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Chapter 1

INTRODUCTION

Formulations for the hillslope sediment flux are central in understanding the form and

evolution of Earth’s surface. Sediment transport processes continuously redistribute unconsol-

idated mass and thereby constantly transform the land surface. The form of a landscape in

turn reflects the processes that shaped it. The connection between process and form is a cor-

nerstone of geomorphology and motivates research that pursues a mathematical understanding

of transport processes.

Following the suggestion of Culling [1965], researchers commonly describe the rate of hills-

lope sediment transport on soil-mantled hillslopes as a linear function of the local land-surface

slope. This has led to the widespread use of a local, linear hillslope diffusion equation to de-

scribe hillslope sediment transport. For steady state conditions, diffusive sediment transport

processes create parabolic hillslope profiles where the land-surface slope increases linearly with

distance from the ridge. However, in steepland settings, hillslopes have distinctly non-parabolic

profiles that become increasingly linear downslope. This simple observation is a source of dis-

satisfaction with a local, linear diffusive formulation for the hillslope sediment flux [Roering

et al., 1999; Tucker and Bradley , 2010; Furbish and Haff , 2010] and motivates research that

pursues alternative descriptions.

Recent research suggests that there is value in using nonlocal formulations for the hill-

slope sediment flux [Foufoula-Georgiou et al., 2010; Furbish and Roering , 2013; Tucker and

Bradley , 2010]. Whereas local formulations of sediment transport are expressed as a function

of purely local conditions [eg. Heimsath et al., 1997; Roering et al., 1999], a nonlocal formu-

lation considers the flux as a function of all upslope contributing positions. The concept of
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nonlocal sediment transport arises from the notion that particles may travel sufficiently far

such that motions are not accurately described by local hillslope conditions. These motions

are more appropriately described as a function of the conditions at their release point or by the

integrated conditions over which they travel. Sediment particle travel distance increases on

steeper hillslopes [Gabet and Mendoza, 2012] such that the motions become increasingly non-

local. Therefore, in steepland settings, a nonlocal formulation may more accurately describe

sediment motions and consequently the hillslope sediment flux. Landscape evolution models

that use a nonlocal formulation for the hillslope sediment flux produce hillslope profiles that

are similar to steepland hillslopes observed in nature [Furbish and Haff , 2010], which warrants

further exploration of nonlocal sediment transport.

Theory for nonlocal hillslope sediment transport has outpaced field or empirical studies

designed to inform it. In this contribution, I pursue a better understanding of some of the key

ingredients of a nonlocal formulation by investigating the form of many hillslopes in diverse

settings. In particular, I show how central parameters in transport processes may be extracted

from topographic data. Analogous to the method used by researchers to extract a hillslope dif-

fusivity from hilltop curvature [Roering et al., 2007], I extract a similar quantity that expresses

the activity of transport mechanisms. This quantity is process-specific and therefore offers a

connection between specific hillslope processes and fundamental hillslope characteristics such

as relief and mean hillslope gradient.

Part I of this thesis is aimed at exploring particular quantities of different landscapes that

will inform a nonlocal transport formulation. In chapter two, I highlight the major differences

between local and nonlocal sediment transport. Although this topic is treated in previous

research, it is useful to explain nonlocal transport with an understanding of local transport.

In chapter three, I review the development of a nonlocal formulation. The formulation used in
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this paper is presented in Furbish and Roering [2013], and closely follows their development. It

is conceptually simple to develop a nonlocal formulation in the form of a convolution integral.

However, it is analytically useful to recast the formulation into an advection-diffusion form to

illustrate key behaviors and characteristics of nonlocal transport. For example, Furbish and

Haff [2010] use the advection-diffusion form of a nonlocal formulation to derive an analytical

solution for the steady-state topographic configuration of hillslopes and is described in chapter

four. Chapter five tests their hypothesis that hillslope profiles exhibit an x3/2 relationship with

position x by extracting topographic profiles from diverse tectonic and climatic environments.

In this section I also show how topographic profiles can provide important information about

active transport processes, which provides strong links to hillslope relief.

In Part II, I explore the stability behavior of hillslopes that evolve largely by nonlocal

sediment transport. That is, I investigate the response of hillslopes to perturbations about

a steady-state configuration. An unstable process amplifies perturbations with time whereas

a stable process tends to attenuate the perturbations and the land-surface returns to the

initial state. Local, linear diffusion is unconditionally stable [Furbish and Fagherazzi , 2001],

but the behavior introduced by nonlocal sediment transport formulations remains unknown.

Any instability introduced by the transport mechanism is expected to be reflected in the

spatial distribution of soil thickness in addition to the land-surface configuration. The spatial

distribution of soil thickness is often used to evaluate the evolutionary state of a landscape

(steady versus transient) [Heimsath et al., 2001]. However, if nonlocal sediment transport

introduces some instability to the land-surface, the soil thickness may be spatially variable,

but does not necessarily preclude a landscape from being in an approximate steady state.
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Chapter 2

LOCAL VERSUS NONLOCAL TRANSPORT

It is important to first make a distinction between local and nonlocal transport. A physical

distinction between the two concepts is difficult to definitively draw and is addressed in previ-

ously published literature [Furbish and Roering , 2013]. A mathematical distinction is simpler

to define and is reviewed here.

Culling [1965] reasoned that particles within a soil column experience quasi-random mo-

tions due to the creation and collapse of pore space. The average particle displacement for

these motions is on the order of the average pore diameter. Inasmuch as the pore diameters

within soil columns are far smaller than the average thickness of the soil mantle, we may de-

scribe the rate of soil creep as a local expression. That is, the rate of sediment transport at

x, a horizontal position, is accurately described as a function of hillslope conditions at x only.

The vertical structure of soil columns yields a systematic increase of particle concentration

with depth, the contours of which are parallel to the land-surface slope. Active lofting motions

on average loft particles in a direction normal to the concentration gradient. Settling motions

are, for the most part, passive and vertically downward which ultimately results in a bulk

downhill motion [Furbish et al., 2009a] (Figure 1). This leads to a slope-dependent transport

formulation in the form of the familiar linear diffusion equation [Culling , 1965]

qx = −D dζ

dx
, (2.1)

where qx [L2 T−1] is the hillslope sediment flux, ζ [L] is the land-surface elevation, x [L] is

a coordinate position that is downslope, and D is like a diffusivity [L2 T−1]. Local diffusive
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Figure 1: Diagram explaining how slope dependent transport arises from quasi-random particle motion.
ζ is the land-surface, η is the soil-saprolite surface, Z and X are vertical and horizontal coordinate axes.

descriptions of the rate of sediment transport have a strong legacy and are common in geomor-

phology. Similarly, sediment transport due to rain splash leads to a slope dependent transport

formula similar to (2.1) [Furbish et al., 2009b].

There are, however, sediment particle motions that (2.1) does not account for. In steepland

and post-fire settings, particles displaced on the surface may travel distances many times the

average pore diameter in the soil column (e.g. motion due to dry ravel, tree throw, overland

flow, soil slips). In this case, particles that contribute to the flux at position x began their

motions at some upslope position x′ which may possess different hillslope conditions. Thus

an attempt to describe particle motions as a function of local conditions at position x does

not accurately account for the motions of those particles that travel significant distances. In

certain settings, nonlocal sediment particle motions may dominate the flux, which warrants

the development of a formulation that describes nonlocal sediment particle motions.

6



Researchers have indirectly attempted to address nonlocal sediment particle motions with

the development of local nonlinear slope-dependent transport models [Roering et al., 1999].

