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CHAPTER I 

 

GENE EXPRESSION: APPLICATIONS AND ANALYSIS 

 

Introduction 

 Organism development and cellular function depend on precise control of 

gene expression. This outcome is achieved by the application of multiple levels 

of regulatory control. However, the extreme sensitivity of biological processes to 

perturbations in gene expression can result in significant developmental defects 

or disease when even one of these mechanisms is affected. Thus, understanding 

the intricacies of how genes are expressed and how they are regulated can 

impact all aspects of biology. There has been a tremendous effort over several 

decades to define when and where genes are expressed by assaying RNA and 

protein levels in whole animals, tissues, and cells. This approach not only 

provides evidence for where genes are expressed but can also infer biological 

function by noting the biochemical properties of gene products that are 

consistently co-regulated.  

Methods for the quantification of gene expression levels have progressed 

from the simplest approach of assaying the product of a single gene to more 

recently developed technology with which it is possible to measure expression of 

all genes in a given genome in a single experiment. This introduction provides an 

overview of transcription, transcriptional regulation, post-transcriptional 
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regulation, and how gene expression can be measured by various 

methodologies, in particular, focusing on RNA transcript quantification.  

Transcription 

Genes represent a union of DNA sequences that produce a functional 

product. Historically, the central dogma dictated that one gene encoded one 

protein product. After decades of research, it is now apparent that genes can 

produce many forms of RNA as a final product as well as multiple protein 

isoforms. To produce a protein product, a gene must first be transcribed into 

RNA, and the RNA message is translated into a protein based on the genetic 

code (CRICK et al. 1961). As DNA is double-stranded, the coding strand carries 

the genetic information, while the opposite strand serves as the template for 

transcribing DNA to RNA. Transcription is performed by the RNA Polymerase II 

macromolecular complex. RNA Polymerase uses the sequence of the template 

DNA strand to polymerize a chain of ribonucleotides to form a strand of RNA. 

Since the template DNA strand is complementary to the coding DNA strand, the 

RNA strand represents the same sequence as the coding strand of DNA 

substituting uracil for thymine. This RNA strand is called a transcript, which in 

eukaryotes typically contains regions called introns that must be removed by the 

splicing machinery, leaving untranslated regions (UTRs) at the 5’ and 3’ ends of 

the molecule, and the exons that carry the genetic information. RNA binding 

proteins bind the messenger RNA (mRNA) to stabilize and protect the molecule 

from degradation and shuttle it outside of the nucleus to the cytoplasm where it 

can be translated by ribosomes.  
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  There are many genes that produce RNAs that do not code for proteins 

(noncoding RNA, ncRNA) and function in many cellular processes. The most 

abundant and well-studied ncRNAs are the ribosomal RNAs (rRNA) and transfer 

RNAs (tRNA). These ncRNAs provide critical functions in translation of mRNA 

into protein. rRNAs are named based on their sedimentation rate, which depends 

on shape and mass. The 18S is a component of the small ribosome subunit and 

28S is a component of the large ribosome subunit. Two smaller rRNAs, 5S and 

5.8S are both located in the large ribosomal subunit. The rRNAs function with 

other proteins and tRNAs to use mRNA as a template for polypeptide synthesis.  

 There are many other classes of ncRNAs including small nucleolar RNAs 

(snoRNA), microRNAs (miRNA), small nuclear RNAs (snRNA), small interfering 

RNAs (siRNA), Piwi-interacting RNAs (piRNA), and long ncRNAs. These 

ncRNAs have various functions from template-guided processing of rRNAs 

(snoRNAs)(Kiss 2001) to suppression of retrotransposon expression in germ line 

cells (Vagin et al. 2006).  
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Figure 1.1 Representation of the “central dogma” of molecular biology showing 
the flow of genetic information from DNA to RNA to protein (inspired/adapted 
from (Walker et al. 2005)). 
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Transcriptional regulation 

 Gene expression depends not only on the RNA Polymerase complex 

(RNA Pol II) and general transcription factors (e.g. TFIID), but also on sequence-

specific enhancer-binding transcription factors that contribute to the regulation of 

when and where a gene is expressed (Mitchell and Tjian 1989; Karin 1990; 

Orphanides et al. 1996; Latchman 1997; Lee and Young 2000). Transcription 

factors can promote or inhibit the activity of the RNA Polymerase complex and 

other factors to positively or negatively regulate transcription. In general, 

transcription factors can positively regulate transcription by promoting the binding 

and stabilization of the RNA Pol II and general transcription factors, recruiting 

histone acetyltransferases, and recruiting chromatin remodeling factors. Negative 

regulators can inhibit transcription through several mechanisms: compete for the 

same binding site as a positive regulator, mask the activation domain of a 

positive regulator, bind to the transcriptional machinery, recruit repressive 

chromatin remodeling factors, or recruit histone deacetylases (Lee and Young 

2000). Through the combinatorial action of positive and negative transcription 

regulators, the expression pattern of a gene can be sculpted to restrict activity to 

specific cell-types and developmental stages.  

Post-transcriptional regulation 

 Once transcripts are produced, several mechanisms act to modify the 

transcript prior to translation or degradation. The splicing machinery 

(spliceosome) binds to the nascent transcript to remove introns. The spliceosome 

recognizes sequences surrounding exon-intron boundaries to identify where the 
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transcript will be spliced. The spliceosome loops the intron and performs two 

sequential trans-esterification reactions to cleave the intron and bind the two 

flanking exons together (Rio 1993). This process takes place constitutively, but 

alternative splicing can occur through regulation of several splicing factors. 

Alternative splicing can produce many transcript isoforms from a single gene 

locus. Some alternative splicing events include exon skipping, mutually exclusive 

exon inclusion, intron retention, and alternate acceptor/donor usage (Blencowe 

2006). Up to 95% of multi-exon human genes are alternatively spliced 

demonstrating how transcripts can be modified to potentially produce many more 

protein products than previously assumed by the central dogma (Pan et al. 

2008).  

 MicroRNA (miRNA) regulation of transcript stability and translational-

inhibition is another mechanism for regulating gene expression post-

transcriptionally. MicroRNAs were originally thought to be a quirk of C. elegans, 

but have now been described and well-studied in many organisms including 

humans (Lee and Ambros 2001; Bentwich et al. 2005; Bartel 2009). MicroRNAs 

can be found as an independent genomic locus, in polycistronic clusters, or 

within introns of protein-coding genes (Moss 2002; Berezikov et al. 2007; Ruby et 

al. 2007). MicroRNAs are usually transcribed by Pol II and become 

polyadenylated and capped as with most mRNAs generating the primary miRNA 

transcript (Cai et al. 2004; Lee et al. 2004; Zhou et al. 2007). The primary miRNA 

transcript can contain multiple miRNAs that form hairpins. DGCR8/Pasha binds 

the primary miRNA and associates with the enzyme Drosha that cleaves the 
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primary miRNA into separate precursor miRNAs (Gregory et al. 2006). The 

precursor miRNAs are exported from the nucleus and the cleaved by the RNAse 

III enzyme Dicer (Lund and Dahlberg 2006; Ji 2008). Argonaute family proteins 

bind with Dicer and the mature miRNA to form the RNA induced silencing 

complex (RISC) (Rana 2007). RISC usually binds target mRNAs at the 3’ UTR. If 

the miRNA base-pairs perfectly with the target, Argonaute2 degrades the target 

mRNA (Matranga et al. 2005). If there is imperfect base-pairing with the target, 

translational inhibition can occur (McManus et al. 2002; Seggerson et al. 2002). 

Additionally, miRNAs are able to destabilize target mRNAs likely by removal of 

the poly(A) tail, which is the initial step in mRNA decay (Lim et al. 2005; Roush 

and Slack 2006). Since miRNAs are transcriptional regulated by their own 

promoter or are transcribed with a host gene, miRNA function can be restricted to 

particular cell-types (Martinez et al. 2008; Isik et al. 2010). Thus, miRNA 

regulation of gene expression adds another layer of control on gene expression 

patterns. To study how complex patterns of gene expression arise, what factors 

contribute to the control of gene expression, and what genes are important for 

the function of a cell, gene expression profiling is frequently used to delineate 

those processes. 

Gene expression profiling 

 Gene expression profiling is the systematic identification and 

characterization of genes expressed in a cell or tissue. This can involve 

measurement of RNA transcripts or proteins. Depending on the technique used, 

a few genes to all genes in the genome are assayed in a single experiment. 
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Gene expression profiling can be used for both hypothesis testing and 

hypothesis generation. For example, a novel gene is identified which encodes a 

protein that contains a DNA-binding domain. A reasonable hypothesis would 

suggest that the protein might regulate transcription. To test this hypothesis, an 

experiment could be performed to generate a gene expression profile of cells 

with a loss-of-function mutation in the gene to compare to a gene expression 

profile of wildtype cells. The profiles could be analyzed for gene expression that 

is higher or lower in the mutant cells vs. wildtype cells. Gene expression profiling 

is also useful for hypothesis generation. If the function of a cell is unknown, 

producing a gene expression profile of the cell can provide evidence for a 

particular function based on prior knowledge (e.g., Gene Ontology terms) of the 

molecular function of genes detected as expressed. Gene expression profiling is 

a powerful methodological approach and many more complex experiments can 

be performed than the ones described above (Kim et al. 2001; Elemento et al. 

2007; Ramakrishnan et al. 2010). 

Methods for gene expression profiling of the transcriptome 

 In this section, I will review the benefits and drawbacks of methods used 

for measurement of RNA levels. There are many methods available to perform 

transcriptome profiling. The choice of method largely depends on the experiment 

being performed, available resources/reagents and organism under study. The 

methods also differ on whether they can measure gene expression in vivo, or 

require isolation of RNA from the sample for an in vitro measurement.  
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The methods can be divided into groups based on the approximate 

number genes that can be assayed in an experiment. Low to mid-plex methods 

include (1 – 800 targets): Northern blot, ribonuclease-protection assay, in situ 

hybridization, RT-PCR, and NanoString. High-plex methods include (>1,000 

targets): SAGE, MPSS, microarrays, and RNA-Seq. 

Low to Mid-plex techniques 

 Northern blotting is a traditional method to detect native transcripts. RNA 

is isolated from cells, tissues, or whole animals, size fractionated by denaturing 

agarose gel electrophoresis and transferred to nitrocellulose or nylon membrane 

by blotting. The transferred RNA is hybridized with labeled (radioactive, 

fluorescent, chemiluminescent) cDNA or antisense RNA probes specific to the 

transcript of interest. The blot is developed and image analysis is performed to 

determine the intensity of the signal. The levels of intensity can be normalized to 

an internal control transcript (e.g., actin, GAPDH, 28S rRNA) that does not vary 

in levels between conditions to obtain a quantitative expression value. Northern 

blots also provide information about the length of the transcript, since the probe 

hybridizes the native transcript. Thus, Northern blots can also be used to analyze 

alternative splicing of transcripts. Northern blots are not as sensitive as many 

modern approaches and the procedure is moderately complicated by the many 

steps involved, yet provides a very accurate measure of gene expression.  

 Ribonuclease protection assays are another method for gene expression 

analysis. Isolated RNA is hybridized to a labeled cDNA or antisense RNA probe 

specific to the transcript of interest in solution. A single-strand specific nuclease 
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is added to the solution to digest all unhybridized single-stranded RNA and leave 

the “protected” transcript intact. The protected double-stranded nucleic acids are 

electrophoresed on a polyacrylamide gel and imaged. The gel image is quantified 

similarly to Northern blots. Ribonuclease protection assays are more sensitive 

than Northern blots and are performed in solution, allowing quantification of 

transcripts expressed at low levels.  

In situ hybridization (ISH) is a method that allows detection of RNA 

transcripts in cells, tissues, or whole animals. Labeled probes are incubated with 

a fixed sample to allow the probes to enter the cell and hybridize with the 

transcript. The sample can be exposed to film or imaged for fluorescence and 

quantified. ISH has the advantage of revealing the endogenous localization of a 

transcript in cells, but quantification of the signal can be difficult depending on the 

complexity of the sample. 

 One of the largest advances in the quantification of transcript levels 

occurred with the development of real-time monitoring of polymerase chain 

reaction (PCR) product accumulation. Previously, semi-quantitative RT-PCR 

could be used to measure transcript levels, but only the end-point product could 

be measured using DNA binding dyes, or radiolabeled nucleotides incorporated 

into the product. The advent of real-time monitoring of the reaction allows a cycle 

threshold (Ct) to be set while the reaction is proceeding in the linear phase before 

saturation. A standard curve is used to establish the cycle threshold for known 

amounts of cDNA for the target gene. Then, the Ct can be determined for the 

target gene in an experimental sample. As with other techniques, it is critical to 
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normalize levels with an internal control. Real-time PCR is one of the most 

sensitive methods for quantification of gene expression due to the exponential 

nature of PCR. By multiplexing samples, it is possible to measure more than a 

single target per reaction enabling higher throughput. 

  The nCounter Analysis system from NanoString is a new platform that 

offers medium throughput (~800 targets), high sensitivity (500 attomolar), and 

wide dynamic range (500X)(Geiss et al. 2008). This system uses solution 

hybridization with two probes (one “capture” probe and one “reporter” probe) per 

target. Each probe contains repeat sequences that are used for tandem affinity 

purification of the tri-molecular complex. After purification, the complex is 

immobilized on a solid support, and the color-coded tag on the reporter probe is 

imaged. The color code is specific for one target, so transcripts are quantified by 

counting the number of detected probes for each target transcript and normalized 

to multiple internal housekeeping genes. One advantage of this system is the 

ability to directly use 100 ng of total RNA without reverse transcription to cDNA 

and further amplification. This system will likely excel where transcription of 

several hundred genes is needed with the sensitivity of real-time PCR and low 

cost per sample.  

High-plex techniques 

 To quantify gene expression for thousands to all genes in a genome, 

several techniques have been developed over the past two decades. SAGE and 

cDNA microarrays presented the first opportunity to assay many genes in parallel 

with one experiment (Schena et al. 1995; Velculescu et al. 1995). The SAGE 
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method generates small-specific fragments (“tags”) from cDNA that are 

concatamerized, cloned and sequenced. Transcription levels are quantified by 

the number of times a tag for a gene is counted and normalized to total tag 

counts (Velculescu et al. 1995). Improved versions of the SAGE method have 

been described to alleviate some of the issues involved with SAGE, such as, 

short tag length (14-15 bases), concatamer cloning efficiency, and small insert 

sizes (Saha et al. 2002; Gowda et al. 2004). 

 Microarray technology has been the most popular method for measuring 

expression of thousands of genes in a single experiment. The original method 

involved spotting individual known cDNA clones in arrays on a glass slide 

(Schena et al. 1995). Fluorescent RNA probes were generated from purified 

poly(A) RNA and hybridized to the array. To test for differential gene expression 

probes from two samples were synthesized using two different fluorescent 

markers and were simultaneously hybridized to the same microarray. The 

hybridized microarray is scanned with a laser and the fluorescence is imaged 

and quantified based on intensity. The first iteration of spotted cDNA arrays was 

limited to 48 genes, but the technology progressed rapidly and many companies 

adopted their own design for cDNA or oligonucleotide based arrays. A summary 

of microarray technologies is shown in Figure 1.2. One of the largest advances 

came when Affymetrix developed short oligonucleotide microarrays using 

photolithography processes adopted from the semiconductor industry. This  
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Figure 1.2 Typical procedures for spotted cDNA (left) and oligonucleotide 
microarrays (right) are shown.  
In both procedures, labeled targets are prepared and hybridized to the array. For 
cDNA arrays, the label is fluorescent (Cy3 or Cy5) and after hybridization, the 
array is scanned and raw data is generated. For oligonucleotide arrays, after 
hybridization, the targets are stained with phycoerythrin-labeled streptavidin. 
Then the array is scanned and raw data is generated. Figure adapted from (Staal 
et al. 2003). 
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allowed Affymetrix to design microarrays that contained hundreds of thousands 

to millions of 25mer oligonucleotide probes on a single array to target nearly 

every gene in a genome (depending on genome complexity). Affymetrix 

microarrays are single-color arrays, where biotin-labeled RNA or cDNA is 

hybridized to the array, and subsequently stained using phycoerythrin-labeled 

streptavidin. The microarray is scanned with a laser and fluorescence is imaged 

in gray scale and quantified. Only a single sample can be hybridized to an 

oligonucleotide array, so treatment and control samples are hybridized to 

separate microarrays. The traditional GeneChip arrays were designed to 

measure expression of protein-coding genes. Probe sets were designed to most 

known gene models with most probes located within the 3’-most exons (Lipshutz 

et al. 1999). Affymetrix also designed arrays with stringent probe selection 

criteria requiring similar melting temperatures, uniqueness relative to family 

members, and lack of similarity of to other abundant RNAs in the sample (rRNA, 

tRNA, actin). The GeneChip arrays also limited downstream analyses by only 

targeting 3’ ends of protein-coding genes. It is not possible to measure 

differences in transcript isoform expression or interrogate splice site usage. 

Later, Affymetrix released exon arrays that designed probe sets to most exon in 

protein-coding gene models to allow simultaneous analysis of gene expression 

and alternative splicing. Recently, tiling microarrays were developed to allow 

interrogation of the whole genome. Probes are designed to “tile” across all non-

repetitive portions the genome, which provides a relatively unbiased platform for 

assaying gene expression irrespective of known gene annotation. Since tiling 
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arrays usually represent only one strand of the genome and it is not known a 

priori whether a potential novel transcript is transcribed from the plus or minus 

strand, it is necessary to synthesize ds cDNA to allow either strand of the target 

to bind the probe. Many reports using tiling microarrays for different species 

including humans, have suggested widespread transcription occurs throughout 

the genome (Bertone et al. 2004; David et al. 2006; Consortium et al. 2007). 

These novel transcriptionally active regions (TARs) have been controversial with 

some groups suggesting that most bona fide novel transcripts are associated 

with known protein-coding genes (van Bakel et al. 2010). Due to their utility and 

reasonable cost, microarrays have become the most routinely used method for 

measuring global gene expression. 

 Second-generation sequencing technologies have recently expanded the 

number of options for gene expression profiling (RNA-Seq). The first of the new 

high throughput sequencing technologies was provided by 454 Life Sciences 

(now part of Roche Applied Science). 454 sequencing technology is based on 

amplification of targets using emulsion PCR, immobilization on a solid substrate, 

and sequencing-by-synthesis. Emulsion PCR uses fragments of cDNA bound to 

microbeads that are suspended in droplets of a water-in-oil emulsion. This set up 

produces small amplification reactors that can produce 107 clonal copies of a 

template DNA (Margulies et al. 2005). The beads are attached to a solid support 

allowing hundreds of thousands of sequencing reactions to be performed in 

parallel. Sequencing is performed using a pyrosequencing technique (Nyrén et 

al. 1993; Ronaghi et al. 1996). Solutions of dNTPs are added to the reaction one 
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at a time and when DNA polymerase incorporates a nucleotide, inorganic 

pyrophosphate is released and can be measured by chemiluminescence. The 

454 approach is currently able to produce > 1 million high-quality reads with an 

average length of 400 bases (http://www.454.com/products-solutions/system-

features.asp). Studies have utilized 454 sequencing for gene expression 

profiling, which demonstrate accurate quantification of transcript levels 

(Bainbridge et al. 2006; Torres et al. 2008).  

 The Applied Biosystems SOLiD system provides a platform that uses a 

similar emulsion PCR step for amplification of cDNA fragments, but the 

sequencing reaction is performed using a hybridization-ligation reaction. Sixteen 

combinations of dinucleotides are labeled with one of four fluorescent dyes (one 

dye labels four different dinucleotides). A primer initiates the reaction by 

annealing at position 0. The dinucleotides probes compete for hybridization and 

ligation to the sequencing primer. The dye fluorescence is imaged and the dye is 

cleaved from the dinucleotide. The hybridization, ligation, detection, and 

cleavage represents one cycle and it is repeated a specified number of times to 

generate the read length. After a full set of cycles, the synthesized produced is 

removed and another primer is annealed to the -1 position. Then another round 

of cycling proceeds. This process is repeated a total of five times allowing every 

base to be sampled twice. By sampling every base twice, the error rate is 

extremely low (99.99% accuracy claimed). SOLiD generates much shorter reads 

than 454, between 35 and 75 bp, but produces many more reads (>100 million 

per sample, http://www.appliedbiosystems.com). Fewer studies have utilized 
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SOLiD sequencing for gene expression profiling, but report high accuracy and 

sensitivity of ~1 copy of transcript per cell (Tang et al. 2009; Bradford et al. 

2010).  

 The most widely adopted second-generation sequencing platform is 

produced by Illumina. The Genome Analyzer platform differs from the 454 and 

SOLiD emulsion PCR approach, by ligating bridge PCR adapters to double-

stranded cDNA, which immobilize both ends of the cDNA molecule on a solid 

support. The adapters serve as primers for PCR amplification of the template 

producing a cluster of cDNA. Sequencing is performed by using DNA polymerase 

and adding fluorescently-labeled dNTPs one at a time to the reaction. After 

nucleotides are incorporated, fluorescence is imaged (see Figure 1.3). The 

current Illumina system produces up to 100 base reads/reaction and ~100 million 

reads per sample (http://www.illumina.com/). The widespread adoption of the 

Illumina system is likely due to easier sample preparation using bridge PCR 

instead of emulsion PCR and higher number of reads generated. There have 

been numerous studies of gene expression using the Genome Analyzer including 

the large-scale genome annotation projects mod/ENCODE (Denoeud et al. 2008; 

Marioni et al. 2008; Morin et al. 2008; Mortazavi et al. 2008; Nagalakshmi et al. 

2008; Hillier et al. 2009; Mane et al. 2009; Gerstein et al. 2010; Trapnell et al. 

2010). 

 The application of second-generation sequencing technology for gene 

expression profiling has provided a tremendous benefit and will continue to do so 

as the technology progresses. Not only can transcript levels can be accurately 



 18 

and sensitively quantified, but additional information is also gained by validating 

splicing, alternative splice isoforms, and identifying novel transcripts and 

transcript fusions. There are still a number of issues to overcome in the areas of 

sample preparation and data analysis. Many cDNA libraries can be prepared in 

parallel, but sequencing the libraries presents a major limiting factor in analyzing 

many samples. A major hurdle for RNA-Seq is the vast abundance of ribosomal 

RNA in total RNA preparations. Most studies have focused on protein-coding 

genes and use a poly-adenylated RNA purification procedure to enrich for 

mRNA. However, to achieve the goal of measuring all RNA transcripts in a given 

sample, rRNA must be efficiently depleted to prevent an excessive number of 

sequence reads derived from rRNA. A variety of methods have been developed 

for depleting rRNA including: Invitrogen Ribominus, RNAse H, Illumina duplex-

specific nuclease, and Epicentre Terminator exonuclease, which are discussed in 

Chapter V. Finally, the cost of sequencing has decreased significantly over the 

past several years and depending on the experimental design, can now 

approach the cost of a microarray experiment. 

Analysis of RNA-Seq data involves several steps that are designed to 

exclude random errors. Quality scores are assigned to each base in a read that 

are logarithmically linked to error probabilities (Ewing and Green 1998). First, the 

sequence reads must first be filtered by quality of base calling to prevent 

erroneous reads from being used in downstream analyses. The filtered reads are 

mapped to the target genome using parameters that determine the level of  
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Figure 1.3 Illumina sample preparation procedure.  
(A) Forked adapters are ligated to ds cDNA. The ligated product is amplified 
producing a double-stranded molecule with different sequences at each end. (B) 
Products are annealed to oligonucleotides attached to the surface of the flow cell 
(hatches). The oligos serve as primers to synthesize a new strand (dotted). The 
products are denatured and the newly synthesized strand binds complementarily 
to a different oligo attached to the surface of the flow cell, forming a bridge, and 
another product is synthesized. Multiple rounds of amplification produce a clonal 
cluster of template. (C) A restriction enzyme site in one oligo is used to linearize 
the cluster and sequencing-by-synthesis is performed (sequence produce shown 
dotted). To perform paired-end sequencing, the products are denatured and the 
other surface-bound oligo is cleaved to linearize the product, and the template is 
sequenced from the other end.  
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stringency for the alignment. Reads can map to multiple locations in the genome, 

contain a number of mismatches, or not map to the genome despite high 

sequence quality. When analyzing RNA-Seq data, reads that span a splice 

junction will not map to the genome unless a specific splice-aware alignment 

strategy is used (Trapnell et al. 2009). Normalization of RNA-Seq data also 

requires careful consideration. To accurately quantify gene expression levels 

within an experiment, normalization to the number of mapped reads is necessary 

as with SAGE (number of tags), but since whole transcripts are being analyzed, a 

large transcript will generate many more reads than a small transcript. Without a 

computational correction, this circumstance would artificially inflate the apparent 

expression level of a large versus small gene. A widely used normalization 

procedure, reads per kilobase of exon model per million mapped reads (RPKM) 

attempts to correct for these biases (Mortazavi et al. 2008). RPKM will normalize 

to the length of exons in a gene model and to the total number of reads mapped 

to the genome. A recent study has suggested that using a normalization method 

such as RPKM for differential expression analysis may inflate variance between 

replicates depending on differences in depth of coverage, thus reducing power 

and increasing Type II error (Anders and Huber 2010). Instead, Anders and 

Huber suggest using read counts for each gene model and then normalizing to 

total number of mapped reads for differential expression analysis. While RNA-

Seq data analysis is still in its infancy, the power of the technique has motivated 

discussion and comparison of various methodologies (Zheng and Chen 2009; 
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Bullard et al. 2010; Oshlack et al. 2010; Garber et al. 2011; Malone and Oliver 

2011; Roberts et al. 2011).  

Cellular-enrichment strategies 

The gene expression profiling strategies reviewed above can be applied to 

numerous experimental designs. Many experiments measure gene expression 

from whole animals or tissues, but due to the heterogonous environment of a 

tissue, many complex processes can be obscured by lack of cellular resolution. 

To overcome this hurdle, several approaches have been utilized to isolate 

specific cell-types for gene expression profiling. The major methods include: 

Laser Capture Microdissection (LCM)(Emmert-Buck et al. 1996), RNA 

immunoprecipitation (Roy et al. 2002; Keene et al. 2006; Doyle et al. 2008; 

Heiman et al. 2008), Immunopanning (PAN, immunoselection) (Antoine et al. 

1978), Fluorescence-Activated Cell Sorting (FACS)(Bonner et al. 1972), 

microfluidics-based FACS (Fu et al. 1999; Hu et al. 2005), and manual isolation 

(Frohlich and Konig 2000; Smith et al. 2000). These methods require a cell-

specific marker or distinct morphology to identify the cell for selection. Each 

method has distinct advantages and caveats, but they all enable specific cell-

types to be purified for experimental analysis. 

