, we considered the total energy of the models and the sequence identity of the 

template. Sequence identity was calculated on the aligned GPCR sequences as seen in 

Figure 44. As shown in Figure 10A, the average root mean square deviation (RMSD) of 

comparative models built with templates having greater than 50% sequence identity are 

consistently below 5.0 Å compared to the experimental structure. For residues in the 

ligand binding pocket (the pocket residues), the average RMSD of comparative models 

built with templates above 70% sequence identity within the pocket residues are frequently 

within 2.0 Å of the experimental structure (Figure 10B). In fact, only those targets with 

templates above 50% sequence identity were able to sample ligand binding pockets within 

1.0 Å of the experimental structure (Figure 47).  

As can be expected, this includes all target-template pairs within the same sub-

family; for example, B1Ar and B2Ar serve as the best templates for each other at 74% 

sequence identity, as does M2R and M3R at 75% sequence identity. The β-adrenergic 

receptors also produced accurate models when used as templates for the muscarinic 

receptors at 48% sequence identity. The opioid receptors produced the most accurate 
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comparative models when used as templates for each other at 65% to 75% sequence 

identity. In most cases, templates with high sequence identity also generate the lowest 

energy models in comparison to models based on other templates (Figure 47). Where 

there were exceptions, the lowest energy models were produced with templates with at 

least 45% sequence identity to the target receptor. Without a template having sequence 

identity above 50%, it continues to be difficult to get accurate models of the ligand binding 

pocket. While it was demonstrated that building multiple models based on different 

templates provides a better opportunity to sample the correct conformation and this is 

leveraged here (Kaufmann & Meiler, 2012), the generation of a smaller but improved 

conformational receptor ensemble could benefit from using multiple template structures in 

a single model (Mobarec, Sanchez, & Filizola, 2009). Recently, Worth et al. 2011 

demonstrated that similar or improved comparative models could be generated using a 

multi-template approach, where rotameric states as well as specific sequence and 

structural features could be modeled in light of the entire set of available experimental 

structures which otherwise might be absent when using a single template (Worth, 

Kreuchwig, Kleinau, & Krause, 2011).



 
 

 

 

 
Figure 10 
Template sequence identity versus comparative model RMSD.  
Each point represents the average RMSD over all comparative models of a target GPCR built using a particular template. For each target-template 
pair, percent sequence identity was calculated on the sequence alignment shown in Figure 44. Sequence identity is shown here to correlate with 
low average A) receptor RMSD, calculated over the C-alpha atoms of the full receptor and B) pocket residue RMSD, calculated over the C-alpha 
atoms of residues within the ligand binding pocket. 
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Correct helical conformations are recovered in regions of aligned secondary structure 
 
 C-alpha RMSD in comparison to the experimental structure was measured for the 

full receptor, transmembrane region and second extracellular loop (ECL2) region in the 

lowest energy models and the top ranked models by clustering (Table 5). Among the top 

ranked models for all 14 receptors, the transmembrane region was modeled with an 

average RMSD of 2.5 Å compared to their corresponding experimental structures. This 

average drops to 2.2 Å when considering only those models with template sequence 

identities above 50%. 

The maximum transmembrane region RMSD among top ranked models was seen 

for CXCR4 at 3.2 Å. In this case, helical placement of TM7 was shifted by six residues 

between the target sequence and the sequence of the templates, resulting in a gap in the 

alignment (Figure 44). Without reliable backbone coordinates to model the top of TM7, the 

resulting models rely on Rosetta to de novo fold the region using the CCD loop closure 

algorithm. The helical structure is recovered, but the top two helical turns of TM7 in the 

models are displaced from that of the experimental structure by distance of 13.3 Å (Figure 

11A).  

However, the conformation of the transmembrane helices is reasonably accurate 

throughout regions where transmembrane helices are aligned, specifically in terms of 

helical kinks. Deviations from ideal helical conformation are typically caused by proline or 

glycine residues and are important for both function and structure prediction (Yohannan, 

Faham, Yang, Whitelegge, & Bowie, 2004). Major helical kinks occur in regions where 

proline residues are highly conserved between the GPCR sequences, particularly in TM 

5, 6 and 7. In the two cases where templates had a proline or glycine-induced kink that 

was not present in the target, Rosetta was able to remove the kink and recover the correct 

conformation. The template of the top ranked S1P1R model, D3R, contains a proline at 

P84 which causes a kink in TM2 that was resolved by Rosetta (Figure 11B). The same is 
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seen for TM4 in KOR, where the glycine-induced induced kink at G178 in DOR was 

removed during Rosetta energy minimization to recover the correct conformation (Figure 

11C). 

 

 

Figure 11 
Structural representations of transmembrane helical regions from GPCR comparative 
models. 
A) TM7 in the top ranked comparative model of CXCR4 (blue) deviates from experimental 
structure (gray), specifically at W283 (highlighted in yellow). Cases where helical kinks exist in 
the template but are resolved in the comparative model include B) S1P1R, where the top ranked 
model (blue) resolves the kink in TM2 cause by P84 (highlighted in red) in the D3R template 
(green) and C) KOR, where the top ranked model (blue) resolves the kink in TM4 caused by 
G178 (highlighted in red) from the DOR template (green). The top ranked model is the best 
scoring model of the largest cluster, where clustering is performed on pairwise full receptor C-
alpha RMSD over the top ten percent of comparative models by energy. 

 

 



 

Table 5 
Benchmark results for comparative modeling of G protein-coupled receptors.  
Full receptor, transmembrane region and extracellular loop two RMSD over C-alpha atoms compared to the experimental structure is 
reported for models in each category. 

Protein 
name 

Best sampled ECL2 
Full receptor/TM 

region/ECL2 RMSD (Å) 

Lowest energy model 
Full receptor/TM 

region/ECL2 RMSD (Å) 

Top ranked model via 
clusteringa 

Full receptor/TM region/ECL2 
RMSD (Å) 

Percent of models with 
ECL2b under 2.0 Åc 

bRh 4.2 / 1.3 / 3.3 4.7 / 2.5 / 6.2 4.1 / 1.4 / 7.5 0.4 

B1Ar 2.8 / 1.6 / 2.9 3.7 / 1.7 / 4.5 3.2 / 1.2 / 4.3 53.9 
B2Ar 3.4 / 1.4 / 2.7 3.2 / 1.9 / 5.9 3.7 / 1.7 / 4.4 45.2 
A2Ar b - 3.6 / 2.5 / - 3.6 / 2.5 / - 6.8 
CXCR4 3.9 / 3.0 / 2.3 4.6 / 3.3 / 3.2 4.2 / 3.2 / 6.5 20.4 
D3R 3.9 / 1.9 / 1.8 3.0 / 1.8 / 3.6 3.0 / 1.8 / 3.6 85.2 
H1R b - 1.6 / 2.5 / - 2.4 / 2.4 / - 0.8 
S1P1R 3.3 / 2.0 / 3.4 5.8 / 2.1 / 4.8 3.6 / 2.0 / 5.4 0.6 
M2R 2.2 / 2.4 / 1.9 2.2 / 2.3 / 4.2 2.2 / 2.3 / 4.2 7.0 
M3R 3.1 / 2.4 / 2.3 3.1 / 2.9 / 5.3 2.7 / 2.4 / 5.2 9.7 
MOR 4.7 / 3.1 / 1.6 3.6 / 1.9 / 4.6 2.4 / 2.8 / 5.8 14.6 
KOR 3.7 / 2.6 / 2.7 4.4 / 2.5 / 6.7 3.1 / 2.9 / 5.8 3.8 
NOP 2.2 / 2.6 / 2.6 3.2 / 2.8 / 6.6 3.0 / 2.4 / 5.8 10.5 
DOR 2.0 / 2.8 / 2.5 3.3 / 2.2 / 5.5 3.3 / 2.2 / 5.5 10.6 

a Top ranked model is determined by the lowest energy model from the largest cluster. 
b ECL2 of A2Ar and H1R could not be evaluated because of unresolved structure in this region of the experimental structure in the Protein 
Data Bank. 
c ECL2b represents the C-terminal half of ECL2, after the disulfide bond, which contains the residues that contribute to ligand binding as 
represented in the experimental structures from the PDB 
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Native-like loop conformations are sampled but are difficult to identify by score 
 

Rebuilding the three extracellular loops was a point of focus during the modeling 

protocol because of their role in ligand binding. The first and third extracellular loops range 

in length from five to ten residues, which is within the range of successful loop prediction 

for Rosetta when applied on experimental structures (Canutescu & Dunbrack, 2009, Chu 

Wang et al., 2007). Here we find that the first and third extracellular loops are built with an 

average RMSD of 2.0 Å to the loop conformation from the experimental structures (Table 

21). In several cases, identification of the correct loop conformation was possible using 

the energy of the loop (Figure 48, Figure 50). 

The second extracellular loop (ECL2) ranges in length from 16 to 31 residues. 

While the length of ECL2 is beyond the capability of prediction for loops excised from 

experimental structures, restriction of the sampling space was provided by requiring 

formation of the conserved disulfide bonds. The results demonstrate that ranking the most 

accurate ECL2 is difficult based on energy and clustering, since no top ranked models 

contained ECL2 RMSDs under 2.0 Å (Table 5 and Figure 49). However, it is possible to 

sample these native-like loop conformations, which is needed during docking to generate 

the correct ligand binding mode as observed in the experimental structure. Specifically, 

loop conformations were sampled below 2.0 Å for MOR, M2R and D3R (Table 5 and 

Figure 12). When focusing on the C-terminal region of ECL2, which is most often involved 

in ligand binding, we find native-like sampling for all models, with 0.4% to 85% of sampled 

ECL2 conformations below 2.0 Å (Table 5).  

 

Accurate ECL2 conformations often recover secondary structure elements  
 

On average, the ECL2 RMSD for top ranked models by clustering was 5.3 Å, with 

the most accurate ECL2 conformations given for D3R at 3.6 Å, M2R at 4.2 Å and B1Ar at 
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4.3 Å (Table 5). Compared to the length of other ECL2s, which are about 21 residues long, 

D3R was relatively the easiest ECL2 to model with only 16 residues (Figure 12A). Other 

comparative models where ECL2 regions were most accurately sampled were those with 

secondary structure within the loop. Applying a fragment-based approach to de novo loop 

modeling allows for the insertion of secondary structure into loop regions where it is 

predicted from the sequence. In four of six cases, Rosetta was able recover helical 

elements found in ECL2 of experimental structures and one of five cases where β-sheets 

were found in ECL2 (Figure 51). MOR was the one case where β-sheets were conserved 

in the model, and the most accurately sampled ECL2 had an RMSD of 1.6 Å (Figure 12B). 

B1Ar (Figure 12C), B2Ar, M2R (Figure 12D) and M3R were the models in which helical 

elements were correctly sampled. In cases where predicted secondary structure in the 

target agrees with that of the template, such as with B1Ar and B2Ar, it would be beneficial 

to keep the loop conformation of the template and enforce the helical element (Goldfeld, 

Zhu, Beuming, & Friesner, 2012). The most difficult loop conformations to model were in 

S1P1R (Figure 12E) and bRh (Figure 12F), where the top ranked models only came within 

5.4 Å and 7.5 Å of the experimental structure respectively. Both receptors have ECL2s 

longer than twenty residues with little secondary structure to stabilize the conformation. 

Additionally, ECL2 in both receptors packs against the N-terminal region, which was 

removed prior to comparative modeling. Therefore, inclusion of the N-terminal region into 

comparative modeling might be beneficial in these cases.



 

Figure 12 
Structural representations of extracellular loop two from comparative models compared to experimental structures. 
For A) D3R, B) MOR, C) B1Ar, D) M2R, E) S1P1R and F) bRh, the experimental structure is represented in gray, the most accurately 
sampled model is represented in yellow and the top ranked model is represented in blue. The top ranked model is the best scoring model 
of the largest cluster, where clustering is performed on pairwise full receptor C-alpha RMSD over the top ten percent of comparative 
models by energy. 
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Comparison with previous studies on GPCR loop modeling 
 
 Other studies have likewise addressed GPCR loop modeling. They include the 

protein local optimization program (PLOP) (Goldfeld, Zhu, Beuming, & Friesner, 2011, 

Goldfeld et al., 2012), which samples amino acid rotamers in loop regions and evaluates 

models using a physics-based energy function while explicitly modeling membrane 

molecules. Modeller uses the CHARMM-22 force field and knowledge-based energy terms 

to optimize the loop conformation (Fiser, Do, & Sali, 2008). The algorithm employed by 

Nikiforovich et al. (Nikiforovich, Taylor, Marshall, & Baranski, 2010) performs geometric 

sampling of the loops using all possible conformations of the peptide backbone. In 

comparison to their study, Rosetta was able to rank loop conformations in comparative 

models more accurately than the loop conformations built de novo in experimental 

structures by Nikiforovich et al. (Nikiforovich et al., 2010): bRh was modeled to 7.5 Å 

RMSD compared to 8.4 Å, B1Ar was modeled to 4.3 Å compared to 6.4 Å, and B2Ar was 

modeled to 4.4 Å compared to 7.4 Å. In their most recent study, Goldfeld et al. reported 

top ranked loop conformations built de novo in experimental structures as 2.7 Å for B1Ar 

and 2.2 Å for B2Ar (Goldfeld et al., 2012). However, the algorithm they used enforced the 

helical bounds within ECL2 for these structures. When considering the results from true 

de novo constructed loop conformations without the helical constraints, top ranked loop 

conformations from Rosetta are also more accurate than PLOP, whose top ranked ECL2 

conformations were 9.1 Å for bRh, 5.6 Å for B1Ar and 13.8 Å for B2Ar. 

These results indicate that even current state-of-the-art methods for loop modeling 

continue to have difficulty determining loop conformations, especially within comparative 

models. However, the experimental structures which we attempt to reproduce still only 

represent one of many possible loop conformations for these flexible regions and it is 

possible that more of the sampled conformations are in fact realistic (Cozzini et al., 2008, 

Groban, Narayanan, & Jacobson, 2006).  
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Rosetta captures native-like ligand binding pocket conformations and samples beyond the 
flexibility evident from experimental structures 
 
 To assess the sampling density of residues lining the ligand-binding pocket, we 

aligned all the models to the experimental structures and measured the collapse of the 

pocket as the change in distance for each residue C-beta atom (C-alpha for glycine) to 

the closest ligand atom as determined from the experimental structures (Figure 13). The 

models display increased flexibility at the top of the transmembrane (TM) helices, as would 

be expected due to the variability represented by the crystallographic templates. With an 

average collapse of -0.1 Å and a standard deviation of 3.6 Å within all the comparative 

models generated, Rosetta samples beyond the flexibility that is represented by the 

experimental structures, which have an average collapse of -0.1 Å with a standard 

deviation of 1.0 Å (Figure 13). As the experimental structures are still a small and biased 

representation of the GPCR space, it is unclear if Rosetta is introducing too much flexibility 

in these regions. However, for the present study, many comparative models within our 

ensemble will not make constructive interactions with the ligand due to non-native 

placement of the residues involved in ligand binding.  
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Figure 13 
Ligand binding pocket flexibility within comparative models compared to experimental 
structures. 
For each of the 26 pocket residues in the ligand binding pocket of the receptor, pocket collapse 
is defined as the change in distance from each pocket residue to the ligand, measured between 
the model and the experimental structure. A positive pocket collapse value indicates that the 
pocket residue moves closer to the ligand in the model compared to the experimental structure, 
while a negative pocket collapse value indicates movement towards the receptor. The width of 
the beanplot area represents the number of models having a pocket collapse of a certain value 
for was measured for the threaded models (blue) and for all generated comparative models after 
loop rebuilding and energy minimization (orange), with corresponding .blue and orange 
horizontal lines representing the average pocket collapse over the given set of models. 

 

 

Knowledge-based filters improve the accuracy of the ligand-binding pocket 
 

Because Rosetta samples the flexibility of the transmembrane region beyond the 

variability that is represented in the experimental structures, a knowledge-based filter was 

created which focused on the pocket residues alone to identify models that would be 

suitable for ligand docking. Models with structural deviation beyond the maximum flexibility 

observed within the binding pocket in existing experimental structures were removed, as 

described in the Methods section. The filter accepted between 0.2% and 10% of the 

models from the initial receptor ensemble and the overall RMSD of these models were 
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comparable to those identified by traditional clustering methods (Figure 14A). For several 

receptors, there was a correlation between pocket RMSD and receptor energy (Figure 47) 

and based on this correlation, energy was used to reduce the filtered ensemble to a 

maximum of 100 structures. In this filtered ensemble, the receptor collapse was 0.3 Å with 

a standard deviation of 0.8 Å, which is slightly greater compared to what is seen in the 

experimental structures. This is possibly due to favorable energy when collapsing the 

pocket. The average RMSD of residues constituting the common ligand binding pocket is 

significantly improved compared to a receptor ensemble selected by clustering of the initial 

receptor ensemble (Figure 14B).



 

 

 

 

Figure 14 
Comparison of two comparative models analysis methods: filtering by ligand binding pocket residues and clustering on 
RMSD. 
For each receptor, the ten lowest energy models of the largest five clusters are represented in green and the one hundred lowest 
energy models from the knowledge-based filter on residues in the ligand binding pocket are represented in blue. The width of the 
beanplot area represents the number of models having a particular A) receptor RMSD and B) pocket residue RMSD, with the 
corresponding horizontal lines representing the average RMSD for all models clustered by RMSD (green) and models from the 
knowledge-based filter (blue). 
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Accuracy of the ligand conformer ensemble is highly dependent on ligand flexibility 
 
 The generation of ligand conformations is not a trivial process, as the bioactive 

ligand conformation need not occupy its aqueous GMEC (Bostrӧm, Norrby, & Liljefors, 

1998, Nicklaus, Wang, Driscoll, & Milne, 1995, Perola & Charifson, 2004). Our approach 

was to create ensembles of low energy ligand conformations (LMECs) and allow Rosetta 

to minimize these conformations in the context of a fully flexible receptor. Nevertheless, 

ligand ensembles will inevitably contain irrelevant conformations which results in the 

search of irrelevant binding modes. Low energy ligand conformations were generated with 

MOE and the energy cutoff was determined by the number of rotatable bonds within the 

ligand (Perola & Charifson, 2004), as discussed in the Methods section.  

To evaluate how the use of such ligand ensembles would affect sampling efficiency 

of ligand binding modes with RMSD below 2.0 Å, the Uniform Sampling Efficiency of 

binding modes below 2.0 2.0 Å (USE2.0) was calculated for all ligand ensembles and 

compared to that of the bioactive ligand conformation. While the uniform sampling 

efficiency dropped by only 6.0 ± 3.8 fold for the majority of the ligands by using ligand 

conformers instead of the bioactive ligand conformation, it dropped by 68.1, 50.6, 42.4 

and 27.2 fold for IT1t, C-24, ML056 and beta-FNA respectively (Table 4 and Figure 52). 

These ligands are characterized by many degrees of freedom, which contribute to the 

difficulty of sampling the bound conformation accurately.  

While a benchmark of ligand ensemble generation methods was beyond the scope 

of this study, we noted some reduction in the number of non-native ligand conformers by 

using the Generalized Born implicit solvent instead of the distance-dependent dielectric 

constant. Further improvement might be possible in some cases by using MD-simulations 

to generate a canonical ligand ensemble weighted according to the Boltzmann distribution 

to identify the most populated and thereby most probable ligand conformations. For large, 

flexible ligands, a fragment-based docking approach might be more suitable and has 
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already been applied in many drug design studies (A Kumar, Voet, & Zhang, 2012, 

Ashutosh Kumar & Zhang, 2012, Mortier, Rakers, Frederick, & Wolber, 2012). 

 

Interaction energy is not reliable for identification of the experimental ligand binding mode 
when docking into flexible GPCR comparative models 
 

The bioactive ligand conformation from the experimental structure as well as ligand 

conformers generated by MOE were docked into the top ranked comparative models as 

evaluated by clustering and the knowledge-based filter. While Rosetta considers the 

energy of the receptor while sampling ligand binding modes, noise generated by the 

multiple loop conformations makes it difficult to identify low energy binding modes using 

the total Rosetta energy for the receptor-ligand complex. As a result, we choose to make 

the assumption that all structures from the comparative model ensemble have equal 

energy and accuracy when docking the ligands. Thus the local minimum interaction 

energy conformation (LMIEC) with the lowest energy that we sample needs to equate the 

energy of the experimental ligand binding mode in order to be useful for its identification. 

To test the extent to which this occurs, the bioactive ligand conformation was re-docked 

into the experimental structure it came from with no relaxation of the complex after docking 

(Figure 53). In 13 out of 14 cases we find that the lowest energy LMIEC was within 2.0 Å 

of the experimental ligand binding mode and that other LMIECs were significantly 

separated from the lowest energy LMIEC by 4.6 ± 3.0 Rosetta Energy Units (REU). The 

one case where the lowest energy LMIEC deviated from the experimental ligand binding 

mode is IT1t in CXCR4, which has exceptionally few interactions to the protein, 7 water 

molecules within 4 Å, and contacts a residue in the N-terminal region, which is not 

represented in our models.  

When repeating the protocol with the addition of flexibility within the receptor 

through a minimization step, the lowest energy LMIEC deviated from the experimental 
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ligand binding mode in 6 out of 14 cases and with an insignificant energy gap of 0.3 ± 2.1 

REU, showing that lowest energy LMIEC is not suitable for identification of the 

experimental ligand binding mode in flexible models. However, while the ligand binding 

mode within a RMSD of 2.0 Å to the experimental structure could not be identified 

consistently by interaction energy in this highly biased analysis, it was possible to sample 

the correct binding mode in all 14 cases (Table 6).  



 

Table 6 
Sampling efficiency for ligand docking results. 
Reported is the negative log of the sampling efficiency of ligand binding modes within 2.0 Å RMSD of the bioactive ligand conformation 
within the experimental structure as measured over the ligand heavy-atoms. 

Protein 
name 

Bioactive ligand 
docked to 

experimental 
structure, no 
minimization, 

n=10001 

Bioactive ligand 
docked to 

experimental 
structure, 

minimized, 
n=10001 

Bioactive ligand 
docked to top 
models from 

knowledge-based 
filter, n=20001 

Bioactive ligand 
docked to top 
models from 
clustering by 

RMSD, n=60001 

Ligand conformers 
docked to top 
models from 

knowledge-based 
filter, n=100002 

Ligand conformers 
docked to top 
models from 
clustering by 

RMSD, n=60002 

bRh 0.05 (5∙104) 0.04 (5∙104) 1.94 (7∙102) 2.40 (2∙102) 2.66 (5∙102) 3.52 (70) 
B1Ar 0.03 (5∙104) 0.02 (5∙104) 2.05 (5∙102) 2.11 (4∙102) 2.18 (103) 2.07 (103) 
B2Ar 0.03 (4∙104) 0.03 (4∙104) 2.19 (3∙102) 2.10 (3∙102) 2.27 (103) 2.40 (8∙102) 
A2Ar 0.08 (9∙103) 0.81 (2∙103) 2.85 (20) 2.92 (10) 3.22 (102) 3.70 (30) 
CXCR4 0.54 (104) 0.96 (5∙103) 2.68 (102) 2.62 (102) 4.00 (3∙102) ND*# 
D3R 0.04 (4∙104) 0.08 (3∙104) 2.22 (3∙102) 2.40 (2∙102) 2.59 (7∙102) 2.70 (6∙102) 
H1R 0.01 (3∙104) 0.03 (3∙104) 2.07 (3∙102) 1.85 (5∙102) 2.17 (7∙102) 2.15 (8∙102) 
S1P1R 0.05 (7∙104) 0.07 (7∙104) 3.30 (40) 2.40 (3∙102) 4.00 (4∙102) 3.30 (2∙103) 
M2R 0.02 (4∙104) 0.02 (4∙104) 1.84 (6∙102) 2.38 (2∙102) 2.57 (7∙102) 2.74 (5∙102) 
M3R 0.03 (3∙104) 0.03 (3∙104) 1.94 (4∙102) 2.26 (2∙102) 2.44 (8∙102) 2.74 (4∙102) 
MOR 0.14 (2∙104) 0.35 (104) 2.02 (3∙102) 2.27 (2∙102) 2.43 (3∙103) 3.40 (3∙102) 
KOR 0.04 (2∙105) 0.03 (2∙105) 2.07 (2∙103) 2.55 (7∙102) 3.10 (2∙103) 2.92 (3∙103) 
NOP 0.11 (5∙104) 0.11 (5∙104) 2.24 (4∙102) 2.15 (5∙102) 3.52 (103) 3.70 (7∙102) 
DOR 0.08 (2∙104) 0.07 (2∙104) 1.51 (8∙102) 1.77 (5∙102) 1.57 (103) 1.82 (6∙102) 

* denotes where sampling efficiency of Rosetta is worse than the worst-case uniform sampling scenario. 
# ND denotes not defined. No binding modes within 2.0 Å were sampled for this case.  
1 fold improvement over USE2.0 of bioactive ligand 
2 fold improvement over USE2.0 of ligand conformers 
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Sampling of native-like ligand binding modes is on average 103 fold increased over 
random sampling 
 
 Having generated receptor-ligand complexes through docking, we asked how 

frequently the experimental ligand binding mode was sampled within an RMSD of 2.0 Å 

and compared this to the sampling efficiency that can be achieved using uniform sampling 

in a 5.0 Å docking sphere with no protein (USE2.0). In the receptor ensemble that was 

selected based on the knowledge-based filter, we found that the experimental ligand 

binding mode was sampled in all cases with an average of 103 fold increase over USE2.0 

(Figure 15 and Table 6). The correct binding mode for S1P1R and CXCR4 was sampled 

correctly least often with only one correct binding mode out of approximately 104 

generated models. The reason for the difficulty of sampling the correct S1P1R ligand 

binding mode is most likely related to its flexibility and its contacts to the N-terminus, which 

is lacking in our models. The low number of ligand-protein contacts in the model seems to 

be the main reason for the poor sampling efficiency of IT1t in CXCR4, which as discussed 

above, was not in an interaction energy minimum when its bioactive conformation was 

docked into a backbone static receptor. Even so, sampling the experimental ligand binding 

mode within 2.0 Å RMSD was increased 300 fold over USE2.0 for both S1P1R and 

CXCR4, demonstrating preference of biologically relevant ligand-protein interactions 

during the docking procedure. 

On the other end of the spectrum of sampling efficiency is DOR, which sampled 

the correct binding mode in 266 out of approximately 10,000 cases – 103 times better than 

USE2.0. The ligand in DOR, Naltrindole, has only 2 degrees of freedom, with all 

conformers below 1.0 Å of the bioactive ligand conformation (Table 4), and binds to the 

receptor mainly through hydrophobic contacts and one salt bridge. For all other cases, 

docking multiple ligand conformations into the comparative models sampled binding 

modes within 2.0 Å of the experimental binding mode less than 1% of the time (Figure 15).  
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Figure 15 
Sampling efficiency for docking into comparative models. 
For each receptor, the fraction of binding modes sampled within 2.0 Å of the experimental binding 
mode is represented for docking the bioactive ligand and ligand conformers into the top models 
chosen by the knowledge-based filter and clustering by RMSD. The average sampling efficiency 
for each method is represented by the black solid line. 

 

 

Sampling of native-like ligand binding modes improve within the knowledge-based filtered 
comparative model ensemble 
 
 To assess the effect of the knowledge-based filter we compared the sampling 

efficiency in models selected with the knowledge-based filter receptor ensemble with 
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those chosen by traditional clustering methods and found that sampling efficiency is 

improved in 10 out of the 14 cases (Table 5 and Figure 15). Additionally, as an attempt to 

identify which parameters of the receptor models yielded native-like ligand binding modes, 

we examined the importance of the pocket residue RMSD in Figure 16. Accuracy between 

the C-alpha atoms of the pocket residues does not guarantee accurate ligand placement, 

as side chain placement varies greatly and creates many non-native binding pockets. 

Also, given the flexibility of the ligand conformations, it is expected that the docking 

algorithm detects alternate binding modes within a particular binding pocket conformation. 

Despite this, we show that more accurate placement of the residues within the ligand 

binding pocket leads to more binding modes sampled within 2 Å of the experimental ligand 

binding mode using the knowledge-based filters and templates of high sequence identity 

(Figure 15, Figure 54). Importantly, while we show a correlation between pocket RMSD 

and ligand RMSD, the same effect cannot be shown when selecting receptor models using 

full receptor RMSD based clustering. This is likely due to the irrelevant noise that arises 

from non-pocket residues. Interaction energy enriches for experimental ligand binding 

modes. 

Despite the lack of robustness in the use of interaction energy to identify the correct 

binding modes in relaxed experimental structures, we expected that it might be useful for 

enrichment of correct binding modes in our docking ensembles by removing obvious non-

fit ligand-protein interactions. We found that an enrichment of approximately three fold can 

be achieved in most cases by taking the 10% best scored structures, as shown in Figure 

17. However, when taking the top 10% of structures for bRh, CXCR4 and M3, sampling 

efficiency dropped. There was no correlation between optimal cutoff value and the overall 

sampling efficiency or the size of the largest cluster (data not shown).  
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Figure 16 
Sampling density of ligand binding modes versus pocket residue RMSD. 
The number of binding modes within the given RMSD of the experimental ligand binding mode 
is given for each pocket residue RMSD. 

 

 

Figure 17 
Enriching sampling efficiency with energy cutoffs. 
The sampling efficiency for binding modes sampled within 2.0 Å of the experimental binding 
mode at each fraction of comparative models selected by Rosetta interaction energy is presented 
for each receptor. 
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Clustering aids in selecting native-like models 
 
 In spite of the low sampling efficiency of the experimental ligand binding modes, 

we hypothesized that clustering mediated through total energy optimization during docking 

might occur, and thus offer a method to identify native-like ligand binding modes. Notably, 

however, the Rosetta ligand docking algorithm does not in principle generate a Boltzmann 

distribution, but instead emphasizes sampling of rare binding modes, in hope of identifying 

a rare native-like global minimum interaction energy conformation (Lemmon & Meiler, 

2012). This might blur any tendencies for clustering around an experimental ligand binding 

mode. Clustering was performed on the heavy-atom ligand RMSD with a cutoff of 2.0 Å 

and the lowest energy binding modes of the largest five clusters were examined further. 

Other cutoffs of 2.5, 3.0 and 3.5 Å, were also considered, but did not provide any 

improvement of clustering performance. The percentage of models in the largest clusters 

was below 1% for most receptors (Figure 18). For the receptors in which convergence 

occurred, however, there was some correlation between cluster size and ligand RMSD 

(Figure 18A).  

 Within the largest clusters for each receptor, there was on average 12% coverage 

and 10% accuracy of the correct contacts between the ligand and receptor (Table 4 and 

Figure 18B). For CXCR4, KOR and NOP, alternate modes are preferred over the 

experimental binding mode. In examining cases where the experimental binding mode is 

not preferred, several problems are identified which keeps the ligand from binding in the 

correct mode. For CXCR4 and NOP, less than 30% of the ligand conformers came within 

2.0 Å of the bioactive ligand conformation, resulting in inaccurate docking results. For 

ligands binding high within the receptor binding sites such as A2Ar, incorrect loop 

placement in the models blocks the ligand from docking in the correct mode (Figure 19A). 

Incorrect loop placement can also induce hydrogen bonds favorable to the ligand which 

move it into an incorrect binding mode, as shown in KOR (Figure 19B). For many ligands, 



90 
 

Rosetta places the ligand in the correct position but is unable to discriminate the correct 

interactions and flips the ligand orientation as seen in H1R (Figure 19C), indicating 

possible inaccuracies within the force field and improper treatment of polar interactions. 

There were two cases, DOR and M2R, in which Rosetta was able to identify the correct 

binding mode within 2.0 Å in the top ranked clusters (Table 7), shown in Figure 19D and 

19E. Docking Naltrindole in DOR and 3-quinuclidinyl-benzilate in M2R was simplified by 

the limited number of rotatable bonds in the ligand and high sequence identities of the 

templates.  

 

Table 7 
Top ranked binding modes for ligands docked into G protein-coupled receptor 
comparative models. 

Protein 
name 

Cluster 
Ranka 

Ligand RMSD Coverage of correct 
contactsb 

Accuracy of correct 
contactsc 

bRh 5 3.4 0.11 0.10 

B1Ar 2 2.13 0.60 0.50 
B2Ar 2 3.48 0.11 0.10 
A2Ar 5 3.48 0.22 0.15 
CXCR4 3 6.23 0.04 0.04 
D3R 4 2.26 0.20 0.14 
H1R 5 4.81 0.10 0.10 
S1P1R 2 3.37 0.12 0.15 
M2R 4 1.86 0.40 0.30 
M3R 2 3.5 0.11 0.10 
MOR 1 2.7 0.18 0.11 
KOR 4 5.67 0.01 0.01 
NOP 1 6.72 0.02 0.01 
DOR 1 1.78 0.37 0.21 

a The lowest energy binding mode from the largest 5 clusters, determined by heavy-atom ligand 
RMSD with a cutoff of 2 Å, was used for evaluation. Given here is the cluster rank for the lowest 
ligand RMSD of the top 5 ranked models. 
b Coverage of correct contacts was calculated with SimiCon (Rueda et al., 2010) and is the 
number of correct contacts divided by the total number of ligand contacts made in the 
experimental structure. 
c Accuracy of correct contacts was calculated with SimiCon (Rueda et al., 2010) and is the 
number of correct contacts divided by the total number of ligand contacts made in the model. 

 



 

 

 

Figure 18 
Clustering captures binding modes with lower RMSD and increased contact coverage.  
Binding modes for each receptor were clustered by ligand heavy-atom RMSD with a cutoff of 2.0 Å. When compared to smaller cluster 
sizes, the large cluster sizes were more likely to capture A) lower average ligand RMSD to the experimental binding mode and B) a 
higher percentage of correct ligand contacts. Contact coverage was calculated using SimiCon (Rueda et al., 2010). 
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Figure 19 
Structural representations of ligand binding modes compared to experimental structures. 
Incorrect loop placement and incorrect ligand orientation often prevent Rosetta from converging 
on the experimental ligand binding mode. Ligand binding modes from the experimental 
structures are shown in gray and the top ranked model via clustering by ligand RMSD is shown 
in yellow for A) A2Ar, B) KOR and C) H1R. Cases where top ranked binding modes captured the 
experimental binding mode within 2.0 Å were D) DOR and E) M2R. 

 

 

Comparison with previous studies on ligand docking into GPCR comparative models 
 

Using Glide (Friesner et al., 2004) and Induced Fit Docking (Sherman, Day, 

Jacobson, Friesner, & Farid, 2006) to dock ligands within biased comparative models of 

GPCRs, Beuming and Sherman (Beuming & Sherman, 2012) ranked ligand binding 

modes within 2.5 Å of the experimental ligand binding mode in six out of the ten receptors 

they modeled. In these six cases, success was likely due to the structural similarity of the 

templates, which always came from receptors of the same sub-family: β-adrenergic 

receptors were used as templates for each other and for H1R and the muscarinic receptors 

were used as templates for each other. Alignments were manually refined to ensure 

correct alignment of loop regions and the disulfide bridge within ECL2. Only regions with 

missing density according to the alignment were rebuilt using PLOP (Goldfeld et al., 2012). 
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Additionally, the ligand from the template structure remained within the model during the 

comparative modeling process, which may have assisted in the preservation of the ligand 

binding pocket. While remaining relatively unbiased in sequence alignment and de novo 

loop rebuilding, Rosetta was able to sample binding modes within 2.5 Å of the 

experimental ligand binding mode in all cases. However, inaccuracies in the energy 

function and flexibility introduced within the pocket residues made it difficult to identify 

native-like binding modes as top ranked. As discussed above, Rosetta had success in 

ranking the correct binding mode only in the cases of M2R and DOR. 

 

Sampling efficiency is increased by one order of magnitude for every 10 known ligand-
protein contacts 
 
 Docking into comparative models guided by mutational data is a widespread and 

largely non-validated method in the literature. Typically, side-chain alterations that heavily 

affect ligand binding are interpreted as having direct contacts to the ligand. To assess how 

such information can be used as experimental constraints in our ligand-protein ensembles, 

we tested to which extent these constraints would allow us to detect the correct binding 

mode. Enrichment of the correct binding modes was determined through 10,000 iterations 

of randomly chosen contacts between 0 and total number of all 4.0 Å contacts between 

the ligand and receptor. When docking ligand conformers into comparative models, the 

sampling efficiency for native-like binding modes increased on average by one log scale 

for every 10 known contacts assumed between the binding mode and the receptor (Figure 

20). The greatest improvement was seen for receptors where sampling efficiency of the 

experimental binding mode was already above 0.1%, particularly for DOR, NOP and B1Ar. 

Little or no improvement in sampling efficiency was observed for those receptor 

ensembles already sampling less than 0.1% of the experimental binding mode, including 

A2Ar, B2Ar, S1P1R and CXCR4. Experimental data with higher information density, such 
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as the ionic interactions used for blinded prediction of the binding mode of Eticlopride in 

the dopamine D3 receptor, can be expected to provide a significantly higher improvement 

in sampling efficiency – in our ensemble, the sampling efficiency was improved by 7 fold 

by requiring a distance of less than 3.0 Å between the positively charged hydrogen atom 

on the tertiary amine and the oxygen atoms in the carboxyl acid group of the aspartic acid. 

 

 

Figure 20 
Enriching binding modes with known receptor-ligand contacts increase sampling 
efficiency of native-like binding modes. 
For binding modes generated for each receptor, a random number of known contacts from 0 to 
the greatest possible number of contacts were chosen for 50,000 iterations and the fraction of 
binding modes sampled within 2.0 Å of the experimental binding mode is given. 

 

 

Concluding Remarks 
 

This study provides an analysis of the sampling performance that can be expected 

when docking ligands into comparative models of GPCRs. Previous studies of ligand 
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docking into GPCR comparative models have demonstrated that the problem is highly 

challenging for all but the simplest of cases that require the least sampling of receptor 

space (Beuming & Sherman, 2012, Kufareva et al., 2011, Michino et al., 2009). This is in 

agreement with recent docking studies for flexible ligand docking into multiple static 

structures (Barril & Morley, 2005, Bottegoni, Kufareva, Totrov, & Abagyan, 2008, Rueda, 

Bottegoni, & Abagyan, 2009), which consistently report that while the performance in 

docking and screening accuracy of a ‘small’ conformational ensemble is superior to that 

of a single conformer, that performance starts to rapidly decline when the size of the 

conformational ensemble begins to grow. The study presented here sought to quantify the 

challenges of docking ensembles of ligand conformers into comparative models through 

deep and relatively unbiased sampling using full receptor and ligand flexibility.  

Comparative models of 14 unique GPCRs were constructed using the other 13 

experimental structures as templates. Threading was based on the unbiased alignment 

between the target and template sequences and loops were constructed de novo with a 

fragment-based loop closure algorithm in Rosetta. When compared to corresponding 

experimental structures, the most accurate comparative models demonstrated a 

correlation to Rosetta energy. Top ranked structures with templates within 50% sequence 

identity were modeled with an average RMSD of 2.2 Å in the transmembrane region, with 

the best models coming within 1.2 Å RMSD. Extracellular loops with lengths ranging 

between 5 and 7 residues were modeled with an average RMSD of 2.0 Å, while ECL2 was 

modeled with an average RMSD of 5.3 Å. The most difficult cases to model were those in 

which helical regions were unable to align to suitable templates and those cases in which 

N-terminal residues necessary for ECL2 packing were missing. Despite these challenges, 

Rosetta was still able to rank more accurate loop conformations than other leading 

methods. 
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Using the ligands found in the crystallized GPCR structures, docking was 

performed in the top ranked comparative models. Docking ensembles of ligand 

conformers into comparative models sampled the correct ligand binding mode for each of 

the 14 receptors, but often less than 1% of the time. While the lack of energy gap makes 

discrimination of the correct binding modes difficult, certain techniques for filtering the 

models and binding modes demonstrated some success in this study. Using templates 

with a sequence identity above 50% provides a higher chance for correctly modeling of 

the ligand binding pocket as also observed in previous studies (Beuming & Sherman, 

2012). In cases where such templates do not exist, using a knowledge-based filter to 

identify models for which the binding pocket is within the variability that is represented in 

the experimental structures is beneficial for docking, significantly increasing sampling 

efficiency in 10 of the 14 cases. Inaccuracies in the minimized structures strongly affected 

the accuracy in the loop regions, which in turn affected the resulting ligand binding modes. 

Therefore, it may be best to limit the flexibility introduced by sampling when using a highly 

homologous template, such as the case for B1Ar and B2Ar.  

As demonstrated in this study, clustering can provide improvement over energy for 

identifying correct binding modes, but only if clusters contain at least 1% or more of the 

total binding modes. Selection of the correct binding mode from an ensemble of models 

might be further improved using information from structure activity relationship of active 

ligands, as proposed by Katritch et al., to select the best performing models from an 

ensemble (Katritch, Rueda, & Abagyan, 2012). However, this requires knowledge about 

active ligands which is typically limited for novel protein or receptor targets and the 

approach is based on the assumption that different ligands share a common binding 

mode.  

In addition, many papers are published under the premise that experimental 

information such as mutational data can aid in finding the correct ligand binding mode 
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within a large ensemble of models (Gelis, Wolf, Hatt, Neuhaus, & Gerwert, 2012, Hoyer 

et al., 2013, Jacobson, Jayasekara, & Costanzi, 2012, Parry, Chen, Andrews, Lears, & 

Rogers, 2012, C.-D. Wang, Buck, & Fraser, 1991). Considering the challenges faced in 

this study, application of mutational data as experimental constraints seems to be an 

appealing strategy. Sampling efficiency for binding modes within 2.0 Å of the experimental 

ligand binding mode increased on average by one log scale for every 10 known contacts 

between the binding mode and the receptor. However, the expected benefit should be 

evaluated carefully on one or more experimental ligand-receptor complexes to access the 

true value of such constraints – in particular since indirect effects are known to occur and 

could blur the identification and the selection of the “correct” binding modes. 

Through the use of unbiased sequence alignments and sampling algorithms using 

the Rosetta software suite, the most challenging scenario for GPCR comparative modeling 

and ligand docking was explored. As with other studies on comparative modeling and 

docking, however, there were still minor biases introduced in both aspects of this work 

which may limit the scope of this approach. Bias in the comparative modeling experiments 

included the addition of constraints on the disulfide connectivity of the loops based on the 

experimental structures, which influenced the conformations of ECL2. Bias in the ligand 

docking experiments included the ligand stereochemistry and protonation state of CXCR4, 

restricting the conformational search space by centering a sphere of 5Å radius at the 

center of the experimentally determined binding mode. Also, bias to the experimentally 

determined structures could have been eliminated with a leave-one-out cross-validation 

of the knowledge based filter. Despite these biases, the findings of this study identified 

specific avenues for improvement to approach this challenging problem. Knowledge-

based and energy-based filters are able to improve sampling performance over random 

by 103 fold. Additionally, sampling performance is increased by one order of magnitude 

for every 10 residues known to contact the ligand. Contacts with high information density, 
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specifically the salt bridge between the oxygen atoms of an aspartic acid in DOR and the 

positively charged hydrogen atom on the tertiary amine of its ligand, improved sampling 

efficiency 7 fold. As the number of GPCR experimental structures being determined 

increases, so does the opportunity to find suitable templates for comparative modeling. 

With the guidelines suggested by the results from this study, relevant ligand docking 

studies may be able to generate structural hypotheses to guide experimental designs. 
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CHAPTER IV 

 

PROBING THE METABOTROPIC GLUTAMATE RECEPTOR 5 (MGLU5) 
POSITIVE ALLOSTERIC MODULATOR (PAM) BINDING POCKET: 

DISCOVERY OF POINT MUTATIONS THAT ENGENDER A “MOLECULAR 
SWITCH” IN PAM PHARMACOLOGY 

 

 
This work is based on publication (Gregory et al., 2013). 

 

Summary 
 

Positive allosteric modulation of metabotropic glutamate receptor subtype 5 

(mGlu5) is a promising novel approach for the treatment of schizophrenia and cognitive 

disorders. Allosteric binding sites are topographically distinct from the endogenous ligand-

(orthosteric) binding site, allowing for co-occupation of a single receptor with the 

endogenous ligand and an allosteric modulator. Negative allosteric modulators (NAMs) 

inhibit, while positive allosteric modulators (PAMs) enhance, the affinity and/or efficacy of 

the orthosteric agonist. The molecular determinants that govern mGlu5 modulator affinity 

versus cooperativity are not well understood. Focusing on the modulators based on the 

acetylene scaffold, we sought to determine the molecular interactions that contribute to 

PAM versus NAM pharmacology. Generation of a comparative model of the 

transmembrane-spanning region of mGlu5 served as a tool to predict and interpret the 

impact of mutations in this region. Application of an operational model of allosterism 

allowed for determination of PAM and NAM affinity estimates at receptor constructs that 

possessed no detectable radioligand binding as well as delineation of effects on affinity 

versus cooperativity. Novel mutations within the transmembrane domain regions were 

identified that had differential effects on acetylene PAMs versus 2-methyl-6-
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(phenylethynyl)-pyridine (MPEP), a prototypical NAM. Three conserved amino acids 

(Y658, T780, S808) and two non-conserved residues (P654, A809) were identified as key 

determinants of PAM activity. Interestingly, we identified two point mutations in TM6 and 

7 that, when mutated, engender a mode switch in the pharmacology of certain PAMs. 

 

Introduction 
 

Metabotropic glutamate receptors (mGlus) are seven-transmembrane spanning (G 

protein-coupled) receptors (7TMRs) that include eight subtypes, mGlu1- mGlu8, for the 

major excitatory neurotransmitter, glutamate (Niswender & Conn, 2010). Historically, it 

has been difficult to develop highly mGlu subtype selective ligands due to the high 

sequence conservation of the endogenous ligand (i.e., glutamate) orthosteric binding site. 

This led to the search for compounds that interact at “allosteric” sites, topographically 

distinct from the orthosteric site. Referred to as allosteric modulators, the presence of such 

compounds can affect the affinity and/or efficacy of an orthosteric ligand, a property 

referred to as cooperativity. Modulators that inhibit orthosteric ligand binding and/or activity 

are negative allosteric modulators (NAMs) while those that enhance are positive allosteric 

modulators (PAMs); a third category, silent (or neutral) allosteric modulators (SAMs), 

includes compounds that bind but do not modulate receptor activity. 

Efforts to develop mGlu allosteric modulators have been especially successful for 

mGlu5; a broad range of allosteric modulators as well as allosteric radioligands has been 

developed including pure PAMs, PAMs with agonist activity, weak and full NAMs and 

SAMs (Ametamey et al., 2007, Y. Chen et al., 2007, 2008, Cosford, Roppe, et al., 2003, 

Gasparini et al., 1999, Honer, Stoffel, Kessler, Schubiger, & Ametamey, 2007, Kinney et 

al., 2005, F. Liu et al., 2008, Noetzel et al., 2012, O’Brien et al., 2004, Rodriguez et al., 

2005, 2009, 2010, Treyer et al., 2007, Varney et al., 1999). mGlu5 PAMs have potential 

utility for treatment of cognitive disorders and schizophrenia, whereas NAMs are being 
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pursued for treatment of Fragile X Syndrome, depression, anxiety and L-DOPA-induced 

dyskinesia (Gregory et al., 2011).  

In addition to improvements in receptor selectivity, allosteric modulators offer a 

number of theoretical advantages over their competitive counterparts (Melancon et al., 

2012). Modulators that possess no intrinsic efficacy have potential for spatial and temporal 

modulation of receptor activity. This is an especially important consideration for potential 

CNS therapeutics, where ‘fine-tuning’ neurotransmission is likely to yield a better 

therapeutic outcome than the sustained blockade or activation by an orthosteric ligand. 

Furthermore, the cooperativity between the two sites is saturable; thus, allosteric 

modulators have a built-in “ceiling level” to their effect, and may therefore have a larger 

therapeutic index in the case of overdose.  

Structure-activity relationships (SAR) for mGlu modulators, particularly with 

respect to targeting mGlu5, are also notoriously difficult; SAR is often ‘steep’ or ‘flat’ with 

minimal changes to the structure resulting in a complete loss of activity (Zhao et al., 2007). 

Furthermore, numerous mGlu modulator chemotypes display ‘molecular switches’ 

whereby a PAM or SAM arises from a NAM scaffold or vice versa (Wood, Hopkins, 

Brogan, Conn, & Lindsley, 2011); originally observed during discovery of the first mGlu5 

PAM, difluorobenzaldazine (DFB) (O’Brien et al., 2004).  This phenomenon continues to 

be a challenge for medicinal chemists, with PAMs being derived from NAM scaffolds 

(Rodriguez et al., 2010, Sharma et al., 2009, Y. Zhou et al., 2010), SAMs from either NAM 

or PAM chemotypes (Hammond et al., 2010, Rodriguez et al., 2005), and NAMs from 

PAMs (Lamb et al., 2011). Furthermore, molecular switches have also been described 

with respect to unanticipated alterations in receptor selectivity (Sheffler et al., 2012). Steep 

or flat SAR and “molecular switches” may be attributed to changes in the affinity and/or 

cooperativity of an allosteric modulator. Therefore, we were interested in probing the 

determinants of allosteric modulator affinity and cooperativity, focusing on the common 
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allosteric site of group I mGlu’s as previously identified for mGlu5 selective modulators 

such as 2-methyl-6-(phenylethynyl)-pyridine (MPEP) (Malherbe, Kratochwil, Zenner, et 

al., 2003, Malherbe et al., 2006, Mühlemann et al., 2006, Pagano et al., 2000). Two 

classes of acetylene PAMs, picolinamides and nicotinamides, that originally evolved from 

a NAM high-throughput screen (HTS) lead (Rodriguez et al., 2010) were selected for in-

depth characterization in comparison with MPEP. We identified seven novel residues that, 

when mutated, significantly decrease MPEP affinity. Moreover, a single point mutation 

(W784A) reduced the cooperativity of MPEP, such that it no longer fully blocked the 

response to glutamate. PAMs were found to interact with the common allosteric site 

utilized by MPEP, although these compounds showed differential sensitivities to certain 

mutations. Two different point mutations were identified that conferred a “molecular 

switch” in the pharmacology of PAMs: T780A converted N-tert-butyl-6-[2-(3-

fluorophenyl)ethynyl]pyridine-3-carboxamide (VU0415051) to a weak NAM while S808A 

converted ((5-((3-fluorophenyl)ethynyl)pyridin-2-yl)(3-hydroxyazetidin-1-yl)methanone 

(VU0405398) from a weak PAM to a full NAM and N-(tert-butyl)-5-((3-

fluorophenyl)ethynyl)picolinamide (VU0405386) from a PAM to a neutral modulator. Our 

findings build on the existing understanding of the location of the common allosteric site. 

Quantification of the effect of mutations on modulator pharmacology has allowed 

delineation of determinants for cooperativity versus affinity. 

 

Materials 
 

Materials and Methods 
 

Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS) and 

antibiotics were purchased from Invitrogen (Carlsbad, CA). [3H] methoxyPEPy (76.3 

Ci/mmol) was custom synthesized by PerkinElmer Life and Analytical Sciences (Waltham, 
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MA). VU0360172 (N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride), 

VU0405398 ((5-((3-fluorophenyl)ethynyl)pyridin-2-yl)(3-hydroxyazetidin-1-yl)methanone), 

VU0405386 (N-(tert-butyl)-5-((3-fluorophenyl)ethynyl)picolinamide) and VU0415051 (N-

tert-butyl-6-[2-(3-fluorophenyl)ethynyl]pyridine-3-carboxamide) were all synthesized in-

house using previously reported methodologies (Gregory et al., 2012, Rodriguez et al., 

2010). VU0360173 ((6-((3-fluorophenyl)ethynyl)pyridin-3-yl)(3-hydroxyazetidin-1-

yl)methanone) and VU0403602 (N-cyclobutyl-5-((3-

fluorophenyl)ethynyl)ethynyl)picolinamide hydrochloride) were synthesized in-house 

utilizing the methods described in Appendix. Unless otherwise stated, all other reagents 

were purchased from Sigma-Aldrich (St. Louis, MO) and were of an analytical grade. 

 

Cell culture and mutagenesis 
 

Mutations were introduced into the wild-type rat mGlu5 in pCI:Neo using site-

directed mutagenesis (Quikchange II, Agilent, Santa Clara, CA) and verified by 

sequencing. Wild-type and mutant rat mGlu5 receptor constructs were transfected into 

HEK293A cells, using Fugene6TM (Promega, Madison, WI) as the transfection reagent. 

Polyclonal stable cell lines were derived for rat mGlu5 mutant constructs by maintaining 

the cells at sub-confluence for a minimum of four passages in the presence of 1 mg/ml 

G418 (Mediatech, Manassas, VA). Stably transfected cell lines were subsequently 

maintained in complete DMEM supplemented with 10% fetal bovine serum (FBS), 2 mM 

L-glutamine, 20 mM HEPES, 0.1 mM Non-Essential Amino Acids, 1 mM sodium pyruvate, 

antibiotic-antimycotic and 500 μg/ml G418 at 37C in a humidified incubator containing 

5% CO2, 95% O2.  
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Intracellular Ca2+ mobilization  
 

The day prior to assay, HEK293A-rat mGlu5 cells were seeded at 50,000 cells/well 

in poly-D-lysine coated black-walled, clear bottom 96 well plates in assay medium (DMEM 

supplemented with 10% dialyzed fetal bovine serum, 20 mM HEPES and 1 mM sodium 

pyruvate). On the day of assay, the cell permeant Ca2+ indicator dye Fluo-4 (Invitrogen, 

Carlsbad, CA) was used to assay receptor-mediated Ca2+ mobilization as described 

previously (Hammond et al., 2010) using a Flexstation II (Molecular Devices, Sunnyvale, 

CA). A 5-point smoothing function was applied to the raw fluorescent Ca2+ traces and 

basal fluorescence of individual wells determined during the first 20 sec. The peak 

increase in fluorescence over basal was determined prior to normalization to the maximal 

peak response elicited by glutamate. 

 

Radioligand binding 
 

Radioligand binding assays were performed on HEK293A cell membranes as 

described previously (Gregory et al., 2012). Briefly, for saturation binding experiments, 

membranes (20-50 µg/well) were incubated with a range of [3H]-3-methoxy-5-(pyridin-2-

ylethynyl)pyridine ([3H]methoxyPEPy) concentrations (0.5 nM-60 nM) for 1 hr at room 

temperature with shaking in Binding Buffer (50 mM Tris-HCl, 0.9% NaCl, pH7.4). 10 µM 

MPEP was used to determine non-specific binding. For inhibition binding experiments, 

membranes were incubated with ~2 nM [3H] methoxyPEPy and a range of concentrations 

of test ligand (100 pM-100 µM) for 1 hr at room temperature with shaking in Ca2+ assay 

buffer with 1% DMSO final. Assays were terminated by rapid filtration through GF/B 

Unifilter plates (PerkinElmer Life and Analytical Sciences, Boston, MA) using a Brandel 

96-well plate Harvester (Brandel Inc., Gaithersburg, MD), and three washes with ice-cold 

Binding Buffer, separating bound from free radioligand. Plates were allowed to dry 
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overnight and radioactivity counted using a TopCount Scintillation Counter (PerkinElmer 

Life and Analytical Sciences, Boston, MA). 

 

Generation of an mGlu5 comparative model  
 

A comparative model of mGlu5 was constructed using the protein structure 

prediction software package, Rosetta version 3.4 (Leaver-Fay et al., 2011). Based on its 

high similarity (e-value of 3e-15 with a sequence coverage of 90%) to mGlu5 according to 

a search using NCBI BLASTP on sequences from the Protein Data Bank (PDB), the X-

ray crystal structure human β2-adrenergic receptor (PDB ID: 2RH1) (Cherezov et al., 

2007) was chosen as a template. Both β2-adrenergic receptor and mGlu5 also share a 

conserved disulfide bond between a cysteine at the top of transmembrane helix three and 

a cysteine in extracellular loop two. Members of the Family C 7TMRs, namely the human 

mGlus and Calcium-sensing receptor (CaSR) sequences, were first aligned with 

CLUSTALW. Alignment of TM regions between Family C 7TMRs and Family A crystal 

structure templates were directly adopted from (Malherbe et al., 2006), with the exception 

of TM’s 2, 4 and 7, which were based on the alignment of CaSR with Family A 7TMRs 

from (Miedlich, Gama, Seuwen, Wolf, & Breitwieser, 2004) and is shown in Figure 55. In 

the construction of the comparative models, the backbone coordinates of the β2-

adrenergic receptor were retained in the comparative model of mGlu5 while the loop 

coordinates were built in Rosetta using Monte Carlo Metropolis (MCM) fragment 

replacement combined with cyclic coordinate descent loop closure. Rosetta ensures that 

ϕ-ψ angles of backbone segments from homologous sequence fragments from the PDB 

are introduced into the loop regions. After the fragment substitution, small movements in 

the ϕ-ψ angles are performed to close breaks in the protein chain. The resulting full 

sequence models were subjected to eight iterative cycles of side chain repacking and 
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gradient minimization of ϕ, ψ and χ angles in Rosetta Membrane (Yarov-Yarovoy et al., 

2005). 

Docking of allosteric modulators 
 

The negative allosteric modulator MPEP and six acetylene PAMs (VU0360173, 

VU0405398, VU0360172, VU0403602, VU0415051 and VU0405386) were 

computationally docked into the comparative model of mGlu5 using Rosetta Ligand (Davis 

& Baker, 2009, Lemmon & Meiler, 2012, Meiler & Baker, 2006). Each modulator was 

allowed to sample docking poses in a 5 Å radius centered at the putative binding site for 

MPEP, determined by the residues known to affect modulator affinity and/or function. For 

MPEP, separate docking experiments were carried out, centered on two residues shown 

to greatly influence modulator affinity when mutated: P654 and S808. For the six acetylene 

PAMs, docking experiments were all centered on P654. Once a binding mode had been 

determined by the docking procedure, 10 low energy conformations of the ligand created 

by MOE (Molecular Operating Environment, Chemical Computing Group, Ontario, 

Canada) were tested within the site. Side-chain rotamers around the ligand were 

optimized simultaneously in a Monte-Carlo minimization algorithm. The energy function 

used during the docking procedure contains terms for van der Waals attractive and 

repulsive forces, hydrogen bonding, electrostatic interactions between pairs of amino 

acids, solvation, and a statistical term derived from the probability of observing a side-

chain conformation from the PDB. For each modulator, over 2,000 docked complexes 

were generated and clustered for structural similarity using bcl::Cluster (Alexander et al., 

2011). The lowest energy binding mode from the five largest clusters for each modulator 

were used for further analysis. A detailed protocol capture for protein modeling and ligand 

docking, including links to input and output files, is provided in the Appendix. 

 

 



107 
 

Data Analysis 
 

All computerized nonlinear regression was performed using Prism 5.01 (GraphPad 

Software, San Diego, CA). Inhibition [3H]methoxyPEPy binding data sets were fitted to a 

one-site inhibition binding model and estimates of inhibitor dissociation constants (KI) were 

derived using the Cheng-Prusoff equation for competitive ligands (Cheng, Prusoff, & 

others, 1973) and the following version of the allosteric ternary complex model for ligands 

that did not fully displace radioligand (Lazareno & Birdsall, 1995): 

𝑌

𝑌𝑚𝑎𝑥
=

[𝐷]

[𝐷] + 
𝐾𝐷 (1 +

[𝐵]
𝐾𝐵
)

(1 +
𝛼[𝐵]
𝐾𝐵

)

 

where Y/Ymax is the fractional specific binding, D is the radioligand concentration, B is the 

molar concentration of the allosteric modulator, KD is the radioligand equilibrium 

dissociation constant, and KB is the allosteric modulator equilibrium dissociation constant. 

α denotes the cooperativity factor, where values of α > 1 describe positive cooperativity, 

values of α < 1 (but greater the 0) denote negative cooperativity and α = 1 denotes neutral 

cooperativity. 