These models are motivated by the observation that hillslopes become increasingly linear as

slopes approach a critical magnitude, Sc. Surfaces that approach Sc generate high transport

rates which do not allow the land-surface to further steepen and therefore create an increas-

ingly linear hillslope profile. Although it is not explicit in these models, these models call on

increasing particle travel distances that result from processes such as small landslides [Roering

et al., 2001]. A one-dimensional nonlinear formulation for the hillslope flux is expressed as

[e.g. Roering et al., 1999],

qx =
D dζ

dx(x)

1−
(
| dζ
dx

(x)|
Sc

)2 . (2.2)

Equation 2.2 is a local formulation, as the flux at x is solely a function of hillslope conditions

at x. The motions it invokes are nonlocal yet the formulation does not include any description

of particle motions. Whereas this class of nonlinear models effectively introduces the notion

of increasing particle travel distance with increasing slope, it lacks the physical basis that

describes particle motions and is therefore not mass-conserving.

Consider a convex-concave soil-mantled hillslope (Figure 2). Let us pick two positions x1

and x2 that possess the same conditions, namely the same local land-surface slope. Although

their local slopes are identical, the upslope topographic configuration differs between these two

points. Now consider a number of particles released from position x′1 = x1 − r, where r is a

travel distance. Each particle that is now in motion has a distinct probability of travelling at

least a distance of r, in which case it would contribute to the flux at x1. Let us release the same

number of particles from position x′2 = x2−r, which is equally far upslope. Because conditions

at x′2 differ from those at x′1, the probability of particles travelling at least a distance of r is
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Figure 2: Diagram showing the land-surface profile with positions x1 and x2 exhibiting the same local
slopes but different up slope configurations.

different from those released from x′1, and therefore x1 and x2 receive different amounts of

sediment from positions a distance r upslope. If we vary r such that x− r = x′ refers to every

point along the hillslope, we will likely see that x1 and x2 rarely receive the same contribution

of sediment from upslope, and therefore the flux at x1 and x2 are likely to differ. Thus the flux

is not only a function of conditions at x1 and x2, but must include the weighted conditions of

all positions on the hillslope. Two key ingredients, a sediment particle entrainment rate and a

probability density function (pdf) of particle travel distances, can be used to probabilistically

account for all entrained particles. In doing so, a nonlocal formulation provides a physically-

based description the flux that includes nonlocal travel distances. Mathematically this may

be expressed as a convolution integral

q(x, t) =

x∫
−∞

hr(x− x′)E[S(x), x′]dx′, (2.3)

where E is a sediment particle entrainment rate [L3 L−2 T−1 = L T−1], x′ denotes some
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Figure 3: Diagram showing the land-surface configuration and contributions to the flux at position
x0 from all upslope positions. Portions of the pdf’s of particle travel distance from each release point
contribute to the flux at x0.

position upslope of x, S = dζ/dx is the land-surface slope and hr is a kernel that properly

weights the contributions to the flux at x (Figure 3). By integrating the convolution over

all upslope positions, (2.3) includes the motions of particles released from all positions that

contribute to the flux at position x. Although not a statement of conservation of mass, (2.3)

is mass conserving. The following section highlights the components and development of a

nonlocal formulation, which requires physically-minded expressions for the entrainment rate

and a disentrainment rate.
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Chapter 3

DERIVING A NONLOCAL FORMULATION

The Survival Function

A nonlocal formulation of sediment transport attempts to describe the motion of every

sediment particle entrained during a specified time interval. However, understanding the

physics of individual sediment particle motions over geomorphic time scales is unrealistic. We

can, however, take a probabilistic approach that reflects the characteristic behavior of particles

over long timescales. The foundations of the probabilistic approach are based on a kinematic

description of sediment motions. To probabilistically describe motions, I rely on a probability

density function (pdf) that describes the likely travel distance of sediment particles. The pdf

represents a sample of travel distances taken over a sufficiently long time such that the form of

the pdf becomes invariant with time. That is, the pdf is a smooth function that represents a

large number of particle motions such that subsequent motions do not appreciably change the

mean or variance. We begin with a physical description of the sediment particle disentrainment

rate [Furbish and Roering , 2013]. Noting that a disentrainment rate, Pr, may be interpreted

as a failure rate, it is defined as

Pr(r;x
′) =

fr(r;x
′)

1− Fr(r;x′)
=
fr(r;x

′)

Rr(r;x′)
, (3.1)

where fr is a pdf of travel distances r, Fr is the cumulative distribution function of r, and

Rr is the survival function. Pr describes the likelihood that a particle in motion will come to

rest within r + dr, given that it has travelled, or ‘survived’, a distance r already. This defines

a conditional probability represented by the right-most portion of (3.1). The probability
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distrubution function fr(r;x
′) = dFr(r;x

′)/dr = −dRr(r;x′)/dr so that

Pr(r;x
′) = − 1

Rr(r;x′)

dRr(r;x
′)

dr
. (3.2)

The pdf of particle travel distances may be retrieved from (3.2) by integrating once, namely,

fr(r;x
′) = Pr(r;x

′)e
−

r∫
0

Pr(w;x′)dw
. (3.3)

Furthermore, the survival function is related to (3.3) by Rr(r;x
′) = fr(r;x

′)/Pr(r;x
′). This

allows us to define a survival function directly from a disentrainment rate,

Rr(r;x
′) = e

−
r∫
0

Pr(w;x′)dw
. (3.4)

Therefore, we can develop a probabilistic description of particle travel distances from a spatial

particle disentrainment rate. The disentrainment rate is a function of position for reasons

presented in the next section.

The Disentrainment Rate

The development of a disentrainment rate is key for the development of a sound nonlocal

formulation for the hillslope sediment flux. The disentrainment rate used here and developed

in Furbish and Haff [2010] is based on the notion that sediment particles in motion tend to

travel farther on steeper surfaces [Gabet and Mendoza, 2012]. That is, the probability of

disentrainment is lower on steep slopes. Consequently, slope has a first order influence on

disentrainment rate, which may be expressed as [Furbish and Roering , 2013]

Pr(r;x
′) =

1

λ0

(
2Sc

Sc − S(x′)
− 1

)
, (3.5)
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where λ0 is the average particle travel distance on a horizontal surface for a given process, and

Sc is the magnitude of a critical slope above which particles continue to travel indefinitely.

The critical slope coincides with Sc from Roering et al., 1999. Equation 3.5 is a parsimonious

description of disentrainment. It does not explicitly treat any effect that factors such as the

particle size distribution, surface roughness, or soil type may have on the behavior of moving

particles. However, to avoid the risk of being unnecessarily heuristic, I argue that (3.5) is a

judicious description of the particle disentrainment rate.

Inserting (3.5) into (3.4) retrieves a survival function of sediment particle travel distances

for those released from x′, namely,

Rr(r;x
′) = e

− 1
λ0

r∫
0

(
2Sc

Sc−S(x′)
−1
)
dw
. (3.6)

Making use of (3.3), we can obtain the pdf of particle travel distances,

fr(r;x
′) =

1

λ0

(
2Sc

Sc − S(x′)
− 1

)
e
− 1
λ0

(
2Sc

Sc−S(x′)
−1
) r∫

0

dw
. (3.7)

The form of the pdf is exponential, but as the magnitude of S increases, probability is

shifted towards the tail. For all slopes below Sc, the distribution has a defined mean and

variance, which, by definition, remains exponential and is not heavy-tailed. This is in contrast

with previous nonlocal formulations [Foufoula-Georgiou et al., 2010; Tucker and Bradley , 2010]

which define nonlocal transport as necessarily involving a heavy-tailed pdf of particle travel

distances. Nonetheless, the mean particle travel distance and variance become undefined when

|S| → Sc, which is consistent with the concept that particles remain entrained indefinitely

[Roering et al., 2001].
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Entrainment Rate

Particles are set in motion by some disturbance. Such disturbances in hillslopes are stochas-

tic in space and time, but over sufficiently long timescales we assume that the number of

disturbances per unit area approaches a steady value. The entrainment rate, E [L3L−2T−1],

reflects the frequency of such disturbances. It is composed of two parts; a background entrain-

ment rate E0 and a slope-dependent entrainment rate E1. On a flat surface, the background

entrainment rate E0 accounts for all entrained particles. Where the land-surface is sloped, the

slope-dependent term adds to the background rate as a linear function of slope. The total

entrainment rate, E, is expressed as,

E(x′) = E0 + E1|S(x′)| (3.8)

Writing the entrainment rate as a linear function of slope reflects the notion that as slopes

steepen, the tangential force required to move a particle is reduced, and therefore more particle

entraining disturbances are likely to occur. Other functional forms of entrainment rate may

be appropriate, but (3.8) is a simple and physically-based form. It is important to note that

an entrained particle does not necessarily need to be displaced. That is, it may have a travel

distance of zero.