 Manual dissection of single cells is the lowest throughput method, but can 

produce a highly purified sample of cells (Tietjen et al. 2003; Tietjen et al. 2005; 

Okaty et al. 2011). Frequently a fluorescent marker expressed in the cell-type is 

used to identify the cell, which can be aspirated with a mouth pipette and placed 

in a tube for downstream experiments. This approach has been successfully 
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adopted for real-time PCR analysis and microarray profiling (Smith et al. 2000; 

Tietjen et al. 2003; Tietjen et al. 2005; Cherry et al. 2009).  

FACS is one of the most widely used methods for isolation of a purified 

cell-type (see Figure 1.4 for a schematic)(Bonner et al. 1972). A heterogenous 

cell sample is mixed with a carrier fluid and pushed through a nozzle to create a 

laminar flow stream. The laminar flow orders the cells, which pass through a 

detector one at a time and are pulsed with lasers to measure cell size and 

fluorescence properties. If a given cell-type expresses a marker to identify that 

cell, then it can be selected by establishing gating criteria determined empirically 

from analyzing cells with and without the marker. After detection, the stream of 

cells is broken into droplets by intense vibrations with only one cell per droplet. If 

a cell was selected for sorting, an electrical charge is added to the droplet, which 

passes between charged metal plates that deflect the cell droplet into a collection 

tube. Many thousands of cells can be analyzed per second allowing the 

collection of a large sample of cells as well as the isolation of rare cells from a 

large starting population of cells. Numerous studies have applied FACS-based 

purification of cell-types for gene expression profiling (Zhang et al. 2002; 

Colosimo et al. 2004; Fox et al. 2005; Lobo et al. 2006; Okaty et al. 2011; Pan et 

al. 2011). Methods based on FACS have been developed using microfluidics 

devices to analyze and sort cells, which provide a customized solution, but 

typically lack the throughput of traditional FACS (Hu et al. 2005; Ishii et al. 2010).  
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Figure 1.4 Schematic overview of fluorescence activated cell sorting (FACS). 
Cells are scanned with a laser and analyzed for size and fluorescence, droplets 
are formed and droplets with positive cells are charged and deflected by 
electrode plates into a collection tube. 
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Laser capture microdissection typically uses a microscope mounted UV 

laser to cut a region of cells or tissue out of a sample. The isolated cell sample is 

then removed from the remainder of the tissue using various methods such as 

catapulting the sample into a tube using a defocused UV laser. LCM typically has 

a resolution down to 5 µm, so cells with a diameter less than 5 µm cannot be 

isolated without risk of contamination from other cells. LCM is widely used for 

pathology samples, since fixed samples are primarily used with LCM and are 

more readily accessible for human samples. Gene expression profiling using 

LCM isolated cells is common, but can have contamination issues (Leethanakul 

et al. 2000; Chung et al. 2005; Rossner et al. 2006; Caretti et al. 2007; Emrich et 

al. 2007; Kube et al. 2007; Okaty et al. 2011).  

Immunopanning or immunoselection uses antibodies directed against a 

particular cell-surface protein expressed in a cell-type of interest. The antibodies 

are covalently bound to a solid surface and target cells are bound to the surface. 

This method has been used for selective purification or depletion of cell-types for 

expression profiling resulting in an enriched population of cells and is particularly 

useful for cell-types that do not survive FACS (Farkas et al. 2004; Ivanov et al. 

2006; Cahoy et al. 2008; Okaty et al. 2011).  

One general method obviates the need to mechanically enriching the cell-

type of interest by isolating RNA directly from that cell. Several variations of RNA 

immunoprecipitation have been developed, but two primary methods have aimed 

at isolating cell-specific mRNA. The first method, mRNA-tagging, utilized the 

poly(A)-binding protein (PABP) that binds to the poly(A) tails of mRNAs. The 
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PABP is expressed in specific cell-types by the control of a known promoter and 

is tagged for immunoprecipitation. Animals are fixed to crosslink the mRNA to the 

PABP and the complex is immunoprecipitated. The crosslinks are reversed and 

the mRNA is purified for expression analysis. This approach has been primarily 

used in C. elegans, but has also been used in Drosophila melanogaster (Roy et 

al. 2002; Kunitomo et al. 2005; Pauli et al. 2005; Yang et al. 2005; Jiao et al. 

2007; Von Stetina et al. 2007; Watson et al. 2008; Spencer et al. 2011). A similar 

method, genetically targeted translating ribosome affinity purification (TRAP), has 

been implemented in mouse aimed at isolating mRNAs being actively translated 

(Doyle et al. 2008; Heiman et al. 2008). In this method, a BAC construct 

encoding a tagged L10a ribosomal protein is expressed in specific cell-types and 

the RNA:ribosomal protein complex is purified as with mRNA-tagging. This 

strategy may provide a more accurate representation of expressed genes than 

the mRNA tagging method since TRAP specifically detects mRNAs as they are 

translated whereas the mRNA tagging method should not have this bias. Each 

method serves a particular strategic approach and likely could be used in parallel 

to define all mRNA transcripts in a cell and those that are translated under 

particular conditions. 

In summary, the combination of cell enrichment and global gene 

expression profiling provides a powerful approach to define cellular identity and 

provide clues for molecules that are critical for the function of that cell type. 

Methods for gene expression profiling in C. elegans have focused on the use of 

MAPCeL (MicroArray Profiling of C. elegans celLs) and mRNA-tagging in 
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combination with microarrays or SAGE (Roy et al. 2002; Zhang et al. 2002; 

Blacque et al. 2005; Fox et al. 2005; Fox et al. 2007; McGhee et al. 2007; Von 

Stetina et al. 2007; Watson et al. 2008; McGhee et al. 2009). To enhance our 

ability to isolate individual cells using FACS, I have implemented a multicolor 

FACS approach in which a single cell is marked by the unique overlap of two 

different fluorophores driven by promoters that co-express in only the cell of 

interest. This method facilitated the isolation of two command interneurons of the 

C. elegans motor circuit that otherwise would not be accessible to cell specific 

profiling (Chapter II). The expression profile of one of the command interneurons 

revealed an enriched transcript for an immunoglobulin domain cell adhesion 

molecule that I then showed is necessary for synaptic connectivity between the 

command neuron and its motor neuron targets (Chapter III). Thus, this profiling 

approach has identified a candidate gene for synaptic specificity which can now 

be systematically tested to establish its mechanism of action. For the broader 

purpose of systematically defining gene expression across the C. elegans 

anatomy, we used a combination of FACS and mRNA-tagging to isolate cell 

specific RNAs for hybridization to tiling microarrays that revealed the timing, 

location and expression levels of all C. elegans genes (Chapter IV). The advent 

of RNA-Seq provided an opportunity to enhance our gene expression analysis, 

but also required the implementation of new methods to allow sequencing from 

small quantities of RNA (< 10 ng) and to exclude rRNA templates. Chapter V 

describes an empirical analysis of rRNA depletion strategies and methods for 

quantification and differential expression analysis of genes. Our use of C. 
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elegans as a model organism allows the use of genetic screens for identifying 

genes that function in a specific pathway, but mapping the causal mutation from 

a screen can be laborious. By taking advantage of the compact nature of the C. 

elegans genome and second-generation sequencing, it is now possible to 

sequence the genome of individual genetic mutants to identify the lesion 

(Chapter V). 
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CHAPTER II 

 

METHOD FOR ISOLATION OF SINGLE NEURONS 

 

 In this chapter, data production and analysis was a joint effort. I optimized 

2-color FACS and profiled the AVA neuron and all embryonic cell reference. A 

research assistant, Rebecca McWhirter profiled the AVE neuron. Stefan Henz 

parsed WormBase gene annotation and mapped tiling array probes to gene 

models. Georg Zeller performed the microarray normalization and differential 

expression tests. 

 

Introduction 

The nematode C. elegans has a simple and well-defined nervous system 

with only 302 neurons, for which nearly all synaptic connections are described in 

a comprehensive wiring diagram (White et al. 1986; Chen et al. 2006). Therefore, 

C. elegans is an ideal model organism for establishing the relationships between 

neuron identity and connectivity. A catalog of genes neuron specific gene 

expression would facilitate this study by providing a link between the function of a 

neuron and its molecular signature. This knowledge also has the potential of 

shedding light on the biological mechanisms responsible for the communication 

between neurons. For example, an earlier work revealed specific genes with 

potential roles in synaptic connectivity by correlating single-neuron gene 

expression data with the wiring diagram (Varadan et al. 2006). Here I describe 
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the application of microarray profiling methods to L+R pairs of C. elegans 

embryonic neurons using in a method that exploits multicolor FACS to isolate 

specific neuron types that are uniquely marked with a unique combination of 

different colored fluorescent reporter genes.  

Ideally, individual neuron-specific promoters can be used to tag specific 

neurons for isolation and RNA extraction. However, due to the dearth of neuron-

specific single promoters, combinations of promoter elements are needed for this 

task. There are in total 82 L+R pairs of embryonic neurons and an additional 58 

single embryonic neurons for a total of 222 embryonic neurons. Given the 

appropriate combination of promoters, many or all embryonic could potentially be 

uniquely marked for isolation by FACS and expression profiling (Varadan and 

Anastassiou ; Zhang et al. 2004). 

Methods and Materials 

C. elegans culture and strains used in this study 

Nematodes were grown as described (Brenner 1974). Strains were 

maintained on nematode growth media (NGM) plates inoculated with the E. coli 

strain OP50. Strains used to isolate cells were N2 (wildtype Bristol strain), 

NC1749 [hdIs32(Pglr-1::DsRed2), otEx239(Prig-3::GFP;pha-1+)] for AVA, and 

NC1750 [hdIs32(glr-1::DsRed2), gvEx173(opt-3::GFP + pRF4(rol-6))] for AVE.  

Preparation of embryonic cells and primary cell culture 

Methods used for generating preparations of embryonic cells and for 

primary cell culture have been previously described (Christensen et al. 2002) and 

are summarized here. Embryos were obtained by hypochlorite treatment of 
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synchronized populations of adult hermaphrodites and digested with chitinase to 

remove the egg shell. The resultant single-cell suspension of embryonic cells (in 

egg buffer) (Christensen et al. 2002) was resuspended in L-15 cell culture 

medium, supplemented with 10% FBS and penicillin/streptomycin and plated at a 

density of 1 x 10-6 ml-1 on 1-well chamber slides (Nunc) coated with poly-L-

lysine (Sigma). Primary cultures were maintained overnight at 25 °C. 

Isolation of fluorescently-labeled embryonic cells by FACS  

FACS was used to isolate AVA and AVE, each labeled with GFP and 

DsRed2. Cells derived from freshly dissociated embryos were passed through a 

5 m filter (Durapore - Millipore) to remove debris. Primary cultures were 

examined 24 hr after plating to confirm expression of fluorescent markers (GFP 

and DsRed2). Cultured cells were resuspended in egg buffer and prepared for 

FACS as previously described (Fox et al. 2005). Dead cells were labeled by 

staining with 7-AAD (Invitrogen) (~1-2 g/mL of cells). Viable cells were isolated 

using either a FACStar Plus (AVA) or FACSAria (AVE) flow cytometer (75 m 

nozzle, ~10,000-15,000 events/sec) (Becton Dickinson, San Jose, CA). FACS 

gates were empirically adjusted to achieve >80% purity for AVA and ~90% for 

AVE. The fraction of target cells (80-90%) for each cell type was determined by 

direct inspection in the fluorescence microscope 24 hr after plating on 4-well 

chamber slides coated with peanut lectin (Sigma) (Fox et al. 2005). Yields of 

target cells ranged from ~5,000 to ~20,000 for each FACS run. At least 3 

independent samples were collected for each cell type. Reference samples for 
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cells obtained from primary cultures (late embryos, LE) were obtained by 

isolating all viable cells from the wildtype (N2) strain (Fox et al. 2005). 

RNA extraction from embryonic cells isolated by FACS 

Cells collected for RNA isolation were sorted directly into Trizol LS 

(Invitrogen) up to a final 1X concentration. The sample was extracted with 

chloroform, RNA precipitated with isopropanol, washed 2X with 75% EtOH and 

resuspended in RNAase-free H2O. A DNA-free RNA purification kit (Zymo 

Research) was used to DNAase-treat and purify RNA according to the 

manufacturer’s instructions. RNA quality and yield was determined using a 

Bioanalyzer (Agilent). Total amounts of RNA for each sample ranged from 600 

pg to ~10 ng. 

RNA amplification 

The WT-Ovation Pico kit (NuGEN Technologies, Inc) was used to amplify 

RNA (0.6 ng to 5 ng starting material). 3 µg from each reaction was used to 

generate double stranded cDNA with the WT-Ovation Exon module (NuGEN 

Technologies, Inc). 4-5 µg of ds-cDNA was fragmented and labeled using the FL-

Ovation Biotin V2 module (NuGEN Technologies, Inc). 

Microarray hybridization 

The C. elegans 1.0R tiling array (Affymetrix) contains > 3 million perfect 

match (PM)/mismatch (MM) probe pairs representing the C. elegans non-

repetitive genome. Probes are 25 nt in length and tiled at an average distance of 

25 nt as measured from the centers of adjacent probes. Double-stranded cDNA 

targets were used for hybridization because all probe sequences match a single 
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DNA strand whereas individual transcripts can be derived from either the plus or 

minus strands. At least 3 independent replicates were obtained for each cell type. 

Interse Pearson correlation coefficients were calculated between replicates to 

ensure consistent sample preparation and hybridization. 

Mapping tiling probes to the C. elegans genome and its annotation 

Perfect match (PM) 25mer tiling probe sequences were mapped to the C. 

elegans genome sequence (release WS200) (Rogers et al. 2008) using vmatch 

to detect all (direct and inverse) matches of length ≥17 with at most one 

mismatch or indel (Abouelhoda 2004). Only probes that perfectly aligned to a 

single genomic location were retained thereby discarding the most highly 

repetitive probes. Repeat information was kept for probes with multiple imperfect 

alignments as a filter for subsequent analyses. These included 70,189 PM tiling 

probes with exact matches and an additional 113,054 probes with inexact 

matches leaving a total of 2,758,587 non-repetitive probes according to the 

above criteria. 

Probe set definition and estimation of expression for annotated genes 

For each protein-coding gene model annotated in WS200 (Rogers et al. 

2008), we constructed a probe set containing all PM tiling probes that could be 

perfectly aligned to corresponding constitutive exons. Repetitive probes (see 

above definition) were removed from gene probe sets and probe set information 

was converted into CDF. Subsequently, expression was estimated for genes with 

a minimal probe set size of three using RMA, which involves quantile 

normalization and summarization with median polish (RMA's default array-
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background normalization was omitted (Bolstad et al. 2003; Irizarry et al. 2003; 

Gautier et al. 2004). 

Testing genes for expression above background 

To establish whether expression of a particular gene was significantly 

higher than the array background intensity, we compared its hybridization signal 

to an empirical null model. For each gene probe set we constructed a 

background probe set from an equally sized random sample of probes mapped 

to annotated intergenic regions. This sampling process was repeated until ≥ 106 

background probe sets had been collected. For a given biological sample, we 

established the null model from the median of the PM intensities of the 

background samples pooling replicate data. The empirical p-value of a gene's 

expression was estimated as the proportion of background probe sets with the 

same or higher median intensity than the median PM intensity of the gene probe 

set. Expression p-values were adjusted for multiple testing using the false 

discovery rate (FDR) method by Benjamini & Hochberg (as implemented in the R 

function p.adjust(x, method="fdr") (Benjamini and Hochberg 1995). 

Determining differentially expressed genes 

Differentially expressed genes were identified using a linear model and an 

empirical Bayes moderated t-statistic (Smyth 2004) implemented in the 

Bioconductor package Limma (Smyth 2005).  

Microscopy 

Isolated embryonic cells were imaged using differential interference 

contrast (DIC) and epifluorescence optics with a Zeiss Axiovert inverted 
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microscope equipped with an ORCA ER (Hamamatsu) high-resolution, cooled 

CCD camera. Intact animals were imaged with a Zeiss Axioplan compound 

microscope equipped with an ORCA ER camera, Leica TCS SP5 confocal 

microscope, or Zeiss LSM510 confocal microscope. 

Results 

To demonstrate the ability to use more than one promoter to isolate and 

profile individual neurons or L+R pairs, we selected the AVA (L+R) and AVE 

(L+R) neurons for two-color FACS. The well-characterized promoter of the C. 

elegans AMPA-type glutamate receptor subunit, glr-1, is expressed in both AVA 

and AVE as well as in other command interneurons (i.e., AVB, AVD, PVC) 

(Maricq et al. 1995; Hutter 2004; Schmitz et al. 2007). Other promoters that drive 

expression in each of the individual command interneurons, but otherwise do not 

overlap with the Pglr-1 expression pattern can be selected to uniquely mark each 

interneuron (Table 2.1). We chose the combination of Pglr-1 and Prig-3 to test for 

unique identification of AVA neurons. According to WormBase, 35 neurons 

express glr-1, nine neurons (along with 2 amphid sheath cells and intestine) 

express rig-3, but only one neuron, AVA (L+R) expresses both markers. We 

confirmed this prediction by direct inspection in the confocal microscope of a 

strain containing the Pglr-1::DsRed2 and Prig-3::GFP transgenes (Figure 2.1). 

The next set of experiments, were designed to optimize FACS sorting 

gates for these dual-color cells. First, we generated primary cultures of GFP and 

DsRed2 cells to set FACS gates for each fluorophore. We also established a 

sorting gate for the fluorescent dye (7-AAD) used for marking (and excluding)  
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Table 2.1. Promoter combinations for profiling the command interneurons. 
Gene Combination Isolated L+R pair  

rig-3 AND glr-1 AVA 

Backward circuit tol-1 AND nmr-1 AVD 

opt-3 AND glr-1 AVE 

sra-11 AND glr-1 AVB 
Forward circuit 

flp-11 AND glr-1 PVC 
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dead cells in the preparation. With these parameters in place, we isolated GFP + 

DsRed2 neurons (“dual positive cells”) from the transgenic line expressing both 

Prig-3::GFP and Pglr-1::DsRed (Figure 2) at >80% purity (Figure 2.1). The same 

strategy was applied to the AVE command interneurons which are labeled with 

Popt-3::GFP and Pglr-1::DsRed2 (see Table 2.1). AVE neurons were sorted to 

>88% purity. 

Because our approach isolated only a single L+R pair of neurons from 

each animal, minute quantities of RNA were obtained from each FACS run. For 

further experimentation, it was therefore necessary to optimize RNA isolation 

from sorted cells. This goal was achieved in part by sorting cells directly into 

Trizol LS (Invitrogen) in order to limit RNA degradation and then purifying RNA 

with a DNA-free RNA kit (Epicentre). 
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Figure 2.1. Isolation of AVA command interneuron by FACS.  
(A) Cartoon showing bilateral pair of AVA (L+R) neurons in the head region 
extending single processes into the ventral nerve cord. 
(B) Confocal projection of head region (left side, posterior to right, adult) showing 
co-expression (yellow) of rig-3::GFP (green) and glr-1::DsRed2 (red) in AVAL. 
Other command interneurons (AVD and AVE) and the single neuron, AVG, 
express glr-1::dsRed2, but not rig-3::GFP. 
(C) Cultured cells from the rig-3::GFP;glr-1::DsRed2 strain before FACS. Arrows 
point to neurons (yellow) expressing both DsRed2 and GFP. 
(D) GFP + DsRed2 neurons (AVA) after isolation by FACS. 
(E) Scatter plot with sorting gate to exclude dead cells labeled with 7AAD. 
(F) Fluorescence gate to isolate GFP + DsRed2 cells (R5, dual positive cells) 
from rig-3::GFP or glr-1::DsRed2 cells.   
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allowed amplification using the Ovation WT-Pico kit and Exon module (NuGEN, 

Inc.) to produce double-stranded cDNA. RNA quality was evaluated on the 

Agilent Bioanalyzer and amplified with the NuGen Pico-Ovation kit. Because we 

used tiling arrays (see chapter IV) for these samples, a double-stranded 

hybridization probe was generated for each sample with the NuGen Exon 

module. Fragmented and labeled ds cDNA was hybridized to C. elegans whole-

genome tiling microarrays (Affymetrix). The tiling microarrays contain probes 

covering all non-repetitive sequences, allowing us to interrogate gene expression 

throughout the genome. Probes with redundant matches (>17 nt) to the genome 

were removed. Probes located entirely within exons of protein-coding gene 

models (WS200) were used to create a custom chip definition file (CDF) for 

analysis of gene expression. Three reproducible biological replicates were 

obtained for AVA, AVE, and or an all-embryonic cell reference profile. 

To determine which genes are differentially expressed in specific cell-

types, we first needed to compare normalization procedures and statistical tests 

to determine which combination identifies the most true-positives and the fewest 

false-positives. We have compared two normalization procedures (RMA and 

FARMS) and two statistical tests (a moderated t-test/limma and the RankProduct 

test) with the AVA and embryonic pan-neural data sets. RMA (robust-multiarray 

analysis) is a standard normalization procedure for background adjusting probe 

intensities (Irizarry et al. 2003). FARMS (Factorial analysis for robust microarray 

summarization) is a newer normalization method that uses a factorial analysis 
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model to estimate RNA concentration assuming Gaussian measurement noise 

(Hochreiter et al. 2006). These normalization procedures were applied to the raw 

array data and a moderated t-test (limma) or the non-parametric RankProduct 

test were used to detect significant changes in gene expression against the all-

cell reference sample (Breitling et al. 2004; Wettenhall and Smyth 2004; Smyth 

2005). 

We first looked for known AVA-expressed genes in each of the 4 lists (see 

Table 2.2). The RMA-limma analysis detected the most known AVA-expressed 

genes with 15/26. RMA-RankProduct was next at 10/26, then FARMS-

RankProduct (10/26) and FARMS-limma (5/26). The RMA-limma approach 

detects the most known expressed genes and contains the highest number of 

enriched genes (782), but could also contain the highest number of false 

positives. To approximate the number of false positives, we compared each of 

the 4 lists with an embryonic muscle expression profile (Fox et al. 2007). The 

RMA-limma and FARMS-RankProduct lists both detected 19 muscle-enriched 

genes, but the RMA-limma “false-positive” rate is lower at 2.4% vs. 4%. Because 

a significant number of genes are known to be expressed in both muscle and 

neurons, it is possible that at least some of the overlapping transcripts in these 

data sets represent true positives. Therefore, we used the RMA-limma approach 

for determining which genes are differentially expressed in each of our data sets 

(this work ; Gerstein et al. 2010; Spencer et al. 2011). 

For purpose of detecting enrichment of proteins with particular functions in 

these neuron-specific expression profiles, I used a software tool, DAVID (The   
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Table 2.2 Known genes expressed in AVA (WormBase) 
WBGene00000054 acr-15 acetylcholine receptor 
WBGene00001400 fax-1 nuclear hormone receptor        
WBGene00001444 flp-1 FMFRamide neuropeptide precursor        
WBGene00001461 flp-18 FMFRamide neuropeptide precursor        
WBGene00001587 ggr-2 GABA/Glycine receptor         
WBGene00001612 glr-1 Glutamate receptor        
WBGene00001613 glr-2 Glutamate receptor         
WBGene00001615 glr-4 Glutamate receptor         
WBGene00001616 glr-5 Glutamate receptor  
WBGene00001676 gpa-14 G-protein alpha   
WBGene00002129 inx-7 innexin 
WBGene00003000 lin-11 LIM domain homeobox protein 
WBGene00003774 nmr-1 Glutamate receptor         
WBGene00003775 nmr-2 Glutamate receptor      
WBGene00003969 pef-1 protein phosphatase         
WBGene00004370 rig-3 IgCAM 
WBGene00006747 unc-7 innexin 
WBGene00006748 unc-8 degenerin          
WBGene00006749 unc-9 innexin 
WBGene00006778 unc-42 Homeobox domain         
WBGene00006830 unc-103 ERG-like K+ channel 
WBGene00006890 vem-1 cytochrome b5-like heme/steroid-binding domain 
WBGene00009562 flp-22 FMFRamide neuropeptide precursor        
WBGene00019641 K10G6.4 unknown 
WBGene00020368 ast-1 ETS protein     
WBGene00020952 kel-8 keltch-repeat protein 
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Database for Annotation, Visualization and Integrated Discovery) that detects 

potential over-representation of specific GO terms (Huang et al. 2007). The AVA 

expression profile was significantly enriched for 16 clusters of GO terms for 

molecular functions, protein domains, and pathways (see Table 2.3). The most 

significant cluster consisted of the GO terms helicase and ATPase activity. The 

fourth cluster consisted of neuron-associated categories including: synapse, 

postsynaptic cell membrane, glutamate receptor activity, etc. The AVE neuron 

expression profile was significantly enriched for 29 clusters of GO terms. The first 

annotation cluster had a strikingly high number of neuron-associated categories 

including: synapse, ion channel, neurotransmitter-gated ion channel, etc. Other 

annotation clusters included G-protein coupled receptors, PDZ domains, 

neuropeptide activity, and immunoglobulin domains. The enrichment for 

annotation categories related to neuron function underscores the validity of the 

expression profiles and provides evidence for novel functions of these neurons.  

AVA and AVE are capable of responding to multiple neurotransmitter 
signals  
 

AVA and AVE have been previously shown to receive signals from 

presynaptic neurons that secrete the neurotransmitter glutamate. The command 

interneurons express a variety of glutamate receptors (glr-1, glr-2, glr-4, glr-6, 

nmr-1, nmr-2) as evidenced by expression reporters, antibodies, and functional 

studies (Maricq et al. 1995; Zheng et al. 1999; Brockie et al. 2001a; Brockie et al. 

2001b; Brockie and Maricq 2003). The command interneurons have also been 

shown to express acetylcholine receptors (acr-15 and acr-16) and a GABA 
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receptor (ggr-2), although no functional experiments have been performed on the 

GABA receptor (Feng et al. 2006; Wormbase 2006).  

To address whether these and additional neurotransmitter receptors are 

detected in the AVA/AVE expression profiles I mined each profile for 

known/predicted receptors. Each profile robustly detected many of the known 

receptors and identified additional receptors (Figure 2.2). All known AVA/AVE 

glutamate and acetylcholine receptors were identified in one or both profiles. The 

ionotropic glutamate receptors (iGluRs) glr-1, glr-2, glr-4, glr-5, nmr-1, and nmr-2 

have been studied and functionally well-described in the command interneurons 

(Maricq et al. 1995; Brockie et al. 2001a; Mellem et al. 2002; Zheng et al. 2004; 

Walker et al. 2006a; Walker et al. 2006b). For example, the activity of GLR-1 is 

required for the light nose touch response and the frequency of turning in 

response to certain stimuli, such as food (Hills et al. 2004; Chalasani et al. 2007). 