Shifts of glutamate concentration-response curves by allosteric modulators were 

globally fitted to an operational model of allosterism (K. Leach, Sexton, & Christopoulos, 

2007): 

𝐸𝑓𝑓𝑒𝑐𝑡 =
𝐸𝑚(𝜏𝐴𝐴(𝐾𝐵 + 𝛼𝛽𝐵) + 𝜏𝐵𝐵𝐾𝐴)

𝑛

(𝐴𝐾𝐵 + 𝐾𝐴𝐾𝐵 + 𝐾𝐴𝐵 +  𝛼𝐴𝐵)
𝑛 + (𝜏𝐴𝐴(𝐾𝐵 + 𝛼𝛽𝐵) + 𝜏𝐵𝐵𝐾𝐴)

𝑛
 

where A is the molar concentration of orthosteric agonist glutamate and B is the molar 

concentration of the allosteric modulator. KA is the equilibrium dissociation constant of the 

orthosteric agonist, glutamate, and KB is the allosteric modulator equilibrium dissociation 

constant. 



108 
 

Affinity modulation is governed by the cooperativity factor α, and efficacy 

modulation is governed by β. The parameters A and B relate to the ability of the orthosteric 

and allosteric ligands, respectively, to engender receptor activation. Em and n denote the 

maximal possible system response and the transducer function that links occupancy to 

response, respectively. 

Allosteric modulator and agonist concentration-response curves were fitted to a 

four parameter logistic equation in order to determine potency estimates: 

𝑦 =
𝑏𝑜𝑡𝑡𝑜𝑚 + (𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚)

(1 + 10(𝑙𝑜𝑔𝐸𝐶50−𝐴)𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒
 

where bottom and top are the lower and upper plateaus, respectively, of the concentration-

response curve, HillSlope is the Hill coefficient that describes the steepness of the curve, 

and EC50 is the molar concentration of modulator required to generate a response halfway 

between the top and bottom.  

All affinity, cooperativity and potency parameters were estimated as logarithms 

and are expressed as the mean  S.E.M. (Christopoulos, 1998). Statistical analyses were 

performed where appropriate as indicated using one-way ANOVA with Dunnett’s post test 

when comparing to control, or Tukey’s post-test when making multiple comparisons. 

 

Results 
 

Refining the alignment of mGlu5 to Family A 7TMRs and prediction of amino acids within 
the common allosteric “MPEP” site 
 

In contrast to previous models of mGlu5 (Malherbe, Kratochwil, Zenner, et al., 

2003, Malherbe et al., 2006, Pagano et al., 2000), the alignment of mGlu5 presented here 

is based on a previously reported CaSR alignment (Miedlich et al., 2004) where the PKxY 

motif in transmembrane domain 7 (TM7) of the human mGlus is aligned with the NPxxY 

motif in the Family A 7TMRs (Figure 55). This adjustment in the alignment shifts TM7 by 
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seven residues, predicting that S806, S808 and T810 face the MPEP binding pocket. 

Indicated on the alignment of the human mGlus with bovine rhodopsin and human β2-

adrenergic receptor (Figure 55) are point mutations included in the current study, which 

includes mutations previously reported to perturb NAM or PAM activity of mGlu5 

modulators (Y. Chen et al., 2008, Malherbe, Kratochwil, Zenner, et al., 2003, Malherbe et 

al., 2006, Molck et al., 2012, Mühlemann et al., 2006, 2006, Pagano et al., 2000) and 

mutations novel to this study (highlighted in grey). Based on the localization of these 

previously known residues, we elected to mutate additional residues predicted to be on 

the same inward-facing helical face of TMs 3, 5, 6 (I650A, G651F, V739M, P742S, N746A, 

G747V, T779A, I783A, V788A, Y791F, F792A). Conserved residues were substituted for 

Ala, whilst non-conserved residues were mutated to the corresponding amino acid in 

either group II or group III mGlus. In order to validate the alignment of TM7, seven residues 

were mutated that were predicted to line the inward-facing helical face of TM7: S806A, 

S808A, S808T, T810A, T810S, A812S, L813A, C815A, M816A. As a negative control, a 

point mutation previously shown to affect PAM activity (by CPPHA) at the second allosteric 

site on mGlu5, F585I, was also included (Y. Chen et al., 2008).  

 

Identification of eight novel point mutations that perturb MPEP inhibition of glu 
 

To assess the contribution of both novel and previously identified residues to the 

MPEP binding pocket, MPEP (Figure 21) was screened for its effect on the maximal 

response to glutamate in the Ca++ mobilization assay at a single concentration. For 

screening purposes 10 nM MPEP was selected as this concentration caused a significant 

decrease in glutamate Emax to ~45% at mGlu5-wt, such that increases or decreases in the 

% inhibition caused by MPEP could be detected (Figure 21A). All mutations were 

functional and expressed at levels ranging from 0.4-3.8 pmol/mg (Table 8, Table 22). 

Mutations that showed a lack of [3H]methoxyPEPy binding showed a similar range of 
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expression levels (between that of the low-expressing mGlu5-wt cell line and the higher-

expressing, polyclonal mGlu5-wt line) as confirmed by immunoblotting (Figure 52). Twelve 

point mutations, corresponding to nine different amino acids, significantly reduced 

inhibition of glu Emax by 10 nM MPEP (Figure 21B). From the original 33 point mutations 

screened, 24 were selected for further characterization, including the negative control 

F585I.  
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Figure 21 
Probing the common allosteric binding site on mGlu5 with negative allosteric modulator, 
MPEP. 
A) At the wild-type rat mGlu5 receptor, MPEP inhibits glutamate-mediated mobilization of 
intracellular Ca2+, depressing the maximal response. B) Single point mutations of mGlu5 were 
screened for their ability to impact inhibition of the maximal response to glutamate in the 
presence of 10nM MPEP. C) Comparison of MPEP affinity estimates at mutants with wild-type. 
Data represent the mean ± S.E.M of 3-6 experiments performed in duplicate. Error bars not 
shown lie within the dimensions of the symbol. 
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Table 8 
Equilibrium binding parameters for [3H] methoxyPEPy and MPEP at mGlu5 mutations.  
Data represent the mean ± s.e.m of a minimum of three independent determinations. 
 

 [3H]methoxyPEPy 
pKD 

a 
Bmax 

b
 

(pmol/mg) 
MPEP pKI

c 

R5-wt (low) 8.24 ± 0.09 0.6 ± 0.0*# 7.87 ± 0.04# 
R5-wt (poly) 8.23 ± 0.10 3.8 ± 0.8 7.77 ±0.03 
F585I 7.91 ± 0.19 1.8 ± 0.6 7.93 ± 0.09 
R647A 8.22 ± 0.08 1.6 ± 1.3 n.d. 
I650A 8.43 ± 0.11 1.0 ± 0.1* 8.34 ± 0.11* 
G651F No appreciable binding   
P654S No appreciable binding   
P654F No appreciable binding   
S657C 8.35 ± 0.28 0.8 ±0.3* 8.12 ±0.09 
Y658V No appreciable binding   
V739M 8.19 ± 0.02 1.6 ± 0.3 7.91 ± 0.07 
P742S 7.71 ± 0.29 0.4 ± 0.2* 7.67 ± 0.14 
L743V 7.92 ± 0.09 1.1 ± 0.2* 7.23 ± 0.10* 
N746A 7.72 ± 0.05 1.2 ± 0.4* 7.60 ± 0.08 
G747V 8.37 ± 0.07 1.9 ± 0.6 7.88 ± 0.06 
T779A 8.17 ± 0.13 0.8 ± 0.2*  
T780A No appreciable binding   
W784A No appreciable binding   
V788A 8.13 ± 0.08 1.0 ± 0.3* 7.71 ± 0.13 
F792A 8.11 ± 0.21 1.7 ± 0.6 7.90 ± 0.13 
S806A 7.71 ± 0.07 1.2 ± 0.1* 7.21 ± 0.07* 
S808A No appreciable binding   
S808T No appreciable binding   
A809V No appreciable binding   
A809G No appreciable binding   
T810A 7.86 ± 0.15 2.0 ± 0.4 7.28 ± 0.09* 
C815A 8.00 ± 0.19 0.8 ± 0.1* 7.57 ± 0.02 

* denotes significantly different to wild-type (polyclonal) value, p<0.05, one-way ANOVA, 
Dunnett’s post test. 
n.d. denotes not determined. 
# data previously reported (Gregory et al., 2012). 
a negative logarithm of the equilibrium dissociation constant of [3H] methoxyPEPy. 
b maximal number of binding sites. 
c negative logarithm of the equilibrium dissociation constant of MPEP. 

 

Delineation of impact of mutations on MPEP affinity versus cooperativity 
 

Progressive fold-shift analysis by MPEP of the glutamate concentration-response 

curve for Ca++ mobilization was performed using the operational model of allosterism (K. 

Leach et al., 2007). This model has previously been validated for estimating affinity and 

cooperativity of mGlu5 allosteric modulators (Gregory et al., 2012). As expected, given that 

mutations were introduced into the TMs, little or no change was observed in the potency 
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and efficacy (logτA) of glutamate across all point mutations compared to wild-type (Table 

22). Furthermore, the assumption that glutamate affinity was unaffected by point mutations 

in the TMs had no effect on the estimates of modulator pKB (Figure 57). The affinity (pKB) 

of MPEP was found to be significantly reduced compared to wild-type at 16 point mutations 

(Table 8, Figure 21C). MPEP affinity estimates were reduced 3-10 fold at: P742S, L743V, 

G747V, T779A, V788A and T810A; 10-30 fold at G651F, P654S, T780A and A809G; 30-

100 fold at Y658V, S808A, S808T and A809V. Greater than 1000-fold lower MPEP affinity 

was observed at P654F and W784A compared with wild-type. Binding and functional 

affinity estimates showed good agreement. No appreciable [3H]methoxyPEPy binding was 

observed at G651F, P654S, P654F, Y658V, T780A, W784A, S808A, S808T, A809V and 

A809G (Table 8), corresponding to mutations where MPEP affinity was estimated to be 

decreased 10 fold or greater compared to wild-type. MPEP completely blocked the 

maximal response to glutamate at all constructs (data not shown) with the exception of 

P654F and W784A (Figure 22A & B). At W784A (Figure 22B), inhibition of glutamate by 

MPEP approached a limit, where logβ = -0.27±0.03, indicating that MPEP negative 

cooperativity is weaker at W784A compared to wild-type.  

 

 
Figure 22 
At two point mutations, MPEP did not fully depress the maximal response to glutamate. 
MPEP inhibition of glutamate-mediated mobilization of intracellular Ca2+ at mGlu5-P654F (A) 
and W784A (B). In the presence of MPEP at concentrations up to 100 uM, glutamate retained 
some activity in both cell lines. Data represent the mean ± S.E.M of 3-5 experiments performed 
in duplicate. Error bars not shown lie within the dimensions of the symbol. 
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Modeling MPEP binding to mGlu5 comparative model 
 

MPEP was docked into the comparative model of mGlu5 to aid interpretation of 

these mutational data. Docking experiments were centered on two sites, represented by 

two residues that were demonstrated to reduce MPEP affinity when mutated, P654 and 

S808. Representative binding modes from each experiment demonstrate possible binding 

modes for MPEP interacting with mGlu5 (Figure 23A). The lowest energy MPEP binding 

modes from the largest clusters for docking to both sites are shown in Figure 23B and 

23C. Docking to P654 identified a common binding site within the top three clusters, 

representing 37% of all models; five out of seven point mutations that reduce MPEP affinity 

are predicted to line the pocket depicted by these poses. However, given the linearity of 

MPEP, the orientation of the ligand proved more difficult for Rosetta to differentiate; in two 

of the top three clusters the pyridine ring of MPEP points towards the extracellular space. 

Interestingly, despite mutations causing 30-100 fold reduction in affinity, S808 and A809 

were not predicted to interact with MPEP in the P654-based docking runs. The lowest 

energy MPEP binding modes of the largest five clusters (accounting for 28% of models) 

with docking centered on S808 demonstrated greater diversity (Figure 23B). In four out of 

these five binding modes, the nitrogen from the pyridine ring forms a hydrogen bond with 

S808.  

A similar pose for MPEP has recently been reported (Molck et al., 2012). This 

interaction may also account for the impact of substitutions to A809, potentially influencing 

the conformation of its neighboring residue S808. Given the location of S808 at the top of 

TM7 closer to extracellular loop regions, the greater diversity in binding modes is not 

unreasonable. We hypothesize that S808 and A809 are important for the initial recognition 

of the receptor by MPEP, ultimately facilitating binding deeper within the pocket created 

by TMs 3, 5, 6 and 7. Residues that when mutated significantly reduced MPEP affinity are 
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highlighted in Figure 23 and color-coded based on their relative impact on MPEP affinity. 

Notably, residues that have the greatest effect on MPEP affinity are found in close 

proximity to MPEP, whereas as those with less of an effect (3-10 fold reduction) are more 

remote. Hydrophobic interactions with MPEP are likely occurring with W784 and Y658. 

Given its placement in relation to MPEP, the P654F mutation may introduce steric clash 

into the MPEP binding site preventing MPEP binding and consequently reducing affinity. 

Ser substitution of this same amino acid did not reduce affinity to the extent of the Phe 

mutation, with MPEP negative cooperativity retained. Thus it is also possible that replacing 

Pro with Phe both influences the helix conformation (by removing Pro induced kink) and 

introduces a larger hydrophobic amino acid, thereby dramatically changing the geography 

of the MPEP binding pocket, perturbing MPEP affinity and potentially cooperativity.  

The effect of mutations to S806, S808 and T810 provide evidence in favor of the 

alignment of the PKxY motif in the mGlus with NPxxY motif in the Family A 7TMRs. As 

predicted by the model, the S808A mutation affects MPEP affinity, likely because its 

position facing the binding pocket provides an interaction with MPEP. S806 and T810 face 

away from the binding pocket and are not predicted to affect affinity, which is in agreement 

with the functional data (Figure 21C). This verification of the MPEP binding mode through 

point mutations encouraged the further analysis with positive allosteric modulators of 

mGlu5. 
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Figure 23 
The negative allosteric modulator MPEP docked into mGlu5 comparative model.  
MPEP was docked into the mGlu5 comparative model in two separate experiments, centered at 
P654 and S808. (A) The lowest energy conformation for MPEP from the largest cluster docked 
at P654 is shown in green and at S808 is shown in cyan. Highlighted are the residues that caused 
decreases in MPEP affinity when mutated, colored by graded effect compared to wild-type. (B) 
The lowest energy models from the largest three clusters for MPEP docked at P654. (C) The 
lowest energy models from the largest five clusters for MPEP docked at S808. Predicted 
hydrogen bonds between the nitrogen on the pyridine ring and S808 are depicted by dotted blue 
lines. 

 
 

Identification of point mutations that affect positive allosteric modulation of glu activity 
 

Three pairs of picolinamide and nicotinamide acetylene mGlu5-selective positive 

allosteric modulators were selected for investigation of the binding mode of these two 

chemical scaffolds in the common allosteric site of mGlu5 (Figure 24). These six PAMs 

span varying degrees of affinity at the wild-type receptor from low (VU0360173, 8 μM) to 

high (VU0403602, 6 nM; VU0405386, 10 nM) (Tables 2 & 3). Picolinamide PAMs show 
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higher affinity ~10 fold for the wild-type receptor than their nicotinamide counterparts 

(Tables 2 & 3). Furthermore, these PAMs show varying degrees of cooperativity, i.e. their 

ability to induce leftward shifts (fold-shifts) of the glutamate concentration-response curve 

(Figure 24; Table 11). Similar to the approach utilized for MPEP above, activity of mutant 

receptors was assessed at a single concentration of PAM. Based on the ability of these 

compounds to potentiate glutamate Ca++ mobilization at the wild-type receptor (Figure 24), 

PAM concentrations were selected that caused sub-maximal, but reproducible, fold-shifts 

in the concentration-response curve to glutamate. The fold-shift at a single concentration 

of PAM was compared with the fold-shift at wild-type (Figure 25). Point mutations that 

significantly increased or decreased potentiation were selected for further characterization 

using analysis of progressive fold-shift of the glutamate concentration-response curve to 

delineate their effects on PAM affinity versus cooperativity.  



 

Table 9 
Affinity estimates (pKI) for positive allosteric modulators at mGlu5-wt and mutants from inhibition binding assays.  
Data represent the mean ± s.e.m of a minimum of three independent determinations. 

 VU0360172 
(nicotinamide) 

VU0403602 
(picolinamide) 

VU0360173 
(nicotinamide) 

VU0405398 
(picolinamide) 

VU0415051 
(nicotinamide) 

VU0405386 
(picolinamide) 

R5-wt (low) 6.57 ± 0.02# 8.26 ± 0.15 5.12 ± 0.07 6.05 ± 0.12# 6.88 ± 0.04# 7.98 ± 0.05# 

I650A n.d. 7.89 ± 0.10 5.30 ± 0.26 6.41 ± 0.14 6.62 ± 0.11 7.69 ± 0.15 

P742S 5.90 ±0.12* 7.24 ± 0.23* 5.12 ± 0.27 5.78 ± 0.14 6.35 ± 0.13* 7.19 ± 0.12* 

L743V  6.32 ± 0.06 6.98 ± 0.10* 4.86 ± 0.08 5.71 ± 0.01* 6.25 ± 0.17* 7.58 ± 0.04 

N746A 6.22 ± 0.07 7.49 ± 0.07* 4.63 ± 0.10 5.75 ± 0.03 6.35 ± 0.26* 7.45 ± 0.30 

G747V 6.76 ± 0.05 n.d. n.d. n.d. 7.06 ± 0.27 8.17 ± 0.35 

V788A 7.08 ± 0.23 8.70 ± 0.02 6.10 ± 0.09* 7.87 ± 0.05* 8.15 ± 0.07* 9.20 ± 0.10* 

F792A 7.06 ±0.15 7.85 ± 0.04 5.68 ± 0.06 6.74 ± 0.08* 7.09 ± 0.06 7.71 ± 0.19 

C815A 6.74 ± 0.24 8.01 ± 0.03 5.01 ± 0.07 6.26 ± 0.04 6.92 ± 0.11 7.96 ± 0.16 

* denotes significantly different to value at wild-type receptor, p<0.05, one-way ANOVA, with Dunnett’s post test. 
n.d. indicates not determined 
# data previously reported (Gregory et al., 2012) 
  1
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Table 10 
Affinity estimates (pKB) for allosteric modulators at mGlu5-wt and mutants derived from operational model analysis of interactions 
with glutamate. 
Data represent mean ± S.E.M. from 4-8 independent experiments performed in duplicate. 

 
MPEP 

VU0360172 
(nicotinamide) 

VU0403602 
(picolinamide) 

VU0360173 
(nicotinamide) 

VU0405398 
(picolinamide) 

VU0415051 
(nicotinamide) 

VU0405386 
(picolinamide) 

R5-wt (poly) 8.58 ± 0.17# 6.68 ± 0.15 8.13 ± 0.26 5.45 ± 0.27 6.94 ± 0.17 7.34 ± 0.18 8.04 ± 0.26 

R647A 8.89 ± 0.19 6.29 ± 0.12 7.99 ± 0.09 4.91 ± 0.14 6.94 ± 0.10 7.28 ± 0.25 7.74 ± 0.12 

I650A 8.62 ± 0.03 7.12 ± 0.19 7.97 ± 0.13 n.d. 7.29 ± 0.15 n.d. 8.10 ± 0.15 

G651F 7.53 ± 0.18* 5.86 ± 0.18* 6.50 ± 0.18* No PAM 5.99 ± 0.28* 6.94 ± 0.19 7.14 ± 0.08 

P654S 7.10 ± 0.06* 6.39 ± 0.24 7.33 ± 0.16 <5 5.80 ± 0.27* 5.69 ± 0.46* 7.81 ± 0.27 

P654F 4.11 ± 0.21* 5.91 ± 0.17 5.99 ± 0.26* No PAM 5.33 ± 0.27* 5.25 ± 0.19* 6.23 ± 0.22* 

S657C 8.32 ± 0.08 n.d. 7.41 ± 0.17 n.d. 6.99 ± 0.31 6.78 ± 0.12 7.68 ± 0.06 

Y658V 6.57 ± 0.13#* No PAM No PAM No PAM 4.97 ± 0.35* No PAM No PAM 

P742S 8.07 ± 0.17* 6.57 ± 0.10 7.50 ± 0.12 4.65 ± 0.17 6.83 ± 0.20 7.09 ± 0.04 7.96 ± 0.16 

L743V  8.04 ± 0.10#* 6.97 ± 0.15 7.93± 0.14 5.46 ± 0.12 6.77 ± 0.11 7.75 ± 0.20 8.36 ± 0.10 

N746A 8.30 ± 0.06 6.66 ± 0.10 7.99 ± 0.11 n.d. 6.50 ± 0.23 n.d. 8.06 ± 0.17 

T780A 7.36 ± 0.02* No PAM 6.03 ± 0.13* No PAM 5.59 ± 0.05* 5.82 ± 0.40* 5.32 ± 0.24* 

W784A 5.50 ± 0.29* 6.76 ± 0.14 7.09 ± 0.34* 5.03 ± 0.44 6.23 ± 0.20 7.14 ± 0.15 7.53 ± 0.14 

V788A 7.89 ± 0.13* 7.28 ± 0.17 8.43 ± 0.20 6.28 ± 0.18 7.84 ± 0.14 8.07 ± 0.19 8.79 ± 0.08 

F792A 8.93 ± 0.04 7.25 ± 0.33 8.03 ± 0.02 4.80 ± 0.20 7.34 ± 0.20 8.06 ± 0.24 7.02 ± 0.47* 

S806A 8.36 ± 0.06 n.d. n.d. n.d. n.d. n.d. 7.29 ± 0.45 

S808A 6.98 ± 0.18* 6.15 ± 0.30 6.47 ± 0.10* No PAM 6.28 ± 0.09 7.20 ± 0.44 7.48 ±0.20 

S808T 6.90 ± 0.06* 6.59 ± 0.20 7.15 ± 0.33* 5.04 ± 0.33 6.40 ± 0.23 6.36 ± 0.26* 8.05 ± 0.27 

A809V 6.52 ± 0.12#* 5.64 ± 0.19* 6.52 ± 0.21* No PAM No PAM 5.56 ± 0.12* 6.22 ± 0.14* 

A809G 7.18 ± 0.04* 5.93 ± 0.18 6.59 ± 0.05* 5.13 ± 0.13 5.88 ± 0.05* 6.28 ± 0.11* 6.60 ± 0.24* 

C815A 8.35 ± 0.05 6.58 ± 0.22 7.29 ± 0.26* 4.81 ± 0.13 6.73 ± 0.35 7.26 ± 0.11 7.63 ± 0.15 

n.d. denotes not determined 
“No PAM” indicates no observed positive allosteric modulation. 
* denotes significantly different from wild-type value, p<0.05, one-way ANOVA, Dunnett’s post-test. 
# data previously reported (Gregory et al., 2012). 
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Table 11 
Functional cooperativity factors (logβ) for allosteric modulators at mGlu5-wt and mutants derived from operational model 
analysis of interactions with glutamate. 
Data represent mean ± S.E.M. from 4-8 independent experiments performed in duplicate.  

 
VU0360172 

(nicotinamide) 
VU0403602 

(picolinamide) 
VU0360173 

(nicotinamide) 
VU0405398 

(picolinamide) 
VU0415051 

(nicotinamide) 
VU0405386 

(picolinamide) 

R5-wt (poly) 0.37 ± 0.05 0.61 ± 0.08 0.17 ± 0.04 0.37 ± 0.04 0.40 ± 0.02 0.55 ± 0.07 

R647A 0.44 ± 0.13 0.60 ± 0.09 0.26 ± 0.03 0.38 ± 0.05 0.41 ±0.11 0.58 ± 0.06 

I650A 0.58 ± 0.05 0.55 ± 0.08 n.d. 0.51 ± 0.08 n.d. 0.56 ± 0.08 

G651F 0.54 ± 0.07 0.79 ± 0.05 No PAM 0.43 ± 0.04 0.32 ± 0.05 0.70 ± 0.07 

P654S 0.26 ± 0.01 0.56 ± 0.05 <5 0.34 ± 0.08 0.22 ± 0.10 0.32 ± 0.05 

P654F 0.25 ± 0.04 0.58 ± 0.14 No PAM 0.17 ± 0.04 0.66 ± 0.09* 0.53 ± 0.09 

S657C n.d. 0.82 ± 0.15 n.d. 0.43 ± 0.15 0.55 ± 0.01 0.56 ± 0.12 

Y658V No PAM No PAM No PAM NAM No PAM No PAM 

P742S 0.87 ±0.10* 1.23 ± 0.06* 0.69 ± 0.07* 0.70 ± 0.15 0.92 ± 0.08* 1.12 ± 0.17* 

L743V  0.36 ± 0.14 0.60 ± 0.06 0.43 ± 0.03 0.54 ± 0.08 0.36 ± 0.04 0.80 ± 0.03 

N746A 0.62 ± 0.04 0.67 ± 0.04 n.d. 0.57 ± 0.05 n.d. 0.63 ± 0.02 

T780A No PAM 0.77 ± 0.08 No PAM 0.19 ± 0.01 -0.28 ± 0.02* 0.39 ± 0.04 

W784A 0.90 ± 0.14* 1.05 ± 0.11* 0.41 ± 0.10 0.48 ± 0.09 0.88 ± 0.10* 0.66 ± 0.15 

V788A 0.57 ± 0.10 0.68 ± 0.09 0.66 ± 0.12* 0.47 ± 0.05 0.53 ± 0.06 0.56 ± 0.11 

F792A 0.66 ±0.12 0.97 ± 0.10 0.29 ± 0.11 0.73 ± 0.32 0.29 ± 0.02 0.85 ± 0.16 

S806A n.d. n.d. n.d. n.d. n.d. 0.79 ± 0.13 

S808A 0.50 ± 0.06 0.57 ± 0.10* No PAM NAM 0.22 ± 0.02 neutral 

S808T 0.46 ± 0.06 0.76 ± 0.12 0.28 ± 0.07 0.34 ± 0.04 0.41 ± 0.04 0.45 ± 0.06 

A809V 0.60 ± 0.07 0.58 ± 0.09 No PAM No PAM 0.37 ± 0.07 0.58 ± 0.11 

A809G 0.55 ± 0.04 1.29 ± 0.07* 0.41 ± 0.07 0.70 ± 0.03 0.78 ± 0.12* 1.12 ± 0.17* 

C815A 1.17 ± 0.12* 1.29 ± 0.10* 0.66 ± 0.06* 0.75 ± 0.24 0.86 ± 0.05* 1.38 ± 0.14* 

“No PAM” indicates no observed positive allosteric modulation. 
n.d. denotes not determined 
* denotes significantly different from wild-type value, p<0.05, one-way ANOVA, Dunnett’s post-test. 
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Figure 24 
Potentiation of glutamate-mediated Ca2+ mobilization by nicotinamide and picolinamide 
acetylene PAMs at wild-type mGlu5. 
The six PAMs included in this study potentiate the response to glutamate at mGlu5-wild-type in 
a Ca++ mobilization assay with varying degrees of cooperativity, as evidenced by increased 
glutamate potencies in the presence of PAMs. Nicotinamide acetylene PAMs are shown on the 
left, with the corresponding picolinamide acetylene PAM on the right. Data represent the mean 
± S.E.M of 3-7 experiments performed in duplicate. Error bars not shown lie within the 
dimensions of the symbol. 

  



122 
 

 
Figure 25 
Effect of mutations on the fold-shift caused by a single concentration of PAM 
Nicotinamide acetylene PAMs are shown on the left, with the corresponding picolinamide 
acetylene PAM on the left as indicated. The increase in glutamate potency in the presence of 
PAM, or fold-shift, at each mutant is expressed relative to that observed for the same 
concentration at the wild-type receptor. Specifically, PAM concentrations used were: 10 μM 
VU0360173; 1 μM VU0360172; 100 nM VU0415051; 100 nM VU0405398; 10 nM VU0403602; 
and 10 nM VU0405386. # denotes no detectable PAM activity. * denotes significantly different 
to wild-type, p<0.05, one-way ANOVA, Dunnett’s post-test. Data represent the mean ± S.E.M of 
3-7 experiments performed in duplicate. Error bars not shown lie within the dimensions of the 
symbol. 
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Impact of mutations on PAM affinity: interactions within the common allosteric pocket 
 

To ensure that potential determinants were not missed in the initial screen, 

mutations that perturbed potentiation by at least one member of class (either picolinamide 

or nicotinamide) were assessed across all three members. In addition, mutations that 

affected one member of a picolinamide/nicotinamide PAM pair were further assessed at 

both. Affinity estimates (pKB) for PAMs, derived from modulation of glutamate- mediated 

Ca++ mobilization, are shown in Table 10; for the most part, mutations influenced 

modulator affinity (Figure 26). Where practical, PAM affinity was also assessed using 

inhibition of [3H] methoxyPEPy binding (Table 11). Functional (pKB) and binding (pKI) 

estimates of affinity showed strong correlation (Figure 57B). All mutations in TM3 that 

showed significant effects could not be assessed using radioligand binding-based 

approaches, relying instead on affinity estimates derived using the operational model of 

allosterism. 

No potentiation was evident for VU0360173 (up to 30 μM) at G651F, P654S, P654F, 

Y658V, T780A, S808A, and A809V. The corresponding picolinamide, VU0405398, also 

showed no detectable potentiation at A809V and 10-30 fold decreased affinity at G651F, 

P654S, T780A and A809G; 30-100 fold reductions were noted at P654F and Y658V. 

Collectively, these results suggest that the lack of potentiation observed for VU0360173 

at these mutants is a result of decreased affinity. 

VU0360172 affinity was reduced approximately 10 fold at G651F and A809V. No 

positive allosteric modulation was observed at Y658V or T780A. Interestingly, P654S had 

no significant effect on VU0360172 affinity, while at the Phe substitution VU0360172 

affinity was also reduced (6 fold; this did not reach significance). The picolinamide 

counterpart of VU0360172, VU0403602, also showed no appreciable PAM activity at 

Y658V, alongside marked reductions in affinity (greater than 100 fold) at P654F and 

T780A. VU0403602 affinity was also decreased 30-100 fold at G651F, S808A, A809V and 
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A809G; and 10-30 fold at S808T. At P654S and C815A, VU0403602 pKB values were 

reduced 3-10 fold compared to wild-type; although this did not reach significance at 

P654S.  

Similar to that reported for the previous four PAMs, VU0415051 did not potentiate 

glutamate at Y658V (up to 30 μM). Decreased VU0415051 affinity was noted at: S808T, 

A809G (10-30 fold); P654S, T780A, A809V (30-100); and greater than 100 fold at P654F. 

VU0405386 also showed no discernible PAM activity at Y658V nor S808A. The affinity of 

VU0405386 was decreased compared to wild-type at F792A, A809G (10-30 fold); P654F, 

A809V (30-100 fold); and greater than 300 fold at T780A. Interestingly, neither of the 

VU0415051/VU0405386 pair were unaffected by G651F. 

Three point mutations in TM5, P742S, L743V and N746A, showed no significant 

effects in functional assays; however, in inhibition binding assays, significant reductions 

in affinity were observed for some PAMs (Table 9). P742S significantly decreased pKI 

values 3-10 fold for VU0361072, VU0403602, VU0415051 and VU0405386. Significantly 

decreased pKI values were also noted for VU0403602 (19 fold), VU0405398 (2 fold), 

VU0415051 (4 fold) at L743V, and for VU0403602 (6 fold), VU0415051 (3 fold) at N746A. 

In contrast, V788A, in TM6, showed a trend for increased pKB and pKI values (2-10 fold).  
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Figure 26 
Effect of mutations on positive allosteric modulator affinity estimates. 
Nicotinamide acetylene PAMs are shown in the top three panels, with the corresponding 
picolinamide acetylene PAM in the bottom three panels. Affinity estimates (pKB) were derived 
using an operational model of allosterism (Gregory et al., 2012, K. Leach et al., 2007) from 
progressive fold-shifts of the glutamate concentration-response curve for Ca2+ mobilization. The 
difference between the pKB for the mutant versus wild-type is plotted. # denotes no detectable 
PAM activity. * denotes significantly different to wild-type, p<0.05, one-way ANOVA, Dunnett’s 
post-test. Data represent the mean ± S.E.M of 3-7 experiments performed in duplicate. Error 
bars not shown lie within the dimensions of the symbol. 

 

 

Docking of PAMs to mGlu5 comparative model 
  
Docking of the positive allosteric modulators in the mGlu5 comparative model provides 

insight into the significant residues identified to reduce affinity in the binding pocket. Each 

of the six positive allosteric modulators were allowed to explore a 5 angstrom radius 

around P654, and the lowest energy binding modes of the largest 5 clusters were shown 

to bind in the same pocket as MPEP (Figure 27A-C). As seen with MPEP, mutation of 

P654 in TM3 to a bulky residue (Phe) likely introduces a steric clash, reducing the ability 

of PAMs to engage the common mGlu5 binding pocket, accounting for the reduced affinity 

for all six PAMs. As noted previously, the amino acid in this position in not conserved 

across the mGlu family, such that it is likely P654 also contributes to the subtype selectivity 
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of these PAMs. Introduction of steric bulk is also likely to underscore the impact of the 

G651F mutation on all modulators except for the VU0415051/VU0405386 pair. The impact 

of substitution of Y658 with Val can likely be attributed to disruption of key polar 

interactions between modulators and Y658, T780 and W784 (Highlighted by dashed lines 

in Figure 27A-C). Similarly, T780 likely participates in a polar interaction with the carbonyl 

of the PAMs, with the exception of VU0403602 where the tertiary amide is predicted to 

interact with this residue, such that Ala substitution of this amino acid causes the drastic 

loss of affinity seen for all modulators. W784 likely contributes to hydrophobic interactions 

within the pocket, which may account for the trend for picolinamide PAM affinity to be 

perturbed by W784A; it is also noteworthy that the W784 may be involved in a hydrogen 

bonding network linking the modulators, TM3 and TM7. V788A shows a trend for 

increased affinity, which may be due to secondary effects on protein conformation and the 

previously implicated F787, where Ala substitution reduced NAM and PAM interactions 

(Malherbe, Kratochwil, Zenner, et al., 2003, Malherbe et al., 2006, Mühlemann et al., 

2006). S808 in TM7 may participate in hydrogen bonding with the fluorine of the 

modulators when in close proximity, although this was not evident in the lowest energy 

binding modes. Substitution of A809 with Gly or Val reduced modulator activity across the 

board, pointing to the importance of the alanine in maintaining the correct helix 

conformation for binding. With respect to C815 and VU0403602, it is likely that there is an 

interaction with the cyclobutane of the modulator; however, it is not immediately apparent 

whether this is a direct or indirect effect.  
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Figure 27 
Computational docking of three pairs of nicotinamide and picolinamide acetylene positive 
allosteric modulators into mGlu5. 
A) VU0360173 in blue and VU0405398 in green, B) VU0360172 in blue and VU0403602 in green 
and C) VU0415051 in blue and VU0405386 in green. Residues that when mutated caused a 
significant decrease in modulator affinity in mGlu5 are highlighted in the respective color of the 
modulator. Residues that affect both the nicotinamide and picolinamide in the pair are highlighted 
in purple. A predicted hydrogen bond network involving the modulators, Y658, T780A and W784 
is represented by the dashed black lines. Highlighted in grey are residues that influence the 
cooperativity of certain modulators. 

 

 

Quantifying effects on cooperativity: identification of mutations that engender “molecular 
switches” 
 

When applying the operational model of allosterism, the interaction between 

glutamate and PAMs was assumed to be exclusively via efficacy modulation, an 

assumption previously validated for mGlu5 PAMs from this scaffold (Gregory et al., 2012). 

Cooperativity estimates (logβ) are summarized in Table 11 and comparisons with wild-

type are shown in Figure 28. Alongside marked reductions in PAM affinity, P654F also 

significantly increased cooperativity of VU0415051 (~2 fold). P742S in TM5 had no effect 

on PAM affinity, yet increased cooperativity (~3 fold). In TM7, A809G significantly 

increased the cooperativity of the higher affinity PAMs: VU0403602, VU0415051 and 

VU0405386 (2-5 fold), with a similar trend observed for VU0360172, VU0360173 and 

VU0405398. Also in TM7, C815A significantly increased the cooperativity of all PAMs (2-

7 fold) with the exception of VU0405398. P742S, A809G, C815A all represent mutations 

where the glutamate potency and/or efficacy was lower than the wild-type (Table 22), such 
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that these increases in PAM cooperativity may be attributable to PAMs stabilizing an 

unstable mutant receptor. Significantly increased cooperativity (3 fold) was also observed 

at W784A for VU0360172, VU0403602 and VU0415051, with VU0360173 showing higher, 

although not significant, cooperativity. Interestingly, this was not a global PAM 

phenomenon as the cooperativity of VU0405386 and VU0405398 unchanged. Given the 

putative involvement of W784 in a key hydrogen bonding network for the PAMs (dotted 

lines in Figure 27A-C), perhaps this differential effect is driven by the relative importance 

of this interaction over that of the PAM functional head group. Also in TM6, V788A 

increased the cooperativity of VU0360173 (3 fold) alone; no direct interaction is predicted 

from the docking between VU0360173 and V788, suggesting this is an indirect effect on 

the geography of the binding pocket. The selective effect of V788A on VU0360173 

cooperativity may be attributable to the fact that this PAM has the weakest cooperativity 

and lowest affinity. 
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Figure 28 
Effect of mutations on positive allosteric modulator cooperativity factors. 
Nicotinamide acetylene PAMs are shown in the top three panels, with the corresponding 
picolinamide acetylene PAM in the bottom three panels. Cooperativity estimates (logβ) were 
derived using an operational model of allosterism (Gregory et al., 2012; Leach et al., 2007) from 
progressive fold-shifts of the glutamate concentration-response curve for Ca2+ mobilization. The 
difference between the logβ for the mutant versus wild-type is plotted. # denotes no detectable 
PAM activity. *denotes significantly different to wild-type, p<0.05, one-way ANOVA, Dunnett’s 
post-test. Data represent the mean ± S.E.M of 3-7 experiments performed in duplicate. Error 
bars not shown lie within the dimensions of the symbol. 

 

 
Three point mutations altered cooperativity drastically, such that PAMs behaved 

as NAMs. At Y658V, VU0405398 was a weak NAM, reducing the maximal response to 

glutamate by ~25% at 30 μM (Figure 29A). This same mutation resulted in a loss of 

potentiation by all other PAMs. At T780A, VU0415051 became a weak NAM or “partial 

antagonist”, where logβ = -0.28, corresponding to ~40% depression in the glutamate 

maximal response (Figure 29B). This inhibition approached saturation, the hallmark 

feature of an allosteric interaction.  

The most profound molecular switch engendered by a single point mutation was 

that of S808A, where VU0405398 behaved as a full NAM, abolishing the maximal 
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response to glutamate (Figure 29C). As mentioned earlier, at this same mutation 

VU0405386 showed no discernible PAM activity. Given that this mutation has little or no 

impact on the affinity of the other PAMs tested, we hypothesized that the lack of 

potentiation by VU0405386 was caused by a molecular switch from PAM to neutral. To 

test this hypothesis, concentration response curves for VU0405398 inhibition of an EC80 

glutamate concentration were performed at S808A in the presence of varied 

concentrations of VU0405386. As shown in Figure 29D, VU0405386 has no effect on the 

response to glutamate, but causes parallel rightward shifts in the VU0405398 curve, in a 

manner consistent with a competitive interaction (Figure 29E; where the Schild slope was 

not significantly different from unity (0.92 ± 0.09) and pKB: 7.48 ±0.20).   
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Figure 29 
Characterization of mutations that engender a molecular switch in PAM pharmacology. 
A) At mGlu5-Y658V, 10 μM and 30 μM VU0405398 inhibited the response to maximal glutamate. 
B) The interaction between glutamate and VU0415051 at the T780A mutant is negative, with 
inhibition approaching a limit as defined by the cooperativity. C) At S808A, VU0405398 causes 
a reduction in glutamate potency and depresses the maximal response to glutamate. D) 
Concentration-response curves for VU0405398 inhibition of an ~EC80 of glutamate in the 
absence and presence of the indicated concentrations of VU0405386. E) Schild regression of 
the interaction between VU0405386 and VU0405398 at S808A. Data represent the mean ± 
S.E.M of 3-6 experiments performed in duplicate. Error bars not shown lie within the dimensions 
of the symbol. 

 

 

Modeling PAM molecular switches 
 

To investigate the molecular cause of the PAM to NAM or neutral switches, 

modulators were docked into mGlu5 models containing the mutation engendering the 
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switch. VU0405398 docked in wild-type mGlu5 was compared to VU0405398 docked into 

the S808A mutant (Figure 30A). Interestingly, introducing this single point mutation 

resulted in movement of TM7, such that in the mutant receptor VU0405398 is further away 

from this helix. It is unclear as to why this substitution results in such a conformational 

change of the receptor. Although not evident in the docked results, it is possible that 

rotation of the side chain of S808 in the wild-type receptor would allow hydrogen bonding 

to occur between the fluorine of the modulator and S808, with direct interactions with TM7 

being important for stabilizing active receptor conformations. At the mutant receptor, such 

an interaction is no longer available and VU0405398 instead stabilizes an inactive receptor 

conformation at the mutated receptor. From the docked poses it is also evident that the 

picolinamide functional group of VU0405398 adopts a strikingly different orientation within 

the pocket. Similarly, VU0415051 was docked into the T780A mutant receptor and binding 

modes compared with those in wild-type mGlu5 (Figure 30B). At the T780A mutant, a polar 

interaction is no longer formed between the carbonyl of the modulator and the mutant 

A780; hydrogen bonding is no longer evident with the side chain hydroxyl of Y658 and the 

modulator carbonyl, nor between the tertiary nitrogen and S657.  In the mutant receptor 

construct, the nicotinamide tertbutyl moiety of VU0415051 adopts a different orientation 

with decreased affinity. Docking of VU0405386 in the S808A receptor shows subtle 

differences in the binding mode of the ligand when compared with wild-type (Figure 30C). 

The movement of TM7 observed with docking VU0405398 to this same receptor mutation 

is not evident, which may account for the switch from PAM to neutral rather than to a 

robust NAM as seen for VU0405386. Although not evident in the static docked pose, we 

hypothesize that the side chain of S808 may rotate to form a polar interaction with the 

fluorine of the modulator when interacting with the wild-type receptor that is not possible 

in the mutant. It is also clear that this point mutation at the top of TM7 results in the ligand 
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adopting a different pose with respect to the picolinamide tertbutyl group, which may 

contribute to the observed switch to neutral cooperativity. 

 

 

Figure 30 
Mutations engendering a molecular switch for mGlu5 allosteric modulators. 
A) VU0405398 docked into wild-type mGlu5 (green) and the S808A mutant (magenta). B) 
VU0415051 docked into wild-type mGlu5 (blue) and the T780A mutant (magenta). C) 
VU0405386 docked into wild-type mGlu5 (blue) and the S808A mutant (magenta). Mutated 
residues are colored by element. Key affinity determinants are highlighted to show 
conformational changes in the binding pocket. 

 

 

Discussion 
 

By utilizing an operational model of allosterism (Gregory et al., 2012, K. Leach et 

al., 2007), we have quantitatively assessed the interactions of positive allosteric 

modulators within the common allosteric site of mGlu5, successfully delineating the impact 

of point mutations on cooperativity versus affinity. Seven novel point mutations were 

discovered that negatively impact the MPEP affinity, building on our understanding of the 

common allosteric binding pocket. Furthermore, Ala substitution of W784 reduced MPEP 

negative cooperativity. For the six PAMs studied, three conserved (Y658, T780, S808) 

and two non-conserved residues (P654, A809) were identified as critical determinants of 

PAM affinity. Interestingly, two point mutations engendered molecular switches in certain 

PAMs, changing their pharmacology to either NAMs or neutral modulators.  
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Close examination of the MPEP mutational data reveals a number of interesting 

observations. First, [3H] methoxyPEPy non-binding mutants corresponded to mutations 

where MPEP affinity estimates, as derived from functional assays, were decreased 10 fold 

or greater compared to wild-type. Indeed, four previously reported mutations: Y658V, 

W784A, A809V, and A809G, that cause a loss of NAM binding to mGlu1 and mGlu5 and/or 

decreased MPEP potency for glutamate inhibition (Malherbe, Kratochwil, Zenner, et al., 

2003, Malherbe et al., 2006, Molck et al., 2012, Mühlemann et al., 2006, Pagano et al., 

2000) were confirmed herein and attributed to >30 fold reductions in MPEP affinity. Also 

in agreement with previous data (Malherbe, Kratochwil, Zenner, et al., 2003, Malherbe et 

al., 2006, Pagano et al., 2000), P654S, L743V and T780A all reduced MPEP affinity, 

although the effect of T780A was more pronounced in the current study than previously 

reported (17 versus 5 fold; (Malherbe, Kratochwil, Zenner, et al., 2003)). Second, in 

mutating residues predicted to line the helical face towards the binding site as shown in 

the comparative model, we have further validated utilization of Family A 7TMR crystal 

structures as templates for mGlu transmembrane spanning domain comparative 

modeling. Our TM7 alignment, aligns PKxY of mGlu5 to the conserved NPxxY motif, differs 

by seven residues compared to earlier reports (Malherbe et al., 2006, Pagano et al., 2000), 

agreeing with the recent report by Molck and colleagues (Molck et al., 2012). In support 

of this new alignment for TM7, S808 was hypothesized to contribute to the common 

allosteric site of mGlu5 as opposed to S806 and T810. Mutation of S808 to Ala perturbed 

MPEP affinity significantly more than S806A and T810A. S808T had a similar impact on 

MPEP affinity, suggesting a polar interaction may occur between S808 and MPEP that is 

not achieved by Thr. Alternatively, S808 may be important for maintaining the allosteric 

binding pocket geography, perhaps via a hydrogen bonding network. 

Molecular models of receptor-ligand complexes provide important tools for 

hypothesis generation, predicting binding modes where experimental structures are 
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unavailable. In the current study, the model provides an orientation of transmembrane 

helices, known to be aligned well across GPCR templates, as well as the TM7 helix/loop 

transition, that reasonably explains experimental results demonstrated by S806, S808 and 

T810 mutations. The comparative model has less confidence predicting receptor loop 

regions, as these have less than 20% sequence homology to the template GPCR 

structures used. The predicted modulator binding site captures residues identified in 

experimental studies, lending confidence to the binding site location depth within the 

receptor. The long axes of the ligands were consistently aligned parallel with the helices; 

however, computationally it was difficult predicting the orientation of these linear ligands 

and distinguishing whether the functional group points towards the intracellular or 

extracellular space. Despite these challenges, the mGlu5 computational model with 

allosteric modulators has provided valuable hypotheses, validated experimentally herein. 

Comparison of the PAM data with that of MPEP shows a number of marked 

differences in mutation susceptibility. Interestingly, more mutations perturbed MPEP 

affinity than the PAMs; however, with one exception (VU0403602 at C815A), there were 

no mutations that influenced PAM affinity without affecting MPEP. It is clear that these 

acetylene PAMs interact with the common allosteric site on mGlu5. These differences likely 

underscore the determinants that contribute to a NAM versus PAM interacting with the 

receptor. Interestingly, W784A caused a ~1000 fold reduction in MPEP affinity; however, 

nicotinamide PAMs were insensitive to this mutation, whilst the picolinamides showed 3-

10 fold decreased affinity. W784A increased cooperativity of some PAMs; in agreement 

with the previous report that W784A enhanced DFB potentiation (Mühlemann et al., 2006). 

Ala substitution of the equivalent Trp in mGlu1 (W798) has differential effects on mGlu1 

NAMs (Fukuda et al., 2009, Suzuki et al., 2007). W784 is analogous to the W of the CWxP 

motif in Family A 7TMRs that is involved in the well-known rotamer-toggle activation switch 

(Holst et al., 2010, Shi et al., 2002, Visiers, Ballesteros, & Weinstein, 2002). The modeling 
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herein predicts a network of polar interactions involving W784 and T780 in TM6, Y658 in 

TM3 and the PAMs. We hypothesize that the differential effect of W784A on mGlu5 PAMs 

versus MPEP is likely underscored by PAMs interacting with an active versus inactive 

receptor conformation.  

In each case, picolinamide modulators have higher affinity than their 

corresponding nicotinamide modulators. From the studies herein, it is not entirely clear 

which interactions within the binding pocket drive this higher affinity for picolinamides. 

However, a trend was observed where a greater reliance upon residues in TM7 was 

observed for compounds, both nicotinamides and picolinamides, with higher affinity (sub 

100 nM). Picolinamides also tended to be susceptible to W784A; however, this only 

reached significance for VU0403602.  

For all PAMs, Y658V abolished potentiation, except for VU0405398 where a weak 

NAM switch was observed. Trp substitution of the equivalent residue in mGlu8 suppresses 

the activity of a constitutively active mutant receptor (Yanagawa, Yamashita, & Shichida, 

2009), raising the possibility that this mGlu5 mutation may have a global receptor activation 

effect. However, previously DFB potentiation was reportedly unaffected by Y658V 

(Mühlemann et al., 2006); supporting the hypothetical modulator binding modes shown, 

where an interaction is predicted with this residue, rather than Y658V impacting active 

receptor states.  

A number of previous studies have identified PAMs as competitive with the 

common mGlu5 allosteric (or “MPEP”) site on the basis of a single point mutation in TM7, 

A809V (Y. Chen et al., 2008, Hammond et al., 2010). Previously, A809V was reported to 

cause a ~30 fold decrease in the affinity of VU29, an mGlu5 PAM from the CDPPB series 

(Gregory et al., 2012). Validating the utilization of this single point mutation as a read-out 

of interaction with this common allosteric site, all six PAMs exhibited decreased affinity for 

this mutant construct.  While this interaction appears to be crucial for all PAMs that are 
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competitive with MPEP tested to date, it should be noted that this does not necessarily 

have to be the case. Notably, L743V and the equivalent mutation in mGlu1 were previously 

shown to enhance potentiation by PAMs (Knoflach et al., 2001, Mühlemann et al., 2006); 

however, for acetylene PAMs, L743V had no effect on cooperativity or affinity. Further 

studies are underway to probe interactions within the common allosteric site by modulators 

from distinct chemotypes to better inform our understanding of the molecular determinants 

of modulator affinity and cooperativity (Manka et al., 2012). 

A key finding arising from this study was the identification of residues that, when 

mutated, engendered a mode switch in allosteric modulator pharmacology, specifically 

T780A in TM6 and S808A in TM7. Considering that these PAMs originated from a NAM 

HTS lead (Rodriguez et al., 2010), such drastic changes in modulator cooperativity are 

not altogether surprising. Indeed, the acetylene series of mGlu allosteric modulators is 

prone to “molecular switches” (Wood et al., 2011); the SAR plagued by unanticipated 

changes in the mode of pharmacology and selectivity (Sheffler et al., 2012, Wood et al., 

2011). Muhlemann and colleagues previously reported a similar result for the early mGlu5 

PAM, DFB, where at the F787A mutant, DFB behaved as a weak NAM (Mühlemann et 

al., 2006). Pharmacological mode switches were also noted during the discovery of DFB 

and related compounds (O’Brien et al., 2003). As noted above, movements in TM6 have 

been implicated in the transition of Family A 7TMRs from inactive to active states. TM7 

contains the NPxxY motif, also well-known for its role in receptor activation (Barak, 

Menard, Ferguson, Colapietro, & Caron, 1995, Fritze et al., 2003, Prioleau, Visiers, 

Ebersole, Weinstein, & Sealfon, 2002). Furthermore, a water-hydrogen bond network 

involving polar residues in TMs 1, 2, 6 and 7 is postulated to play an integral role in 

receptor activation (Nygaard, Valentin-Hansen, Mokrosinski, Frimurer, & Schwartz, 2010). 

Given the importance of TMs 6 and 7 for the transitioning of receptors into active 

conformations, these mode switches may be attributed to either a loss of an important 
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direct contact that facilitates receptor activation upon modulator binding or a global 

(secondary) effect on protein conformations that prevents some modulators, but not 

others, from engendering active conformations.  

Collectively, these findings highlight the subtleties of interactions within the 

common mGlu allosteric binding pocket that determine allosteric modulator affinity and 

cooperativity. The identification of point mutations that engender a molecular switch in 

PAM pharmacology provides the first clues from the protein side of the equation as to the 

underlying determinants for this phenomenon. The prevalence of “molecular switches” 

raises concerns regarding metabolite pharmacology. A deeper understanding of the 

molecular basis of allosteric modulation has the potential to aid rational drug design efforts 

to predict and avoid undesirable pharmacology, including mode switches. 
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CHAPTER V 

 

INVESTIGATING THE BINDING MODES OF METABOTROPIC GLUTAMATE 
RECEPTOR 5 (MGLU5) ALLOSTERIC MODULATORS FROM DIVERSE 

SCAFFOLDS  
 

 
This chapter is based on a manuscript in preparation of the same title by Elizabeth 

Nguyen, Karen Gregory, Chrysa Malosh, Jeffrey Mendenhall, Brittney Bates, Meredith 

Noetzel, Emma Squire, Eric Turner, Kyle Emmitte, Shaun Stauffer, Jason Manka, Ya 

Zhou, Mark Turlington, Andrew Felts, Craig Lindsley, Jeff Conn and Jens Meiler. 

 

Summary 
 

 The metabotropic glutamate receptor subtype 5 (mGlu5) is a potential drug target 

for cognitive function disorders. While both positive and negative allosteric compounds 

have been discovered that target mGlu5, many of these are not suitable for clinical use 

due to problems with selectivity and solubility. As a result, recent structure-activity 

relationship studies have produced a number of new small molecules from different 

chemical scaffolds that demonstrate a gain in selectivity and potency at mGlu5. In addition, 

site-directed mutagenesis studies have been performed to determine which residues are 

functionally important for representative members of four of these chemical scaffolds, 

including 2-methyl-6-(phenylethynyl)-pyridine (MPEP), N-(3-chloro-2-fluorophenyl)-3- 

cyano-5-fluorobenzamide (VU0366248), 2-(1,3-benzoxazol-2-ylamino)-4-(4-

fluorophenyl)pyrimidine-5-carbonitrile (VU0366058) and 4-nitro-N-(1,3-diphenyl-1H-

pyrazol-5-yl)benzamide (VU29). The structural relationship between compounds from 

each of these four scaffolds and residues that have been found to be functionally important 



140 
 

is not well understood. In this study, computational docking of 32 ligands across four 

different chemical scaffolds is performed in a comparative model of mGlu5 to understand 

how the structural and chemical properties of these compounds relate to functionally 

important residues in the receptor. In order to spatially and chemically compare binding 

modes of ligands with different chemical composition, the PropertyRMSD measure is 

introduced. A common binding mode exists for the ligands docked in this study that places 

the long axes of the ligands parallel to the transmembrane helices at the level of P654, 

Y658 and W784. The results indicate that hydrophobic interactions between Y658 and 

W784 with the phenyl groups of ligands from the MPEP series were consistently found. 

Important polar interactions are predicted between the fluorine on the benzamide group 

of ligands in the VU0366248 series and S808 as well as the cyano group on ligands from 

the VU0366058 series with Y658. Results from the computational modeling are consistent 

with functional mutagenesis data as well as structure activity relationship across a range 

of compounds and are a valuable tool in the synthesis of pharmacologic and chemical 

data. 

 

Introduction 
 

Glutamate is the primary excitatory neurotransmitter that guides activity in the 

mammalian central nervous system (Dingledine, Borges, Bowie, & Traynelis, 1999). 

Glutamate-gated cation channels called ionotropic glutamate receptors are responsible 

for the fast excitatory synapses within the CNS. With the discovery of metabotropic 

glutamate receptors, glutamate was found to participate in an even wider variety of key 

CNS functions through G proteins coupled to second messenger systems (Hollmann & 

Heinemann, 1994).  

Cognitive function disorders are especially in need of new therapeutic strategies. 

Current drugs that commonly target dopaminergic and serotonergic pathways have 
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debilitating metabolic and neurological side effects (Rummel-Kluge et al., 2012, Tschoner 

et al., 2007). As an alternative to current strategies, glutamatergic systems have been 

shown to play a role in specific disorders of cognitive function, including anxiety (Porter et 

al., 2005), Parkinson’s disease (Marino et al., 2003), fragile X syndrome (Dӧlen & Bear, 

2008) and schizophrenia (Conn et al., 2009). Specifically, studies found that targeting 

mGlu5 in fact suppressed hyperactivity and audiogenic seizure susceptibility in FXS mice 

models (Yan et al., 2005) and rescued cognitive function in FXS Drosophila models 

(McBride et al., 2005). Also, recent studies suggest that antagonists of the N-methyl-D-

aspartate (NMDA) ionotropic glutamate receptor, such as phencyclidine (PCP) and 

ketamine, produce the same cluster of symptoms seen in schizophrenic patients (Conn et 

al., 2009, Tsai & Coyle, 2002). Further studies have found that NMDA receptors physically 

interact with mGlu5 via binding to scaffolding proteins, producing a reciprocal positive-

feedback system (Ehlers, 1999). Because mGlu5 has been demonstrated to potentiate 

NMDA activity in the forebrain, it is hypothesized that activators of mGlu5 may lead to the 

amelioration of symptoms associated with schizophrenia (Conn et al., 2009).  

However, selective targeting of mGlu5 has been a challenge. The glutamate 

binding site is highly conserved across all subtypes of mGlus and as a result, ligands 

binding the orthosteric site have a variety of adverse effects (Conn & Pin, 1997). An 

alternative approach is targeting allosteric binding sites of specific receptor subtypes 

(Gregory et al., 2011). Allosteric binding sites allow for indirect modulation of the mGlu5 

receptor that can also be highly subtype selective. Both positive (PAM) and negative 

(NAM) allosteric modulators for mGlu5 have been discovered, providing an exciting novel 

approach to mGlu5-specfiic therapeutic agents that can be used to improve cognitive 

function (O’Brien et al., 2004). 

The first well-characterized potent, selective and systemically active NAM for 

mGlu5 was 2-methyl-6-(phenylethynyl)-pyridine (MPEP) (Gasparini et al., 1999). MPEP is 
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an optimization of 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893), a compound that was 

identified in an automated high-throughput screen for antagonists of mGlu5 (Varney et al., 

1999). MPEP itself, while a useful tool for studying mGlu5 because of its selectivity and 

because it is noncompetitive for glutamate, cannot be used as a drug because it blocks 

NMDA receptors (Cosford, Tehrani, et al., 2003). SAR optimization of the MPEP structure 

has led to the development of a variety of other NAMs within the same scaffold. Since the 

acetylene connecting the pyridine and phenyl rings was found to be necessary for high 

affinity binding, focus was placed on the substitutions on the two rings (Jaeschke, 

Wettstein, Nordquist, & Spooren, 2008). No changes were tolerated at the pyridine ring; 

the nitrogen in the 2-position was found necessary for antagonist activity, as was the 

position of the methyl at the 6-position. Replacing the 6-methyl with bromine or methoxy 

decreased activity. Also, any substitution at the 5-position resulted in inactivity (Alagille et 

al., 2005). However, 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (MTEP), a 1,3-thiazole 

replacement of the pyridine ring, was discovered to be five times more potent via 

intraperitoneal injection (IP) and more selective than MPEP (Cosford, Tehrani, et al., 

2003). Addition of a 3-pyridyl ring to MTEP as well 3-methoxy, 3-benzo or 3-nitro 

substitutions increased oral availability (Alagille et al., 2005, Roppe et al., 2004). 

Substitutions at the phenyl ring of MPEP were tolerated at the 3-position. M-MPEP 

(2-(3-Methoxy-phenylethynyl)-6-methylpyridine) features a 3-methoxy at the phenyl ring 

and was found to significantly increase NAM activity (Alagille et al., 2005).Substitutions at 

the 3-methoxy to nitro, fluoro and cyano analogs increased activity further (Alagille et al., 

2005, Kulkarni et al., 2009). While complete replacement of the phenyl ring with a 

pyrimidine reduced activity, the pyrimidine replacement in addition to a 3-methoxy or 3-

bromo returned NAM activity (Alagille et al., 2005).  