The complete convolution integral is formed by integrating the product of (3.4) and (3.8)

over space,

qx(x) =

x∫
−∞

(
E0 − E1S(x′)

)
e
−x−x

′
λ0

(
Sc

Sc−S(x′)
−1
)
dx′ S(x′) ≤ 0. (3.9)

Integrating from −∞ to x accounts for the contributions of sediment released from all positions
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upslope of x to the flux at position x.
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Chapter 4

STEADY STATE CONFIGURATION

Although this convolution integral for the hillslope sediment flux is a comprehensive de-

scription of motions, it is somewhat cumbersome to work with as it requires numerical in-

tegration and hinders simple analytical solutions. In many cases, an approximation of (3.9)

is sufficient to highlight the essential behaviors and characteristics of hillslopes that evolve

by nonlocal particle motions. Furbish and Haff [2010] show that a Taylor expansion of (3.9)

recasts the formulation into the more common Fokker-Planck (or advection-diffusion) form.

Furbish and Roering [2013] formally demonstrate that this operation retrieves the mean and

raw variance of particle travel distance as components of the advective and diffusive terms

respectively. The flux is approximated by

qx(x) = E(x)µr(x)− 1

2

d

dx

[
E(x)σ2r (x)

]
, (4.1)

where µr and σ2r are the first and second moments of particle travel distance. Taking into

account positive and negative motions, the mean travel distance is

µr(x) = −λ0S(x)

(
2

Sc
+

1

kSp

)
, (4.2)

where Sp is a slope magnitude above which all particle motion is downslope, and k is a

modulating factor. The raw variance goes as,

σ2r = 1 +
4S(x)2

S2
c

+
4S(x)2

kSpSc
. (4.3)
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A complete derivation of (4.2) is presented in Furbish and Roering [2013]. Substituting (4.2)

and (4.3) into (4.1) gives

qx(x) = (E0 − E1S(x))

[
−λ0S(x)

(
2

Sc
+

1

kSp

)]
− 1

2

d

dx

[
(E0 − E1S(x))

(
1 +

4S(x)2

S2
c

+
4S(x)2

kSpSc

)]
S ≤ 0.

(4.4)

Furbish and Haff [2010] show that the advective part of (4.4) dominates the flux such that the

diffusive part becomes negligible.

Hillslopes in steady-state satisfy the condition qx(x) = cηWx, where cη is the particle

concentration at the soil-saprolite boundary and W is the uplift rate. The steady-state con-

figuration of slope can be solved by using (4.4),

cηWx = (E0 − E1S(x))

[
−λ0S(x)

(
2

Sc
+

1

kSp

)]
. (4.5)

Further assuming that E1 � E0, then (4.5) becomes,

cηWx = −E1S
2(x)λ0

(
2

Sc
+

1

kSp

)
. (4.6)

Isolating S and integrating with respect to x once retrieves the land-surface elevation,

 cηW

E1λ0

(
2
Sc

+ 1
kSp

)
 1

2

2

3
x

3
2 = Z0 − ζ(x). (4.7)

The term on the left hand side of (4.7) is referred to as the drop-from-ridge, Zd (i.e. the relief

from the ridge top to x) and has the relation Z0 − Zd(x) = ζ(x) where Z0 is the ridge-top
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Figure 4: Drop-from-ridge versus position in log-log space reveals best-fit logarithmic relationships that
are distinctly non-parabolic. For E1 = 100E0, 1.53; for E1 = 10E0, 1.59; for E1 = E0, 1.68

elevation.

The exponent on x in (4.7) determines the form of the hillslope, that is, the geometrical

configuration. For a linear diffusive formulation, Zd has an x2 relationship, which gives a

parabolic form of hillslopes. The convenient analytic approximation of the steady state con-

figuration, (4.7), highlights a fundamental difference between local and nonlocal formulations;

that hillslopes display non-parabolic forms with an x3/2 relationship.

Whereas (4.7) is successful in highlighting an essential behavior of hillslopes, it neglects

E0 and the second order term of (4.4), which is an approximation itself. Including these

terms requires a numerical solution for the steady state configuration that does not obey a

simple power relationship. As E0 approaches E1, the steady state configuration deviates from

the analytical x3/2 relationship. However, so long as E1 ' E0, hillslopes remain distinctly

non-parabolic (Figure 4).

In steepland settings, surface motions may comprise the time-averaged majority of bulk
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Figure 5: Drop-from-Ridge versus position in log-log space with varying diffusivities (D) for linear
diffusive transport. Other parameteric values are E1 = 0.01, E0 = 0.0001, W = 0.0001, λ0 = 1,
Sp = 0.4, Sc = 1.2, and k = 0.5.

motions. However, local motions within the soil column still contribute to the flux and ought

to be included in the calculation of the bulk flux. We can include these motions by adding a

linear diffusive term, qd, to (4.1), to more completely represent the time-averaged bulk flux,

qb = qi + qd [Furbish and Haff , 2010]. Including this term also requires a numerical solution

for the steady state configuration which is more complex than the simple power relationship

suggested by (4.7). In log-log space, the theoretical x3/2 and x2 relationships plot as straight

lines with slopes of 3/2 and 2 respectively. Adding a diffusive term to (4.7) results in hillslope

profiles that deviate from a simple power relationship (Figure 5). The magnitude of the

deviation is a function of the relative contributions of nonlocal and diffusive motions to the

overall flux. This is effectively expressed as a Péclet Number formed by

Pe =
E1λ0
D

, (4.8)
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Figure 6: Plot of best-fit power relationships for drop-from-ridge versus position. The relationship
becomes insensitive to variations in D when the Pe is greater than 10.

where the surface motions are analogous to advection. We imagine that D and E1λ0 are

uniform throughout a landscape so that (4.8) is a system Péclet number (Pe).

Although combining linear diffusive and nonlocal transport draws steady state topography

away from a simple power relationship, the deviations are quite small for most combinations

of D and E1λ0. Thus, we can obtain a best-fit power relationship for drop-from-ridge and

position that reflects the system Pe. For example, the stronger the nonlocal component the

closer the best-fit power relationship is to x3/2. Hillslope form is sensitive to Pe below 10.

For Pe greater than 10, the best-fit power relationship asymptotically approaches a steady

value that is around 1.5. Thus, for hillslopes with a form that is well described by a power

law relationship close to the asymptotic value, we can say that Pe is large and that nonlocal

motions dominate the bulk hillslope sediment flux (Figure 6).