Both AVA and AVE were enriched for glr-1, glr-4, glr-5, and nmr-2, with glr-2 

enriched in AVA and nmr-1 enriched in AVE. The metabotropic glutamate 

receptors, mgl-1 and mgl-2, are enriched in AVA and AVE respectively, and are 

thought to have a neuromodulatory role by functioning at either presynaptic sites 

(mgl-2, Class I) or postsynaptic sites (mgl-1, Class II) to inhibit or promote NMDA 

receptor (iGluRs) activity, respectively. The muscarinic acetylcholine receptor, 

gar-1, is annotated as expressed in AVA in WormBase, but is only enriched in 

AVE. It is possible both neurons express gar-1, but is much more highly 

expressed in AVE. It is also possible that due to the close proximity of the AVA 

cell body to the AVE cell body, the cell expressing gar-1 was incorrectly identified 
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Table 2.3 Enriched GO/KEGG/protein domain categories 

AVA Fold 
enr. AVE Fold 

enr. 
helicase activity 4.3 synapse 8.6 
ATPase activity 3.2 GPCR 6.4 
helicase 2.8 glutamate receptor activity 3.9 
synapse 2.6 PDZ 2.8 
transcription factor 2.2 neuropeptide receptor 2.6 

  
ion transport 2.0 

  
calcium-dependent membrane targeting 1.9 

  
transmembrane 1.6 

  
oxygen binding 1.6 

  
immunoglobulin domain 1.5 
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as AVA instead of AVE. Previously the only GABA receptor annotated as 

expressed in AVA is ggr-2 with no GABA receptor annotated as expressed in 

AVE. In the expression profiles, ggr-2 is detected as enriched in the AVE profile, 

but not in the AVA profile. Two additional GABA receptors are also identified in 

the expression profiles with AVA enriched for gbb-1 and AVE enriched for both 

gbb-1 and gbb-2. These two GABA receptor subunits are orthologs of the 

GABBR1 and GABBR2 GABAB receptors, respectively, and function as a dimer, 

so both are likely to be expressed in AVA and AVE.  

Previously, no biogenic amine receptor was annotated as expressed in 

either AVA or AVE. Interestingly; AVA is enriched for one dopamine/serotonin 

receptor, dop-5, and AVE is enriched for two dopamine receptors dop-1 and dop-

2 and the dopamine/serotonin receptor dop-5. AVE is also enriched for the 

serotonin receptor ser-4, an ortholog of the mammalian 5-HT1 metabotropic 

serotonin receptor. The dopaminergic neurons located in the nerve ring of C. 

elegans, ADE and CEPs, make parallel connections to AVA and AVE, 

respectively, with the ADEs making 11 synapses onto AVA and the CEPs making 

17 synapses onto AVE (Figure 2.3). The primary output of the ADEs is to another 

head interneuron RIG, but AVA has the next highest number of synapses with 

ADE. Likewise, the CEP neurons primarily synapse with the head interneuron 

RIC, but AVE has the next highest number synapses among other interneurons. 

These data suggest ADE to AVA and CEP to AVE signaling likely occurs using 

dopamine through the dop-1, dop-2, and dop-5 receptors and could be 

necessary for dopamine-mediated behaviors in C. elegans. Dopamine signaling 
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mediates the slowing response when animals encounter food (Chase et al. 

2004). It is possible this effect is partially controlled through dopamine neuron 

signaling to the command interneurons. 

AVA and AVE could also be responsive to neuropeptide signaling. 

Accumulating evidence suggests neuropeptide signaling has a modulatory role in 

certain animal behaviors (Li et al. 1999a; Li et al. 1999b; Davis and Stretton 

2001). No neuropeptide receptors were found enriched in AVA, but AVE is 

enriched for npr-11, npr-13, npr-14, and Y58G8A.4. npr-11 has been shown to be 

responsive to the FMRFamide-like peptide flp-1 in the olfactory system of C. 

elegans (Chalasani et al. 2010). Y58G8A.4 is responsive to the flp-18 peptides, 

which are expressed in AVA and other neurons in the head (Kubiak et al. 2008). 

Therefore, neuropeptide signaling could provide a function to modulate the 

activity of AVE. 

Evidence for neurotransmitters used by AVA/AVE to signal to postsynaptic 

targets 

Neurotransmitters released by neurons to signal to downstream neurons, 

usually require enzymes necessary for synthesis and/or transporters used for 

uptake of specific molecules made available by other sources. These molecules 

can then be used directly as a neurotransmitter by packaging into vesicles for 

release at the synapse, or are further processed into another product that is 

packaged for synaptic release. The AVA/AVE enriched gene lists were analyzed 

for genes required for synthesis or uptake of common neurotransmitters 

(glutamate, acetylcholine, GABA, biogenic amines, and neuropeptides). The 
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vesicular glutamate transporter, eat-4, which is required for loading glutamate 

into synaptic vesicles, is enriched in AVE, but not AVA. No plasma membrane 

localized glutamate transporter, which is required for uptake of glutamate from 

the extracellular space, is enriched in either AVA or AVE, but the glutamate 

transporter, glt-6, is detected as an expressed gene (EG, see Methods) in AVA 

and glt-1, glt-4, and glt-6 are detected as expressed genes in AVE. These data 

suggest it is likely that AVA and AVE use glutamate as a neurotransmitter to 

signal to postsynaptic neurons. 

The use of acetylcholine as a neurotransmitter, requires uptake of choline 

into the cell via the choline transporter, cho-1, and the action of a choline 

acetyltransferase enzyme, cha-1, to synthesize acetylcholine. Acetylcholine is 

then loaded into vesicle by the vesicular acetylcholine transporter, unc-17. cho-1 

is enriched in the AVE profile and is detected as an EG in AVA. Yet, the 

biosynthetic enzyme cha-1 and vesicular transporter unc-17 are not detected as 

enriched or as expressed genes in either neuron. A previous study performed 

immunohistochemistry to detect endogenous CHA-1 and UNC-17 protein, but did 

not observe expression in AVA or AVE. Choline has a major role in all cells as an 

essential compound necessary in the synthesis of membrane phospholipid 

components of the plasma membrane (Michel et al. 2006). Choline is the head 

group of phosphatidylcholine, which is a major constituent of neuronal 

membranes and is required for normal axon outgrowth and neuron survival 

(Wurtman 1992; Yen et al. 2001). High expression of the choline transporter in 

AVA and AVE suggests that phosphatidylcholine could be required for survival 
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and/or axon outgrowth that is occurring in embryonic development when these 

neurons were profiled.  

Four biogenic amine neurotransmitters are synthesized from the amino 

acids tryptophan and tyrosine. Serotonin (5-HT) synthesis requires tryptophan 

hydroxylase (tph-1) to generate 5-hydroxytryptophan (5-HTP), and the aromatic 

amino acid decarboxylase (bas-1) to generate serotonin from 5-HTP. tph-1 and 

bas-1 are detected as EGs in AVA, but not in AVE. Interestingly, both AVA and 

AVE are enriched for the vesicular monoamine transporter, cat-1, which loads 

the monoamines into synaptic vesicles. It is therefore possible that AVA could 

use serotonin as a neurotransmitter, but both neurons may use other biogenic 

amines as well. Dopamine synthesis requires the tyrosine hydroxylase, cat-2, to 

make L-DOPA from tyrosine, and the aromatic amino acid decarboxylase, bas-1, 

to convert L-DOPA to dopamine. cat-2 is not detected in either neuron, but bas-1 

is detected as an EG in AVA. With these genes expressed at very low levels or 

not detectable, it is not likely that either neuron uses dopamine as a 

neurotransmitter.  

Tyrosine can also be converted to the neurotransmitter, tyramine, by the 

tyrosine decarboxylase, tdc-1, and tyramine can then be converted to the 

neurotransmitter octopamine by the tyramine β-hydroxylase, tbh-1. tdc-1 is 

enriched in both AVA and AVE, while tbh-1 is only detected as an EG in AVE. 

These data suggest AVA may use tyramine as a neurotransmitter and AVE may 

use tyramine and/or octopamine.  
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Figure 2.2. Signaling components detected in the AVA and AVE command 
interneurons.  
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Neuropeptides are small peptide neurotransmitters that are initially 

expressed as larger pro-proteins that are cleaved by the pro-protein convertase, 

egl-3, and carboxypeptidase E, egl-21 in the endoplasmic reticulum for release 

as dense-core vesicles from the trans-golgi network. These vesicles have been 

visualized by electron microscopy vesicles containing a relatively electron dense 

region in comparison to chemical neurotransmitter vesicles, which are small and 

clear (Pysh and Wiley 1974). egl-3 is detected as an EG in AVE and egl-21 is 

detected as an EG in both AVA and AVE. The CAPS homolog unc-31, which is 

involved in post-docking calcium-regulated dense-core vesicle (DCV) fusion is 

enriched in both AVA and AVE. With the high-level expression of many 

neuropeptides in AVA and AVE (see Figure 2.2), peptidases and a protein 

necessary for DCV fusion, neuropeptide secretion is likely a major signaling 

pathway for AVA and AVE. 

Transcription factors detected in AVA and AVE 

Two transcription factors are known to control aspects of AVA and AVE 

development and function. The paired-like homeodomain gene unc-42 is the 

primary transcription factor required for AVA and AVE cell-fate specification by 

controlling expression of glutamate receptors and axon outgrowth (Hart et al. 

1995; Maricq et al. 1995; Wightman et al. 1997; Baran et al. 1999; Galliot et al. 

1999; Brockie et al. 2001b). While the AVA profile does not detect unc-42, it is 

enriched in the AVE profile. Both AVA and AVE are enriched for the fax-1 nuclear 

receptor that is required for expression of specific glutamate receptors and other 

transcripts in parallel to unc-42 (Much et al. 2000; Wightman et al. 2005). lin-11, 
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encodes a LIM homeodomain protein that has been reported to be expressed in 

AVA and AVE, but lin-11 mutants did not show a loss of glr-1 or unc-42 

expression in AVA (Sarafi-Reinach et al. 2001). Additionally, lin-11 expression 

was not dependent on unc-42 expression, suggesting lin-11 and unc-42 act in 

parallel pathways in AVA. In our expression profiles, lin-11 is detected as 

enriched in AVE and as expressed in AVA.  

By comparing the AVA and AVE enriched gene lists to the worm 

transcription factor compendium (wTF2.1) (Reece-Hoyes et al. 2005), many new 

transcription factors are identified in each neuron. In the AVA enriched gene list, 

28 transcription factors are identified (see Figure 2.4a), while in the AVE enriched 

gene list, 16 transcription factors are detected (see Figure 2.4b). Three 

transcription factors are enriched in both profiles: fax-1, F10B5.3, and ZK686.4. 

fax-1 is previously known to be expressed as mentioned above, but F10B5.3 and 

ZK686.4 are both novel. F10B5.3 is an uncharacterized nematode-specific C2H2 

class zinc finger transcription factor and ZK686.4 is an uncharacterized 

conserved C2H2 class zinc finger transcription factor. ZK686.4 is the homolog of 

the vertebrate Zinc finger matrin-type protein 2 (Zmat2), which has not been 

previously studied, but is highly expressed in the mouse brain 

(http://mouse.brain-map.org/brain/gene/69080733.html). In total, 41 transcription 

factors are detected in either AVA or AVE, with the zinc finger family being the 

most prevalent in each neuron, which is not surprising since most of the 

transcription factors encoded in the C. elegans genome are in the zinc finger 

family (575/931, 62%) (Reece-Hoyes et al. 2005). 
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Figure 2.4. Transcription factor families identified in (A) AVA and (B) AVE 
expression profiles.  
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Figure 2.3. Synaptic connections between the dopaminergic neurons ADE and 
CEP and the command interneurons AVA and AVE.  
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Adhesion molecules enriched in AVA and AVE 

Adhesion molecules contribute to the architecture and connectivity of the 

nervous system. To identify adhesion molecules that may play a role in AVA and 

AVE axon guidance and connectivity, I mined the AVA and AVE enriched gene 

lists for genes encoding proteins with either immunoglobulin (Ig) or cadherin 

(Cdh) protein domains. Ig domains have been previously shown to play an 

important role in axon guidance and connectivity (Biederer et al. 2002; Shen and 

Bargmann 2003; Shen et al. 2004; Washbourne et al. 2004). There are four 

genes each, enriched in AVA and AVE that encode Ig domain containing 

proteins. Three of the four genes are shared between AVA and AVE, rig-3, lad-2, 

and zig-8. AVA is also enriched for a peroxidasin, pxn-1, and AVE is enriched for 

syg-1. The rig-3 Ig-domain cell adhesion molecule has been shown to have a 

minor contribution to proper axon guidance of the command interneurons 

(Schwarz et al. 2009). We used the promoter of rig-3 to drive GFP expression as 

a marker for AVA in this study, which shows the rig-3 transcript is highly 

expressed in AVA. rig-3 is also enriched in AVE, which is not seen with the GFP 

reporter (i.e., there is no overlap with Pglr-1::DsRed2 expression, which does 

express in AVE, see Figure 2.1), suggesting the promoter fragment used to drive 

GFP expression does not contain all of the endogenous regulatory elements to 

control rig-3 expression. rig-3 has been previously detected as enriched in DA 

motor neurons, which are major postsynaptic targets of AVA and AVE. This 

circuit is responsible for driving backward locomotion. These results therefore 

identify rig-3 as a candidate cell surface protein for promoting the formation of 
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synapses between AVA/AVE and A-class motor neurons (see Chapter III). lad-2 

encodes is a non-canonical member of the L1 cell-adhesion molecule family. 

Previously, lad-2 was not detected as expressed in either AVA or AVE, but a lad-

2 mutant was shown to have axon guidance defects in the SDQL neuron (Wang 

et al. 2008). AVA and AVE are also enriched for the zig-8 gene, which encodes a 

putative secreted Ig-domain cell adhesion molecule and loss of zig-8 results in 

minor PVQ, PVP, and HSN axon guidance defects (Benard et al. 2009). The 

peroxidasin homolog, pxn-1, is enriched in AVA and has been suggested to 

negatively regulate basement membrane formation or function (Gotenstein et al. 

2010). In addition to the peroxidase domain, pxn-1, encodes a leucine-rich repeat 

domain and 2 Ig domains. Due to its known role in basement membrane function, 

AVA may secrete PXN-1 to modify the surrounding basement membrane. AVE is 

enriched for a novel Ig domain adhesion molecule, syg-1, that is required for 

proper localization of HSN motor neuron synapses on vulval muscle (Shen and 

Bargmann 2003). syg-1 is also enriched in A-class motor neurons suggesting a 

role in this circuit (Von Stetina et al. 2007). 

Cadherins are single-pass transmembrane proteins that are involved in 

Ca2+-dependent homotypic interactions that are necessary for tissue 

morphogenesis (Hill et al. 2001). The C. elegans genome contains 15 genes that 

encode proteins with cadherin-like extracellular domains (Hill et al. 2001). No 

cadherins are enriched in AVA, but AVE is enriched for two genes, cdh-1 and 

cdh-10. Little is known about cdh-1 and cdh-10 except that in a genome-wide 

RNAi screen, knockdown of cdh-1 in an RNAi-sensitized background [rrf-
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3(pk1426)] resulted in locomotion defects (Simmer et al. 2002). The AVE axon is 

unique among the command interneurons since it stops short of the vulva, 

whereas the AVA axon extends along the entire length of the ventral nerve cord 

into the tail region. Adhesion molecules unique to AVE like cdh-1 and cdh-10 are 

therefore candidates for proteins that terminate axon outgrowth. This possibility 

could be readily determined by visualizing AVE morphology in cdh-1 or cdh-10 

mutant backgrounds. 

Discussion 

 The combination of cell culture and FACS has proven invaluable to 

numerous areas of biology from cell cycle research to high-throughput drug 

screening. Primary cell culture of C. elegans embryonic cells has been an 

accessible method for 10 years with the majority of publications focusing on 

isolating cell-types of interest for gene expression profiling (Christensen and 

Strange 2001; Zhang et al. 2002; Colosimo et al. 2004; Fox et al. 2005; 

Etchberger et al. 2007; Fox et al. 2007; Von Stetina et al. 2007; Spencer et al. 

2011). Our focus has not only been to utilize this method for identification of 

genes involved in particular cellular pathways, but to extend the method allowing 

routine isolation of a single cell-type. In this work, we demonstrate that using 

available fluorescent protein-based expression reporters, a single cell can be 

marked using the combination of two different fluorophores expressed under the 

control of promoters that uniquely overlap in that cell. Cells expressing GFP and 

DsRed2 are easily detected by modern flow cytometers and dead cells can be 

discarded by use of the DNA-binding dye 7-aminoactinomycin D. The isolation of 
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a rare cell-type results in a pure, but relatively small number of cells and 

therefore limited amounts of RNA. To overcome this obstacle to expression 

analysis, I optimized isolation intact RNA from sorted cells used an RNA 

amplification protocol to generate sufficient material for microarray profiling (Fox 

et al. 2005; Fox et al. 2007; Von Stetina et al. 2007; Watson et al. 2008; Spencer 

et al. 2011). 

AVA and AVE utilize multiple neurotransmitter receptors and signaling 
systems to control locomotion  
 

We applied this method to individual left/right pairs of neurons that 

function in controlling backward locomotion in the C. elegans motor circuit. The 

AVA command interneuron is the most highly connected neuron in the C. 

elegans nervous system (White et al. 1986). The AVE command interneuron also 

displays are large number of synapses and gap junctions, but plays a lesser role 

in controlling locomotion (Chalfie et al. 1985; White et al. 1986). Integration of 

signals from diverse sensory neurons and interneurons would be expected to 

require a broad array of ligand-specific receptors. From our expression profiles, 

we detected receptors that for multiple types of neurotransmitters including 

glutamate, acetylcholine, GABA, dopamine, serotonin, and neuropeptides. These 

receptors are not solely activating receptors, but also have inhibitory and 

modulatory roles. These results are consistent with a model in which AVA and 

AVE command interneurons are responsive to a wide spectrum of 

neurotransmitters that are likely integrated to produce coherent output to motor 

neurons that control locomotion. 
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The neurotransmitters that interneurons release to regulate motor neuron 

activity have not been directly identified, however. Gene expression profiles of 

the principle AVA and AVE postsynaptic targets, the ventral cord DA and VA 

motor neurons (A-class motor neurons) (White et al. 1986) have provided some 

clues. These studies detected robust expression in A-class motor neurons of 

receptors for multiple classes of neurotransmitters including acetylcholine, 

GABA, dopamine, serotonin, and neuropeptides. Acetylcholine receptor subunits 

are the most prevalent (Fox et al. 2005; Von Stetina et al. 2007). The AVA and 

AVE expression profiles present moderate evidence for the packing and/or 

synthesis of several signaling molecules. Interestingly, both AVA and AVE are 

highly enriched for the vesicular monoamine transporter cat-1, which loads 

biogenic amines into synaptic vesicles. The A-class motor neurons express 

dopamine (dop-1) and serotonin receptors (ser-4 and ser-7). Since AVA also 

expresses the serotonin synthetic enzymes tph-1 and bas-1, it is possible AVA 

signals to A-class motor neurons using serotonin. AVA and AVE also express 

many neuropeptides and A-class motor neurons express several neuropeptide 

receptors, thus peptidergic signaling may play a crucial role in communication 

between these neurons. 

Connectivity between AVA, AVE, A-class motor neurons 

 Due to the reproducible specificity of synaptic inputs of AVA and AVE, with 

A-class motor neurons (White et al. 1986; White et al. 1992), this motor circuit 

presents an attractive model for studying synaptic specificity. The unc-4 

homeodomain transcription factor functions in the A-class motor neurons to 
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inhibit B-class motor neuron fate and to maintain connections with AVA, AVE, 

and AVD (Miller et al. 1992; White et al. 1992; Miller et al. 1993; Miller and 

Niemeyer 1995; Pflugrad et al. 1997), but little is known of how the command 

interneurons interact with motor neurons targets to coordinate synaptogenesis. 

Studies in C. elegans and other systems have shown that adhesion molecules 

can contribute to synaptic specificity (Shen and Bargmann 2003; Shen et al. 

2004) and laminar targeting (Yamagata et al. 2002). In this study, we have 

identified three Ig-domain cell adhesion molecules enriched in AVA and AVE 

(lad-2, zig-8, and rig-3). The embryonic A-class motor neurons are also enriched 

for rig-3 (Fox et al. 2005). Some IgCAMs are able to participate in homophilic 

binding (Miller et al. 1995; Tian et al. 2000), suggesting the RIG-3 protein may 

bind to itself homophilically between AVA/AVE and A-class motor neurons to 

trigger synaptogenesis (see Chapter III).  

The availability of gene expression data set for the AVA and AVE 

interneurons should facilitate future studies to identify specific gene products that 

are used by these command interneurons to integrate signals received from 

sensory neurons and propagate them to motor neurons. Additionally, due to the 

well-defined specificity synaptic connections involving these neurons, candidate 

signaling pathways and adhesion molecules suggested by these neuron-specific 

profiles can be tested for roles in defining this circuit diagram. It should also be 

possible to augment these transcriptome-profiling strategies by applying new 

methods of measuring gene expression (RNA-Seq) and by exploiting a new 

larval cell isolation procedure to generate companion profiles of these neurons  
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during the period in which they establish connections with postembryonically 

derived motor neurons (McWhirter RD, Spencer WC, Miller DM, unpublished 

results; Zhang et al. 2011). 
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CHAPTER III 

 

THE CELL ADHESION MOLECULE, RIG-3, PROMOTES SYNAPSE 

FORMATION IN THE BACKWARD MOTOR CIRCUIT 

 

Introduction 

Development of the nervous system is a complex multi-step process. 

Synaptic choice appears to occur after cell-fate specification and axon outgrowth 

to the target region and thus is likely to depend on mechanisms whereby neurons 

recognize specific partners (Jontes and Phillips 2006). Molecules that promote 

general synaptogenesis, such as NCAM and some FGFs are known, but the 

mechanisms that allow neurons to discriminate between many potential synaptic 

targets are not well understood (Rutishauser et al. 1985; Tosney et al. 1986; 

Caday et al. 1990; Li et al. 2002; Salinas 2005; Waites et al. 2005). It has been 

hypothesized that cell-type specific expression of different isoforms of the 

adhesion molecules DSCAM, neurexin/neuroligin, or SynCAM would generate 

the needed specificity (Zipursky et al. 2006; Hattori et al. 2007). These molecules 

have been shown to be important for synaptic specificity in certain contexts, yet 

there are many circuits in the brain that do not rely on these proteins for 

connectivity (Caday et al. 1990; Salinas 2005; Gerrow and El-Husseini 2006). 

Therefore, additional novel mechanisms for the establishment of synaptic 

partners must exist. 
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Cell adhesion molecules and synaptic specificity. 

 It has become apparent that cell adhesion molecules (CAMs) are 

important for synaptic specificity. Specific CAMs localize to synaptic regions and 

show various effects on neuronal function and synapse formation (Biederer et al. 

2002; Yamagata et al. 2003). These molecules include cadherins, proto-

cadherins, NCAM, nectins, Fasciclin II, sidekick-1/-2, SynCAM, SYG-1/SYG-2, 

among others (Gerrow and El-Husseini 2006). The cadherins, sidekicks, and 

SYG-1/SYG-2 have provided the greatest insight into synaptic specificity thus far 

(Yamagata et al. 2002; Shen and Bargmann 2003; Shen et al. 2004; Takeichi 

and Abe 2005). These molecules have been shown to be critical for the 

establishment of specific circuits in the nervous system.  

Cadherins are one class of classical Ca2+-dependent adhesion molecules. 

Originally described as generic adhesion molecules for various tissues, evidence 

for their potential role in synaptic specificity is growing (Hatta and Takeichi 1986; 

Takeichi and Abe 2005). Recent studies indicate that cell- and lamina-specific 

expression of certain cadherins allow homophilic binding to promote 

synaptogenesis (Masai et al. 2003). Using a short intracellular domain, cadherins 

bind another family of proteins, the catenins, to mediate protein-protein 

interactions that are necessary for synaptogenesis (Benson and Tanaka 1998). 

β-catenin is known to recruit PDZ domain containing proteins through its PDZ 

binding motif (Bamji et al. 2003). These results suggest cadherins are involved in 

clustering of synaptic components, but additional work is needed to clarify the 

molecular components of this signaling pathway. 
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Sidekick, a transmembrane Immunoglobulin cell adhesion molecule 

(IgCAM) was originally identified in a screen for retinal patterning factors in 

Drosophila (Nguyen et al. 1997). An independent study identified the vertebrate 

(chick) homolog, sidekick-1 (sdk-1) and paralog sidekick-2 (sdk-2), in a screen 

for retinal ganglion cell-specific genes. The vertebrate sidekicks are expressed in 

specific retinal neurons and sub-lamina of the internal plexiform lamina, the 

target of retinal neurons. Ectopic expression of sdk-1 was sufficient to alter 

connectivity to the expressing target sub-lamina. Thus, the “sidekicks” appear to 

function as instructive cues for lamina specificity (Yamagata et al. 2002; 

Yamagata and Sanes 2008). The downstream mechanisms that trigger synapse 

formation in this location are unknown, however. 

Recent studies in C. elegans have revealed a pair of IgCAM proteins that 

specify the creation of a particular set of synapses. In C. elegans, egg-laying is 

controlled by the HSNL motor neuron, which synapses with vulval muscle. SYG-

1 is expressed in the HSNL motor neuron and functions as the receptor to the 

guidepost protein SYG-2, which is expressed in adjacent vulval epithelial cells 

(Shen and Bargmann 2003; Shen et al. 2004). Thus, SYG-2 expression 

effectively marks the location for synapse formation. Both molecules contain 

immunoglobulin and fibronectin type-III domains. Absence of SYG-2 results in 

reduced number of synapses on vulval muscle and ectopic expression of SYG-2 

drives accumulation of SYG-1 clusters and ectopic synapse formation. SYG-1 

and SYG-2 are expressed in other specific C. elegans cells, but it is not yet 

apparent if they also provide instructive cues for synapse formation in other 
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neural circuits or how they promote pre-synaptic organization. It has recently 

been shown that in addition to specifying the location of synapse formation, SYG-

1 protects the adjacent synapse from degradation by the ubiquitin-proteasome 

system (UPS) (Ding et al. 2007).  

Previous approaches for identifying synaptic specificity molecules have 

included candidate gene analysis and genetic screens for connectivity-defective 

mutants (Mann et al. 2002; Shen and Bargmann 2003). Cell-specific microarray 

profiling offers an alternative strategy for identifying synaptogenic components. 

One successful example of this approach used the Drosophila neuromuscular 

junction (NMJ) as a model for delineating synaptic specificity genes (Inaki et al. 

2007). This study focused on two neighboring embryonic muscle cells with that 

are connected to separate sets of motor neurons. The muscle cell M12 is 

innervated by the motor neurons RP5 and V whereas the adjacent M13 muscle 

cell is innervated by the motor neurons RP1 and RP4. To identify genes 

encoding instructive cues for innervation, the authors generated single-cell 

expression profiles of the two muscle cells using the Affymetrix Drosophila 

expression microarray. Comparison of the M12 vs M13 profiles revealed 

differentially expressed transcripts. Of particular interest, Wnt4 is expressed at 

high levels in M13 and low levels in M12. Genetic analysis showed that Wnt4 

acts as an inhibitory cue that prevents innervation of M13 by motor neurons 

(RP5, V) that normally make connections with M12. The microarray experiment 

also detected additional transcripts for a subset of membrane and secreted 

proteins with potential roles in this process. This study demonstrates that cell-
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specific expression profiles can provide a wealth of candidate molecules for 

determining synaptic choice. This approach will likely be invaluable for identifying 

synaptic specificity molecules in other systems. 