Building from the SAR of MPEP led to the discovery of a novel chemical scaffold 

that is competitive for the MPEP binding site, presented here as the VU0366248 (N-(3-
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chloro-2-fluorophenyl)-3- cyano-5-fluorobenzamide) series. Substitution of the acetylene 

in MPEP to amide-linker between rings resulted in potent diarylamide mGlu5 antagonists 

with 3-cyano substituents (Kulkarni et al., 2009). The 3-cyano-5-fluorobenzamide template 

was expanded upon and it was found that the heteroaryl amine with addition of a 6-methyl 

group improved potency. An even larger improvement occurred with addition of a 4-

methylthiazole (Felts et al., 2010) or a 3-chlorophenyl (Felts et al., 2010).  

The VU0366058 (2-(1,3-benzoxazol-2-ylamino)-4-(4-fluorophenyl)pyrimidine-5-

carbonitrile) series featuring a novel 4-aryl-5-cyanopyrimidine scaffold was discovered 

through a virtual high-throughput screen from an artificial neural network (ANN) trained to 

predict the quantitative structure-activity relationship of chemical scaffolds (Mueller et al., 

2012). This ANN in particular was trained over a dataset of 345 compounds to predict 

mGlu5 NAMs using 35 different atom descriptors. The model was then used to virtually 

screen the ChemDiv Discovery Chemistry dataset of 708,416 compounds. From this 

screen came two 2-(2-benzoxazolylamino)-4-phenylpyrimidines predicted to be potent 

NAMs. The compound with a 5-cyano on the pyrimidine was further optimized with a 4-

substituted fluorophenyl to result in a compound that was a potent, selective, 

noncompetitive, antagonist of mGlu5 that showed efficacy and bioavailability via IP dosing 

(Mueller et al., 2012). 

A high-throughput screen for PAMs and fragment library synthesis generated the 

N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide scaffold, which was the basis for the 3-cyano-

N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) series (Lindsley et al., 2004). 

CDPPB showed significant potentiation of glutamate-mediated mGlu5 activation (Lindsley 

et al., 2004). To improve upon its potency and because it was a weak antagonist at mGlu8, 

SAR optimization was performed on CDPPB as was done for the MPEP series (Kinney et 

al., 2005). In an evaluation of 50 analogues of CDPPB, it was found that generally, 

substitutions at the pyridine ring seemed to influence efficacy and substitutions at the 
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phenyl ring influenced affinity (Kinney et al., 2005). A 6-methyl substitution on pyridyl ring 

was found to significantly increase efficacy in particular. Electronegative aromatic 

substituents in the para-position of the benzamide moiety increased potency (Kinney et 

al., 2005). Also, improvement were seen with a halogen atom in the ortho-position of the 

1-phenyl ring (de Paulis et al., 2006).  

A constant theme in the SAR optimization of mGlu5 compounds is that dramatic 

differences in potency and efficacy, and even molecular switches between positive, 

negative and neutral modulation are observed with only slight changes to the molecule 

(Gregory et al., 2012, Wood et al., 2011). This may suggest different binding modes 

between ligands of different scaffolds for mGlu5. The purpose of this study is to explore 

the structural determinants within mGlu5 that are required for ligand binding within and 

across different chemical scaffolds. The tools used in this study include the combination 

of computational modeling of the mGlu5 in complex with known allosteric modulators from 

different scaffolds with structure-activity relationship information and mutagenesis data.  

 

 

Materials and Methods 
 
 

Generating the comparative model of mGlu5  
 

The previously published comparative model of mGlu5 (Gregory et al., 2013) was 

constructed using Rosetta 3.4, the protein structure prediction software package (Leaver-

Fay et al., 2011). In brief, the X-ray crystal structure for human β2-adrenergic receptor 

(PDB ID: 2RH1) (Cherezov et al., 2007) was chosen as a template based on its high 

sequence similarity to mGlu5. A profile to profile sequence alignment of TM regions 

between Class C hepta-helical transmembrane regions and Class A crystal structure 

templates was directly adopted from (Mühlemann et al., 2006), with the exception of 
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TM2,TM4 and TM7, which were based on the alignment of CaSR with Class A hepta-

helical regions (Miedlich et al., 2004). The sequence alignment was used to thread the 

amino acid sequence of the mGlu5 transmembrane helical region onto the backbone 

coordinates of the β2-adrenergic receptor. The loop regions between the helices were 

rebuilt in Rosetta using Monte Carlo Metropolis (MCM) fragment replacement combined 

with cyclic coordinate descent loop closure (CCD) (Canutescu & Dunbrack, 2009, Chu 

Wang et al., 2007). The resulting full sequence models were subjected to eight iterative 

cycles of side chain repacking and gradient minimization of ϕ, ψ and χ angles in Rosetta 

Membrane (Yarov-Yarovoy et al., 2005). Over 5,000 comparative models of mGlu5 were 

generated and clustered for structural similarity using bcl::Cluster (Alexander et al., 2011). 

The lowest energy model from the largest cluster was used for ligand docking studies. 

 

Generating ligand conformations 
 

A total of 32 ligands from four different scaffolds were chosen for computational 

ligand docking in this study based on their efficacy, unique structure-activity relationship 

(SAR) to mGlu5 and their role as a pharmacologic probe (Table 12). Twenty-one of the 

ligands are considered active modulators because of the level to which they potentiate 

glutamate in intracellular Ca2+ mobilization assays. The other 11 ligands are considered 

non-functional because they exhibit little to no glutamate modulation in mGlu5. The 

chemical structures for each ligand can be found in the Appendix (Figures 58-61). In 

preparation for docking, conformers for each ligand were generated with MOE (Molecular 

Operating Environment, Chemical Computing Group, Ontario, Canada) using the 

MMFF94x force field and Generalized Born implicit solvent model. Conformers were 

generated using 10,000 iterations of the Low Mode MD method (Labute, 2010) with a 

redundancy cutoff of 0.25 Å. The number of conformers generated for each ligand was 

dependent on its number of rotatable bonds and is reported in Table 12.  
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Table 12 
mGlu5 allosteric modulators from four diverse scaffolds chosen for this study. 
Structures for each compound are found in the Appendix in Figures 58 through 61. 

Series 

Compound identifier 
(compound name 

where given) 

Number of 
conformers 
generated Potency (nM) 

MPEP 1A 76 0.42 

1B 13 0.5 

1C 571 8 

1D 21 20 

1E (MPEP) 735 12 

1F 7 82 

1G (M5-MPEP) 459 114 

1H+ 651 1980 

1I+ 553 2400 

1J+ 82 >10000 

VU0366248 2A 11 4.6 

2B 10 13.7 

2C 8 45 

2D 26 59 

2E (VU0366248) 8 347 

2F (VU0366249) 8 377 

2G 10 409 

2H+ 4 5440 

2I+ 12 >10000 

VU0366058 3A 8 62 

3B 8 89 

3C  (VU0366058) 8 91 

3D 22 216 

3E 16 223 

3F+ 32 >10000 

3G+ 8 >10000 

3H+ 16 >10000 

VU29 4A (VU29) 7 10.7 

4B 13 20 

4C (CDPPB) 16 20 

4D 15 39 

4E 8 43 

4F 14 54 

4G 5 203 

4H+ 2 >10000 

4I+ 15 3410 

4J+ 87 3530 
+ligands that do not modulate glutamate response are considered non-functional 
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Docking allosteric modulators into the mGlu5 comparative model 
 

The 21 allosteric modulators from Table 12 that modulated glutamate response in 

functional assays with mGlu5 were computationally docked into the comparative model of 

mGlu5 using Rosetta Ligand (Davis & Baker, 2009, Lemmon & Meiler, 2012, Meiler & 

Baker, 2006). The initial ligand docking experiments started at a manually placed position 

centered at the proline residue at position 654. P654 was chosen because it was 

demonstrated to be functionally significant for each of the modulators (Table 13). The first 

round of docking allowed each modulator to sample binding modes in a 5.0 Å radius. Rigid 

body orientation of the ligand centroid is performed through translation during the low-

resolution phase of docking until the geometric center of the ligand is in a position that 

does not conflict with the receptor. During high-resolution docking, the ligand undergoes 

1000 cycles of full rotational freedom until the attractive and repulsive forces fall below a 

threshold value. Small 0.1 Å, 0.05 radian ligand movements are then simultaneously 

coupled with six cycles of side-chain rotamer and ligand conformer sampling in a Monte 

Carlo simulated annealing algorithm. All rotatable bonds within the ligand, except for 

planar conjugated bonds, were allowed full flexibility as indicated within the ligand 

parameters file. A final minimization combines backbone torsion angle minimization with 

harmonic constraints on the C-alpha atoms and side-chain rotamer sampling. The energy 

function used during the docking procedure contains terms for van der Waals attractive 

and repulsive forces, hydrogen bonding, electrostatic interactions between pairs of amino 

acids, solvation, and a statistical term derived from the probability of observing a side-

chain conformation from the PDB. 

After generating 5,000 models of mGlu5-ligand complexes during the first round of 

ligand docking, the top 10% of models by ligand interaction energy was carried on to a 

second round of ligand docking as described above. The only difference during the second 

round was that the starting binding mode from the model generated in the first round was 
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used instead of a manual binding site assignment. After generating 5,000 models during 

a second round of docking, the top 10% of models again were used to seed a third round 

of docking. After the third round of docking, the top 10% of models were clustered based 

on ligand root mean square deviation (RMSD) with a cutoff of 3 Å (Alexander et al., 2011) 

and the center of each cluster with more than 2 members was used for further analysis. 

This iterative method of ligand docking maximizes the sampling of ligand and receptor 

flexibility to allow for unique low energy binding mode to be explored.  

 

Analysis within and across ligand scaffolds based on structure and atom properties 
 

After five rounds of iterative ligand docking, the final binding modes from each of 

the 21 ligands were compared within and across their scaffold families to detect common 

binding patterns. Within the binding modes for each ligand, the top 10% of models were 

clustered based on ligand RMSD (Alexander et al., 2011) and the center of each cluster 

was identified for all clusters with more than 2 members. Within each of the five scaffolds, 

the clusters centers were compared against each other with a new measure called 

PropertyRMSD. This new measure is used to distinguish between common binding modes 

across different ligands of the same scaffold, aligning ligand atoms in space as well 

aligning any user-defined atom properties. The measure is based loosely off the equation 

for RMSD100, which normalizes the root mean square deviation between pairs of three-

dimensional structures of different sizes (Carugo & Pongor, 2001). The equation has been 

modified as appropriate for ligands as such: 

 

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑅𝑀𝑆𝐷𝑁 =
𝑃𝑅𝑀𝑆𝐷

1 + 𝑎 ∙ log
𝑁
𝐵
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where B is the number of atoms the user has specified should be aligned for a given pair 

of ligands, N is the actual number of atoms aligned, and a is computed such that the 

denominator equals 1/B at N = 1, to prevent non-physical (negative or infinite) RMSDs.  

PRMSD is equivalent to the traditional formula for RMSD, but has been extended 

by distance between properties, e.g.  

 

𝑃𝑅𝑀𝑆𝐷 = √∑(𝑥1,𝑛 − 𝑥2,𝑛)
2 + (𝑦1,𝑛 − 𝑦2,𝑛)

2+(𝑧1,𝑛 − 𝑧2,𝑛)
2 +∑𝑏𝑖(𝑝𝑖,1,𝑛 − 𝑝𝑖,2,𝑛)

2

𝑖

𝑁

𝑛=1

 

 

where x1,n refers to the x-position of the n-th atom on the first molecule, x2,n refers to the 

second molecule, etc.  pi,1,n refers to the i-th property value of interest for atom n on the 

first molecule; bi is an adjustable, property-dependent constant with units 1/A that is 

used to adjust for the ranges of various properties and the relative penalty for difference 

in distance versus property.  In this application, we used the product of sigma charge 

and van der Walls volume as the only property and bi was set to 5, which was the 

inverse standard deviation of this property over the ensemble of molecules. Once 

pairwise PropertyRMSD values were calculated for all ligands within a particular 

scaffold, the ligands were clustered with a cutoff of 1 unit and the largest clusters, 

representing the most common binding modes within a particular scaffold, were further 

evaluated. 

 

Docking non-functional ligands into the mGlu5 comparative model 
 

The 11 ligands from Table 12 that were considered non-functional because of their 

lack of glutamate modulation in intracellular Ca2+ mobilization studies were evaluated for 

their likelihood to bind mGlu5 in the same mode occupied by the active modulators. As 
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with the set of functional ligands, non-functional ligands were computationally docked into 

the comparative model of mGlu5 using Rosetta Ligand (Davis & Baker, 2009, Lemmon & 

Meiler, 2012, Meiler & Baker, 2006). The ligands started at the position occupied by the 

largest cluster from their scaffold. Each modulator was allowed to sample binding modes 

in a 5.0 Å radius and full rotational freedom. After generating 5,000 models, the top 10% 

of models were clustered based on ligand root mean square deviation (RMSD) with a 

cutoff of 3 Å (Alexander et al., 2011) and the center of each cluster with more than 2 

members was used for further analysis. 

 

Filtering based on functional mutagenesis data 
 

The effect of mGlu5 single-point mutations on ligand binding affinity estimates for 

a representative probe ligand from each scaffold was determined by Dr. Karen Gregory. 

Glutamate concentration-response curves (CRC) for single-point mutations of mGlu5 with 

the addition of the different ligands were generated from a Ca2+ mobilization assay. Affinity 

estimates were calculated from progressive fold-shifts of the glutamate CRC by applying 

an operational model of allosterism (Gregory et al., 2012, K. Leach et al., 2007). Statistical 

analysis on the effect of mutations on affinity was compared to wild-type by one-way 

analysis of variation (ANOVA) and Dunnett’s post-test. Mutations causing a significant 

decrease or loss of affinity were considered functionally important residues for the binding 

of that ligand scaffold. The binding mode represented by the cluster center from each 

scaffold was compared to the results from this experimental data. 
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Table 13 
Functionally critical residues significantly reduce PAM and NAM activity when mutated. 
When mutated, residues listed here caused a significant decrease or loss of affinity of PAM or 
NAM during glutamate-mediated mobilization of intracellular Ca2+ compared to wild-type mGlu5. 
Experiments were performed by Dr. Karen Gregory. 

Location in 
receptor 

MPEP series 
(MPEP)+ 

VU0366248series 
(VU0366248) 

VU0366058 
series 

(VU0366058) 
VU29 series 

(VU29) 

TM3 G651F G651F   

P654S P654S   

P654F P654F P654F P654F 

Y658V Y658V Y658V  

TM5 P742S    

L743V    

 N746A   

G747V   G747V 

TM6 T779A    

T780A   T780A 

W784A W784A W784A  

 F787A   

V788A    

TM7 S808A S808A   

S808T    

A809V A809V  A809V 

A809G   A809G 

T810A    
+from (Gregory et al., 2013) 

 
 

For details on the mGlu5 comparative modeling and ligand docking protocol, 

including command lines and links to input and output files, refer to the protocol capture 

for Chapter V provided in the Appendix. 

 

 

Results and Discussion 
 

Frequently sampled binding modes are in proximity to functionally critical residues 
 

To determine the preferred binding modes for active modulators of mGlu5 within a 

particular chemical scaffold, ligands potentiating or inhibiting glutamate response were 

docked into a previously published comparative model of mGlu5 (Gregory et al., 2013). 

After three rounds of iterative docking with full receptor and ligand flexibility that allowed 
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for ligand translation in a 5 Å radius, binding modes for ligands within each scaffold were 

clustered according to similarities in spatial and chemical properties with the 

PropertyRMSD quality measure. The correct binding mode has been identified within 

clusters containing at least 1% or more of the total binding modes in studies with Class A 

GPCRs (see Chapter III); as such, the largest clusters for each scaffold in this study were 

evaluated in detail (Figure 31). A wide range of binding modes were sampled by 

modulators in each scaffold, indicating that the allosteric binding pocket is able to 

accommodate a range of ligand conformers and sizes. This is not surprising, given the 

range of chemical scaffolds that are competitive for the common allosteric site in mGlu5. 

For MPEP (Figure 31A) and CDPPB (Figure 31D) in particular, binding modes where the 

ligand lies beyond the transmembrane helices are observed. While these binding modes 

are a possible result of the computational docking studies, they are unsupported due to 

the body of experimental work supporting an allosteric binding site that lies within the mGlu 

transmembrane helical bundle (Gregory et al., 2013, 2011, Malherbe, Kratochwil, Zenner, 

et al., 2003, Pagano et al., 2000). 

Notably, the binding mode from the largest cluster from each scaffold is within 

interaction distance of the residues indicated by mutagenesis to be functionally important 

(Figure 32). A common binding pocket is found to encompass members of the four diverse 

scaffolds. This binding mode generally places the long axes of the ligand parallel to the 

transmembrane helices at the level of P654, Y658 and W784. Similarities in ring 

placement are seen between ligands from different scaffolds as well. The phenyl rings in 

ligands from the VU0366248 series structurally align with the pyridine and phenyl rings of 

MPEP. The pyrimidine on VU0366058 aligns with the phenyl from MPEP. In CDPPB, there 

is a linear relationship between one of the symmetric diphenyl groups and the benzamide. 

The phenyl group in CDPPB aligns closely with the phenyl of MPEP, whereas the 

benzamide is in approximate position to the pyridine of MPEP.



 

 
Figure 31 
Binding modes from the largest cluster for each scaffold are within interaction distance of functionally important residues.  
Representative members from the largest clusters for each scaffold are shown docked into a comparative model of mGlu5. The binding 
mode from the largest cluster is shown in green for the A) MPEP series, B) VU0366248 series, C) VU0366058 series and D) VU29 
series. Binding modes from other large clusters are shown in blue and purple. Side chains for functionally important residues as indicated 
in Table 13 are shown in cyan.  

1
5

3
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Figure 32 
A representative ligand from the binding mode of the largest cluster for each scaffold 
align within an allosteric site supported by functional data. 
MPEP is shown in green, VU0366058 is in blue, VU0366248 is in pink and VU29 is in purple. 
The side chain conformations for P654, Y658 and W784 from each binding mode are shown in 
cyan. 

 

 

Different ligands within a single scaffold align in spatial and chemical properties 
 

Within the largest cluster for each scaffold, representatives from each ligand were 

determined, as seen in Figure 32. Within the MPEP series, the top cluster contained 

representatives from all seven ligands that were docked from that scaffold with consistent 

alignment between the two rings separated by the acetylene (Figure 33A). The common 

binding mode for all the ligands from the MPEP series sits in range of all the residues 

found to be functionally important for MPEP, bounded by S808 and Y658 (Gregory et al., 

2013). For 1B and 1D, the additional phenyl ring is in range of π-π stacking interactions 

with Y658. However, it is difficult to determine from the results whether the pyridine ring 

points towards or away from the extracellular surface, which has been seen in previous 
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studies (Gregory et al., 2013). The ligands from this series are small and rigid compared 

to the binding pocket and as such, both orientations may be possible.  

Within the VU0366248 series, consistent alignment between the amide and cyano 

functional groups was observed (Figure 33B). The fluoro group on the benzamide is in 

range of forming hydrogen bonds with S808. However, the largest cluster only contained 

representatives from 2C, 2E and 2F. Unlike the other ligands from the VU0366248 

scaffold, these three ligands in particular all have the chloro-group in the 3-position of the 

phenyl ring. These chemically similar ligands are found to dock in a consistent binding 

mode that is energetically unfavorable for other ligands within this scaffold.  

The top cluster for the VU0366058 series was found to represent all five ligands in 

the scaffold and held a binding mode in which the cyano and amide groups were 

consistently aligned. In this binding mode, the cyano group points towards Y658, a 

functionally important residues for VU0366058 (Figure 33C). Besides the Y568 residues, 

however, there is little mutational data on VU0366058 to confirm or deny the binding mode 

provided by the docking studies. 

For the VU29 series, the top binding mode represents all but the structurally 

dissimilar 4E, which is much larger due to the addition of a fourth phenyl group. Within the 

common binding mode, the position of the diphenyl groups is conserved, as is the 

alignment of the benzamide ring (Figure 33D). There are no clear interactions between 

the ligands and the functionally important residues for ligands within this series. For this 

bulky scaffold, steric hindrance may prohibit alternative binding modes in which the ligands 

are able to actively modulate glutamate signal.



 

 
Figure 33 
The largest cluster for each scaffold aligns different ligands by structural and chemical similarity.  
Members from the largest cluster for each scaffold are shown in green, docked into a comparative model of mGlu5. Functionally 
important residues for allosteric modulation are shown in cyan sticks. A) MPEP series, B) VU0366248 series, C) VU0366058 
series and D) VU29 series. 
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Non-functional ligands from the MPEP and VU0366248 series can accommodate binding 
modes of active ligands 
 
 Ligands from SAR studies that do not demonstrate the ability to modulate 

glutamate response were evaluated to see whether they could bind in the same mode as 

those within their chemical scaffold. These non-functional ligands were allowed to dock 

with full receptor and ligand flexibility within a radius of 5 Å, as with the active ligands. The 

top cluster from the docking results for each non-functional ligand was compared to the 

common binding mode from its scaffold.  

Non-functional ligands that were tested from the MPEP scaffold (1H, 1I and 1J) 

contained the phenyl and pyridine rings with the acetylene linker, similar to the active 

ligands from the same scaffold. Docking studies were performed to explore why a change 

in the position of the methoxy on the pyridine group (as in 1H), the addition of methyl 

acetate (as in 1I) or the addition of a benzenesulfonic acid, 4-methyl-, methyl ester group 

(as in 1J) greatly reduces glutamate modulation as suggested by SAR studies (Alagille et 

al., 2005, Kulkarni et al., 2009). For ligands in the VU0366248 group, removal of chloro 

group (as in 2H) or substitution of the phenyl with an adamantane (as in 2I) greatly reduces 

ligand functionality (Felts et al., 2010, Kulkarni et al., 2009). 

For ligands in both the MPEP and VU0366248 series, non-functional ligands 

demonstrated the preference to dock in the same binding mode as their functionally active 

counterparts (Figure 34). For both series, the ligands show limited conformational range 

due to the linear preference of the acetylene and amide linkers between the two rings. 

Docking results show a preference for these rigid ligands to bind with their long axis 

parallel to the helices to avoid clashing with side chains in the receptor. As a result, the 

positioning of the rings is highly conserved in both series.  
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Figure 34 
Non-functional ligands from the MPEP and VU0366248 series accommodate the same 
binding mode as functional ligands. 
The common binding mode for active modulators from each scaffold is shown in green, and non-
functional ligands are shown in yellow, orange and red. Residues known to be functionally 
important for MPEP and VU0366248 are shown in cyan. A) Ligands from the MPEP series. 
MPEP is shown in green, 1H is in yellow, 1I is in orange and 1J is in red. B) Ligands from the 
VU0366248 series. VU0366248 is in green, 2H is in orange and 2I is in red. 

 

 

Steric hindrance may prevent activity in non-functional ligands from the VU0366058 series 
 

Three non-functional ligands from the VU0366058 scaffold were evaluated for their 

ability to accommodate the common binding mode observed among the active ligands in 

the scaffold. The addition of two methoxy groups on the phenyl ring (as in 3F) and the 

substitution of the phenyl to a pyridine (as in 3G) or naphthalene (as in 3H) reduces 

functionality substantially (Mueller et al., 2012). In evaluating the non-functional ligands 

from the VU0366058 scaffold, added bulk due to the addition of two methoxy groups (as 

in 3F) or an extra phenyl ring (as in 3H) flips the ligand such that the benzoxazole faces 

towards the intracellular side of the receptor. As seen in Figure 35A, 3F and 3H has also 

been pushed further from the functionally important residues into an alternate binding 

mode due to steric hindrance. 3G is similar in size and chemical structure to the active 

ligands and as a result, it is able to accommodate the same general binding mode as the 

active ligands from the VU0366058 scaffold as seen in Figure 35B. However, the 
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positioning of the nitrogen in the benzoxazole is flipped, which may suggest interactions 

with the heteroatom that reduces the functionality of the ligand. 

 

 

Figure 35 
Non-functional ligands from the VU0366058 series docked into the comparative model of 
mGlu5.  
The common binding mode for active modulators from the VU0366058 series is shown by 
VU0366058 in green. Residues known to be functionally important for VU0366058 are shown in 
cyan. The top ranked binding mode for A) 3F is shown in yellow, 3H is in red, and B) 3G is shown 
in orange. 

 
 

Position of phenyl groups are highly conserved in functional and non-functional ligands 
from the VU29 series 
 

Three non-functional ligands from the VU29 series were introduced into the binding 

site of active modulators through docking studies. SAR studies found that the substitution 

of one of the phenyl groups to a pyridine (as in 4H) causes a loss in potency, as well as 

the substitution of the phenyl ring of the benzamide to a cyclopentane (as in 4I) or the 

addition of two methoxy groups onto the benzamide (as in 4J) (Kinney et al., 2005). With 

the heteroatom substitution, the binding mode of 4H was flipped such that the phenyl ring 

of the benzamide acted as the counterpart to the other phenyl ring (Figure 36A). However, 

changes to the benzamide resulted in no differences in the preferred binding mode of 4I 

or 4J (Figure 36B). This result suggests that the position of the phenyl groups seem to be 

highly conserved. These results also demonstrate a preference of the functional group of 
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the ligands in the VU29 series to be pointing towards the extracellular surface in the 

receptor core where there is room for bulky substituents to be accommodated.  

 

 

Figure 36 
Non-functional ligands from the VU29 series docked into the comparative model of 
mGlu5.  
The common binding mode for active modulators from the VU29 series is shown by VU29 in 
green. Residues known to be functionally important for VU29 are shown in cyan. The top ranked 
binding mode for A) 4H is shown in yellow, B) 4I is shown in orange and 4J is shown in red. 

 

Conclusions  
 

In this study, a set of ligands known to positively or negative modulate mGlu5 

activity from four different chemical scaffolds were computationally docked into a 

previously published comparative model of mGlu5 (Gregory et al., 2013) to understand the 

structural and chemical binding determinants on both the receptor and the small 

molecules. The proposed binding modes from docking studies were evaluated in light of 

site-directed mutagenesis studies done on mGlu5 with probe ligands as well as SAR 

studies from each scaffold. In order to compare common binding modes across different 

ligands within the same scaffold, a new measure was introduced called PropertyRMSD 

that not only compares ligand conformations by their spatial similarly, but also by 

conservation of chemical properties. When using PropertyRMSD as the quality measure 

during clustering, conserved ligand SAR becomes a key factor when determining favored 
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binding modes. This is different than traditional RMSD calculations, which only capture 

structural similarities between the common atoms of ligands.  

The results found here indicate that the top cluster for each scaffold is in line with 

the functionally important residues from mutagenesis studies. The ligands bound in a 

common binding pocket surrounded by P654, Y658 and W784, even when they are 

dissimilar in chemical structure. The long axes of the ligands were found to be parallel to 

the transmembrane helices. Hydrophobic interactions between Y658 and W784 with the 

phenyl groups of ligands from the MPEP series were consistently found within compounds 

with the scaffold. Important polar interactions were predicted between the fluorine on the 

benzamide group of ligands in the VU0366248 series and S808 as well as the cyano group 

on ligands from the VU0366058 series with Y658. These results are in agreement with 

findings on other MPEP-based compounds, such as the role of W784, Y658 and S808 on 

2-, 3- and 4-BisPEB (Molck et al., 2012). 

These results validate the computational model in light of functional studies as they 

demonstrate that the ligand docking favors sites that are also relevant in functional 

mutagenesis studies. These results also supports previous studies that favor clustering 

analysis for computational docking studies over evaluation by energy scores alone 

(Kaufmann & Meiler, 2012). Particularly with low-resolution docking studies done with 

comparative models, the ability for the Rosetta energy function to discriminate between 

relevant binding modes is decreased. Evaluating binding modes that are highly sampled 

through clustering provides biologically relevant results across a variety of systems 

(Kaufmann et al., 2009, Kaufmann & Meiler, 2012, London & Schueler-Furman, 2007).  

Furthermore, clustering based on the PropertyRMSD measure allowed for 

illumination of important chemical determinants of each scaffold. Highly conserved 

chemical groups within the analysis of each top cluster includes the phenyl and pyrimidine 

rings in the MPEP series, the amide and cyano groups in the VU0366249 and VU0366058 
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series and the phenyl rings in the VU29 series. These groups are also the ones that are 

conserved during SAR studies on these scaffolds and as such, it is not surprising that they 

are aligned in the top binding modes for each scaffold. For MPEP, changes at the pyridine 

ring were not tolerated during SAR substitutions (Alagille et al., 2005). The most potent 

ligands in the VU0366248 series were found to have the 3-cyano substitution on the 

benzamide ring (Kulkarni et al., 2009). Similarly, the 5-cyano substitution was found to be 

necessary for potency at the pyrimidine (Mueller et al., 2012). For PAMs in the VU29 

series, substitutions on the phenyl ring was found to be highly sensitive to changes in 

potency (Lindsley et al., 2004). 

To determine whether chemically similar ligands with little to no modulator activity 

would accommodate the same binding mode as functionally active ligands, two to three 

non-functional ligands were docked with the mGlu5 comparative model at the position 

given by the top cluster for each scaffold. Even when given full range of translational and 

rotational flexibility, non-functional ligands for ligands in each scaffold were found to prefer 

the same binding mode as the functional ligands. Small differences included the 

introduction of the heteroatom in 4H of the VU29 series and 3G of the VU0366058 group 

which flipped the ligand, suggesting alternate hydrogen bond formations. Also, added bulk 

through methoxy groups in 3F or an additional phenyl group in 3H caused steric 

hindrances that pushed the ligand to an alternate binding mode. However, all other non-

functional ligands were able to dock in the same position as that of their functional 

counterparts. If the binding modes for these non-functional ligands are truly similar to that 

of the functional ligands, this may explain why the SAR of these ligands is so steep and 

why small changes to chemical structure can lead to compounds with a large range of 

functionality, even switches between positive, negative and neutral modulation (Wood et 

al., 2011). Alternatively, the scoring function used in the computational docking of these 

ligands may not be able to capture the subtle changes in SAR for the non-functional 
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ligands and as a result, showed no differences in the binding modes of active versus 

inactive modulators. This suggests that relevant interactions between ligands and the side 

chains of the receptor are not being captured by the Rosetta energy function during 

docking and that only steric effects are being considered.  

The comprehensive docking study presented here with 32 functional and non-

functional ligands across a diverse set of four chemical scaffolds highlight the ability for 

the mGlu5 allosteric site to accommodate ligands of different size and chemical content. 

In addition, computational docking with receptor and ligand flexibility was found to sample 

relevant binding modes that interact with functionally important residues as determined by 

mutagenesis. Clustering the binding modes with PropertyRMSD highlights important 

chemical properties on the ligand that are also found to be critical in SAR studies. The 

agreement between the docking studies with both functional mutagenesis and small-

molecule SAR validate the data provided the pharmacology, chemistry and computational 

work that can not only apply to future drug discovery efforts for mGlus, but across different 

therapeutically relevant systems as well. 
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CHAPTER VI 

 

CHARACTERIZING THE ROLE OF CYSTEINE RESIDUES ON 
METABOTROPIC GLUTAMATE RECEPTOR 5 (MGLU5) FUNCTION 

 

 

Summary 
 

The metabotropic glutamate receptor subtype 5 (mGlu5) plays an important role in 

the regulation of cognitive function. Allosteric modulators that bind mGlu5 hold promise as 

subtype-selective therapeutics for schizophrenia and other cognitive disorders. Because 

they do not bind the orthosteric site, these allosteric compounds offer the possibility of 

treatment without off-target effects. While structure-based drug discovery would assist in 

the development of such compounds, there are no experimentally determined structures 

of Class C GPCRs to date. Substituted cysteine accessibility method (SCAM) and disulfide 

cross-linking studies are established approaches for determining experimental restraints 

to confirm the orientation, relative positioning and membrane depth for helices involved in 

the allosteric binding site. Information about the ligand binding pocket can be directly 

determined using thiol-reactive ligands. These experiments require a functional mGlu5 

receptor with a cysteine-less background, the first of which is described here. All cysteine 

residues were systemically substituted in the N-terminal domain truncated “headless” 

mGlu5 receptor and the effect of single point mutations as well as multiple cysteine residue 

mutations were evaluated through functional and radioligand binding assays. The 

sensitivity of mGlu5 receptors to methanethiosulfonate (MTS) reagents was also evaluated 

for the full and headless wild-type and mutant mGlu5 receptors. Two cysteine residues 

were found to be sensitive to substitution, C630 and C781. Single point mutations of these 

residues as well as mutation in a background of an otherwise cysteine-less receptor 
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demonstrated reduction in the potency of positive allosteric modulators. Despite this, a 

headless mGlu5 receptor with a cysteine-less background was constructed that retained 

functionality with positive allosteric modulators. An mGlu5 receptor construct with one 

cysteine, C781, potentiates glutamate response with positive allosteric modulators as well 

as retains concentration-specific binding of a radiolabelled ligand. 

 

Introduction 
 

Glutamate is a major excitatory neurotransmitter in the mammalian central nervous 

system (CNS) (Dingledine et al., 1999). Glutamate initiates a wide variety of key CNS 

functions when bound to metabotropic glutamate receptors, a member of the class C G 

protein-coupled receptor (GPCR) family (Hollmann & Heinemann, 1994). The 

heterogeneous distribution and diverse physiological roles of mGlu subtypes provide an 

opportunity to develop therapeutic agents that will selectively target and modulate a range 

of neurological and psychiatric disorders (Conn & Pin, 1997, Schoepp, Jane, & Monn, 

1999). The metabotropic glutamate receptor subtype 5 (mGlu5) is involved in mammalian 

cognitive function through diverse signaling pathways that modulate synaptic plasticity 

(Hollmann & Heinemann, 1994). Selective modulators of mGlu5 have the exciting potential 

for the development of novel treatment strategies for disorders that disrupt cognitive 

function (Conn et al., 2009).  

Because the orthosteric binding site, located in the extracellular N-terminal 

domain, is well conserved between all subtypes of mGlus relative to other regions on the 

receptor (Conn & Pin, 1997), an approach to selectively target mGlu5 is to identify ligands 

with allosteric binding sites (Gasparini et al., 2002). Ligands that bind to an allosteric site 

and enhance receptor activity are known as positive allosteric modulators, or PAMs. 

Ligands inhibiting receptor activity are known as negative allosteric modulators, or NAMs.  

Negative allosteric modulators (NAMs) MPEP and fenobam alleviate cognitive and 
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neuropsychiatric impairments in patients with fragile X syndrome (Dӧlen & Bear, 2008, 

McBride et al., 2005, Yan et al., 2005). Positive allosteric modulators (PAMs) such as 

CPPHA have been shown to improve hippocampus-dependent spatial learning and have 

antipsychotic efficacy in behavioral model systems, holding promise as therapeutic agents 

for schizophrenia (Ayala et al., 2009, Kinney et al., 2005). 

However, progress towards clinically applicable drugs targeting mGlu5 is 

hampered by the particularly steep structure activity relationships (SAR) in allosteric 

modulators. Small changes in allosteric ligands can cause complete loss of activity or a 

“molecular switch” from a PAM to NAM or NAM to PAM (Wood et al., 2011). While 

structure-based drug design may help to shed light on the complex SAR of mGlu5 allosteric 

modulators, a crystal structure of a Class C GPCR has yet to be determined. 

Computational models of mGlu5 have helped increase understanding of the allosteric 

binding pocket of mGlu5 (Gregory et al., 2013, Malherbe, Kratochwil, Zenner, et al., 2003, 

Mühlemann et al., 2006). However, there is limited confidence in the resolution of the 

computational models due to the low sequence identity between mGlu5 and the Class A 

GPCR structural templates. Experimental restraints are necessary to provide structural 

information that will validate the computational models that have been generated for 

mGlu5. In particular, structural restraints obtained through experiments such as substituted 

cysteine accessibility method (SCAM) (Karlin & Akabas, 1998) and disulfide cross-linking 

studies (Wess, Han, Kim, Jacobson, & Li, 2008) would provide a way to confirm the 

orientation, relative positioning and membrane depth for helices involved in allosteric 

binding. A thiol-reactive ligand tagged with a methanethio-sulfonate (MTSL) spin label 

bound to a cysteine can indicate interactions between a ligand and residue on the 

receptor, providing direct information about the allosteric binding site (Loo & Clarke, 1997).  

The prerequisite for the abovementioned studies is an mGlu5 background where 

the cysteine residues have been removed. Once a cys-less receptor background has been 
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constructed, cysteines can be mutated back into the receptor at residues that would be 

important to probe for structural restraints, such as residues within the proposed binding 

site of a ligand. A cys-less model of the entire mGlu5 receptor could not remain active, 

since there is a crucial cysteine-rich domain that links the extracellular N-terminal domain 

to the transmembrane helices which transmits receptor activation via a conserved disulfide 

bridge (X. Liu et al., 2004, Muto et al., 2007, Rondard et al., 2006). However, the 

“headless” mGlu5 with truncation of the extracellular N-terminal domain has been 

demonstrated to behave like the wild-type receptor in terms of G protein coupling (Goudet 

et al., 2004). In the headless receptor, PAMs act as agonists and NAMs act as inverse 

agonists (Y. Chen et al., 2007). Therefore, a cys-less system constructed with the 

headless mGlu5 receptor would still be an important tool for structural studies of the 

allosteric modulator binding. Within the headless mGlu5 receptor, there are 14 cysteine 

residues as opposed to the 38 native cysteine residues in the full receptor. Ten cysteine 

residues are in the transmembrane (TM) region (C587, C617, C625, C630, C633, C643, 

C701, C753, C781, C802) and four are in the loop regions (C680, C690, C732, C815). Of 

the 14 cysteine residues, two are stabilized by a conserved disulfide bond between TM3 

and the second extracellular loop (EC2) (C643, C732). All of these cysteine residues are 

conserved amongst the group 1 mGlus (mGlu1 and mGlu5) except for C625, C633, C690 

and C701. The cysteine residues conserved across all mGlus are C643, C732, C753 and 

C781.  

The purpose of this study is to construct a functional headless mGlu5 receptor with 

a cysteine-less background. In doing so, the role of cysteine residues in the function of 

mGlu5 was determined. While all cysteine residues were successfully mutated to either an 

alanine, serine or valine, the mutation of C630 and C781 significantly decreased the 

efficacy of PAMs compared to the wild-type receptor. These residues are therefore 

postulated to be important for ligand interaction. 
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Materials and Methods 

 

Materials 

 
Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS) and 

antibiotics were purchased from Invitrogen (Carlsbad, CA). [3H] methoxyPEPy (76.3 

Ci/mmol) was custom synthesized by PerkinElmer Life and Analytical Sciences (Waltham, 

MA). CDPPB (3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide), CPPHA (N-{4-

chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide), 

VU29 (4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide), VU0415051 (N-tert-butyl-6-

[2-(3-fluorophenyl)ethynyl]pyridine-3-carboxamide), VU0357121 (4-butoxy-N-(2,4-

difluorophenyl)benzamide), VU0360172 (N-cyclobutyl-6-((3-

fluorophenyl)ethynyl)nicotinamide hydrochloride), VU0360173 (6-((3-

fluorophenyl)ethynyl) pyridin-3-yl)(3-hydroxyazetidin-1-yl)methanone), VU0404211 (1-(4-

(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethan-1-one), VU0364289 (2-

{4-[2-(benzyloxy)acetyl]piperazin-1-yl}benzonitrile), VU0405386 (N-(tert-butyl)-5-((3-

fluorophenyl)ethynyl)picolinamide), VU0405398 ((5-((3-fluorophenyl)ethynyl)pyridin-2-

yl)(3-hydroxyazetidin-1-yl)methanone) and VU0403602 (N-cyclobutyl-5-((3-

fluorophenyl)ethynyl)ethynyl) picolinamide hydrochloride) were all synthesized in-house 

using previously reported methods (Y. Chen et al., 2007, 2008, Gregory et al., 2012, 2013, 

Kinney et al., 2005, Rodriguez et al., 2010, Xiong et al., 2010, Y. Zhou et al., 2010). Unless 

otherwise stated, all other reagents were purchased from Sigma-Aldrich (St. Louis, MO) 

and were of an analytical grade. 
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Site-directed mutagenesis and cell culture 
 

Site-directed mutagenesis was used to substitute cysteine residues of the wild-

type rat mGlu5 to serine, valine or alanine in pCI:Neo (Quikchange II, Agilent, Santa Clara, 

CA). Mutations were verified by sequencing. Wild-type and mutant rat mGlu5 receptor 

constructs were transfected into HEK293A cells, using Fugene6TM (Promega, Madison, 

WI) as the transfection reagent. Polyclonal stable cell lines were derived for rat mGlu5 

mutant constructs by maintaining the cells at sub-confluence for a minimum of four 

passages in the presence of 1 mg/ml G418 (Mediatech, Manassas, VA). Stably 

transfected cell lines were subsequently maintained at 37C in complete DMEM 

supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 20 mM HEPES, 0.1 

mM Non-Essential Amino Acids, 1 mM sodium pyruvate, antibiotic-antimycotic and 500 

μg/ml G418 in a humidified incubator containing 5% CO2, 95% O2. 

 

Intracellular Ca2+ mobilization assay 
 

A day before assays were run, HEK293A-rat mGlu5 cells were seeded at 50,000 

cells/well in poly-D-lysine coated black-walled, clear bottom 96 well plates in assay 

medium (DMEM supplemented with 10% dialyzed fetal bovine serum, 20 mM HEPES and 

1 mM sodium pyruvate). On the day that the assay was run, the cell permeant Ca2+ 

indicator dye Fluo-4 (Invitrogen, Carlsbad, CA) was used to assay receptor-mediated Ca2+ 

mobilization as described previously (Hammond et al., 2010) using a Flexstation II 

(Molecular Devices, Sunnyvale, CA). A 5-point smoothing function was applied to the raw 

fluorescent Ca2+ traces and basal fluorescence of individual wells determined during the 

first 20 sec.  
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Radioligand binding assay 
 

Radioligand binding assays were performed on cell membranes prepared from 

HEK293A cells expressing wild-type and mutant rat mGlu5. The cells were harvested 

through trypsinization and pelleted through centrifugation for 3 min and 300xg. Cell pellets 

were then resuspended in ice-fold homogenization buffer (50mM Tris-HCl, 10mM EDTA, 

0.9% NaCl, pH7.4). The suspended cell pellets were then homogenized using three 10 se 

bursts, separated by 30 sec periods on ice, with a Tekemar TP-18/10S1 homogenizer 

(Teledyne Tekmar, Cincinnati, OH). Cell fractions were then separated through 

centrifugation for 10 minutes at 1000g. The supernatant was centrifuged for 1 hr at 

30,000xg and the resulting pellet was then resuspended in ice-cold Ca2+ assay buffer. For 

saturation binding experiments, membranes (20-50 µg/well) were incubated with a range 

of [3H]-3-methoxy-5-(pyridin-2-ylethynyl)pyridine ([3H]methoxyPEPy) concentrations (0.5 

nM-60 nM) for 1 hr at room temperature with shaking in Binding Buffer (50 mM Tris-HCl, 

0.9% NaCl, pH7.4). MPEP (10 µM) was used to determine non-specific binding. For 

inhibition binding experiments, membranes were incubated with ~2 nM [3H]methoxyPEPy 

and a range of concentrations of test ligand (100 pM-100 µM) in Ca2+ assay buffer with 

1% dimethylsulfoxide (final concentration) with shaking. The radioligand binding assays 

were terminated by rapid filtration through GF/B Unifilter plates (PerkinElmer Life and 

Analytical Sciences, Boston, MA) using a Brandel 96-well plate Harvester (Brandel Inc., 

Gaithersburg, MD), and three washes with ice-cold Binding Buffer, separating bound from 

free radioligand. Plates were allowed to dry overnight and radioactivity counted using a 

TopCount Scintillation Counter (PerkinElmer Life and Analytical Sciences, Boston, MA). 
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Evaluating substituted-cysteine accessibility during Ca2+ mobilization assay with MTS 
reagents 
 

The Ca2+ mobilization assay was run with wild-type mGlu5 in the presence of [2-

(trimethylammonium)-ethyl] methanethiosulfonate (MTSET), methanethiosulfonate-

ethylammonium (MTSEA) and (2-sulfonatoethyl)-methanethiosulfonate (MTSES) to 

evaluate the effect of methanethiosulfonate (MTS) reagents on PAM potency. As with the 

previously mentioned Ca2+ mobilization assay, HEK293A-rat mGlu5 cells were seeded at 

50,000 cells/well in poly-D-lysine coated black-walled, clear bottom 96 well plates in assay 

medium (DMEM supplemented with 10% dialyzed fetal bovine serum, 20 mM HEPES and 

1 mM sodium pyruvate) a day before running the assay. On the day of the assay, cells 

were incubated with MTS reagents for 2 min at room temperature. Concentrations of the 

specific MTS reagents were 0.5 mM MTSET, 2.5 mM MTSEA, and 5 mM MTSES. The 

plate was washed after 2 min to dilute the MTS reagent and slow the reaction as described 

in previous literature (Liapakis, Simpson, & Javitch, 2001). The cell permeant Ca2+ 

indicator dye Fluo-4 (Invitrogen, Carlsbad, CA) was then used to assay receptor-mediated 

Ca2+ mobilization as described previously (Hammond et al., 2010) using a Flexstation II 

(Molecular Devices, Sunnyvale, CA). A 5-point smoothing function was applied to the raw 

fluorescent Ca2+ traces and basal fluorescence of individual wells determined during the 

first 20 sec.  

 

Statistical analysis 
 

All computerized nonlinear regression was performed using Prism 5.01 (GraphPad 

Software, San Diego, CA). Inhibition [3H]methoxyPEPy binding data sets were fitted to a 

one-site inhibition binding model and estimates of inhibitor dissociation constants (KI) were 

derived using the Cheng-Prusoff equation for competitive ligands (Cheng et al., 1973) and 
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the following version of the allosteric ternary complex model for ligands that did not fully 

displace radioligand (Lazareno & Birdsall, 1995): 

 

𝑌

𝑌𝑚𝑎𝑥
=

[𝐷]

[𝐷] + 
𝐾𝐷 (1 +

[𝐵]
𝐾𝐵
)

(1 +
𝛼[𝐵]
𝐾𝐵

)

 

 

where Y/Ymax is the fractional specific binding, D is the radioligand concentration, B is the 

molar concentration of the allosteric modulator, KD is the radioligand equilibrium 

dissociation constant, and KB is the allosteric modulator equilibrium dissociation constant. 

α denotes the cooperativity factor, where values of α > 1 describe positive cooperativity, 

values of α < 1 (but greater the 0) denote negative cooperativity and α = 1 denotes neutral 

cooperativity. 

Allosteric modulator and agonist concentration-response curves were fitted to a 

four parameter logistic equation in order to determine potency estimates: 

 

𝑦 =
𝑏𝑜𝑡𝑡𝑜𝑚 + (𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚)

(1 + 10(𝑙𝑜𝑔𝐸𝐶50−𝐴)𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒
 

 

where bottom and top are the lower and upper plateaus, respectively, of the concentration-

response curve, HillSlope is the Hill coefficient that describes the steepness of the curve, 

and EC50 is the molar concentration of modulator required to generate a response halfway 

between the top and bottom.  

All affinity and potency parameters were estimated as logarithms and are 

expressed as the mean  S.E.M. (Christopoulos, 1998). Statistical analyses were 
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performed where appropriate as indicated using one-way ANOVA with Dunnett’s post-test 

when comparing to control, or Tukey’s post-test when making multiple comparisons. 

 

Results 
 

Evaluation of mutant receptor functionality through PAM potency compared to wild-type 
  
 In our construction of a headless mGlu5 receptor with a cysteine-less background, 

we chose to evaluate functionality as a measure of how a mutant receptor affected the 

potency of PAMs. PAMs act as agonists in the headless receptor, and so a significant 

(greater than 10-fold) decrease in agonist activity at the mutant receptor indicated a lack 

functionality. Mutant receptors that demonstrated PAM potency within 10-fold of the wild-

type receptor were regarded as functional. PAMs with the highest potency available at the 

headless mGlu5 receptor were used so that a change in potency would be unambiguous. 

These included  CDPPB (3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide), CPPHA 

(N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-

hydroxybenzamide), VU29 (4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide), 

VU0415051 (N-tert-butyl-6-[2-(3-fluorophenyl)ethynyl]pyridine-3-carboxamide), 

VU0357121 (4-butoxy-N-(2,4-difluorophenyl)benzamide), VU0360172 (N-cyclobutyl-6-

((3-fluorophenyl)ethynyl)nicotinamide hydrochloride), VU0360173 (6-((3-

fluorophenyl)ethynyl) pyridin-3-yl)(3-hydroxyazetidin-1-yl)methanone), VU0404211 (1-(4-

(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethan-1-one), VU0364289 (2-

{4-[2-(benzyloxy)acetyl]piperazin-1-yl}benzonitrile), VU0405386 (N-(tert-butyl)-5-((3-

fluorophenyl)ethynyl)picolinamide), VU0405398 ((5-((3-fluorophenyl)ethynyl)pyridin-2-

yl)(3-hydroxyazetidin-1-yl)methanone) and VU0403602 (N-cyclobutyl-5-((3-

fluorophenyl)ethynyl)ethynyl) picolinamide hydrochloride). The potency of these PAMs at 

wild-type are included in Tables 1, 2, X and Y. 
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Single cysteine substitutions result in functional mutants 
 

The effect of each individual cysteine residue was evaluated through single point 

mutations. Each cysteine was first mutated to alanine and functional effects were 

evaluated through an intracellular Ca2+ mobilization assay in response to known positive 

allosteric modulators. Experiments were performed by Dr. Karen Gregory, Emma Square 

and Elizabeth Nguyen. All cysteine residues except for C630, C617 and C781 tolerated 

substitution to alanine with no appreciable effect on PAM potency (Table 14). Serine 

mutations were evaluated at the three cysteine residues where alanine was not tolerated, 

and C630S and C617S were found to be functional and respond to PAMs (Table 14). 

However, it was not until the valine mutation was made that C781V was able to regain 

functionality in response to PAMs (Table 14, Figure 62). Full evaluation of C781V with 

additional PAMs VU0404211, VU0415051, VU0405386 and CPPHA is given in the 

Appendix (Table 23, Figure 62). 
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Table 14 
PAM potency (pEC50) as agonists (initial peak) at N-truncated mGlu5-wt and single 
cysteine mutants.  
Data represents the mean ± S.E.M. of 3-5 experiments performed in triplicate, unless indicated 
otherwise. Data collected by Dr. Karen Gregory, Emma Square and Elizabeth Nguyen. 

Mutation VU29 VU0403602 VU0360172 VU0415051 VU0405398 VU0405386 

mGlu5 wt 7.02 b 8.01 b 7.02±0.09 7.73±0.12 6.65±0.11 8.05±0.29 
C587A 6.66 b 8.25 b 7.11±0.15 7.61 a 6.62±0.13 7.86±0.04 
C625A 7.66 b 9.03 b 7.73±0.11 8.03 a 7.01±0.05 8.24 a 
C633A 7.15 b 8.51 b 7.44±0.15 7.77±0.05 6.78±0.14 7.86±0.10 
C680A 6.86 b 8.27 b 7.16±0.15 7.55 a 6.80±0.06 7.74±0.06 
C690A 7.01 b 8.49 b 7.44±0.15 7.74 a 6.80±0.20 7.91±0.09 
C701A 7.05 b 8.69 b 7.36±0.25 7.76 a 6.87±0.09 8.06 a 
C815A 6.58 b 8.47 b 6.87±0.08 7.23±0.03# 6.43±0.05 7.14±0.21# 
C753A 6.17 b 7.99 b 6.78±0.08 7.00±0.07# 6.25±0.15 7.10±0.20# 
C802A 6.44 b 7.64 b 6.82±0.13 7.24±0.10# 6.16±0.17 7.45±0.04 
C630A 6.13 b 7.34 b 6.54±0.16 6.90±0.09# 6.29±0.17 7.10±0.09# 
C630S 6.63 b 8.28 b 7.25±0.05 7.56 a 6.76±0.12 7.87 a 
C617A No PAM# b No PAM# b 7.09 N.D. 6.78 N.D. 
C617S 6.89 b 8.54 b 7.15±0.09 7.42±0.08 6.69±0.04 7.50±0.11 
C781A No PAM# b No PAM# b No PAM# N.D. No PAM# N.D. 
C781S No PAM# b No PAM# b No PAM# N.D. No PAM# N.D. 
C781V 5.98# b N.D. 7.39 N.D. N.D. N.D. 

# represents mutants at which a greater than 10-fold shift decrease in potency compared to wild-
type was observed 
a mean of n=2 determinations only 
b single determination. 
N.D., not determined 

 

Effect of multiple cysteine residue substitutions on the headless mGlu5 receptor 
 

Cysteine substitutions were made consecutively in the headless mGlu5 receptor to 

generate constructs with multiple cysteine substitutions. The first cysteine mutation was 

C680A and the following mutations were generated in the order indicated by Figure 37. 

Functionality of the constructs with six (5+C587A), nine (8+C617S), ten (9+C630S), 

eleven (10+C815A) and twelve (11+C781V) mutations were evaluated by intracellular 

Ca2+ mobilization in response to PAMs. As seen in Table 15, PAM potency remained 

unchanged for the majority of PAMs at the mGlu5 constructs 5+C587A and 8+C617S. 

PAM potency begins to drop below 10-fold for VU0360172 and VU0405386 at the 

9+C630S construct. At the mGlu5 construct with 11 mutations (10+C815A), PAM potency 

was maintained at all but VU0405398, VU0360172 and VU0405386. At the mGlu5 

construct with all 12 non-disulfide bonded cysteine residues mutated to alanine, serine or 
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valine, PAM potency showed less than 10-fold change from wild-type with CPPHA, 

VU0360172, VU0404211 and VU0415051 but a loss in potency occurred at VU29 and a 

10-fold decrease in potency occurred at VU0405386. Concentration response curves for 

cys-less headless mGlu5 characterization are found in the Appendix (Figure 66).  

While a cysteine-less construct is ideal for designing experiments, a receptor with 

one cysteine remaining can already be used to collect experimental restraints. Because 

the 10+C815A construct demonstrated greater stability with less changes in PAM potency, 

this construct was further functionally characterized and used in radioligand binding 

experiments. Complete characterization of the mGlu5 10+C815A construct with 13 PAMs 

is reported in the Appendix (Table 24, Figure 63-65). 
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C680A 

 

C690A 

C701A 

C633A 

C625A 

C587A 

C802A 

C753A 

C617S 

C630S 

C815A 

C781V 

Figure 37 
Order of consecutive cysteine substitutions performed on the headless mGlu5 construct.  
Cysteine residues from the mGlu5 sequence are shown mapped onto the structural backbone 
of the β2-adrenergic receptor X-ray crystal structure (2RH1). Residues in blue were mutated to 
alanine, residues in green were mutated to serine, residues in red were mutated to valine and 
residues in orange are involved in disulfide bonding. 



 

Table 15 
PAM potency (pEC50) as agonists (initial peak) at N-truncated mGlu5-wt and multiple cysteine mutant constructs.  
Data represents the result of n=1 experiments performed in triplicate, unless indicated otherwise. Data collected by Dr. Karen Gregory, Emma 
Square and Elizabeth Nguyen. 

Mutant CPPHA VU29 VU0415051 VU0360172 VU0404211 VU0405386 VU0405398 VU0403602 

Wild-type 4.87 7.02 7.73±0.12 b 7.02±0.09 b 5.46 8.05±0.29 b 6.65±0.11 b 8.01 
5+C587A 5.20 7.63 7.71a 7.77 a 6.41 7.71 a 7.29 a 8.98 
8+C617S 4.41 6.18 7.08 6.79 4.48 6.93# N.D. N.D. 
9+C630S N.D. N.D. 6.37 5.87# N.D. 6.77# N.D. N.D. 
10+C815A 4.95 5.73 6.76 6.48# 3.76 6.91# 5.43# 7.07 
11+C781V 5.49 No PAM# 6.83 6.58 4.60 6.93# N.D. N.D. 

#represents mutants at which a greater than 10-fold shift decrease in function compared to wild-type was observed 
a mean of n=2 determinations 
b mean ± S.E.M. from 3-5 experiments 
N.D. not determined 

1
7

8
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Effect of multiple cysteine residue substitutions on saturation binding experiments 
 

The headless mGlu5 10+C815A construct was evaluated using saturation binding 

experiments with the radioligand 3[H]methoxyPEPy. Concentration-dependent binding 

was exhibited by the 10+C815A construct, as shown in Figure 38. Binding affinity, 

however, was reduced compared to the wild-type receptor. The maximum specific binding, 

estimated by Bmax, was 20.88 fmol/mg for the 10+C815A construct as opposed to 90.22 

fmol/mg for WT. The equilibrium binding constant Kd was calculated to be 64.11nM for 

the 10+C815A construct, two times more than the Kd at the wild-type receptor at 30.60nM. 

While these values indicate decreased binding affinity for the mutant construct, repeated 

experiments will be necessary to determine if binding affinity is significantly altered. 

 

 
Figure 38 
Concentration depending binding demonstrated by six point saturation binding curves 
for the 10+C815A mGlu5 construct. 
Saturation binding experiments were conducted with 3[H]methoxyPEPy in HEK293 cell 
membranes expressing A) wild-type headless mGlu5 WT membranes at 250 ug and B) the 
headless 10+C815A mGlu5 construct at 500 ug. Data is the result of n=1. 

 
 

Sensitivity to MTS reagents 
 

MTS reagents are commonly used in EPR and thiol-reactive experiments as labels 

to tag specific cysteine residues in a receptor with an otherwise cysteine-less background. 

To test its applicability to the mGlu5 system, the sensitivity of the full and headless mGlu5 
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wild-type receptors to MTS reagents was evaluated. The ideal concentration of MTS 

reagents for use with the truncated and full mGlu5 receptors was first optimized by varying 

the amount of MTS reagent during intracellular Ca2+ mobilization assay with PAMs 

VU0360172 and VU0415051 (see Appendix, Figure 68-69). The optimal concentrations 

resulted in 2.5mM for MTSEA, 5mM for MTSES and 0.5mM for MTSET. These 

concentrations were used in assaying for PAM potency in the presence of MTS reagents 

during intracellular Ca2+ mobilization. While the reduction in functionality of VU0360172 

and VU0415051 due to the effect of the MTS reagents was not significant, it was 

consistent across the various MTS reagents for the headless mGlu5 WT receptor (Table 

6). Difficulty was encountered in gathering consistent data from Ca2+ mobilization with the 

MTS reagents during assay with the full length WT receptor and the results from the 

experiments often did not converge to allow for analysis. Difficulty in collected this data 

may be due to the MTS reagents exhibiting fluorescence themselves. Full concentration 

response curves are found in the Appendix (Figure 70-71). 

 

Table 16 
PAM potency (pEC50) as agonists (initial peak) at N-truncated mGlu5-wt and multiple 
cysteine mutant constructs in the presence of MTS reagents.  
Data represents the mean ± S.E.M. of 3 experiments performed in triplicate. 

mGlu5 construct VU0360172 VU0415051 

HANT WT 7.38±0.30 7.25±0.26 
HANT WT + MTSEA 6.55±0.48 6.67±0.26 
HANT WT + MTSES 7.14±0.18 7.08±0.23 
HANT WT + MTSET 7.12±0.22 6.98±0.21 
Full WT 6.23±0.49 Not converged 
Full WT + MTSEA Not converged 8.42±0.55 
Full WT + MTSES Not converged 6.74±0.63 
Full WT + MTSET 5.84±0.67 Not converged 

 
 

Discussion and Conclusion 
 

In this study, receptor constructs resulting from the systematic mutation of cysteine 

residues in the headless mGlu5 receptor were characterized by how they affect PAM 
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potency and radioligand binding. Mutation of C781 was found to reduce PAM activity, 

while the 10+C815A construct potentiated glutamate response with positive allosteric 

modulators CPPHA, VU29, VU0415051, VU0404211 and VU0403602 as well as retained 

concentration-specific binding of the radiolabelled ligand 3[H]methoxyPEPy. 