Whereas the exponent on x in (4.7) determines the hillslope form, the parenthetical portion
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determines the magnitude of the drop-from-ridge. As noted earlier, E1 and λ0 are specific

to particular transport processes and their product gives the activity of the process. The

parenthetical portion of (4.7) then is the ratio of uplift rate to transport activity, a quantity

here termed R′. As this ratio increases, landscapes are expected to become characterized

by increasingly greater hillslope relief and slopes. This is consistent with previous research

which suggests that relief and slope, both hillslope and fluvial, is broadly determined by

the competition between uplift and sediment transport [Whipple et al., 1999; Gabet et al.,

2004; Roering et al., 2007; Ouimet et al., 2009]. Much of the physics of sediment transport

in these studies is incorporated in dimensional coefficients that represent a rock erodibility

(k) or a hillslope diffusivity (D). These terms, while convenient and capable of highlighting

key behaviors and concepts, are a blackbox. A nonlocal formulation deconstructs the notion

of a hillslope diffusivity into distinct components with physical interpretations which hold

consistent dimensions. These components offer an opportunity to draw explicit connections

between transport behavior and hillslope relief and slope.
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Chapter 5

HILLSLOPE PROFILES

Here I present data from a large number of contour-normal topographic profiles taken

from planar hillslopes. This dataset effectively tests the hypothesis that hillslopes in steepland

settings have a form that is consistent with the non-parabolic form presented in the previous

chapter. Theory suggests that, so long as nonlocal motions dominate the flux, hillslope form

is insensitive to tectonic or climatic conditions. I evaluate this hypothesis by investigating the

geometry of hillslopes in the tectonically and climatically diverse regions of the Oregon Coast

Range (OCR), Gabilan Mesa (GM), and Appalachian Mountains of North Carolina (NC).

Hillslopes that display non-parabolic contour-normal profiles add validity to the steady

state form suggested by (4.7) and provide an opportunity to obtain information about key

parameters in (2.3). From topographic data, we are able to extract information from profiles

that provides estimates of the ratio of uplift rate, W , to activity of transport processes, E1λ0, a

quantity referred to as R′. Furthermore, we use previously published estimates of uplift rate in

these locations to obtain estimates of E1λ0. By investigating these values in the tectonically

and climatically diverse regions of OCR, GM, and NC, we are able to observe the impact that

transport processes have on hillslope relief.

Oregon Coast Range

The southern Oregon Coast Range offers an excellent opportunity for morphologic extrac-

tion of parameters and exploration of a nonlocal transport formula. The landscape is composed

of steep, soil-mantled hillslopes bound by incising mixed alluvial-bedrock channels. Nearly two

meters of precipitation falls annually and supports a Douglas Fir forest. Tree throw and dry-
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Figure 7: Map showing the location of the Oregon Coast Range and the Gabilan Mesa

Figure 8: Map showing the location of the site in North Carolina
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ravel in post-fire settings are significant sediment transport mechanisms on planar portions of

hillslopes ([Heimsath et al., 2001; Jackson and Roering , 2009]). Sediment that accumulates in

hollows (convergent topography) is frequently evacuated by debris flows and shallow landslides

[Reneau and Dietrich, 1991]. The region is uniformly underlain by the relatively flat-lying Tyee

Formation, a thick sequence of Eocene turbidites [Snavely et al., 1964]. Convergence at the

Cascadia subduction zone has driven steady uplift of the region since the Miocene. Spatially

uniform estimates of erosion rates [Reneau and Dietrich, 1991; Heimsath et al., 2001] are sim-

ilar to uplift rates [Kelsey et al., 1996], which leads to the broad claim that the region is in an

approximate steady state. Average rates for uplift and erosion is about 1 × 10−4 m yr−1 for

both [Roering et al., 2007].

Gabilan Mesa

The Gabilan Mesa is located in central Salinas Valley of southern California. It is a narrow

region of dissected topography bound by the Salinas River to the west and the San Andreas Rift

Valley to the east. The Pliocene Pancho Rico and Plio-Pleistocene Paso Robles Formations

comprise a weak bedrock substrate [Roering et al., 2007; Galehouse, 1967]. Incision of the

Salinas River due to uplift on the Rinconada-Reliz fault zone began in the late Pleistocene,

and led to widespread dissection of the mesa. The total relief of the mesa is 120 meters which

is relatively low compared to OCR. The mediterranean climate provides 32 cm of rainfall

annually [Perron et al., 2012] which supports an oak savannah [Roering et al., 2007]. Long

term erosion rates estimated by dividing the depth of the major valleys (80± 1) by the age of

the relict mesa surface (225+239/−139 kyr) yields a rate of 3.6×10−4 m yr−1 [Roering et al.,

2007]. The GM is characterized by remarkably uniform valley spacing and hilltop concavity,

both of which indicate that hillslopes have reached an approximate steady state condition
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[Perron et al., 2012].

North Carolina

The Appalachian Mountains of North Carolina comprise a high relief, steep, soil-mantled

landscape that supports an oak-hickory forest. Mean annual precipitation is 1.39 m which is

distributed evenly throughout the year. Major sediment transport mechanisms appear to be

tree throw on planar hillslopes [Jungers et al., 2009] with significant amounts of landsliding

that occurs in steep hollows [Hales et al., 2012].

The region is located within the Blue Ridge tectonic province bound by the Valley and

Ridge province to the west and the Inner Piedmont to the east. A long and complex geologic

history has led to a diverse set of lithologies that include clastic sedimentary, metasedimentary,

and metavolcanic rocks interspersed with granitic plutons and ultramafic rocks. Beginning in

the Ordivician with the Taconic Orogeny, several east-dipping thrust faults formed in the

Blue Ridge Province and were active through the Acadian and Alleghenian Orogenies with

deformation ending in the middle Triassic [Secor et al., 1986; Hatcher and Odom, 1980].

Since the end of the Alleghenian Orogeny, constant unroofing has resulted in steady uplift

driven by the isostatic response of the thick mountain root. Basin average erosion rates

estimated by cosmogenic radionuclide analysis reveal an erosion rate of 2.5 ± 0.5 ×10−5 m

yr−1 within the Great Smoky Mountain National Park, which is consistent with long-term

fission track estimates of unroofing from other portions of the Appalachians [Matmon et al.,

2003]. Such temporal and spatial consistency between erosion rates has led some researchers to

claim that the Appalachian Mountains are in an approximate steady state. Other researchers

challenge this claim by pointing to geomorphic evidence in channel-long profiles containing

knickpoints that appear to indicate a recent increase in incision [Gallen et al., 2013]. These

observations suggest that a four-fold increase in erosion rates from 6.0 ± 6.0×10−6 m yr−1 to
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2.7 ± 0.11 ×10−5 m yr−1, is migrating up channels as a wave of incision. Maximum knickpoint

migration rates in the Cullasaja River Basin are roughly 2× 10−3 m yr−1 and knickpoints are

spread over 20 km. This suggests that this portion of the landscape has been slowly adjusting

to increased incision rates over 10 myr. A comparison with the hillslope relaxation timescale,

which is thought to be about 105 years [Mudd and Furbish, 2007] reveals that hillslopes may

be adjusting to increased incision rates fast enough to keep up with migrating knickpoints.

These observations suggest that, although the landscape may be in a long-term transient state,

erosion rates change slowly enough for hillslopes to approach an approximate steady-state form.

Therefore, the Appalachians are a defensible field site for morphologic tuning of a nonlocal

formulation.

Methods

To evaluate the form of hillslopes and obtain estimates of R′, the ratio of uplift rate to

transport activity, I extract topographic profiles from digital elevation models (DEMs) using

ArcGIS software. Because (4.7) is derived from a one-dimensional formulation for the flux, I

take care to extract topographic profiles from convex, plan-form planar hillslopes. That is, (4.7)

only applies to the portion of hillslopes that do not contain convergent (hollows) or divergent

(ridges) topography. For convex-concave hillslopes, I only analyze the convex portions. In an

attempt to provide the most robust estimates of quantities I obtained profiles from all aspects.