 The C. elegans motor circuit provides a useful model for elucidating 

additional synaptic specificity mechanisms. EM reconstruction has provided a 

complete wiring diagram of the nervous system and the lineage of each cell is 

known (White et al. 1976; Sulston et al. 1983). This comprehensive atlas 

provides a clearly defined map of neuron-specific connections. For example, 

Figure 3.1 depicts connections for the excitatory neurons in the motor circuit. The 

motor circuit consists of command interneurons, which reside in head and tail 

ganglia and their motor neuron targets In the ventral nerve cord. Separate 

circuits drive forward or backward locomotion. The command interneurons AVA, 

AVD, and AVE synapse with the DA and VA motor neurons to mediate backward 

locomotion. Forward movement depends on the command interneurons AVB and 

PVC, which provide inputs to DB and VB motor neurons. Genetic experiments 

have shown that synaptic choice in the backward circuit is controlled by selective 

expression of the homeodomain transcription factor UNC-4 in DA and VA motor 

neurons (Miller et al. 1992). unc-4 mutant animals can move forward but not 

backward. This behavioral defect arises from specific miswiring of VA motor 

neurons. In unc-4 mutants, the synapses between the backward movement 

command interneurons (AVA, AVD, AVE) to VA motor neurons are replaced with 

gap junctions from AVB and chemical synapses with PVC (White et al. 1992).  
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Figure 3.1. Schematic of the excitatory components of the motor circuit.  
The backward movement circuit is depicted in blue and the forward movement 
circuit is depicted in red. The command interneurons form en passant synapses 
onto the motor neurons in the ventral nerve cord. 
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Thus, in unc-4 mutants, VA motor neurons acquire synaptic inputs normally 

reserved for their sister VB motor neurons. Recent work has shown that VA 

miswiring in unc-4 mutants depends on de-repression of a VB-specific 

homeodomain transcription factor, the HB9 homolog, CEH-12 (Von Stetina et al. 

2007). Interestingly, genetic experiments indicate that only VA motor neurons in 

the posterior ventral cord are miswired due to ectopic ceh-12, but not VA motor 

neurons in the anterior cord. This finding suggests that UNC-4 is likely to control 

additional downstream pathways that function in parallel to ceh-12 to preserve 

normal inputs to anterior VAs. These results show that the Unc-4 phenotype is a 

result of changes in gene expression in VA motor neurons. The downstream 

molecules which are regulated by these transcription factors (UNC-4 and CEH-

12/HB9) and which allow the command interneurons to discriminate between A 

vs B-class motor neurons are unknown.  

 The mechanisms underlying synaptic specificity remain poorly understood. 

Previous work indicates that CAMs are likely candidates for molecules necessary 

for synaptic specificity (Abbas 2003). Several different classes of IgCAMs are 

expressed in the C. elegans nervous system, yet few have been investigated for 

functional roles in synaptic choice (Vogel et al. 2003). The C. elegans motor 

circuit provides a unique opportunity for detailed analyses of these molecules 

and for strategies to identify additional determinants of synaptic specificity (see 

Figure 3.1 for a diagram of the C. elegans motor circuit). The existence of a well-

defined wiring diagram and predictable movement phenotypes arising from 

specific changes in this network can be exploited to evaluate the function of 
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candidate synaptic determinants. In the previous chapter, I described adhesion 

molecules expressed in AVA that could play a role in synaptic connectivity 

between AVA and the A-class motor neurons. One of those adhesion molecules, 

rig-3, encodes an immunoglobulin domain cell adhesion molecule. The RIG-3 

protein is predicted to contain 2-3 immunoglobulin (Ig) domains and a diverged 

Fibronectin-type III (Fn-III) domain (see Figure 3.2). The RIG-3 IgCAM was an 

attractive candidate gene and here I describe my efforts to test the hypothesis 

that RIG-3 is required for normal connectivity between AVA and the A-class 

motor neurons. Phenotypic analysis reveals that ablation of the rig-3 gene results 

in abnormal movement and defects in synaptic connectivity between AVA and 

the A-class motor neurons. 

Materials and Methods 

Nematode Strains 

 Nematodes were grown as described (Brenner 1974). The RB1712 strain 

containing the rig-3(ok2156) mutation was obtained from the Caenorhabditis 

Genetics Center (CGC). RB1712 was backcrossed 5 times to the standard N2 

(Bristol) strain to remove potential background mutations. The rig-3::GFP strain 

OH4326 was obtained from the CGC. The spGFP strain containing 

wyEx1845[unc-4::nlg-1::spGFP1-10 (20ng/ml), flp-18::nlg-1::spGFP11 (30 

ng/ml), odr-1::DsRed2 (50 ng/ml)] was obtained from Kang Shen’s laboratory. 

Microscopy 

 Videos of animal locomotion were recorded using an RGB video camera 

mounted to a Zeiss Stemi 2000 dissecting microscope. GFP expressing animals 
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were visualized by epifluorescence microscopy using a Zeiss Axiovert 200M 

compound microscope and confocal microscopy using a Zeiss LSM510. Images 

were captured with an ORCA ER CCD camera (Hamamatsu Corporation, 

Bridgewater, NJ). 

Results 

rig-3 mutants show a backward locomotion defect. 

The rig-3 gene encodes an IgCAM that is expressed in AVA and AVE, 

with no evidence for expression in other command interneurons. As shown in 

Figure 3.1, AVA is uniquely marked by co-expression of rig-3::GFP, which is 

expressed in AVA and a handful of additional head neurons and glr-1::DsRed2, 

which is expressed in all command interneurons. To explore the potential role of 

this cell adhesion molecule in AVA development or function, I obtained a deletion 

mutation, which ablates most of the rig-3 coding region (Fig. 3.1). The rig-

3(ok2156) mutants display an obvious defect in backward, but not forward 

locomotion (Figure 3.3). This observation is consistent with a defect in the ventral 

cord motor circuit that AVA regulates.  

rig-3 mutants have a reduced number of synapses. 

The ability of AVA to control backward locomotion depends on normal 

synaptic connections to the A-class motor neurons. By visualizing the chemical 

synapses formed between AVA and A-class neurons I can determine whether 

neuronal connectivity is normal. To test this idea, I used a synaptic marker 

designed to label specific synapses (Feinberg et al. 2008). This marker utilizes 

split GFP to localize specifically to AVA to A-class neuron synapses. In AVA, nlg-  



 69 

 

Figure 3.2. rig-3 encodes an immunoglobulin-containing adhesion molecule.  
(A) Gene model of rig-3. The mutation of the rig-3 gene is depicted with the blue 
bar representing the deletion spanning 5 exons. (B) Protein domain model of 
RIG-3. Two Ig domains are shown in green ellipses and a fibronectin type-III 
domain with the orange hexagon. RIG-3 is predicted to be GPI-anchored at 
amino acid 466 (red line with diamond marker).  
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Figure 3.3. rig-3(ok2156) mutants display a backward movement phenotype. 
Over 40 frames, WT animals complete 2 backward body bends (left column). rig-
3 mutants fail to complete a backward body bend (right column). Beginning of 
backward locomotion is marked with a star.  



 71 

1/Neuroligin is fused to one fragment of GFP and localizes to the presynaptic 

terminals of AVA. In the A-class motor neurons, nlg-1 is fused to a 

complementary GFP fragment and is positioned at the postsynaptic membrane of 

the A-class neurons (NLG-1 localizes to both pre- and postsynaptic domains). 

The close proximity of the split GFP fragments at the AVA-A motor neuron 

synapses results in reconstitution of fluorescent GFP molecules. I crossed the 

split GFP (spGFP) marker into the rig-3 deletion mutant and compared the 

number of fluorescent puncta to wildtype animals. As shown in Figure 3.4, rig-3 

mutants show significantly fewer fluorescent puncta than wildtype (P < 0.05, 

Wilcoxon Rank Sum test, N > 20). This result suggests that rig-3 mutants have a 

synaptic connectivity defect, but leaves open the possibility for other 

explanations: AVA or A-class neurons could have a process placement defect, 

AVA or A-class neurons may have a synaptic organization defect, or rig-3 could 

positively regulate the expression of either spGFP transgene driven by the flp-18 

and unc-4 promoters.  

rig-3 mutant AVA axons have minor guidance defects 

To address the possibility of AVA axon guidance defects, I crossed the rig-

3::GFP reporter into the rig-3 mutant and then evaluated the GFP-marked AVA 

neuron for process placement defects in the ventral cord. AVA shows minor axon 

guidance defects in the rig-3 mutant, which therefore suggests that the 

misplacement of AVA does not account for the loss of synapses (see Figure 3.5). 

My results corroborate earlier and an earlier finding that also detected a mild 

axon guidance phenotype for rig-3 mutants that becomes more severe when 
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combined with other mutations in other adhesion molecules (Schwarz et al. 

2009). This result suggests that the RIG-3 protein could exercise independent 

functions in synaptogenesis and axon guidance.  
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Figure 3.4 RIG-3 is required for AVA to A-class neuron synaptic connectivity.  
(A) Diagram of spGFP strain marking synapses between AVA and A-class 
neurons. (B) spGFP puncta in a wildtype animal (100x mag.) (C) spGFP puncta 
in a rig-3(ok2156) mutant (63x mag.). (D) Mean number of spGFP puncta for 
wildtype and rig-3(ok2156) mutant animals (Whiskers = lower/upper bounds of 
distribution, Box edges = 25th and 75th percentiles, P = 0.002, Wilcoxon Rank 
Sum test, N > 20 each group).  
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Figure 3.5 AVA axons show mild defects in rig-3 mutants. 
(A) Prig-3::GFP in WT (B) Prig-3::GFP in rig-3(ok2156). Young adult animals are 
shown from head to near vulva, with anterior to the left, ventral view in A, and 
lateral view in B. White arrows mark minor AVA axon defasiculations in the 
ventral nerve cord. 
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Discussion 

 Studies on neuronal circuit formation have largely focused on axon 

guidance and synapse formation. Efforts to reveal how neurons identify the 

proper synaptic partners have been stymied by the need to reproducibly target 

synaptic partners for experimental analysis. In this study, I have taken advantage 

of the stereotyped connectivity in the C. elegans motor circuit and available 

molecular tools to test the role of the IgCAM, RIG-3, in synapse formation 

between the AVA command interneuron and the A-class motor neurons.  

 rig-3 mutants have an obvious backward movement phenotype implying a 

defect in the backward locomotory circuit. By using a fluorescent marker that 

specifically labels AVA to A-class motor neuron synapses, I have shown that rig-

3 is required for formation of these synapses. It is not yet clear whether RIG-3 is 

provides a permissive or an instructional cue. One experiment to address this 

question would be to cell-specifically express RIG-3 in a neuron that does not 

normally synapse with AVA and determine whether ectopic synapses are formed 

between the two neurons. It is also possible, that RIG-3 is necessary for 

assembly of all AVA synapses. This hypothesis can be tested by assaying 

synapses between AVA and other pre- and postsynaptic neurons, such as PVD 

and PVC.  

 A major prerequisite for experimentally testing synaptic specificity is the 

lack of an effect on axon guidance. If a molecule has dual roles in axon guidance 

and synaptic specificity, it would be difficult to determine whether the molecule is 

involved in specificity. Axons and dendrites must be adjacent for en passant  
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Figure 3.6 Model of RIG-3 mediated initiation of synaptogenesis between AVA 
and A-class motor neurons
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synapse formation. Previous work and my results show that the axons of AVA 

are essentially wildtype with few deviations from the normal placement in the 

ventral nerve cord (Schwarz et al. 2009). Schwarz, et al., also show that rig-3 

mutants do not have significant DA motor neuron process defects. It is not yet 

known whether VA motor neuron dendrites are normal in rig-3 mutant animals. 

By crossing an unc-4::mCherry expressing strain with the rig-3::GFP strain in the 

rig-3 mutant background, would determine if AVA axons and A-class dendrites 

are directly adjacent. 

rig-3 was known to be expressed in AVA and other microarray studies 

have shown that rig-3 is also expressed in AVE and the A-class motor neurons (II 

; Fox et al. 2005). This expression pattern is thus far exclusive to neurons that 

function in the backward-movement circuit. Cell-specific transcriptome profiling of 

AVB and PVC command interneurons and the B-class motor neurons will be 

necessary to determine whether rig-3 is expressed in the forward motor circuit as 

well. If rig-3 is exclusively expressed in the backward-movement circuit, then it is 

possible rig-3 could provide the instructive cue for synapse formation between 

AVA, AVE, AVD and the A-class motor neurons. It would also be necessary to 

test whether synapses between AVB, PVC, and the B-class motor neurons are 

normal in rig-3 mutant animals.  

The closest homolog to RIG-3 is the Drosophila IgCAM klingon (Hutter et 

al. 2000; Teichmann and Chothia 2000). Both proteins are predicted to contain 2-

3 Ig domains and a divergent Fibronectin type-III domain. This domain 

architecture is similar to mammalian NCAM (Teichmann and Chothia 2000). 
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NCAM has been extensively studied revealing a wide variety of roles in synapse 

formation, axon guidance, learning and memory (Rutishauser et al. 1985; Muller 

et al. 1996; Cremer et al. 1997; Dityatev et al. 2000; Eckhardt et al. 2000; Bukalo 

et al. 2004; Kleene and Schachner 2004). The roles of IgCAMs in the nervous 

system are likely conserved, thus future studies of RIG-3 function in the C. 

elegans motor circuit could provide clues on how IgCAMs contribute to 

generating the complex architecture of the brain. 
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CHAPTER IV 

 

A SPATIAL AND TEMPORAL MAP OF C. ELEGANS GENE EXPRESSION 

 

This chapter has been published by the journal Genome Research in the 

February 2011 issue (http://genome.cshlp.org/content/21/2/325.full). I am co-first 

author with Georg Zeller on the basis of my role in planning this project and 

paper and in producing and analyzing tiling array results. My work on the paper 

involved development of 2-color fluorescence-activated cell sorting for isolating 

single neurons, optimizing RNA purification from FACS isolated cells for NuGEN 

WT-PICO amplification, basic tiling microarray analysis, performing quality 

control on microarray data, microscopy of GFP reporters, RT-PCR analysis of 

novel transcripts, qRT-PCR analysis of novel transcripts, analyzing microarray 

results and advising Rebecca McWhirter and Kathie Watkins in cell culture, RNA 

isolation and RNA amplification procedures. Georg Zeller performed a majority of 

the data analysis assisted by Stefan Henz, Gunnar Rätsch, and Clay Spencer. 

Cell-specific plasmids and transgenic lines used for profiling were generated by 

Joseph Watson, Kathie Watkins, Steven Von Stetina, Sarah Anthony, and Clay 

Spencer. Rebecca McWhirter, Kathie Watkins and Joseph Watson produced 

most of the cell-specific data sets. Staged whole-animal tiling array data sets 

were produced by Jeanyoung Jo and Valerie Reinke. I worked closely with David 

Miller to plan and write this paper. 
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Introduction 

The generation of specific cell types depends on spatial and temporal 

control of gene expression. The nematode C. elegans has been widely utilized to 

address this question because of its simple body plan and fully sequenced 

genome (Hillier et al. 2005). Although comprised of fewer than 1,000 somatic 

cells, the tissues of C. elegans adults include cell types characteristic of all 

metazoans such as muscle, nerve, intestine, skin, etc (Altun 2002-2010). 

Moreover, the developmental origin of each of these cells is fully described in a 

complete map of cell divisions from fertilized zygote to sexually mature adult 

(Sulston and Horvitz 1977; Sulston et al. 1983). The C. elegans genome 

sequence is also precisely defined, and at ~100 Mb is about 1/30 the size of the 

human genome (Hillier et al. 2005). However, with 20,168 predicted genes 

(http://wiki.wormbase.org/index.php/WS200), the C. elegans protein-coding 

genome is only slightly smaller than that of humans 

(http://www.sanger.ac.uk/PostGenomics/encode/stats.html). Major classes of 

non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) are also represented 

in C. elegans (Ruby et al. 2006; Kato et al. 2009). Thus, C. elegans provides a 

simple but representative model of development that depends on differential 

expression of a compact, well-described genome. Although C. elegans is 

completely sequenced, some predicted genes lack direct evidence of 

transcription and other cryptic protein-coding genes and ncRNAs are likely to 

have been overlooked by gene prediction software (Hillier et al. 2009; Schweikert 

et al. 2009). In addition, the cell-specific expression patterns of the majority of C. 
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elegans genes are unknown. Thus, the anatomy and development of the animal 

is defined at the resolution of the single cell but a comparably precise atlas of 

gene expression is not currently available. 

The goal of a comprehensive gene expression map has been achieved in 

part by analysis of promoter::GFP fusions for a broad array of protein coding 

genes (Dupuy et al. 2007; Hunt-Newbury et al. 2007; Murray et al. 2008; Liu et 

al. 2009). This methodology, however, is generally not quantitative and can be 

misleading if key regulatory elements are omitted from the reporter genes (Hunt-

Newbury et al. 2007). We have adopted the alternative strategy of measuring 

native transcripts from a broad array of specific tissues and cell-types. In 

addition, we used whole genome tiling arrays in order to sample the entire non-

repetitive genome and therefore achieve an unbiased approach to transcript 

discovery. In addition to assigning gene expression to identified tissues and 

stages, our approach of analyzing different cell types and developmental periods 

also ensures detection of RNAs that may be selectively expressed during 

discrete temporal intervals or in limited numbers of cells. We accomplished this 

goal by utilizing recently developed methods for obtaining RNA from specific C. 

elegans cells (Roy et al. 2002; Zhang et al. 2002; Fox et al. 2005). Altogether, we 

sampled 13 embryonic cell types and 12 larval and adult tissues. We also 

produced tiling array data sets for whole animal RNA isolated from seven 

different developmental stages. Additional profiling results were obtained from 

larval males and from the hermaphrodite gonad and soma. Thus, our datasets 

significantly enhance a growing body of tissue and stage specific gene 
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expression for C. elegans (McKay et al. 2003; Pauli et al. 2005; Von Stetina et al. 

2007; Meissner et al. 2009). Our results indicate that most protein coding genes 

(~75%) are differentially expressed among the stages and cell types that we 

sampled. In addition to providing evidence of extensive gene regulation, these 

results should also greatly aid genetic analysis by suggesting cell types or 

developmental stages in which highly expressed transcripts are likely to function. 

For example, our results provide the first comprehensive description of gene 

expression in C. elegans primordial germ cells and led to the discovery that 

proteins encoded by a subset of these genes are expressed well before their 

established roles in meiosis and oogenesis. To identify novel transcripts, we 

utilized a recently developed computational method for recognizing transcribed 

regions irrespective of their annotation status (Laubinger et al. 2008). This 

approach revealed a large number of previously unannotated transcripts 

encoded by at least 10% of the C. elegans genome. These novel transcripts 

show striking cell specificity that may be indicative of tissue-specific functions. To 

facilitate the use of these data for future studies of gene function, we provide 

online resources for visualizing transcribed regions in a genome browser and for 

estimating relative gene expression levels across tissue types and 

developmental stages.  

Methods and Materials 

Detailed methods for cell culture, FACS, amplification, microarray 

hybridization, probe mapping and annotation, expression above background and 

differential expression analysis are described in Chapter II. 
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Construction of cell-specific 3XFLAG::PAB-1 plasmids  

A Gateway (Invitrogen) compatible mRNA-tagging vector, pSV41 

(Pgateway::3XFLAG::PAB-1 + unc-119 minigene) was constructed to provide a 

convenient method for inserting cell-specific promoters and for generating 

transgenic lines by bombardment. The unc-119 minigene plasmid, MM051 

(Maduro and Pilgrim 1995), was digested with HindIII, blunted with T4 DNA 

polymerase, digested with BamHI and the resulting fragment subcloned into 

plasmid pSV15 which contains the 3XFLAG::PAB-1 insert (Von Stetina et al. 

2007), using BamHI and EcoRV restriction sites. The resulting plasmid was 

digested with KpnI then treated with T4 DNA polymerase for blunt end ligation 

with the Gateway vector conversion fragment A (Invitrogen). The resulting 

plasmid (pSV41) contains the unc-119 minigene in the opposite orientation vs. 

promoter sequences inserted between the attR1 and attR2 sites upstream of the 

3XFLAG::PAB-1 coding region. 

Constructs generated using Gateway LR recombination with pSV41 
plasmid 
 

Cell-specific promoter fragments were generated from genomic DNA for 

unc-122 (coelomocytes), dpy-7 (hypodermis), glr-1 (glr-1-expressing neurons) 

and subcloned into pCR8/GW-TOPO (Invitrogen). PCR amplicons and primer 

pairs were: unc-122 (800 bp, unc-122_5prime/unc-122_3p); dpy-7 (354 bp, dpy-

7_5p/dpy-7_3p); glr-1 (5.3 kb, glr-1_5p/glr-1_3p). The 716 bp dat-1 

(dopaminergic neurons) promoter was PCR amplified from plasmid pRN200, (a 

gift from R. Blakely), using primers dat-1p1 and dat-1p2 and cloned into 

pCR8/GW-TOPO. The hlh-17 (CEP sheath cell) promoter was generated by 
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amplifying the 4 kb promoter sequence upstream of the first ATG start (McMiller 

and Johnson 2005) with primers containing flanking attB recombination sites. 

This fragment was subcloned into pDONOR221 (Invitrogen) by a BP 

recombination reaction. LR recombination reactions were performed using 

pSV41 as the destination vector to create the following expression plasmids: 

pJW7 (Pglr-1::3XFLAG::PAB-1), pJW5 (Punc-122::3XFLAG::PAB-1), pJW8 

(Pdpy-7::3XFLAG::PAB-1), pKW63 (Pdat-1::3XFLAG::PAB-1), pMK107L (Phlh-

17::3XFLAG::PAB-1). 

Generating cell-specific::3XFLAG::PAB-1 strains by microparticle 
bombardment  
  

Microparticle bombardment was used as previously described (Fox 2005) 

to generate transgenic lines from plasmids containing the unc-119 minigene. 

Additional modifications were used for plasmids pJW5, pJW7, pJW8 and pKW63, 

which were linearized by digesting with a unique ApaI restriction site upstream of 

the unc-119 + minigene cassette. The reaction was then ethanol-precipitated and 

re-suspended in ddH2O. 8-10 µg of linearized plasmid was used to coat gold 

beads for bombardment. Animals were bombarded at 1800 psi, allowed to 

recover for 1 hr and washed to 7 x 100 mm NGM plates seeded with OP50-1 

bacteria. Plates were allowed to starve for 2 weeks at 23-25 °C and viable 

animals showing wildtype movement were picked for selfing. Transgenic lines 

were screened by anti-FLAG immunostaining (Von Stetina et al. 2007) to confirm 

specific expression. 
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Other  constructs generated for cell-specific profiling 

The excretory cell-specific promoter Pclh-4 was amplified from genomic 

DNA using primers clh-4 F and clh-4 R. The 4 kb PCR product was then cloned 

into TOPO-2.1 (Invitrogen) to generate pDM1. pDM1 was used as a template to 

construct a Gateway donor vector by PCR amplification of the clh-4 promoter 

using clh-4 primers flanked with attB1 and attB2 sites. The promoter fragment 

was subcloned into pDONOR221 by performing a BP recombination reaction to 

create pDM2. pDM2 was combined with destination vector pSV41 in a LR 

recombination reaction creating the expression vector pJW6 (Pclh-

4::3XFLAG::PAB-1). The Pclh-4::3XFLAG::PAB-1 cassette was then PCR 

amplified and 6ul of PCR product was coinjected with pRF4 [rol-6 (su1006)] at 25 

ng into wild type animals. The transgenic line was integrated by gamma 

irradiation and outcrossed five times. The 861 bp putative promoter of ttr-39 was 

amplified via PCR with primers pC04G21_5 and pC04G21_3 and inserted into 

pENTR-D-TOPO (Invitrogen) via TOPO TA reaction. Pttr-39 was then inserted 

upstream of 3XFLAG::PAB-1 via Gateway LR reaction with pSV41 resulting in 

the expression vector pSA2. The Pttr-39::3XFLAG::PAB-1 cassette was then 

amplified via PCR from pSA2 with primers pC04G21_5 and PAB1UTR_3 (5’ 

CAATAGCAGCCAAATGCA 3’). The PCR reaction (12 l) was co-injected with 

dpy-5 rescuing plasmid pCes361 (25ng) into dpy-5(e907) animals. Gamma 

irradiation of the transgenic line yielded NC1645 dpy-5(e907); wdIs31[Pttr-

39::3xFLAG::PAB-1 dpy-5(+)] IV. The integrant was outcrossed five times prior to 

microarray profiling. Expression of the epitope-tagged PAB-1 for both the 
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excretory cell and D-class motor neuron cell-specific lines was confirmed by 

immunostaining (Roy et al. 2002) with monoclonal mouse anti-FLAG antibodies 

(Sigma). 

Isolation of cell-specific RNA by the mRNA tagging method  

The mRNA-tagging method was used to isolate RNA from 12 different cell 

types in either larvae or young adults. Methods for obtaining RNA from L2 stage 

larvae were as previously described (Von Stetina et al. 2007). The following 

modifications were used for L4 stage larvae and young adults. Gravid adults 

were obtained from 20 x 150 mm culture plates (8P media, 8X peptone NGM) 

and treated with hypochlorite to release embryos. Arrested L1 larvae were 

isolated after hatching overnight at 20 °C in M9 buffer and transferred to Na22 

seeded 8P plates for growth at 20 °C for 22-25hrs and then transferred to 23 °C 

for an additional 24-26hrs to reach mid-L4 stage larvae as shown by the 

appearance of a tree-shaped vulva (~80%). To obtain Young Adults (YAs), the 

arrested L1 larvae were grown on Na22-seeded 8P plates at 20 °C for ~72hrs to 

reach early YA, as evidenced by a mature (everted) vulva in ~80% of animals. 