The aim of this work was to generate a headless mGlu5 receptor with a cysteine-

less background to be used for further structural studies including use with thiol-reactive 

ligand probes for binding site detection, EPR measurements for distance restraints and 

substituted cysteine accessibility measurements and disulfide cross-linking studies for 

investigations into the receptor’s helical structure. Cysteine-less receptor constructs have 

been generated for Class A GPCRs and have found success in collecting valuable 

structural data. SCAM has been used to map residues lining the binding site of the 

dopamine D2 receptor using MTS reagents (Javitch, Shi, & Liapakis, 2002) and has more 

recently been used to identified eight residues on prolactin-releasing peptide receptor 

(PrRPR) that were crucial for binding and function of PrRP (Rathmann, Pedragosa-Badia, 

& Beck-Sickinger, 2013).  Disulfide cross-linking studies have revealed conformational 

changes that occur in rhodopsin and the M3 muscarinic receptor as a result of activation 

(Hubbell, Altenbach, Hubbell, & Khorana, 2003, S. D. Ward, Hamdan, Bloodworth, & 

Wess, 2002).  Rhodopsin has also been extensively studied using EPR distance restraints 

(Van Eps et al., 2011, Hubbell et al., 2003). Only one study has generated a cysteine-less 

mutant of a class C GPCR, in which three cysteine mutations were made in mGlu6 (Judith, 

2012). This mGlu6 cys-less system, however, has yet to be applied to any structural 

studies. 

In performing single point mutations of cysteine residues, C781 was found to be 

particularly sensitive to substitution, not able to tolerate mutation to either alanine or 

serine. Valine substitution, however, was able to maintain PAM potency with VU0360172, 

VU0404211, VU0415051 and CPPHA. According to computational models of mGlu5, 
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C781 is within range of the allosteric binding pocket and as such, it may play a key role in 

maintaining the structural integrity of the pocket. These results are also in agreement with 

cysteine substitutions done with mGlu6, where the corresponding cysteine at position 793 

on TM6 was found to be important for agonist response (Judith, 2012). C630 and C617 

also demonstrated sensitivity to alanine substitution, which may also indicate their 

importance in maintaining the structure of mGlu5.  

Cysteine substitutions were performed consecutively to create mGlu5 receptor 

constructs with multiple cysteine mutations. Constructs of mGlu5 with six and nine 

substituted cysteine residues demonstrated little to no fold change in PAM potency, 

indicating that these cysteine residues do not influence the binding pocket of the receptor. 

Receptor constructs with 11 and 12 substituted cysteine residues maintained PAM 

potency within 10 fold for several PAMs; however, a significant drop in potency was seen 

with VU0405398, VU0360172 and VU0405386 in the construct with 11 substituted 

cysteine residues. For the cys-less headless mGlu5 receptor construct, no PAM activity 

was seen with VU29 and a significant drop greater than 10-fold was seen with 

VU0405386. This is likely due to the sensitivity of the residues mentioned above during 

the single cysteine substitution screening. C630 and C781 are among the last residues to 

be substituted in the construction of the cys-less mutant and are likely changing the 

conformation of the receptor in such a way that impact PAM activity. To recover PAM 

potency, other constructs can be considered such as one with C630V. Also, leaving the 

cysteine at position 630 in place would still provide a system in which structural 

experiments can be performed without compromising receptor functionality. 

The 10+C815A mGlu5 receptor construct with 11 substituted cysteine residues was 

evaluated for sensitivity to radioligand binding by 3[H]methoxyPEPy. While binding was 

reduced as seen by saturation binding experiments, there was concentration-dependent 

binding occurring in the mutant receptor constructions. This demonstrates further that the 
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allosteric binding pocket in these mutant receptors are still able to bind ligands and as 

such, they would be useful for further studies probing the binding pocket further. 

The purpose of mutating out the cysteine residues is to provide a cys-less 

background in which cysteine residues can be strategically placed. These cysteine 

residues can then be tagged with MTS reagents to retrieve restraints between residues in 

the receptor or between a tagged ligand and a residue in the receptor. In order to perform 

experiments with MTS reagents, mGlu5 sensitivity to these reagents must be 

characterized in light of the functional and binding assays performed with the receptor. 

The optimal concentration of MTS reagents were determined for use with mGlu5 and their 

ability to block the binding pocket of allosteric modulators was evaluated in wild-type 

receptors. Although little change or even an increase was seen in PAM potency in the 

presence of MTS reagents, this may be due to an artificial increase in potency reported 

by the Ca2+ mobilization assay as a result of the fluorescence exhibited by the MTS 

reagents themselves. Alternative second messenger functional assays such as inositol 

phosphate (IP) accumulation should be considered instead when evaluating mGlu5 with 

MTS reagents. 

Structural information on Class C GPCRs is currently limited by the lack of 

experimental information on the receptors. An mGlu5 receptor construct with a cysteine-

less background would provide a crucial tool necessary for structural exploration of the 

receptor through SCAM, disulfide cross-linking, EPR and thiol-reactive ligand studies. Our 

results indicated that such a cysteine-less receptor construct can be both functionally 

active and able to bind ligands. Two cysteine residues in particular, C630 and C781, are 

important for allosteric modulation and may be necessary to maintain for optimal receptor 

functionality. Further studies will include a more thorough characterization of the cys-less 

headless mGlu5 receptor with a C630V mutation and alternate functional assays to prevent 

false positive results from MTS reagents. 
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CHAPTER VII 

 

INCORPORATION OF SEQUENCE-BASED EXPOSURE PREDICTION IN DE 
NOVO MEMBRANE PROTEIN STRUCTURE PREDICTION 

 

 
This work is based on the manuscript in preparation of the same title by Elizabeth 

Nguyen, Jeff Mendenhall, Brian Weiner, Kelly Gilmore and Jens Meiler. 

 

Summary 
 

 The number of short-range contacts for an amino acid affects its placement in 

tertiary structure during protein structure prediction and as a result, should facilitate in 

protein structure prediction. This is especially true for helical membrane proteins, where 

amino acids with many neighboring residues are oriented on the buried face of the helix 

while residues with few neighbors are oriented towards the membrane. An artificial neural 

network-based neighbor count prediction method was developed for membrane protein 

sequences. The model predicts the correct neighbor count to within 2.3 residues of the 

neighbor count calculated from the protein structure. The neighbor count prediction 

method was incorporated directly into a de novo structure prediction algorithm for 

membrane proteins, BCL::MP-Fold. Sampling of membrane protein folds was improved in 

78% of cases based on RMSD100, although sampling of models based on contact 

recovery remained unchanged. However, with the inclusion of the neighbor count 

prediction, top ranked models had higher contact recovery in 67% of cases. The utility of 

neighbor count prediction, as illustrated in this study, motivate additional ideas for refining 

our prediction method results even further. 
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Introduction 
 
 Membrane proteins play an important role in signal transduction, substrate 

transport, ionic and proton gradient maintenance and other important biological 

processes. Their importance is reflected in the fact that they comprise over 25% of the 

human genome (Fagerberg, Jonasson, von Heijne, Uhlén, & Berglund, 2010) and are the 

target for over 50% of drugs on the market today (Overington et al., 2006). However, 

investigations of membrane protein structures using X-ray crystallography and NMR have 

been stalled by the difficulty in achieving a stable form of the protein, often because of 

their large size and lack of solubility (Caffrey, 2003). To date, only 2% of the Protein Data 

Bank (PDB) is comprised of membrane proteins. Nevertheless, advances in computational 

methods for membrane protein structure prediction have allowed for the investigation of 

new membrane protein topologies. 

The challenging problem of computational de novo structure prediction of 

membrane proteins has seen a great deal of progress in recent years. With an implicit 

membrane potential incorporated into the protein structure prediction software Rosetta, 

twelve α-helical multi-pass membrane proteins with less than 150 residues were predicted 

to a root mean square deviation (RMSD) of less than 4 Å from the native structure (Yarov-

Yarovoy et al., 2005). High-resolution modeling using Rosetta of three membrane protein 

domains with less than 150 residues achieved accuracy up to 2.5 Å RMSD (Barth, 

Schonbrun, & Baker, 2007). For the structure prediction of larger membrane proteins, 

secondary structure element assembly with BCL::MP-Fold achieved the correct topology 

in 29 of 34 cases, while RosettaMembrane was able to sample the correct topology in just 

25 cases (Weiner et al., 2013). With current de novo structure prediction methods, 

however, contact recovery above 20% is still difficult to achieve. Helices are often placed 

correctly within the membrane, but their rotation relative to each other is incorrect (Weiner 

et al., 2013). Helical orientation is important when using the models in ligand docking 
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studies, especially with proteins such as G protein-coupled receptors where the binding 

pocket is formed specifically by the pore-facing sides of the helices (Katritch et al., 2013). 

Differentiating between sides of a helix with residues that prefer to form contacts with other 

residues versus being solvent or membrane exposed should aid de novo structure 

prediction to achieve more accurate structure predictions on proteins with high contact-

ordering. 

 Incorporating the general preference of a particular amino acid class to be buried 

versus exposed has already shown to improve protein structure prediction (Simons et al., 

1997, Woetzel et al., 2012). A knowledge-based environment potential per amino acid 

class, calculated over a dataset of known protein structures, has been applied to multiple 

protein structure prediction algorithms. During de novo structure prediction of a protein, 

the environment of a particular residue is compared to that of its amino acid class. 

Because direct calculation of the solvent accessible surface area of a residue can be 

computationally expensive, a commonly approximation of a residue’s environmental 

exposure is the inverse of its neighborhood density, which is the weighted sum of a 

residue’s neighboring atoms (Stouten, Frӧmmel, Nakamura, & Sander, 1993). Evaluating 

structure quality using a residue’s environment, estimated by the number of beta-carbon 

atoms within 10 Å, was found to increase the quality of structure prediction simulations 

using Rosetta (Simons et al., 1997). Calculating neighborhood density between residue 

centroids, defined as pseudo-atoms at the center of mass of the side-chain, improved 

structure prediction quality even further (Rohl, Strauss, Misura, et al., 2004). In fold 

recognition methods, calculating the neighbor count over a 14 Å radius between beta-

carbon atoms and comparing it to amino acid class-based environment potentials was 

found to achieve the best results (Karchin, Cline, & Karplus, 2004). To use the exposure 

prediction within structure prediction algorithms where gradient-based minimization is 

applied, however, the exposure potential must be continuously differentiable. To that end, 
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the neighbor count definition was expanded by applying a weight between 0.0 and 1.0 

according to a transition function between upper and lower threshold values optimized to 

correlate with standard SASA calculated by the program MSMS (Durham, Dorr, Woetzel, 

Staritzbichler, & Meiler, 2009, Sanner, Olson, & Spehner, 1996).  

If evaluating residue neighbor count based on a general amino acid class-based 

environment potential during protein structure prediction improves accuracy, predicting 

specific neighbor count values for a protein sequence should lead to even further 

improvements. Sequence-based predictions of environmental exposure are able to 

account for sequence motifs that are likely to be buried or exposed rather than preferences 

of amino acid identity alone. The purpose of this study is to develop and implement a 

sequence-based neighbor count prediction method for membrane protein structure 

prediction. The method is trained using artificial neural networks on a database of 

membrane proteins from Protein Data Bank and integrated into the de novo protein fold 

method, BCL::MP-Fold. We find that incorporating the predicted neighbor count into de 

novo protein structure prediction improves RMSD and ranks top models with higher 

contact recovery compared to the original prediction method in a set of 18 topologically 

diverse membrane proteins. 

 

Materials and Methods 

 

Membrane protein training set 

 
A set of 177 membrane proteins from the Protein Data Bank (PDB) having less 

than 30% sequence identity and 3 Å or lower resolution was used to train the method 

presented in this work. This training set is the same as the set used to train the 

BCL::JUFO9D secondary structure and transmembrane span prediction method (Leman, 
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Mueller, Karakas, Woetzel, & Meiler, 2013). In brief, all protein chains with determined 

structure of 0 to 3 Å resolution, R-factor of 0.25 and sequence length of 40 to 10,000 

residues were retrieved from the PDB (November 2011) (Berman, Henrick, Nakamura, & 

Markley, 2007). Non-X-ray structures and C-alpha only chains were excluded. PISCES 

was used to filter out structures with similar sequences with at cutoff of 30% sequence 

identity (G. Wang & Dunbrack, 2003, 2005). The resulting training set consists of 226 

chains from 177 membrane protein structures. 

The environment potential for each residue in the training set was evaluated using 

the BCL by calculating its number of neighbors within a defined radius. Neighbor count is 

inversely proportional to the exposure of an amino acid. A sequence separation of at least 

three residues is required before neighbor count is calculated to reduce the bias 

introduced by sequence proximity. This is a necessary step to prevent artificially low 

neighbor count values at the ends of SSE where no loop regions are considered. The 

function used to calculate neighbor count is as follows (Durham et al., 2009). 

 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡(𝑟, 𝑟𝑙𝑜𝑤, 𝑟ℎ𝑖𝑔ℎ) =  

{
 
 

 
 1, 𝑖𝑓 𝑟 ≤ 𝑟𝑙𝑜𝑤
1

2
[cos (

𝑟 − 𝑟𝑙𝑜𝑤
𝑟ℎ𝑖𝑔ℎ − 𝑟𝑙𝑜𝑤

∗ 𝜋) + 1]

0, 𝑖𝑓 𝑟 ≤ 𝑟ℎ𝑖𝑔ℎ

 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑢𝑛𝑡(𝑎𝑎𝑖) =  ∑ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡(𝑟𝑖𝑗 , 𝑟𝑙𝑜𝑤, 𝑟ℎ𝑖𝑔ℎ)
|𝑖−𝑗|>3

 

 
 

where r is the distance between amino acids i and j being considered as neighbors, rlow is 

set to 4.0 Å and rhigh is set to 11.4 Å. These values were chosen because the resulting 

neighbor count has a high correlation with MSMS (Sanner et al., 1996). Residues with a 

distance above 11.4 Å receives a weight of 0, indicating that it is not a neighbor, and 

residues with a distance below 4.0 Å receive a weight of 1, indicating that it is a complete 

neighbor. Distances are calculated between beta-carbon atoms, where a pseudo beta-
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carbon is introduced for glycine. The neighbor count is weighted between these threshold 

values to smoothen the potential, making it continuously differentiable to allow for 

gradient-based minimization. Distances in between the low and high values are given a 

weight calculated with a half cosine function.  

 

Artificial neural network training with cross-validation 
 

An artificial neural network (ANN) machine learning algorithm was trained using 

cross-validation on the protein database split into five subsets. Three of the five subsets 

were used for ANN training, the fourth was used for monitoring the training process to 

avoid overtraining and the fifth was used as an independent dataset to compute the 

accuracy of predictions. The independent and monitoring datasets were permuted through 

the five datasets, resulting in training of twenty separate networks. Inputs to the ANN 

included a set of sequence-specific descriptors generated from the sequence database 

and is described in detail below. The ANN was trained on one output, the residue-specific 

neighbor count which was calculated as described above. 

The ANNs being trained were two-layer feed-forward networks with a sigmoidal 

activation function trained through resilient back-propagations of error (Riedmiller & Braun, 

1993). The two hidden layers contained 400 and 50 neurons, respectively. This number 

was optimized by testing one hidden layer with 4, 8 and 128 neurons and two hidden 

layers with 128 and 4 neurons.  Training consisted of 1000 steps with a weight update 

after each step with a minimum change of 0.001 and maximum change of 0.1. Prediction 

accuracies are reported as the difference between predicted and true neighbor count 

values, taken as an average over four subsets with the same independent subset. The 

average prediction over the twenty neural networks is reported as the neighbor count 

prediction for a particular amino acid. 
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Determining descriptors for predicting neighbor count using Garson’s Connection-Weights 
algorithm 
 

As input to the ANN training, sequence-specific descriptors were calculated over 

a window of residues across each sequence in the database. These sequence-based 

descriptors included 1) five amino acid chemical properties including steric parameter, 

volume, polarizability, isoelectric point and solvent-accessible surface area, b) six free 

energies for secondary structure type (helix, strand, coil), residue environment (membrane 

bilayer, interface and solution) and the nine combinations of both and c) evolutionary 

information via BLAST position-specific scoring matrices, including the BLAST profile for 

each amino acid type and the Shannon entropy of the BLAST profile information. A 

window of 4 residues was used in free energy calculations and a window of 16 residues 

was used in chemical property and BLAST profile calculations. Additionally, parameters 

over the entire protein sequence were included: a) the number of residues in the protein 

chain, 2) average and standard deviation of amino acid specific chemical properties, free 

energies and BLAST evolutionary information.  

A total of 2028 descriptors were calculated. Previous work in our lab has 

highlighted the importance of descriptor selection in producing robust models. Our general 

framework is to score each descriptor based on some method, select the descriptors with 

the highest scores, and use them to train the next set of cross-validated models. Model-

independent scoring functions such as FScore, information gain, and Pearson correlation, 

were initially tested, but found to offer little or no substantial improvement over using the 

entire descriptor set (data not shown). This is unsurprising given that the model-

independent scoring methods are generally very low resolution and incapable of detecting 

whether certain descriptors contain essentially identical information as others or if they are 

just scaled differently. Additionally, descriptor interdependencies are not captured by 

these low-resolutions scoring terms. Following this logic, we elected to use a model-
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dependent scoring term to assess which descriptors were most influential and held the 

most information relevant to calculating neighbor count. The scoring term we used is 

based off Garson’s Connection-Weights algorithm (Olden & Jackson, 2002), that was 

previously implemented in the BCL. A total of thirty rounds of iterative ANN training took 

place. After each round of training, each descriptor was given a score based on its relative 

importance for predicting the output value. The bottom 10% of descriptors by score was 

removed before the next iteration of training. 

Each round of training was evaluated by its prediction accuracy over the 

independent set, which measured the root means square deviation (RMSD) between the 

predicted and calculated neighbor count. While 30 rounds of training were performed, 

prediction accuracy only improved up to 24 rounds of training. As a result, the trained 

model at 24 rounds with the 259 most sensitive descriptors was taken as the most 

accurate model and incorporated into BCL::MP-Fold. 

 

Incorporating the neighbor count score into BCL::MP-Fold 
 

Progress during de novo structure prediction in BCL::MP-Fold is evaluated by the 

knowledge-based BCL::Score, which linearly combines the following potentials: amino 

acid pair distance, amino acid environment, secondary structure element packing, beta-

strand pairing, loop length, radius of gyration, contact order and secondary structure 

prediction agreement (Woetzel et al., 2012).  Neighbor count prediction was incorporated 

into BCL::MP-Fold as a score to assess model quality. The weight for the neighbor count 

score was optimized as a function of enrichment over contact recovery and was 

determined to be 947. Difference between residue neighbor count of a model and its 

predicted neighbor count value penalizes the overall score of that model during structure 

prediction. In this way, models with neighbor count scores within those predicted by the 

ANN are preferentially sampled by the Metropolis Monte-Carlo algorithm. 



192 
 

 

Structure prediction a benchmark set of MP with neighbor count score 
 

A database of 22 diverse single-chain membrane proteins, from the same 

benchmark set used for BCL::MP-Fold, was used to evaluate the influence of the neighbor 

count score on de novo protein structure prediction (Weiner et al., 2013). This database 

included membrane proteins from the PDB with sequence identity less than 25%, 

resolution of less than 3.0 Å, R-value of less than 0.3 and a sequence length of at least 

40 residues. Four proteins that were in the training set were removed from the benchmark 

set, leaving a total of 18 membrane protein chains. The dataset ranges from 91 to 565 

residues with 2 to 15 transmembrane helices. Protein structures were folded 1000 times 

each with and without the neighbor count score to evaluate the influence of the score. As 

a proof of concept to illustrate the true effect of the neighbor count score, proteins from 

the benchmark dataset were also folded 1000 times with neighbor count values calculated 

from the protein structure. The quality of protein structure prediction was evaluated with 

RMSD100 (root mean square deviation calculated over the C-alpha residues, normalized 

to a protein length of 100 residues) and contact recovery.  

A detailed protocol capture for setting up, training and testing the sequence-based 

neighbor count method as well as its incorporation into BCL::MP-Fold is provided in the 

Appendix. 

 

Results and Discussion 

 

Determining optimal input descriptors using Garson’s Connection-Weights score 
 

To determine which of the 2028 calculated input descriptors have the greatest 

contribution to the prediction of neighbor count, the connection weights between neurons 
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were used to rank descriptors after ANN training. 24 rounds of iterative ANN training where 

the bottom 10% of descriptors were removed after each round resulted in a list of 259 

descriptors which trained the most accurate ANN for predictor neighbor count. The top 25 

descriptors are listed in Table 17, with the full list of descriptors listed in the Appendix. The 

amino acid free energy for transition helix is a highly weighted input descriptor. This is 

likely because residues at the transition region of helices are more likely to be exposed 

because of their proximity to the soluble region in transmembrane proteins. Evolutionary 

information from the BLAST profile is consistently ranked highly as an input descriptor. 

The conservation of hydrophobic residues (A, L, F, Y and W) likely to interact with the 

membrane region were found to be correlated with neighbor count prediction. As the 

presence of P and G are highly unfavorable in helical secondary structure and as such, 

less, likely to be buried, the ANN found that their presence was correlated with neighbor 

count. The frequency of occurrence of L, G, F, and S were also found to be associated 

with its likelihood to be buried in previous studies (Park, Hayat, & Helms, 2007). Amino 

acid conservation, calculated from the BLAST profile for each sequence, scores highly 

among input descriptors, which is consistent with studies reporting that residues with the 

highest conservation prefer interaction with the membrane (Park et al., 2007, Russ, 

Engelman, & others, 2000, Senes, Gerstein, Engelman, & others, 2000, Chengqi Wang, 

Xi, Li, Liu, & Yao, 2012). The position of the amino acid in the sequence also plays an 

important role, likely because residues at the end of a protein chain are more likely to be 

exposed than residues in the middle of a sequence.  
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Table 17 
Summary of the top 25 ANN input descriptors scored by connection weight. 

Descriptor Calculated range Score 

Maximum AA Free Energy: Transition 
Helix 

Full sequence 
1 

AA Blast Profile, Leucine Window of 4 residues per AA 0.83 
AA Blast Profile, Lysine Window of 4 residues per AA 0.80 
AA Blast Profile, Phenylalanine Window of 4 residues per AA 0.80 
Mean AA Blast Conservation Full sequence 0.71 
AA Blast Profile, Glycine Window of 4 residues per AA 0.71 
Standard Deviation of AA Blast Profile, 
Tryptophan 

Full sequence 
0.67 

Number of residues Full sequence 0.62 
AA Blast Probability, Alanine Window of 4 residues per AA 0.61 
Minimum AA Free Energy: Transition Full sequence 0.60 
Standard Deviation of AA Type, Histidine Full sequence 0.57 
Standard Deviation of AA Free Energy: 
Transition Helix 

Full sequence 
0.5 

AA residue position (Sequence ID) Full sequence 0.57 
Minimum AA Free Energy: Transition 
Helix 

Full sequence 
0.56 

AA Blast Profile, Aspartic Acid Window of 4 residues per AA 0.56 
Standard Deviation, AA Free Energy: 
Transition 

Full sequence 
0.55 

Mean AA Blast Profile, Glycine Full sequence 0.55 
Number of residues left in sequence Full sequence 0.55 
Standard Deviation, AA Transfer Free 
Energy Punta Maritan 3D for 
Hydrophobicity 

Full sequence 

0.54 
 Mean AA Blast Profile, Phenylalanine Full sequence 0.53 
AA Blast Probability, Tryptophan Window of 4 residues per AA 0.53 
AA Blast Profile, Threonine Window of 4 residues per AA 0.52 
Standard Deviation of AA Blast 
Probability, Serine 

Full sequence 
0.52 

AA Blast Profile, Tryptophan Window of 4 residues per AA 0.51 
AA Blast Profile, Proline Window of 4 residues per AA 0.51 

 

Correlation between predicted and true neighbor count is 65% 
 
 The accuracy of predicted neighbor count from the ANN was evaluated over the 

independent datasets during cross-validation and the ANN with the highest prediction 

accuracy was chosen for implementation into BCL::MP-Fold. The most accurate ANN 

predicted neighbor count with a Pearson correlation value of 0.65 with an average 

deviation from true neighbor count by 2.27 residues. The correlation between actual and 

predicted neighbor count is shown in Figure 39. Neighbor count is generally under-

predicted, which may be due to the lack of representatives from the training set with 
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neighbor counts above 12 residues. Over a set of 18 membrane proteins in the benchmark 

set, the neighbor count score was shown to enrich for the selection of native-like models 

(under 8 Å RMSD) on average 1.2 fold. 

 In order to visualize the predicted neighbor count and uncover regions of lower 

accuracy, predictions were mapped onto the protein structures from the independent 

dataset. Predicted neighbor count is compared to true neighbor count for the proteins 

bovine rhodopsin (1U19) and the integral membrane enzyme DsbB (2K73) in Figure 40. 

Generally, the ANN correctly predicts residues at the ends of helices to be exposed, but 

is less accurate within the helix. While the prediction method was able to distinguish 

between the inward and outward faces of the helices to some extent, the range of 

predicted neighbor counts is substantially smaller towards the center of the helix. Many of 

the residues in the helices are predicted to have neighbor counts in the middle range of 3 

to 6 residues.  

 

 

Figure 39 
Correlation between true and predicted neighbor count over independent datasets.  
Actual neighbor count was calculated from corresponding structures from the Protein Data Bank. 
Predicted neighbor count came from the trained ANN. Correlation is calculated as R2=0.42. 
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Figure 40 
Mapping neighbor count prediction onto known structures of membrane proteins.  
Proteins structures are colored by relative exposure and burial based on true neighbor counts 
were calculated for each residue in the protein structure and predicted neighbor count based on 
the trained ANN for A) rhodopsin (1U19) and B) DsbB (2K73)  

 

Membrane protein structure prediction with neighbor count score samples accurate helical 
positions 
 

The ANN-based neighbor count prediction method was incorporated into the 

BCL::MP-Fold algorithm, which has already been demonstrated to sample the correct 

topology for membrane proteins up to 500 residues and a range of secondary structure 

element content from 70% to 92% (Weiner et al., 2013). BCL::MP-Fold was used to de 

novo fold 22 membrane proteins with and without the neighbor count score. Four proteins 

were removed from the final analysis because they were included in the training set. 

Results for all 22 membrane proteins are found in the Appendix (Figures 72 & 73, Table 

26).  



197 
 

With the addition of the neighbor count score, the BCL::MP-Fold algorithm was 

able to sample topologies with an average RMSD of 5.5 Å, compared to the 5.9 Å average 

RMSD using the original method (Table 18). The structure prediction algorithm with the 

added neighbor count score performed better than or equal to the original algorithm in 14 

of 18 (78%) cases. With RMSD100 above 8 Å being considered native-like, incorporating 

the neighbor count score sampled native-like topologies for 16 of 18 (89%) cases, which 

is the same as the original algorithm. The structure prediction of a single subunit of 

aquaporin (1J4N) was a case in which an improvement in RMSD100 of almost 2 Å as well 

as a 6% improvement in contact recovery was seen. The neighbor count prediction 

algorithm was able to delineate between the inward and outward facing sides of the 

helices for 1J4N. This assisted in the positioning of the transmembrane helices such that 

residues with high neighbor count faced each other (Figure 41A). 

 
Table 18 
Model accuracy for structure prediction of a set of 18 benchmark proteins with and 
without inclusion of the neighbor count score.  
Contact recovery and RMSD100 are reported for the best sampled and top ranked models.  

   Contact Recovery RMSD100 
   Best Top Rank Best Top Rank 

1IWG 
 
 

No NC 26.9 1.1 4.6 8.8 

Predicted NC 22.9 6.9 4.3 8.7 

Calculated NC 37.7 12 3.6 7.6 

1J4N 
 
 

No NC 26.9 9.7 5.4 9.2 

Predicted NC 33.3 18.3 3.5 6.4 

Calculated NC 38.7 38.7 4.1 4.9 

1KPL 
 
 

No NC 14 2.3 8.9 13.1 

Predicted NC 12.4 1 9.4 13.4 

Calculated NC 14.3 3.6 7.9 12.9 

1OCC 
 
 

No NC 48.4 12.7 3.9 5.8 

Predicted NC 36.9 13.4 3.9 8.2 

Calculated NC 62.4 17.8 2.4 7.4 

1OKC 
 
 

No NC 13.2 0 7 10.3 

Predicted NC 12 6.6 7.2 11.4 

Calculated NC 11.6 5.8 6.2 9.7 

1PV6 
 
 

No NC 16 4.6 5.9 9.6 

Predicted NC 17.1 1.7 5.6 8.4 

Calculated NC 19.4 8 5.3 9 

1PY6 
 
 

No NC 24.5 4 4.4 5.7 

Predicted NC 26.1 4.4 3.4 9.8 

Calculated NC 34.9 13.7 3.3 8.2 
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Table 18, continued. 
Contact recovery and RMSD100 are reported for the best sampled and top ranked models. 
RMSD100 is calculated over all C-alpha atoms in the SSEs. 

  Contact Recovery RMSD100 
  Best Top Rank Best Top Rank 

1PY7 
 
 

No NC 31.5 12 3.8 4.9 

Predicted NC 34.3 4.6 3.3 10.4 

Calculated NC 51.9 39.8 2.6 3.3 

1RHZ 
 
 

No NC 22.9 8.5 6.4 9.6 

Predicted NC 22 2.5 6.1 11.2 

Calculated NC 29.7 2.5 5.1 11.2 

2BG9 
 
 

No NC 65 17.5 3 9.9 

Predicted NC 45 20 2.4 10.5 

Calculated NC 87.5 25 1.8 10 

2BS2 
 
 

No NC 31.8 7.9 5.6 6.9 

Predicted NC 25.8 13.9 4.8 11.4 

Calculated NC 41.7 15.9 4.5 9.4 

2IC8 
 
 

No NC 18.4 3.2 6.3 10.3 

Predicted NC 22.1 8.4 5.6 9.4 

Calculated NC 22.6 16.3 5.6 8.3 

2NR9 
 
 

No NC 22.7 3.4 5.8 9.9 

Predicted NC 29.5 4 5.3 10.7 

Calculated NC 24.4 3.4 6 8.6 

2XQ2 
 
 

No NC 5.1 4 8.1 10.9 

Predicted NC 5.9 0 7.6 12.6 

Calculated NC 5.9 0.8 8.3 13.3 

2XUT 
 
 

No NC 8.8 1.6 7.1 9.1 

Predicted NC 11 2.9 8.4 10.6 

Calculated NC 11 1.8 8.2 11.6 

3KCU 
 
 

No NC 14.6 3.1 7.3 10.4 

Predicted NC 14 9.9 7.1 9.8 

Calculated NC 15.8 10.9 7.7 8.8 

3KJ6 
 
 

No NC 22.3 1.6 5.7 9.3 

Predicted NC 19.1 8 5.2 9.8 

Calculated NC 21.3 5.3 5.9 6.3 

3P5N 
 

No NC 21.3 7.3 6.3 11.2 

Predicted NC 18.3 1.2 6.7 7.4 

Calculated NC 24.4 10.4 5.7 8.9 

Average 

No NC 24.1 5.8 5.9 9.2 

Predicted NC 22.7 7.1 5.5 10.0 

Calculated NC 30.8 12.9* 5.2 8.9 

* p < 0.1 vs no neighbor count score, Student’s T-test  
 

Membrane protein structure prediction with neighbor count score shows little improvement 
in contact recovery 
 

With the addition of the predicted neighbor count values to the structure prediction 

algorithm, improvements in contact recovery was expected as the exposure information 

was added to correctly orient the helices. Contrary to our expectations, however, 
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membrane structure prediction with the neighbor count score had very little impact on the 

sampling of models with contact recovery above 20%. Contact recovery sampling 

averaged 23% with the addition of the neighbor count score, compared to 24% average 

contact recovery for the original method. Compared to the original BCL::MP-Fold method, 

addition of the neighbor count score only improved the sampling of models with higher 

contact recovery for 8 of the 18 benchmark protein cases. With contact recovery above 

20% being considered native-like, incorporating the neighbor count score resulting in 

sampling of native-like topologies for 10 of 18 cases (56%), as opposed to the 11 of 18 

(61%) cases for the original algorithm. The greatest improvement in contact recovery was 

seen for GlpG (2NR9), seen in Figure 41B. The neighbor count prediction for this six-

helical bundle was able to guide helical orientation for an increase in contact recovery of 

almost 7%. In this case, as well as 1J4N, the helices were packed close enough for direct 

contacts to be measured as neighbors, which directed folding to recovery contacts to 

about 33%. 

 

Inclusion of the neighbor count score selects for models with higher contact recovery 
 

While addition of the neighbor count score does not increase sampling of models 

with increased contact recovery, the score does allow for the selection of models with 

higher contact recovery. With the addition of the neighbor count score, highest ranked 

models by score had higher contact recovery in 12 of 18 cases (67%), with an average 

contact recovery of 7%. The top ranked model of 2BG9 had contact recovery of 20% and 

was found using the neighbor count score. With the inclusion of the neighbor count score, 

the range of model scores is increased by about 50% compared to the original energy 

function. However, the distribution of scores compared to RMSD100 is similar across the 

benchmark dataset of proteins between the two methods (Figure 74). 
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Figure 41 
Gallery of select benchmark results.  
The fraction of models at a range of RMSD100 values and contact recovery is shown for models 
predicted without neighbor count score (red), with predicted neighbor count (blue) and with 
calculated neighbor count (green). The top model ranked by RMSD100 is shown in rainbow 
compared to the native structure in grey. The top model ranked by contact recovery is colored 
by relative exposure and burial based on predicted neighbor count for A) 1J4N, B) 2NR9 and C) 
2BG9. Complete results for all 22 proteins from the benchmark dataset can be found in the 
Appendix, Figure 72. 
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Structure prediction results for calculated neighbor count score show improvements in 
both RMSD100 and contact recovery 
 
 To demonstrate the maximal effect of the neighbor count score on membrane 

protein structure prediction, proteins from the benchmark dataset were folded with 

neighbor count values calculated from their known structures. An improvement in both 

RMSD100 and contact recovery was found across all proteins with less than 190 residues 

(Table 18). Inclusion of the neighbor count score also ranked models by contact recovery 

significantly higher than scoring without neighbor count. The range of scores for models 

with calculated neighbor count values are even higher than scores using predicted 

neighbor count and reflects in greater discrimination between native-like models in many 

cases, particularly 2BG9 (74). The greatest improvement in structure prediction was seen 

for 2BG9. Models were sampled with contact recovery up to 87% and 1.8 Å RMSD, the 

best sampled results seen for any protein from the benchmark dataset (Figure 41C). Little 

to no improvement was observed for proteins above 190 residues, which indicates an 

upper limit to the size of proteins that the neighbor count value can help towards sampling 

in BCL::MP-Fold. 

 

Conclusion  
 
 An ANN-trained method for sequence-based neighbor count prediction has been 

developed and implemented in the de novo membrane protein structure prediction 

method, BCL::MP-Fold. The prediction method was trained on a database of membrane 

proteins where the output is the neighbor count calculated from the known structure. The 

prediction method has a Pearson correlation of 0.65 and an average difference of 2.27 

residues from the calculated neighbor count value. Incorporating the neighbor count 

prediction as a score in evaluating membrane protein structure prediction retains sampling 

of native topologies while ranking top models with higher contact recovery compared to 
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the original scoring function. Sampling of models with higher accuracy based on 

RMSD100 was increased when using the neighbor count score, particularly for proteins 

with closely packed helices.  

It has been shown that buried surface area drives protein folding and is 

proportional to the number of attractive interactions between residues (D. Baker, 2000). 

Additionally, a protein’s three-dimensional structure is hypothesized to be determined by 

its amino acid sequence (Anfinsen, 1973). With this in mind, residue burial and exposure 

should be encoded in the protein sequence and useful for structure prediction methods 

(D. Baker, 2000, Durham et al., 2009, Karchin et al., 2004). While several methods have 

sought to predict sequence-based residue exposure through the prediction of its solvent 

accessibility surface area (Illergård, Callegari, & Elofsson, 2010, Joo, Lee, & Lee, 2012, 

Sim, Kim, & Lee, 2005, Yuan, Zhang, Davis, Bodén, & Teasdale, 2006), exposure can be 

more quickly and directly estimated through neighbor count (Durham et al., 2009, Karchin 

et al., 2004). Through the inclusion of calculated neighbor count values in structure 

prediction, we have provided proof of principle that per-residue neighbor count can result 

in sampling of protein structures with contact recovery up to 87% and 1.8 Å RMSD. Top 

ranked models also have significantly higher contact recovery when neighbor count is 

included in the scoring function. 

While our current prediction method has yet to demonstrate such accurate results, 

there is room for improvement. Neighbor count values are currently being under-predicted 

and there are several ways that this could be alleviated. First, balancing datasets such 

that residues with neighbor count values above 12 are oversampled may improve results. 

Secondly, changing the program from a linear regression to a categorical problem, where 

residues are predicted to be either exposed or buried based on neighbor count, may 

improve prediction accuracy. Currently, the prediction method is trained to predict the 

exact neighbor count value and results close to the predicted value are being penalized. 
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This strict criteria may be causing the prediction values to be under-predicted. However, 

prediction of the neighbor count to an exact value is not necessary for the structure 

prediction algorithm, which only needs to know if the residue is exposed or buried. If the 

ANN was trained such that residues were predicted on this binary output, this may 

increase prediction accuracy and be a more useful score for structure prediction.  

 In summary, inclusion of per-residue neighbor count in structure prediction 

methods have been shown to improve sampling of native protein topologies. Continued 

improvements on sequence-based prediction methods will allow for this information to be 

applied to the de novo prediction of membrane proteins with unknown structure.  
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CHAPTER VIII 

 

CONCLUSIONS 

 

Summary of this work 

 
In the quest for directed therapeutic approaches to effectively treat disorders of 

cognitive function, positive (PAM) and negative (NAM) allosteric modulators of 

metabotropic glutamate receptor subtype 5 (mGlu5) have emerged as a promising new 

strategy. It has been a challenge, however, to develop compounds that are adequately 

soluble, potent and selective enough to be used as clinical candidates (Gregory et al., 

2011). To guide drug development, structure-based drug design has demonstrated 

success in using the three-dimensional structure of a receptor to guide the optimization of 

small molecules for its binding site (Anderson, 2003, B Singh & M Tice, 2010, Becker et 

al., 2004, 2006, Congreve & Marshall, 2009, Congreve et al., 2005, Kandil et al., 2009, Lu 

et al., 2006, Shoichet & Kobilka, 2012, Tang et al., 2012). Due to the difficulties in 

crystallizing large membrane proteins, however, an experimentally determined structure 

does not yet exist for mGlu5 or any other class C G protein-coupled receptors (GPCR). 

The basis of this dissertation was to generate and validate protocols for small-molecule 

docking into computational models of GPCRs and apply them to mGlu5 drug discovery 

efforts. Key results from this work are summarized below. 

 

Improved computational methods for membrane protein structure prediction 
 
 The primary protein structure software packages used in this dissertation are 

Rosetta and the BioChemical Library (BCL), both actively developed within the Meiler lab. 
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Comparative modeling and ligand docking with Rosetta has been shown to generate high-

resolution structures for small soluble ligand-receptor complexes (Kaufmann & Meiler, 

2012, Misura et al., 2006). The advantage of using Rosetta over other popular software 

packages such as Modeller (Eswar et al., 2008) is that Rosetta allows for both ligand and 

receptor flexibility while docking and allows for maximum user customizability. Because 

there are constant updates to the Rosetta software, however, tutorials for its use are 

difficult to generate and maintain. To make the process more user-friendly and applicable, 

an up-to-date detailed protocol for comparative modeling and ligand docking was compiled 

in Chapter II.  

 While validation of the Rosetta comparative modeling and ligand docking protocol 

has been completed for soluble proteins (Kaufmann & Meiler, 2012, Misura et al., 2006), 

a protocol for its use with membrane proteins had not been established. In Chapter III, a 

thorough and unbiased evaluation of the Rosetta comparative modeling and ligand 

docking protocol was completed on a set of 14 Class A GPCRs from the Protein Data 

Bank (PDB). The protocol presented in Chapter III is generalizable for use on all GPCRs 

and as an example, application of these methods on the Class A GPCR, P2Y12, can be 

found in the Appendix. Structural models are generally considered to be comparable to 

the native crystal structure if they are within 3 Å root mean square deviation (RMSD). 

Rosetta was found to generate comparative models with an average of 2.2 Å RMSD to 

experimentally determined structures when templates within 50% sequence identity were 

used. Notably, Rosetta was able to build long extracellular loop regions (10 or more 

residues) with an average of 5.3 Å RMSD to experimental determined structures, which 

demonstrates higher accuracy than existing methods designed for such purposes 

(Goldfeld et al., 2012, Nikiforovich et al., 2010). While binding modes below 2 Å RMSD to 

experimentally determined ligand binding modes are considered to be accurate enough 

for drug discovery efforts and are sampled by Rosetta, they were only detected when 
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models were filtered by native-like binding site pocket residues, clustering and known 

experimental restraints. These findings are in agreement with recent studies of ligand 

docking into static comparative models of GPCRs (Beuming & Sherman, 2012, Katritch & 

Abagyan, 2011). In particular, the importance of experimental restraints in filtering for 

biologically relevant ligand binding modes has been demonstrated in several collaborative 

efforts between computational modeling, structural biology and pharmacology (Abrol, Kim, 

Bray, Trzaskowski, & Goddard III, 2013, Hirst et al., 2011, Katritch & Abagyan, 2011, 

Lange & Baker, 2012, Szymczyna et al., 2009). For this reason, application of the 

computation modeling methods to mGlu5 system was performed in iteration with 

pharmacological studies of allosteric modulators in the receptor, which is detailed in 

Chapter IV and Chapter V. 

 

Uncovering novel interactions between allosteric modulators and mGlu5  

 
 In Chapter IV, the protocol developed in Chapter III was applied to the Class C 

GPCR, mGlu5. Because the structural templates available are limited to Class A GPCRs, 

which have less than 20% sequence identity to the Class C GPCRs, the results from the 

computational modeling were analyzed in light of the functional data collected through 

site-directed mutagenesis studies performed by Dr. Karen Gregory. The comparative 

model of mGlu5 for these studies was built using the backbone structure of the beta-2 

adrenergic receptor (PDB ID: 2RH1) and based on a previously reported sequence 

alignment with the Ca2+ sensing receptor (CaSR) (Miedlich et al., 2004).  

 As one of the first selective allosteric modulators developed for mGlu5, MPEP has 

been well characterized and several residues in the receptor have been found to influence 

function and binding of this compound. These residues include P654, Y658, L743, T780, 

W784, F787, Y791 and S809 (Malherbe, Kratochwil, Zenner, et al., 2003, Pagano et al., 

2000). The computational model of mGlu5 developed in Chapter IV was therefore first 



207 
 

evaluated by how it compared to existing knowledge about the MPEP binding site. The 

comparative model placed each of these residue such that the side chains were facing the 

binding pocket. In addition, the model predicted residue S808 to be facing towards the 

binding pocket and predicted S806 and T810 to be facing away. This prediction was 

validated by function and binding assays which demonstrated reduced MPEP potency and 

affinity to the S808A mutant of mGlu5 (Gregory et al., 2013), which was also validated by 

a separate study (Molck et al., 2012).  

When MPEP was docked into the comparative model of mGlu5, several energy 

equivalent binding modes were revealed for the ligand, particularly when comparing 

docking studies centered at P654 and S808 (Gregory et al., 2013). Most frequently, 

however, Rosetta predicts the binding mode for MPEP to be in range of TM 5, 6 and 7 at 

the level of S808 and Y658, with the possibility of hydrogen bond interactions between 

both residues as well as π-π stacking interactions with Y658 or W784. While the binding 

modes presented here agree with the mutagenesis data presented in the literature, 

previously studies have demonstrated a range of energetically equivalent binding modes 

for MPEP as well. Two alternate binding modes for MPEP have been observed in docking 

studies by Molck et al., one where MPEP was located between TMs 3, 5 and 6 and another 

where MPEP was located between TMs 2, 3 and 6. (Molck et al., 2012). In addition, MPEP 

binding modes reported in earlier studies places MPEP in interaction distance with TMs 5 

and 7 (Malherbe, Kratochwil, Zenner, et al., 2003) or TMs 3, 5 and 7 (Pagano et al., 2000)  

While these binding modes seem to be quite different, no placement of the ligand 

contradicts the residues determined to be consistently important, including Y658, S808, 

P654 and W784. As MPEP is a small and rigid ligand where few interactions are possible, 

it is likely that it can bind in several different conformations in the allosteric site. In 

evaluation of the literature and the studies done here, there seems to be a strong 

possibility of multiple binding modes for the ligand. 
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  After being experimentally validated with MPEP, the molecular model of mGlu5 

was used to investigate interesting effects of compounds that allosterically modulated 

receptor function. In particular, Chapter IV discusses how the nicotinamide and 

picolinamide acetylene PAMs VU0405398, VU0405386 and VU0415051 were found to 

switch to NAMs or neutral modulators when mutations were made at S808 or T780 

(Gregory et al., 2013). The molecular mechanism for the switch was investigated using 

ligand docking studies of these compounds in the mGlu5 model. Polar interactions 

between the fluorine in VU0405398 and VU0405386 were hypothesized to form key 

interactions with S808 for receptor activation, and as such, the S808A mutant no longer 

allows for PAM activity. The same is thought to occur when VU0415051 is introduced to 

the T780A mutant, as the polar interaction between the carbonyl of the compound and 

T780 seen in the model is no longer formed.  

 Structure relationship studies on the MPEP scaffold inspired the development of 

several new selective allosteric modulators for mGlu5. A large range compounds from 

diverse chemical scaffolds have now been found to produce allosteric modulation at a site 

competitive for MPEP (Alagille et al., 2005, Felts et al., 2010, Kinney et al., 2005, Kulkarni 

et al., 2009, Lindsley et al., 2004, Mueller et al., 2012, de Paulis et al., 2006). In Chapter 

V, 32 compounds from 4 diverse chemical scaffolds were docked into the comparative 

model of mGlu5. In this study, we hoped to understand how structural and chemical 

determinants on both the ligand and receptor cause these compounds to range in their 

ability to potentiate or inhibit mGlu5 glutamate response. Frequently sampled binding 

modes from the computational docking studies were found to agree with functionally 

important residues determined by site-directed mutagenesis studies performed with a 

representative probe ligand from each scaffold by Dr. Karen Gregory from the laboratory 

of Dr. Jeff Conn. Chemical determinants on the ligands identified to be important through 

comparison of binding modes agreed with SAR data collected on each scaffold by Chrysa 
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Malosh from the laboratory of Dr. Craig Lindsley. Together, synthesis of this data predicted 

a common binding mode that places the long axes of the ligands parallel to the 

transmembrane helices at the level of P654, Y658 and W784. Important hydrophobic 

interactions were predicted between Y658 and W784 with the phenyl groups of ligands 

from the MPEP series. Also, important polar interactions are predicted between the 

fluorine on the benzamide group of ligands in the VU0366248 series and S808 as well as 

between the cyano group on ligands from the VU0366058 series with Y658. These results 

are in agreement with findings on other MPEP-based compounds, particularly the role of 

W784, Y658 and S808 on the activity of 2-, 3- and 4-BisPEB (Molck et al., 2012). 

  

Construction of the first mGlu5 construct with a cysteine-less background 
 

Without a structure determined by X-ray crystallography or nuclear magnetic 

resonances studies (NMR), experimental data on the mGlu5 system is currently limited to 

functional data collected via intracellular Ca2+ mobilization studies with known modulators 

and radioligand binding studies with the probes [3H]-M-MPEP (Gasparini et al., 2002), 

[3H]methoxy-PEPy (Cosford, Roppe, et al., 2003) and [3H]-methoxymethyl-MTEP 

(Cosford, Roppe, et al., 2003). Residues that modulate function or binding are inferred to 

direcly interact with the ligand, but this is not always the case. Studies have demonstrated 

instances where a point mutation distal to a ligand binding site can result in a change in 

ligand binding affinity (Baugh et al., 2010, El Omari et al., 2006, Rod et al., 2003). 

Structural studies through substituted cysteine accessibility method (SCAM) and disulfide 

cross-linking studies as well as information about the ligand binding pocket using thiol-

reactive ligands have been shown to provide useful restraints for understanding the 

binding pocket of a receptor and further validating a comparative model (Field, Henry, & 

Blakely, 2010, J. H. Li et al., 2008, Liapakis et al., 2001, Loo & Clarke, 1997, S. D. Ward 

et al., 2006). To date, there has only been one published study generating a cysteine-less 
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mutant of a class C GPCR in which three cysteine mutations were made to mGlu6. In this 

study, C793 on TM6 was found to be important for agonist response (Judith, 2012). This 

mGlu6 cys-less system, however, has yet to be applied to any structural studies. In 

Chapter VI, a functional mGlu5 construct with a cysteine-less background was developed 

for use in the abovementioned structural studies by mutating 12 cysteine residues to either 

alanine, serine or valine. C781 on TM 6 of mGlu5, correlating to C793 in mGlu6, was found 

to be play a crucial role in allosteric modulation of the receptor. Application of the mGlu5 

cysteine-less system in future studies will provide the first structural restraints on Class C 

GPCRs of its kind.  

 

Improvements to de novo membrane protein folding through sequence-based exposure 
prediction 
 

Comparative modeling has demonstrated its strength in modeling GPCRs when 

templates of high sequence identity are applied, as seen in Chapter III. Even when 

templates are low in sequence identity, comparative models of Class C GPCRs have been 

validated by experimental data and have generated useful hypotheses for drug discovery 

efforts, as discussed in Chapters IV and V. Until structural restraints are obtained with the 

cysteine-less mGlu5 receptor as discussed in the Chapter VI, however, assumptions that 

the Class C GPCR topology matches that of the Class A structural templates cannot be 

verified. A different approach to structure prediction through de novo folding of proteins 

allows for the generation of unique membrane protein topologies. BCL::MP-Fold has been 

demonstrated to sample the correct fold in 34 of 40 cases where membrane proteins 

ranged from 91 to 565 residues. Chapter VII discusses improvements made to BCL::MP-

Fold by adding residue exposure information via sequence-based neighbor count 

prediction. Residue exposure has been shown to drive the formation of protein tertiary 

structure and therefore should be encoded within the amino acid sequence itself (Eyal, 
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Najmanovich, Mcconkey, Edelman, & Sobolev, 2004, Karchin et al., 2004). Neighbor 

count can reasonably approximate the burial or exposure of a residue (Durham et al., 

2009). An artificial neural network was trained to predict per-residue neighbor count from 

the protein sequence alone. Our studies show that adding per-residue neighbor count 

values as a means to evaluate progress during protein structure prediction has the ability 

to sample models with an average of 5.2 Å RMSD and 31 % contact recovery, as opposed 

to 5.9 Å RMSD and 24% contact recovery without the neighbor count score. The currently 

implemented prediction method has a Pearson’s correlation of 0.65 to true neighbor count 

values. While this prediction method has yet to be fully optimized, its application with the 

structure prediction algorithm resulted in a sampling improvement in 78% of cases based 

on RMSD100 and ranked models with a higher contact recovery in 67% of cases. Once 

optimized, the improved de novo structure prediction methods using BCL::MP-Fold holds 

promise for determining unique topologies for protein targets with low sequence identity 

to the Class A GPCRs. 

 

Implication of the results 
 
 During the course of this work, there were two overarching goals: to advance the 

development of computational protein structure prediction methods and to apply these 

methods to the development of novel treatments for schizophrenia. The first goal of 

method development sought to impact scientific development at a basic level. Advancing 

the technology used to construct models of protein structure and protein-ligand 

interactions has far-reaching application to all biological systems and disease processes. 

The second goal of applying the methods to the development of drugs for schizophrenia 

seeks to develop better medical treatments for a specific patient population. Novel 

interactions determined between mGlu5 and its allosteric modulators will inform the 

development of drugs, where the goal is to generate a compound that can enter clinical 
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trials for the treatment of schizophrenia as well as other disorders of cognitive function. 

Implications of the results from this dissertation towards the achievement of these two 

goals are discussed below. Additionally, these research projects were not performed in 

isolation. Rather, they required the expertise and insight of scientists from various fields 

of research. The impact of this work on increasing the collaborative spirit between 

structural biology, computation, pharmacology and chemistry is also discussed below. 

 

Impact of high-resolution GPCR modeling on all biological systems 
 
 With over 800 human GPCRs carrying out a range of essential biological functions, 

there is little wonder that GPCRs are such an important target for therapeutics. With only 

17 GCPR structures crystallized, however, there is clearly a gap in our current knowledge 

about these important receptors. Computational modeling has long been used to model 

GPCRs where no crystal structure has been determined. As models have been compared 

to newly deposited crystal structures, the strength and limitations of these computational 

methods has been uncovered. Analysis of computational models have been documented 

in context of the GPCR Dock assessment, carried out the GPCR Network at Scripps in 

2008 (Michino et al., 2009) and 2010 (Kufareva et al., 2011). In these assessments, the 

opportunity to generate models of a GPCR-ligand complex was offered to the community 

of scientists before a new GPCR structure was released to the Protein Data Bank. These 

models were then assessed for their accuracy in comparison to the crystal structure. The 

most common software packages used to perform the comparative modeling included 

Modeller (Eswar et al., 2008), MOE (Molecular Operating Environment, Chemical 

Computing Group, Ontario, Canada), I-TASSER (H. Zhou, Pandit, & Skolnick, 2009), 

Prime (Beuming & Sherman, 2012) and Rosetta (Yarov-Yarovoy et al., 2005). Ligand 

docking is often performed using Glide (Friesner et al., 2004), GOLD (Verdonk et al., 

2003), Dock (Ewing et al., 2001) and FlexX (Rarey et al., 1996). Although the same 
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software is used in many instances, expertise in the parameterizing the software and 

knowledge about the biological system set apart the most accurate models. Many 

limitations to the computational models were found. Inaccuracies in the ligand binding 

conformation were due to incorrect placement of the transmembrane helices, variation in 

helical kinks, inaccuracies in modeling the loop regions and the exclusion of structurally 

important water molecules (Kufareva et al., 2011, Michino et al., 2009). The most accurate 

models took full advantage of the experimental data collected on the receptors and used 

this knowledge to restrain their models (Michino et al., 2009).  

 The GPCR comparative modeling protocol using Rosetta demonstrated in this 

work focused on generating high-resolution models of the receptor-ligand complex by 

addressing the issues of helical placement, kinks and loop reconstruction. Ongoing 

research in the lab outside the scope of this work focuses on the inclusion of water 

molecules in the docking algorithm (Lemmon & Meiler, 2013). The comparative modeling 

protocol was rigorously benchmarked over 14 Class A GPCRs in the Protein Data Bank. 

The protocol was able to correct inappropriate helical kinks and achieve high accuracy 

within the transmembrane bundles as well as the loop regions. Overall, the accuracy of 

the receptor models were comparable to the best models generated by Modeller (Kufareva 

et al., 2011, Michino et al., 2009). Additionally, Rosetta is widely available and free for 

academic users. The studies performed as part of this work further strengthens the 

credibility of the Rosetta method and will increase its applicability among scientists as a 

tool for modeling any GPCR. 

 There are over 780 GPCRs that still do not have an experimentally determined 

structure. The general method for modeling GPCRs established in this work can be 

applied to all GPCRs with missing structural information, which would provide a high-

resolution model for any ligand-receptor complex. These comparative models have a vast 

range of applicability. Experimental biologists can use these models to generate 
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hypotheses regarding the three-dimensional location of residues for mutational studies. 

These models are also often used in virtual high-throughput screens of potential 

therapeutics. The details of these experiments will be discussed later as future directions 

for these studies. 

  

Advancing progress towards new drug treatments for schizophrenia 
 
 Therapeutics for schizophrenia are currently limited to those assuming the 

dopamine or serotonin hypothesis, where dopaminergic or serotonergic hyperactivity is 

believed to drive the progression of the disease (van Bennekom, Gijsman, & Zitman, 

2013). These drugs include citalopram, chlorpromazine, haloperidol and apripiprazole. 

Unfortunately, these drugs are not specific for target receptors causing the symptoms of 

schizophrenia and in addition to not fully treating the negative, positive and cognitive 

symptoms of the disease, these drugs have a host of side effects. These include severe 

muscle stiffness, seizures, slurred speech, hyperglycemia, anxiety and even permanent 

tardive dyskinesia (van Bennekom et al., 2013, Tschoner et al., 2007). 

 The glutamate hypothesis opens doors to new possibilities for treating 

schizophrenia. Clinical findings suggest that the increase in glutamatergic transmission in 

response to NMDA receptor antagonism results in symptoms closely related to those 

found in schizophrenia (Conn et al., 2009). Since mGlu5 receptors feature a reciprocal 

positive feedback system with NMDA receptors, activation of mGlu5 is considered a viable 

therapeutic option to treat such symptoms (Conn et al., 2009). As demonstrated by this 

work, several allosteric ligands have been shown to target mGlu5 in a selective manner. 

However, these compounds still demonstrate off-target effects and require improvements 

in solubility and efficacy. A deeper knowledge of the allosteric binding pocket within mGlu5 

is needed to design the most effective drugs for this disease. 
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Before this work began, there was limited knowledge about the allosteric binding 

site of mGlu5. Most of what was known about the mGlu5 allosteric site was due to studies 

performed with MPEP and fenobam. The residues known from the literature to impact the 

functionality of these ligands are listed in Table 2. From the studies done as part of this 

research work, eight novel residues lining the allosteric binding pocket on TM 5, 6 and 7 

were found to impact the activity of MPEP (Gregory et al., 2013). Furthermore, as new 

compounds have been discovered to be selective for mGlu5 by the Vanderbilt Center for 

Neuroscience Drug Discovery (VCNDD), the allosteric binding site continues to be refined 

and characterized. The current structural model of mGlu5 is consistent with other structural 

studies of mGlus, including the importance of a key hydrogen bonding network (Nygaard 

et al., 2010, Yanagawa et al., 2009, Yanagawa, Yamashita, & Shichida, 2013) and the 

impact of the serine residue at position 808 (Molck et al., 2012). Additionally, the model 

presented in this work is rich with mutational pharmacological data from over 40 docked 

ligands that sets it apart from other studies of this receptor.  

By mapping the ligand-receptor interaction using pharmacological and 

computational methods, we find that the allosteric binding pocket is larger than we thought 

as well as more flexible. The pocket is able to accommodate ligands with a range of 

diverse structural scaffolds. It should then be possible for ligands, especially small and 

rigid compounds like MPEP, to bind in many different positions. This would explain why 

Rosetta, while being able to place ligands parallel to the helices, has difficulty 

differentiating between the two 180 degree orientations of the ligand. While the 

comparative modeling of mGlu5 presented in this work brings us closer to a structural 

understanding of the allosteric binding pocket, it also reveals how much more we don’t 

know. The vast range of ligand scaffolds and their ability to bind in multiple orientations 

within mGlu5 certainly makes the problem of understanding the receptor’s allosteric 
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modulation more complex. However, this also presents even greater options in terms of 

drug design that may soon lead to a candidate for clinical trials. 

 

Synergy of computation, structure, pharmacology and chemistry drives drug discovery 
progress 
 
 The progression of scientific research requires the collaboration of minds from a 

wide range of fields of study. Each field brings a fresh perspective to a problem that would 

otherwise be missed. In this research, expertise in computational structure biology was 

integrated with expertise in pharmacology of allosteric modulation of GPCRs and chemical 

synthesis. The work presented here was a result of close collaboration at Vanderbilt 

University between the Center for Structural Biology and various branches of the VCNDD. 