In North Carolina where the lithologies are highly variable, I sampled over various rock-types

to obtain a regional estimate of parametric values. The best-fit power relationship is obtained

by a performing a linear regression on log transformed data of drop-from-ridge versus position.

Most profiles display relationships that are close to a simple power relationship and therefore

justify this method (Figure 9).
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Figure 9: Log Drop-From-Ridge versus log x of a typical hillslope profile. This particular profile is from
OCR. The dashed line is the best fit line, with a slope of ≈ 1.4 and the solid line is the theoretical 3/2.

To obtain estimates of R′, I rearrange (4.7) such that all measurable quantities are isolated,

(
2

Sc
+

1

kSp

)(
3Zd(x)

2x3/2

)2

=
cηW

E1λ0
. (5.1)

I obtain the measureable quantities from positions where slopes are steep to ensure that I

analyzed the portion of the hillslope where nonlocal motions dominate.

One caveat to using such distal positions from the ridge to obtain estimates of R′ lies in

the sensitivity of a low position to variable incision rates. Because perturbations propagate

uphill from the channel and progressively attenuate [Mudd and Furbish, 2007], distal positions

are more likely to be influenced by variable incision rates. However, I suggest that the ratio

of Zd to x is insensitive to reasonable deviations from the steady-state value for Zd such that

it reflects the dominant conditions.
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When W is known, we can solve (5.1) for E1λ0 [L2T−1]. Rearranging (5.1) we have,

1(
2
Sc

+ 1
kSp

) cηW(
3Zd
2x3/2

)2 = E1λ0. (5.2)

Again, all measureable quantities are on the left of (5.2) and yield an estimate of E1λ0.
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Chapter 6

RESULTS

Hillslope Form

Data from all sites show similar mean values for the best-fit power relationship between Zd

and position that cluster around 3/2. Such similarity supports the theory suggested by (4.7).

There is considerable spread about the mean values; however it is important to note that the

majority of these profiles exhibit distinctly non-parabolic forms. Furthermore, the cluster of

best-fit power values around 3/2 suggests that these landscapes are likely characterized by

Pe greater than ten. Thus, I claim that nonlocal motions dominate the hillslope sediment

flux and largely determine the form of the hillslope. This further justifies the use of (4.7) for

determining values of R′ and E1λ0.

Hillslope Relief

Estimates of R′ are consistent with knowledge of uplift rates. The OCR, with an uplift

rate of 1.0 × 10−4 m yr−1 has the greatest value of R′ = 0.037 m−1 followed by NC with

an uplift rate of 2.7 × 10−5 m yr−1 and R′ of 0.025 m−1. The GM is characterized by the

lowest estimate of R′ at 0.0003 m−1 (Figure 11). However, the semi-arid environment of the

GM precludes a simple comparison between the GM, OCR and NC, because the dominant

transport mechanisms are likely different.

We can make use of (5.2) to quantitatively evaluate differences among transport processes.

Mean annual precipitation serves as a rough proxy for the dominant mechanism of sediment

transport as it has a major influence on the ecology of a region. Ecology in turn, determines

the types and frequency of disturbances likely to entrain and move sediment particles, and
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Figure 10: Plot showing the best-fit logarithmic relationship for drop-from ridge and position for
NC(n=82), OCR(n=45), and GM(n=117).

Figure 11: Plot showing the values for R′ for NC, OCR, and GM.
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therefore is expected to be a first order control on E1λ0. Data from NC and OCR, which

receive similar amounts of precipitation and support a similar ecology, reveal similar estimates

of E1λ0 of 0.001 and 0.002 m2 yr−1 respectively. This suggests that the transport processes

at work in these environments have similar activities. Conversely, topographic data from GM

suggest that a different transport mechanism dominates there with a much larger value of

estimate for E1λ0 of 0.14 m2 yr−1. This is consistent with the notion that climate plays

a major role in determining the mechanism and activity of transport processes. Less dense

vegetation cover that characterizes semi-arid environments does not protect sediment from

being entrained which results in more active transport processes.

30



Chapter 7

DISCUSSION

Data among three sites are consistent with previous findings and expectations. Values of

the ratio, R′ (5.1), scale with uplift rate for the climatically similar OCR and NC sites (Figure

12), which is consistent with the idea that uplift rate is a primary influence on hillslope relief

and average slope. Values of R′ from the semi-arid and rapidly uplifting GM are the lowest

of the three sites and hints that hillslope relief is also a function of the activity of transport

processes. The GM, which is characterized by the lowest relief and mean slope, must evolve by

a very active set of transport processes (Figure 12) to balance the rapid uplift rates. Insofar as

E1λ0 has units [L2T−1] and represents the activity of transport processes in a region, it can be

compared to a diffusivity D from (2.1) and (2.2). Previous researchers observe similar trends

in values of diffusivities estimated from hilltop curvature [Roering et al., 2007] for OCR and

GM. Although the values of D and E1λ0 cannot be directly compared, the trend for values of

E1λ0 between GM and OCR is similar to the trend observed for D, which is consistent with

the idea that a more active set of transport processes occur in the GM.

At this point, we are unable to determine specific values of E1 and λ0. A high value for

E1λ0 may reflect frequent disturbances, long characteristic transport distances, or both. For

example, the arid environment of the Gabilan Mesa supports sparse vegetation which may

allow for more frequent particle entrainment as sparse vegetation does not provide cohesion

or protect sediment from disturbances such as rain drop impacts. Alternatively, an important

sediment transport mechanism in the GM is overland flow [Perron et al., 2012] which may have

a relatively long characteristic transport distance. In contrast, the major transport process in

the OCR and NC is biogenic tree throw, which may have a shorter travel distance and perhaps
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Figure 12: Plot showing values for E1λ0 versus precipitation.

a lower time-averaged entrainment rate, and therefore these landscapes exhibit a lower value

of E1λ0. Hillslope relief is consistent with this notion where the mean slope values for NC and

OCR are larger than those in the GM.

Using a nonlocal formulation for the hillslope sediment flux offers an opportunity elucidate

the relationship between particular transport processes and form. As mentioned above, the

form of the disentrainment rate (3.5) is perhaps a simplistic and generalized form. The disen-

trainment rate may vary depending on the transport mechanism, and the form of (3.5) would

be expected to change. Consider a landscape where the majority of the sediment flux comes

from nonlocal sediment motions generated by overland flow. A disentrainment rate would

likely include the bed shear stress as a primary ingredient as opposed to just the land-surface

slope. Indeed formulations for shear stress include S as an ingredient, but writing a disen-

trainment rate this way weights slope differently. Ultimately, this would have consequences

on the overall hillslope form and may deviate from the theoretical x3/2 and x2 relationships
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suggested by previous transport formulations. This highlights an opportunity to connect a

particular dominant transport process with a specific hillslope geometry as each process may

have a unique disentrainment rate.

In any landscape, there is likely to be more than one transport mechanism redistributing

sediment. Although one may dominate, the weaker transport processes will still contribute

some sediment to the flux, and each process will behave uniquely. Each process will have a

characteristic disentrainment rate, and consequently, a unique pdf of particle travel distance.

The diverse forms of pdfs will be superimposed on each other leading to a more complex image

of particle travel distances. Conceptually,

qx =

∫
E1e

∫
P 1
r +

∫
E2e

∫
P 2
r + ....+

∫
Ene

∫
Pnr , (7.1)

where the superscripts refer to the mode of transport. There are many combinations of trans-

port mechanisms and their relative activities, which may lead to unique hillslope forms and

relief.