Synchronized L4 and YA animals were resuspended in 3 ml homogenization 

buffer and passed through a French press four times at 6,000 psi to obtain lysate 

as opposed to three times for L2 larvae. Mock IPs were performed to obtain 

reference data sets of non-specifically bound RNA for synchronized populations 

of L2, L4 and YA animals (Von Stetina et al. 2007). At least 3 independent RNA 

samples were prepared for each cell type and for each of the reference data 

sets. 
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RT-PCR to detect novel RNA 

Single-stranded cDNA previously generated for microarray analysis was 

used as template for PCR-based validation of novel TARs. The −RT L2-intestine 

sample used the same RNA input for amplification, but reverse transcriptase was 

omitted and dH2O was added to maintain constant volume. Primers (Table 4.3) 

were designed to generate small amplicons of 75-150 bp using Batch-Primer3 

(You et al. 2008). PCR conditions are as follows: 4 ng ss cDNA, 500 nM each 

primer, 1.5 µM MgCl2, 2.5 U GoTaq polymerase (Promega), and 200 nM dNTPs 

in a 50 µl reaction. The reactions were run in a MJ Research Minicycler with the 

following program: 94 °C 30 sec, 35 cycles of 94 °C sec, 58 °C 30 sec, 72 °C 30 

sec. PCR products were electrophoresed on a 2% agarose gel and stained with 

ethidium bromide (Sigma). The products were visualized with a Bio-rad Gel Doc. 

Quantitative PCR validation of novel TAR differential expression  

Quantitative PCR (qPCR) was performed on ss cDNA used for microarray 

analysis. Primers (Table 4.3) were designed to generate amplicons of 75 to 150 

bp using Batch-Primer3 (You et al. 2008). Ssofast Eva green reaction mix was 

used with a 2-step 98 °C 2 sec, 60 °C 5 sec reaction and melting curve on a 

CFX96 Real Time Thermal Cycler (Bio-rad). Data were normalized to an internal 

26S rRNA control using the Pfaffl method of determining relative expression 

(Pfaffl 2001). 

De novo transcript identification using mSTAD 

For de novo identification of transcriptionally active regions (TARs) we 

adopted mSTAD, a previously proposed machine-learning based method 
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(Laubinger et al. 2008; Zeller et al. 2008). For the analysis of cell type samples, a 

separate mSTAD model was optimized for each developmental stage by training 

on corresponding reference hybridization data and annotation information 

belonging to chromosomal chunks, each of which contained one annotated gene 

with half the intergenic space surrounding it (see Table 4.1). The fitted models 

were used for transcript identification from all samples belonging to the same 

developmental stage (e.g., the mSTAD model trained on EE-ref was used for 

transcript identification in EE-ref, EE BAG neurons, and EE germline precursors). 
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Table 4.3 Primers used for reverse-transcriptase PCR  of novel TARs and real-
time PCR validation of differentially expressed  novel  TARs  

Name	
   length	
   Tm	
   GC%	
   sequence	
  
Amplicon	
  
length	
  

TAR_E-­‐pan_77592_F	
   20	
   60.23	
   55	
   TTCCTCTGGAACTGGACAGG	
   104	
  
TAR_E-­‐pan_77592_R	
   20	
   59.35	
   55	
   CCCTGAGCTTTCCACGTAGT	
   	
  
TAR_E-­‐pan_77593_F	
   20	
   59.66	
   45	
   CACCCCAAAAATACCTGGAA	
   131	
  
TAR_E-­‐pan_77593_R	
   20	
   59.95	
   40	
   TTGATTGCGATGAAAAGCAG	
   	
  
TAR_E-­‐bwm_63930_F	
   20	
   59.94	
   45	
   ATCATCCCAAACGCTTTCAC	
   123	
  
TAR_E-­‐bwm_63930_R	
   20	
   58.88	
   50	
   TTTCCACTATGCAGCTGACC	
   	
  
TAR_E-­‐coel_06773_F	
   20	
   59.8	
   45	
   AAGAGGGTCCAACCGAATTT	
   121	
  
TAR_E-­‐coel_06773_R	
   20	
   59.96	
   50	
   CCGGGACTGTGCAAGATAAT	
   	
  
TAR_L2-­‐int_19313_F	
   20	
   59.65	
   45	
   GCCGAGATTGAGGAAAAATG	
   112	
  
TAR_L2-­‐int_19313_R	
   21	
   58.78	
   48	
   CCGGTACTTATTCGTTTGCTC	
   	
  
TAR_E-­‐AVE_07153_F	
   20	
   59.8	
   45	
   AAGAGGGTCCAACCGAATTT	
   121	
  
TAR_E-­‐AVE_07153_R	
   20	
   59.96	
   50	
   CCGGGACTGTGCAAGATAAT	
   	
  
TAR_E-­‐AVE_52539_F	
   20	
   59.14	
   50	
   GGCTGGTTCTGAAGTCCAAT	
   137	
  
TAR_E-­‐AVE_52539_R	
   20	
   59.88	
   45	
   GTGTTGCAGGTTGGGTTTTT	
   	
  
TAR_L3-­‐L4-­‐
dop_35596_F	
   21	
   60.13	
   42.86	
   TTGAACCCGAAAAAGTGTCTG	
   97	
  
TAR_L3-­‐L4-­‐
dop_35596_R	
   21	
   59.27	
   47.62	
   TGGAGTCAAGGATTCTGAAGG	
   	
  

TAR_L3-­‐L4-­‐
hypo_34173_F	
   21	
   60.13	
   42.86	
   TTGAACCCGAAAAAGTGTCTG	
   97	
  
TAR_L3-­‐L4-­‐
hypo_34173_R	
   21	
   59.27	
   47.62	
   TGGAGTCAAGGATTCTGAAGG	
   	
  

TAR_L3-­‐L4-­‐
hypo_36011_F	
   20	
   60.86	
   45	
   CACATTGAGCGGGAAATGAT	
   130	
  
TAR_L3-­‐L4-­‐
hypo_36011_R	
   21	
   58.46	
   47.62	
   TTCTCTTCGGAGATGTTCCTC	
   	
  

TAR_YA-­‐
CEPsh_52288_F	
   20	
   60.31	
   40	
   ACGTTCCAATCGGAATTCAA	
   125	
  
TAR_YA-­‐
CEPsh_52288_R	
   20	
   59.14	
   45	
   AGACCACCAGCATGTTCAAA	
   	
  

TAR_L2-­‐exc-­‐
cell_23646_F	
   20	
   60.05	
   40	
   TCAAATGTGCCCAATGAGAA	
   115	
  
TAR_L2-­‐exc-­‐
cell_23646_R	
   20	
   58.49	
   45	
   GACCGATTCATGGAAGTTCA	
   	
  

TAR_L2-­‐exc-­‐
cell_40020_F	
   20	
   60.28	
   45	
   TTTGTGTGTGGCAAGAGGAA	
   128	
  
TAR_L2-­‐exc-­‐
cell_40020_R	
   20	
   60.58	
   50	
   TGGTCGTACCCCAAATATCG	
   	
  

TAR_L2-­‐glr_26400_F	
   20	
   60.06	
   50	
   AGTGTCAACAGCTGCAATCG	
   134	
  
TAR_L2-­‐glr_26400_R	
   20	
   59.99	
   60	
   CCAGTCCTCTGCCTGTCTTC	
   	
  
TAR_L2-­‐A-­‐
class_72252_F	
   20	
   59.66	
   55	
   GCTTCTGGTCCATCCAAGAC	
   131	
  
TAR_L2-­‐A-­‐
class_72252_R	
   20	
   60.48	
   55	
   GGCACCAGGATAATCTCACG	
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TAR_E-­‐hypo_29647_F	
   24	
   58.90	
   45.83	
   CACTGGTGTAGAAGAACAAGAG
GT	
   94	
  

TAR_E-­‐hypo_29647_R	
   20	
   59.17	
   45	
   AGGTCGTGCATTTTTCCTTC	
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Array data from developmental stages was analyzed with another set of 

models, each of which was trained on the same array sample for which it 

identified transcripts (see Table 4.1). One more model was trained for 

hermaphrodite gonads and TARs for L4 males and L4 hermaphrodite soma were 

identified with the L4 mSTAD model (see Table 4.1). 

Determining overlap between TARs and known genes to identify novel 
TARs 
 

TARs were compared to the following features annotated in WS199: 

Protein-coding genes (and their corresponding exon features), pseudogenes 

(and pseudogenic exons) and non-protein coding genes. We called TARs 

"unannotated" if they overlapped less than 20 nt with exons (of coding genes and 

pseudogenes) or with non-coding genes (Figure 4.3D, Figure 4.4). Moreover, we 

determined the overlap between TARs and genes of the integrated transcript 

model to obtain "novel" TARs that neither overlapped with annotated features nor 

with exons of gold standard gene models by ≥20 nt (Figure 4.3E, F). 

Non-redundant (nr) TARs resulted from the union of positions inclusive to 

TARs obtained in any individual sample. Similarly, nr expressed TARs, nr 

differentially expressed TARs, nr unannotated TARs and nr novel TARs were 

obtained as the position-wise union of expressed, differentially expressed, 

unannotated and novel TARs, respectively (Figure 4.3F). For each position within 

nr expressed TARs, we counted the number of individual samples in which an 

expressed TAR was detected. Partitioning expressed nrTARs according to 

overlap with known transcripts resulted in the histograms shown (Figure 4.8C). 
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Additional correction for multiple testing of (differentially) expressed genes 

Since FDRs for genes expressed above background or differentially 

expressed between samples were calculated for each individual sample 

(comparison), we applied an additional stringent Bonferroni-style correction for 

multiple testing (Bonferroni 1935). We divided individual FDR estimates by the 

number of samples and sample comparisons, respectively, obtaining an adjusted 

FDR of 1.3 x 10-4 for expression above background and of 7.4 x 10-4 for 

differential expression (Table 4.2). 

Entropy-based detection of selectively enriched genes 

 Gene-expression entropy was calculated based on the fold change 

relative to the corresponding reference sample. Fold-changes < 1.0e-5 were set 

to a pseudocount of 1.0e-5 before they were rescaled to the interval [0, 1] by 

dividing by the sum of fold changes across tissues and cell types for each gene. 

Afterwards, expression entropy was calculated as described (Schug et al. 2005). 

Selectively enriched genes were extracted from the set of enriched genes in a 

given tissue (FDR ≤ 0.05 and FC ≥ 2.0), if additionally (i) their fold change vs. 

reference was among the upper 40% of the positive FC range observed for this 

gene across all tissues and (ii) their entropy was among the lower 40% of the 

distribution observed for all genes (i.e., H ≤ 3.03). 

Fold change histograms for differentially expressed genes. 

To generate the histograms of expression differences (Figure 4.7A), we 

first calculated the fold change between expression in a given cell type to the 

corresponding reference for all genes for which differential expression was 
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detected in at least one comparison (FDR 0.05). We next determined the 

maximal fold change across cell types and depending on its direction tabulated 

the gene either as upregulated or downregulated (relative to reference). 

Revealing developmental and cell-type specific expression patterns with 
self-organizing maps 
     

Self-organizing maps (SOMs)(Kohonen 1982) were constructed using the 

Matlab SOM toolbox version 2.0 (Vesanto et al. 2000). As an input for SOM 

training, we selected the subset of genes detected as differentially expressed in 

the respective samples, applied log2 transformation and normalized by 

subtracting the mean expression across conditions for each individual gene 

(yielding mean-centered log expression). We chose SOM topologies with a 

hexagonal neighborhood consisting of 30 x 15 and 60 x 60 units for 

developmental and cell-type data sets, respectively. SOM training proceeded in 

100 and 300 epochs with Gaussian neighborhood radius shrinking linearly from 5 

to 1 and from 15 to 3 for developmental and cell type data sets, respectively. 

Some regions were identified by k-means clustering as implemented in the 

Matlab SOM toolbox. We varied k, the pre-chosen number of clusters, from 1 to 

15 and 1 to 20 for developmental and cell type data sets, respectively. To obtain 

a robust clustering, we only retained cluster information that was consistent in 

75% of 50 - 100 replicates each of which resulted from the best out of five 

independent k-means runs with randomly initialized cluster centroids. We 

selected k = 8 and k = 14 for the developmental and the cell type data set, 

respectively, based on biological interpretation and silhouette coefficients, a 

means of assessing which SOM units lie tightly within clusters or which are in 
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between clusters (Rousseeuw 1987). In addition, we used silhouette coefficients 

to select the top half of SOM units close to cluster centroids, which resulted in the 

clusterings shown (Figure 4.10, Figure 4.11). 

Hypergeometric tests 

To test for significant overlap between separate lists of genes, we applied 

the hypergeometric test as implemented by Jim Lund 

(http://elegans.uky.edu/MA/progs/overlap_stats.html). The number of genes in 

the whole genome was set at 18,451 for the number of genes represented on the 

C. elegans tiling array. 

Microscopy 

Isolated embryonic cells were imaged using differential interference 

contrast (DIC) and epifluorescence optics with a Zeiss Axiovert inverted 

microscope equipped with an ORCA ER (Hamamatsu) high-resolution, cooled 

CCD camera. Intact animals were imaged with a Zeiss Axioplan compound 

microscope equipped with an ORCA ER camera and a Leica TCS SP5 confocal 

microscope. 

Results 

Strategies for profiling specific cell types and developmental stages 

Cell-specific RNA was obtained from GFP-labeled embryonic cells 

isolated by FACS and from larval cells by use of the mRNA-tagging method 

(Figure 4.1A, B). Altogether, we generated tiling array profiles from 25 different 

tissues, with each sample derived from one of five distinct developmental stages. 

Corresponding reference data sets were collected from all cells for each of these 
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developmental periods (Table 4.1, see Methods). We also generated an 

independent developmental series with total RNA isolated from whole animals at 

seven different ages (EE, LE, L1, L2, L3, L4, YA) (Table 4.1, Figure 4.1). An 

additional group of tiling array profiles was obtained from young adult 

hermaphrodite gonads, L4 hermaphrodite somatic cells, and L4 males. Because 

our samples were isolated by different methods, which could potentially result in 

biased representation, we used principal component analysis (PCA) to compare 

tiling array results (see below) obtained from specific cells and from whole 

animals. PCA shows that tiling array profiles obtained from whole embryos 

cluster with data sets generated from specific embryonic cells and that larval and 

adult profiles are grouped with data sets obtained from specific postembryonic 

and young adult tissues (Figure 4.2). Correlation analysis comparing cell type 

data sets with developmental series data sets also confirms that expression 

estimates derived from cell types generally correlate well with the corresponding 

developmental stage data set generated from total RNA. Thus, a global analysis 

of our tiling array results suggests that cell-specific profiling preserves overall 

patterns of temporally regulated gene expression. 
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Figure 4.1 Strategies for generating tiling array data sets from specific C. elegans 
cells in embryos and larvae and from whole animals at defined developmental 
stages.  
(A) In the MAPCeL (Micro-array Profiling of C. elegans Cells) method, embryos 
are isolated from gravid adults and blastomeres released by treatment with 
chitinase. Dissociated embryonic cells are either sorted immediately or cultured 
for 24 hrs before FACS. Total RNA is amplified for tiling array analysis. (B) The 
mRNA-tagging strategy was used to isolate RNA from specific larval and adult 
cells. The epitope-tagged (FLAG) polyA-binding protein (PAB-1) is expressed 
under the control of cell-specific promoters. The PAB-1:RNA complex is 
immunoprecipitated and RNA is amplified for tiling array analysis. (C) Total RNA 
is isolated from synchronized populations of embryonic, larval and adult animals 
for tiling array analysis. (D) Tiling array data (middle) is shown in a region around 
the annotated transcript C15A7.1 (top). Each vertical bar corresponds to the 
signal of one probe feature. A transcript identified by mSTAD using only the tiling 
array signal is shown at the bottom. 
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Table 4.1 Samples used for expression profiling. 

Sample	
   Stage	
   Genotype	
   Description	
  
FACS	
  
Cell	
  
Purity	
  

DCC	
  #	
   GEO	
  #	
   RNA	
  	
  

Cell	
  types	
   	
   	
   	
   	
   	
   	
   	
  

emb-­‐0hr-­‐ref	
   embryo	
  
0hr	
  

N2	
  
all	
  viable	
  freshly	
  
dissociated	
  (0	
  hr)	
  
embryonic	
  cells	
  

100%	
  
3172	
   GSE25350	
   total	
  

RNA	
  

emb-­‐BAG	
   embryo	
  
0hr	
  

nIs242[gcy-­‐
33::GFP];lin-­‐15(n765)	
  

embryonic	
  BAG	
  
neurons	
  

>82%	
   2499	
   GSE23769	
   total	
  
RNA	
  

emb-­‐GLP	
   embryo	
  
0hr	
  

bnIs1	
  (pie-­‐
1p8::GFP::PGL-­‐
1+unc119)	
  

embryonic	
  germ-­‐
line	
  precursor	
  
cells	
  

>95%	
  
661	
   GSE23285	
   total	
  

RNA	
  

emb-­‐reference	
  
embryo	
  
24hr	
   N2	
  

all	
  viable	
  cultured	
  
(24	
  hr)	
  embryonic	
  
cells	
  

100%	
  
456	
   GSE23246	
  

total	
  
RNA	
  

emb-­‐AVA	
  
embryo	
  
24hr	
  

OH4326[otEx239(rig-­‐
3::GFP)	
  pha-­‐
1(e2123)III]	
  
VH804[hdIs32(glr-­‐
1::DsRed2)	
  

embryonic	
  AVA	
  
neurons	
  

>80%	
  

459	
   GSE23249	
  
total	
  
RNA	
  

emb-­‐GABA	
  
embryo	
  
24hr 

CZ1200[juIs76(unc-­‐
25::GFP)	
  II;	
  lin-­‐
15(n765ts)X]	
  

embryonic	
  
GABAergic	
  motor	
  
neurons	
  

>87%	
  
468	
   GSE23257	
  

total	
  
RNA	
  

emb-­‐bwm-­‐v2	
  
embryo	
  
24hr 

ccIs4251	
  [I;dpy-­‐
20(e1282)	
  IV]	
  

embryonic	
  body	
  
wall	
  muscle	
  

>97%	
  
470	
   GSE23260	
  

total	
  
RNA	
  

emb-­‐
coelomocytes	
  

embryo	
  
24hr 

wyIs58	
  (opt-­‐
3::GFP::RAB-­‐3;	
  unc-­‐
122::RFP)	
  

embryonic	
  
coelomocytes	
  

nd	
  
458	
   GSE23248	
  

total	
  
RNA	
  

emb-­‐dop	
   embryo	
  
24hr dat-­‐1::GFP	
  (pRN2003)	
  

embryonic	
  
dopaminergic	
  
motor	
  neurons	
  

>86%	
  
467	
   GSE23257	
   total	
  

RNA	
  

emb-­‐intestine	
   embryo	
  
24hr wIs84	
   embryonic	
  

intestine	
  
>91%	
   457	
   GSE23247	
   total	
  

RNA	
  

emb-­‐panneural	
  
embryo	
  
24hr evIs111	
  

embryonic	
  
neurons	
  

>90%	
  
455	
   GSE23245	
  

total	
  
RNA	
  

emb-­‐A-­‐class	
   embryo	
  
24hr 

wdIs5[unc-­‐4::GFP;	
  
dpy-­‐20(e1282)]	
  

embryonic	
  A-­‐class	
  
motor	
  neurons	
  

>88%	
   654	
   GSE23278	
   total	
  
RNA	
  

emb-­‐
hypodermis	
  

embryo	
  
24hr 

/+;	
  raIs/[rol-­‐
6(SU1006)+pdpy-­‐
7::GFP]	
  

embryonic	
  
hypodermal	
  cells	
  

>85%	
  
662	
   GSE23286	
   total	
  

RNA	
  

emb-­‐AVE	
   embryo	
  
24hr 

KM173	
  (opt-­‐
3::GFP[pRF4]);	
  hdIs32	
  
(glr-­‐1::DsRed2)	
  

embryonic	
  AVE	
  
neurons	
  

>88%	
  
3173	
   GSE25351	
   total	
  

RNA	
  

emb-­‐PhM	
  
embryo	
  
24hr ccIs9753[myo-­‐2::GFP]	
  

embryonic	
  
pharyngeal	
  
muscle	
  

>91%	
  
2548	
   GSE23770	
  

total	
  
RNA	
  

L2-­‐glr	
   L2	
  
unc-­‐119	
  (ed1);	
  [unc-­‐
119	
  (+);	
  glr-­‐
1::3XFLAG::PAB-­‐1]	
  

L2	
  glutamate	
  
receptor	
  neurons	
  

na	
  
658	
   GSE23282	
  

poly	
  A+	
  /	
  
total	
  
RNA	
  

L2-­‐A-­‐class	
   L2	
  

unc-­‐119	
  (ed1);	
  
wdEx257	
  [unc-­‐119	
  
(+);	
  unc-­‐
4::3XFLAG::PAB-­‐1]	
  

L2	
  A-­‐class	
  motor	
  
neurons	
  

na	
  

469	
   GSE23259	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

L2-­‐
GABA_neurons	
   L2	
  

dpy-­‐5	
  (e907);	
  wdIs31	
  
[dpy-­‐5	
  (+);	
  
pC04G2.1::3XFLAG::P
AB-­‐1]	
  

L2	
  GABA	
  neurons	
  

na	
  

466	
   GSE23256	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

L2-­‐bwm	
   L2	
   gaIs146	
  [(myo-­‐
3p::FLAG::PAB-­‐1)	
  +	
  

L2	
  body	
  wall	
  
muscle	
  

na	
   465	
   GSE23255	
   poly	
  A+	
  /	
  
total	
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Table 4.1 Samples used for expression profiling. 

Sample	
   Stage	
   Genotype	
   Description	
  
FACS	
  
Cell	
  
Purity	
  

DCC	
  #	
   GEO	
  #	
   RNA	
  	
  

(sur-­‐5::GFP)]	
   RNA	
  

L2-­‐
excretory_cell	
  

L2	
  
wdIs47	
  [clh-­‐
4::3XFLAG::PAB-­‐1	
  +	
  
rol-­‐6	
  (su1006)]	
  

L2	
  excretory	
  cell	
  
na	
  

464	
   GSE23254	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

L2-­‐intestine	
   L2	
  
gaIs148	
  [(ges-­‐
1p::FLAG::PAB-­‐1)	
  
+(sur-­‐5::GFP)]	
  

L2	
  intestine	
  
na	
  

463	
   GSE23253	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

L2-­‐panneural	
   L2	
  
gaIs153	
  
[(F25B3.3::FLAG::PAB
-­‐1)	
  +	
  (sur-­‐5::GFP)]	
  

L2	
  neurons	
  
na	
  

462	
   GSE23252	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

L2-­‐
coelomocytes	
   L2	
  

unc-­‐119(ed1);	
  
wdEx638	
  [unc-­‐119(+);	
  
unc-­‐
122::3XFLAG::PAB-­‐1]	
  

L2	
  coelomocytes	
  

na	
  

657	
   GSE23281	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

L2-­‐reference	
   L2	
   N2	
   mock-­‐IP	
  from	
  L2	
  
stage	
  animals	
  

na	
  
461	
   GSE23251	
  

poly	
  A+	
  /	
  
total	
  
RNA	
  

L3-­‐L4-­‐PVD_OLL	
   L3-­‐L4	
  

unc-­‐119	
  (ed1);	
  
wdEx460	
  [unc-­‐119	
  
(+);	
  ser-­‐
2prom3B::3XFLAG::P
AB-­‐1]	
  

L3-­‐L4	
  PVD	
  and	
  
OLL	
  neurons	
  	
  

na	
  

460	
   GSE23250	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

L3-­‐L4-­‐dop	
   L3-­‐L4	
  

unc-­‐119	
  (ed1);	
  
wdEx637	
  [unc-­‐119	
  
(+);	
  dat-­‐
1::3XFLAG::PAB-­‐1]	
  

L3-­‐L4	
  
dopaminergic	
  
neurons	
  

na	
  

655	
   GSE23279	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

L3-­‐L4-­‐reference	
   L3-­‐L4	
   N2	
   mock-­‐IP	
  from	
  L3-­‐
L4	
  stage	
  animals	
  

na	
  
659	
   GSE23283	
  

poly	
  A+	
  /	
  
total	
  
RNA	
  

L3-­‐L4-­‐
hypodermis	
   L3-­‐L4	
  

unc-­‐119(ed1);	
  
wdEx626[unc-­‐119+;	
  
dpy-­‐7::3xFLAG::PAB-­‐
1]	
  

L3-­‐L4	
  hypodermis	
  

na	
  

2454	
   GSE23287	
  
poly	
  A+	
  /	
  
total	
  
RNA	
  

YA-­‐CEPsh	
   YA	
  
unc-­‐119	
  (?);	
  nsIs191	
  
[unc-­‐119	
  (+);	
  hlh-­‐
17::3XFLAG::PAB-­‐1]	
  

Young	
  adult	
  CEP	
  
sheath	
  cells	
  

na	
  
660	
   GSE23284	
  

poly	
  A+	
  /	
  
total	
  
RNA	
  

YA-­‐ref	
   YA	
   N2	
  
Mock-­‐IP	
  from	
  
young	
  adult	
  stage	
  
animals	
  

na	
  
656	
   GSE23280	
  

poly	
  A+	
  /	
  
total	
  
RNA	
  

Gonad	
   YA	
   N2	
  
Dissected	
  gonad	
  
from	
  YA	
  
hermaphrodite	
  

na	
  
481	
   GSE23269	
   total	
  

RNA	
  

Whole	
  
Animal	
  

	
   	
   	
  
	
  

	
   	
   	
  

N2EE	
   early	
  
embryo	
  

N2	
   Early	
  embryos	
   na	
   476	
   GSE23265	
   total	
  
RNA	
  

N2LE	
  
late	
  

embryo	
   N2	
   Late	
  embryos	
  
na	
  

479	
   GSE23268	
  
total	
  
RNA	
  

L1	
   L1	
   N2	
   L1	
  animals	
   na	
   484	
   GSE23270	
   total	
  
RNA	
  

L2	
   L2	
   N2	
   L2	
  animals	
   na	
   472	
   GSE23261	
   total	
  
RNA	
  

L3	
   L3	
   N2	
   L3	
  animals	
  
na	
  

474	
   GSE23263	
  
total	
  
RNA	
  

L4	
   L4	
   N2	
   L4	
  animals	
   na	
   473	
   GSE23262	
   total	
  
RNA	
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Table 4.1 Samples used for expression profiling. 

Sample	
   Stage	
   Genotype	
   Description	
  
FACS	
  
Cell	
  
Purity	
  

DCC	
  #	
   GEO	
  #	
   RNA	
  	
  

YA	
   YA	
   N2	
  
Young	
  adult	
  
animals	
  

na	
  
475	
   GSE23264	
  

total	
  
RNA	
  

soma-­‐only	
   L4	
   glp-­‐1(q224)	
   L4	
  somatic	
  cells	
  
only	
  

na	
   485	
   GSE23271	
   total	
  
RNA	
  

male	
   L4	
   dpy-­‐28(y1)	
  III;	
  him-­‐
8(e1489)	
  IV	
   L4	
  males	
   na	
   478	
   GSE23267	
   total	
  

RNA	
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Figure 4.2 Principal component analysis of expression estimates shows 
agreement in clustering between cell type and developmental stage data. 
Principal component 1 identifies the striking difference between the gonad and all 
other profiles. Germ line contribution to other stages (EE, LE, L4, L4 males) 
separates those profiles from other data sets (e.g., early larval stages L1, L2, L3) 
along the X-axis. Principal component 2 separates data sets on the Y-axis based 
on embryonic or postembryonic stages. All embryonic stages are colored red and 
postembryonic stages are blue.  
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Expression of annotated genes detected with tiling arrays 

To evaluate expression of annotated protein-coding genes, we created 

probe sets corresponding to the constitutive exons of individual gene models 

annotated in WormBase and summarized the intensity values for each gene (see 

Methods). We then identified transcripts that are detectable above background in 

each sample with a statistical test (see Methods). The union of results derived 

from all cell types and stages detected a total of 17,452 genes (Table 4.2). 