Primarily, expertise of allosteric modulation of GPCRs and pharmacological studies came 

from the lab of Dr. Jeffrey Conn through the work of Dr. Karen Gregory. Synthesis of 

chemical compounds and insight into their structure activity relationship (SAR) came from 

the lab of Dr. Craig Lindsley through Dr. Shaun Stauffer and Chrysa Malosh in particular.  

From the viewpoint of the structural biologist, structure informs function. The 

conformation held by an allosteric modulator in mGlu5 and the chemical interactions 

formed as a result can help explain why a modulator might acts as a PAM, NAM or neither. 

In the context of the studies in Chapter IV, a structural understanding of molecular 

switches from PAM to NAM or neutral functionality was presented in light of the models 

produced by docking studies. However, especially in the case of allosteric modulation, a 

direct correlation between structure and function is sometimes not found and the true 

explanation of pharmacologic changes is much more complex. This complexity is 

unraveled through the work of molecular pharmacology. Patterns are detected through 

site-directed mutagenesis paired with functional and binding assays to characterize the 

relationship between these allosteric modulators and mGlu5 that are impossible to see in 
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static models, including concentration-dependencies in modulation, the detection of 

molecular switches and the differences in compound potency and efficacy, to name a few. 

These relationships are brought to light by Dr. Gregory’s work.  

The relationship between a modulator and mGlu5 is also heavily influenced by the 

structure of the compound itself. For deeper insight into the structure activity relationship 

of these compounds, expertise in chemical synthesis is integrated into the research. While 

docking results may predict that a particular hydrogen bond donor on a ligand stabilizes it 

in its active conformation, SAR may show that removing that hydrogen bond donor does 

not change the affinity of the compound. At other times, SAR may support hypotheses 

presented by the modeling results, such as instances where bulk is prohibited due to the 

positioning of a ligand in a tight pocket as indicated by the modeling and supported by 

SAR. These are just a few examples where SAR help to support or reject hypotheses 

formed by structural models, which influenced the results in the Chapter V.  

The work presented here is unique in that it advances in the field through the 

integration of methods from various different fields of study. This collaborative effort has 

certainly impacted the work performed at Vanderbilt and hopes to inspire similar efforts 

elsewhere in the scientific community. While this work is specific to the mGlu5 system, it 

can serve as an example for future work in other drug discovery efforts to increase 

creativity and productivity. The combination of different studies breathes new life into work 

through the presentation of new perspectives and ideas.  

 

Future directions 
 
 When this work began, only two comparative models of mGlu5 had been published 

with only four crystal structure GPCR templates available at the time (Malherbe, 

Kratochwil, Zenner, et al., 2003, Pagano et al., 2000). With a burst of innovation giving 

rise to an additional 13 GPCR crystal structures over the past four years, this has been 
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the most exciting time to study GPCR structure and function. While the field is starting to 

understand Class A GPCR structure, however, knowledge about Class C GPCRs is still 

very limited. The work presented here begins to map out the particular residues important 

for allosteric modulation of mGlu5. In order to have a deeper understanding of the complex 

relationship between these modulators and mGlu5 from a structural standpoint without an 

experimentally determined structure, a number of computational methods need to be put 

into place and experiments need to be carried out with the cysteine-less mGlu5 receptor 

developed in Chapter VI to further refine the structural models. These methods will be 

discussed further below. Beyond the scope of this work, but before new compounds go 

into clinical trials, in vivo characterization of these compounds must occur to understand 

how they are metabolized, absorbed, distributed and cleared by the body. 

Characterization of any physical and behavioral side effects must also take place. 

 

Using multiple templates and rigid body sampling in comparative modeling 
 
 In the course of validating the comparative modeling method developed for 

Rosetta in Chapter III, it was found that the most accurate models were built using 

templates with over 50% sequence identity. This is because the resulting models primarily 

retain the backbone conformation of the template employed. Slight changes in backbone 

structure account for the resolution of helical kinks and side chain placement, but large 

helical shifts are not performed. Also, additional improvement has been seen when using 

multiple template structures in the generation of a single model (Mobarec et al., 2009). 

Improvements to the Rosetta sampling algorithm during protein folding can be improved 

to incorporate multiple templates as well as rigid body sampling of secondary structure, 

which could shift sampling of GPCR models more towards the native conformation.  

During the course of this research, these two ideas have begun to be developed 

in Rosetta by other scientists. Dr. Yifan Song in the lab of Dr. David Baker has begun to 
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implement a method that allows for a comparative model to be constructed using 

segments from multiple different template structures. If applied to GPCRs, comparative 

models of each helix could then be generated using a different template according to 

sequence similarity. For example, the construction of a comparative model of CXCR4 is 

difficult because it has only 43% sequence identity to the best available template, the mu-

opioid receptor. However, TM 1 in CXCR4 contains key sequence motifs seen also in the 

kappa-opioid receptor and TM3 in CXCR4 contains key sequence motifs also present in 

the dopamine D3 receptor. Together, these three receptors could serve as templates for 

a single model of CXCR4 that would demonstrate more backbone accuracy within 

individual helices. 

 The next step in this new method for comparative modeling would require the rigid 

body sampling of these helices into an energy minimized, biologically realistic 

conformation. This is not yet possible with the comparative modeling protocol, which only 

performs small helical movements (J. Thompson & Baker, 2011). It is also not yet possible 

with the de novo folding protocol in Rosetta, which requires proteins to be folding from a 

single, continuous chain and is only accurate for small, soluble proteins (Bradley, Misura, 

et al., 2005). A graduate student, Stephanie DeLuca, in the lab of Dr. Jens Meiler has 

begun implementing into Rosetta an algorithm that performs rigid body sampling of helices 

in membrane proteins. This exciting new method will allow for the de novo folding of large 

membrane proteins and the possibility of using multiple templates for individual secondary 

structure elements when modeling GPCRs, as discussed here. These methods will make 

it possible to model GPCRs even if there does not exist a structural template within 50% 

sequence identity, as is the case for mGlu5. After the new technologies have been put into 

place, this improved method can be developed and rigorously benchmarked for validity as 

demonstrated by this work. 
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Docking ensembles of ligands into ensembles of protein models 
 
 When research began on allosteric modulators of mGlu5, the binding site was 

primarily characterized using MPEP and its derivatives of a similar scaffold because it was 

the allosteric modulator with the highest measurable affinity at the time (Gasparini et al., 

1999, Malherbe, Kratochwil, Zenner, et al., 2003, Pagano et al., 2000). With the work of 

the VCNDD in the past five years, the number of allosteric modulators with high affinity to 

mGlu5 has grown to include the six diverse scaffolds presented in this work, as well as 

many other compounds that are being explored by other academic labs and 

pharmaceutical companies. The process by which these compounds were docked into the 

comparative models of mGlu5 and its mutants was very time-intensive and required a great 

deal of manual oversight. Each of the 43 compounds were docked individually into a 

particular model and post-processing using the Property RMSD as discussed in Chapter 

V was used to detect patterns in binding conformations across ligands of the same 

scaffold. This manually intensive work not only takes time, but is also limited to searching 

for patterns in binding conformations already sampled by the docking experiments. 

 A new idea to improve the sampling of ligand conformations docked into an 

ensemble of receptor models was borne out of the limitations seen in this project. The 

Rosetta Ligand Ensemble docking algorithm would be designed to read in an ensemble 

of small molecules and dock it simultaneously into models of the protein receptor. In the 

case of a focused library, a superimposed ensemble of small molecules as a meta-ligand 

with a rigid scaffold would be defined. During the docking process, transformations would 

be applied to the ligand ensemble simultaneously until a binding pose that optimizes the 

chemical properties of all active ligands within the same binding site is found. By 

transforming the ligand ensemble, the low-resolution docking would occur very quickly. 

High-resolution gradient-based all-atom minimization then occurs to optimize ligand-

protein interactions further and optimize the receptor conformation specifically for each 
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ligand. The advantage to such a method would not only be the improved accuracy and 

efficiency while docking several ligands into a model of a receptor. It would also allow for 

the SAR of the ligands to inform the docking in real-time, and not just used as a post-

processing tool. This enhances ligand sampling and allows for only the biologically 

relevant conformations to be accepted during the course of the docking experiment. 

This method is currently being put into place by Darwin Fu, a graduate student in 

the Meiler lab. With over 40 allosteric modulators available for mGlu5 and over 30 mutants 

of the receptor generated in the studies presented in this work, it serves as a perfect test 

case for such a method. Once Rosetta Ligand Ensemble Dock is complete, it can be 

applied widely to any system in which multiple ligands bind in the same site of a receptor. 

 

Structural insight on Class C GPCRs through restraints collected with the cys-less mGlu5 
construct  
 

As this work presents the first mGlu5 receptor construct with a cysteine-less 

background, it paves the way for a vast range of experiments which will be key for 

collecting structural information on class C GPCRs. One of these experiments include the 

direct detection of the allosteric modulator binding site through the use of a thiol-reactive 

ligand. In these experiments, a thiol-reactive ligand tagged with a methanethio-sulfonate 

(MTSL) spin label bound to a cysteine can indicate interactions between a ligand and 

residue on the receptor, providing direct information regarding the location of the allosteric 

binding site (Loo & Clarke, 1997). Dr. Gregory intends on carrying out this work with a 

collaborator from Duquesne University in Pittsburg, PA who is generating these thiol-

labelled modulators.  

Additional experiments that can be performed are EPR measurements for distance 

restraints and substituted cysteine accessibility measurements (SCAM) and disulfide 

cross-linking studies for investigations into the receptor’s helical structure. SCAM has 
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been used to map residues lining the binding site of the dopamine D2 receptor using MTS 

reagents (Javitch et al., 2002) and has more recently been used to identified eight residues 

on prolactin-releasing peptide receptor (PrRPR) that were crucial for binding and function 

of PrRP (Rathmann et al., 2013).  Disulfide cross-linking studies have revealed 

conformational changes that occur in rhodopsin and the M3 muscarinic receptor as a 

result of activation (Hubbell et al., 2003, S. D. Ward et al., 2002).  Rhodopsin has been 

extensively studied using EPR distance restraints (Van Eps et al., 2011, Hubbell et al., 

2003). These examples provide support for the usefulness of such experiments. There 

are not yet current plans to carry out SCAM, disulfide or EPR experiments because of the 

inability to express enough of the protein for such experiments. However, Yan Xia, a 

graduate student in the Meiler lab, is working on protocols for large-scale membrane 

protein expression that might make these experiments feasible soon. 

 

Improving hit rate through virtual high throughput screening with structural models of 
mGlu5  
 
 Once the mGlu5 model is refined using structural restraints, it should be at a 

resolution suitable for use in virtual high throughput screens. The purpose of a high 

throughput screen (HTS) is to quickly evaluate large databases of compounds in order to 

detect hits that can be further optimized as selective compounds for the receptor. 

Currently, high throughput screens are performed at Vanderbilt on various compounds 

received from commercial, academic and government suppliers using assays measuring 

mobilization of calcium as a functional output. To supplement experimental high 

throughput screens, virtual screens (vHTS) are also performed. These vHTS use machine 

learning algorithms which learn to recognize the characteristics of active compounds and 

uses this information to screen for new hits. An artificial neural network (ANN) trained to 

recognize biological potency from quantitative structure-activity relationship (QSAR) 
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models of mGlu5 identified 749 compounds as active and suitable for experimental testing 

during a screen of 708,416 commercially available compounds (Mueller et al., 2012). Of 

these 749 compounds, 88 (12%) were determined to be truly active compounds. One 

compound in particular, a 2-(2- benzoxazolylamino)-4-phenylpyrimidine (VU0366058), 

was a novel and potent chemotype that has since been derivatized based on SAR and 

explored for therapeutic use.  

At a 12% hit rate, there is room for improvement in the virtual high throughput 

screening method. Many compounds are selected that may have the characteristics of an 

active compound, but are not able to bind within the allosteric site. Docking the compounds 

predicted to be active by the ANN to a structural model of mGlu5 as a secondary step in 

the virtual screening process may eliminated those compounds show a low binding affinity 

for the receptor (Shoichet & Kobilka, 2012). Studies with the human beta-2 adrenergic 

receptor have shown that virtual screening of large chemical libraries using comparative 

models can have a higher hit rate than using crystal structures (Tang et al., 2012). Virtual 

screening is particularly effective with models of high accuracy within the binding pocket 

that can capture the ligand interaction with the receptor. Comparative models have 

effectively been used to improve the hit rate in vHTS; recent examples include the 

discovery of novel MCH-1R antagonists with a 14% hit rate (Heifetz et al., 2013) and the 

identification of new active compounds for the thyrotropin receptor (Hoyer et al., 2013). 

Comparative models have yet to be integrated into the vHTS pipeline for the detection of 

mGlu5 allosteric modulators. With future improvements to the mGlu5 receptor model that 

would refine the placement of residues within the binding pocket, it may serve as a useful 

tool to increase the hit rate in vHTS of novel allosteric compounds.  
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Concluding remarks 
 

Computational methods for studying the structure of GPCRs are extremely 

important because there are still over 700 GPCR targets without experimental structures, 

many of which serve as important drug targets. One of these receptors is mGlu5, which 

shows exciting potential as a possible target for the treatment of schizophrenia and other 

cognitive disorders. Compounds that allosterically modulate mGlu5 activity inhibit 

glutamate release, thereby alleviating the symptoms of schizophrenia. With a greater 

understanding of how these compounds bind and activate mGlu5, advances towards a 

new therapeutic strategy to treat schizophrenia can be achieved. 

This dissertation discusses the implementation of comparative modeling and 

ligand docking methods for GPCRs and demonstrates their application to mGlu5. The 

timing of such work is well placed, as our understanding of GPCR structure has grown 

exponentially with the number of crystal structures being deposited into the Protein Data 

Bank. The location of the work is also ideal, as it takes advantage of the most advanced 

technologies and world-renowned expertise in computational structure biology and 

allosteric modulator of glutamate receptors. The synergy between chemical, 

computational, structural, and molecular biology as well as pharmacology makes this work 

unique in terms of its impact and applicability. A generalized protocol for building native-

ligand models of GPCR-ligand complexes provides avenues for predicting structural 

interactions that are previously unknown. Applied to the mGlu5 system, this protocol has 

already increased our understanding of the complex interaction between the receptor and 

its allosteric modulators, bring us one step closer to new drug compounds for a debilitating 

disease. 

Future efforts towards structure-based drug design includes the development of 

new technologies that will improve our ability to build accurate comparative models, 

quickly assess the binding conformation of existing compounds and allow us to perform 
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virtual high throughput screens to discover novel modulators of the receptor. With these 

new developments and the continued interface between experimental and computational 

studies, new information will continue to be revealed about previously unknown systems.  
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APPENDIX 

APPENDIX TO CHAPTER I 
 

 

 

Figure 42 
Alignment of the human mGlus and Calcium-sensing receptor (CaSR) sequences (aligned 
with CLUSTALW) relative to β2-adrenergic receptor (2RH1) and bovine rhodopsin (1U19) 
sequences (aligned with MUSTANG).  
Alignment between class C GPCRs and bovine rhodopsin were directly adopted from Malherbe et 
al., 2006 (Malherbe et al., 2006), except TM2, 4 and 7, which were based on the alignment of CaSR 
with bovine rhodopsin from Miedlich et al., 2004 (Miedlich et al., 2004). Highlighted are: residues 
functionally important for CPPHA (blue) or other PAMs (cyan), residues important for NAMs 
functionally (orange) and through binding (red), and residues important for both PAMs and NAMs 
functionally (light green) or both PAM function and NAM binding (dark green). Continues on next 
page. 
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(Figure 42 continued from previous page) Alignment between class C GPCRs and bovine 
rhodopsin were directly adopted from Malherbe et al., 2006 (Malherbe et al., 2006), except TM2, 4 
and 7, which were based on the alignment of CaSR with bovine rhodopsin from Miedlich et al., 
2004 (Miedlich et al., 2004). Highlighted are: residues functionally important for CPPHA (blue) or 
other PAMs (cyan), residues important for NAMs functionally (orange) and through binding (red), 
and residues important for both PAMs and NAMs functionally (light green) or both PAM function 
and NAM binding (dark green). 
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APPENDIX TO CHAPTER II 
 
 

Materials 
 

 Primary sequence of target protein 

 High-resolution protein structure of a protein homologous to the target sequence 

 Linux or MacOS based workstation with internet access 

 Plain text editor, such as vi, vim, or emacs. 

 Academic or commercial copy of Rosetta obtained from 

www.rosettacommons.org/software/ 

 Access to the Robetta server (robetta.bakerlab.org) if a non-profit licensee or 

installation of the protein database from which fragments are selected, called the 

vall database, which can be obtained at www.bioshell.pl/rosetta-

related/vall.apr24.2008.extended.gz. These will be used at Step 10. 

 Desired small molecule for ligand docking 

 Python, with BioPython and numpy installed (See “Installing Rosetta 3.4”) 

 OPTIONAL: Linux or BlueGene/L based cluster 

 

Overview of Procedure 
 

The procedure outlined below is the complete protocol for both the construction of a 

comparative model of T4-lysozyme (PDB ID: 2ou0) (Mobley et al., 2007) based on the 

structure of P22-lysozyme (PDB ID: 2anv) (Mooers & Matthews, 2006) and of docking the 

ligand MR3 into the comparative model. For this example, the structure of T4-lysozyme is 

presumed to be unknown. The instructions in this Procedure assume that the user is 

working with a Linux operating system.  The following procedure should be performed on 

a system running Linux or Mac OS X.   
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 Step 1: Template selection 

 Steps 2-4: Prepare the PDB file of template structure 

 Steps 5-7: Sequence alignment 

 Steps 8-9: Threading 

 Step 10: Prepare fragment files of the target sequence 

 Step 11: Creating a Rosetta loops file 

 Step 12: Preparation of comparative modeling options file 

 Step 13: Running the comparative modeling job 

 Step 14-16: Analysis of comparative modeling results and choosing receptor 

models for ligand docking 

 Steps 17-19: Prepare the ligand file 

 Step 20: Preparation of the ligand docking XML file 

 Step 21: Preparation of the ligand docking options file 

 Step 22: Running the ligand docking job 

 

Procedure 
 

Select a template 
 

1. Select a template for comparative modeling of the target protein. Template 

selection and sequence alignment are the conceptual first steps of any 

comparative modeling procedure and is discussed in the Experimental design 

section of Chapter 2. It is often beneficial to explore multiple template/target 

sequence alignments and, in the case of lower sequence similarity, to perform 

manual curating of sequence alignments. This accounts for conserved motifs in 

the protein family that are not correctly aligned. In this procedure, the target protein 

to be modeled is T4-lysozyme (PDB ID: 2ou0) (Mobley et al., 2007) and the 
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template being applied is the structure of P22-lysozyme (PDB ID: 2anv) (Mooers 

& Matthews, 2006). 

 

Prepare the PDB file of template structure 
 

2. Download the template PDB file from the PDB at www.rcsb.org. The template PDB 

can be found by searching for the four-letter PDB ID, “2anv.” 

3. Format, or “clean,” the protein to avoid errors when Rosetta reads in the PDB file. 

Cleaning the PDB file removes non-ATOM records, renumbers residues and 

atoms from 1, and corrects chain ID inconsistencies. The script clean_pdb.py, 

located in the rosetta_tools/protein_tools/scripts/ directory, will be used to 

format the template PDB file (see “Installing Rosetta 3.4” for instructions on 

installing the necessary python modules).  

The script follows the format: 

python rosetta_tools/protein_tools/scripts/clean_pdb.py <raw_pdb_file> <chain>  

 
Execute the script by typing:  

python rosetta_tools/protein_tools/scripts/clean_pdb.py 2anv.pdb A 

 
The script will output two files: 2anv_A.pdb and 2anv_A.fasta 

4. Relocate the created FASTA and PDB files from the script to an input_files 

directory, which will be used in subsequent steps. The output to the screen is used 

for error checking and can be disregarded if no errors occurred. 

 

Sequence alignment  
5. Generate a FASTA file for the target sequence. A FASTA file is a text file that 

contains a header line, which consists of the name of the protein, followed by the 

amino acid sequence of the protein on a separate line; this is indicated below:  

>2ou0:X|PDBID|CHAIN|SEQUENCE 
MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGI
LRNAKLKPVYDSLDAVRRAAAINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTG
TWDAYK  
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The target FASTA file that is used comes from the T4-lysozyme sequence (PDB ID 2ou0). 

The FASTA file can be downloaded from the PDB (www.pdb.org) by searching for “2ou0” 

in the search bar at the top of the webpage. Download the FASTA file for the target by 

clicking on “Download” to the right of the PDB ID and selecting “FASTA.” Save the file as 

2ou0_.fasta. The header line for the 2ou0_.fasta file must be edited. Replace the text  

>2ou0:X|PDBID|CHAIN|SEQUENCE  

 
with  
 
>2ou0_ 

 
The FASTA file 2anv_A.fasta that was created from step 3 can be used for the template 

sequence. 

6. Run ClustalW on the webserver (www.ebi.ac.uk/Tools/msa/clustalw2/) by pasting 

the contents of the two FASTA files into the box labeled “STEP 1 - Enter your input 

sequences.” The order of the FASTA files is irrelevant. Both sequences should be 

in FASTA format, i.e., they must start with a header line such as >target_sequence 

or >template_sequence, followed by the sequence on a new line (see step 5). On 

“STEP 2,” select “slow” for the “alignment type.” This will provide the most accurate 

alignment for the two sequences. Do not change anything in the “STEP 3” box and 

hit the “Submit” button on “STEP 4.” After a short wait, a new page will be loaded 

where the alignment can be downloaded and saved. Click on the button labeled 

“Download Alignment File.” Several sequence alignment tools are publicly 

available; however, the web server, ClustalW (Larkin et al., 2007), is used as an 

example in this protocol due to its commonality and simplicity. If a different 

alignment tool is used, the output from the alignment must be in one of the following 

formats: Clustal, EMBOSS, FASTA, FASTA-M10, IG, Nexus, PHYLIP, or 

Stockholm. 
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7. Save the alignment file as alignment.aln in the current working directory. The 

default suffix provided by ClustalW is .clustalw. 

 

Threading 
 

8. Thread the target sequence over the template structure using the included script. 

The script has the format: 

python rosetta_tools/protein_tools/scripts/thread_pdb_from_alignment.py --
template=<name of template in alignment file> --target=<name of target in 
alignment file> --chain=<chain in pdb> --align_format=clustal <alignment file> 
<template.pdb> <output.pdb>  

 
The --template and --target must match the names given in the header file of the 

FASTA file. Check the target and template names by opening the alignment file that was 

created in step 6. If the naming has been consistent according to the previous steps, the 

command used to thread the template PDB should be: 

python rosetta_tools/protein_tools/scripts/thread_pdb_from_alignment.py --
template=2anv_A --target=2ou0_ --chain=A –-align_format=clustal alignment.aln 
2anv_A.pdb 2ou0_threaded.pdb 

 
CAUTION: The result of step 8 (2ou0_threaded.pdb) is a PDB file that Rosetta will use as 

input. Examine this file with a text editor and also with a 3D protein structure viewer, such 

as PyMOL (www.PyMOL.org/) or Chimera (Pettersen et al., 2004) 

(www.cgl.ucsf.edu/chimera/), to ensure that 1) it contains the intended target sequence, 

2) the conserved regions (especially helices and strands) between target and template 

are preserved, and 3) insertions (residues present in target but not template) should have 

zero (0.000) Cartesian coordinate values and −1.00 occupancy values. 

9. Verify that the 2ou0_threaded.pdb sequence matches the target primary sequence 

by generating a FASTA file out from the PDB using the included script. This script 

has the following syntax:  

python rosetta_tools/protein_tools/scripts/get_fasta_from_pdb.py 
<template_pdb> <chain> <output fasta file> 
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Submit the two sequences to the ClustalW server (www.ebi.ac.uk/Tools/msa/clustalw2) to 

verify that the sequences match. 

 

Prepare fragment files of the target sequence 
 

10. Generate fragment files of the target sequence. There are two commonly used 

methods to generate fragments for comparative modeling. Users affiliated with a 

non-profit institution can use the Robetta server (www.robetta.org/), which is 

described in Option A. Conversely, for-profit organizations should follow Option B 

to use the fragment picker application that comes with the Rosetta source code.  

Creating fragment files with Robetta 

a. Register for a username and password at the Robetta webserver 

(robetta.bakerlab.org/fragmentsubmit.jsp). 

b. Input the sequence name 2ou0_, and load the target FASTA file 

2ou0_.fasta from step 5. 

c. Submit the FASTA file. The webpage will reload and state: “Successfully 

added your request to the queue.” The status of the fragment file 

generation can be checked at 

http://robetta.bakerlab.org/fragmentqueue.jsp. 

d. Click the link to get a list of files generated by Robetta after the status has 

changed to “Complete.” If following the example of 2ou0 for the target 

sequence, the fragment files should be called aa2ou0_003_05.200_v1_3 for 

fragments of length 3 and aa2ou0_009_05.200_v1_3 for fragments of length 

9. Save all the files to the working directory by right-clicking and selecting 

“Save as.” 

Creating fragment files with the fragment picker 
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a. Generate a secondary structure prediction file, such as from PSI-PRED (J. 

Ward, McGuffin, Buxton, & Jones, 2003) (bioinf.cs.ucl.ac.uk/psipred/) or 

JUFO9D (Leman et al., 2013) 

(www.meilerlab.org/index.php/servers/show). In either case, the primary 

sequence of the target protein must be in FASTA format.  

CAUTION: The fragment picker expects PSI-PRED vertical format for all secondary 

structure prediction files. If PSI-PRED is used to generate secondary structure predictions, 

make sure to select the “machine learning scores” option when downloading the results. 

If JUFO9D is used, download the 3-state secondary structure prediction file (.jufo9d_ss), 

and make the following PSI-PRED header the first line of the JUFO9D prediction file, 

followed by a blank line: 

# PSIPRED VFORMAT (PSIPRED V3.0) 

 

b. Generate a sequence profile (checkpoint file). The checkpoint file, also 

known as a sequence profile, is created by PSI-BLAST. This file can be 

generated by running the Rosetta make_fragments.pl script as follows: 

 
rosetta_tools/fragment_tools/make_fragments.pl -id 2ou0_ -nopsipred –
psipredfile <psi_pred_file> -nosam –nojufo 2ou0_.fasta 

 
The psi_pred_file is generated from secondary structure prediction. The checkpoint file 

will be named 2ou0_.checkpoint. Make sure that all paths in the make_fragments.pl script 

exist in the working environment. They will need to be altered after downloading a fresh 

copy of Rosetta. 

c. Create a fragment picking weights file called QuotaProtocol.wts 

# score name priority weight min_allowed extras  
SecondarySimilarity  350 0.5 - psipred 
SecondarySimilarity  250 0.5 - jufo 
RamaScore   150 1.0 - psipred 
RamaScore   150 1.0 - jufo 
ProfileScoreL1  200 1.0 - 
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PhiPsiSquareWell  100 0.0 - 
FragmentCrmsd 30  0.0 - 

 
d. Create a Quota definition file called QuotaProtocol.def 

#pool_id pool_name fraction 
1  psipred 0.6 
2  JUFO  0.2 

 
e. Create a fragment picking options file called fragment.options in a text 

editor. The file should have this format: 

-database <path to Rosetta Database> 
-in:file:vall <path to Vall Database> # available from Rosetta checkout 
-in:file:fasta 2ou0_.fasta 
-in:file:s 2ou0_threaded.pdb 
-in:file:checkpoint 2ou0_.checkpoint 
-frags:ss_pred 2ou0_.psipred.ss2 psipred 2ou0_.jufo9d_ss JUFO  
-frags:scoring:config QuotaProtocol.wts 
-frags:picking:quota_config_file QuotaProtocol.def 
-frags:frag_sizes 9 3 
-frags:n_candidates 1000 
-frags:n_frags 200 
-out:file:frag_prefix 2ou0_quota 
-frags:describe_fragments 2ou0_quota.sc 

 
f. Run the command line:  

rosetta_source/bin/fragment_picker.default.OperatingSystemrelease 
@fragment.options 

 
When using the fragment picker, the fragment files will be output as 2ou0_quota.200.3mers 

and 2ou0_quota.200.9mers.  

 

Creating a Rosetta loops file 
 
11. Create a file which defines loop regions to be rebuilt. One line is created per loop to 

be built in a file with the extension, .loops (e.g, 2ou0_.loops). The Rosetta loop 

building protocol will close gaps between residues specified in the loops file. The 

information in the loops file is explained further in Table 19. 

LOOP 28 60 0 0 0 
LOOP 81 93 0 0 0 
LOOP 112 126 0 0 0 
LOOP 135 151 0 0 0 
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Table 19 
Explanation of information contained in the loops file 

 

Preparation of comparative modeling options file 
 
12. Create an options file with the name modeling.options and add the lines below. 

Comments within the options file are ignored when the ‘#’ tag is present.  

#input file, should be the output pdb 
-loops:input_pdb 2ou0_threaded.pdb 
#input will be in all-atom mode 
-loops:fa_input 
#loop definitions file 
-loops:loop_file 2ou0_.loops 
#sizes of fragments 
-loops:frag_sizes 9 3 1 
#location of the fragment files. Fragments files will have the extension 
.quota.200.3mers and .quota.200.9mers if created with the fragment picker. 
-loops:frag_files aa2ou0_09_05.200_v1_3 aa2ou0_03_05.200_v1_3 none  
#the centroid phase of loop modeling using CCD 
-loops:remodel quick_ccd 
#the all-atom phase of loop modeling 
-loops:refine refine_kic  
#force extended on loops (phi-psi angles set to 180 degrees in the first step) 
#independent of loop input file. For rebuilding loops entirely. 
-loops:extended true  
#give idealized phi and psi angles after it has been closed 
-loops:idealize_after_loop_close 
#does a minimization of the structure in the torsion space 
-loops:relax fastrelax  
#decreases the monte carlo inner and outer cycles of loop rebuilding, greatly 
#decreasing computation time  
-loops:fast  
#rotamer libraries used in the repack steps  
-ex1  
-ex2 

Column 1 LOOP The loops file identity tag 

Column 2 <integer>a Loop start residue number. NOTE: The starting structure must 
have real coordinates for all residues outside the loop definition, 

plus the first and last residue of each loop region. 

Column 3 <integer> Loop end residue number 

Column 4 <integer> Cutpoint residue number, must be greater than the first residue of 
the loop and less than the end residue of the loop. Default (0) - 

let loop rebuild protocol choose cutpoint 

Column 5 <float> Skip rate. Default (0) - never skip 

Column 6 <boolean> Extend loop. Default (0) – false 
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Running the comparative modeling job 
 
13. Generate comparative models of the target protein using Rosetta. At this point, the 

only Rosetta application needed is loop building. The following command can be used 

to run loop modeling in Rosetta. In the command line, OperatingSystem should be 

replaced with the operating system of the machine on which the job is running. For 

example, if the job is running on a Linux machine, the name of the executable will be 

loopmodel.default.linuxgccrelease. This command is executed on a single 

processor and produces 10,000 models. 

rosetta_source/bin/loopmodel.default.OperatingSystemrelease @modeling.options 
-database rosetta_database -nstruct 10000 

 

It is advised to split the generation of models across multiple CPUs. A single Rosetta 

process can be started for each CPU in a multi-processor machine, or the work can be 

distributed by starting processes on independent machines. For example, one could start 

four different jobs on four different processors. Each job would have its own command 

line. Further, the –out:prefix <prefix> or –out:suffix <suffix> options can be specified 

to give each job its own unique name. Each job would only generate 2,500 unique 

structures, summing to 10,000 when all four jobs are complete. A benchmarking study of 

loop building in Rosetta with cyclic coordinate descent can be found in Wang et al., 2007 

(Chu Wang et al., 2007). 

 

Analysis of comparative modeling results and choosing receptor models for ligand docking 
 
14. Choose the ten lowest energy comparative models for the ligand docking steps below. 

Rename the files to model_01.pdb, model_02.pdb … model_10.pdb. The process of 

choosing models to be used in ligand docking can vary depending on the user’s 

specific biological problem (see “Experimental design” in Chapter 2). As seen in Figure 

12, the lowest energy models are reasonably close to the native structure and, as 
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such, are a good starting point for ligand docking. These models are commonly chosen 

based on overall energy according to Rosetta’s scoring function because they are 

usually low-energy models with fully closed loops and minimal inter-atomic clashes. 

Other modes of filtering, such as model satisfaction of experimental restraints (see 

“Using Constraints as Filters in RosettaScripts”) or clustering (see “Clustering Using 

Rosetta”), can also be used. Furthermore, increased sampling of regions that do not 

converge on one or several conformations can improve the final model during de novo 

protein folding (Das et al., 2007, Qian et al., 2007, Raman et al., 2009). 

15. Use a 3D protein structure viewer to check the receptor models to be used for ligand 

docking and ensure that they do not have chain breaks. 

16. Align the ten comparative models using any 3D protein structure viewer, and save the 

resulting coordinates to new, individual PDB files before moving on to the ligand 

docking part of the protocol. 

A benchmarking study of comparative modeling in Rosetta can be found in Misura, et al., 

2006 (Misura et al., 2006). 

 

Prepare the ligand file 
 
17. Obtain a representation of the ligand to be docked of the type mol, mol2, or sdf. If a 

protein structure is determined in the presence of a ligand of interest, an sdf file can 

be downloaded from the PDB (www.pdb.org); however, hydrogen atoms are usually 

not present and must be added. To generate a mol file from a pdb (PDB) file, many 

different software packages can be used, including MOE 

(www.chemcomp.com/index.htm), PyMOL (www.pymol.org/), and ChemDraw 

(www.cambridgesoft.com/software/ChemDraw/). Generation of the mol file is not 

covered within this tutorial. 
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18. Run the following command to convert a mol file into a params file. Rosetta reads ligand 

files from a params file. The params file contains information about the atoms, bonds, 

charge, and coordinates of a ligand. The params file is generated from a molecule file 

and which can be of the type mol, mol2, or sdf. 

 
python rosetta_source/src/python/apps/public/molfile_to_params.py <mol file>  

 
In this specific example, 1-methyl-1H-pyrrole (MR3), is in complex with 2ou0 and is the 

ligand that will be docked into the comparative model of T4-lysozyme (2ou0). The 

command line used to create a params file for MR3 is as follows: 

python rosetta_source/src/python/apps/public/molfile_to_params.py -n MR3 
MR3.mol 

 
where -n MR3 is the three-letter name for the ligand. The resulting output will be 

MR3.params and MR3_0001.pdb.  

19. Copy and paste the lines from MR3_0001.pdb to the bottom of each of the ten model 

PDB files from steps 14-16. These files will be used in subsequent steps.  

Preparation of the ligand docking XML file 
 
20. Create a ligand docking XML file. The scoring functions, filters, and movers (specific 

Rosetta functionalities for the protocol) are specified in the XML file. Below is an 

example of an XML file, named ligand_dock.xml, that will be used to dock the ligand, 

MR3, into the T4-lysozyme comparative models chosen in steps 14-16. Comments on 

specific steps are shown outside of the <>. It should be noted that comments are 

handled differently between the XML file and the options file. We recommend 

beginning with the provided XML file and altering key variables to suit the specific 

needs of the study.  
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<ROSETTASCRIPTS> 
 <SCOREFXNS> 
  <ligand_soft_rep weights=ligand_soft_rep> 
   <Reweight scoretype=hack_elec weight=0.42/> 
   <Reweight scoretype=hbond_bb_sc weight=1.3/> 
   <Reweight scoretype=hbond_sc weight=1.3/> 
   <Reweight scoretype=rama weight=0.2/> 
  </ligand_soft_rep> 
  <hard_rep weights=ligand> 
   <Reweight scoretype=fa_intra_rep weight=0.004/> 
   <Reweight scoretype=hack_elec weight=0.42/> 
   <Reweight scoretype=hbond_bb_sc weight=1.3/> 
   <Reweight scoretype=hbond_sc weight=1.3/> 
   <Reweight scoretype=rama weight=0.2/> 
  </hard_rep> 
 </SCOREFXNS> 
 <LIGAND_AREAS> 
  <docking_sidechain_X chain=X cutoff=6.0 add_nbr_radius=true 
all_atom_mode=true minimize_ligand=10/> 
  <final_sidechain_X chain=X cutoff=6.0 add_nbr_radius=true 
all_atom_mode=true/> 
  <final_backbone_X chain=X cutoff=7.0 add_nbr_radius=false 
all_atom_mode=true Calpha_restraints=0.3/> 
</LIGAND_AREAS> 
 <INTERFACE_BUILDERS> 
  <side_chain_for_docking ligand_areas=docking_sidechain_X/> 
  <side_chain_for_final ligand_areas=final_sidechain_X/> 
  <backbone ligand_areas=final_backbone_X extension_window=3/> 
 </INTERFACE_BUILDERS> 
 <MOVEMAP_BUILDERS> 
  <docking sc_interface=side_chain_for_docking 
minimize_water=true/> 
  <final sc_interface=side_chain_for_final bb_interface=backbone 
minimize_water=true/> 
 </MOVEMAP_BUILDERS> 
 <MOVERS>   
single movers 
  <StartFrom name=start_from_X chain=X> 
   <Coordinates x=-18.8922 y=24.5837 z=-5.7085/> 
  </StartFrom> 
  <CompoundTranslate name=compound_translate randomize_order=false 
allow_overlap=false> 
   <Translate chain=X distribution=uniform angstroms=2.0 
cycles=50/> 
  </CompoundTranslate> 
  <Rotate name=rotate_X chain=X distribution=uniform degrees=360 
cycles=500/> 
  <SlideTogether name=slide_together chain=X/> 
  <HighResDocker name=high_res_docker cycles=6 repack_every_Nth=3 
scorefxn=ligand_soft_rep movemap_builder=docking/> 
  <FinalMinimizer name=final scorefxn=hard_rep 
movemap_builder=final/> 
  <InterfaceScoreCalculator name=add_scores chains=X 
scorefxn=hard_rep/> 
compound movers 
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  <ParsedProtocol name=low_res_dock> 
   <Add mover_name=start_from_X/> 
   <Add mover_name=compound_translate/> 
   <Add mover_name=rotate_X/> 
   <Add mover_name=slide_together/> 
  </ParsedProtocol> 
  <ParsedProtocol name=high_res_dock> 
   <Add mover_name=high_res_docker/> 
   <Add mover_name=final/> 
  </ParsedProtocol> 
 </MOVERS>   
      <PROTOCOLS> 
  <Add mover_name=low_res_dock/> 
  <Add mover_name=high_res_dock/> 
  <Add mover_name=add_scores/> 
 </PROTOCOLS> 
</ROSETTASCRIPTS> 
 

LIGAND_AREAS are used to describe the degree of protein and ligand flexibility in 

proximity to the protein/ligand interface. A cutoff value of 6.0Å means that any residue 

within 6.0Å of the ligand will be considered part of the interface. These values can be 

increased or decreased to enlarge or reduce the number of protein residues selected for 

rotamer sampling or backbone flexibility. The minimize_ligand value can be increased or 

decreased to alter the degree of ligand flexibility. This value represents the size of one 

standard deviation of movement in degrees. The Calpha_restraints value represents one 

standard deviation of alpha-carbon (CA) movement in angstroms (Å) and can be enlarged 

or reduced to alter the degree of backbone flexibility. 

The coordinates given to the StartFrom mover should be adjusted to represent 

starting points for ligand docking. Typically, experimental data is used to determine the 

initial site of ligand docking. For this example, extensive experimental data has identified 

a small, buried hydrophobic binding site centered at A9941. An average was taken over 

the Cartesian coordinates for the beta-carbon atom of A99 for each of the ten models for 

the StartFrom mover in the script above. 

The Translate mover’s “angstroms” field should be adjusted to represent the size 

of the binding pocket that needs to be sampled. Because the ligand in this case is small, 
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the ligand is allowed to translate within a 2.0Å radius of the starting coordinates. As 

familiarity with the provided ligand docking XML protocol is accrued, experiment with 

developing a custom protocol. Typically, if no experimental data on binding of the ligand 

is present, a 5.0Å radius is used. 

 

Preparation of the ligand docking options file 
 
21. Create an options file called ligand_dock.options. In addition to the input PDB (-

in:file:s) and the database location (-database), ligand params files must be 

provided (-in:file:extra_res_fa). These files were generated in step 18. The name 

of the XML file must be provided (-parser:protocol). PDB files are output by default. 

Below is the options file used for ligand docking in this example: 

-in:file:s model_01.pdb #this option will need to be changed for each of the 
ten models used in the docking protocol, e.g. model_10.pdb 
-in:file:extra_res_fa MR3.params 
-packing:ex1 
-packing:ex2 
-parser:protocol ligand_dock.xml 

 

Accurate predictions of interfaces often rely on fine-grained placement of side chain 

atoms. Thus, it is recommended that the number of side chain rotamers is increased to 

include the standard rotamer plus or minus one standard deviation. This is accomplished 

as shown under the packing option group (-packing:ex1, -packing:ex2). See the 

Rosetta documentation for additional rotamer selection options. 

 

Running the ligand docking job 
 
22. Run the ligand docking job by specifying the executable and the options file on the 

command line:  

rosetta_source/bin/rosetta_scripts.default.OperatingSystemrelease 
@ligand_dock.options -database rosetta_database -nstruct 1000  
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The number of models (-nstruct) necessary to produce high-quality predictions 

will depend on the size of the binding pocket and the flexibility of the protein and small-

molecule ligand. The number of models needed is directly proportional to the number of 

degrees of freedom in the system under study. For this example, the MR3 ligand is docked 

1,000 times within each of the ten comparative models, for a total of 10,000 models docked 

with MR3. 

A benchmarking study of docking ligands with Rosetta can be found in Lemmon, 

Kaufmann, and Meiler, 2012 (Lemmon, Kaufmann, & Meiler, 2012). 

 

Timing 
 

The indicated timing of each step is a rough estimate. The actual running time of steps 

that rely on external servers will depend on the number of jobs those servers are 

processing at the time, and these steps may therefore take much longer than the time 

estimates specified. Additionally, the run times of the Rosetta simulation steps will be 

longer than specified if a large protein and/or ligand are used. If the alignment or modeling 

steps are performed iteratively, the total run time for the iterative process will be longer 

than the listed time. 

 Step 1: Template selection, 5 minutes 

Steps 2-4: Prepare the PDB file of template structure, 5 minutes 

 Steps 5-7: Sequence alignment, 15 minutes 

 Steps 8-9: Threading, 15 minutes 

 Step 10: Prepare fragment files of the target sequence, 15-60 minutes 

 Step 11: Creating a Rosetta loops file, 5 minutes 

 Step 12: Preparation of comparative modeling options file, 5 minutes 
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 Step 13: Running the comparative modeling job, 5,000 CPU hours for 10,000 

models (30 minutes per model). These models can be run on independent CPUs, 

decreasing total run time. 

 Step 14-16: Analysis of comparative modeling results and choosing receptor 

models for ligand docking, 60 minutes 

 Steps 17-19: Prepare the ligand file, 15 minutes 

Step 20: Preparation of the ligand docking XML file, 5 minutes 

 Step 21: Preparation of the ligand docking options file, 5 minutes 

 Step 22: Running the ligand docking job, 16 CPU hours for 10,000 models (5 

seconds per model). These models can be run on independent CPUs, decreasing 

total run time. 

 

Installing Rosetta 3.4 
 

The Rosetta modeling suite is free of cost to all academic users after registration. The 

package comes with a user’s guide; a database containing pertinent files for applications 

in Rosetta; the Rosetta source code, and a fragments directory containing a peptide 

fragment database of proteins for known structures. In addition, the modeling suite comes 

with FoldIt3, an interactive graphical interface that manually folds proteins using the 

Rosetta scoring function and structure prediction algorithm. ProteinTools 

(rosetta_tools/protein_tools), a collection of ancillary tools commonly used in 

conjunction with the Rosetta software suite, is also included. Lastly, Rosetta comes with 

a software construction tool called SCons (http://www.scons.org/), which analyzes the 

source code and builds specified binary files using multiple processors. SCons interfaces 

with the standard GNU gcc compiler to build the source code. 
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1. Rosetta is free to academic users. For an academic license, apply here: 

http://depts.washington.edu/uwc4c/express-licenses/assets/rosetta+pyrosetta/ 

2. After obtaining a username and password, source code for Rosetta 3.4 can be 

downloaded here: https://www.rosettacommons.org/software/academic or 

https://www.rosettacommons.org/software/commercial  

3. Create a new directory called rosetta (mkdir rosetta), and copy rosetta3.4_bundles.tgz 

from your downloads directory to rosetta/ (cp rosetta3.4_bundles.tgz rosetta/) 

4. In the rosetta directory, unpack the tar file by typing the following: tar -zxvf 

rosetta3.4_bundles.tgz. This will unpack multiple files, including the Rosetta source 

code (rosetta3.4_source.tgz) and the Rosetta database 

(rosetta3.4_database.tgz). 

5. Unpack the database and source code using the following: 

tar -zxvf rosetta3.4_database.tgz 
tar -zxvf rosetta3.4_source.tgz 

 
6. Change directories into the newly created rosetta3.4_source (cd 

rosetta3.4_source), and build the binaries using the following command: 

external/scons-local/scons.py mode=release bin/ 

CRITICAL: Make sure you have the GNU gcc3.4 compiler or higher (by typing gcc -v) 

and that a working copy of Python2.5 or higher installed. Access a Python executable by 

/usr/bin/env python or explicitly type the path to your python executable. Additionally, 

you must have zlib installed, if you see errors referencing a missing –lz library, install the 

zlib-dev libraries for your operating system. 

Note for Mac OS X Users: the compiler “clang” is recommended for compiling Rosetta in 

OS X.  Make sure you have the OS X Developer tools installed, and then compile using 

the following build command: external/scons-local/scons.py cxx=clang mode=release 

bin/ 
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If an error similar to KeyError: "Unknown version number 4.1 for compiler 'clang'" 

occurs, open the file rosetta_source/tools/build/options.settings and modify the line: 

"clang" : [ "1.7", "2.1", "2.0", "2.8", "2.9", "3.0", "3.1","*" ], 

 
To instead read: 

"clang" : [ "1.7", "2.1", "2.0", "2.8", "2.9", "3.0", "3.1","4.1","*" ], 

 
Executables compiled in this way will have the suffix “.macosclangrelease” 

7. Change directory into bin/ (cd bin), and confirm that all 166 binaries have been 

built. 

The Rosetta modeling suite comes with a set of python scripts, which can greatly 

simplify the analysis of Rosetta models. These scripts are used throughout this tutorial. 

The scripts rely on several python dependencies, which need to be installed. BioPython 

and numpy, which are freely available python packages, are required to use these scripts. 

The specific installation instructions for BioPython (http://biopython.org/wiki/Biopython) 

and numpy (http://numpy.scipy.org/) will vary based on your specific operating system 

details. Consult the documentation for these packages for installation instructions. 

Rosettautil is a python module with a number of useful functions for handling Rosetta 

output. The installation package for this Python module is located in 

<rosetta_dir>/rosetta_tools/protein_tools. To install this module, and the associated 

scripts, first change directories to the <rosetta_dir>/rosetta_tools/protein_tools 

directory. If you have root access and want to install the module so that it is usable by all 

users on the system, enter the following command:  

python setup.py --install-scripts=/path/to/scripts/directory 

 

This command will install the python module, and then copy the scripts into the directory 

you specify. If you do not have root access, use this command:  

python setup.py --user --install-scripts=/path/to/scripts/directory 
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Clustering Using Rosetta  
 

Predicted structures generated by comparative modeling are often clustered to 

help identify structurally similar models. Clustering is performed with the assumption that 

the deepest energy well, and hence the global energy minimum, will also be the widest2. 

As a result, it is expected that the largest clusters will potentially contain the predicted 

model that is closest to the native structure. Rosetta includes a tool for clustering protein 

models. The cluster application avoids the memory requirements associated with 

computing a complete distance matrix for large numbers of models. The Rosetta clustering 

method starts by computing a distance matrix for the first 400 input models. Each model 

in the distance matrix is assigned to the cluster to which it is nearest (typically in terms of 

RMSD). If the model is not within a specified radius of any cluster, it is assigned to a new 

cluster.  

Because the Rosetta clustering application outputs most of its statistical 

information in its log file, a script has been provided to run the clustering application and 

produce a clear summary of the results. Given a set of PDB or Rosetta silent files and a 

Rosetta options file, clustering.py will produce a set of clustered PDBs, a histogram 

file showing the distribution of pairwise RMSDs between models, and a summary file 

showing which models are in which clusters. The Rosetta options file can contain a 

number of options that control the behavior of the cluster application. The acceptable 

options are listed below.  

-run:shuffle - Input structures in a random order. Use this if you have reason to believe 

that the output models are not in random order 

-cluster:gdtmm - cluster using GDTMM (global distance test) instead of RMSD distances 

-cluster:radius <float> - The maximum radius of each cluster in Å (RMSD mode) or 

inverse GDT_TS (GDTMM mode) 

-cluster:input_score_filter <float> - do not cluster scores above a given energy 
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-cluster:exclude_res <int> <int> ….<int> - do not include the listed residues in 

distance calculation 

-cluster:limit_cluster_size <int> - maximum number of models in each cluster 

-cluster:limit_clusters <int> - maximum number of clusters 

-cluster:limit_total_structures <int> - maximum number of models to cluster 

-cluster:sort_groups_by_energy - sort clusters by total energy during output 

 

Using Constraints as Filters in RosettaScripts  
 

Filters can be used to guide a RosettaScripts (Fleishman et al., 2011) protocol in 

producing only high quality models that pass constraints specified by the user. These 

filters can take on a variety of forms, where the protocol can be repeated until a certain 

score is met (filter by score), continuing the protocol until the model converges on another 

structure (filter by root mean square distance, or RMSD), or continuing the protocol until 

atomic contacts are made which agree with experimental observations (filter by 

experimental constraints). For example, an atomic contact or residue contact constraint is 

essentially a distance constraint that can be derived from several types of experimental 

data, such as NMR nuclear Overhauser effects (NOEs), distances determined by electron 

paramagnetic resonance (EPR), distances derived from cysteine mutagenesis, and more. 

The protocol repeats for all or specified movers until the experimental constraints are 

satisfied. In the XML script used by RosettaScripts, all filters are specified in the FILTERS 

section as shown below: 

<FILTERS> 
<filter1/> 
 <filter2/> 
 ... 
</FILTERS>  
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Then, in the PROTOCOLS section: 

<PROTOCOLS> 
 ... 
<Add mover_name=mover1 filter_name=filter1> 
 <Add filter_name=filter2/> 
 ... 
</PROTOCOLS> 

 

The general format for a filter placed in the XML script is: 

<"filter_name" name="your_filter_name" ..parameter_name=<parameter_value>,  
 
where "filter_name" is one of a predefined set of filters recognized by RosettaScripts, 

and name is a unique identifier for this particular filter, followed by the parameters that the 

specific filter needs to be defined. In the example, mover1 would continue until the 

constraints given in filter1 are satisfied. For filter2 that is not specified with a mover, 

the entire protocol would repeat up to filter2, until the constraints defined by the filter 

are met.  

An example of an AtomicContact filter is:  

<AtomicContact name=”res32_res45_noe” residue1=32 residue2=45 sidechain=0  
backbone=1 protons=0 distance=10 confidence=0.25/> 

 
This filter will check if the model generated by Rosetta satisfies the specified constraint 

between residues 32 and 45. If any pair of backbone residues between the two residues 

is within 10Å of each other, the filter will return TRUE 75% of the time. When the filter 

returns a TRUE value, the protocol is continued from where the filter is called. In addition, 

the “sidechain” and “protons” options have designated values of 0 (as opposed to 1), 

which means they are turned off. The side chain and hydrogen atoms are not taken into 

account, and only the main chain backbone atoms will be evaluated in this filter example.  

If the confidence is 1.0 then the filter is evaluated as either true or false. When the 

confidence value is less than 0.999, the filter will return TRUE in (1.0 – confidence) fraction 
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of the times it is evaluated. This so-called “fuzzy” filter is useful for instances of ambiguous 

or uncertain experimental data. 

A less sophisticated type of constraint filter conceptually similar to the 

AtomicContact constraint filter is the ResidueDistance filter. This filter queries the distance 

between the beta-carbons of two specified residues. An example similar to the 

AtomicContact filter is:  

<ResidueDistance name=”res32_res45_noe” res1_res_num=32 res2_res_num=45 
distance=10.0 confidence=0.25/> 

 
Finally, a DisulfideFilter can be applied, in which Rosetta tries to select models that 

position the specified residues such that they can potentially form a disulfide bond:  

<DisulfideFilter name=disulfide targets=32,45,46 confidence=1.0/>  

Notice that “targets” is defined as a comma-separated list of residues, which means 

that all numbers in the comma-separated list are considered when searching for a 

disulfide bond. For more information on using constraints in RosettaScripts1, including 

constraint-type filters, go to:  

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/RosettaScripts.

html 

 

Testing Rosetta 
 

Rosetta is often used to recapitulate known experiments. In such studies, several 

Rosetta options or protocol steps are changed carefully and methodically until the 

computational and experimental results correlate. Before conducting experiments with 

Rosetta, it is advised to test, or benchmark, the proposed protocol on known experimental 

data.  

The definition of a successful benchmark varies and depends on the protocol. For 

a loop modeling benchmark, if the Rosetta model has a sub-angstrom RMSD to the 

experimental structure and is in the top ten lowest-scoring models built, the benchmark is 

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/RosettaScripts.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/RosettaScripts.html
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considered to be successful (Mandell et al., 2009). For ligand docking, success is 

achieved when one of the top ten scoring models has an RMSD to the native structure 

below 2Å (Davis & Baker, 2009). 

The data obtained from loop building for the T4-lysozyme comparative model (see 

Figure 12) can be used as an example of benchmarking. The RMSD from the native ligand 

position can be calculated across all generated models via the scripts provided with a copy 

of Rosetta. To calculate the RMSD, run the provided script:  

scripts/score_vs_rmsd_singleproc.py --native=target_A.pdb --
table=score_vs_rmsd_loops_ca.txt --term=total --ca_mode=ca --chain=A 
loops_final_*.pdb --res=residues.ls 

 

NOTE: The InterfaceScoreCalculator’s “native” option is used for benchmarking (if the 

native structure is known). To demonstrate the accuracy of the protocol in this example, 

the native structure is included in the script as 2ou0_native.pdb. However, when running 

on a system where the native structure is not available, this option should be omitted. For 

reference, the results from this example will be compared against the experimentally 

determined T4-lysozyme crystal structure (referred to below as 2ou0_native.pdb), which 

must also be aligned in the same coordinate system as the homology models used for 

docking. To enable RMSD calculation to the native, modify the *.xml script to include the 

native option: 

<InterfaceScoreCalculator name=add_scores chains=X scorefxn=hard_rep 
native="2ou0_native.pdb"/> 

 
In your resulting score.sc file, the interface_delta_X is the score, and 

ligand_rms_no_super_X is the RMSD. The RMSDs for the lowest-energy ligand docking 

models for this example are considered relatively large; however, this is not unexpected 

due to the small size and the symmetry of the ligand. The binding conformation and 

position of this low-energy cluster of models could be another energy minimum separate 

from that found in the crystal structure. Further, Rosetta is able to sample the native ligand 
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conformation and position in a slightly higher-energy minimum. If the method you use is 

not yielding satisfactory test results, the size of the binding pocket search space can be 

decreased. For example, for this ligand (1-methyl-1H-pyrrole (MR3), a search radius of 2Å 

was used. In cases where the ligand is small and rigid, it is better to limit the degrees of 

freedom in which the ligand moves around the binding pocket. However, for larger ligands, 

a radius of up to 4-5Å may be needed to accommodate the ligand.  

 

Glossary 
 

 all-atom - in the case of sampling, synonymous with fine movements and often 

including side chain information; also referred to as high-resolution 

 benchmark – another word for a test of a method, scoring function, algorithm, etc. 

by comparing results from the method to accepted methods/models 

 binary file – a file in machine-readable language that can be executed to do 

something in silico 

 BioPython – a set of tools for biological computing written and compatible with 

Python http://biopython.org/wiki/Biopython 

 build – to compile the source code so it can be used as a program 

 centroid – in Rosetta centroid mode, side chains are represented as unified 

spheres centered at the residue’s center of mass 

 cluster center – the geometric center of a cluster, or group, of models 

 clustering – in this case, grouping models with similar structure together 

 comparative model – a protein model where the primary sequence from one 

protein (target) is placed, or threaded, onto the three dimensional coordinates of a 

protein of known structure (template)language (binary) 
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 cyclic coordinate descent (CCD) – based on robotics, CCD loop closure is used to 

build loops in Rosetta by fragment assembly and close loops by decreasing the 

gap between two termini in three-dimensional space (Canutescu & Dunbrack, 

2009) 

 de novo – in this case, from the sequence; also called ab initio 

 directory – synonymous with a folder, usually contains one or more files or other 

folders 

 distance matrix – a matrix containing the pairwise distances for every point in a set 

of points 

 Dunbrack rotamer library – a set of likely side chain conformations for the twenty 

canonical amino acids based on protein structures in the Protein Data Bank (PDB) 

(Dunbrack & Cohen, 1997)  

 executable – binary file used to execute the program 

 force field / scoring function / energy function / potential – often used 

interchangeably; a means of assessing the energy of the generated models 

 fragment – in Rosetta folding and loop building, a set of three-dimensional 

coordinates corresponding to a given amino acid sequence 

 fragment database – also called the fragment library; contains the Cartesian 

coordinates for 200 amino acid fragments (obtained from the Vall database) for 

each sequence window of the entire primary sequence of the protein 

 gap – in sequence alignment, a gap is inserted when the sequences are of low 

homology; usually appear as a dash (-); the gaps form a sequence alignment 

correspond to areas where loops are built during comparative modeling 

 GDT / GDT_TS – global distance test (total score); a measure of similarity between 

two protein structures having the same amino acid sequence; the largest set of 
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residues' Cα atoms in the model structure falling within a defined distance cutoff 

of their position in the experimental structure 

 gradient-based minimization – also known as minimization by steepest descent; in 

this case, a means of energy minimization in which one takes steps proportional 

to the negative of the gradient of the function (energy) at the current point 

 high-resolution – in the case of sampling, synonymous with fine movements and 

often including side chain information 

 homology model – a more specific type of comparative model where the protein 

sequence of interest (target) is a homolog of the protein of known structure 

(template) 

 interface delta - The interface delta score is defined as the contribution to the total 

score for which the presence of the ligand is responsible. 

 kinematic loop closure (KIC) – robotics-inspired loop closure algorithm which 

analytically determines all mechanically accessible conformations for torsion 

angles of a peptide chain using polynomial resultants (Coutsias et al., 2004) 

 knowledge-based – in the case of Rosetta, based on information obtained from 

structures found in the PDB 

 libraries – in computing, a collection of code and data (classes and functions) used 

by a piece of software and is often used in software development 

 ligand – in this case, a small molecule that binds to a protein to serve some 

biological purpose; in the presented protocol, the ligand (small molecule) is docked 

into the receptor (protein). 

 low-resolution – a somewhat subjective term, in the case of sampling, synonymous 

with coarse movements of the protein and/or ligand backbone and side chains; the 
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individual atoms of low-resolution structures or models cannot be resolved, or 

observed. 

 metropolis criterion – often combined with the monte carlo sampling algorithm; 

allows for generation of an ensemble that represents a probability distribution; see 

Metropolis, et al., 1953 (Metropolis et al., 1953) 

 model – in the case of this protocol, a structure generated by Rosetta; sometimes 

called a decoy 

 monte carlo sampling – a randomized and repetitive computational sampling 

method 

 mover - a generic class that takes as input a pose and performs some modification 

on that pose; for example, a mover might take in a pose and rotate every residue 

 namespace – in computer science, an abstract container holding a logical grouping 

of unique identifiers or symbols; in Rosetta, examples of namespaces are loops, 

relax, etc. 

 native-like – close to the experimentally determined structure; a model that is 

“native-like” usually has an RMSD to the experimentally determined structure of < 

2Å. 

 options file – often called a flags file; a file containing Rosetta options that can be 

passed to a Rosetta executable after the @ symbol; can be easier to use than 

passing Rosetta options over the command line 

 pack / repack – in Rosetta, side chains are packed/repacked by switching out 

rotamers and scoring them using the Rosetta scoring function 

 params file – ligand file; defines the Rosetta atom-typing and internal coordinates 

of a small molecule; in the chapter, specified by *.params 

 path – in this case, the location in the file system of a file or directory 
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 physics-based – in the case of scoring functions, based on Newtonian physics; for 

example, two atoms are considered to be balls connected by a spring; often used 

in molecular mechanics 

 pose – in this Rosetta protocol, a three-dimensional conformation of the ligand, 

protein, or ligand/protein complex 

 Python – interpreted, object-oriented, high-level programming language 

http://www.python.org/ 

 relax – in Rosetta, an iterative protocol of side chain repacking and gradient-based 

minimization; often referred to as full-atom (or all-atom) refinement 

 Robetta – Rosetta structure prediction server http://robetta.bakerlab.org/ freely 

available to not-for-profit users 

 RosettaCommons – a group of more than twenty labs that develop the Rosetta 

software suite 

 Rosetta energy units (REU) – not experimental energy units; these are arbitrary 

energy units specific to the Rosetta scoring function 

 RosettaScripts – also called the Scripter or RosettaXML; an XML-like language 

that allows for specifying modeling tasks in Rosetta (Fleishman et al., 2011) 

 rotamer – rotational conformer of an amino acid or ligand side chain 

 SCons – a tool for constructing software from its source code 

http://www.scons.org/ 

 script - in computer programming, a script is a sequence of instructions that is 

interpreted or carried out by another program rather than by the computer 

processor (as a compiled program is) 

 source code – human-readable files that are the implementation of the program; 

in Rosetta, these are written in C++. 
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 target – in comparative, or homology, modeling, the protein for which we are 

generating a model; the target sequence is the primary sequence of the protein for 

which we want to make a model. 

 template – in comparative modeling, the protein of known structure on which the 

target is threaded 

 threading – placing the primary sequence of one protein (target) on the three-

dimensional coordinates of a protein of known structure (template) based on a 

sequence alignment 

 Vall database – database from which amino acid fragments are picked for folding 

and CCD loop building in Rosetta 

 XML – Extensible Markup Language; in this case, used to write protocols to pass 

to RosettaScripts 
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Troubleshooting Tips 
 
Table 20 
Troubleshooting tips for comparative modeling and ligand docking with Rosetta. 