A major challenge for nonlocal transport formulations is determining definitive values for

E and λ0. We must independently obtain values of these parameters in order to draw explicit

connections between transport mechanism and hillslope form. This may lie in experimental

designs like those used in Gabet and Mendoza [2012] and Abbot [2014], that observe particle

travel distance for a single process. The number of particle motions that must be observed for

a pdf to converge to a steady form makes this particularly challenging and will require clever

experimental designs. Nonetheless, future modelling of more particular transport mechanisms

will still be useful [Gabet et al., 2003] and may be able to explain major differences between

landscapes.

In particular a feasible next step may be to integrate creep-like motions within the soil
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Figure 13: Plots of soil bulk density versus depth into the soil ψ, for soils in (A) Marin County, CA
[Reneau and Dietrich, 1991] and (B) Clearwater area Washington [Reneau et al., 1989; Reneau and
Dietrich, 1991].

column with the skittering motions that occur on the surface. The black box of a hillslope

diffusivity can be more clearly defined by taking a similar probabilistic approach to what I have

presented here. Plots of bulk soil density indicate that soils are vertically stratified and contain

more available pore space at shallow depths (Figure 13). More available pore space implies

more room for particles to move about. Therefore, we may anticipate that particle travel

distances go inversely with depth, ψ, and scale with the mean free path at a particular position

within the soil column (Figure 14). We can use this information to develop a formulation for

the motions that occur in the soil column that is similar to (3.9). An integration over the

entire soil column would include all motions within the column that contribute to the flux.

In this way, we are avoiding the somewhat unclear notion of a hillslope diffusivity and are

making use of a probabilistic approach that explicitly treats particle travel distance [Furbish

et al., 2009a].

Additionally, another pertinent task is to develop a two-dimensional nonlocal formulation
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Figure 14: Conceptual plot of soil bulk density ρb (solid line) and mean particle travel distance λu
(dashed line) as functions of soil depth, ψ. Lower bulk density at shallow depths implies increased
particle travel distance.

for the hillslope sediment flux. Whereas (3.9) is effective at highlighting the basic hillslope

form, it only applies to planar topography. In reality, hillslopes are rarely planar and of-

ten contain ridges or hollows, though these may be subtle. A two-dimensional formulation

for the hillslope sediment flux will be applicable to any hillslope and will therefore add a

greater opportunity to extract information regarding uplift rates and transport processes from

landscapes. Furthermore, a two-dimensional formulation may offer insight into the plan view

geometry of landscapes that a one-dimensional formulation cannot address. Indeed writing

a two-dimensional convolution integral is far more challenging and will be computationally

expensive to model through time. However, it is an essential next step in pursuing a deeper

understanding of nonlocal transport and its impact on land-surface morphology.

Conclusions

Topographic data from tectonically and climatically diverse landscapes are consistent with

modelled hillslope profiles produced by nonlocal sediment transport formulations. The dis-
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tinctly non-parabolic forms of steepland landscapes reflects a strong component of nonlocal

motions contributing to the flux. The particular form of a hillslope is a result of the relative

magnitude of diffusive-like motions to nonlocal, advective-like motions.

Theory suggests that hillslope relief is a function of the competition between uplift rate,

w, and the activity of transport processes, E1λ0, which is denoted R′ above. We can use

topographic data to determine the values of R′. For climatically similar regions, we observe

that R′ scales with uplift rate, which is consistent with theory. I find that values of R′

from climatically different regions do not scale with uplift rate as their dominant transport

mechanisms differ and therefore so do their transport activities. Indeed transport activity

shows a consistent relationship with mean annual precipitation. This provides a direct link

between hillslope relief and transport mechanism, which is strongly affected by climate.
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Part II

Hillslope Stability
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Chapter 8

INTRODUCTION

In this chapter, I investigate the stability behavior of hillslopes evolving by nonlocal sed-

iment transport. A stability analysis elucidates the response of a system to perturbations

about a steady state condition, which may be of two forms. A stable system will respond by

attenuating perturbations such that the system returns to its initial steady state condition.

In contrast, unstable systems will amplify perturbations at characteristic wavelengths. Previ-

ous research shows that linear slope-dependent transport processes are unconditionally stable

[Furbish and Fagherazzi , 2001]. However, nonlocal sediment particle motions may introduce

an instability to hillslopes such that perturbations persist and grow with time. If nonlocal

sediment transport introduces an instability to the land-surface behavior, then we expect hill-

slopes to display topographic roughness with a characteristic scale that reflects the preferred

wavelength of growth of disturbances.

Roughness may also be expressed in the spatial distribution of soil thickness, the distance

between the land-surface and the soil-saprolite interface, which has implications for the inter-

pretation of the soil-mantle thickness and spatial patterns of land-surface lowering. Research

shows that soil thickness has a primary influence on the rate of soil production [Heimsath et al.,

2001; Wilkinson et al., 2005], and therefore the local rate of bedrock lowering. In landscapes

where the soil thickness is spatially uniform, then bedrock at all points in the landscape lowers

at the same rate, which is one definition of morphologic steady state. Researchers often use

the spatial distribution of soil thickness as a rough proxy for the state of landscapes (i.e.,

steady versus transient). Unstable hillslope behavior introduced by the sediment transport

mechanism would produce local deviations from a mean soil thickness that would appear to
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indicate a transient state. However, because roughness due to an instability may migrate with

some celerity, the time-averaged soil thickness may approach a constant mean value. The

time-averaged rate of soil production, then, can be uniform while the extant configuration is

variable. In order to improve our understanding of the spatial distribution of soil thickness,

we must first determine the stability behavior of hillslopes.

In this chapter, I conduct stability analyses of two different formulations for nonlocal trans-

port. The first is a formulation presented in Furbish and Haff [2010] with uniform entrainment

rate E. For this formulation I am able to use a linear stability analysis. Secondly, I conduct

a numerical stability analysis that elucidates the stability hillslopes evolving by a nonlocal

formulation that includes a slope-dependent entrainment rate and a Taylor expansion of the

land-surface configuration.
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Chapter 9

LINEAR STABILITY ANALYSIS

A linear stability analysis is a convenient analytical method for determining the stability

behavior of a system. The analysis applies infinitesimal fluctuations about a defined basic state

condition. The evolution of fluctuations is expressed in their time-derivative, which determines

if they grow or decay with time. A positive growth rate defines an unstable system, whereas

a negative growth rate defines a stable system.

We can couple the evolution of two variables to investigate their co-evolution. In the case

of soil-mantled hillslopes, we are interested in the thickening or thinning of the soil mantle. To

accomplish this, I couple the co-evolution of fluctuations about the basic state condition for the

land-surface, ζ(x, t), and the soil-saprolite interface, η(x, t). I use this method to investigate

the stability behavior of hillslopes that evolve under a nonlocal formulation for the sediment

flux with a uniform entrainment rate [Furbish and Haff , 2010], which is

qx(x, t) = −ES(x′, t)

(
2Sc

Sc − S(x′, t)
− 1

)
. (9.1)

This must be recast into advection-diffusion form,

qx(x, t) = Eµλ − E
d

dx
σ2λ, (9.2)

where µλ and σ2λ are the mean and raw variance of particle travel distances respectively.
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Furthermore,

µλ = −λS(x′, t)

(
2

Sc
+

1

Sp

)
(9.3)

σ2λ = µ2sp+ µ2rn

= λ20

[
1 + S(x′, t)2

(
5

S2
c

+
4

ScSp

)]
, (9.4)

where p and n are the probability of motion in the positive, s, and negative, r, directions

respectively. Substituting (9.3) and (9.4) into (9.1) gives

q(x, t) = −Eλ0
(

2

Sc
+

1

Sp

)(
dζ

dx

)
− 2Eλ0

(
dζ

dx

)(
d2ζ

dx2

)(
5

S2
c

+
4

ScSp

)
. (9.5)

Note that the diffusive term is a nonlinear term that involves the product of the land-surface

slope with concavity. Taking only the linear terms, as they will dominate the flux for infinites-

imal perturbations, we can simplify to

q(x, t) = −Eλ0
(

2

Sc
+

1

Sp

)(
dζ

dx

)
. (9.6)

The steady state hillslope configuration for hillslopes evolving by (9.6) is

ζ(x) = Z0 −
WCηx

2

2Eλ0

(
2
Sc

+ 1
Sp

) , (9.7)

where Z0 is the ridge-top elevation and Cη is the volumetric particle concentration at the

soil saprolite interface. Equation (9.7) defines the basic state condition for the land-surface

configuration.