Because these results were obtained from multiple independent comparisons, we 

conservatively adjusted the FDRs to limit the potential accumulation of false 

positives (see Methods), which resulted in expression detected for 13,149 genes 

from the union of cell type-specific data sets and for 13,713 genes in at least one 

of the stage-specific data sets. When both groups of data sets were combined, 

we detected 14,279 expressed genes (Table 4.2). 

Our initial analysis identified an average of 12,228 transcripts in samples 

derived from a specific cell type or tissue (Table 4.2). To provide a more accurate 

estimate of genes expressed in each tissue type, we adopted a simple 

transformation designed to exclude transcripts likely to originate with the minor 

fraction (3-20%) of unmarked cells isolated by FACS (Table 4.1) or from non-

specific RNA generated by the mRNA-tagging protocol (Von Stetina et al. 2007). 

Transcripts that are highly expressed in a specific tissue might also be detectable 

at lower levels in profiles derived from other cell types due to this background. 

Thus, as a conservative measure, we restricted the set of expressed genes for 

each cell type to transcripts with a higher level of expression measured for a 
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given cell type than for the corresponding reference (i.e., the “average” cell) at 

the same stage. This approach effectively excluded, for example, the myo-3 body 

muscle-specific transcript (Okkema et al. 1993) from data sets derived from non-

muscle cell types while generally retaining “housekeeping” genes such as 

ribosomal proteins that are likely to be widely expressed in all tissues (Von 

Stetina et al. 2007). This analysis detected between 4,572 and 7,199 expressed 

genes in each of the 25 cell types profiled (5,698 genes on average, see Figure 

4.5). 

Identification of Transcriptionally Active Regions (TARs) 

The high probe density (on average every 25 bp) of the tiling array made 

the non-repetitive portion (~85%) of the genome accessible to de novo 

identification of transcripts in a way that is not biased by potentially incomplete 

annotations (see Figure 4.1D for an illustration). However, this comprehensive 

representation of the genome does not allow for optimized probe sequences and 

consequently results in large variability in hybridization affinity. Our pivotal 

normalization step thus aimed at reducing probe sequence bias. This correction 

also improved the signal-to-noise ratio (exon intensity over background) to an 

even larger extent than observed for another method that additionally exploits 

reference hybridization to genomic DNA (Figure 4.3A, see Methods for details) 

(Huber et al. 2006). For the segmentation of hybridization signals into intergenic 

regions, exons and introns, we used a method called mSTAD (Laubinger et al. 

2008; Zeller et al. 2008). Although mSTAD is trained on hybridization signals 

corresponding to known (mostly protein-coding) genes (see Methods), it  
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Table 4.2. Gene models detected as expressed above background and with 
differential expression between cell types and references or between 
developmental stages. 

 Cell types Dev. stages Both data 
sets 

Expressed genes (5% FDR) 17,075 15,822 17,452 
   87.7% 
Average # expressed genes 
per data set (5% FDR) 12,228 12,252 12,232 
   61.4% 
Expressed genes (stringent FDR) 13,149 13,713 14,279 
   71.7% 
Differentially expressed genes 
(5% FDR, FC≥2) 10,598 9,552 13,320 
   66.9 % 
Average # diff. expressed genes 
per data set (5% FDR, FC≥2) 713 1,321 954 
   4.8% 
Differentially expressed genes 
(stringent FDR, FC≥2) 7,983 8,606 11,299 
   56.7% 
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Figure 4.3. De novo transcript identification with mSTAD and overlap of TARs 
with annotated and experimentally defined gene models.  
(A) Transcript normalization (red) improved exon probe recognition over raw data 
(black) and compared with normalization using genomic DNA hybridization as 
reference (blue). Sensitivity and precision were estimated after thresholding the 
intensity data with increasing cutoffs in a fivefold cross-validation. Sensitivity is 
defined as the percentage of exon probes with signal above the threshold among 
all annotated exon probes. Precision is defined as the percentage of annotated 
exon probes among those with signal above the threshold (see Methods). Values 
in parentheses indicate area under the curve. Based on data from LE-ref (see 
Table 4.1). (B) Cross-validation accuracy of mSTAD for probes (green), for exons 
(blue), and for exons with independently confirmed expression (brown). For 
exons, sensitivity is defined as the percentage of annotated exons for which all 
corresponding tiling probes were predicted as exonic by mSTAD. Precision is 
defined as the percentage of predicted exons for which all probes are annotated 
as such. Definitions for probes are as in A but with respect to predictions by 
mSTAD. Exon-level evaluation was repeated with the subset of predicted exons 
also detected as expressed by a statistical test (see Expressed Exon Level). 
Enlarged crosses correspond to predictions used for subsequent analysis. Based 
on data from LE-ref (Table 4.1). (C) Accuracy of exon and intron recognition 
increased with gene expression. Colored bars correspond to equally sized 
expression bins. Here exon overlap sensitivity equals the percentage of predicted 
exons, which overlap by at least 75% of their length with annotated exons. Exon 
overlap precision equals the percentage of exon predictions overlapping with 
annotated exons (by 75% or more) among all predicted exons (intron overlap 
sensitivity and precision are defined analogously with respect to predicted and 
annotated introns). Based on data from LE-ref (Table 4.1). (D) Overlap between 
nonredundant TARs (nrTARs), the portion detected as expressed and annotated 
coding gene models. About 45% of expressed nrTAR bases do not overlap with 
annotated coding gene models. (E) Overlap between TARs and the 
modENCODE integrated transcript model (Hillier et al. 2009; Gerstein et al. 
2010). About 41% of expressed nrTAR bases do not overlap with the integrated 
transcript model. (F) Unannotated and novel TARs and their overlap with TARs 
expressed above array background. Unannotated TARs are defined as TARs 
without significant overlap (≥20 bp) with exons of annotated coding genes, 
pseudogenes, and ncRNAs. Novel TARs are defined as the subset of 
unannotated TARs without significant overlap (≥20 bp) with exons in the 
integrated transcript model (for details, see main text). 
  



 106 

Figure 4.4 TAR predictions 
(A) Predicted transcriptionally active regions (TARs) per tissue/cell type for which 
expression could be confirmed by a statistical test (expressed) (see Methods in 
main text for details). EE (Early Embryo), LE (Late Embryo), L2 larva, L3/L4 
larva, YA (Young Adult). (B) TARs detected as differentially expressed between 
tissue samples (labels as in A) and reference samples. (C) Novel TARs detected 
as differentially expressed between tissue samples (labels as in A) and reference 
samples. 
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Figure 4.5 Genes expressed in cell type samples 
Bar height corresponds to the number of genes detected as expressed above 
background. The fraction of genes with higher expression in a given cell type 
than in the corresponding reference sample is indicated (see key).  
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afterwards predicts transcripts regardless of their annotation status. We first 

assessed the cross-validation accuracy of these predictions relative to annotated 

protein-coding gene models (Figure 4.3B). Generally, the sensitivity of these 

predictions for annotated exons improved with the expression level of the 

corresponding genes, while high precision (~80%) with respect to overlap with 

annotated exons was maintained across all expression levels (Figure 4.3C).  

Transcriptionally active regions (TARs) map to protein-coding genes and to 

intergenic domains 

From the TAR predictions of individual samples, we constructed non-

redundant TARs (nrTARs) containing the union of nucleotides inclusive to a TAR 

in any of the samples analyzed (30 cell types and reference samples and seven 

developmental stages, Table 4.1). In total, ~45 Mb were covered by nrTARs, and 

the subset of expressed nrTARs (i.e., TARs that passed a statistical test for 

expression above background, see Methods) contained ~40 Mb. We next 

compared on an individual-nucleotide basis the overlap between known 

transcripts and nrTARs predicted de novo from the tiling array data. In a 

comparison to protein-coding gene models annotated in WormBase (Rogers et 

al. 2008), ~84% of nucleotides (i.e., 22,344 kb +/- 1,127 kb) in annotated exons 

(from >90% of gene models) were also detected in nrTARs (Figure 4.3D). The 

subset of “expressed” nrTARs covered ~80% of nucleotides in annotated exons 

from more than 90% of gene models and additionally contained >18 Mb (~45% of 

expressed nrTARs) outside of exons for annotated protein-coding genes (Figure 

4.3D). A similar comparison between nrTARs and the modENCODE integrated 
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transcript model defined by transcriptome sequencing of polyadenylated RNA 

(Hillier et al. 2009) and EST evidence from WormBase (Gerstein et al. 2010) 

detected ~25 Mb of overlapping exons or nrTARs corresponding to ~90% of 

nucleotides in exons of the integrated transcript model and ~57% of nucleotides 

in nrTARs (Figure 4.3E). Nearly 41% of nucleotides within the expressed nrTARs 

were found outside of exons defined by the integrated transcript model (Figure 

4.3E). Taken together, most gene models (~90%) were supported by nrTARs, 

whereas a substantial fraction of nrTARs could not simply be attributed to known 

transcripts. 

Tiling array analysis detects 11 Mb of novel TARs from intergenic regions 

We defined “unannotated TARs” as those that did not significantly overlap 

with exons of any coding gene, ncRNA or pseudogene annotated in WormBase 

(Rogers et al. 2008) (Figure 4.4). When we additionally required that TARs not 

overlap with any exons of the integrated transcript model, we obtained “novel 

TARs” (see Methods). In total, unannotated nrTARs covered ~16 Mb of the 

genome; ~90% were also novel (Figure 4.3F). Expression above background in 

any sample could be confirmed by a statistical test (see Methods) for ~11 Mb of 

novel nrTARs (Figure 4.3F). These results suggest that our extensive profiling of 

cells and tissues as well as developmental stages revealed a significant fraction 

of the C. elegans transcriptome that went undetected by methods limited by 

analysis of polyadenylated transcripts or by sampling of fewer conditions (Rogers 

et al. 2008; Hillier et al. 2009). Our findings parallel results from a previous tiling 

array study that also detected abundant non-polyA+ transcription from intergenic 
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regions (He et al. 2007). Although our transcript identification method was 

originally trained on annotated protein-coding genes, it is based purely on 

hybridization features (Laubinger et al. 2008; Zeller et al. 2008) and hence is 

expected to be capable of recognizing non-polyadenylated as well as non-coding 

transcripts. We verified that TARs identified by mSTAD contain annotated 

ncRNAs, including snoRNAs, miRNAs and pseudogenes (Figure 4.4). Moreover, 

on a per-nucleotide basis, almost 60% of the putative long ncRNAs (>2.7 Mb) 

predicted by (Liu and Deneris 2011) was contained in the set of novel nrTARs 

described here. However, <20% of nucleotides from the novel nrTARs 

recognized by our approach were also predicted by (Lu et al. 2011). RT-PCR of a 

subset of these novel TARs confirmed expression (Figure 4.6A, B). 

The majority of C. elegans genes are differentially expressed among cell 
types and developmental stages 
 

We profiled a broad panel of tissues and developmental stages with the 

idea that this approach could reveal the prevalence of potential gene regulatory 

mechanisms that might modulate transcript abundance among different cell types 

or developmental periods. To detect changes in gene expression during 

development, we performed all pairwise comparisons (total = 21 comparisons) of 

the seven tiling array data sets obtained from staged embryos (EE, LE), larvae 

(L1, L2, L3, L4) and young adults (YA) (see Methods). To detect transcripts that 

are differentially expressed between cell types, we compared each of the 25 cell-

specific data sets to its corresponding reference sample (total = 25 comparisons) 

(Table 4.1). In both cases, these comparisons were designed to detect 

transcripts that are either significantly depleted or enriched (2-fold, FDR ≤ 0.05)  
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Figure 4.6 mSTAD detects TARs corresponding to protein-coding genes and to 
novel transcribed regions.  
(A) Novel TARs detected in larval L2 intestine. Enlarged region shows location of 
primers and predicted RT-PCR amplicon from two TARs, L2-int-1 and L2-int-2. 
(B) RT-PCR detects novel TARs expressed in specific cell types. TARs L2-int-1, 
2, 3 are detected in RNA isolated from the larval L2 intestine (L2-int) but are not 
amplified from RNA in the absence of reverse transcriptase (L2-int-RT). (C) 
qPCR validates enrichment of novel TARs in specific cell types. Log2 ratio of 
enrichment in specific tissue versus corresponding reference samples (Table 
4.1). 
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(Figure 4A). After correcting for multiple testing as above (Methods), this analysis 

produced conservative estimates of genes differentially expressed between 

stages (8,606 on average) or between specific cell types and reference samples 

(7,983) (Table 4.2). On the basis of these results, we conclude that transcripts for 

a majority of C. elegans genes are regulated to achieve different levels of 

expression during development and between specific types of cells. To validate 

the enrichment of genes in tissues and cell types as detected here, we compared 

a select number of our enriched gene lists to similar, independently derived data 

sets. For example, we identified 318 genes annotated as expressed in the 

excretory cell by combining GFP expression patterns from WormBase (WS200) 

and from the Genome BC C. elegans Gene Expression Consortium (Hunt-

Newbury et al. 2007; Rogers et al. 2008). Our L2 excretory cell enriched gene list 

(531 genes) contains 61 of these 318 genes, which is significantly higher than 

expected for a random distribution (6.7X over-represented, P < 7.1e-33). Similarly, 

the list of gene enriched in L2 body-wall muscle generated by our study (1,152 

genes) shares 146 genes (2X over-represented, P < 8.426e-17) with a 

comparable list (1,157 genes) obtained from L1 larval body-wall (Roy et al. 

2002). A previously produced L2 stage intestine-specific data set (1,925 genes) 

significantly overlaps with our L2 intestine profile (195 out of 678 genes) (2.8X 

over-represented, P < 4.352e-42) (Pauli et al. 2005). The union of our embryonic 

and L2 stage intestine enriched data sets contains 1540 transcripts that overlaps 

with 103 of 153 (8.1 fold over-represented, P < 2.9e-74) genes previously 

identified as intestine-specific in SAGE (serial analysis of gene expression) data 
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sets derived from embryonic and adult intestine (McGhee et al. 2007; McGhee et 

al. 2009). A SAGE data set from the young adult gonad (Wang et al. 2009) 

identified 1,063 genes enriched in the germ line in comparison to the all somatic 

cells. We generated a tiling array profile also from dissected yound adult gonads 

and identified 4,363 enriched genes in comparison to the soma. These germ line 

enriched SAGE and tiling array data sets significantly overlap, sharing 462 genes 

(1.8X over-representation, P < 4.016e-49). A comparison of the previously 

generated germ line SAGE list to our embryonic Z2/Z3 germ line precursor 

enriched gene, also shows significant enrichment (3.0X over-representation, P < 

1.051e-40). These comparisons reinforce the validity of each data set, particularly 

since the earlier profiles were generated with a variety of methods including GFP 

reporter imaging and serial analysis of gene expression (SAGE) and also may 

differ from our samples in developmental age. Lists of cell or tissue-enriched 

transcripts are available at (http://www.vanderbilt.edu/wormdoc/wormmap).  

Specific genes are selectively enriched in certain cell types or tissues 

Among the genes that are enriched in a certain tissue, we further sought 

to distinguish genes that are selectively enriched in the given tissue relative to 

those with broadly elevated expression in many cell types. The information 

theoretic concept of Shannon entropy effectively allowed us to define this subset 

of selectively enriched genes by distinguishing patterns of broad and uniform 

expression (high entropy) from more restricted ones with a high degree of tissue 

specificity (low entropy) (Schug et al. 2005). These lists of selectively enriched 

genes comprised ~20-57% of all genes enriched in the corresponding tissue or 
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cell type (see Methods). 82% of all genes selectively enriched in any cell type or 

tissue are specific to only one or two samples. For example, the set of genes 

selectively enriched in embryonic dopaminergic neurons also shows elevated 

expression in larval dopaminergic neurons and comprises known dopaminergic 

genes including the ETS transcription factor, ast-1, and its downstream targets 

the dopamine transporter, dat-1, and dopamine biosynthetic enzymes cat-2 and 

cat-4 (Flames and Hobert 2009). 

We further defined the set of genes selectively enriched in any of the 

thirteen neuronal samples, but not enriched in non-neuronal tissue. Strikingly, 

this combined neuron-selective data set is most strongly enriched for putative 7 

transmembrane (7TM) domain G-protein coupled receptor (GPCR)-like proteins 

(FDR < 5.2e-25). Our finding is consistent with earlier reports of selective 

expression of 7TM/GPCR genes in the C. elegans nervous system (Troemel et 

al. 1995; Chen et al. 2005). Cases of 7TM/GPCR genes that are expressed in 

specific neurons are also evident in our tiling array results. For example, sra-32 

and sra-36 are uniquely detected in the L2 larval stage A-class neuron data set 

(Figure 4.8D). Of the 1,512 predicted members of the 7TM/GPCR family, 314 

(~21%) were not detected in any RNA-Seq derived data set produced from whole 

animals (Hillier et al. 2009) for the modENCODE consortium (Gerstein et al. 

2010). Among these are 66 family members that are detected in our tiling array 

assays. Our findings provide an explanation for the relative lack of coverage of 

the 7TM/GPCR family in the RNA-Seq results and predict that transcripts 

encoded by other members of this large and diverse gene family could be 
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detected by expanding our cell-specific profiling strategy to additional neuron 

types. 

Novel TARs are differentially expressed and many are selectively detected 
in certain cell types 
 

To quantitatively assess expression differences for TARs, in particular 

novel ones, probes contained within TARs from each cell-specific data set were 

compared to probes from the same region in the corresponding reference sample 

(see Table 4.1). This analysis revealed ~5Mb of TARs with significant expression 

changes between cell types and references or between developmental stages at 

an FDR ≤ 0.05 and 2-fold expression difference (see Methods). On average, 933 

novel TARs are differentially expressed in a particular cell type in comparison to 

a reference sample of all cells at the corresponding developmental stage (Figure 

4.7C). We used quantitative PCR (qPCR) to confirm that ten of these 

differentially expressed novel TARs indeed show significant enrichment in the 

specific cell types initially identified in the comparison of tiling array results 

(Figure 4.6C). 

We next explored the extent to which novel TARs are selectively 

expressed with the goal of cataloging potentially rare transcripts that might be 

specifically detected in a limited subset of cells or in a discrete developmental 

period. To investigate the expression patterns of TARs on a per-nucleotide basis, 

we tabulated the frequency at which a given base was detected as transcribed 

across cell types and stages. Approximately 15% of bases covered by exons of 

gene models annotated in WormBase are detected in all 25 cell-types profiled  

 



 116 

Figure 4.7 Expression fold changes of differentially expressed genes and TARs. 
(A) Histogram depicting numbers of gene models binned according to maximal 
relative expression (fold change) in specific cell types vs. corresponding 
reference samples derived from all cells (FDR ≤ 0.05) (see supplemental protocol 
SP24). 
(B) Histogram counting gene models differentially expressed between cell types 
and corresponding reference samples (FDR ≤ 0.05). Expression fold change is 
color-coded (see key between B and C). 
(C) Histogram showing novel TARs that are differentially expressed between cell 
types and corresponding reference samples (FDR ≤ 0.05). Expression fold 
change is color-coded (see key between B and C). 
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Figure 4.8 Transcripts enriched or depleted in certain cell types.  
(A) Genes differentially expressed between a given cell type and the 
corresponding reference sample (FDR ≤0.05). Bars pointing up and down 
indicate the number of enriched and depleted genes, respectively, relative to 
reference. Expression fold change is color-coded (see key). (B) Log2-expression 
fold change relative to reference shown as gray lines for genes selectively 
enriched in LE dopaminergic neurons (highlighted in yellow). Four selectively 
enriched genes (ast-1, dat-1, cat-2, cat-4) with known function in these neurons 
are plotted in color (see key). (C) Coverage of the genome by expressed 
transcripts at base-pair resolution. Nucleotides in nonredundant TARs (nrTARs) 
(for 25 cell-type samples) (Table 4.1) were binned according to the number of 
samples for which a TAR was detected at the given position. Bars pointing 
upward correspond to expressed TARs overlapping with exons of annotated 
coding genes and those defined by the integrated transcript model. Bars pointing 
downward correspond to nucleotides in expressed novel TARs (for definition, see 
main text) organized into subgroups according to their location relative to 
annotated protein coding gene models (see key). Intergenic positions were 
classified as proximal if within 500 bp of any annotated gene and otherwise as 
distal. (D) 7TM genes are selectively expressed in a specific neuron. Two 
members (sra-32 and sra-36) of a tandem array (yellow highlights) of 7TM-
encoding genes are selectively enriched in the A-type motor neuron data set 
derived from L2 larvae. 
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(Figure 4.8C). A larger fraction of bases derived from gene models (~75%), 

however, is expressed in at least one, but not all, of the cell types and 11% is 

detected in no more than two cell types. For stages, we observed that 29% of 

bases from exons of annotated gene models is detected throughout development 

vs. 8% expressed in no more than one developmental period. Bases 

corresponding to novel TARs that map to intergenic regions showed a stronger 

bias for cell or stage-specific expression with >53% detected in either one or two 

cell types but <1% (~34 kb) detected in all cell types (Figure 4.8C). Bases 

located >500 nt from a gene model (distal) comprised the majority (~75 %) of 

novel transcribed intergenic nucleotides uniquely detected in one or two cell 

types or in a single stage (Figure 4.8C). Given the average intron length of 344 nt 

for C. elegans (Bradnam and Korf 2008), we suggest that these distal bases are 

more likely to correspond to new transcribed regions as opposed to exons 

belonging to existing gene models. 

Online resources for visualization and data access 

To facilitate further study of our tiling array-based expression data, we 

have made it accessible to the research community through two online 

visualization tools, both of which are linked from a project website 

(http://www.vanderbilt.edu/wormdoc/wormmap/). One of the utilities displays 

expression values across cell types and developmental stages for a user-defined 

subset of genes (http://jsp.weigelworld.org/wormviz/tileviz.jsp). Additionally, a 

customized genome browser (http://gbrowse.fml.mpg.de/cgi-

bin/gbrowse/ce_WS199), visualizes transcriptionally active regions (TARs) for all 
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analyzed samples together with gene models and genomic features annotated in 

WormBase (Rogers et al. 2008). Raw array data have been deposited at GEO 

(Barrett et al. 2009) (accession numbers GSE23245-GSE23271, GSE23278-

GSE23287, GSE23769-GSE23770) and data files are available for download 

from the project website (http://www.vanderbilt.edu/wormdoc/wormmap/). 

Analysis of differentially expressed transcripts reveals cell-specific 
functions and clusters of co-regulated genes with candidate cis-acting 
motifs 
 

Our quantitative analysis has identified transcripts that are differentially 

expressed across a broad array of cell types and developmental stages. We 

expect that these results will provide a useful resource for future studies of cell-

specific gene function and for identifying the regulatory elements that define 

spatial and temporal patterns of gene expression. Below we feature examples of 

these approaches in order to illustrate potential applications of these data sets. 

Genes encoding membrane transporter proteins are highly enriched in the 
excretory cell 
 

Osmoregulation and excretion are fundamental biological processes that 

all animals share. In a typical multicellular organism, specialized cell types are 

assembled into an excretory organ that collects and removes metabolic wastes 

or functions to maintain ionic balance in changing aqueous environments. In C. 

elegans, these complex physiological tasks are accomplished with a simple 

excretory system composed of only 4 types of cells; the pore cell, duct cell, gland 

cells and excretory canal. The largest of these cells, the excretory canal, 

assumes a unique H-shaped architecture in which elongated tubular processes 

emanate from the cell soma beneath the posterior bulb of the pharynx, bifurcate 
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to the right and left sides and then separate again to extend in both anterior and 

posterior directions along the entire length of the animal (Figure 4.9)(Nelson et al. 

1983; Altun 2002-2010). The excretory cell cytoplasm is contained within a 

cylindrical membrane-bound domain that is penetrated from the interior or basal 

side by elaborate networks of canals. These “canaliculi” converge on an internal, 

fluid filled “tunnel” that connects with the duct and pore cells on the ventral side 

of the head region. Disruption of any one of these cell types, duct, pore or 

excretory canal, disables osmoregulatory capacity as evidenced by a swollen, 

lethal phenotype in hypotonic solutions (Nelson et al. 1983). We used the mRNA-

tagging strategy to generate a tiling array profile of the excretory cell in L2 larvae, 

a developmental stage of both active excretory cell growth and essential 

osmoregulatory function (Table 4.1). This data set identified 531 transcripts that 

are enriched (> 2-fold, FDR ≤ 5%) in the excretory cell in comparison to the 

average L2 larval stage cell (see Methods). GFP reporter genes generated from 

three genes that are highly enriched in this data set illuminate the elongated 

anatomy of this unique cell type (Figure 4.9C-E). As would be expected for a cell 

type with high osmoregulatory activity, molecular function gene ontology (GO) 

terms for membrane transporter related activities are over-represented in the 

excretory cell data set (FDR < 0.01, hypergeometric distribution, Figure 4.9B) 

and thus are indicative of excretory cell specific profile. In addition to detecting 

genes that code for physiological functions, the enriched profile also includes 17 

transcription factors with potential roles in excretory cell differentiation 

(http://edgedb.umassmed.edu, (Reece-Hoyes et al. 2005)). Indeed, the POU 
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domain transcription factor, CEH-6, is highly enriched (4-fold) and has been 

previously shown to control excretory cell morphogenesis and gene expression 

(Burglin and Ruvkun 2001; Mah et al. 2007; Armstrong and Chamberlin 2010; 

Mah et al. 2010). All 17 (100%) of the known CEH-6-regulated genes are 

included in the excretory cell profile (Figure 4.9). Another 79 genes from this list 

have a perfect match to the CEH-6 binding site octamer, ATTTGCAT, within 1 kb 

upstream of the translational start site and are thus candidates for additional 

CEH-6 target genes. Two other members of the homeodomain family in this list, 

ceh-26 (3.6-fold) and ceh-37 (3.7-fold), are known to be expressed in the 

excretory cell (Lanjuin et al. 2003; Reece-Hoyes et al. 2005) but downstream 

targets have not been identified. Our finding that multiple transcription factors are 

expressed in the excretory cell is consistent with the earlier suggestion that 

excretory cell differentiation likely depends on the gene regulatory roles of 

multiple transcription factors functioning in parallel pathways (Burglin and Ruvkun 

2001; Mah et al. 2007; Armstrong and Chamberlin 2010; Mah et al. 2010). For 

example, in addition to detecting all of the known ceh-6 targets, our data set also 

includes 9/16 (56%) of vacuolar ATPase proton pump subunit genes that are 

coordinately regulated by the nuclear hormone receptor, nhr-31 (Hahn-

Windgassen and Van Gilst 2009). 