Step Problem Possible Reason Solution 

1 No suitable template 
structure is found. 

It is possible that no 
experimental structure 
has been determined 
for a homologous 
protein with greater 
than 30% sequence 
identity. 

Remote homolog detection using 
methods such as threading may be 
able to identify a more distantly 
related template structure. This will 
result in a model of lower 
confidence. In some cases, 
Rosetta can be used to perform de 
novo structure prediction instead of 
comparative modeling. 

3 clean_pdb.py script gives 
message: “Found 
preoptimized or otherwise 
fixed pdbfile.” 

There are no HETATM 
or non-ATOM records 
to remove. 

This is not actually a problem. No 
action required. But it is always a 
good idea to examine the PDB file 
in a text editor and a structure 
viewer to understand the details of 
the template structure.  

3 The clean_pdb.py script 

does not run. 
The script was not 
made executable when 
it was downloaded. 

The Python script needs to be 
given executable permissions with 
a command similar to this: chmod 
+x ./clean_pdb.py 

6 The resulting sequence 
alignment between the 
target and template 
sequences contains 
evident errors. 

Ultimately, no 
automated sequence 
alignment algorithm is 
as good as an 
experienced biologist. 

Do not hesitate to hand-edit the 
sequence alignment to ensure that 
wherever possible, functionally 
important residues align properly, 
secondary structural elements are 
conserved, and 
insertions/deletions are localized to 
loop regions. This will greatly 
increase the quality of the model. 

6 The sequence alignment 
contains unaligned N- or 
C- terminal extensions. 

The target sequence is 
longer than template 
structure (or vice 
versa). 

Before aligning, trim the target 
sequence so that the N- and C-
termini match the termini in the 
template PDB file.  

8 thread_pdb_from_alignm
ent.py does not run. 

BioPython is not 
installed. 

Install Python (version 2.5 or later) 
with the optional BioPython 
package in order to run these 
scripts. 
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Step Problem Possible Reason Solution 

8 thread_pdb_from_alignm
ent.py “We cannot 
completely thread this 
protein in an automatic 
way, manual inspection 
and adjustment of loops 
files will be required.” 

There may be gaps 
within the original 
template protein. This 
script will give this 
message when 
handling an alignment 
containing gaps 
greater than 3 residues 
in the template 
sequence. 
 

While a set of loop definitions will 
be output to the screen, these loop 
definitions only include regions of 
the threaded protein that contain 
gaps corresponding to unaligned 
regions of the protein. In cases 
where additional regions need 
remodeling, it will be necessary to 
correct the loop definitions by hand 
(Figure 10). See Experimental 
design for details on how to 
determine the suggested loop 
definitions.  

8 thread_pdb_from_alignm
ent.py “can’t find 
alignment in alignment 
file.” 

The alignment is in 
wrong file format, or 
the template or target 
names are not what 
was specified on the 
command line. 

Make sure the file is in ClustalW 
format. Edit the alignment 
manually so that the target and 
template names exactly match the 
arguments passed to the script. 

8 thread_pdb_from_alignm
ent.py gives a Traceback 
with an AttributeError 

Missing arguments on 
the command line 

Be sure to specify all necessary 
options, including --template=<x> -
-target=<x> --chain=<x> followed 
by the 3 input files: 
<alignment.filename> 
<template.pdb> <output.filename> 

8 thread_pdb_from_alignm
ent.py says “residue 
mismatch between 
alignment and PDB” 

The sequence in the 
template PDB is not 
identical to the 
template sequence in 
the alignment. 

Use the FASTA sequence 
extracted from the PDB file using 
clean_pdb.py to generate the 

sequence alignment. 

8 thread_pdb_from_align
ment.py gives a loops 

suggestion in which one 
loop is only one residue 
long. 

There is a point 
insertion in the 
alignment. 

Edit the loop to include 1 or 2 
residues on each side of the point 
insertion, to give greater flexibility 
for closing the loop. 

10 Difficulty generating 
fragments file. 

Using the fragment 
picker and the 
make_fragments.pl 

script that comes with 
the Rosetta source 
code has many 
prerequisites. The 
installation of the 
prerequisite programs 
is an involved 
procedure. 

The simplest way to generate a 
fragments file is to use the Robetta 
server at: 
www.robetta.bakerlab.org This 
service is available free to all non-
commercial users. See STEP 10A. 
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Step Problem Possible Reason Solution 

11 Loops file not recognized 
by Rosetta 

Spaces and tabs were 
used interchangeably 
in the file. 

Use either spaces OR tabs in the 
loop file, but NOT both. Make sure 
it is a plain text file, not e.g., a 
formatted Word document. Make 
sure a current loop file format is 
used (although Rosetta will try to 
automatically translate older 
formats). 

11 Loops file is not 
functional. Rosetta runs, 
but gives errors during 
loop sampling. 

Loops are too long for 
Rosetta to adequately 
sample. 

Guidelines for loops:  
1) Individual loops should not be 
greater than 10 to 12 amino acids 
long. 
2) Rosetta can have trouble with 
N-terminal and C-terminal tails. It 
is best to trim the target termini to 
match the template. 

12 Options file is not 
recognized 

Spaces and tabs were 
used interchangeably 
in the options file. 

Use either spaces OR tabs in the 
options file, but NOT both. Make 
sure it is a plain text file, not e.g., a 
formatted Word document. 

13 Rosetta fails to run or 
contains ERRORS in the 

log file referencing the 
input PDB file of the 
template structure. 

An input PDB file 
containing non-
standard residues, 
including certain ions, 
small-molecules, and 
post-translational 
modifications that are 
not included in the 
standard residue 
database, or with 
missing density that 
includes backbone 
atoms cannot be used. 

1) Manually edit the PDB file to 
remove or rename the offending 
residues with standard names. 
2) Ensure that the input PDB file is 
properly formatted, especially with 
respect to column spacing. The 
reference for the format is here: 
http://www.wwpdb.org/docs.html 
3) In some cases, custom 
parameters for the non-standard 
residues will need to be made and 
those files included in the 
command line. 

13 Rosetta fails to complete 
the comparative modeling 
run. 

This can happen when 
the input file has 
missing backbone 
density in non-loop 
regions. 

To supply a starting point for the 
missing density, re-build loops by 
“modeling” the template PDB file 
on its own complete sequence. 

13 Rosetta fails to complete 
the comparative modeling 
run. The log file contains 
“permanent failure.” 

This can happen when 
loops are inserted into 
regions where they do 
not fit. 

Extend the endpoints of the loops 
to increase the flexibility of the 
loops. 

13 Rosetta fails to complete 
the comparative modeling 
run. 

The alignment is bad, 
e.g., a proline is placed 
in the middle of a helix. 

Manually edit the alignment file to 
make it more biophysically 
reasonable. 
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Step Problem Possible Reason Solution 

14 Cannot select the best 
model by Rosetta Energy 
Units because the scores 
are too similar. 

Inadequate sampling 
can reduce the ability 
to distinguish good 
models from bad by 
score alone.  

Increase the number of models 
generated by a factor of 10. Or use 
a clustering approach to identify 
the most commonly generated 
conformations. Or incorporate 
experimental restraints to filter the 
resulting models. 

18 The 
molfile_to_params.py 

script does not run. 

The script was not 
made executable when 
it was downloaded. 

The Python script needs to be 
given executable permissions with 
a command similar to this: chmod 
+x ./molfile_to_params.py 

20 The XML file is not 
recognized by Rosetta. 

Formatting was 
included in the XML 
file. 

Make sure it is a plain text file, not 
e.g. a formatted Word document. 
See Box 3 for details. 

22 The ligand docking job 
does not run. 

Rosetta cannot find the 
input files. 

Make sure the path options are 
correct, and point towards the 
actual location of the input files. 

 

 



 

APPENDIX TO CHAPTER III 
 

Protocol capture for GPCR comparative modeling and ligand docking computational methods 
 

This protocol capture contains the steps necessary to obtain the results presented in Chapter III. While the actual 

protocol was carried on every pairwise combination of GPCRs from Table 4, this protocol capture uses the comparative 

modeling of bRh onto the template B2Ar as an example for simplification. The Rosetta 3.4 software suite is publically available 

and the license is free for non-commercial users at http://www.rosettacommons.org/.  

 

1. Structural alignment of GPCR templates 
Step  Text  Commands  Comment  

1A. Prepare 
GPCR crystal 
structures from 
the Protein Data 
Bank.  

The highest resolution 
experimental structure for 
each unique GPCR in the 
Protein Data Bank (PDB) at 
the time of writing was chosen 
for comparative modeling and 
ligand docking, as shown in 
Table 1. 

Obtain PDB files: 
Download GPCR crystal structures from 
the Protein Data Bank at 
http://www.rcsb.org. 
Clean PDB files: 
Clean PDB files using the following script, 
written here for use with B2Ar: 
rosetta_tools/protein_tools/scripts/clean_p
db.py 2RH1 A > 2rh1A_clean.pdb 
Remove lines in the PDB file representing 
the N-terminal, C-terminal and T4-
lysozyme regions. 

Input:  
GPCR crystal structure PDB files 
from the Protein Data Bank at 
http://www.rcsb.org. 
 
Output: 
1u19A_clean.pdb 2vt4A_clean.pdb 
2rh1A_clean.pdb 3emlA_clean.pdb 
3oduA_clean.pdb 3pblA_clean.pdb 
3rzeA_clean.pdb 3v2wA_clean.pdb 
3uonA_clean.pdb 4dajA_clean.pdb 
4dklA_clean.pdb 4djhA_clean.pdb 
4ea3A_clean.pdb 4ej4A_clean.pdb 

2
6

2
 

http://www.rosettacommons.org/
http://www.rcsb.org/
http://www.rcsb.org/


 

1B. Perform a 
structural 
alignment of 
GPCRs using 
crystal structures 
from the Protein 
Data Bank. 

A structure-based sequence 
alignment was generated of all 
14 GPCR templates using 
MUSTANG. 

mustang -p . -i 1u19A_clean.pdb 
2vt4A_clean.pdb 2rh1A_clean.pdb 
3emlA_clean.pdb 3oduA_clean.pdb 
3pblA_clean.pdb 3rzeA_clean.pdb 
3v2wA_clean.pdb 3uonA_clean.pdb 
4dajA_clean.pdb 4dklA_clean.pdb 
4djhA_clean.pdb 4ea3A_clean.pdb 
4ej4A_clean.pdb -o all_gpcrs -F fasta -D 
2.5 -s ON 

Input:  
1u19A_clean.pdb 2vt4A_clean.pdb 
2rh1A_clean.pdb 3emlA_clean.pdb 
3oduA_clean.pdb 3pblA_clean.pdb 
3rzeA_clean.pdb 3v2wA_clean.pdb 
3uonA_clean.pdb 4dajA_clean.pdb 
4dklA_clean.pdb 4djhA_clean.pdb 
4ea3A_clean.pdb 4ej4A_clean.pdb 
 
Output: 
all_gpcrs.fasta  

 

2. Sequence alignment of the target GPCR to template sequences 
Step  Text  Commands  Comment  

2A. Obtain 
sequence of the 
target GPCR. 

 Save sequence output from clean_pdb.py 
into a FASTA file called 1u19A.fasta. 

Input:  
1u19A_clean.pdb 
 
Output: 
1u19A.fasta 

2B. Sequence 
alignment of the 
target GPCR 
[bRh] to 
templates [B2Ar]. 

The sequence of the target 
GPCR was then aligned with 
the profile of structurally 
aligned templates using 
CLUSTALW. 

Input target sequence 1u19A.fasta and 
profile alignment all_gpcrs.fasta 
to http://mobyle.pasteur.fr/cgi-

bin/portal.py#forms::clustalO-profile. 
Default settings were used. 
 

Input:  
1u19A.fasta, all_gpcrs.fasta 
 
Output: 
1u19A.aln 

 

3. Thread target sequence onto template backbone coordinates 
Step  Text  Commands  Comment  

3. Thread target 
sequence bRh 
onto template 
B2Ar backbone 
coordinates. 

The sequence of the target 
GPCR was then placed onto 
the helical backbone 
coordinates of each template 
structure. 

rosetta_tools/protein_tools/scripts/thread_pdb_from_a
lignment.py --template=2rh1A_clean --target=1u19A -
-chain=A --align_format=clustal 1u19A.aln 
2rh1A_clean.pdb 1u19A_on_2rh1A.pdb 

Input:  
1u19A.aln 
2rh1A_clean.pdb 
 
Output: 
1u19A_on_2rh1A.pdb 
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4. Rebuild missing density 
Step  Text  Commands  Comment  

4A. Generate 
secondary structure 
prediction, 
constraint file and 
fragments for bRh.  

 Secondary structure- Jufo9D: 
http://meilerlab.org/index.php/servers/show?s_id=5 
Secondary structure- PSIPRED: 
http://bioinf.cs.ucl.ac.uk/psipred/ 
Transmembrane span prediction based on Jufo9D: 
perl scripts/jufo9d_span.pl 1u19A.jufo9d > 
1u19A.span  
Disulfide bond constraint file: 
Create file that lists residue number of cysteine 
residues predicted to disulfide bond according to 
the alignment with the template. 
Fragment files: 
http://www.robetta.org 
Check for exclusion of bRh from the fragment 
database. 

Input: 
1u19A.fasta 
 
Output: 
1u19A.jufo_ss, 
1u19A.psipred_ss2, 
1u19A.span, 1u19A.disulfide, 
aa1u19A03_05.200_v1_3, 
aa1u19A09_05.200_v1_3 

4B. Rebuild 
missing density 
caused by gaps in 
the sequence 
alignment.  

Any missing density 
and variable loop 
regions were 
constructed using the 
ab initio cyclic 
coordinate descent 
protocol in Rosetta. 

Generate loops file: 
In this case, the loop definitions will span regions 
where gaps were located in the sequence 
alignment. List the residue numbers in the loop file 
as shown in 1u19A_on_2rh1A.loops. 
Generate options file: 
List the desired options for rebuilding loop regions 
in an options file as shown in ccd_initial.options. 
Run loop building: 
rosetta_source/bin/loopmodel.linuxgccrelease 
@ccd_initial.options -database rosetta_database  

Input:  
ccd_initial.options, 
1u19A_on_2rh1A.pdb, 
1u19A.span, 1u19A.disulfide, 
1u19A_on_2rh1A.loops, 
aa1u19A09_05.200_v1_3, 
aa1u19A03_05.200_v1_3  
 
Output:  
200 models of 1u19A from 2rh1A 
template with missing density 
rebuilt, for example: 
1u19A_on_2rh1A_initial.pdb 
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5. Rebuild ECL 1,2 and 3 
Step  Text  Commands  Comment  

5A.  
Construct 
comparative model 
by rebuilding loop 
regions in Rosetta 
with CCD. 

Extracellular loops were 
extensively rebuilt using 
both the cyclic 
coordinate descent loop 
closure method 
described above and 
the kinematic loop 
closure method 
described below. 

Generate loops file: 
The loop definitions span the region between 
transmembrane helices. List the residue numbers 
for extracellular loops in the loop file as shown in 
1u19A.loops. 
Generate options file: 
List the desired options for rebuilding loop regions 
in an options file as shown in ccd.options. 
Run loop building: 
rosetta_source/bin/loopmodel.linuxgccrelease 
@ccd.options -database rosetta_database  

Input:  
ccd.options, 
1u19A_on_2rh1A_initial.pdb, 
1u19A.span, 1u19A.disulfide, 
1u19A.loops, 
aa1u19A09_05.200_v1_3, 
aa1u19A03_05.200_v1_3 
 
Output:  
1000 models of 1u19A from 
2rh1A template with ECLs 
rebuilt, for example:  
1u19A_rmsd01.pdb 

5B.  
Construct 
comparative model 
by rebuilding loop 
regions in Rosetta 
with KIC. 

Extracellular loops were 
extensively rebuilt using 
both the cyclic 
coordinate descent loop 
closure method 
described above and 
the kinematic loop 
closure method 
described below. 

Generate loops file: 
The loop definitions span the region between 
transmembrane helices. List the residue numbers 
for extracellular loops in the loop file as shown in 
1u19A.loops. 
Generate options file: 
List the desired options for rebuilding loop regions 
in an options file as shown in kic.options. 
Run loop building: 
rosetta_source/bin/loopmodel.linuxgccrelease 
@kic.options -database rosetta_database 

Input:  
kic.options, 
1u19A_on_2rh1A_initial.pdb, 
1u19A.span, 1u19A.disulfide, 
1u19A.loops 
 
Output:  
1000 models of 1u19A with 
ECLs rebuilt, for example: 
1u19A_rmsd01.pdb 
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6. Evaluate comparative models by clustering by full-receptor RMSD and knowledge-based pocket residue filter 
Step  Text  Commands  Comment  

6A. Analyze 
results by 
clustering 
top ten 
percent of 
comparative 
models by 
full receptor 
RMSD. 

The first method was based on clustering of 
the 10% best scoring structures. Clusters 
were determined based on pairwise RMSD 
of all C-alpha atoms using bcl::Cluster and a 
cluster radius of 3.0 Å. The best scoring 
models in each of the clusters were used for 
further analysis. 

Filter for the top ten percent of models by 
energy: 
Rosetta energy units incorporating the implicit 
membrane potential for each model are found 
in the *.out file. 
Generate table of pairwise RMSD values: 
bcl::PDBCompare was used to generate a 
table of pairwise RMSD values between 
comparative models. Download the bcl 
software suite at (the license is free for non-
commercial users). 
http://www.meilerlab.org/index.php/bclcommons/s

how/b_apps_id/12 
bcl.exe PDBCompare -quality RMSD -atoms 
CA -pdb_list 1u19A_models.ls -aaclass 
AACaCb -prefix 1u19A_10percent_ 
Cluster models by RMSD:  
bcl.exe Cluster -distance_input_file 
1u19A_10percent_RMSD.txt -input_format 
TableLowerTriangle -output_format Rows 
Centers -output_file cluster3_1u19A -linkage 
Average -remove_internally_similar_nodes 3 

Input:  
PDB files for top ten 
percent of 1u19A 
comparative models by 
Rosetta energy and 
names of those PDB 
files in a list called 
1u19A_models.ls 
 
 
Output:  
1u19A_10percent_RMSD.txt, 
cluster3_1u19A.Centers, 
cluster3_1u19A.Rows  
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6B. Analyze 
results by 
filtering 
comparative 
models with 
a 
knowledge-
based filter. 

The second method was constructed to 
interrogate and avoid sampling of non-
native ligand binding pocket conformations. 
Pocket residues were defined as a residue 
in any GPCR that had at least a 4.0 Å 
distance to the ligand in the experimental 
structure. This yielded a list of 29 residues 
that was reduced to 25 residues when four 
residues at the top of transmembrane helix 
(TM) two and five were removed to avoid 
bias from structural alignment of the 
proteins. Comparative models passed the 
filter only if C-alpha atoms of all pocket 
residues had an alignment equivalent 
pocket residue in another GPCR within a 
distance of a residue specific cutoff. 

Calculate the minimum distance to any 
alignment equivalent position in any GPCR: 
For all pocket residues the minimum distance 
to any sequence alignment equivalent residue 
in any GPCR is determined with PyMOL. 
scripts/evaluate_score_vs_pocket_rmsd/ 
01_make_distances.csh 
 
scripts/evaluate_score_vs_pocket_rmsd/ 
02_filter_models.py 

Input:  
Structures to be filtered 
should be in: 
scripts/evaluate_score_v
s_pocket_rmsd/ 
structures/ID/ID_struc_id
.pdb 
Crystal structures for 
distance calculations are 
placed in: 
crystal_pockets/ 

The residue numbering 
of the models must be 
identical to that of the 
crystal structures. 
 
Output:  
A list of filtered 
structures is generated 
in 
scripts/evaluate_score_vs
_pocket_rmsd/ 
pdb_lists_filtered/ 
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7. Generate ligand conformations in MOE 
Step  Text  Commands  Comment  

7. Create 
ligand 
conformations 
in MOE.  

In preparation for docking, ligand 
conformers were generated by MOE 
(Molecular Operating Environment, 
Chemical Computing Group, Ontario, 
Canada) using the MMFF94x force 
field and Generalized Born implicit 
solvent model. Conformers were 
generated using 10,000 iterations of 
the Low Mode MD method with a 
redundancy cutoff of 0.25 Å. Energy 
cutoffs for ligand conformers were 
dependent on the number of rotatable 
bonds: 3 kcal/mol for 1-6 rotatable 
bonds, 5 kcal/mol for 7-9 rotatable 
bonds and 7 kcal/mol for 10-12 
rotatable bonds.  

Generate ligand conformations in MOE: 
See MOE operating guide. LowModeMD with 
the MMFFx94 force field and Generalized Born 
solvation model was used to generate 
conformations within the specified energy 
cutoff. The ligand conformations were then 
saved as an .sdf file for conversion to .pdb and 
.params files for Rosetta. 
Convert .sdf file of ligand conformations to .pdb 
and .params file for Rosetta input:  
rosetta_source/src/python/apps/public/molfile_to
_params.py -n 1u19A -p 1u19A 1u19A.sdf  
Combine all individual ligand conformations in 
pdb format to a file called 1u19A_confs.pdb. 
Add the line “PDB_ROTAMERS 1u19A_confs.pdb” to 
the bottom of the 1u19A.params file. 

Input: 
ligand coordinates in mol 
format: 1u19A.sdf 
 
Output:  
1u19A.params, 
1u19A_confs.pdb  

 

8. Dock ligand into comparative models 
Step  Text  Commands  Comment  

8A. Generate 
input files 
necessary for 
docking with 
Rosetta 
Scripts. 

Ligand docking into the comparative models was 
performed with Rosetta Scripts. Each ligand was 
allowed to sample binding modes in a 5.0 Å radius 
from the crystallized binding mode. This adds 
some bias to the sampling, as the smallest 
unbiased docking sphere enclosing all ligand 
binding conformations has a radius greater than 
5.0 Å.  

Prepare input pdb files: 
Align the comparative model for 
docking to the crystal structure 
1u19A_clean.pdb. Copy one ligand 
conformation from the 
1u19A_confs.pdb file to the bottom of 
the pdb file of the starting model, 
1u19A_cluster01_01.pdb. Save as 
1u19A_cluster01_01_ligand.pdb.  
Prepare options file for docking: 
List the desired options for docking 
in an options file as shown in 
dock.options. 
Prepare XML file for docking: 
List the desired specifications for 
docking in an options file as shown 
in dock.xml. 

Input:  
1u19A_clean.pdb, 
1u19A_confs.pdb, 
1u19A_cluster01_01.pdb 
 
Output:  
1u19A_cluster01_01_liga
nd.pdb, dock.options, 
dock.xml  
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8B. Dock 
ligand within 
bRh 
comparative 
models. 

For each ligand, over 2,000 docked complexes 
were generated. 

rosetta_source/bin/rosettascripts.lin
uxgccrelease @dock.options -database 
rosetta_database 

Input: 
1u19A_cluster01_01_ligand.
pdb, 1u19A.params, 
dock.xml, dock.options  
 
Output:  
1000 models of retinal 
bound to bRh, for 
example: 
1u19A_cluster01_01_liga
nd_011u19A_cluster01_0
1_ligand_0001.pdb 

 

9. Analyze results by clustering binding modes by ligand RMSD 
Step  Text  Commands  Comment  

9. Analyze 
results by 
clustering 
binding 
modes by 
ligand 
RMSD. 

Results from the 
ligand docking study 
were evaluated using 
clustering on pairwise 
RMSD values 
calculated over the 
ligand heavy-atoms 
using bcl::Cluster with 
a 2.0 Å cutoff. The 
lowest energy binding 
modes of the five 
largest clusters were 
chosen for further 
analysis. 

Align PDBs : 
Use PyMOL to align receptor backbone coordinates. 
Extract lines for ligand coordinates into an .sdf file: 
/scripts/rmsd.tcsh *.pdb 

Generate table of pairwise RMSD values: 
bcl::ScoreSmallMolecule was used to generate a table of 
pairwise RMSD values between ligand coordinates. Download 
the bcl software suite at (the license is free for non-commercial 
users). 
http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/12 
bcl.exe ScoreSmallMolecule all.sdf output.sdf -comparison 

RMSD 
Cluster models by RMSD: 
bcl.exe Cluster -distance_input_file 1u19A_ligand.cluster.mat -
input_format TableLowerTriangle -output_format Rows Centers -
output_file cluster3_1u19A_ligand -linkage Average -
remove_internally_similar_nodes 3 

Input:  
PDB files for 1u19A docked 
models. 
 
Output:  
all.sdf, 
1u19A_ligand.cluster.mat, 
cluster3_1u19A_ligand.Centers, 
cluster3_1u19A_ligand.Rows 
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Table 21 
Rosetta loop modeling in comparative models with cyclic coordinate descent compared to 
kinematic loop closure.  
Reported is the average RMSD and standard deviation for all comparative models of target 
receptors, calculated over C-alpha atoms in the loop regions compared to the corresponding 
experimental structure from the Protein Data Bank. Loop closure with KIC was only performed on 
a subset of the GPCR dataset.  

 
Extracellular Loop 

1 RMSD (Å) 

Extracellular Loop 
2 

RMSD (Å) 

Extracellular Loop 
3 

RMSD (Å) 
Full Receptor 

RMSD (Å) 

 CCD KIC CCD KIC CCD KIC CCD KIC 

bRh 1.7±0.7* 2.0±0.8 7.3±1.4 7.3±4.2 2.6±0.6 2.6±0.8 4.7±0.6* 10.6±8.5 

B1Ar 1.8±0.6* 2.5±0.8 6.0±1.2 5.7±3.3 1.9±0.7* 2.1±0.5 3.6±0.6* 4.3±3.4 

B2Ar 1.5±0.7* 3.2±1.2 6.2±1.3* 6.7±3.8 1.7±0.5* 2.1±0.6 3.7±0.5* 4.9±3.4 

A2Ar  1.4±0.5* 2.2±1.2 n.d.a n.d.a 2.5±0.6* 2.7±1.4 3.4±0.5* 8.5±5.9 

CXCR4 1.6±0.4* 2.5±1.1 5.3±1.0* 6.2±3.3 2.8±0.7* 4.5±3.0 4.5±0.4* 9.3±8.7 

D3R 2.1±0.6* 2.3±0.9 4.3±1.2* 5.3±3.0 2.1±0.5* 2.9±1.8 2.9±0.4* 4.0±3.1 

H1R 1.5±0.6 n.d. n.d.a n.d.a 2.0±0.6 n.d. 2.5±0.6 n.d. 

S1P1R 2.9±0.6 n.d. 5.9±0.8 n.d. 3.4±0.8 n.d. 4.2±0.9 n.d. 

M2R 1.6±0.8 n.d. 4.8±0.8 n.d. 1.4±0.7 n.d. 2.6±0.4 n.d. 

M3R 1.8±0.5 n.d. 5.1±0.9 n.d. 1.1±0.4 n.d. 2.8±0.4 n.d. 

MOR 1.5±0.6 n.d. 5.6±1.4 n.d. 1.6±0.8 n.d. 3.2±0.9 n.d. 

KOR 1.0±0.8 n.d. 5.3±1.0 n.d. n.d.a n.d. 3.5±0.4 n.d. 

NOP 1.3±0.7 n.d. 5.5±1.1 n.d. 2.9±0.9 n.d. 3.1±0.6 n.d. 

DOR 1.4±0.6 n.d. 5.7±1.1 n.d. 2.4±0.6 n.d. 3.2±0.5 n.d. 
n.d. denotes not determined 
* Indicated significant improvement using the CCD method over KIC for the given category, 
evaluated with the unpaired t-test, p < 0.05 
a Could not be evaluated because of unresolved structure in this region of the experimental 
structure in the Protein Data Bank.



 
 

 

Figure 43  
Ligand structures used in this study. 
Ligand structures depicted here were crystallized with the G protein-coupled receptors used in this study and were obtained from the 
Protein Data Bank. 
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Figure 44 
Structure-based sequence alignment of G protein-coupled receptors. 
This sequence alignment of the fourteen GPCRs used in this study was obtained through a 
structural alignment of the receptors in MUSTANG (Konagurthu et al., 2006). Transmembrane 
regions are highlighted in blue, cysteine residues forming disulfide bonds are highlighted in 
yellow and residues in contact with their respective ligands are highlighted in purple. Conserved 
residues representing Ballesteros-Weinstein x.50 are outlined with a black box. The figure was 
generated using Aline (Bond & Schuttelkopf, 2009). Continued on next page. 
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(Continuation of Figure 44 from previous page) This sequence alignment of the fourteen GPCRs 
used in this study was obtained through a structural alignment of the receptors in MUSTANG 
(Konagurthu et al., 2006). Transmembrane regions are highlighted in blue, cysteine residues 
forming disulfide bonds are highlighted in yellow and residues in contact with their respective 
ligands are highlighted in purple. Conserved residues representing Ballesteros-Weinstein x.50 
are outlined with a black box. The figure was generated using Aline (Bond & Schuttelkopf, 2009). 

 



 

 

Figure 45 
Structures of G protein-coupled receptors used in this study. 
Experimental structures of the fourteen G protein-coupled receptors used in this study were obtained from the Protein Data Bank. 
Extracellular loop (ECL) 1 is shown in yellow, ECL2 in purple, and ECL3 in orange. 
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Figure 46 
Energy plot of relaxed experimental structures and comparative models compared with full receptor RMSD. 
For each structure, full receptor RMSD is plotted against total Rosetta energy. The experimental structure was minimized in the Rosetta 
force field without the ligand (in green) and with the ligand (in blue). Comparative models are in grey, with models selected through 
clustering in orange and models selected by the knowledge-based filter in purple. 
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Figure 47 
Energy plot of comparative models based on templates of varying sequence identity. 
For each comparative model, pocket residue RMSD is plotted against total Rosetta energy. Each point is colored by the template by which 
the model was built, with color varying from blue to red with increasing sequence identity. 
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Figure 48 
Energy plot of ECL1 in comparative models. 
For each comparative model, ECL1 RMSD is plotted against the Rosetta energy for residues in ECL1. 
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Figure 49 
Energy plot of ECL2 in comparative models. 
For each comparative model, ECL2 RMSD is plotted against the Rosetta energy for residues in ECL2. ECL2 for A2Ar and H1R could 
not be evaluated because of unresolved structure in this region of the experimental structure in the Protein Data Bank. 
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Figure 50 
Energy plot of ECL3 in comparative models. 
For each comparative model, ECL3 RMSD is plotted against the Rosetta energy for residues in ECL3. ECL3 for KOR could not be 
evaluated because of unresolved structure in this region of the experimental structure in the Protein Data Bank. 
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Figure 51 
Structural representations of extracellular loop two from comparative models compared to experimental structures. 
For A) bRh, B) B1Ar, C) B2Ar, D) A2Ar, E) CXCR4, F) D3R, G) H1R, H) S1P1R, I) M2R, J) M3R, K) MOR, L) KOR, M) NOP and N) DOR, 
the experimental structure is represented in gray, the most accurately sampled model is represented in yellow and the top ranked model 
is represented in blue. The top ranked model is the lowest energy model of the largest cluster, where clustering is performed on pairwise 
full receptor C-alpha RMSD over the top ten percent of comparative models by energy. 
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Figure 52 
RMSD of ligand conformations generated by MOE. 
Ligand conformations generated by MOE using the MMFF94x force field and Generalized Born solvation model were compared to the 
bioactive conformation found in the experimental structure by RMSD to heavy atoms in the ligand. The average RMSD is represented by 
a black line. The fold decrease in sampling efficiency is calculated by the uniform sampling efficiency within a 2.0 Å radius (USE2.0) for 
the bioactive ligand conformation divided by the uniform sampling efficiency within a 2.0 Å radius for ligand conformers. 
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Figure 53 
Interaction energy plot of binding modes from docking into experimental structures and comparative models. 
For each structure, ligand heavy-atom RMSD is plotted against Rosetta interaction energy. The bioactive ligand conformation was docked 
into the static experimental structure (in blue), the energy minimized experimental structure (in orange) and comparative models (in 
purple). Ligand conformers generated by MOE were docked into comparative models, shown in yellow. 
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Figure 54 
High sequence identity templates produce models with more accurate binding modes. 
Each point represents the average ligand RMSD over all binding modes produced by docking the ligand into target GPCR comparative 
models built using a particular template. For each target-template pair, percent sequence identity was calculated on the sequence 
alignment shown in Figure 44. Sequence identity is shown here to correlate with low average ligand heavy-atom RMSD. 
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APPENDIX TO CHAPTER IV 
 

 

VU0360173 and VU0403602 Synthesis 
 

All NMR spectra were recorded on a Bruker 400 mHz instrument.  1H chemical 

shifts are reported in  values in ppm downfield from TMS as the internal standard in d3-

MeOH.  Data are reported as follows:  chemical shift, multiplicity (s = singlet, d = doublet, 

t = triplet, q = quartet, br = broad, m = multiplet), integration, coupling constant (Hz).  Low 

resolution mass spectra were obtained on an Agilent 1200 series 6130 mass 

spectrometer.  High resolution mass spectra were recorded on a Waters Q-TOF API-US.  

Analytical thin layer chromatography was performed on Analtech silica gel GF 250 micron 

plates.  Analytical HPLC was performed on an HP1100 with UV detection at 214 and 254 

nm along with ELSD detection, LC/MS (J-Sphere80-C18, 3.0 x 50 mm, 4.1 min gradient, 

5%[0.05%TFA/CH3CN]:95%[0.05%TFA/H2O] to 100%[0.05%TFA/CH3CN].  Preparative 

RP-HPLC purification was performed on a custom HP1100 automated purification system 

with collection triggered by mass detection or using a Gilson Inc. preparative UV-based 

system using a Phenomenex Luna C18 column (50 x 30 mm I.D., 5 m) with an acetonitrile 

(unmodified)-water (0.1% TFA) custom gradient.  Normal-phase silica gel preparative 

purification was performed using an automated Combi-flash companion from ISCO.  

Solvents for extraction, washing and chromatography were HPLC grade.  All reagents 

were purchased from Aldrich Chemical Co. and were used without purification.  All 

polymer-supported reagents were purchased from Argonaut Technologies and Biotage. 
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Methyl 6-((3-fluorophenyl)ethynyl)nicotinate (1.1):  To a solution of  methyl-6-

bromonicotinate (1.5 g, 6.94 mmol) in DMF (15 mL) were added 1-ethynyl-3-

fluorobenzene (0.97 mL, 8.3 mmol), tetrakis(triphenylphosphine) palladium (0)  (0.49 g, 

0.35 mmol), copper iodide (0.132 g, 0.69 mmol), and  diethylamine (4.3 mL, 41.6 mmol).  

The mixture was subjected to microwave irradiation for 45 min at 90 °C.  The mixture was 

passed through a celite pad and extracted between H2O (100 mL) and EtOAc (100 mL x 

3).  The organic layers were combined, washed with brine, dried over MgSO4, and 

concentrated under reduced pressure. The residue was purified by silica gel column 

chromatography (0-30% EtOAc/Hexanes) to afford methyl ester 1.1 (1.52 g, 86%) as a 

yellow solid.   

6-((3-fluorophenyl)ethynyl)nicotinic acid hydrochloride (1.2): Methyl 6-((3-

fluorophenyl)ethynyl)nicotinate (1.1, 1.50 g, 5.9 mmol) was dissolved in THF (15 mL), 

MeOH (3.5 mL) and H2O (3.5 mL). To the suspension was added lithium hydroxide (0.99 

g, 23.5 mmol).  The reaction stirred at room temperature until complete conversion was 

observed by LC/MS.  The reaction was acidified wit h HCl (2M) until pH ~ 2.0.  The 

resulting precipitate was filtered and washed sequentially with cold water and ether to 

afford upon drying in vacuo overnight 1.2 (1.61 g, 99%) as an HCl salt: LC/MS (>98%) 

m/z = 242.1 [M+H].  

(6-((3-fluorophenyl)ethynyl)pyridin-3-yl)(3-hydroxyazetidin-1-yl)methanone 

(VU0360173): To a solution of 6-((3-fluorophenyl)ethynyl)nicotinic acid hydrochloride (150 

mg, 0.54 mmol) in DMF (2mL) were added azetidin-3-ol hydrochloride (89 mg, 0.81 mmol), 
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diisopropylethylamine (0.47 mL, 2.7 mmol), and HATU (246 mg, 0.65 mmol).  The reaction 

stirred at room temperature until LC/MS indicated complete disappearance of starting 

material.  The reaction was concentrated under reduced pressure and purified by silica 

gel column chromatography (50-100% EtOAc/Hexanes) to afford VU0360173 (125 mg, 

78%) as a tan solid:  1H NMR (400 MHz, CDCl3) 8.87 (d, J = 1.6 Hz, 1H), 8.07-8.04 (dd, 

J = 6.0, 2.0 Hz, 1H), 7.64-7.62 (dd, J = 7.2, 0.8 Hz, 1H), 7.44-7.32 (m, 3H), 7.17-7.12 (m, 

1H), 4.85-4.77 (m, 1H), 4.59-4.50 (m, 2H), 4.30-4.22 (m, 1H), 4.19-4.08 (m, 1H); LC/MS 

(>98%), 1.15 min, m/z = 297.0 [M+H]; HRMS = 297.1039 [M+H], calculated for 

C17H14FN2O2, 297.1039.  

 

5-bromo-N-cyclobutylpicolinamide (2.1): To a solution of 5-bromopicolinic acid 

(400 mg, 2.0 mmol) in DMF (10 mL) were added cyclobutanamine (0.26 mL, 3.0 mmol), 

diisopropylethylamine (1.04 ml, 6.0 mmol), and HATU (0.99 g, 2.6 mmol).  The reaction 

stirred at room temperature for 4h when LC/MS indicated full conversion.  To the reaction 

was added H2O (30 mL) and a white precipitate formed.  The precipitate was filtered to 

afford 2.1 (366 mg, 72%) as a white solid.   

N-cyclobutyl-5-((3-fluorophenyl)ethynyl)ethynyl)picolinamide hydrochloride 

(VU0403602): 5-bromo-N-cyclobutylpicolinamide (170 mg, 0.67 mmol) was combined in 

a microwave vial with 1-ethynyl-3-fluorobenzene (77 L, 0.67 mmol), 

tetrakis(triphenylphosphine) palladium (0) (39 mg, 0.034 mmol), diethylamine (42 uL, 4.0 

mmol), copper iodide (13 mg, 0.067 mmol), and DMF (15 mL).  The reaction was subjected 

to microwave irradiation for 1h at 80 °C.  The LC/MS indicated full conversion to desired 

product.  The reaction was quenched with H2O (45 mL) and extracted with EtOAc (30 mL 
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x 3).  The combined organics were dried under MgSO4, and concentrated under reduced 

pressure.  The crude residue was purified by silica gel column chromatography (0-30% 

EtOAc/Hexanes).  The pure isolated compound was dissolved in dioxane (3 mL) and 4M 

HCl in dioxane was added dropwise into the solution at room temperature until a pale 

yellow precipitate formed.  The precipitate was filtered to afford the HCl salt of VU0403602 

(192 mg, 87%) as an off-white powder:  1H NMR (400 MHz, DMSO-d6) 9.03 (d, J = 8.4, 

1H), 8.83 (s, 1H), 8.19-8.16 (dd, J = 6.0, 2.0, 1H), 8.06 (d, J = 8.0, 1H), 7.56-7.48 (m, 3H), 

7.38-7.33 (m, 1H), 4.51-4.43 (m, 1H), 2.22-2.16 (m, 4H), 1.70-1.64 (m, 2H);  LC/MS 

(>98%), 3.78 min, m/z = 295.1 [M+H]; HRMS = 317.1066 [M+Na], calculated for 

C18H15FN2ONa, 317.1066. 

 



 

Protocol capture for protein modeling and ligand docking computational methods 
 

This protocol capture contains the steps necessary to obtain the results presented in Chapter IV. The modeling and 

docking steps are found in separate folders and all files are labeled according to the associated steps below. The Rosetta 3.4 

software suite is publically available and the license is free for non-commercial users at http://www.rosettacommons.org/.   

1. Generation of an mGlu5 comparative model 
Step  Text  Commands  Comment  

1A. Identify template 
for modeling  

Based on its high similarity (e-
value of 3e-15 with a sequence 
coverage of 90%) to 
mGlu5 according to a search 
using NCBI BLASTP on 
sequences from the Protein Data 
Bank (PDB), the X-ray crystal 
structure human β2-adrenergic 
receptor (Protein Data Bank ID: 
2RH1) (Cherezov et al., 2007) 
was chosen as the template.  

Input sequence from mGlu5.fasta 
to http://blast.ncbi.nlm.nih.gov/Blast.cgi. 
Protein-protein BLAST was used with the 
PDB database.  
 

Input: A_mGlu5.fasta  
 
Output:   
Produced by Blast 
webserver  

1B. Align sequences 
of family C 7TMRs  

Members of the Family C 7TMRs, 
namely the human mGlus and 
Calcium-sensing receptor (CaSR) 
sequences, were first aligned with 
CLUSTALW.  

Input sequences of mGlus and CaSR from 
B_classC.fasta 
to http://www.ebi.ac.uk/Tools/msa/clustalw2/. 
Slow alignment type with default settings was 
used.  

Input:   
B_classC.fasta  
 
Output:  
B_classC.aln  

1C. Align family C 
7TMR sequences to 
template sequences  

Alignment of TM regions between 
Family C 7TMRs and Family A 
crystal structure templates were 
directly adopted from Malherbe et 
al., 2006, with the exception of 
TM’s 2, 4 and 7, which were 
based on the alignment of CaSR 
with Family A 7TMRs from 
Miedlich et al., 2004. 

Manual alignment between Class C 7TMRs 
and a structural alignment of Class A 7TMRs 
was done by following the alignment from 
Malherbe et  al.,  2006 and 
Miedlich  et  al.,  2004 papers. Visualization 
of the alignment through Jalview or Aline 
aids in the manual alignment.  

Input:  
B_classC.aln  
C_classA.afasta  
 
Output:  
C_2rh1A.mGlu5.aln  

2
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1D. Thread mGlu5 
sequence on β2-
adrenergic receptor 
backbone 

In the construction of the 
comparative models, the 
backbone coordinates of the β2-
adrenergic receptor were retained 
in the comparative model of 
mGlu5.  

rosetta_tools/protein_tools/scripts/thread_pd
b_from_alignment.py --template=2rh1A --
target=mGlu5 --chain=A --
align_format=clustal C_2rh1A.mGlu5.aln 
D_2rh1A.pdb D_mGlu5_on_2rh1A.pdb  

Input:  
C_2rh1A.mGlu5.aln, 
D_2rh1A.pdb  
 
Output:  
D_mGlu5_on_2rh1A.pdb  

1E. Generate 
secondary structure 
prediction, constraint 
file and fragments for 
mGlu5  

  Secondary structure- Jufo9D: 
http://meilerlab.org/index.php/servers/show?
s_id=5 
Secondary structure- PSIPRED: 
http://bioinf.cs.ucl.ac.uk/psipred/ 
Transmembrane span prediction based on 
Jufo9D: 
perl bin/jufo9d_span.pl E_mGlu5.jufo9d  
Disulfide bond constraint file: 
Create file that lists residue number of 
cysteine residues predicted to disulfide bond 
in mGlu5 predicted by alignment with Class A 
7TMRs. 
Fragment files: 
http://www.robetta.org 

Input: 
A_mGlu5.fasta  
 
Output:   
E_mGlu5.jufo9d, 
E_mGlu5.psipred_ss2, 
E_mGlu5_jufo9d.span, 
E_mGlu5.disulfide, 
E_aamGlu509_05.200_v1
_3, 
E_aamGlu503_05.200_v1
_3  

1F.  
Construct 
comparative model 
by rebuilding loop 
regions in Rosetta  

In the construction of the 
comparative models, the 
backbone coordinates of the β2-
adrenergic receptor were retained 
in the comparative model of 
mGlu5 while the loop coordinates 
were built in Rosetta using Monte 
Carlo Metropolis (MCM) fragment 
replacement combined with cyclic 
coordinate descent loop closure.  

Generate loops file: 
The loop definitions span the region between 
transmembrane helices. List the residue 
numbers in the loop file as shown in 
F_mGlu5.loops. 
Generate options file: 
List the desired options for rebuilding loop 
regions in an options file as shown in 
F_loops.options. 
Run loop building: 
rosetta_source/bin/loopmodel.linuxgccrelease 
@ccd.options -database rosetta_database  

Input:  
D_mGlu5_on_2rh1A.pdb, 
E_mGlu5.jufo9d, 
E_mGlu5.psipred_ss2, 
E_mGlu5_jufo9d.span, 
E_mGlu5.disulfide, 
E_aamGlu509_05.200_v1
_3, 
E_aamGlu503_05.200_v1
_3, F_loops.options,  
F_mGlu5.loops  
 
Output:  
5000 comparative models 
of mGlu5 with loop regions 
rebuilt.  
F_mGlu5_best_model.pdb 
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1G.  
Generate models 
with the S808A and 
T780A mutations in 
mGlu5 

To investigate the molecular 
cause of the PAM to NAM or 
neutral switches, modulators were 
docked into mGlu5 models 
containing the mutation 
engendering the switch.  

Prepare input files: 
Remove lines in F_mGlu5_best_model.pdb 
corresponding to the sidechain of residues 808 
or 780. Change references of Ser or Thr to Ala 
for the remaining lines corresponding to the 
backbone.   
Generate options file for relax: List the desired 
options for relax (energy minimization) in an 
options file as shown in G_relax.options.  
Relax (energy minimization) using Rosetta:  
rosetta_source/bin/relax.linuxgccrelease 
@relax.options -database rosetta_database  

Input:  
G_S808A_mGlu5.pdb, 
G_T780A_mGlu5.pdb, 
G_relax.options 
 
Output:  
1000 models of mutants 
S808A or T780A mGlu5. 
G_S808A_mGlu5_best_
model.pdb, 
G_T780A_mGlu5_best_
model.pdb 

 

2. Docking of Allosteric Modulators 
 
Note: The steps below use MPEP (shortened to "mpe") as an example. The same protocol was used on all seven ligands. 

Step  Text  Commands  Comment  

2A. Create 
ligand 
conformation
s in MOE  

10 low energy conformations of the ligand 
created by MOE (Molecular Operating 
Environment, Chemical Computing Group, 
Ontario, Canada)  

See MOE operating guide. LowModeMD 
with the MMFFx94 force field was used to 
generate conformations within 5 energy 
units from the minimum energy. The lowest 
10 energy conformations were then saved 
as an .sdf file for conversion to .pdb and 
.params files for Rosetta. 
Convert .sdf file of ligand conformations to 
.pdb and .params file for Rosetta input:  
rosetta_source/src/python/apps/public/molfi
le_to_params.py -n mpe -p mpe mpe.sdf  
Combine all individual ligand 
conformations in pdb format to a file called 
mpe_confs.pdb. 

Input:   
ligand coordinates in mol 
format  
 
Output:  
A_mpe.params, 
A_mpe_confs.pdb  
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2B. Generate 
input files 
necessary 
for docking in 
Rosetta 

Each modulator was allowed to sample 
docking poses in a 5 Å radius centered at 
the putative binding site for MPEP, 
determined by the residues known to affect 
modulator affinity and/or function. Side-
chain rotamers around the ligand were 
optimized simultaneously in a Monte-Carlo 
minimization algorithm. The energy function 
used during the docking procedure contains 
terms for van der Waals attractive and 
repulsive forces, hydrogen bonding, 
electrostatic interactions between pairs of 
amino acids, solvation, and a statistical term 
derived from the probability of observing a 
side-chain conformation in the PDB.  

Prepare input pdb files: 
Copy one ligand conformation from the 
mpe_confs.pdb file to the bottom of the pdb 
file of the starting model, 
F_mGlu5_best_model.pdb. Save as 
B_mpe_mGlu5.pdb. 
Prepare options file for docking: 
List the desired options for docking in an 
options file as shown in B_dock.options. 
Prepare XML file for docking: 
List the desired specifications for docking 
in an options file as shown in B_dock.xml. 
Starting coordinates correspond to P654 
(P82 in files renumbered starting with 1) in 
the starting PDB file. 

Input:  
F_mGlu5_best_model.pdb, 
A_mpe_confs.pdb 
   
Output:  
B_mpe_mGlu5.pdb, 
B_dock.options, 
B_dock.xml  

2C. Dock 
ligand within 
mGlu5 
comparative 
model 

For each modulator, over 2,000 docked 
complexes were generated.  

rosetta_source/bin/rosettascripts.default.lin
uxgccrelease @dock.options -database 
rosetta_database 

Input:   
B_mpe_mGlu5.pdb, 
A_mpe.params, B_dock.xml, 
B_dock.options  
 
Output:  
2500 models of MPEP in 
low energy binding modes  

2D. Analyze 
results by 
clustering 
binding 
modes  

For each modulator, over 2,000 docked 
complexes were generated and clustered for 
structural similarity using bcl::Cluster 
(Alexander et al., 2011).  

Generate table of pairwise RMSD values 
between binding modes, then use 
bcl::Cluster. 
Cluster using bcl::Cluster Download the bcl 
software suite at 
http://www.meilerlab.org/index.php/bclcommo

ns/show/b_apps_id/4 (the license is free for 
non-commercial users). 
bcl.exe Cluster -distance_input_file 
mpe.cluster.mat -input_format 
TableLowerTriangle -output_format Rows 
Centers -output_file D_cluster_mpe -
linkage Average -output_pymol 1000 5 100 
10000 10 dendogram_mpe.py -
remove_internally_similar_nodes 3 -
pymol_label_output_string  

Input:  
table of pairwise RMSD 
values between binding 
modes  
 
Output:  
D_cluster_mpe.Centers, 
D_cluster_mpe.Rows  
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2E. Identify 
most likely 
binding 
mode based 
on clustering 
and energy 
analysis 

The lowest energy binding mode from the 
five largest clusters for each modulator were 
used for further analysis.  

Sort models to identify lowest energy 
binding modes in the largest clusters.  

Input:  
models from step 2C, 
D_cluster_mpe.Centers, 
D_cluster_mpe.Rows 
 
Output:  
E_mpe_mGlu5_best_mod
el.pdb 
all models from figures 
can be found in 
E_gregory_etal_2012_mG
lu5_pam_site.pse  

2
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Table 22 
Potency and operational model parameters for glutamate stimulated Ca++ mobilization at 
HEK293A-mGlu5-wt and mutants in the absence and presence of MPEP.  
Data represent mean ± S.E.M. from 3-6 independent determinations performed in duplicate. 

 pEC50
a logτA

b nc Em
d basale 

R5-wt (poly) 6.49 ± 0.09 0.52 ± 0.04 3.7 ± 1.0 101.5 ± 5.3 0.6 ± 2.5 

F585I 6.31 ± 0.09 0.37 ± 0.06 4.0 ± 0.7 109.6 ± 3.8 0.8 ± 0.7 

R647A 6.11 ± 0.17 0.13 ± 0.12* 3.0 ± 0.4 167.0 ± 24.5 5.2 ± 3.1 

I650A 6.44 ± 0.11 0.57 ± 0.05 3.7 ± 0.4 104.6 ± 1.3 1.5 ± 0.6 

G651F 6.35 ± 0.10 0.37 ± 0.06 2.5 ± 0.3 114.4 ± 0.3 -3.0 ± 2.9 

P654S 6.41 ± 0.03 0.46 ± 0.01 3.1 ± 0.3 100.1 ± 1.7 0.2 ± 1.7 

P654F 6.48 ± 0.03 0.44 ± 0.02 3.2 ± 0.3 106.5 ± 7.9 3.3 ± 1.3 

S657C 6.36 ± 0.07 0.41 ± 0.04 2.4 ± 0.3 111.2 ± 3.7 0.9 ± 1.2 

Y658V 6.51 ± 0.08 0.52 ± 0.04 3.6 ± 0.8 103.8 ± 2.2 1.3 ± 1.5 

P742S 5.90 ± 0.08* 0.19 ± 0.05* 5.0 ± 1.2 119.3 ± 13.1 0.6 ± 0.9 

L743V  6.52 ± 0.11 0.52 ± 0.06 2.6 ± 0.4 95.7 ± 2.9 2.6 ± 1.3 

N746A 6.55 ± 0.06 0.56 ± 0.04 3.8 ± 0.3 98.0 ± 1.8 1.5 ± 2.2 

G747V 6.50 ± 0.10 0.50 ± 0.05 3.5 ± 0.8 102.3 ± 3.2 2.6 ± 0.4 

T779A 6.63 ± 0.06 0.57 ± 0.03 2.3 ± 0.3 108.6 ± 1.8 1.9 ± 1.6 

T780A 6.68 ± 0.02 0.58 ± 0.03 2.4 ± 0.6 104.1 ± 5.4 0.8 ± 0.5 

W784A 6.15 ± 0.14 0.35 ± 0.05 3.7 ± 0.3 103.9 ± 1.3 2.9 ± 1.2 

V788A 6.32 ± 0.06 0.38 ± 0.04 3.0 ± 0.6 107.4 ± 3.6 0.8 ± 0.8 

F792A 6.64 ± 0.07 0.61 ± 0.09 2.5 ± 0.3 107.0 ± 6.9 -0.4 ± 0.9 

S806A 6.66 ± 0.04 0.58 ± 0.05 2.0 ± 0.2 102.4 ± 4.5 3.2 ± 0.2 

S808A 6.76 ± 0.08 0.71 ± 0.07 3.0 ± 0.5 101.8 ± 0.5 1.5 ± 0.8 

S808T 6.72 ± 0.06 0.71 ± 0.06 2.8 ± 0.2 103.1 ± 1.6 1.0 ± 1.1 

A809V 6.28 ± 0.23 0.38 ± 0.07 3.0 ± 0.6 110.1 ± 4.9 -1.4 ± 1.7 

A809G 6.15 ± 0.14 0.31 ± 0.08 3.3 ± 0.4 115.2 ± 8.0 1.2 ± 1.1 

T810A 6.40 ± 0.05 0.36 ± 0.04 2.1 ± 0.1 111.2 ± 4.1 1.5 ± 0.7 

C815A 6.22 ± 0.06 0.36 ± 0.04 4.5 ± 0.5 100.5 ± 0.5 0.7 ± 0.6 

* denotes significantly different from wild-type value, p<0.05, one-way ANOVA, Dunnett’s post-
test. 
a negative logarithm of the concentration of agonist that elicits a half maximal response 
b logarithm of the coupling efficiency of glutamate. 
c the transducer function that links occupancy to response 
d the maximal possible system response 
e basal denotes the baseline level (ligand-independent) of the system response 

 



 

 

Figure 55 
Alignment of the 7TMD of human mGlus with Calcium-sensing receptor, β2-adrenergic receptor and bovine rhodopsin sequences.  
The 7TMD of the human mGlus and Calcium-sensing receptor (CaSR) sequences were aligned with CLUSTALW and are shown relative to β2-
adrenergic receptor (2RH1) and bovine rhodopsin (1U19) sequences (aligned with MUSTANG). Alignment of TM regions between Family C 
7TMRs and bovine rhodopsin were directly adopted from (26) except TM2, 4 and 7, which were based on the alignment of CaSR with bovine 
rhodopsin from (Miedlich et al., 2004). The PxxY alignment unique to this alignment of mGlu5 TM7 is outlined. All mutations investigated in this 
publication are indicated, with those novel to this work highlighted in gray. 
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Figure 56 
Immuno-blotting of non-binding point mutations of mGlu5. 
A) Expression of mGlu5 in non-binding mutations was detected by immuno-blotting with rabbit 
polyclonal anti-mGlu5 (Chemicon) and imaged with donkey anti-rabbit-IR-680 (LI-COR) using 
an Odyssey imager. mGlu5 band intensity was normalized to the intensity for alpha-tubulin for 
the same sample to control for protein loading and is shown relative to that for the low-expressing 
mGlu5 wild-type (R5 mono) cell line and the higher-expressing polyclonal mGlu5 wild-type cell 
line (R5 poly). B) Representative blots for mGlu5 and alpha-tubulin are shown. 
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Figure 57 
Affinity estimate correlations for mGlu5 allosteric modulators. 
A) Constraining the affinity of glutamate to a previously determined estimate (pKA=6.155) had 
no effect on the affinity estimate (pKB) for MPEP derived from modulation of glutamate mediated 
calcium mobilization across all point mutations tested. B) Functional affinity estimates and those 
derived from radioligand binding inhibition assays (pKI) showed strong correlation. Data 
represent mean and s.e.m from a minimum of three independent determinations. The dashed 
line represents unity. 
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APPENDIX TO CHAPTER V 
 
 

 

Figure 58 
Ligands from the MPEP series. 
Ligands in this figure correspond to ligands 1A through 1J in Table 12. Ligands H, I and J are 
considered to be non-functional compounds. 
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Figure 59 
Ligands from the VU0366248 series. 
Ligands in this figure correspond to ligands 2A through 2I in Table 12. Ligands H and I are 
considered to be non-functional compounds. 
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Figure 60 
Ligands from the VU0366058 series. 
Ligands in this figure correspond to ligands 3A through 3H in Table 12. Ligands F, G and H are 
considered to be non-functional compounds. 