To couple the land-surface with soil thickness I also need to define a basic state condition
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for soil production. There is a large body of research that pursues a functional description

of the rate of soil production [Heimsath et al., 1997; Wilkinson et al., 2005]. Most functional

descriptions of soil production are based on the idea that chemical and physical gradients

drive the reactions and processes that weaken bedrock and transform it into soil. Chemical

disequilibrium between the Earth’s atmosphere and freshly exposed bedrock drives chemical

reactions that tend to weaken rock. Hydrologic and temperature gradients further weaken

weathered rock and augment the process. Physical disturbances from biologic churning within

soil columns also tend to aid in breaking parent material down into soil.

For this investigation I use a ‘humped’ soil production function. This is a class of functions

that place the maximum rate of soil production at some intermediate depth. The reasoning

behind this type of function arises from the notion that an intermediate soil depth can sustain

chemical and physical processes that weather bedrock while maintaining steep chemical and

physical gradients. One such description is

P0 = α

(
T (x)

Tα

)
e

(
1−T (x)

Tα

)
, (9.8)

where P0 is the production rate [L T−1], T (x) = ζ(x) − η(x) is the soil thickness, Tα is the

thickness at which soil production is greatest, and α is the maximum soil production rate. At

steady state, the rate of soil production balances the uplift rate and defines the basic state

condition used in the stability analysis.

The stability analysis requires a statement of conservation of mass that describes the evo-

lution of the land-surface,

dζ

dt
= − 1

Cψ

dq

dx
+

(
1− Cη

Cψ

)(
dη

dt

)
+ CηW, (9.9)
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where Cψ is the depth averaged volumetric soil concentration, Cη is the volumetric concentra-

tion of the saprolite. The land-surface and soil-saprolite interface are composed of the basic

state plus fluctuations about it,

ζ(x, t) = ζ0(x, t) + ζ1(x, t), (9.10)

η(x, t) = η0(x, t) + η1(x, t), (9.11)

where ζ1 and η1 are fluctuating quantities about the basic-state variables ζ0 and η0 for the

land surface and soil saprolite interface respectively. Using (9.8) and (9.9), and placing the

fluctuating quantities in appropriate locations gives two expressions that describe the evolution

of perturbations,

dζ1
dt

+ Eλ0

(
2

Sc
+

1

Sp

)
d2ζ1
dx2

−
(

1− Cη
Cψ

)
dη1
dt

= 0 (9.12)

−Pαe
(
1− ζ0−η0

Tα

)(
ζ0 − η0
Tα

− 1

)
(ζ1 − η1)−

dη1
dt

= 0 (9.13)

The fluctuating quantities are described by ,

ζ1 = Aζe
i(mχx)+σt, (9.14)

η1 = Aηe
(mχx)+σt, (9.15)

where A is the amplitude of the perturbation, σ is the growth rate, m is the wavenumber, and

χ = π/X where X is the total hillslope length. The product of mχ ensures that perturbations

have wavelengths that are integer factors of the hillslope length, and that the slope at the

crest is zero and the slope at the base of the hillslope equals that of the basic state condition.

Inserting the definitions of fluctuating quantities into (9.12) and (9.13), and noting that every
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term has ei(mχx)+σt in it, we obtain

σζ1 +
Eλ0m

2χ2

Cψ
ζ1 −

(
1− Cη

Cψ

)
ση1 = 0, (9.16)

and

Pα
Tα
e

(
1− ζ0−η0

Tα

)(
ζ0 − η0
Tα

− 1

)
ζ1 −

Pα
Tα
e

(
1− ζ0−η0

Tα

)(
ζ0 − η0
Tα

− 1

)
η1 − σ = 0. (9.17)

The determinant of the system of equations involving (9.16) and (9.17) gives an expression

that reveals the growth rate of perturbations when it is solved for σ,

−σ2 − σ
(
Eλ0m

2χ2

Cψ
− Cη
Cψ

[
Pα
Tα
e

(
1− ζ0−η0

Tα

)(
ζ0 − η0
Tα

− 1

)])
+

Eλ0m
2χ2

Cψ

(
Pα
Tα
e

(
1− ζ0−η0

Tα

) [
ζ0 − η0
Tα

− 1

])
= 0.

(9.18)

If the solution for σ is negative, the system is stable as the amplitude of perturbations

decreases with time. A positive solution for σ reveals an unstable system as the perturbations

grow with time. There are two scenarios I test, and each scenario has two solutions. One

solution refers to the stability of the soil thicknes and the other to the land-surface. The

first scenario places the basic state soil thickness (ζ0 − η0) on the left side of Tα, where soil is

thinner than the depth at which maximum soil production occurs, Tα. In this case, we see that

all wave numbers are unstable reflecting the instability inherent in a humped soil production

function. Growth rates are highest for perturbations with low wave numbers, indicating that

larger perturbations will grow faster (Figure 15) and will dominate the roughness scale of soil

thickness.

An alternative scenario places the basic state soil thickness greater than Tα. In this case,
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Figure 15: A stability plot for soil thickness. The dashed line is the condition for which the initial state
has a soil thickness less than Tα. The solid line has an initial condition with the soil thickness greater
than Tα.

Figure 16: A stability field for the land-surface only. All wavenumbers decay with the smaller pertur-
bations decaying the most rapidly.
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perturbations of all wavenumbers are stable, with increasingly negative growth rates correlating

with larger wavenumbers. This indicates that smaller perturbations are more rapidly smoothed

(Figure 15).

The behavior of the land-surface is determined by the other solution for (9.18). For both

scenarios, the land-surface has the same stability behavior. Results for this analysis show that

the land-surface is stable for all wavenumbers (Figure 16). Such stable behavior of the land-

surface is the same conclusion that Furbish and Fagherazzi [2001] came to for linear hillslope

diffusion. This suggests that, with a uniform entrainment rate, nonlocal and local diffusive

transport behave similarly.
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Chapter 10

NUMERICAL STABILITY ANALYSIS

In this section I present a numerical stability analysis that determines the stability behavior

of hillslopes evolving by nonlocal transport with a non-uniform entrainment rate. A numerical

stability analysis consists of perturbing the steady state condition with a disturbance of finite

amplitude and varying wavelengths. The stability behavior is observed by watching the per-

turbations evolve over several time steps (3 to 5). The growth rate is determined by taking the

difference in elevation at successive time steps. Here, the magnitude of the growth rate is not

significant in itself, but the sign of it is, where negative growth rates indicate stable behavior

and positive growth rates indicate unstable behavior.