Self-Organizing Maps (SOMs) reveal cohorts of co-regulated genes during 
development and across specific cell types 
 

We used self-organizing maps (SOMs) to seek shared patterns of 

expression for transcripts derived from coding genes (see Methods). SOMs are a 

widely applied clustering technique that yields intuitive visualization of high-
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dimensional data sets, as e.g., generated with DNA microarrays (Jiang et al. 

2001). SOMs are conceptually related to a technique previously proposed to 

construct a relational map of C. elegans gene expression (Kim et al. 2001). In the 

first instance, we fitted a SOM to the developmental stage data set (Figure 

4.10A) and identified eight regions that correspond to genes with shared patterns 

of either enrichment or depletion in specific developmental periods (Figure 4.10B, 

see Methods). To demonstrate the variety of developmental expression patterns 

identified by this approach, we plotted the top 50% of best-fitting genes from 

each cluster (Figure 4.10C-F). Cluster 1 (CS1) contains genes with elevated 

expression in the embryo (Figure 4.10B, C). Notable examples from this group 

include the FoxA transcription factor, pha-4, the hunchback homolog, hbl-1, 

(Krause et al. 1997) and the helix-loop-helix transcription factors (bHLH), hlh-2 

and hlh-3, for which independent studies have detected peak expression in the 

embryo (Azzaria et al. 1996; Krause et al. 1997; Fay et al. 1999). Cluster 5 (CS5) 

contains genes with elevated expression in embryonic stages and in the adult 

(Figure 4.10B, E). Strikingly similar protein and transcript levels have been 

previously observed for a member of this group, the FLYWCH transcription factor  
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Figure 4.9 The excretory cell expresses many transport-related genes. 
(A) The excretory cell body is located ventral to the terminal bulb of the pharynx, 
and extends canals anteriorly and posteriorly along either side of the body. 
These canals collect ions and fluid for osmoregulation. (B) Pie chart showing that 
the top ten GO molecular function categories enriched in the excretory cell profile 
correspond to transporter proteins (FDR < 0.01). (C) - (E) GFP-reporters selected 
from excretory cell enriched genes demonstrate robust expression in the 
excretory canal (C) cnx-1, 2.2X, (D) ral-1, 3.4X, (E) srv-1, 4.5X. 
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Figure 4.10 Expression patterns during C. elegans development.  
(A) Component planes of a self-organizing map (SOM) fitted to the 
developmental stage data set. Each component plane visualizes mean-centered 
gene expression (log2-scale) in one stage as a color gradient from blue to red 
indicating low and high expression, respectively (see color bar): EE indicates 
early embryos; LE, late embryos; L1, larvae stage 1; L2, larvae stage 2; L3, 
larvae stage 3; L4, larvae stage 4; and YA, young adults. (B) Eight regions (CS1–
CS8) of the SOM, which robustly clustered together, are color-coded (see main 
text for details). (C–F) Mean-centered log2-expression values of genes 
corresponding to four of the clusters in B are plotted for the 50% of best-fitting 
genes. Colored lines indicate the expression of a selected subset of genes (see 
key). mec-17 and nlp-8 encode neuron-enriched transcripts; chn-1 and spo-11 
are highly expressed in the adult hermaphrodite gonad; puf-8 is highly expressed 
in embryonic and adult germline; and ssq-2 encodes a sperm-specific transcript. 
For other labeled genes, see Results. 
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flh-1, which blocks expression of specific miRNA genes during embryogenesis 

(Ogden et al. 2008). We applied a similar SOM clustering procedure to the cell-

type specific data sets in order to delineate genes that are co-regulated in 

different tissues (Figure 4.11A, see Methods). Because these cell types were 

sampled across a series of developmental stages, we also expected this 

approach to detect genes with temporally correlated expression. Figure 4.11A 

depicts the resultant regional clusters superimposed on the SOM. Clusters 

showing stage-specific expression include C1 (Figure 4.11B), which features 

genes that are highly expressed in all postembryonic cell types and C7 (Figure 

4.11D), which is biased for genes expressed in late embryos and especially in 

neurons. Cluster C8 is dominated by genes that are highly expressed in neurons, 

but are depleted or show weak expression in most other cell types (Figure 

4.11E). Examples of genes in this group include ric-4 (snap-25), a synaptic 

vesicle component that facilitates neurotransmitter release and is known to be 

exclusively expressed in neurons (Hwang and Lee 2003), and acy-1 (adenylate 

cyclase), a key regulator of neuron-dependent behavior (Reynolds et al. 2005). 

Several clusters detect highly expressed intestinal genes including C1 

(postembryonic cell types and larval intestine) (Figure 4.11B) and C11 

(embryonic and larval intestine) (Figure 4.11F). 

DNA sequence motifs associated with cell-specific and developmentally 
regulated gene expression 
 

Because each SOM cluster includes genes with similar patterns of 

expression, we searched for instances in which genes in a specific cluster share 

common DNA sequence motifs through which trans-acting factors might 
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coordinate their expression. To explore this possibility, we applied the FIRE motif 

analysis program to the SOM clusters (Elemento et al. 2007). FIRE uses mutual 

information between the presence or absence of a short nucleotide sequence 

and the occurrence of a gene in a particular expression cluster to identify over-

represented motifs. FIRE produces optimized motifs and links the results to 

motifs that are available in public databases. 
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Figure 4.11 SOM clustering of tissue- and cell-type data.  
(A) Regions in the SOM for cell-type data as defined by k-means clustering. (B–
F) Expression patterns of genes from selected clusters in the SOM. Cell types 
are indicated at bottom, and reference samples are shaded in gray. Box plots 
were generated from the mean-centered log2-expression values of prototypical 
genes for a given cell type with horizontal lines indicating the median, boxes 
delineating the interquartile range, and whiskers extending to the most extreme 
values within 1.5 times the median-quartile range; outliers are depicted as black 
crosses. Some of the SOM clusters correspond to peaked expression in a subset 
of cell types and/or developmental stages: (B) higher expression in larval stages 
and YA compared with embryo with a prominent peak for intestine, (C) elevated 
expression in L3/L4 reference, (D) high expression in LE neurons, (E) most 
neurons, and (F) intestine. 
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FIRE identified 20 upstream promoter motifs and 9 over-represented 3’ 

UTR sequences in genes contained in the SOM clusters derived from 

developmental stages (Figure 4.10, Figure 4.12A). A canonical E-Box and bHLH-

binding site is detected in cluster CS1 which, as noted above, includes 

transcription factors HLH-2 and HLH-3 (Thellmann et al. 2003). The over-

representation of GATA-like transcription factor binding sites in four clusters 

(CS4, CS5, CS6, CS7) is likely indicative of the broad roles of GATA factors in 

multiple developmental pathways in C. elegans including endodermal and 

hypodermal cell fate determination and differentiation, germline gene regulation 

and aging (Koh and Rothman 2001; McGhee et al. 2007; Budovskaya et al. 

2008; del Castillo-Olivares et al. 2009). The second highest-ranking motif 

corresponds to a GC-rich sequence that has been previously identified by 

computational analysis of germ line expressed genes (Li et al. 2010). This motif 

is also similar to a putative transcriptional activation site for the E2F homolog, 

EFL-1, that promotes gene expression in the germ line (Chi and Reinke 2006). 

Detection of these GATA and E2F sites in cluster CS5 is consistent with our 

finding that genes which contain these 5’ sites and which are enriched in germ 

line precursor (GLP) cells are also over-represented in this cluster (23 GLP 

genes with the GATA site are 1.6 fold over-represented, P < 0.017; 40 GLP 

genes with the E2F site are 1.8 fold over-represented, P < 2.74e-04). These 

results validate our approach and suggest that other motifs revealed by this 

strategy may also correspond to binding sites for transcription factors that 

regulate developmental gene expression. 



 129 

 For SOM clusters derived from cell-specific profiles (Figure 4.12B), FIRE 

identified 45 over-represented sequences including 35 upstream motifs and 10 

RNA sequences that map to 3’ UTR domains (Figure 4.12B). As noted above for 

the SOM clusters derived from developmental stages, the highest scoring motif 

matches a GATA transcription factor-binding site. In C. elegans, the elt-2 GATA 

transcription factor is known to interact with this sequence to drive expression of 

intestine-specific genes (McGhee et al. 2009). Our results also reflect this role; 

the GATA motif is overrepresented in cluster C11, which contains transcripts 

enriched in the embryonic and larval intestine profiles (Figure 4.11F, Figure 

4.12B), and in C1 and C4 both of which show peak expression in larval intestine 

(Figure 4.11B, Figure 4.12B). The accurate identification of the GATA factor-

binding site by the FIRE algorithm suggests that other motifs associated with 

specific SOM clusters may also correspond to specific transcription factor binding 

sites. An interesting example includes the sequence, TTTCG[AC]AA[CT] (Figure 

4.12B), that is over-represented in genes enriched in embryonic neurons in 

cluster C7 (Figure 4.11D) and also reciprocally depleted in genes that are under-

expressed in embryonic neurons in cluster C5. This motif is bound by the 

vertebrate C/EBP transcription factor (Grange et al. 1991), which has been 

shown to function with NeuroD to regulate neural gene expression (Sandelin et 

al. 2004; Calella et al. 2007). It will be interesting to determine whether C/EBP 

and NeuroD homologs exercise similar functions in C. elegans neural 

develoment. 
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FIRE also identified 3’ UTR binding sites for two distinct groups of miRNA 

genes belonging to the mir-58 and mir-51 families (Figure 4.12B). Members of 

the mir-58 family (mir-58,-80,-81,-82) are abundantly expressed throughout 

development (Lim et al. 2003; Kato et al. 2009), but assays with promoter::GFP 

reporter genes have detected cell-specific patterns of expression (Martinez et al. 

2008). For instance, mir-58 is expressed in a broad array of cell types including 

the excretory canal, intestine, pharynx, and hypodermis, but is excluded from the 

nervous system (Isik et al. 2010). Emerging evidence indicates that transcript de-

stabilization is the principle mechanism whereby miRNAs down-regulate gene 

expression (Bagga et al. 2005; Guo et al. 2010). Thus, the absence of mir-58 

expression in the nervous system predicts that neuronal transcripts carrying the 

mir-58 recognition sequence should escape mir-58-induced degradation. And, in 

fact, our result showing that the mir-58 sequence is over-represented in neuron-

enriched transcripts (cluster C8, Figure 4.11E, Figure 4.12B) is consistent with 

this model. The motif for the mir-51 family (mir-51,-52,-53,-54,-55,-56) is also 

over-represented in C8 (Figure 4.11E, Figure 4.12B) and in SOM clusters C9 and 

C10 that are dominated by transcripts enriched in hypodermal cells and neurons. 

This pattern suggests that mir-51 family genes may have limited roles in 

regulating transcript levels in neurons and in the hypodermis. Conversely, the 

observation that the mir-58 and mir-51 motifs are significantly under-represented 

in C2 and C3 is suggestive of strong regulation by these miRNAs in the tissues 

that contribute to this cluster. In considering this question, we noted that C2 and 

C3 include an expression peak for the L3/L4 reference sample (Figure 4.11C). 
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Because germline tissue is rapidly proliferating at this stage (Kimble 1981), we 

compared the genes in clusters C2 and C3 to separate tiling array profiles 

obtained from the adult hermaphrodite gonad, L4 males and all somatic cells at 

L4 stage. These comparisons show a significant overlap, showing that C2 and 

C3 genes are largely expressed in the germline and specifically enriched for 

sperm expression. Thus, we speculate that members of the mir-58 and mir-51 

gene families may have significant roles in modulating transcript levels in the 

germ line. The mir-58 and mir-51 motifs were previously identified by FIRE 

analysis of an independent group of whole animal microarray data sets from C. 

elegans. 

Discussion 

We have used whole genome tiling arrays to profile RNA isolated from 

specific cells and developmental stages of C. elegans. Our strategy of sampling 

a variety of different cell types and developmental periods was designed to 

capture potentially rare or transiently expressed transcripts as well as to provide 

a detailed spatial and temporal map of gene expression. 

To monitor expression of individual protein-coding genes, we derived 

intensity values from aggregated probe sequences corresponding to each 

annotated gene model. Our combined set of tiling array data from 25 different cell 

types and seven developmental stages (Figure 4.1) detected ~90% of known 

protein coding genes (Table 4.2, Figure 4.3). 
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Figure 4.12 Regulatory elements discovered in stage and cell-type expression 
clusters.  
FIRE analysis identifies motifs over- and underrepresented in developmental 
profile clusters (A) and cell-type profile clusters (B). A heat map indicates 
whether each motif is overrepresented (yellow) or underrepresented (blue) in 
each cluster. Motifs are arranged in rows and clusters in columns. Significant 
overrepresentation is indicated by red box outlines and underrepresentation is 
indicated by blue outlines (P ≤ 0.05, Bonferroni-corrected). The optimized motif 
logo, location of the motif (5′ upstream promoter or 3′ UTR), mutual information 
with the genes in the cluster, and matching transcription factors and miRNAs 
listed in public data bases for indicated motifs are shown alongside the heat map. 
(Elemento et al. 2007).  
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In addition to detecting expressed genes, our analysis also revealed that 

~75% of all detected genes show at least 2-fold, statistically significant 

differences in transcript levels between cell types or developmental stages (Table 

4.2). To document this trend of widespread differential expression among cell 

types and throughout development, we tabulated the frequency of transcription of 

a given nucleotide across tissues and stages. This analysis revealed that 

whereas 15% of exonic sequence is detected in all of the cell types that we 

sampled, a larger fraction (60%) shows more limited transcription with ~11% in 

no more than one or two cell types (Figure 4.8C). Our results also indicate that 

coding sequence is dynamically expressed during development with ~8% of 

bases from exons uniquely detected in only one embryonic, larval or adult stage. 

As we extensively sampled the C. elegans nervous system, we investigated the 

subset of genes selectively expressed in neuronal tissue. Among these genes, 

we noted striking enrichment of members of the 7TM-GPCR family, which is 

known for highly specific expression in the nervous system (Chen et al. 2005). 

The restricted expression of 7TM-GPCR genes potentially explains why many 

members of this family still lack experimental support (Hillier et al. 2009; 

Schweikert et al. 2009). Our results, however, suggest that profiles of more cell 

types should confirm expression of additional annotated gene models or genes 

newly predicted from the genome sequence. Overall, our finding of widespread 

differential gene expression underscores the conclusion that most C. elegans 

genes are extensively regulated and points to the key role of differential gene 

expression in the determination of cell fates and developmental progression. In 
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practice, our data on genes that are selectively enriched in a particular cell type 

or developmental period should be especially useful for identifying genes with 

cell- or stage-specific functions (Zhang et al. 2002; Colosimo et al. 2004; Blacque 

et al. 2005; Cinar et al. 2005; Touroutine et al. 2005; Von Stetina et al. 2007; 

McGhee et al. 2009; Chatzigeorgiou et al. 2010; Smith et al. 2010; Hallem et al. 

2011). 

In addition to using our tiling array results to identify genes expressed in 

specific cell types or developmental periods, we also sought evidence for more 

complex patterns in which cohorts of genes might be similarly regulated across 

tissues or among different development stages. For this purpose, we used the 

unbiased strategy of self-organizing maps (SOMs) to cluster co-expressed genes 

(Figure 4.10, Figure 4.11). This approach revealed, for example, a striking cluster 

with consistently elevated transcript levels in both embryonic and larval neurons 

that is largely comprised of genes with established neuron-specific functions 

(Figure 4.11E). Other clusters could reflect genes with common functions in a 

wide array of cell types during a particular developmental period (Figure 4.11B, 

D). Thus, our approach has confirmed known groups of co-regulated genes as 

well as suggested novel clusters that could point to previously unstudied 

biological roles for batteries of co-expressed genes. In addition to providing a 

direct read-out of cell-specific gene expression, our microarray data should also 

substantially enhance the accuracy of SVM-based strategies that rely on gold 

standard training sets for ab initio identification of cell-specific expression from 

whole animal microarray data (Chikina et al. 2009). Motif analysis of the SOM 
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results derived from our data sets identified highly over-represented flanking 

sequences in genes belonging to specific clusters (Figure 4.12). Each case could 

be indicative of a regulatory mechanism involving a shared trans-acting factor. 

For example, a consensus binding site for a GATA factor with a broad role in 

regulating intestine-specific genes in C. elegans (McGhee et al. 2009) was 

specifically over-represented in SOM clusters defined by transcripts with high 

expression levels in tiling array data sets derived from intestinal cells (Figure 

4.12B). Over-represented motifs in the 3’ UTR regions include recognition sites 

for two large and highly expressed groups of closely related miRNAs, the mir-58 

and mir-51 families (Figure 4.12B). Our analysis of these results points to 

potential roles for both mir-58 and mir-51 in regulating transcript abundance in 

the germ line, a suggestion consistent with the recent observation that the 

Drosophila ortholog of the mir-58 family, bantam, is required for germline stem 

cell fate (Yang et al. 2009). 

Our tiling array results confirm expression of the vast majority (~90%) of 

C. elegans protein coding genes recently identified by RNA-Seq analysis (Hillier 

et al. 2009). Additionally, our machine-learning algorithm also identified a 

substantial number of TARs arising from intergenic regions (Figure 4.3D-F). A 

conservative treatment of these data that uses a statistical test for expression 

above background, leads to the estimate that ~11 Mb of intergenic sequence, or 

~10% of the C. elegans genome, encodes novel RNAs that have not been 

previously annotated in WormBase or detected by RNA-Seq. One explanation for 

this difference is that we assayed total RNA from embryonic cells and 
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developmental stages and that the poly-A+ pull-downs that we used for sampling 

postembryonic cell types (Figure 4.1B) also include a significant non-polyA+ 

fraction (Von Stetina et al. 2007). In contrast, recent RNA-Seq results for C. 

elegans were limited to purified poly-A+ RNA (Hillier et al. 2009). Because the 

known families of short non-coding RNAs (ncRNAs) were manually excluded 

from our list of intergenic RNAs, we propose that these transcripts define 

potentially new types of non-coding RNA. An independent analysis of C. elegans 

transcriptomics data that includes the tiling array results used in this work, also 

reports a substantial number (~4.6 Mb) of putative non-coding RNAs from 

intergenic regions with a large overlap (>2.5 Mb) to our ncRNA predictions (Lu et 

al. 2011). Our analysis indicates that transcription of these novel TARs shows an 

even stronger bias for cell-specific expression than transcripts derived from 

protein coding genes (Figure 4.8C). In this respect, our findings are similar to an 

earlier report that a majority of unannotated human transcripts are expressed in 

only one of the eleven different cell lines sampled (Consortium et al. 2007). 

Although the extent of intergenic transcription from the mammalian genome is 

controversial (van Bakel et al. 2010), mounting evidence points to multifaceted 

roles for long intergenic ncRNAs (lincRNAs) including transcriptional control, 

imprinting, dosage compensation and maintenance and remodeling of chromatin 

structure (Rinn et al. 2007; Hirota et al. 2008; Wilusz et al. 2009; Tsai et al. 

2010). Nevertheless, in every case, definitive tests are required to establish 

specific functions for candidate regulatory ncRNAs. The tissue-specific patterns 

of ncRNA expression (Figure 4.8C) that we have revealed for C. elegans should 
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provide a valuable guide to the likely focus of mutant phenotypes that perturb 

expression of specific ncRNAs (Mercer et al. 2008). We note for example, that 

the recent discovery of an in vivo role for the lincRNA, Evf2, in neuronal 

differentiation hinged on prior knowledge of Evf2 expression in a specific brain 

region (Bond et al. 2009). 

Although the tiling array results reported here should provide a useful 

resource for defining the roles of specific genes in cell fate and development, 

RNA-Seq data derived from these cell specific RNA samples would offer a more 

accurate representation of gene structure and substantially greater dynamic 

range for measuring differential gene expression. With the recent development of 

effective methods for excluding ribosomal RNA from sequencing templates 

(Armour et al. 2009; Albrecht et al. 2010), it should now be feasible to use RNA-

Seq for a direct test of the non-coding RNA transcripts predicted by our tiling 

array results (see Chapter V). The fact that cell-specific tiling arrays detected 

predicted coding genes that were not touched by RNA-Seq analysis of C. 

elegans transcripts derived from the whole animal, also suggests that deep 

sequencing of RNA isolated from individual cell types could reveal additional 

protein-coding genes. 
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CHAPTER V 

 

APPLICATIONS OF MASSIVELY PARALLEL SEQUENCING FOR 

TRANSCRIPTOME PROFILING AND WHOLE-GENOME SEQUENCING IN C. 

ELEGANS 

 

Introduction 

 The nematode, Caenorhabditis elegans, was the first multicellular 

organism to have its genome fully sequenced (Consortium 1998). The completed 

genome sequence has served as the basis for efforts to define protein-coding 

genes, non-coding genes, and other structural elements that are involved in any 

number of cellular and organismal processes. Sequencing the genome relied on 

the traditional Sanger method that is low-throughput and has a high cost per 

read. In the past decade, the method of sequencing by synthesis has provided 

the basis for new technology that can produce a tremendous number of 

sequence reads in parallel (Margulies et al. 2005; Shendure et al. 2005; Bentley 

et al. 2008). There are many applications of this technology, but two of the most 

popular applications are whole genome (re)sequencing (WGS) and RNA 

sequencing (RNA-Seq).  

 WGS enables researchers to isolate genomic DNA from any organism and 

produce high-quality, high-coverage sequence data at a relatively low cost. 

Previously, genetic studies relied on complicated, laborious, and time-consuming 

mapping strategies to identify sequence variants that are produced via 
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mutagenesis during a genetic screen. With the introduction of high-throughput 

WGS, researchers can now sequence an individual’s genome to identify unique 

variants, or perform a genetic screen and sequence the genome of individuals 

with a phenotype of interest (Bentley et al. 2008; Hillier et al. 2008; Sarin et al. 

2008; Shen et al. 2008; Doitsidou et al. 2010). 

 Profiling the entire complement of RNA transcripts produced within whole 

animals, tissues, and specific cell-types provides a resource for researchers to 

identify when and where gene products are expressed and make predictions for 

further experimental testing. Microarrays have been the most widely used 

method for assaying global gene expression. Due to limited resolution as a 

consequence of probe length and density, moderate dynamic range, and 

potential cross-hybridization artifacts, microarrays are being increasingly 

supplanted by high-throughput sequencing of cDNA libraries as the technology of 

choice for global expression studies. Currently, methods exist for isolating 

mRNA, miRNAs, and ncRNAs and for generating cDNA libraries for sequencing 

on a variety of platforms. It is also possible to directly sequence the 3’ end of 

single RNA molecules, although availability of the sequencing machine required 

for this highly sensitive approach is limited (Ozsolak et al. 2009; Ozsolak et al. 

2010). 

 A primary concern for RNA sequencing projects is the ribosomal RNA 

(rRNA) content of the template. While microarrays largely do not have this 

problem, since RNAs (or cDNAs) can bind to their target probes and produce a 

fluorescent signal independently of other probes, the reads produced using RNA-
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Seq directly correspond to the content of the cDNA library. So if the cDNA library 

consists of 90% ribosomal RNA, then approximately 90% of reads will map to 

rRNA transcripts. It is therefore desirable to remove rRNAs from total RNA 

samples before initiating high throughput sequencing in order to achieve efficient 

and cost effective sequencing output for lower abundance transcripts derived 

from other genes. Although rRNAs can be effectively excluded by constructing 

sequencing libraries from poly-A transcripts, this approach also removes other 

novel noncoding RNAs, which can have important biological functions.  

 In this chapter, I will describe my efforts to analyze WGS data for the 

identification of sequence variants produced by genetic screens performed in the 

laboratory. The primary focus of this chapter will be on my efforts to deplete 

rRNA from total RNA preparations of C. elegans RNA and apply massively 

parallel RNA-Seq to identify transcripts, quantify levels of transcription, and 

perform differential expression analysis. 

Materials and Methods 

Nematode strains 

 Animals were grown as described (Brenner 1974). The strains NC1975 

[unc-4(e120); blr-2(wd77); blr-1(wd76)], NC1961 [blr-9(wd88); unc-4(e120); 

wd87] and NC2135 [ceh-12(gk391); unc-4(e2320); wd87; wd95] were grown and 

genomic DNA was isolated using a Qiagen genomic DNA isolation kit.  

WGS quality control, read mapping, and variant identification 

 Genomic DNA libraries were prepared using standard Illumina protocols 

by the Genome Technology Core at Vanderbilt. Each DNA library was 
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sequenced using one flow cell lane on an Illumina Genome Analyzer IIx. 

Sequence read quality was analyzed using FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). The reads were required 

to have quality scores >30 and normal GC content (~35-38% GC). Reads were 

mapped to the C. elegans reference genome using MaqGene (Bigelow et al. 

2009). Mapped reads were allowed to have up to 3 mismatches and variants 

were required to have a depth of coverage >4. For each strain, the flat file 

describing all variants identified was uploaded to a MySQL database. For 

identifying duplicate variants across strains, the chromosome, base position, and 

called base had to be identical. For visualization of genome coverage, reads 

were mapped to the genome using BWA (Li and Durbin 2009). To visualize 

mapped data, SAM files were converted to BigWig format and uploaded to the 

UCSC Genome Browser (Kent et al. 2002; Kent et al. 2010; Rhead et al. 2010) 

or BAM files were viewed in the Integrated Genome Viewer (Robinson et al. 

2011). 

Ribosomal RNA depletion methods 

 Ribominus: Total RNA from whole animals was isolated using Trizol and 

processed with a Ribominus eukaryote kit (Invitrogen) as described by the 

manufacturer except as noted. One microgram of total RNA was bound to the 

rRNA probes and passed over the streptavidin-coated beads one time (and not 

twice as recommended in the protocol for larger amounts of starting total RNA).  

RNAse H digestion: First strand cDNA was generated using Superscript II 

& III (Invitrogen) with the following primers designed for 18S and 26S transcripts: 
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rrn-1-3’ GGTTCACCTACAGCTACCTTGTTAC, 18S-R1 

ATCTCGTTATTGCTGCGGTT, rrn-3.1-3’ AAGGATAGTCTCAACAGATCGCAG, 

rrn3_R1: CAACTAAGCGACCAGTCACCAA, rrn-3.1-R3 

TTTCGCCCCTATACCCAAGTC. RNAse H enzyme was obtained from Promega. 

After RNAse H treatment, DNA was degraded with DNAse I and RNA purified 

using the DNA-free RNA kit (Zymo Research). 

Terminator Exonuclease (Terminator): Whole animal total RNA was 

treated with Terminator exonuclease (Epicentre) for 30 minutes at 37 °C in a 

thermal cycler. Epicentre has since altered the protocol to recommend an 

incubation time and temperature to 60 minutes at 30 °C.  