 



300 

 

Figure 61 
Ligands from the VU29 series. 
Ligands in this figure correspond to ligands 4A through 4J in Table 12. Ligands H, I and J are 
considered to be non-functional compounds. 

 

Protocol capture for protein modeling and ligand docking computational methods 
 
 Refer to the command lines, input and output files in the protocol capture for 

Chapter IV for the computational modeling and ligand docking aspects of the work in 

Chapter V. Small differences in methods between the two chapters are indicated in the 

text. 
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APPENDIX TO CHAPTER VI 
 

Single cysteine mutations 
 

Intracellular Ca2+ mobilization studies 
 
 
Table 23 
PAM potency (pEC50) for delayed (100-120 sec post add) response at headless mGlu5 
C781V construct.  
Data represents 1 experiment performed in triplicate.  

 VU0404211 VU0415051 VU0405386 CPPHA 

Wild-type 5.46 7.66 8.42 4.87 
C781V 5.50 7.75 7.21 5.21 

 

 

 
Figure 62 
Effect of single point mutation C781V of mGlu5 on potentiation by PAMs of mGlu5-
mediated Ca2+ mobilization. 
A) Peak response, B) Plateau. Data represents the results from n=1. 

 

 

Full characterization of 11-cysteine and 12-cysteine mutants 
 

Intracellular Ca2+ mobilization studies 
 
Table 24 
PAM potency (pEC50) for delayed (100-120 sec post add) response at headless mGlu5 
10+C815A construct.  
Data represents 1 experiment performed in triplicate.  

 VU0357121 VU0360173 VU120 VU0364289 CDPPB 

Wild-type 5.80 5.58 5.80 5.55 6.86 
10+C815A 4.19 3.98 4.59 3.19 6.46 



 

 

Figure 63 
Effect of 11 cysteine mutations (10+C815A) of mGlu5 on potentiation by VU0415051, VU0405386, VU0360172 and CPPHA of mGlu5-
mediated Ca2+ mobilization compared to headless mGlu5 wild-type. 
Data represents the mean ± S.E.M. from 2 to 6 independent determinations for mGlu5 headless WT A) peak and B) plateau response and mGlu5 
headless 10+C815A mutant C) peak and D) plateau response. 
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Figure 64 
Effect of 11 cysteine mutations (10+C815A) of mGlu5 on potentiation by VU0404211, VU0403602, VU29 and VU0405398 of mGlu5-
mediated Ca2+ mobilization compared to headless mGlu5 wild-type. 
Data represents the mean ± S.E.M. from 2 to 6 independent determinations for mGlu5 headless WT A) peak and B) plateau response and mGlu5 
headless 10+C815A mutant C) peak and D) plateau response. 
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Figure 65 
Effect of 11 cysteine mutations (10+C815A) of mGlu5 on potentiation by VU0357121, VU0360173, VU0364289 and CDPPB of mGlu5-
mediated Ca2+ mobilization compared to headless mGlu5 wild-type. 
Data represents the mean ± S.E.M. from 2 to 6 independent determinations for mGlu5 headless WT A) peak and B) plateau response and mGlu5 
headless 10+C815A mutant C) peak and D) plateau response. 
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Figure 66 
Effect of mutating out all cysteine residues from headless mGlu5 on potentiation by PAMs 
of mGlu5-mediated Ca2+ mobilization.  
A) Peak response, B) Plateau. Data represents the results from n=1. 

 

Saturation binding studies 
 

 
Figure 67 
Concentration depending binding demonstrated by six point saturation binding curves  
A) wild-type headless mGlu5 (at 500ug) and B) 10+C815A mGlu5 construct (at 1000ug) 
expressing HEK293A cell membranes. Data is the result of n=1. 
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mGlu5 sensitivity to MTS reagents 
 
 

Determining optimal concentrations of MTS reagents for use with mGlu5  
 

 
Figure 68 
Effect of varying concentrations of MTS reagents on full and headless mGlu5 WT 
receptors on PAM potentiation of mGlu5-mediated Ca2+ mobilization by VU0360172. 
A) Maximal glutamate response in full mGlu5 WT receptors, B) Peak response in headless 
mGlu5 WT receptors C) Plateau response in headless mGlu5 WT receptors. Data represents 
the mean ± S.E.M. of 3 experiments performed in triplicate. 
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Figure 69 
Effect of varying concentrations of MTS reagents on full and headless mGlu5 WT 
receptors on PAM potentiation of mGlu5-mediated Ca2+ mobilization by VU0415051.  
A) Maximal glutamate response in full mGlu5 WT receptors, B) Peak response in headless 
mGlu5 WT receptors C) Plateau response in headless mGlu5 WT receptors. Data represents 
the mean ± S.E.M. of 3 experiments performed in triplicate. 
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Application of MTS reagents in intracellular Ca2+ mobilization studies 
 
 

 
Figure 70 
Effect of MTS reagents on full and headless mGlu5 WT receptors on PAM potentiation of 
mGlu5-mediated Ca2+ mobilization by varying concentrations of VU0360172. 
A) Maximal glutamate response in full mGlu5 WT receptors, B) Peak response in headless 
mGlu5 WT receptors C) Plateau response in headless mGlu5 WT receptors. Data represents 
the mean ± S.E.M. of 3 experiments performed in triplicate. 
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Figure 71 
Effect of MTS reagents on full and headless mGlu5 WT receptors on PAM potentiation of 
mGlu5-mediated Ca2+ mobilization by varying concentrations of VU0415051.  
A) Maximal glutamate response in full mGlu5 WT receptors, B) Peak response in headless mGlu5 
WT receptors C) Plateau response in headless mGlu5 WT receptors. Data represents the mean 
± S.E.M. of 3 experiments performed in triplicate. 
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APPENDIX TO CHAPTER VII 
 

Full list of ANN input descriptors 
 
Table 25 
Full list of 259 input descriptors to the ANN-trained method for neighbor count prediction.  
Scores are based on connection weights between input, hidden and output layers as calculated 
by the Garson’s Connection-Weights algorithm 

Score Descriptor 

1 SequenceMax(ReflectingWindowAverage(AA_FreeEnergyTransitionHelix,size=1
6,alignment=Center,weighting=Triangular)) 

0.829047 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(10)) 

0.797703 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(11)) 

0.797376 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(13)) 

0.713307 SequenceMean(AA_BlastConservation) 

0.709197 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(7)) 

0.66722 Partial(SequenceStandardDeviation(AABlastProfile),indices(17)) 

0.623196 NElements 

0.606669 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(0)
) 

0.599828 SequenceMin(ReflectingWindowAverage(AA_FreeEnergyTransition,size=16,align
ment=Center,weighting=Triangular)) 

0.570723 Partial(SequenceStandardDeviation(AAType),indices(8)) 

0.570558 SequenceStandardDeviation(ReflectingWindowAverage(AA_FreeEnergyTransitio
nHelix,size=16,alignment=Center,weighting=Triangular)) 

0.566582 AASeqID 

0.563347 SequenceMin(ReflectingWindowAverage(AA_FreeEnergyTransitionHelix,size=16
,alignment=Center,weighting=Triangular)) 

0.557327 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(3)) 

0.553776 SequenceStandardDeviation(ReflectingWindowAverage(AA_FreeEnergyTransitio
n,size=16,alignment=Center,weighting=Triangular)) 

0.550682 Partial(SequenceMean(AABlastProfile),indices(7)) 

0.549656 Subtract(lhs=NElements,rhs=AASeqID) 

0.544907 SequenceStandardDeviation(ReflectingWindowAverage(AA_TransferFreeEnergy
PuntaMaritan3D,size=16,alignment=Center,weighting=Triangular)) 

0.531037 Partial(SequenceMean(AABlastProfile),indices(13)) 

0.530669 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
7)) 

0.520673 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(16)) 

0.518459 Partial(SequenceStandardDeviation(AABlastProbability),indices(15)) 

0.514299 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(17)) 

0.510271 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(14)) 

0.504071 SequenceMean(ReflectingWindowAverage(AA_FreeEnergyStrand,size=16,align
ment=Center,weighting=Triangular)) 

0.501064 Partial(SequenceStandardDeviation(AABlastProbability),indices(1)) 

0.481452 SequenceMin(ReflectingWindowAverage(AA_FreeEnergySolutionStrand,size=16,
alignment=Center,weighting=Triangular)) 
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0.481075 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionHelix),size=16,alignment=Center,weighting=Tria
ngular),indices(15)) 

0.477469 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyStrand),size=16,alignment=Center,weighting=Triangular),indices(3)) 

0.47479 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionHelix),size=16,alignment=Right,weighting=Triangular),indic
es(15)) 

0.47423 SequenceStandardDeviation(ReflectingWindowAverage(AA_FreeEnergyCoreStra
nd,size=16,alignment=Center,weighting=Triangular)) 

0.468926 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(80)) 

0.464858 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(91)) 

0.464424 SequenceMax(ReflectingWindowAverage(AA_Polarizability,size=16,alignment=C
enter,weighting=Triangular)) 

0.459403 Partial(SequenceStandardDeviation(AABlastProfile),indices(18)) 

0.458146 SequenceMax(ReflectingWindowAverage(AA_FreeEnergyCoreCoil,size=16,align
ment=Center,weighting=Triangular)) 

0.447164 DescriptorStandardDeviation(ReflectingWindow(AA_BlastLogPTTest(property=A
A_FreeEnergyStrand),size=16,alignment=Center)) 

0.443412 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransition),size=16,alignment=Center,weighting=Triangular),indices(0
)) 

0.442138 Partial(SequenceStandardDeviation(AABlastProbability),indices(9)) 

0.441808 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
5)) 

0.437699 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(170)) 

0.436836 DescriptorStandardDeviation(ReflectingWindow(AA_FreeEnergySolution,size=16,
alignment=Center)) 

0.432894 DescriptorMax(Periodogram(AA_BlastLogPTTest(property=AA_FreeEnergyCoil),
size=16,periods(2,3,3.6,4.2),alignment=Center)) 

0.431713 DescriptorStandardDeviation(ReflectingWindow(AA_BlastLogProbabilityWeighted
(property=AA_FreeEnergyCoreHelix),size=16,alignment=Center)) 

0.429765 Partial(Periodogram(AA_BlastLogPTTest(property=AA_TransferFreeEnergyPunt
aMaritan3D),size=16,periods(2,3,3.6,4.2),alignment=Center),indices(0)) 

0.427857 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(9)) 

0.421331 DescriptorStandardDeviation(ReflectingWindow(AA_BlastLogPTTest(property=A
A_FreeEnergyTransitionHelix),size=16,alignment=Center)) 

0.419777 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(1)) 

0.41741 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionCoil),size=16,alignment=Center,weighting=Triangular),indic
es(15)) 

0.416287 DescriptorStandardDeviation(ReflectingWindow(AA_FreeEnergyTransitionStrand,
size=16,alignment=Center)) 

0.415021 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(8
0)) 

0.414229 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(162)) 

0.412525 SequenceMax(ReflectingWindowAverage(AA_FreeEnergyTransitionCoil,size=16,
alignment=Center,weighting=Triangular)) 

0.403964 Partial(Periodogram(AA_BlastLogPTTest(property=AA_Hydrophobicity),size=16,p
eriods(2,3,3.6,4.2),alignment=Center),indices(3)) 

0.400202 Partial(CumulativeReflectingWindowAverage(AA_FreeEnergyCoreStrand,size=16
,alignment=Center,weighting=Triangular),indices(7)) 



312 

0.398634 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyStrand),size=16,alignment=Center,weighting=Triangular),indices(15)) 

0.397818 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
63)) 

0.396704 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(90)) 

0.395629 Partial(SequenceStandardDeviation(AABlastProfile),indices(8)) 

0.394072 Partial(Periodogram(AA_BlastLogPTTest(property=AA_Polarizability),size=16,per
iods(2,3,3.6,4.2),alignment=Center),indices(3)) 

0.392556 SequenceStandardDeviation(ReflectingWindowAverage(AA_FreeEnergyCore,siz
e=16,alignment=Center,weighting=Triangular)) 

0.391928 DescriptorStandardDeviation(ReflectingWindow(AA_BlastLogProbabilityWeighted
(property=AA_FreeEnergyStrand),size=16,alignment=Center)) 

0.391166 SequenceMax(ReflectingWindowAverage(AA_TransferFreeEnergyPuntaMaritan3
D,size=16,alignment=Center,weighting=Triangular)) 

0.389927 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(92)) 

0.389659 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(8)) 

0.388102 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
6)) 

0.387903 DescriptorMax(Periodogram(AA_BlastLogPTTest(property=AA_Hydrophobicity),s
ize=16,periods(3,3.6,4.2),alignment=Center)) 

0.386894 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
62)) 

0.386772 Partial(CumulativeReflectingWindowAverage(AA_BlastConservation,size=16,alig
nment=Right,weighting=Triangular),indices(3)) 

0.386451 DescriptorStandardDeviation(ReflectingWindow(AA_BlastLogPTTest(property=A
A_FreeEnergySolution),size=16,alignment=Center)) 

0.384777 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(144)) 

0.384739 DescriptorMax(Periodogram(AA_BlastLogPTTest(property=AA_FreeEnergyHelix)
,size=16,periods(2,3,3.6,4.2),alignment=Center)) 

0.384205 Partial(Periodogram(AA_BlastLogPTTest(property=AA_SASA),size=16,periods(2,
3,3.6,4.2),alignment=Center),indices(3)) 

0.382913 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(9
9)) 

0.381526 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(176)) 

0.380893 Partial(SequenceStandardDeviation(AABlastProbability),indices(2)) 

0.380504 DescriptorStandardDeviation(ReflectingWindow(AA_BlastLogProbabilityWeighted
(property=AA_Hydrophobicity),size=16,alignment=Center)) 

0.38012 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(105)) 

0.378867 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(97)) 

0.378321 DescriptorStandardDeviation(ReflectingWindow(AA_StrandProbability,size=16,ali
gnment=Center)) 

0.376871 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyCoreStrand),size=16,alignment=Right,weighting=Triangular),indices(3
)) 

0.375472 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(0)) 

0.37392 DescriptorStandardDeviation(ReflectingWindow(AA_BlastLogPTTest(property=A
A_FreeEnergySolutionStrand),size=16,alignment=Center)) 

0.373603 Partial(CumulativeReflectingWindowAverage(AA_FreeEnergyCoreStrand,size=16
,alignment=Right,weighting=Triangular),indices(15)) 

0.373133 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(173)) 

0.372806 DescriptorStandardDeviation(ReflectingWindow(AA_SASA,size=16,alignment=Ce
nter)) 
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0.370322 SequenceMax(ReflectingWindowAverage(AA_FreeEnergyCore,size=16,alignmen
t=Center,weighting=Triangular)) 

0.369694 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(167)) 

0.369556 Partial(SequenceMean(AABlastProbability),indices(1)) 

0.367085 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionStrand),size=16,alignment=Center,weighting=Tr
iangular),indices(7)) 

0.364502 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(84)) 

0.363661 Partial(SequenceStandardDeviation(AABlastProbability),indices(0)) 

0.363362 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(49)) 

0.360095 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_HelixProbability),size=16,alignment=Left,weighting=Triangular),indice
s(7)) 

0.359714 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionHelix),size=16,alignment=Left,weighting=Triangular),indices
(1)) 

0.35808 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyCoreStrand),size=16,alignment=Left,weighting=Triangular),indices(7)) 

0.357764 Partial(Periodogram(AA_TransferFreeEnergyPuntaMaritan3D,size=16,periods(2,
3,3.6,4.2),alignment=Center),indices(2)) 

0.357693 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransition),size=16,alignment=Right,weighting=Triangular),indices(1)) 

0.356259 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(19)) 

0.355625 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(39)) 

0.354808 Partial(SequenceStandardDeviation(AAType),indices(5)) 

0.354031 SequenceMax(ReflectingWindowAverage(AA_Hydrophobicity,size=16,alignment=
Center,weighting=Triangular)) 

0.35226 DescriptorStandardDeviation(ReflectingWindow(AA_FreeEnergyHelix,size=16,ali
gnment=Center)) 

0.351483 Partial(SequenceMean(AABlastProbability),indices(5)) 

0.350242 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
40)) 

0.350094 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(178)) 

0.348178 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(47)) 

0.347879 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionCoil),size=16,alignment=Center,weighting=Triangular),indic
es(3)) 

0.346925 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(177)) 

0.34679 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(24)) 

0.345924 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionCoil),size=16,alignment=Right,weighting=Triang
ular),indices(7)) 

0.345904 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(171)) 

0.345699 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(77)) 

0.343949 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(2
0)) 

0.343838 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransition),size=16,alignment=Center,weighting=Triangular),indices(1
)) 

0.343371 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
76)) 
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0.342961 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(71)) 

0.341275 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(127)) 

0.340834 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionStrand),size=16,alignment=Left,weighting=Trian
gular),indices(7)) 

0.340337 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(129)) 

0.340036 Partial(Periodogram(AA_BlastLogProbabilityWeighted(property=AA_StericalPara
meter),size=16,periods(2,3,3.6,4.2),alignment=Center),indices(2)) 

0.337931 Partial(SequenceStandardDeviation(AAType),indices(1)) 

0.336901 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
SASA),size=16,alignment=Center,weighting=Triangular),indices(15)) 

0.336802 Partial(Periodogram(AA_SASA,size=16,periods(2,3,3.6,4.2),alignment=Center),in
dices(0)) 

0.335816 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(154)) 

0.33443 Partial(CumulativeReflectingWindowAverage(AA_StrandProbability,size=16,align
ment=Right,weighting=Triangular),indices(15)) 

0.334304 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
HelixProbability),size=16,alignment=Center,weighting=Triangular),indices(0)) 

0.331963 Partial(Periodogram(AA_Hydrophobicity,size=16,periods(2,3,3.6,4.2),alignment=
Center),indices(1)) 

0.330889 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(34)) 

0.330131 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(64)) 

0.32762 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionCoil),size=16,alignment=Right,weighting=Triang
ular),indices(3)) 

0.326527 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(131)) 

0.326372 Partial(Periodogram(AA_SASA,size=16,periods(2,3,3.6,4.2),alignment=Center),in
dices(2)) 

0.326288 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyCoreStrand),size=16,alignment=Right,weighting=Triangul
ar),indices(15)) 

0.326014 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
00)) 

0.325112 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(145)) 

0.324867 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(61)) 

0.324814 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(164)) 

0.324664 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(169)) 

0.324649 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_Hydrophobicity),size=16,alignment=Center,weighting=Triangular),indi
ces(7)) 

0.324237 Partial(CumulativeReflectingWindowAverage(AA_BlastConservation,size=16,alig
nment=Right,weighting=Triangular),indices(15)) 

0.323859 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(58)) 

0.323408 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
51)) 

0.322934 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionCoil),size=16,alignment=Left,weighting=Triangular),indices(
15)) 

0.321706 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(15)) 

0.321636 Partial(Periodogram(AA_StericalParameter,size=16,periods(2,3,3.6,4.2),alignmen
t=Center),indices(0)) 
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0.321293 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(93)) 

0.321214 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyHelix),size=16,alignment=Center,weighting=Triangular),indices(0)) 

0.32074 Partial(CumulativeReflectingWindowAverage(AA_BlastConservation,size=16,alig
nment=Center,weighting=Triangular),indices(0)) 

0.320105 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(44)) 

0.319412 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionStrand),size=16,alignment=Right,weighting=Tria
ngular),indices(7)) 

0.31884 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
15)) 

0.317147 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(99)) 

0.316556 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(178)) 

0.315596 Partial(ReflectingWindow(AA_BlastConservation,size=4,alignment=Center),indice
s(0)) 

0.315482 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(76)) 

0.314785 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionStrand),size=16,alignment=Right,weighting=Triangular),indi
ces(1)) 

0.314195 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergySolutionHelix),size=16,alignment=Right,weighting=Triangular),indices
(3)) 

0.313827 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(6)) 

0.312878 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(124)) 

0.312069 Partial(CumulativeReflectingWindowAverage(AA_FreeEnergyCoreCoil,size=16,al
ignment=Center,weighting=Triangular),indices(15)) 

0.311443 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(120)) 

0.311367 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
77)) 

0.311268 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
74)) 

0.310677 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergySolutionCoil),size=16,alignment=Left,weighting=Triangular),indices(1)
) 

0.310658 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(31)) 

0.310224 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyCoreCoil),size=16,alignment=Left,weighting=Triangular),i
ndices(7)) 

0.30997 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(155)) 

0.309182 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(136)) 

0.308369 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
SASA),size=16,alignment=Left,weighting=Triangular),indices(15)) 

0.307779 Partial(SequenceMean(AAType),indices(5)) 

0.30774 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyCoreCoil),size=16,alignment=Center,weighting=Triangular
),indices(0)) 

0.307356 Partial(CumulativeReflectingWindowAverage(AA_FreeEnergySolutionCoil,size=1
6,alignment=Center,weighting=Triangular),indices(0)) 

0.307021 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(2
7)) 
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0.306966 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionStrand),size=16,alignment=Right,weighting=Triangular),indi
ces(7)) 

0.306506 Partial(ReflectingWindow(AA_StrandProbability,size=4,alignment=Center),indices
(2)) 

0.306112 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(35)) 

0.305586 Partial(ReflectingWindow(AA_BlastConservation,size=4,alignment=Center),indice
s(6)) 

0.305104 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(174)) 

0.305061 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(48)) 

0.30476 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(5
7)) 

0.30425 Partial(ReflectingWindow(AA_StrandProbability,size=4,alignment=Center),indices
(5)) 

0.303649 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(4
8)) 

0.303477 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyCoreCoil),size=16,alignment=Center,weighting=Triangular
),indices(7)) 

0.303011 Partial(CumulativeReflectingWindowAverage(AA_FreeEnergyCoreCoil,size=16,al
ignment=Left,weighting=Triangular),indices(15)) 

0.302552 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
SASA),size=16,alignment=Center,weighting=Triangular),indices(7)) 

0.302151 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
60)) 

0.301756 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(98)) 

0.301228 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(56)) 

0.30048 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionStrand),size=16,alignment=Center,weighting=Tr
iangular),indices(0)) 

0.300092 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionCoil),size=16,alignment=Center,weighting=Trian
gular),indices(0)) 

0.299952 Partial(ReflectingWindow(AA_BlastConservation,size=4,alignment=Center),indice
s(8)) 

0.299751 Partial(ReflectingWindow(AA_FreeEnergyCore,size=4,alignment=Center),indices(
5)) 

0.299116 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(5)) 

0.298629 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergySolutionHelix),size=16,alignment=Center,weighting=Triangular),indice
s(1)) 

0.298328 Partial(ReflectingWindow(AA_FreeEnergyCoreCoil,size=4,alignment=Center),indi
ces(1)) 

0.298277 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
SASA),size=16,alignment=Center,weighting=Triangular),indices(1)) 

0.29821 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(59)) 

0.297822 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
StrandProbability),size=16,alignment=Center,weighting=Triangular),indices(1)) 

0.297745 Partial(ReflectingWindow(AA_BlastConservation,size=4,alignment=Center),indice
s(2)) 

0.296822 SequenceMin(ReflectingWindowAverage(AA_FreeEnergyCoreStrand,size=16,ali
gnment=Center,weighting=Triangular)) 
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0.29667 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransition),size=16,alignment=Right,weighting=Triangular
),indices(7)) 

0.29608 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionCoil),size=16,alignment=Left,weighting=Triangular),indices(
1)) 

0.29591 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
68)) 

0.295243 DescriptorStandardDeviation(ReflectingWindow(AA_Polarizability,size=16,alignm
ent=Center)) 

0.295234 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(6)) 

0.294967 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(106)) 

0.29487 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(172)) 

0.294759 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyCoreCoil),size=16,alignment=Center,weighting=Triangular),indices(15
)) 

0.294715 Partial(ReflectingWindow(AA_FreeEnergyCoreStrand,size=4,alignment=Center),i
ndices(8)) 

0.293526 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(147)) 

0.293507 Partial(CumulativeReflectingWindowAverage(AA_FreeEnergyCoreCoil,size=16,al
ignment=Center,weighting=Triangular),indices(7)) 

0.293257 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(120)) 

0.291696 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(9
4)) 

0.291571 SequenceStandardDeviation(ReflectingWindowAverage(AA_FreeEnergySolution
Coil,size=16,alignment=Center,weighting=Triangular)) 

0.291479 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyCore),size=16,alignment=Left,weighting=Triangular),indices(15)) 

0.290126 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionCoil),size=16,alignment=Right,weighting=Triang
ular),indices(1)) 

0.289985 DescriptorMax(Periodogram(AA_BlastLogPTTest(property=AA_StericalParamete
r),size=16,periods(3,3.6,4.2),alignment=Center)) 

0.28969 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(175)) 

0.289587 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(151)) 

0.288476 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyCoreCoil),size=16,alignment=Right,weighting=Triangular),
indices(7)) 

0.28762 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
69)) 

0.287605 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(33)) 

0.286271 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(156)) 

0.286007 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
72)) 

0.285649 Partial(CumulativeReflectingWindowAverage(AA_BlastLogProbabilityWeighted(pr
operty=AA_FreeEnergyTransitionCoil),size=16,alignment=Center,weighting=Trian
gular),indices(1)) 

0.284572 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(2)
) 

0.284471 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
StrandProbability),size=16,alignment=Right,weighting=Triangular),indices(1)) 

0.284007 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(0)) 
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0.283072 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(19)) 

0.282801 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
61)) 

0.281683 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(3
5)) 

0.281571 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(15)) 

0.281328 SequenceMax(ReflectingWindowAverage(AA_FreeEnergyCoreStrand,size=16,ali
gnment=Center,weighting=Triangular)) 

0.279376 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransitionHelix),size=16,alignment=Right,weighting=Triangular),indic
es(1)) 

0.277735 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(1
57)) 

0.274458 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(162)) 

0.270877 Partial(SequenceStandardDeviation(AAType),indices(4)) 

0.268002 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergySolutionHelix),size=16,alignment=Right,weighting=Triangular),indices
(1)) 

0.265953 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(5)
) 

0.265032 Partial(SequenceMean(AAType),indices(15)) 

0.262695 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergyTransition),size=16,alignment=Right,weighting=Triangular),indices(3)) 

0.261599 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(134)) 

0.260537 Partial(ReflectingWindow(AABlastProbability,size=4,alignment=Center),indices(4
1)) 

0.259643 SequenceMax(ReflectingWindowAverage(AA_FreeEnergySolution,size=16,align
ment=Center,weighting=Triangular)) 

0.25533 Partial(CumulativeReflectingWindowAverage(AA_HelixProbability,size=16,alignm
ent=Left,weighting=Triangular),indices(7)) 

0.247675 Partial(SequenceStandardDeviation(AAType),indices(14)) 

0.246449 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(142)) 

0.245979 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergySolutionHelix),size=16,alignment=Center,weighting=Triangular),indice
s(3)) 

0.225753 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(25)) 

0.221431 Partial(SequenceMean(AABlastProfile),indices(12)) 

0.204678 Partial(SequenceStandardDeviation(AABlastProbability),indices(11)) 

0.196424 Partial(SequenceStandardDeviation(AABlastProfile),indices(1)) 

0.192793 Partial(ReflectingWindow(AAType,size=4,alignment=Center),indices(3)) 

0.180357 Partial(CumulativeReflectingWindowAverage(AA_BlastLogPTTest(property=AA_
FreeEnergySolutionCoil),size=16,alignment=Center,weighting=Triangular),indices
(1)) 

0.178886 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(179)) 

0.128566 Partial(CumulativeReflectingWindowAverage(AA_StericalParameter,size=16,alig
nment=Right,weighting=Triangular),indices(7)) 

0.01 Partial(ReflectingWindow(AABlastProfile,size=4,alignment=Center),indices(153)) 
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Structure prediction results on proteins from training database 
 
 
Table 26 
Model accuracy for structure prediction a set of 4 proteins from the training database with 
and without inclusion of the neighbor count score.  
Models were ranked by highest contact recovery, lowest RMSD100 and lowest total score. 

  
 

Contact Recovery RMSD 100 

   Best Top Rank Best Top Rank 

1U19 
  
  

No NC 24.1 0.8 8 5.2 

Predicted NC 20.4 7.3 10.1 4.8 

Calculated NC 24.9 6.5 8.1 4.3 

2K73 
  
  

No NC 37.6 3.2 9.8 4.9 

Predicted NC 46.2 12.9 9.4 3.6 

Calculated NC 47.3 38.7 5.9 3.6 

2KSY 
  
  

No NC 23.8 10.7 10.2 4.3 

Predicted NC 24.2 4.4 7.1 4.1 

Calculated NC 29 11.9 10 4.6 

3GIA 
  

No NC 5.7 1.3 11.7 9.4 

Predicted NC 5.2 1 12.7 9.4 

Calculated NC 5.7 1.8 11.6 9.5 

Average 

No NC 22.8 4 9.925 5.95 

Predicted NC 24 6.4 9.825 5.475 

Calculated NC 26.725 14.725 8.9 5.5 
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Structure prediction the benchmark membrane protein dataset with and without 
neighbor count score 

 
 

 

Figure 72 
Gallery of results for 18 membrane proteins in the benchmark dataset. 
The fraction of models at a range of RMSD100 values and contact recovery is shown for models 
predicted without neighbor count score (red), with predicted neighbor count (blue) and with 
calculated neighbor count (green). The top model ranked by RMSD100 is shown in rainbow 
compared to the native structure in grey. The top model ranked by contact recovery is colored 
by relative exposure and burial based on predicted neighbor count. Continues on next page. 
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(Figure 69, continued from the previous page) The fraction of models at a range of RMSD100 
values and contact recovery is shown for models predicted without neighbor count score (red), 
with predicted neighbor count (blue) and with calculated neighbor count (green). The top model 
ranked by RMSD100 is shown in rainbow compared to the native structure in grey. The top 
model ranked by contact recovery is colored by relative exposure and burial based on predicted 
neighbor count. Continues on next page. 
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(Figure 69, continued from the previous page) The fraction of models at a range of RMSD100 
values and contact recovery is shown for models predicted without neighbor count score (red), 
with predicted neighbor count (blue) and with calculated neighbor count (green). The top model 
ranked by RMSD100 is shown in rainbow compared to the native structure in grey. The top 
model ranked by contact recovery is colored by relative exposure and burial based on predicted 
neighbor count. Continues on next page. 
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(Figure 69, continued from the previous page) The fraction of models at a range of RMSD100 
values and contact recovery is shown for models predicted without neighbor count score (red), 
with predicted neighbor count (blue) and with calculated neighbor count (green). The top model 
ranked by RMSD100 is shown in rainbow compared to the native structure in grey. The top 
model ranked by contact recovery is colored by relative exposure and burial based on predicted 
neighbor count. Continues on next page. 
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(Figure 69, continued from the previous page) The fraction of models at a range of RMSD100 
values and contact recovery is shown for models predicted without neighbor count score (red), 
with predicted neighbor count (blue) and with calculated neighbor count (green). The top model 
ranked by RMSD100 is shown in rainbow compared to the native structure in grey. The top 
model ranked by contact recovery is colored by relative exposure and burial based on predicted 
neighbor count.  
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Figure 73 
Gallery of results for 4 membrane proteins in the benchmark dataset that were also in the 
training dataset. 
The fraction of models at a range of RMSD100 values and contact recovery is shown for models 
predicted without neighbor count score (red), with predicted neighbor count (blue) and with 
calculated neighbor count (green). The top model ranked by RMSD100 is shown in rainbow 
compared to the native structure in grey. The top model ranked by contact recovery is colored 
by relative exposure and burial based on predicted neighbor count.  



 

 

Figure 74 
Score versus RMSD100 plots for the 22 membrane proteins in the benchmark dataset with and without the neighbor count score.  
Models folded without the neighbor count score are shown in green, models folded with predicted neighbor count values are in light purple and 
models folded with calculated neighbor count values are in dark purple. The score of the native protein is shown in red. Continued on the next 
page. 

 

3
2

6
 



 
 

 

(Figure 71, continued from previous page) Models folded without the neighbor count score are shown in green, models folded with predicted 
neighbor count values are in light purple and models folded with calculated neighbor count values are in dark purple. The score of the native 
protein is shown in red. 
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Protocol capture 
 

This protocol capture contains the steps necessary to obtain the results presented in Chapter VII “Incorporation of sequence-

based exposure prediction in de novo membrane protein structure prediction”. All input, output and source files can be found at 2013-

05-30_bcl_exposure. The BCL software suite is publically available and the license is free for non-commercial users at 

http://www.meilerlab.org/bclcommons. The particular version of the BCL used for this project is found at 2013-05-

30_bcl_exposure/bin/bcl-all-static.exe. Where you see “PDB”, this will always indicate that the PDB ID of a particular protein should be 

inserted at that point. 

 

1. Generation of ANN training datasets 
Step  Text  Commands  Comment  

1A. Prepare 
input files for 
training dataset 
of membrane 
proteins. 

A set of 177 membrane proteins from the 
Protein Data Bank (PDB) having less 
than 30% sequence identity and 3 Å or 
lower resolution was used to train the 
method presented in this work. This 
training set is the same as the set used 
to train the JUFO9D secondary structure 
and transmembrane span prediction 
method. 

See (Leman et al., 2013) for the details on how this 
membrane protein training dataset was set up. A list of 
the chains in this training dataset is included here. 

Output:  
fastalist_dball_MP.ls 
 

 

1B. Calculate 
per-residue 
neighbor count 
output value for 
training dataset. 

The environment potential for each 
residue in the training set was evaluated 
using the BCL by calculating its number 
of neighbors. 

1. Generate neighbor count for each PDB.pdb: 
bcl.exe protein:Score –pdb PDB.pdb –weight_set 
nc.scoreweights –detailed –logger File PDB.log 
 

2. Extracts neighbor counts from log file: 
perl /bin/print_nc.pl  PDB > PDB_nc.ls 
 

3. Combine output for all proteins into a single csv file: 
 
ls PDB_nc.ls > nc_files.ls 
perl bin/print_msms_file.pl nc_files.ls > nc_all.csv 

Input:  
pdb files for each 
protein in the training 
dataset, 
nc.scoreweights 
 
Output:   
nc_all.csv 
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2. Training the ANN with cross-validation and descriptor selection 
Step  Text  Commands  Comment  

2A. 
Generate 
input 
descriptors 
for ANN.  

As input to the ANN training, 
sequence-specific descriptors 
were calculated over a window of 
16 residues across each sequence 
in the database. 

bcl.exe descriptor:GenerateDataset -source 
'SequenceDirectory([path to training 
dataset],suffix=.pdb,key 
file=fastalist_dball_MP.ls)' -feature_labels 
code_input.obj -result_labels code_output_nc.obj -
id_labels code_id.obj -output 
exposure_MP_dataset_nc.bin -scheduler PThread 8 -
logger File exposure_MP_dataset_nc.log 

Input:  
fastalist_dball_MP.ls, nc_all.csv, 
code_id.obj, code_input.obj, 
code_output_nc.obj, path to training 
dataset  
 
Output:   
exposure_MP_dataset_nc.bin 

2B. 
Iteratively 
train ANN 
with 5-fold 
cross-
validation 
and 
descriptor 
selection. 

A total of thirty rounds of iterative 
ANN training took place. After 
each round of training, each 
descriptor was given a score 
based on its relative importance 
for predicting the output value. 
Each round of training was 
evaluated by its prediction 
accuracy over the independent 
set. Prediction accuracy increased 
until 24 rounds of training had 
taken place. 

bin/BclANNDescriptorSelectionByConnectionWeights.py 
-m 0 4 -i 0 4 -n 5 -d exposure_MP_dataset_nc.bin -
l 'NeuralNetwork(transfer function = Sigmoid, 
weight update = Resilient(min change=0.001,max 
change=0.1), objective function = RMSD, steps per 
update=0, hidden architecture(400,50), shuffle = 
False, modulate error=True, max dropout=0.8)' --
final-objective-function RMSD --show-status --max-
minutes 75 --max-iterations 1000 --results 
code_output_nc.obj --id NNW_400_50 --
max_unimproved_iterations 20 --local --ds-rounds 
30 --attrition-rate 0.1 

Input:  
exposure_MP_dataset_nc.bin, 
code_output_nc.obj 
 
Output:   
The script outputs the following 
directories: feature-scores, log_files, 
models, results 
 

Results for NNW_400_50_rnd24 are 
given in the input_output directory. 
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3. Incorporating neighbor count into BCL::MP-Fold 
Step  Text  Commands  Comment  

3. Optimize 
weights for 
neighbor 
count 
score. 

The weight for the neighbor count 
score was optimized as a function 
of enrichment over contact recovery 
and was determined to be 947. 

1. Generate a decoy set of models by 
perturbing a set of membrane proteins. The 
benchmark set of 18 MP was used here. 
 

2. Score the decoys set of proteins 
awk '{print "bcl.exe protein:Score -membrane -
histogram_path ~/bcl/histogram/ -quality RMSD 
RMSD_XYSuperimposition GDT_TS -message_level 
Critical -score_table_write 
"$1"_exposure.scores -pdblist "$1"A_pdbs.ls -
native "$1".pdb -pool 
"$1".SSPredMC_OCTOPUS.pool -tm_helices 
"$1".SSPredMC_OCTOPUS.pool -sspred JUFO9D 
OCTOPUS -contact -score_exposure -sequence_data 
[path to database] "$1" -scheduler PThread 8}' 
../benchmark_pdbs.ls 
 

3. Minimize weights for exposure scores. 
bcl.exe MinimizeScoreWeightSet -list 
bcl_perturb_tables.ls -weight_set 
weights_bcl_perturb.table -weight_set_write 
minimized_0_cr12_50_20p_200_ -enrichment cr12 
0.20 0.1 10 100 -sort_order greater -
mc_tot_unimproved 10000 500 -number_repeats 1 -
keep_positive -random_seed 1000 -
number_weights_mutated 1 

Input:  
Decoy models for benchmark dataset 
pdbs, path to benchmark dataset, 
benchmark_pdbs.ls, 
weights_bcl_perturb.table 
 
Output:   
bcl_perturb_tables.ls, 
minimized_0_cr12_50_20p_200_0.weights 

 

4. Structure prediction a benchmark set of MP with neighbor count score  
Step  Text  Commands  Comment  

4A. Prepare a 
benchmark 
dataset of 22 
MP for 
structure 
prediction. 

A database of 22 diverse single-chain 
membrane proteins, from the same 
benchmark set as that used for BCL::MP-
Fold, was used to evaluate the influence 
of the neighbor count score on de novo 
protein structure prediction. 

See [citation] for details on the benchmark 
dataset. A list of the chains in this benchmark 
dataset is included here. 

Output:  
benchmark_pdbs.ls 
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4B. Calculate 
per-residue 
neighbor count 
output value for 
benchmark 
dataset. 

 1. Generate neighbor count for each PDB.pdb: 
bcl.exe protein:Score –pdb PDB.pdb –weight_set 
nc.scoreweights –detailed –logger File PDB.log 
 

2. Extracts neighbor counts from log file: 
perl /bin/print_nc.pl  PDB > PDB_nc.ls 
 

3. Combine output for all proteins into a single 
csv file: 
 
ls PDB_nc.ls > nc_files.ls 
perl bin/print_msms_file.pl nc_files.ls > 
nc_benchmark_fasta.csv 
 
 

Input:  
pdb files for each protein in the 
benchmark dataset, 
nc.scoreweights 
 
Output:   
nc_benchmark_fasta.csv 

 

4C. Calculate 
neighbor count 
prediction for 
benchmark 
dataset. 

A database of 22 diverse single-chain 
membrane proteins, from the same 
benchmark set as that used for BCL::MP-
Fold, was used to evaluate the influence 
of the neighbor count score on de novo 
protein structure prediction. 

1. Change models/model.result to: 
Combine(Mapped(file=nc_benchmark_fasta.csv,key=
Combine(ProteinId,AASeqID),delimiter=",")) 
 

2. Predict neighbor count with ANN model  
bcl.exe descriptor:GenerateDataset -source 
'SequenceDirectory([path to benchmark 
dataset],suffix=.fasta,key 
file=benchmark_pdbs.ls)' -feature_labels 
code_input_nc_predict.obj -result_labels 
code_output_benchmark_nc.obj -id_labels 
code_id.obj -output nc_benchmark_predict.csv -
logger File predict_nc_benchmark_pdbs.log 
 

3. Extract csv file to individual exposure 
prediction files for each pdb. 
awk '{print "grep "$1" nc_benchmark_predict.csv 
| awk -F\",\" \x27\{print $2\"\\t\"$5\}\x27 > 
"substr($1,2,2)"/"$1".exposure"}' 
benchmark_pdbs.ls 
 

4. Move the exposure prediction files to the 
directory of the benchmark dataset 

Input:  
nc_benchmark_fasta.csv, 
benchmark_pdbs.ls, code_id.obj, 
code_input_nc_predict.obj, 
code_output_benchmark_nc.obj, 

path to benchmark dataset  
 
Output:   
nc_benchmark_predict.csv, 

PDB.exposure files for each PDB 
in the benchmark dataset 
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4D. Fold 
MP 
without 
neighbor 
count 
score. 

Proteins were predicted 1000 each 
with and without the neighbor count 
score to evaluate the influence of the 
score. 

awk '{print "perl bin/create_fold_pbs_noex.pl 1 20 50 
"substr($1,1,4)" . 02"}' ../ benchmark_pdbs.ls 
 
sh PDB/build_02/pbs/qsub_pbs.sh 

Input:  
benchmark_pdbs.ls, 
pred_stages_noex.txt 
assembly_01_noex.scoreweights, 
assembly_02_noex.scoreweights, 
assembly_03_noex.scoreweights, 
assembly_04_noex.scoreweights, 
assembly_05_noex.scoreweights, 
refinement_noex.scoreweights 
 

Output:   
1000 models for each PDB 

4E. Fold 
MP with 
neighbor 
count 
score. 

Proteins were predicted 1000 each 
with and without the neighbor count 
score to evaluate the influence of the 
score. 

awk '{print "perl bin/create_fold_pbs.pl 1 20 50 
"substr($1,1,4)" . 06"}' ../ benchmark_pdbs.ls 
 
sh PDB/build_06/pbs/qsub_pbs.sh 

Input:  
benchmark_pdbs.ls, 
pred_stages.txt 
assembly_01.scoreweights, 
assembly_02.scoreweights, 
assembly_03.scoreweights, 
assembly_04.scoreweights, 
assembly_05.scoreweights, 
refinement.scoreweights 

 
Output:   
1000 models for each PDB 

4F. 
Evaluate 
enrichmen
t of 
contact 
recovery 
for 
benchmar
k dataset 
with ANN 
model. 

Over a set of 18 membrane proteins 
in the benchmark set, the neighbor 
count score was shown to enrich for 
the selection of native-like models 
(under 8 Å) on average 1.2 fold. 

Calculate enrichment on the set of proteins built without 
the neighbor count score from 4D. 
 
awk '{print "bcl.exe protein:Score -pdblist 
build_02_pdbs_"$1".ls -detailed -score_table_write 
"$1"_score_exp1000.sc -native "$1".pdb -quality RMSD -
enrichment 0.1 8.0 10 RMSD100 less 
enrichments_"$1"_score_exp1000.tbl -weight_set 
score_exp1000.weights -contact -membrane -sspred JUFO9D 
OCTOPUS -score_exposure -sequence_data [path to benchmark 
database] "$1" -pool "$1".SSPredMC_OCTOPUS.pool -
tm_helices "$1".SSPredMC_OCTOPUS.pool"}' 
benchmark_pdbs.ls > score_exp1000.sh 

Input:  
List of models built from step 
4D for each PDB: 
build_02_pdbs_PDB.ls 
score_exp1000.weights 

 
Output:   
enrichments_PDB_score_exp1000.t
bl 
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5. Analyze results 
Step  Text  Commands  Comment  

5. Analyze 
models 
based on 
score, 
RMSD100 
and contact 
recovery.  

The quality 
of protein 
structure 
prediction 
was 
evaluated 
with 
RMSD100 
and contact 
recovery. 

1. Get score files from models. Run this with “build_02” and “build_06”. 
bcl.exe protein:FoldAnalysis -table_from_prefix build_06 -protein_storage 
./PDB/pdbs/ -sort RMSD100 -output_table ./PDB/scores_06.ls -message_level 
Critical 
 

2. Pull out best models by overall score, contact recovery or RMSD100. 
touch PDB_best_06.txt 
sort -nk21 PDB/scores_06.ls | awk '{print "best_exposure_score: "$1" "$23" "$21" 
"$32" "$28}' | head -10 >> PDB_best_06.txt 
sort -rnk28 PDB/scores_06.ls | awk '{print "best_contact_recovery: "$1" "$23" 
"$21" "$32" "$28}' | head -10 >> PDB_best_06.txt 
sort -nk32 PDB/scores_06.ls | awk '{print "best_RMSD100: "$1" "$23" "$21" "$32" 
"$28}' | head -10 >> PDB_best_06.txt 
sort -nk23 PDB/scores_06.ls | awk '{print "best_overall_score: "$1" "$23" "$21" 
"$32" "$28}' | head -10 >> 2KSF_best_06.txt 
more PDB_best_06.txt  

 
3. Generate distribution plots for contact recovery and RMSD100 with gnuplot. 
bcl.exe bcl:DistributionPlotFromTables -gnuplot_input_table_filenames 
./PDB/scores_02.ls ./PDB/scores_06.ls -gnuplot_table_columns_x RMSD100 -
histogram_min 0 -histogram_binsize 1 -histogram_numbins 20 -
gnuplot_output_filename ./pngs/PDB_dist_02_06_RMSD100.gnuplot -gnuplot_title PDB 
-gnuplot_x_label RMSD100 -gnuplot_series_names no_NC with_NC -gnuplot_set_key 
 
gnuplot ./pngs/PDB_dist_02_06_RMSD100.gnuplot 
 
gthumb ./pngs/PDB_dist_02_06_RMSD100.gnuplot.png & 
 
bcl-all-static.exe bcl:DistributionPlotFromTables -gnuplot_input_table_filenames 
./PDB/scores_02.ls ./PDB/scores_06.ls -gnuplot_table_columns_x cr12 -
histogram_min 0 -histogram_binsize 5 -histogram_numbins 10 -
gnuplot_output_filename ./pngs/PDB_dist_02_06_cr12.gnuplot -gnuplot_title PDB  -
gnuplot_x_label cr12 -gnuplot_series_names no_NC with_NC -gnuplot_set_key 
 
gnuplot ./pngs/PDB_dist_02_06_cr12.gnuplot 
 
gthumb ./pngs/PDB_dist_02_06_cr12.gnuplot.png & 

Input:  
List of models built from step 
4D and 4E for each PDB 

 
Output:   
/PDB/scores_02.ls, 
/PDB/scores_06.ls, 
PDB_best_02.txt, 
PDB_best_06.txt, 
/pngs/PDB_dist_02_06_RMSD100.gn
uplot.png 
/pngs/PDB_dist_02_06_cr12.gnupl
ot.png 

 

 

3
3

3
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IDENTIFICATION OF DETERMINANTS REQUIRE FOR AGONISTIC AND 
INVERSE AGONISTIC LIGAND PROPERTIES AT THE ADP RECEPTOR 

P2Y12 
 

 
This work is based on publication (Schmidt et al., 2013).  

 

Summary 
 

The ADP receptor P2Y12 belongs to the superfamily of G protein-coupled receptors 

(GPCRs) and its activation triggers platelet aggregation. Therefore, potent antagonists, 

e.g. clopidogrel, are of high clinical relevance in prophylaxis and treatment of 

thromboembolic events. P2Y12 displays an elevated basal activity in vitro and as such, 

inverse agonists may be therapeutically beneficial compared to antagonists. Only a few 

inverse agonists of P2Y12 have been described. To expand this limited chemical space 

and improve understanding of structural determinants of inverse agonist-receptor 

interaction, we screened an adenosine nucleotide library for lead structures using wild-

type (WT) human P2Y12 and 28 constitutively active mutants. We found that ATP and ATP 

derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-

(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were 

identified. Molecular docking studies revealed a binding pocket for the ATP derivatives 

that is bordered by transmembrane helices 3, 5, 6 and 7 in the human P2Y12, with Y105, 

E188, R256, Y259 and K280 playing a particularly important role in ligand interaction. N-methyl-

anthraniloyl modification at the 3’ OH of the 2’deoxiribose leads to ligands (mant-dATP, 

mant-dADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found 

at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. Our study 

showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of 
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P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity 

of ATP-derived ligands. 

 

Introduction 
 

The ADP receptor P2Y12 is a Gi protein-coupled receptor and a key player in 

platelet aggregation (Hollopeter et al., 2001). Inactivating mutations in P2Y12 are 

responsible for bleeding disorders in humans and dogs (Boudreaux & Martin, 2011, 

Cattaneo et al., 2003, Cattaneo, 2005, Daly et al., 2009, Fontana, Ware, & Cattaneo, 

2009, Hollopeter et al., 2001, Remijn et al., 2007, Shiraga et al., 2005). With significant 

relevance in pathophysiology, P2Y12 is also the major target of the antithrombotic drugs 

ticlopidin and clopidogrel. The thienopyridine clopidogrel is a prodrug which requires the 

cytochrome P450 2C19 enzyme for its conversion to an active thiol metabolite. Several 

mechanisms of antagonistic action have been proposed for the active metabolite of 

clopidogrel, including interaction with extracellular cysteine residues of P2Y12 (Ding, Kim, 

Dorsam, Jin, & Kunapuli, 2003) and receptor dimer disruption (Pierre Savi et al., 2006). 

Although very specific and effective, clopidogrel produces a variable platelet inhibition 

based on genetic polymorphisms and drug interactions (Muñoz-Esparza et al., 2011, 

Nawarskas & Clark, 2011). This has triggered the search for alternative P2Y12 blockers 

such as prasugrel, cangrelor and ticagrelor. The latter two compounds are ATP analogues 

and bind reversibly at P2Y12 (Storey, 2011). 

P2Y12 displays a high constitutive activity when expressed in vitro (Chee et al., 

2008, Schulz & Schӧneberg, 2003). Therefore, inverse agonists may be therapeutically 

beneficial compared to antagonists. Because only a few inverse agonists of P2Y12 have 

been described (Ding, Kim, & Kunapuli, 2006), we, therefore, screened for compounds 

that reduce the basal activity of constitutively active P2Y12 mutants. 



336 
 

Functional characterization of P2Y receptors and their mutants in mammalian 

expression systems is problematic because of the abundance of endogenous nucleotide 

receptors, nucleosidases and nucleotide release. In previous experiments, we and others 

demonstrated that the human P2Y12 is functionally expressed in the yeast system (Pausch 

et al., 2004, Schulz & Schӧneberg, 2003) which lacks such problems. Numerous 

constitutively activating mutations have been described for GPCRs in natural or 

recombinant systems, but only a few have been reported for P2Y receptors (Ding et al., 

2006). From over 1000 single point mutations, we identified 28 constitutively active P2Y12 

mutants. Screening a purine compound library, we discovered several new agonists and 

inverse agonists for the WT P2Y12 and constitutively active mutants, respectively. 

 

Materials and Methods 
 

Materials 
 

If not stated otherwise, all standard substances were purchased from Sigma–

Aldrich, Merck and Care Roth. Cell culture material was obtained from Sarstedt. MeS-

ADP (2-(methylthio)adenosine 5´-diphosphate trisodium salt hydrate), salmon sperm 

DNA, lithium acetate (LiAc) dehydrate, lithium chloride (LiCl), PEG 3350 (cat. no. P-3640) 

and apyrase from potatoe (Grade III) were obtained from Sigma-Aldrich (Munich, 

Germany). MeS-ADP (P2Y12 agonist) was dissolved in water and aliquots of stock 

solutions (10 mM) were stored at -20 °C. Yeast medium components were purchased from 

Sigma-Aldrich (Munich, Germany) and from BD Biosciences (Heidelberg, Germany). 

Restriction enzymes were purchased from New England Biolabs (Frankfurt a. M., 

Germany), primers were synthesized by Life Technologies (Darmstadt, Germany) and 

P2Y12 mutant libraries were provided by Sloning BioTechnology (Puchheim, Germany). 



337 
 

The adenine nucleotide library was from Jena Bioscience (Jena, Germany). For 

compound details see http://www.jenabioscience.com/images/7c63e6fc71/LIB-101.pdf. 

 

Generation of P2Y12 mutants 
 

Mutants were generated by subcloning SlonoMax-SINGLE libraries (synthesized 

double-stranded DNA fragments containing individual mutants, fragment sizes 100 – 150 

bp) via unique endogenous or silently introduced restriction sites. P2Y12 mutants were 

introduced into the yeast expression plasmid p416GPD (provided by Dr. Mark Pausch, 

Wyeth Research, Princeton, NJ, U.S.A.) and transformed into E. coli DH5α (Life 

Technologies, Darmstadt, Germany). Plasmids from individual clones were isolated 

(plasmid preperation kit; Promega, Mannheim, Germany) and mutations were identified 

by DNA sequencing. Because full coverage was not achieved after sequencing 96 clones, 

missing mutants (4 mutants/position on average) were generated by PCR-based site-

directed mutagenesis using mutant-specific mutagenesis primers. 

 

Expression and functional testing of P2Y12 mutants in yeast and mammalian cells 
 

The Saccharomyces cerevisiae yeast strain MPY578t5 (provided by Dr. Mark 

Pausch) was used for yeast expression and functional testing of the P2Y12 mutants. Cells 

were transformed with plasmid DNA using the LiAc/salmon sperm carrier DNA/PEG 

method. In brief, an overnight culture grown at 30 °C in YPAD (yeast extract, peptone, 

dextrose medium with adenine) was diluted to an optical density of 0.2 at 600 nm (OD 600 

nm) in 50 ml YPAD. This culture was incubated at 30 °C until the OD 600 nm reached 0.7-0.9. 

Cells were then harvested (2,500 g for 5 min at room temperature) and washed once with 

25 ml of water. The pellet was dissolved in 700 µl of LiAc (100 mM) and incubated for 10 

min at 30 °C. A pellet of 50 µl from the yeast cell suspension was then mixed with 90 µl 

http://www.jenabioscience.com/images/7c63e6fc71/LIB-101.pdf
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PEG 3350 (50 % w/v), 13.5 µl LiAc (1 M), 18.75 µl salmon sperm carrier DNA (2.0 mg/ml), 

2.75 µl of sterile water and plasmid DNA (1 µg) before being incubated for 30 min at 30 

°C, then for 30 min at 45 °C. 

For selection of constitutively active clones, cells were plated on agar plates not 

containing uracil and histidine (U-/H-). After incubation at 30 °C for 4 days, clones were 

prepared for concentration-response curves. Cells transformed with P2Y12 mutants were 

pre-cultured for 2 days at 30 °C in U-/H- with 10 µM MeS-ADP. To remove MeS-ADP, cells 

were washed twice with water and grown in U-/H- overnight without MeS-ADP. The yeast 

cell suspension was then diluted to an OD 600 nm of 0.1. From this cell suspension, 100 µl 

were pipetted into each well of a 96-well plate and to this, 100 µl of a 2x agonist solution 

or medium was added. Background growth was suppressed by the addition of 20 mM 3-

aminotriazole. Mutants were screened for growth and/or constitutive activity at 10 µM 

MeS-ADP. All positive mutants were further evaluated through MeS-ADP concentration-

response (growth) curves.  

The adenine nucleotide compound library was screened for agonists and inverse 

agonists at the WT P2Y12 and constitutively active mutants. 100 µl of the respective yeast 

cell suspension (100 µl, OD 600 nm = 0.1) was pipetted into each well of a 96-well plate and, 

to these samples, 100 µl of a 2x ligand solution or medium was added. OD measurements 

were performed 24 and 48 hours later. Compounds identified to be agonists or inverse 

agonists were further characterized in concentration response setups. IC50 and EC50 

values were calculated using GraphPadPrism 4 software (GraphPad). 

To determine the stability of ATP in the 24-h yeast assay we performed a 

phosphoenolpyruvate (PEP)/pyruvate kinase test. Thus, 2 mM PEP and 2 µl of a 

pyruvatkinase solution (final 6 U/ml) were added every 5 h to the yeast growth U-/H- 

medium (200 µl total volume additional containing 100 mM imidazol, 5 mM MgCl2, pH = 

7.15 to assure proper pyruvatkinase function). In case ADP is formed due to degrading, 
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PEP is utilized by the pyruvate kinase to produce ATP. Then, the concentration of PEP in 

the medium was monitored over 24 h using a coupled optical enzyme-test. Thus, 50 µl 

yeast medium harvested after 0 h, 4 h and 24 h (or 1 mM phosphoenolpyruvate for control 

purposes) were incubated with 0.7 ml assay buffer (100 mM imidazol, 5 mM MgCl2, pH = 

7.15), 1.5 µl lactate dehydrogenase (10 U/ml), 1 µl pyruvate kinase (10 U/ml), 8 µl of a 

100 mM ADP solution and 8 µl 2 mM NADH. NADH concentration was determined 

photometrically at 340 nm.  

For expression in mammalian cells, Chinese hamster ovary (CHO)-K1 cells were 

grown in Dulbecco's modified Eagle's medium (DMEM supplemented with 10 % (v/v) fetal 

bovine serum, 100 units/ml penicillin and 100 μg/ml streptomycin) at 37 °C in a humidified 

5 % CO2 incubator. A CHO-K1 cell line stably expressing the chimeric G protein Gαqi4 

(Kostenis, Waelbroeck, & Milligan, 2005) was established. Transient transfection 

experiments of CHO-K1 cells with the respective P2Y12 constructs and inositol phosphate 

(IP1) accumulation assays were performed as described (Schulz & Schӧneberg, 2003). In 

brief, Gαqi4-stable cells were seeded into twelve-well plates (about 0.15 106 cells/well), 

transient transfected and about 48 h after this labeled with 2 μCi/ml of [myo-3H]inositol 

(Perkin Elmer). After a 16 h-labeling period, cells were washed once with serum-free 

DMEM containing 10 mM lithium chloride (LiCl) and then incubated for 60 min at 37 °C 

with serum-free DMEM containing 10 mM LiCl with or without a compound. After this time, 

the assay medium was removed, and the reaction was stopped by adding 0.3 ml of 0.1 N 

NaOH, followed by a 5 min-incubation at 37 °C. The alkaline solution was then neutralized 

by adding 0.1 ml of 0.2 M formic acid, and the IP1 fraction was isolated by anion exchange 

chromatography as described (Berridge, 1983) and counted on a liquid scintillation 

counter.  

For cAMP assays, transfected cells were labeled with [3H]adenine (2 μCi/ml; 

PerkinElmer) for 12 h and washed once in serum-free DMEM containing 1 mM 3-isobutyl-
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1-methylxanthine (Sigma–Aldrich), followed by incubation in the presence of the indicated 

compounds and forskolin (10 μM) for 1 h at 37°C. Reactions were terminated by aspiration 

of the medium and addition of 1 ml of 5% (w/v) trichloroacetic acid. The cAMP content of 

cell extracts was determined by anion exchange chromatography as described (Salomon, 

Londos, & Rodbell, 1974). 

To measure label-free receptor activation, a dynamic mass redistribution (DMR) 

assay (Corning Epic® Biosensor Measurements) with stably transfected Human 

Embryonic Kidney (HEK) cells (HEK-FlpIn, P2Y12 in pcDNA5/FRT) was performed as 

described previously (Lars et al., 2012, Schrӧder et al., 2010). Briefly, cells were seeded 

into fibronectin-coated Epic 384-well microplates (60,000 cells per well) and exposed to 

the various compounds. In DMR measurements, polarized light is passed through the 

bottom of the biosensor microtiter plate, and a shift in wavelength of reflected light is 

indicative of intracellular mass redistribution triggered by receptor activation. DMR was 

recorded as a measure of cellular activity over 60 min. Agonist-induced DMR is 

concentration-dependent and concentration-effect curve were calculated from response 

peak maxima (approximately 6 min after adding the compound) of optical traces. 