I develop this formulation from a disentrainment rate that includes the first term of a Taylor

series expansion of slope. This addition gives the formulation an ability to ‘look’ downhill and

adjust to changing conditions. Therefore the disentrainment rate is not simply a function

of the slope at x′, but approximates the terrain immediately downslope, which particles will

travel over. The disentrainment rate goes as,

Pr =
1

λ0

(
2Sc

Sc − Sx′ −
dSx′
dx r

− 1

)
(10.1)

where r is the distance upslope from x to x′. The formulation developed from this disentrain-

ment rate is,

qp =

0∫
−∞

Px′,t
(
E0 + E1|Sx′,t|

)
e
r
λ0

(
Sc − Sx′,t −

dSx′,t
dx r

Sc − Sx′,t

)( 2Sc

λ0
dS
dx

)
dx′, (10.2)

where qp is the flux in the positive x direction, and P is the probability of motion in the
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positive direction. The flux in the negative direction goes as

qn = −
0∫

−∞

Nx′,t

(
E0 + E1|Sx′,t|

)
e
r
λ0

(
Sc + Sx′,t −

dSx′,t
dx r

Sc + Sx′,t

)( 2Sc

λ0
dS
dx

)
dx′, (10.3)

where N is the probability of motion in the negative x direction. The total flux is the sum of

(10.2) and (10.3). These forms are not analytically integrable, which requires that we perform

a numerical integration to determine the flux. This limitation precludes the use of a linear

stability analysis and requires a numerical analysis to determine the stability behavior of this

formulation.

The results show that hillslopes are unstable for particular combinations of E1 and λ0.

In general, greater values of E1λ0 lead to higher instability. The growth rates are sensitive

to the land-surface slope at a given position; generally, greater growth rates occur on steeper

slopes. This finding indicates that as nonlocal transport becomes stronger, it introduces more

instability. Alternatively stated, greater advection leads to instability and higher growth rates.

For the particular set of parameters chosen, the analysis reveals that topographic roughness

with scales of 1-4 meters may be expected (Figure 17). To test this hypothesis, I examine the

topographic roughness on real hillslopes.

To determine the roughness scales on hillslopes, I apply a wavelet analysis to a high resolu-

tion (1 m) topographic data set. Wavelets are analogous to a classic spectral analysis in that

they determine the fit of a periodic function to the observed data; however, there are some

important differences. A spectral analysis assumes that frequencies in a series are consistent.

That is, any frequency in a series is expected to be present throughout the signal at the same

strength. A wavelet analysis does not make this assumption and therefore affords slightly

more freedom in that the analysis returns both frequency and position information. This is

useful for exploring hillslope roughness because the roughness scale may change with slope,
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Figure 17: A plot of stability fields for various combinations of parameters. Warm colors indicate
positive growth rates and therefore unstable wavelengths for particular slopes. Cool colors indicate
negative growth rates. Hillslopes appear to be most unstable for wavelengths similar to λ0.
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Figure 18: Wavelet power spectrum of detrended land-surface elevation. Warm colors indicate low
power and cool colors indicate high power.

and therefore with location along the hillslope.

I will present only one wavelet analysis here, although I performed others that produced

similar results. The hillslope analyzed is located in southwestern North Carolina, just north of

the Coweeta Long Term Ecological Research Station. It is a steep, soil-mantled hillslope with

a northerly aspect and maximum slopes that reach ≈ 0.5. The hillslope is densely populated

with oak, hickory, and rhododendron trees. I first detrended the topographic data using a

Loess filter with a window equal to twenty percent of the entire signal length, which was

230 meters long. A wavelet analysis reveals a persistent roughness scale in the land-surface

elevation that has a 12 meter wavelength (Figure 18). This wavelength appears to occur
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Figure 19: Spectral density plot of detrended surface elevation.

somewhat periodically which justifies the use of a classic spectral analysis. This also identifies

a roughness scale with a 12 meter period as the dominant signal (Figure 19). This scale is

slightly longer but not inconsistent with that predicted by the numerical analysis.

This same roughness scale is also observed in soil thickness data taken from the same profile.

Following the same methods as outlined above for the land-surface elevation, I conducted

wavelet and spectral analyses on the soil thickness data. The wavelet output identifies a

consistent roughness scale that varies from 10 to 20 meters (Figure 20). These scales are also

persistent throughout the hillslope, and justify using a classic spectral analysis , which reveals

two dominant peaks; one at 12 meters and another at 18 meters (Figure 21). There is a strong

similarity between the roughness scales of soil depth and topography which suggests that the

geometry of the soil-saprolite surface is similar to the land-surface.
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Figure 20: Wavelet power spectrum of soil thickness, where cool colors indicate high power and warm
colors indicate low power.
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Figure 21: Spectral density plot of detrended soil thickness data.
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Chapter 11

DISCUSSION

The linear stability analysis of hillslopes that evolve by a sediment transport formulation

with a uniform entrainment rate reveals that such descriptions are unconditionally stable. This

result then suggests that the roughness that exists on hillslopes is primarily caused by the main

disturbing agents (i.e. tree throw, gopher mounds), and the roughness scales will reflect this

[Jyotsna and Haff , 1997]. If this is indeed true, then roughness scales would be expected to

be the same in both down-slope and cross-slope directions. Further field work will need to be

done in order to provide this data.

Although topographic roughness observed in the field is similar to scales expected from

the numerical stability analysis, it will be difficult to definitively assign causality to the origin

of topographic roughness. In previously published literature, roughness scales are interpreted

as a product of the primary disturbing mechanisms [Jyotsna and Haff , 1997; Roering et al.,

2010]. Roering et al., [2010] analyzed several 25 meter sections of a hillslope using ground-

penetrating radar to obtain trends in soil depth. They identified a dominant 5 meter roughness

scale, which they attributed to the signature of the biological disturbances caused by Douglas

Fir trees in the Oregon Coast Range. Although in the same study, there appears to be a strong

10 meter signal, which they do not address. The scale identified in North Carolina is longer

than 5 meters, which suggests different possible explanations.

The periodic and uniform scale of disturbances in both the land-surface and the soil thick-

ness is consistent with unstable hillslope behavior. Yet, there is a possibility that the roughness

we observe reflects the integrated spatial history of growth and decay of trees in a steady state

forest. Upended root wads and decaying root mounds may take considerable time to vanish,
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during which time new trees will sprout and grow. Therefore roughness in the surface may be

a result of the extant trees but also of ‘ghost’ trees. The highly periodic nature of soil depth

and land-surface, however, makes this seem implausible (Figure 18). There is the additionally

possibility that surface roughness reflects structural control. This too is unlikely as the strike

of the metamorphic foliation is dominantly perpendicular to the trend of the ridge.
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Chapter 12

CONCLUSIONS

A linear stability analysis of hillslopes evolving by nonlocal sediment transport reveals

that the land-surface is unconditionally stable. This behavior is the same conclusion that

Furbish and Fagherazzi [1997] came to for linear, slope-dependent transport. Perturbations

are, however, expected to persist in soil thickness for the special case where the initial condition

has a basic state soil thickness less than the depth at which maximum soil production occurs,

Tα. This simply reflects instability in the humped soil production function and does not reflect

anything about the land-surface. That is, the functional form of a humped soil production is

inherently unstable for a system with a basic state soil thickness less than Tα.

A numerical stability analysis for a nonlocal formulation that includes a Taylor series ex-

pansion of the land-surface slope indicates that the land-surface is unstable for particular

combinations of an entrainment rate, E1, and a characteristic travel distance, λ0. Indeed a

hillslope from North Carolina displays a roughness scale that is not dissimilar from the scale

expected from the numerical analysis and is periodic. Other explanations for the periodic

topographic roughness observed seem implausible, which lend credibility to an inherent insta-

bility as a cause for topographic roughness. Whereas it is not yet possible to definitively say

that we can observe instability, the evidence is not inconsistent with numerical stability anal-

yses. Further work is required to identify a difference between the signature of roughness due

solely to biology and that due to hillslope instability. Additionally, the similarity between the

land-surface and soil-saprolite geometries implies that the two are linked, although causality

is difficult to determine.
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