 

Generation of a P2Y12 comparative model and ligand docking 
 

A comparative model of P2Y12 was constructed using the protein structure 

prediction software package, Rosetta version 3.2 (Leaver-Fay et al., 2011). The X-ray 

crystal structure of CXCR4 (Protein Data Bank ID: 3ODU) (Gupta, Pillarisetti, Thomas, & 

Aiyar, 2001) was chosen as a template based on its high similarity to P2Y12 (e-value of 3e-

15 with a sequence coverage of 90%) according to a search using NCBI BLASTP on 

sequences from the Protein Data Bank (PDB) (Figure 81). CXCR4 and P2Y12 also share 

a conserved disulfide bond between the N-terminal C17 and C270 in extracellular loop 3 

(Deflorian & Jacobson, 2011). The backbone coordinates of CXCR4 were retained in the 
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comparative model of P2Y12, while the loop coordinates were built in Rosetta using Monte 

Carlo Metropolis (MCM) fragment replacement combined with cyclic coordinate descent 

loop closure. In brief, - angles of backbone segments from homologous sequence 

fragments from the PDB are introduced into the loop regions. After the fragment 

substitution, small movements in the - angles are performed to close breaks in the 

protein chain. The resulting full sequence models were subjected to eight iterative cycles 

of side chain repacking and gradient minimization of , , and  angles Rosetta Membrane 

(Yarov-Yarovoy et al., 2005). 

Ligand docking into the comparative model of P2Y12 with ADP, ATP, MeS-ADP, 

MeS-ATP, mant-ADP, mant-ATP, mant-dADP and mant-dATP was performed with 

Rosetta Ligand (Davis & Baker, 2009, Meiler & Baker, 2006). Each ligand was allowed to 

sample docking poses in a 5 Å radius centered at the putative binding site for ADP, 

determined by averaging the coordinates of critical residues for ligand recognition: R256, 

Y259 and K280 (Hoffmann, Sixel, Di Pasquale, & von Kügelgen, 2008). Once a binding mode 

had been determined by the docking procedure, 100 conformations of the ligand created 

by MOE (Molecular Operating Environment, Chemical Computing Group, Ontario, 

Canada) were tested within the site. Side-chain rotamers around the ligand were 

optimized simultaneously in a MCM simulated annealing algorithm. The energy function 

used during the docking procedure contains terms for van der Waals attractive and 

repulsive forces, statistical energy derived from the probability of observing a side-chain 

conformation in the PDB, hydrogen bonding, electrostatic interactions between pairs of 

amino acids, and solvation assessing the effects of both side-chain/side-chain interactions 

and side-chain/ligand interactions. For each ligand, over 3,000 docked complexes were 

generated and clustered for structural similarity using bcl::Cluster (Alexander et al., 2011). 

The lowest energy binding mode from the five largest clusters for each ligand were used 
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for further analysis. The change in free energy with and without ligands bound to P2Y12 

was calculated for each residue in the receptor. Residues with the greatest difference in 

predicted energy are suggested to be important for ligand interaction (Figure 82).  

 

Results  

 

Expression of the human P2Y12 in yeast and determination of agonist specificity 

 
In previous experiments, we and others have already demonstrated that human 

P2Y12 can be functionally expressed in the yeast system. In this system, P2Y12-expressing 

yeast grows in 96-well cell plates and regular OD measurements are taken. OD values 

measure cell growth, which is used as a strong indicator for receptor activity. 

The WT P2Y12 was functionally tested with the compound library for agonists. 

P2Y12 expressed in yeast showed a similar EC50 value for MeS-ADP (EC50 value: 6 nM, 

Figure 75) as when expressed in mammalian cells ranging from low nanomolar to 25-80 

nM concentrations (Bodor et al., 2003, Ding et al., 2006, Hoffmann et al., 2008, Simon et 

al., 2002, F. L. Zhang et al., 2001, Zhong, Kriz, Seehra, & Kumar, 2004). ADP was about 

500 fold less potent to MeS-ADP, which is consistent with previous findings showing an 

about 30 fold to 1000 fold lower potency in mammalian cells (Bodor et al., 2003, Simon et 

al., 2002, F. L. Zhang et al., 2001). In addition to the highly potent agonist MeS-ADP, we 

identified further P2Y12 agonists: ATP and MeS-ATP. ATP was a partial agonist at the 

human P2Y12 when expressed in yeast (Figure 75A). EC50 values were ranked: MeS-ADP 

< MeS-ATP < ADP < ATP. We considered the possibility that the registered ATP activity 

might be due to the fraction of the nucleotides converted to ADP derivatives by 

nucleotidases or hydrolysis and quantified the possible decay of ATP during the 24-h 

assays. Thus, we indirectly quantified ATP degradation in the assay using the 
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PEP/pyruvate kinase system. The pyruvate kinase catalyzes the transfer of a phosphate 

group from PEP to ADP, yielding one molecule of pyruvate and one molecule of ATP. PEP 

concentration in the medium is therefore a measure for degraded ATP (see Materials and 

Methods). We found that PEP concentration in the yeast medium remained almost 

unchanged during 24 h yeast growth (∆E0 h = 0.44, ∆E4 h = 0.44, ∆E24 h = 0.48). Only 3.4 % 

of PEP (initial concentration 2 mM) were utilized by pyruvate kinase for ATP generation. 

This indicated high stability of ATP (96.6 %) in the assay over 24 h. The functionality of 

the pyruvate kinase to convert ADP to ATP was verified in control experiments performed 

in parallel. 

The agonistic properties of the adenine nucleotides were verified in the mammalian 

cell line COS-7 and CHO cells (data not shown) where the human P2Y12 was co-

expressed with the chimeric Gqi4 protein, which redirects receptor activation to the 

phospholipase C/inositol phosphate (IP) pathway (Kostenis et al., 2005). Since ATP 

produces a cellular response via endogenous nucleotide receptors in most cell lines we 

performed additional measurements of P2Y12 activation on stably transfected mammalian 

HEK with a dynamic mass redistribution assay (Corning Epic® Biosensor Measurements) 

(Schrӧder et al., 2010). Responses of endogenous nucleotide receptors were subtracted 

from the specific response of P2Y12-transfected cells. As shown in Figure 75B, the 

concentration-response curves were similar to the data from the yeast expression system 

except we found that ATP was a full agonist in this mammalian expression system. We 

also performed Epic measurements in P2Y12-stably transfected astrocytoma cells 

1321N1, which should not express nucleotide receptors (Filtz, Li, Boyer, Nicholas, & 

Harden, 1994). However, ATP-mediated responses in 1321N1 cells were less than in HEK 

cells having no advantage over transfected HEK cells. In sum, the yeast expression 

system is free of endogenous nucleotide receptors and, therefore, the most straight 

forward system to use in analyzing P2Y receptors. P2Y12 expressed in yeast displays 
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pharmacological properties very comparable to mammalian expression systems. Our 

screening revealed additional compounds with agonistic activity at P2Y12: ADPβS, TNP-

ADP, ATPγS, 2I-ATPγS, and AppNH2. We did not follow the pharmacology of these ADP 

and ATP derivatives further, but they support the fact that derivatives of ATP, as well as 

of ADP, also have agonistic activities at the human P2Y12. 

It should also be noted that a number of nucleotides and nucleosides (e.g. AMP, 

GTP, cAMP, adenosine) which do not activate P2Y12 in mammalian expression systems 

(F. L. Zhang et al., 2001) did not activate P2Y12 expressed in yeast. The comprehensive 

compound library allowed identification of all determinants necessary for agonist function 

at the P2Y12 (Table 28). In detail: 

1. The purine ring is absolutely required. Some modifications (methylthio iodine) at the 

adenine are tolerated, but guanine- and inosine-based nucleotides are not agonistic. 

2. Deoxidation of the ribose is not tolerated. The trinitrophenyl modification (TNP-ADP) is 

tolerated. 

3. Adenine nucleotides with two or three phosphate residues are agonistic, while < 2 

phosphate residues or cyclic phosphates are insufficient for agonistic activity. Some 

substitutions of phosphate moieties as in ADPβS, ATPγS, and AppNH2 are tolerated. 

4. Purine multimers displayed no agonistic activity. 
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Figure 75 
Nucleotide agonists at the human P2Y12. 
A) The human P2Y12 was transformed into yeast cells and incubated with different concentrations 
of P2Y12 agonists. Receptor activation-dependent growth was measured as OD600 nm after 24 h. 
Data are given as mean ± SD of three independent experiments all performed in triplicate. B) For 
label-free measurements of receptor activation, a dynamic mass redistribution assay (Corning 
Epic® Biosensor Measurements) with stably transfected HEK cells was performed essentially as 
described previously (Schroder et al., 2010). The response is shown 6 min after compound 
application. The response of each compound at non-transfected HEK cells was subtracted from 
the respective response at P2Y12 transfected HEK cells. Data are presented as mean ± S.E.M. of 
two independent experiments, each carried out in triplicate. 

 

Structural model of agonist binding 
 

To estimate whether the different agonists may have similar binding properties, we 

simulated binding by docking the agonists into the comparative model of P2Y12 (Figure 76 

and Figure 80). The model suggested that ADP, ATP, MeS-ADP, MeS-ATP, mant-ADP, 

mant-ATP, mant-dADP and mant-dATP bind in the site bordered by transmembrane 

helices (TM) 3, 5, 6 and 7. Ligands were oriented such that the phosphate groups 

generally pointed towards TM 3 and 7, forming hydrogen bonds with Y105 and K280. 

Adenosine rings frequently interacted with the hydrophobic residues on TM 5, namely L184, 

V185 and F177 in the second extracellular loop. In agreement with previous docking studies, 

R256 and K280 were found to be critical residues in the ADP binding pocket (Deflorian & 

Jacobson, 2011, Ignatovica, Megnis, Lapins, Schiӧth, & Klovins, 2012). R256 frequently 
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interacts with the hydroxyl groups and the oxygen from the furanose. K280 is demonstrated 

to interact with the negatively charged phosphate groups of the ligands. In addition to the 

R256 and K280, Y105, E188 and Y259 are consistently found to interact with the ligand. Y105 and 

E188 form hydrogen bonds with the phosphate tail, while Y259 seems to stabilize the 

adenine.  
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Figure 76 
P2Y12 docked in complex with agonists ADP, ATP, MeS-ADP and MeS-ATP.  
The docked binding modes in the comparative model of P2Y12 for agonists A) ADP, B) ATP, 
C) MeS-ADP and D) MeS-ATP in relation to residues Y105, E188, R256, Y259 and K280. All 
side chains within the binding site important for ligand interaction according to calculations of 
free energy change with and without ligands bound to P2Y12 are highlighted in red in the 
model and also shown in relation to the 2-D ligand depiction. 
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Identification of constitutively active mutants 
 

It is still impossible to predict mutations leading to constitutive activity of a given 

GPCR. Furthermore, at positions where some mutations activate the GPCR, not all 

mutations will result in constitutive receptor activation (Bakker et al., 2008, Lalueza-Fox et 

al., 2007). Therefore, screening of mutant libraries is required. Mutations induced via error-

prone derived mutant libraries cannot provide mutational saturation of every codon, and 

instead, most alleles will contain more than one mutated codon (B. Li et al., 2007, Thor, 

Schulz, Hermsdorf, & Schoneberg, 2008). Recent advances in gene synthesis technology 

(see Methods) have made it possible to generate comprehensive mutant libraries. 

Here, we mutated every single position to all possible amino acids in a receptor 

region known from other GPCRs to be sensitive for mutational induced constitutive 

activity. In sum, 1,254 P2Y12 mutants were generated covering 66 positions (amino acid 

position 236 – 301) of the receptor and yielding 28 constitutive active mutants at 10 

positions (positions are given in Figure 77). Most mutations were found at positions that 

faced the lipid, while three positions faced the receptor pore (F246, F249 and N290) and three 

were near the C-terminal receptor tail (F299, F300 and L301)  All data are available and 

organized in a P2Y12 mutant database (http://www.ssfa-7tmr.de/P2Y12). 

http://www.ssfa-7tmr.de/p2y12
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Figure 77 
Position and basal activity of constitutively active P2Y12 mutants. 
 A) The position of constitutively active mutations in TM6 and TM7 are depicted. Basal activities 
of the individual mutants expressed in yeast are given in the table. Data are presented as mean 
± SD of three independent experiments, each carried out in triplicate. The basal activity of the 
WT P2Y12 was OD600 nm: 0.074 ± 0.016. Complete functional data are available and organized 
in a P2Y12 mutant database (http://www.ssfa-7tmr.de/P2Y12). B) The comparative model of 
P2Y12 based on the CXCR4 template is depicted. Residues producing constitutively active 
mutants on TM6 and TM7 are highlighted in red. Residue side chains facing the pore of the 
receptor (F246, F249 and N290) are shown in sticks. 

 

Identification of mant-dATP as inverse agonist at constitutively active P2Y12 mutants 
 

Constitutively active mutants were expressed and the purine compound library was 

tested for inverse agonists. N-methyl-anthraniloyl- (mant-) dATP reduced basal activity of 

many constitutively active P2Y12 mutants (Table 27). For several mutants, mant-N6-

methyl-ATP was also an inverse agonist (see Table 27). There is no obvious structural 

overlap or difference between the mutants at which the different inverse agonists act or 

do not act.  

Inverse agonist activity was studied at F254L in more detail. As shown in Figure 78A, mant-

dATP suppressed basal activity in a concentration-dependent manner with an IC50 value 

in a µM range. Interestingly, the potency of mant-dADP was lower compared to mant-

http://www.ssfa-7tmr.de/p2y12
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dATP (see Figure 78A). Both the deoxy- and the mant- modifications are required, since 

mant-ATP and dATP had no effect on basal activity of P2Y12 mutants. It should be noted 

that the basal activities of several mutants (V244E, F246C, F246G, F246P, F246S, F246T, I247F, 

F249Y, N290W, N290Y, F296I, F296L, F296V, F299I, F299V, L301C, L301G, L301T) were not reduced 

by mant-dATP or any other compound tested. It is known already that WT P2Y12 displays 

increased basal activity when compared to non-transfected mammalian cells (Schulz & 

Schӧneberg, 2003). 

To verify that mant-dATP mediates its inverse agonistic activity at the constitutive 

activity of the WT P2Y12 expressed in mammalian cells as well, CHO-K1 cells were co-

transfected with chimeric Gqi4 and IP accumulation assays were performed. As shown in 

Figure 78B, the WT P2Y12 displayed a high basal activity and MeS-ADP increased IP 

levels only 2-fold. Mant-dATP almost completely blocked basal IP formation at the WT 

P2Y12 and N300F (Figure 78B). Also in cAMP inhibition assays at CHO-K1 cells, mant-

dATP displayed strong inverse agonistic activity on the inhibition of basal cAMP formation 

at the WT P2Y12 (Figure 78C).  

It has been shown that some cell lines release receptor-function relevant amounts 

of nucleotides into the cell culture medium (Lazarowski, Homolya, Boucher, & Harden, 

1997, Parr et al., 1994). This may account for high basal activity of P2Y12 heterologously 

expressed in mammalian cell lines. Therefore, we performed similar control experiments 

with CHO-K1 cells stably transfected with Gαqi4. As shown in Figure 83, Gαqi4-CHO-K1 

cells transiently transfected with P2Y12 presented an increased basal IP1 level compared 

to cells transfected with the control plasmid (GFP). Incubation with apyrase did not reduce 

this elevated IP1 level. This clearly indicates that P2Y12 does induce signal transduction 

by intrinsic active receptor conformation and not by nucleotides released from the cells 

into the medium. Proper apyrase function was demonstrated by loss of ADP action on 

P2Y12. 
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Table 27 
Mant-dATP is an inverse agonist at different constitutively active mutants.  
Yeast cells expressing different basal active mutants were incubated with a 10 µM adenosine 
nucleotide library to identify inverse agonists. In a screen of over 80 adenine nucleotides and their 
derivatives mant-dATP and mant-N6-Methyl-ATP showed inverse activity on several constitutively 
active mutants. All the mutants listed showed activation (> 2-fold above increased basal activity) 
upon stimulation with ADP, MeS-ADP, ATP and mant-ADP. dATP and mant-ATP had no 
significant effects on the mutants. 

Position Mutation 
Inverse activating substances 

(fold over basal ≤ 0.8) 

F246 V mant-dATP 

F254 I mant-dATP, mant-N6-Methyl-ATP 

L mant-dATP, mant-N6-Methyl-ATP 

V mant-dATP 

F296 A mant-dATP 
C mant-dATP, mant-N6-Methyl-ATP 
M mant-dATP 

F300 N mant-dATP 

L301 N mant-dATP 

M mant-dATP 
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Figure 78 
Mant-dADP and mant-dATP are inverse agonists at constitutively active P2Y12 F254L. 
A) Yeast cells expressing F254L were incubated with increasing concentrations of the indicated 
compounds and yeast growth was measured after 24 h incubation. The ligand-induced decrease 
of basal activity of F254L is shown relative to the basal activity of the WT P2Y12 (OD600 nm 
=0.074; set to 0%) and the basal activity of F254L (OD600 nm =0.165; set to 100%). Data are 
given as mean ± SD of three independent experiments all performed in triplicate. B) To evaluate 
inverse agonist specificity, CHO-K1 cells, stably expressing the chimeric G protein Gαqi4, were 
transfected with plasmids encoding GFP (control) or the human ADP receptor. IP formation 
under basal conditions (white), in the presence of 10 μm MeS-ADP (black bars) and in presence 
of 100 µM mant-dATP (light grey bars). The basal IP for GFP was 321 cpm/well and set 0%, the 
basal IP for WT P2Y12 was 970 cpm/well and set 100%. Data are presented as mean ± SD 
(cpm/well) of three independent experiments, each carried out in duplicate. C) Forskolin-induced 
cAMP levels in CHO-K1 cells stably expressing human ADP receptor were determined under 
basal conditions (white bars), in the presence of 10 μm MeS-ADP (black bars) and in presence 
of 100 µM mant-dATP (light grey bars). The decrease of basal activity of P2Y12 wild-type receptor 
is shown relative to GFP basal activity (7486 cpm/well; set 0%) and P2Y12 wild-type basal activity 
(4533 cpm/well; set 100%). Data are given as mean ± SD of three independent experiments all 
performed in triplicates. 
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Mant-dATP is most likely an orthosteric ligand at P2Y12 
 

To evaluate whether mant-dATP mediates its inverse agonistic action through an 

orthosteric or an allosteric binding site, the ADP-concentration-response curves at F254L 

were determined in the presence of different concentrations of mant-dATP. As shown in 

Figure 79A, increasing concentrations of mant-dATP shifted the concentration-response 

curves to higher ADP concentrations. Similar results were obtained for mant-dADP, but 

with lower potency (Figure 79B). This competition is indicative of an orthosteric binding 

modus for the inverse agonists. Although, functional and docking data (see below) support 

orthosteric binding we cannot rule out the possibility of an allosteric binding of the inverse 

agonists given the limited concentration range of mant-dATP investigated herein. 

 

 

Figure 79 
Mant-dADP and mant-dATP are most likely orthosteric ligands at P2Y12 F254L. 
To evaluate the modus of inverse agonist binding, ADP-concentration-response curves at 
F254L-transformed yeast cells were determined in the presence of 0, 10 and 100 µM mant-dATP 
(A) and mant-dADP (B). Data are given as mean ± SD of three independent experiments all 
performed in duplicate. 

 

Structural model of inverse agonist binding 
 

Using our P2Y12 model we investigated whether mant-dATP can dock into the 

agonist binding pocket of P2Y12 and if specific interactions may explain inverse agonistic 

activity (Figure 80). As with the other ATP derivatives, mant-dATP sits between TMH 3, 5, 
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6 and 7 with Y105 and K280 forming hydrogen bonds with the phosphate tail and R256 

stabilizing the oxygen connecting the furanose to the mant group. Unlike ATP, the extra 

bulk of the mant group is further stabilized by interactions with I257, H253 and Q263. However, 

similar interactions are seen with mant-ATP, which does not exhibit inverse agonism. We 

conclude that the inverse agonistic activity is likely not the result of a different binding 

mode. It is possibly caused by smaller scale modulations in the strengths of specific 

interactions between ligand and protein. Pin-pointing these changes to reveal the 

mechanism behind the inverse agonistic activity are beyond the accuracy of the present 

comparative model but will be the focus of future mutational studies. 
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Figure 80 
P2Y12 docked in complex with agonists mant-ADP and mant-ATP and inverse agonists, 
mant-dADP and mant-dATP. 
The docked binding modes in the comparative model of P2Y12 for agonists A) mant-ADP and 
B) mant-ATP and the inverse agonists C) mant-dADP and D) mant-dATP in relation to residues 
Y105, E188, R256, Y259 and K280. All side chains within the binding site important for ligand 
interaction according to calculations of change in free energy with and without ligands bound to 
P2Y12 are highlighted in red and shown in relation to the 2-D ligand depiction. 
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Discussion 
 

We used a genetically modified yeast strain (Pausch et al., 2004) to heterologously 

express and functionally test the human ADP receptor P2Y12. This expression system 

offers some advantages over mammalian cells lines, specifically in characterizing 

nucleotide receptors, because it lacks endogenous nucleotide receptors. ADP and MeS-

ADP are full agonists in this expression system with EC50 values of 2.8 µM and 6 nM, 

respectively (Figure 1A). Screening an adenine nucleotide-derived compound library we 

identified ATP and some derivatives as partial agonists at P2Y12 in addition to ADP and 

its derivatives (Table 28). The agonistic activity of ATP was not only found in the 

heterologous yeast expression system but also in different mammalian cell lines and 

signaling assays. 

That MeS-ATP and ATP binds to human P2Y12 has been shown (P Savi et al., 

2001) but the ligand properties of ATP at P2Y12 are controversially discussed, ranging 

from antagonism (Bodor, Waldo, Blaesius, & Harden, 2004, Springthorpe et al., 2007) to 

agonism (Barnard & Simon, 2001, Simon et al., 2002). These contrary results are likely 

due to differences in mammalian expression systems and functional assays used. 

Introduction of a 2’-methylthio group increased ligand potency at P2Y12 and made ATP a 

highly potent full agonist (Figure 75A) consistent with previous findings (Simon et al., 2002, 

F. L. Zhang et al., 2001). Through ligand docking into a structural comparative model of 

P2Y12, ATP derivatives are found to bind in a similar binding site. While our structural 

P2Y12 model is not at the resolution to reveal what fine-structural requirements are 

essential to turn a nucleotide into an agonist at P2Y12, specific residues critical to ligand 

interaction can be predicted from the model. Notably, we find that for six of the seven 

residues indicated to be significant for ligand interaction that are also in the mutant 

database (H253, I257, Y259, T260, Q263, T264 and K280), mutation of the residues to any other 

amino acid results in a loss of WT function (see our P2Y12 mutant database: 
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http://www.ssfa-7tmr.de/P2Y12). Therefore, there is agreement between the residues 

predicted to be critical for agonist function through docking studies and experimental 

results. Our model and the docking studies are consistent with the fact that ATP fits into 

the same binding pocket as well-characterized agonists. 

These findings raise a relevant question whether ATP can serve as P2Y12 agonist 

also in vivo. The ATP-to-ADP ratio in human platelet dense granules is approximately two 

(Cattaneo, Lecchi, Lombardi, Gachet, & Zighetti, 2000, Weiss et al., 1979). If one assumes 

that ATP and ADP secretion from dense granule undergo with the same kinetics, previous 

data suggest that the surface concentration of ADP following thrombin stimulation will 

transiently reach 7–10 μM (Beigi, Kobatake, Aizawa, & Dubyak, 1999). This is sufficient 

for activation of the platelet P2Y12 by ADP but also by ATP and consistent with feed-

forward autocrine/paracrine activation of platelet responses. 

Many WT GPCR, such as histamine receptors, thyrotropin receptor and 

melanocortin receptors present high basal activity (Seifert & Wenzel-Seifert, 2002). In 

contrast to antagonists inverse agonists suppress both agonist-dependent and -

independent activity and are therefore developed in priority. For example, many β-

blockers and atropine are inverse agonists at β1-adrenoceptors and muscarinic 

acetylcholine receptors, respectively (J. G. Baker, Hill, & Summers, 2011, Thor, Le Duc, 

Strotmann, & Schӧneberg, 2009). Therapeutically used P2Y12 ligands are high affinity 

antagonists but inverse activity was described only for the experimental P2Y12 blocker AR-

C78511 (Ding et al., 2006, Vasiljev, Uri, & Laitinen, 2003). AR-C78511 is a 2-alkylthio-

substituted ATP analog but, in contrast to mant-dATP, has no modification at the 2’ or 3’ 

OH residues of the ribose. Mant-dATP binds most likely at the orthosteric ligand-binding 

site and inverse agonistic activity mutually depends on the desoxy-ribose, since mant-ATP 

lacks inverse agonistic activity. At present we cannot explain or predict inverse activity, 

even with a receptor model in hand, since the pharmacological properties of a ligand are 
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the result of a tight interplay of the ligand and the receptor molecule. It is however of 

interest that, as for AR-C78511 (Springthorpe et al., 2007), modification of an ATP 

backbone resulted again in an inverse agonist (mant-dATP). This also supports our 

findings that P2Y12 naturally recognizes not only ADP but also ATP and binding of ATP 

and other ATP derivatives induce conformational changes within P2Y12.  

In sum, we clearly show that, in addition to ADP and ATP, some ATP derivatives 

are not only ligands of P2Y12 but also agonists. Keeping with a ATP/ADP ratio >1 in vivo 

and the small differences in concentration response curves (see Figure 75B), P2Y12 

should rather be referred to as adenine nucleotide receptor without suggesting ADP 

specificity. Modification of the ribose within ATP can result in inverse activity of ATP-

derived ligands.  
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Figure 81 
Sequence alignment of P2Y12 with CXCR4. 
The sequence of human P2Y12 was aligned with the sequence of human CXCR4 (PDB ID: 
3ODU) (Gupta et al., 2001) using CLUSTALW (Larkin et al., 2007). Transmembrane helical 
regions of the CXCR4 receptor are highlighted in green. Regions predicted to be transmembrane 
helical regions of P2Y12 according to secondary structure prediction server PSIPRED (McGuffin, 
Bryson, & Jones, 2000) are highlighted in cyan. Cysteine residues known to form disulphide 
bonds are highlighted in yellow. 
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Figure 82 
Per residue change in free energy with and without ATP derivatives bound. 
Rosetta was used to determine the difference in change in free energy (∆∆G) between P2Y12 
with and without ATP derivatives bound. Residues that demonstrated the largest difference in 
free energy change in respect to bound ADP, ATP, MeS-ADP, MeS-ATP, mant-ATP, mant-ADP, 
mant-dADP and mant-dATP are listed. For each ligand, residues with ∆∆G above the average 
energy change  (-0.24) are in red, while those with energy change above average but still 
negative are in yellow and residues with a positive energy change are in green. 
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Figure 83 
Analysis of the functional impact of endogenous nucleotide released from CHO cells 
To analyze of whether endogenous nucleotide released from CHO cells contribute to basal 
activity of P2Y12 we performed control experiments with CHO-K1 cells stably transfected with 
Gαqi4. Intracellular inositol phosphate (IP1) levels were determined with an immunological assay 
(cisbio Bioassays, IP-One ELISA, part-no. 72IP1PEA). Gαqi4-CHO-K1 cells transiently 
transfected with P2Y12 presented an increased basal IP1 level compared to cells transfected 
with the control plasmid (GFP). Incubation with apyrase did not reduce this elevated IP1 level. 
This clearly indicates that P2Y12 does induce signal transduction by intrinsic active receptor 
conformation and not by nucleotides released from the cells into the medium. Proper P2Y12 
transfection was control by application of ADP and MeS-ADP. Proper apyrase function was 
demonstrated by loss of ADP action on P2Y12. 
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Table 28 
Adenosine nucleotide library screening at the P2Y12 WT receptor 
The activity of P2Y12 WT receptor is shown relative to the basal activity (OD600 nm =0.089; set 
0%) and the stimulation with MeS-ADP (OD600 nm =0.667; set 100%).  

AMP 
-2.19 

ADP 
84.05 

ATP 
19.93 

AP4 
-0.29 

cAMP 
-0.99 

3’-dATP 
-2.02 

7-Deaza-dAMP 
-1.33 

NPE-caged-ATP 
-0.64 

7-Deaza-dATP 
-1.33 

DMB-caged-
ATP 5.24 

dATPαS 
-1.68 

ADPβS 
92 

ATPγS 
71.09 

β-Methylene-
APS 
-1.68 

ApCp 
-0.81 

AP3A 
-0.99 

AP4A 
-1.5 

AP5A 
-1.68 

AP6A 
-1.68 

AP4U 
-0.99 

AP4(8I)G 
-2.37 

AP5(8I)G 
-1.68 

2’I-AMP 
-1.33 

2’I-ADP 
-1.68 

2’I-ATP 
-1.16 

8Br-ADP 
0.57 

8Br-ATP 
-1.68 

8Br-dATP 
-0.99 

γ-[6-
Aminohexyl]-

ATP 
-1.5 

2I-ATPγS 
90.1 

7-Deaza-7Br-
dATP -2.02 

γ-Aminophenyl-
ATP 2.99 

γ-[(6-
Aminohexyl)-
imido]-ATP 

-1.16 

γ-[(8-
Aminooctyl)-
imido]-ATP 

-1.16 

N6-(4-
Amino)butyl-

ATP 
-1.33 

EDA-ATP 
-3.75 

γ-[6-
Aminohexyl]-N6-

Benzyl-ATP 
-2.02 

2-Hydroxy-ATP 
-1.5 

TNP-ADP 
72.81 

TNP-ATP 
4.03 

1-Methyl-AMP 
-0.99 

1-Methyl-ADP 
1.61 

1-Methyl-ATP 
0.05 

dATP 
0.57 

ddATP 
0.57 

2’.5’-pAp 
-0.47 

ara-ATP 
0.4 

AMPαS 
-0.12 

ATPαS 
2.3 

dADPαS 
0.4 

ApCpp 
-1.33 

AppCp 
0.4 

dApCpp 
-0.47 

AppNp 
0.57 

AppNH2 
76.79 

AP5U 
-1.16 

AP4T 
-0.29 

AP5T 
-0.47 

AP4G 
0.22 

AP5G 
0.05 

2’Br-ADP 
-1.16 

2’Br-ATP 
-0.64 

2’-Ome-ATP 
-0.81 

mante-ATPγS 
-0.4 

8Br-cAMP 
0.05 

2’F-AMP 
-0.81 

2’F-ATP 
-0.47 

2’Cl-ATP 
-0.81 

BzBzATP 
-0.12 

7-Deaza-7I-
dATP 
-0.12 

N6-(6-
Amino)hexyl-

ATP 
-0.81 

N6-(6-
Amino)hexyl-

dATP 
-0.12 

8-[(4-
Amino)butyl]-
amino-ATP 

-0.12 

8-[(6-
Amino)hexyl]-
amino-ATP 

0.57 
EDA-ADP 

1.95 

mant-ADP 
6.79 

mant-ATP 
-0.47 

mant-dATP 
-0.64 

mant-N6-Methyl-
ATP 
-0.29 

ε-ATP 
0.4 
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BCL::ALIGN – SEQUENCE ALIGNMENT AND FOLD RECOGNITION WITH A 
CUSTOM SCORING FUNCTION ONLINE 

 

 
This work is based on publication (Dong et al., 2008).  

 

Summary 
 
 BCL::Align is a multiple sequence alignment tool that utilizes the dynamic 

programming method in combination with a customizable scoring function for sequence 

alignment and fold recognition. The scoring function is a weighted sum of the traditional 

PAM and BLOSUM scoring matrices, position specific scoring matrices output by PSI-

BLAST, secondary structure predicted by a variety of methods, chemical properties, and 

gap penalties. By adjusting the weights, the method can be tailored for fold recognition or 

sequence alignment tasks at different levels of sequence identity. A Monte Carlo algorithm 

was used to determine optimized weight sets for sequence alignment and fold recognition 

that most accurately reproduced the SABmark reference alignment test set. In an 

evaluation of sequence alignment performance, BCL::Align ranked best in alignment 

accuracy (Cline score of 22.90 for sequences in the Twilight Zone) when compared with 

Align-m, ClustalW, T-Coffee, and MUSCLE. ROC curve analysis indicates BCL::Align’s 

ability to correctly recognize protein folds with over 80% accuracy. The flexibility of the 

program allows it to be optimized for specific classes of proteins (e.g. membrane proteins) 

or fold families (e.g. TIM-barrel proteins).  BCL::Align is free for academic use and 

available online at http://www.meilerlab.org/.  

 

Introduction 
 

Sequence alignment and fold recognition are key computational tools for predicting 

the evolutionary history of proteins and detecting structurally related proteins from their 

http://www.meilerlab.org/
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amino acid sequence. The importance of these methods continues to increase with the 

exponential growth of sequence databases driven by various genome projects (Benson, 

Karsch-Mizrachi, Lipman, Ostell, & Wheeler, 2007, Mewes et al., 2002). With the help of 

these tools, relationships are being determined between newly discovered sequences and 

existing sequence databases (Bairoch & Apweiler, 1998, Benson, Karsch-Mizrachi, 

Lipman, Ostell, & Wheeler, 2006) along with proteins of known structure collected in the 

protein data bank (Berman, Henrick, & Nakamura, 2003). While sequence similarity 

frequently accompanies structural similarity as well as evolutionary relation to a common 

ancestor (Castillo-Davis, Kondrashov, Hartl, & Kulathinal, 2004, Phillips, Janies, Wheeler, 

& others, 2000), one major goal of these comparisons is the assignment of a function to 

newly discovered sequences.  

Yet it is known that many structurally homologous proteins can have very low 

sequence identity (Rychlewski, Li, Jaroszewski, & Godzik, 2000) and in these cases 

sequence alignment methods alone provide little information. Threading algorithms (Jones 

& others, 1999, Lindahl & Elofsson, 2000) and sequence-only methods (Karplus, Barrett, 

& Hughey, 1998, Rychlewski et al., 2000) for fold recognition have been specifically 

developed to predict structural similarity. However, the accuracy of most sequence 

alignment methods as well as the reliability of fold recognition methods is greatly 

diminished when comparing sequences in the so-called “Twilight Zone” with less than 25% 

sequence identity (Rost & Sander, 1993, J. D. Thompson, Plewniak, & Poch, 1999).  

Approaches to improve the accuracy of automatic sequence alignments start with 

the introduction of common substitution matrices such as PAM (Dayhoff & Schwartz, 

1978) or BLOSUM (Henikoff & Henikoff, 1992). With the progressive algorithm (Feng & 

Doolittle, 1987, Hogeweg & Hesper, 1984), MUSCLE (R. Edgar, 2004) uses probabilities 

derived from the PAM 240 matrix and position specific gap penalties with iterative score 

refinement. ClustalW (J. D. Thompson et al., 1994) also uses a progressive alignment 
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method and improves its accuracy by weighting sequences, customizing substitution 

matrix usage and changing gap penalties depending on the surrounding residues. Align-

m (Van Walle, Lasters, & Wyns, 2004) uses a non-progressive local approach to guide a 

global alignment. T-Coffee (Notredame, Higgins, Heringa, & others, 2000) combines 

information from global and local sequence alignments to determine the optimal 

alignment. However, BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990) and PSI-

BLAST (Altschul et al., 1997) continue to dominate the field of sequence alignment tools 

with their rapid word-based algorithm and the iterative search using position-specific score 

matrices.  

While there is some overlap between the tools used for sequence alignment and 

fold recognition, there is significant emphasis on secondary structure prediction in fold 

recognition methods. Sequence-based methods (Lindahl & Elofsson, 2000, Rychlewski et 

al., 2000) include structural information within the sequence profiles used for sequence-

structure alignment. Threading-based algorithms like THREADER (Jones & others, 1999) 

directly use a structure template which is based on residue-residue contacts and 

hydrophobicity among other structural information in its double dynamic programming 

algorithm. ORFeus (Ginalski, Pas, et al., 2003) uses a scoring matrix based on the PSI-

BLAST profile and secondary structure prediction from PSIPRED (Jones & others, 1999).  

K*sync (Chivian & Baker, 2006) is a comparative modeling approach that uses various 

weight sets to create an ensemble of sequence-sequence alignments. Based on this 

ensemble a library of models is created from which the optimal model is selected by 

tertiary structure analysis and energy prediction.  

 More recently, it was shown that fold recognition can be improved by incorporating 

the output of several primary fold recognition approaches in a secondary approach. Such 

meta-servers work by analyzing the consensus of several primary methods using either 

artificial neural networks (P-Cons) (Lundstrӧm, Rychlewski, Bujnicki, & Elofsson, 2001) or 
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more straight-forward structure comparison tools (3D-Jury) (Ginalski, Elofsson, Fischer, & 

Rychlewski, 2003).  

 With the growing number of sequence analysis and fold recognition tools being 

developed, it became clear that different scoring schemes can perform quite differently 

depending on the protein class, sequence identity level, or type of problem (fold 

recognition vs. sequence alignment). In turn, the researcher often needs to invoke multiple 

tools to accomplish these tasks and it is difficult to determine which method produces the 

most accurate result given a particular scenario. 

 In the present study we seek to address this shortcoming by introducing 

BCL::Align. The program gives the user maximum flexibility in tailoring the scoring function 

to fit the specific problem. The effective scoring function used by BCL::Align is a linear 

combination of various substitution matrices, position-specific scoring matrices, secondary 

structure predictions, chemical properties, and gap penalties. Here, the algorithms 

implemented in BCL::Align are described and optimized parameter sets for four typical 

tasks are presented (sequence alignment and fold recognition in the 0-25% sequence 

identity and 25-50% sequence identity regime). Results for the SABmark benchmark 

database are compared with other leading sequence alignment tools. The significance of 

the weights is discussed in terms of their importance for sequence alignment and fold 

recognition at different levels of sequence identity. 

 

Materials and Methods 
 

 

Needleman and Wunsch algorithm is employed for generation of optimal pair-wise 
sequence alignment 
 

BCL::Align uses a standard dynamic programming algorithm (Needleman & 

Wunsch, 1970) to optimally align two sequences A and B of length m and n. In order to 
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execute the alignment, a scoring scheme for matches as well as gaps needs to be 

provided. The dynamic programming algorithm will output the optimal score Sm,n together 

with the alignment.  

 Dynamic programming solves optimization problems by dividing the problem into 

independent subproblems. Since the sequence alignment problem has optimal 

substructure property, a subproblem can be defined as aligning prefixes of two sequences 

up to a point (i,j) with 0<i≤m and 0<j≤n. To find the alignment with the highest score Sm,n, 

a two-dimensional matrix with the dimensions m and n is filled at each position (i,j) with 

the best score Si,j of these prefix sequences (“matrix filling”). The optimal score Si,j builds 

upon the best score computed so far. The second part of the algorithm – so-called “trace 

back” – starts at the lower right corner of the matrix which now contains the best possible 

score Sm,n. It traces back step-by-step the pathway through the matrix that lead to this 

optimal score, thereby generating the optimal alignment of the two sequences.  

 

Setup of parametric scoring function as a sum of weighted Z-scores 
 
 The scoring function of BCL::Align is a weighted sum of multiple scoring schemes 

that have been successfully used in prior sequence alignment and fold recognition 

approaches. The user can choose the individual weight of each scheme and BCL::Align 

will recalibrate them to add up to 100%.  

Raw scores obtained from each of the different scoring schemes are not directly 

comparable. Therefore all scores are first translated into Z-scores. For every scoring 

scheme, a random distribution was created by computing the score S for 106 arbitrarily 

chosen pairs of amino acids out of a representative database consisting of 1,800 protein 

sequences. This database was created by culling the PDB (Berman et al., 2003) for 

sequences with less than 25% sequence identity (G. Wang & Dunbrack, 2003). For each 
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of the different scores an average Sav and a standard deviation Ssd was derived (see Table 

29) which are used within BCL::Align to rescale all scores into Z-scores with Z=(S-Sav)/Ssd.  

Therefore, positive scores larger than 1 indicate that two positions align with a score that 

is least one standard deviation above the average. Since the total score is a sum of 

weighted Z-scores, this statement holds not only for the individual scores but also for the 

total score, making all scores obtained with BCL::Align directly comparable even if the 

composition of the scoring function was altered.   

 

Table 29 
Adjustable parameters and gap penalties. 

Description Parameters Sav
[a] Ssd

[b] 

Amino Acid 
Identity 

Identity   

Substitution 
Matrices 

PAM 100, 120, 160, 250  
(Dayhoff et al., 1978)  

-0.0824 0.2498 

BLOSUM 90, 80, 62, 45  
(Henikoff and Henikoff, 
1992)  

-0.0821 0.2273 

Position 
specific 
scoring matrix 

BLAST profile (Altschul et 
al., 1997)  

-0.0072 0.0881 

Secondary 
Structure 
Predictions 

PSIPRED (Jones, 1999)   -0.1431 0.4728 

JUFO (Meiler and Baker, 
2003)  

-0.0388 0.2451 

SAM (Karplus et al., 1998;  
Hughey and Korgh, 1996) 

-0.0056 0.2076 

Chemical 
Properties 

steric parameter -1.1514 0.8981 

polarizability -0.1061 0.0814 

volume -1.9938 1.5660 

hydrophobicity -1.0737 0.7871 

isoelectric point -1.6180 1.8058 

Gap Penalties open gap   

extend gap   

open boundary gap   

extend boundary gap   
[a] Average score for Z-score correction 
[b] Standard deviation for Z-score correction 
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Use of the affine gap penalty is essential for alignment of distant sequence homologs  
 

The affine gap penalty approach (Barton & Sternberg, 1987) improves sequence 

alignment by customizing gap penalties to the sequence, making them length- and 

location-dependent. BCL::Align distinguishes gap open penalties Popen from gap extension 

penalties Pextend. It also distinguishes boundary gaps at the beginning or end of an 

alignment PB from enclosed gaps PE. In turn, a total of four gap penalties are defined that 

can be chosen by the user. The total penalty for a gap is computed using P= Popen + length 

• Pextend.  

 

Scoring function components were chosen from successful sequence alignment 
benchmarks and can be easily extended  
 

Table 29 lists the parameter options open to the user. While substitution matrices 

of various sequence identity are available, the PAM250 (Dayhoff & Schwartz, 1978) and 

BLOSUM45 (Henikoff & Henikoff, 1992) matrices were used for sequence alignment 

because these matrices are most suitable for aligning sequences with low sequence 

identity. The logarithm of the probability of replacing amino acid i with j is used as the 

score.  

The BLAST profile is iteratively built from members of the homologous family by 

scanning a sequence database (Altschul et al., 1997). In this work, the BLAST profile was 

determined by 3 PSI-Blast iterations at an E-value cutoff of 0.001. The logarithm of the 

scalar product of the probability vectors for position i and j is used as the score. One 

advantage of using these parameters is that the scoring matrix obtained can be used 

directly for running PSIPRED and JUFO (see below). 

 The secondary structure predictions used in BCL::Align include PSIPRED 

(McGuffin et al., 2000), JUFO (Meiler & Baker, 2003) and SAM (Hughey & Krogh, 1996, 
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Karplus et al., 1998). The logarithm of the scalar product of the 3-state (helix, strand, coil) 

probability vectors for position i and j is used as the score. 

 The chemical properties used include sterical parameters, polarizability, volume, 

hydrophobicity, and the isoelectric point. For scoring, the negative absolute difference for 

amino acids i and j is computed. After Z-score normalization, all five properties were 

combined with equal weights into a single score for weight optimization. 

 

The SABmark benchmark database 
 

For parameter optimization, we chose to use a subset of the 1.65 version of the 

SABmark reference alignment database (Van Walle, Lasters, & Wyns, 2005), which is 

itself divided into two subsets. Sequences in the Superfamily subset have 25-50% 

sequence identity and are divided into test groups that represent different SCOP 

superfamilies. The Twilight Zone subset has sequences with 0-25% sequence identity and 

each test group represents a different SCOP fold.  

SABmark also includes a second set of Twilight Zone and Superfamily subsets 

with the same sequences, plus the addition of up to the same number of false positive 

sequences. These false positives differ in fold from the true positives. They were selected 

from a BLAST search of the original sequences against a 70% identity subset of SCOP. 

The database covers the entire known fold space and each pairwise reference alignment 

is a consensus structural alignment provided by SOFI (Boutonnet, Rooman, Ochagavia, 

Richelle, & Wodak, 1995) and CE (Shindyalov & Bourne, 1998).  

Because SABmark contained pairwise sequence alignments as well as fold 

information, we were able to use the benchmark to optimize the parameters for both the 

sequence alignment and fold recognition methods. 
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Optimizing the Cline score avoids over- and underprediction in sequence alignment 
 

A total of eleven parameters and four gap penalties were optimized in our 

experiment (Table 29). For sequence alignment parameter and gap penalty optimization, 

we chose to maximize the Cline score (Cline, Hughey, & Karplus, 2002) as a measure of 

alignment quality, finding in agreement with previous publications that maximizing the 

developer’s score (fd) alone leads to overprediction while maximizing modeler’s score (fm) 

leads to underprediction (R. C. Edgar & Sjӧlander, 2004, Sauder, Arthur, & Dunbrack Jr, 

2000). Scores were calculated using the qscore program (R. Edgar, 2004) found at 

http://www.drive4.com/qscore/. 

 

ROC curve analysis predicts accuracy of fold recognition 
 

For fold alignment parameter optimization, we performed a receiver operating 

characteristic (ROC) curve analysis on the rate of correct versus incorrect fold assignment. 

A ROC curve plots the false positive rate against the true positive rate. Calculating the 

area underneath the ROC curve provides a measure of fold alignment accuracy, where 

an area of 50% would represent a program with no ability to recognize folds. The area 

underneath the ROC curve was maximized during parameter optimization. 

 

Parameter and gap penalty optimization using a Monte Carlo algorithm 
 

For both the sequence alignment and fold recognition methods, we performed two 

different optimizations, one with Twilight Zone sequences with low (0-25%) sequence 

identity and one with Superfamily sequences with intermediate (25-50%) sequence 

identity. For sequence alignment, the parameter and gap penalty optimization was 

performed on 50% of the Twilight Zone subset and 36% of the Superfamily subset. For 

http://www.drive4.com/qscore/
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fold recognition, 45% of the Twilight Zone subset and 22% of the Superfamily subset was 

used for the training set.  

Using a Monte Carlo approach, we started the optimization with random values 

between 0 and 1 for the parameters and values between -2 and 0 for the gap penalties. 

For 100 Monte Carlo iterations, we adjusted the weights for the parameters and gap 

penalties by a random value between -0.2 and 0.2, maximizing the Cline score for 

sequence alignment and the area under the ROC curve for fold recognition. Fifteen rounds 

of this optimization procedure were carried out on each subset and weights from the top 

ten scoring rounds were averaged to determine the optimal weight set. The most favorable 

range for a particular weight is defined by average and standard deviation of the top ten 

scoring rounds of each trained subset. 

 

Cross validation was used to avoid over-training 
 

Since a subset of the SABmark database was used to determine the weight sets, 

we had to verify that the scores resulting from the parameter and gap penalty optimization 

were not affected by overtraining. To do so, the scores for the trained and untrained subset 

were compared with each other. They were found to be within the standard deviation 

(Table 33), validating that the scores taken from the weight optimization can be directly 

compared with other leading methods. 

 

Performance assessment  
 

We assessed the sequence alignment performance of BCL::Align using the entire 

SABmark database. The average Cline scores for pairwise alignments in a group were 

calculated, and those scores were averaged to determine the final Cline score for each 

subset of SABmark: Twilight Zone, Superfamilies, Twilight Zone with False Positives, and 

Superfamilies with False Positives.  
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Implementation 
 

The benchmarking and testing methods were written in C (using MPI for automated 

load balancing across a number of processors), with additional scripts written in Perl. 

Parameter optimization and performance assessment were performed on the PowerPC 

nodes of the Vanderbilt University Advanced Computing Center for Research and 

Education (ACCRE). 

 

Results and Discussion 
 
 

Optimal parameters and gap penalties 
 

Details of the training set are given in Table 30, along with the average of the top 

ten scoring rounds of the Monte Carlo optimization. The optimized sequence alignment 

training set had an average Cline score of 27 for Twilight Zone sequences and 49 for 

Superfamily sequences. For fold recognition, the area underneath the ROC curve for the 

optimized training set scored an average of 82 for both subsets. 

 

Table 30 
Training set on SABmark for parameter optimization. 

Problem 
Sequence 

Identity Level [a] 
Fraction of SABmark database 

used [b] Score [c] 

Sequence Alignment Twilight Zone 50% 873 of 1740 seq. 27 
Superfamilies 36% 1197 of 3280 seq. 49 

Fold Recognition Twilight Zone 45% 1552 of 3458 seq. 82 

Superfamilies 22% 1460 of 6526 seq. 82 

[a] The sequence identity level is 0-25% for the Twilight Zone subset and 25-50% for Superfamily 
subset. 
[b] The fraction of the SABmark database used for weight optimization is given as a percentage 
and in absolute sequences. 
[c] Cline scores are reported for sequence alignment methods and the area under the ROC curve 
is reported for fold recognition methods. All scores are multiplied by 100. The maximum for both 
scores is 100. 
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Tables 3 and 4 give the distribution of the sequence-identity dependent optimal 

weight sets for BCL::Align parameters and gap penalties for sequence alignment and fold 

recognition. The standard deviation on most weights is five percentage points or less, 

demonstrating the robust nature of the Monte Carlo optimization. However, we find that 

there is flexibility in the use of secondary structure elements for sequence alignment, 

particularly PSIPRED and JUFO. PSIPRED weights can vary up to 8 percentage points 

for the alignment of Twilight Zone sequences and 5 for Superfamily sequences. JUFO 

weights can vary up to 11 percentage points for Twilight Zone sequences and 8 for 

Superfamily sequences. The increase in standard deviation may be due to the various 

methods of secondary structure prediction compensating for each other in weight value, 

making their individual weights vary from one round to another.  

For the gap penalties, we find that the same score is given by a consistent set of 

weights and the only range larger than 0.5 is found in the weight for the extension 

boundary gap for the alignment of sequences in the Twilight Zone subset at 0.6. 

 The relative weight of the parameters, expressed as percentages in Table 31, 

suggest that the BLAST profile and PSIPRED secondary structure information carry equal 

weight, within the standard deviation, for each of the four tasks. For sequence alignment, 

the BLAST profile has the highest average weight at 36% for the Twilight Zone subset and 

40% for the Superfamily subset. This reiterates the power of position specific scoring 

matrices created with PSI-BLAST as tools for sequence analysis. Amongst the secondary 

structure elements weights for alignment and fold recognition, we find that PSIPRED 

consistently carries the largest weight, with JUFO and SAM following behind. Only in the 

fold recognition of the Twilight Zone sequences do we find that JUFO and SAM carry equal 

weight at an average of 5%. For all other tasks, we find that JUFO outweighs SAM by over 

10%. It is remarkable that the sum of the three secondary structure prediction weights is 

the largest contribution to the composite scoring function for all four benchmark cases.   
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 The chemical properties of amino acids carry more weight in aligning sequences 

from the Twilight Zone at 11% compared to the 7% for Superfamily sequences. However, 

we find that the chemical properties are even more important in fold recognition, carrying 

8% of the weight for the fold recognition of Twilight Zone sequences and 24% of the weight 

for the Superfamily subset. The relative importance of the PAM and BLOSUM substitution 

matrices is minimal in sequence alignment with weights below 2%, but we find that the 

BLOSUM matrix carries considerable weight in fold recognition at an average of 19% for 

Twilight Zone sequences and 13% for Superfamily sequences.    

 Large open gap and open boundary gap penalties were generally favored during 

parameter optimization of both the Twilight Zone and Superfamily subsets. The open gap 

penalty was -0.8 or more and the open boundary gap penalty was greater than -0.6 for all 

fold recognition and sequence alignment tasks. Generally, the extension gap and 

extension boundary gaps were penalized less, demonstrating the importance of the use 

of an affine gap penalty. We find that the extension boundary gap was penalized less than 

-0.3 for sequence alignment and fold recognition, as well as the extension gap for both 

sequence alignment tasks. However, for fold recognition there is a -1.3 penalty for Twilight 

Zone sequences and -1.4 for Superfamily sequences, indicating a particular emphasis on 

a penalty of this gap for fold recognition. 



 

 

Table 31 
Distribution of weights for parameters [a] 

Problem 
Sequence 

Identity Level [b] PAM 250 BLOSUM 45 BLAST PSIPRED JUFO SAM 
Chemical 

Properties [c] 

Sequence 
Alignment 

Twilight Zone 0±0% 1±2% 36±5% 33±8% 16±11% 2±3% 11±3% 
Superfamilies 1±1% 2±2% 40±1% 35±5% 14±8% 1±2% 7±1% 

Fold Recognition  Twilight Zone 1±0% 19±6% 33±4% 30±4% 5±5% 5±5% 8±2% 

Superfamilies 0±1% 13±5% 18±5% 20±3% 18±3% 7±6% 24±4% 
[a] Weight values, varying from 0 to 1.0, were normalized to calculate percentage of weight value out of 100%. Scores may not add to 
100% due to rounding. Ranges represent the standard deviation of the top ten scores. 
[b] The sequence identity level is 0-25% for the Twilight Zone subset and 25-50% for Superfamily subset. 
[c] Chemical properties include sterical parameters, polarizability, volume, hydrophobicity, and the isoelectric point. 

Table 32 
Optimized weights for gap penalties 

Problem 
Sequence Identity 

Level [a] Open Gap Extension Gap Open Boundary Gap Extension Boundary Gap 

Sequence Alignment Twilight Zone -1.4±0.3 -0.1±0.1 -0.7±0.4 -0.3±0.6 
Superfamilies -1.9±0.1 -0.1±0.1 -0.9±0.2 0.0±0.1 

Fold Recognition Twilight Zone -1.2±0.2 -1.3±0.2 -0.6±0.4 -0.2±0.1 

Superfamilies -0.8±0.4 -1.4±0.4 -1.7±0.3 -0.1±0.1 
[a] Gap penalty values vary from -2 to 0. Ranges represent the standard deviation of the top ten scores. 
[b] The sequence identity level is 0-25% for the Twilight Zone subset and 25-50% for Superfamily subset 
 

3
7

6
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Cross-validation confirms absence of over-training 
 

The scores for the trained and untrained subsets of SABmark for each of the four 

tasks are given in Table 33. In the Twilight Zone subset, the untrained subset had a Cline 

score of 24 whereas the trained subset had a score of 23. For the Superfamily subset, the 

untrained subset scored 51 while the trained subset had a score of 49. The scores for the 

untrained subsets of SABmark for sequence alignment are higher than those of the trained 

subset, providing evidence that the Monte Carlo optimization did not over-train the weight 

set and thus the method is not biased towards this particular subset. Although the scores 

of the untrained subset are lower than those of the trained subset for fold recognition, the 

difference is still within 2 percentage points. Nevertheless, BCL::Align would still benefit 

from future benchmarking tests on fold recognition benchmark databases such as the 

Lindahl Benchmark for fold-recognition sensitivity (Lindahl & Elofsson, 2000). 

 

Table 33 
Scores on trained and untrained subsets of SABmark with optimal weight set. 

Problem 
Sequence Identity 

Level [a] 
Score for trained 

subset[b] 
Score for test 

subset[b] 

Sequence Alignment 
Twilight Zone 23 24 
Superfamilies 49 51 

Fold Recognition 
Twilight Zone 87 86 

Superfamilies 88 86 
[a] The sequence identity level is 0-25% for the Twilight Zone subset and 25-50% for Superfamily 
subset. 
[b] Cline scores are reported for sequence alignment methods and the area under the ROC curve 
is reported for fold recognition methods. All scores are multiplied by 100. The maximum for both 
scores is 100. 
 

 

Comparison of sequence alignment methods 
 

We compared the results of BCL::Align sequence alignment with Align-m (Van 

Walle et al., 2004), ClustalW (J. D. Thompson et al., 1994), T-Coffee (Notredame et al., 

2000) and MUSCLE (R. Edgar, 2004) on the SABmark benchmark database using the 

Cline score. Scores for the methods listed above are from Blackshields et al., 2006 
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(Blackshields, Wallace, Larkin, & Higgins, 2006). BCL::Align results on the entire 

SABmark benchmark database are shown in Table 34. In each subset, BCL::Align ranks 

the highest in alignment accuracy, demonstrating the superiority of BCL::Align’s scoring 

function and the power of weight flexibility when compared to other programs that also 

use the dynamic programming algorithm (see Figure 84). According to the data provided 

by Blackshields et al., ProbCons (Do, Mahabhashyam, Brudno, & Batzoglou, 2005) was 

the only program that consistently scored somewhat higher than BCL::Align. This is likely 

due to the fact that ProbCons does not employ dynamic programming but combines 

posterior-probabilities from pair-hidden Markov models (HMM) with a consistency-based 

method to determine scoring matrices. 

 

Table 34 
Performance comparison of multiple sequence alignment programs on SABmark.[a] 

 Superfamilies[b] Twilight Zone[b] 
 No FP[c] With FP[c] No FP[c] With FP[c] 

Align-m 44.75 41.53 15.93 13.72 
ClustalW 47.60 47.82 18.57 17.98 
T-Coffee 50.20 45.58 20.80 16.94 
MUSCLE 44.52 40.38 15.45 12.44 
BCL Align 50.74 50.80 23.02 23.66 

[a] Cline scores are reported for each multiple alignment program. The highest score in each 
subset is displayed in bold.  Scores for all methods except BCL::Align are from Blackshields et al. 
(2006). 
[b] The sequence identity level is 0-25% for the Twilight Zone subset and 25-50% for Superfamily 
subset.  
[c] Subsets include the addition of up to the same number of false positive sequences. False 
positives differ in fold from the true positives and were selected from a BLAST search of the 
original sequences against a 70% identity subset of SCOP. 
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Figure 84 
Performance comparison of multiple sequence alignment programs on SABmark. 
Cline scores are reported for each multiple alignment program. The highest score in each subset 
is displayed in bold.  Scores for all methods except BCL::Align are from Blackshields et al. (2006). 

 

Performance in fold recognition 
 

There is not a universal score for measuring fold recognition accuracy. To 

determine the fold recognition accuracy of BCL::Align on the SABmark benchmark 

database subsets that included false positives, ROC curve analysis was performed. We 

find that BCL::Align has a strong performance, predicting the correct structure with 86% 

accuracy for the Superfamily subset and 83% accuracy for the Twilight Zone subset (see 

Figure 85). However, the limiting factor for BCL::Align’s ability to perform fold recognition 

is in the length of time it takes for the program to scan large databases in search of match 

fold, family and superfamily. Future improvements to increase the speed of BCL::Align 

using a word-based algorithm will allow for a more comprehensive study of the program’s 

ability to perform fold recognition. 
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Figure 85 
ROC curve analysis of fold recognition on SABmark 

 

Conclusions 
 

Sequence alignment and fold recognition at varying levels of sequence identity 

benefits from the use of customized weight sets because of the emphasis of different 

parameters for each situation. For the Superfamily subset, fold recognition puts an 

average of 12% more weight on chemical properties than sequence alignment. The 

BLOSUM45 substitution matrix has over 10% more weight in fold recognition than 

sequence alignment. Of the secondary structure predictions, PSIPRED carries the most 

weight with at 20-30% on average for all categories. JUFO follows behind with weights 

between 5 and 18%, and SAM has minimal involvement at less than 10% weight in all 

categories. In all cases, however, large weights for the BLAST profile and affine gap 

penalties provide optimal alignment and fold recognition. Using its optimal customized 
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weight set, BCL::Align performed better than other dynamic-programming based methods 

with the highest rank of sequence alignment accuracy. With the future implementation of 

a faster word-based algorithm and the incorporation of HMM, we expect BCL::Align to 

have the efficiency to quickly align multiple sequences at once and perform fold 

recognition over large databases of protein structures. BCL::Align is available on an online 

web server at http://www.meilerlab.org/. 

  

http://www.meilerlab.org/
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