RNA quality analysis 

 RNA concentrations were measured using UV/Vis spectroscopy 

(NanoDrop, Thermo Fisher). RNA quality was assayed using the Bioanalyzer 

2100 (Agilent). 

Quantitative real-time PCR 

 qPCR was performed as described in Chapter IV. Primers are shown in 

Table 5.1. 

RNA-Seq library construction and sequencing 

 RNA isolated from the AVA neuron and other cells (see Chapters II & III) 

was amplified using a developmental version of the NuGEN Ovation RNA-Seq 

kit. Double-stranded cDNA was generated using a modified Exon module 

(NuGEN) designed to produce short fragments of ds cDNA (~200 bp) to avoid 

sonication during library preparation. The final ds cDNA was end-polished, A-
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tailed, and adapters were ligated using standard Illumina protocols by the 

Genome Technology Core at Vanderbilt or by the laboratory of Robert Waterston 

at the University of Washington. Libraries for the AVA, pan neural, embryonic 

reference, whole animal, Ribominus, RNAse H, and Terminator samples were 

sequenced using 1-3 lanes of an Illumina Genome Analyzer II(x). The AVA 

library was also sequenced using 1 lane on an Illumina HiSeq 2000.  

RNA-Seq quality control and read mapping 

 Sequence read quality was confirmed by FastQC as above. Reads were 

mapped to the C. elegans reference genome using BWA (Li and Durbin 2009) 

with default settings along with <2 mismatches and a unique alignment. The SAM 

output files were converted to BAM files using Samtools (Li and Durbin 2009). To 

visualize mapped data, BAM files were converted to BigWig files and uploaded to 

the UCSC Genome Browser (Kent et al. 2002; Kent et al. 2010; Rhead et al. 

2010).  

RNA-Seq transcript quantification, differential expression, and splice site 
analysis 
 
 The SAM files generated from mapping reads to the genome were used 

as input for Cufflinks and Cuffdiff. The annotation used for assigning mapped 

reads to gene models was obtained from Ensembl as a GTF file for assembly 

version WS190 (Hubbard et al. 2002), which matches the reference genome 

used and allows for visualization in the UCSC Genome browser. Differential 

expression was tested using Cuffdiff with fold-change ≥2 and false discovery rate 

(FDR) ≤ 5%. To analyze splice junctions, MapSplice was used with default 

settings except for the following: minimum intron length ≥1, maximum intron 
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length ≤ 20,000, and segment length = 25. Splice junctions were output as BED 

files and upload to the UCSC Genome browser for visualization.  
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Table 5.1 qPCR primers 
rrn-1-5' GATTGATTCTGTCAGCGCGATATGC 
rrn-1_R1 TTGCGTTGGGGTATAGTTG 
rrn-1_F1 GTGTCTGCCCTTTCAACTAGAT 
rrn-1_R2 TAAGTTTCGCGCCTGCTG 
18S-F1 AAGGAGAGGGCAAGTCTGGT 
18S-R1 AACCGCAGCAATAACGAGAT 
18S-F2 TTCTTCCATGTCCGGGATAG 
rrn-1-3' GGTTCACCTACAGCTACCTTGTTAC 
rrn-3.1-5' AGTCGTGATTACCCGCTGAAC 
rrn-3_R4 GGCTCTTCCCGTTTCACT 
rrn-3_F1 TTGTGATCGTTGCCGGGT 
rrn-3_R2 AACTAAACGCTAGCCGCC 
26S-F1 ATTGGTTCAGCCAGAGATGG 
26S-R1 CGTTCAAAGAGCACGAGACA 
26S-F2 TGTCGGGAGGCATCTCTATC 
26S-R2 CGTCGCAGAATTCACTACGA 
UNC54-F3 TACCGATCAACTCGGAGAGG 
UNC54-R3 CCAAAGCGTGTTGGAGTTCT 
UNC54-F4 GCCAACTTGAACCTCCAGAA 
UNC54-R4 TCGCATCTTTGAGAGGGAGT 
GPD3-F1 GAATCAACGGATTCGGAAGA 
GPD3-R1 GACGGCAACAACATTGACAC 
GPD3-F2 CAGCTTCCCTCGATGACATT 
GPD3-R2 TCCTCGGTGTAAGCGAGAAT 
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Results 

Whole genome re-sequencing of C. elegans mutant strains 

 Another graduate student in the laboratory, Judsen Schneider, performed 

a genetic screen to identify mutations that suppress the Unc-4 backward 

movement defect. Many independent mutations were isolated, characterized, 

and mapped to chromosomes or chromosomal regions (J. Schneider, R. Skelton, 

and D. Miller, manuscript in preparation). To identify the putative phenotype-

causing variation, six strains were selected for whole genome sequencing (see 

Methods). Strains with mutations located on separate chromosomes were 

crossed together to create 3 strains with 2 alleles per strain. All 3 strains 

contained a known mutation in unc-4 and 2 of these strains also contained a 

known deletion in ceh-12 (see Figure 5.1). Genomic DNA was isolated and 

sequenced on an Illumina Genome Analyzer IIx. Each strain was sequenced 

using 86 base reads on 1 lane of the flow cell generating approximately 28 

million reads and a total of 2.4 gigabases of data per strain. Reads were mapped 

to the WormBase reference genome (WS190) using the Maq short read 

alignment program as implemented in MaqGene for variant calling and BWA for 

coverage (Li et al. 2008; Bigelow et al. 2009; Li and Durbin 2009). See Table 5.2 

for sequencing and mapping summary statistics. Roughly 75% of reads mapped 

to the C. elegans genome resulting in an average depth of coverage of 20X. The 

mutagen used in the screen, ethylmethanesulfonate (EMS), largely induces 

single base changes, so analysis of variants was focused on single-nucleotide 

variations (SNVs). Initially, SNV analysis was performed using MaqGene, which 
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required setup of a MySQL database and Apache webserver running on Linux. 

Once installed, MaqGene provides a simple web-based interface for initiating the 

analysis pipeline consisting of read mapping, SNV calling, and determining 

whether SNVs located in protein-coding genes are likely to be deleterious. 

Results are generated in tab-delimited text files allowing easy filtering with a 

spreadsheet program (e.g. Microsoft Excel).  

 As an initial validation of the sequencing data, I examined whether the 

known mutations contained in each strain was correctly detected. All three 

strains contained the unc-4(e120) allele, which is a mutation in the splice 

acceptor of intron 5. The wd76_wd77 and wd87_wd95 strains also contained the 

ceh-12(gk391) allele, which is a deletion in the first exon of the gene. Both 

mutations were easily detected in their respective strains (Figure 5.1). MaqGene 

correctly called the e120 splice site mutation as a C->T transition in the splice 

acceptor (Figure 1A) and the gk391 deletion as an uncovered region affecting the 

ceh-12 gene (Figure 1B). These results provide validation for the quality of the 

sequence data and utility of the MaqGene software. 

A summary of variation information for each strain from MaqGene is 

presented in Table 5.3. A surprisingly large number of intergenic variants were 

detected in each strain. It is not clear how many represent real SNPs vs 

sequencing errors. The most attractive variants (premature stop codons, splicing 

variants, and non starts) are much more rare and easily filtered by manual 

inspection of read alignments in a genome browser. It is known that there are a 

large number of genomic variations in strains cultivated in individual labs 
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Table 5.2 Sequencing and mapping statistics  
Strain wd76_wd77 wd87_wd88 wd87_wd95 
Total reads (million) 30.6 30 32.2 
Mapped (million reads/Gb) 27.1/2.3 28.3/2.4 24/2.1 
Avg. depth-coverage 23X 24X 21X 
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Figure 5.1. Known mutations in unc-4 and ceh-12 are accurately detected by 
WGS.  
(A) The unc-4(e120) lesion is a C->T point mutation in the splice acceptor of 
intron 5. (B) The ceh-12(gk391) lesion is a 481 bp deletion beginning upstream of 
the ATG start site through most of the first exon. The wd87_wd88 strain that did 
not contain the ceh-12(gk391) allele shows normal coverage across the same 
region. 
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Table 5.3. Summary of MaqGene variations. 
class wd76_wd77 wd87_wd88 wd87_wd95 

5’ UTR 1,307 1,337 1,334 
Frame shift 37 56 48 
In-frame 11 9 12 
Mis-sense 6,328 6,640 6,656 
ncRNA 895 924 898 
Intergenic 128,403 137,270 133,866 
Non start 9 10 10 
Premature stop 696 698 698 
readthrough 23 29 23 
silent 7,479 7,638 7,683 
SNP 1,057 1,095 1,098 
Splice acceptor 49 53 49 
Splice donor 51 50 54 
3’ UTR 3,616 3,731 3,690 
Uncovered regions 663 1,589 387 
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compared to the reference C. elegans genome (Bentley et al. 2008; Hillier et al. 

2008; Sarin et al. 2008; Shen et al. 2008; Doitsidou et al. 2010). Prior to 

mutagenesis, the parental strain already contains many variations that are not 

causative for the phenotype obtained through the genetic screen. Therefore, 

comparing variant information between sequenced strains is necessary to filter 

out variants that likely existed in the parental strain. To compare the detected 

variants, I created a MySQL database containing all SNV data generated by 

MaqGene.  Then, each SNV was compared to all other SNVs from each of the 

three strains sequenced using the genomic location and called base (see 

Methods). Since I also had genetic mapping data available for each strain 

(Schneider, Skelton, Miller), SNVs were filtered to the genomic region 

corresponding to the known genetic interval expanding the interval to the next 

megabase coordinate (Table 5.4). These filtering steps drastically reduced the 

number of candidate SNVs for each allele.  

The most obvious first candidate SNV for the wd76 allele is a mutation 

that creates a premature stop codon early in the first exon of F57G8.7 (Table 5.5, 

Figure 5.2B). The F57G8.7 gene encodes a protein that is not conserved outside 

of nematodes and is completely uncharacterized (WormBase). While the lack of 

conservation and known function does not provide any useful information, 

F57G8.7 may have a unique function in the nervous system. Another candidate 

mutation is an uncovered region affecting the srh-136 gene (Table 5.5, Figure 

5.2A). srh-136 encodes a putative seven transmembrane (7-TM) G-protein 

coupled receptor (GPCR, WormBase). 7-TM GPCRs are not well conserved, but   
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Table 5.4 SNVs filtered for uniqueness to that allele and genetic interval. 
class wd76 wd77 wd87 wd88 wd95 

5’ UTR 0 3 0 0 1 
In-frame 0 0 0 0 0 
Mis-sense 14 1 10 11 16 
ncRNA 0 0 0 0 0 
Non-genic 29 7 112 4 25 
Premature stop 1 0 0 1 0 
readthrough 0 0 0 0 0 
silent 4 2 3 3 13 
SNP 3 1 2 0 3 
3’ UTR 0 1 1 1 0 
uncovered 12 14 70 125 23 
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do show functional conservation in some cases (Troemel et al. 1995). srh-136 is 

an attractive candidate gene since G-protein signaling is involved in many 

cellular functions. The best candidate mutation for the wd77 allele is a missense 

mutation in the srsx-14 gene that encodes a 7-TM GPCR (Table 5.5). The 

mutation is a G->A conversion, which changes a methionine to isoleucine. At this 

point, it is not obvious how this amino acid change would affect srsx-14 function 

or localization, but the possibility of two 7-TM GPCRs found in the same screen 

is intriguing.  

There are two possible candidates for wd87. ymel-1 has mutation in the 

intron 2 splice donor that would likely generate a truncated protein product. ymel-

1 is a conserved mitochondrial-localized protease, which can suppress alpha-

synuclein inclusions in adult animals (van Ham et al. 2008). The other candidate 

is, hpr-9, a homolog of the Rad9 9-1-1 complex subunit. The mutation is a GGA-

>AGA[Gly->Arg] conversion and it is not clear if this amino acid change would 

alter function or localization. 

The wd88 allele has two possible candidates. ccb-2 encodes a beta 

subunit of the L-type voltage-gated calcium channel (WormBase). The ccb-2 

mutation is a GAT->AAT[Asp->Asn] conversion (Table 5.5). The possibility of a 

modified calcium channel that suppresses a backward movement phenotype is 

intriguing. The other candidate is Y71F9AL.17, which encodes an alpha subunit 

of the coatomer complex (COPI, WormBase). The mutation results in a CTT-

>TTT[Leu->Phe] change (Table 5.5). Although protein trafficking would be an 

interesting process to study in the motor circuit, it is not clear how retrograde  
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Table 5.5 Best candidate genes in mapped regions. 
	
   gene	
   class	
   	
  

wd76	
   F57G8.7	
   premature	
  stop	
   	
  
	
   srh-­‐136	
   deletion	
   	
  

wd77	
   srsx-­‐14	
   missense	
   ATG->ATA[Met->Ile]	
  
wd87	
   ymel-­‐1	
   splice	
  donor	
   	
  

	
   hpr-­‐9	
   missense	
   GGA-­‐>AGA[Gly-­‐>Arg]	
  
wd88	
   ccb-­‐2	
   missense	
   GAT-­‐>AAT[Asp-­‐>Asn]	
  

	
   Y71F9AL.17	
   missense	
   CTT-­‐>TTT[Leu-­‐>Phe]	
  
wd95	
   F35F10.1	
   missense	
   ACG-­‐>AGG[Thr-­‐>Arg]	
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Figure 5.2 wd76 candidate genes.  
(A) srh-136 shows a deletion from the first to the second exons. srh-136 encodes 
a 7-TM GPCR. (B) F57G8.7 has a premature stop codon and encodes an 
unconserved, uncharacterized protein. 
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transport from the trans-golgi to the cis-golgi or ER would play a role in neural 

specificity. 

There is one major candidate for the wd95 allele. The F35F10.1 gene 

encodes a nematode-specific predicted protein N-glycanase (WormBase), which 

has a missense mutation resulting in a threonine to arginine conversion (Table 

5.5). Protein N-glycanases are predicted to be involved proteasome-dependent 

removal of misfolded glycosylated proteins (Suzuki et al. 2000). Since many 

transmembrane proteins are glycosylated, aberrant localization of membrane-

bound proteins could be involved in the suppression of the Unc-4 backward 

movement phenotype. 

rRNA-depletion and single-cell RNA quantification by RNA-Seq 

 A major goal of the modENCODE project was to identify all RNA 

transcripts produced from the C. elegans genome (Celniker et al. 2009). Over the 

course of this project, the application of deep sequencing for transcriptome 

profiling has matured and has become a routine assay of gene expression. As 

our role in the consortium was to identify transcripts expressed in single cell-

types, we standardized on tiling microarrays since the quantities of RNA isolated 

from rare populations of cells was very low and at the beginning of this project 

there was no method available to sequence minute quantities of mRNA or non-

poly(A) RNA (see Chapter III). As mentioned previously, a major problem with 

sequencing total RNA is the rRNA content of the sample. If a total RNA sample 

consists of 90% rRNA transcripts, then approximately 90% of RNA-Seq reads will 

map to rRNA. To apply RNA-Seq to our minute quantities of RNA, we either 
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needed to selectively amplify non-rRNA transcripts, or selectively deplete rRNA 

from our samples. The first option was most readily available due to a long-

standing collaboration with NuGEN Technologies (San Carlos, CA). To generate 

enough cDNA for sequencing, we worked with NuGEN to test developmental 

versions of their amplification strategy designed for RNA-Seq. NuGEN uses 

custom primers in their amplification procedure that inhibit amplification of rRNA 

transcripts. Our previous experience with this amplification strategy detected 

mRNA transcripts as well as novel transcripts (see Chapter III), suggesting we 

should be able to apply the same strategy for RNA-Seq and detect all non-rRNA 

transcripts with greater resolution and sensitivity. To test this strategy, we 

amplified total RNA from three samples: embryonic AVA neurons, all embryonic 

neurons, and an all-embryonic cell reference sample. The AVA neuron sample 

was sequenced using three lanes of a flow cell on an Illumina Genome Analyzer 

II. The pan neural and reference samples were sequenced using two lanes each. 

This generated over 11 million reads for the AVA sample, 8 million reads for the 

pan neural sample, and 9 million reads for the reference sample (Table 5.7). By 

mapping the reads to the genome, I compared the number of reads mapping to 

ribosomal DNA regions and all other genomic regions. The reference sample 

contained 76% rRNA reads, while the AVA and pan neural samples contained 

84% rRNA reads, suggesting the NuGEN amplification strategy robustly 

amplified rRNA transcripts from C. elegans RNA samples. This result is unique 

compared to human and mouse samples that showed very low amounts of rRNA 

reads (Shawn Levy and NuGEN, personal communication) (Head et al. 2011). 
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Thus, the NuGen amplification strategy does not efficiently exclude rRNA 

sequences during amplification of C. elegans RNA although this protocol is 

apparently highly biased against mammalian rRNA amplification. It is not clear 

whether the NuGEN amplification would amplify rRNA of another invertebrate 

species, such as Drosophila. Because of these results, I decided to test 

alternative methods for depleting rRNA from our C. elegans total RNA samples. 

 An option for rRNA depletion became available when Invitrogen released 

the Ribominus kit. This strategy uses biotin-labeled locked-nucleic acid (LNA) 

probes complementary to eukaryotic rRNA sequences. When the probes are 

hybridized to the sample rRNA, the biotin-labeled probe:rRNA transcript complex 

is bound to streptavidin-coated beads and removed from the remainder of the 

RNA sample. The standard protocol for this method suggested using > 2 µg of 

total RNA as input and performing two passes over the avidin-beads. As a first 

step in scaling the procedure down to lower amounts of input RNA, I used 1 µg of 

whole animal total RNA and performed one pass over the avidin-beads. The 

residual RNA (5 ng) was amplified by the NuGEN method (WT-Ovation-Pico). 

Each of the two RNA samples were sequenced with one lane of the Illumina 

GAII. 7 million reads were obtained for each sample but the rRNA content of the 

Ribominus treated sample was not significantly depleted and therefore did not 

result in a enhanced coverage of mRNA transcripts (Table 5.7).  

 Since there was no other commercially-available method to remove rRNA 

transcripts from total RNA samples, I pursued a strategy originally described in 

the Affymetrix Expression Handbook and applied by Rosenow, et al. 2001 to 
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bacterial RNA (Affymetrix, Santa Clara, CA. ; Rosenow et al. 2001). RNAse H is 

a ribonuclease that specifically degrades the RNA component of an RNA:DNA 

heteroduplex. I designed primers to three regions of the 26S rRNA transcript and 

two regions of the 18S transcript. The rRNA primers were used for single-strand 

cDNA synthesis to generate cDNA specifically for rRNA transcripts.This 

approach should result in the formation of a RNA:DNA duplex strictly for rRNA 

transcripts but not for other RNA species. This sample was initially treated with 

RNAse H (Promega) to degrade the rRNA and then with DNAse I to remove the 

residual rRNA cDNA strands. I tested rRNA depletion by qPCR, which showed a 

strong reduction for the 5’ end of the 18S transcript and moderate reduction in 

the 3’ end of the 26S transcript (Table 5.6). This RNA sample was amplified with 

the NuGen WT-Ovation-Pico method and sequenced using one lane on an 

Illumina GAII. Over 6 million reads were generated, but surprisingly, the sample 

consisted of 99% rRNA reads. One explanation for this result could be non-

specific degradation of mRNA by the RNAse H enzyme enriching the abundant 

rRNA in the sample. The RNA-Seq result contradicts the qPCR result, but the 

regions targeted for PCR are small and may not provide an accurate assessment 

for the transcript as a whole. It was not clear that through optimization of this 

protocol that sufficient rRNA depletion would occur and generate the desired 

results in a timely manner, so I focused on another method that became 

commercially available. 

 A new enzyme called Terminator exonuclease was released by Epicentre 

that specifically degrades RNA with a 5’-monophosphate. The 5’ end of 
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ribosomal RNA contains a 5’-monophosphate, which would allow it to be 

degraded. RNAs with a 5’-cap, 5’-hydroxyl, or 5’-triphosphate are not degraded 

by Terminator exonuclease, thereby allowing mRNAs to remain intact. To test 

this method, I treated 500 ng of whole animal total RNA with the Terminator 

exonuclease and used another 500 ng sample of total RNA omitting the enzyme 

as a mock treatment negative control. The enzyme treatment resulted in a 50% 

reduction in total RNA quantity as determined by UV/Vis spectroscopy. Prior to 

submitting for deep sequencing, I used qPCR to measure the relative transcript 

levels of the 18S and 26S rRNAs and two mRNAs, a muscle myosin unc-54 and 

the GAPDH transcript gpd-1 (Figure 5.3). The rRNA transcripts show a robust 

decrease of up to 80-fold compared to the mock-treated RNA. The unc-54 and 

gpd-1 mRNA transcripts also showed a corresponding increase of around 5-fold. 

These results are indicative of a strong depletion of rRNA from the total RNA 

sample with a relative increase in mRNA levels. Next, we sequenced the 

amplified cDNA from the Terminator-treated sample using a single lane on an 

Illumina GAIIx. Over 28 million reads were generated and the rRNA reads were 

limited to 22% of all mapped reads. With almost 80% of reads mapping to non-

rDNA regions of the genome, gene models showed robust coverage and novel 

transcripts outside of annotated gene models were detected (Figure 5.4). To test 

this approach on a normal low amount input RNA, I used 1 ng of an embryonic A-

class motor neuron total RNA sample. I used the Terminator treatment as 

described and sequenced the amplified cDNA on one lane of the GAIIx. 

Approximately 28 million reads were obtained and just over 20% mapped to 
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rRNA. Oddly, the other 80% of reads did not map to the C. elegans genome, but 

to the Bacillus anthracis genome. It is not clear where this template originated. 

Due to the scant amount of mRNA contained in a 1 ng sample of total RNA, the 

mRNA transcripts could have been degraded by non-specific Terminator 

exonuclease activity and/or lost in subsequent RNA purifications. To test whether 

Terminator exonuclease can degrade rRNA from samples less than 500 ng, I 

treated 500, 250, 100, 50, and 25 ng quantities of total RNA from a whole animal 

sample. Using the resulting RNA quantity after enzyme treatment as an indicator, 

only the 500 ng and 250 ng showed a robust decrease in material (data not 

shown). This result suggested that additional optimization of the exonuclease 

treatment protocol would be required to scale down the amount of input RNA 

used to levels that are necessary for rare cell-specific samples.  

 Recently, Illumina released a new sequencing machine called the HiSeq 

2000. A combination of hardware and sequencing chemistry enhancements 

allows the machine to generate 80-100 million reads per lane of a flow cell. 

Based on previous results, we predicted that a sample with 85% rRNA content 

should yield ~12-15 million reads from one lane on a HiSeq 2000 and thus 

provide robust coverage of non-rRNA transcripts in that sample. To test this 

approach, we used one lane on a HiSeq 2000 to sequence the same cDNA 

library generated from total AVA neuron RNA used previously. Over 80 million 

reads were obtained with 66% mapping to the genome. The percentage of rRNA 

reads remained the same at 85%. This resulted in 7.6 million reads mapping to 

non-rDNA regions of the genome (Table 5.7).  
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Qualitative inspection of these results in the genome browser showed that 

genes known to be highly expressed in AVA neurons (e.g., rig-3, Figure 5.5A) 

show robust coverage whereas genes normally restricted to other tissues 

showed little to no coverage (Figure 5.5b). RNA-Seq results obtained from a 

poly(A)+ RNA  whole embryo sample generated by another group in our 

modENCODE project is shown (embryo poly(A)+). To quantify gene expression, I 

used Cufflinks to normalize the AVA HiSeq data with the whole embryo poly(A)+ 

data (Trapnell et al. 2010; Roberts et al. 2011) (see Methods). To measure 

transcript abundance, Cufflinks uses the Fragments Per Kilobase of exon 

per Million fragments mapped (FPKM), which is analogous to RPKM (Mortazavi 

et al. 2008). The whole embryo poly(A)+ sample detected 14,325 protein-coding 

genes with FPKM > 0 and the AVA HiSeq sample detected 10,654 protein-coding 

genes with FPKM > 0 suggesting that sequencing total RNA is able to detect 

gene expression with sensitivity approaching purified mRNA procedures. To 

identify what genes are differentially expressed between AVA and the whole 

embryo reference, I used the Cuffdiff program, which tests for differences in the 

FPKM log ratio between two samples (Trapnell et al. 2010). Despite only 

providing one replicate per data set, Cuffdiff identified 3,292 genes as 

differentially expressed between the AVA and whole embryo reference sample. 

There are 1,117 genes enriched in AVA vs. the whole embryo with fold change ≥ 

2 and 2175 genes relatively depleted with fold change ≤ -2. The AVA enriched 

genes include many known AVA expressed genes including flp-18, glr-1, glr-4, 

glr-5, unc-42, and rig-3. Obtaining a whole-embryo reference sample using the 
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same method as that used to generate the AVA library and producing at least 

two replicates for each data set, should provide more reliable results. Since we 

previously quantified gene expression levels using tiling microarrays for AVA 

(see Chapters II & III), I correlated the AVA RNA-Seq FPKM values vs. the AVA 

microarray expression values as shown in Figure 5.6. The Spearman’s rho 

correlation between the data sets is 0.87 demonstrating very good agreement 

between the techniques.   

 To utilize the additional resolution provided by RNA-Seq, I analyzed splice 

junctions using the program MapSplice (Wang et al. 2010). MapSplice segments 

sequence reads and maps the segments to the genome. The segments are 

matched to the original intact read, coverage of the detected splice is computed, 

and sequence features are analyzed to determine whether the junction 

represents a canonical or non-canonical splice junction. This method has been 

shown to be more accurate and sensitive than another splice junction analysis 

program, Tophat (Wang et al. 2010). In total, the MapSplice algorithm detects 

47,879 splice junctions in the AVA total RNA-Seq data and 99,952 junctions in 

the whole embryo mRNA-Seq data. The embryonic mRNA-Seq data contains 40 

million mapped reads (5X the AVA RNA-Seq data), which provides greater depth 

of coverage across more transcripts than the AVA RNA-Seq data set and allows 

MapSplice to detect more splice junctions. Optimization of parameters used by 

the MapSplice algorithm should detect more bona fide splice junctions. Although 

these data provide support for constitutive splice junctions as well as junctions 

generated through alternative splicing, the junctions are not assigned to a 
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transcript isoform, so additional analysis steps are required to provide stronger 

evidence for expression of particular transcript isoforms.   

Discussion 

 Massively parallel sequencing provides a platform for analysis of the 

genome at single-base resolution. This technology advances two areas of 

research in our laboratory: The identification of mutant alleles isolated from 

genetic screens by whole genome re-sequencing and high-resolution 

transcriptome analysis of specific cell-types. While the benefit of this technology 

is readily apparent, evaluating data analysis approaches for whole genome re-

sequencing and developing sample preparation methods and data analyses for 

RNA-Seq has proven challenging.  

Methods for mutant allele identification 

 Genetic screens have provided biologists with the ability to identify mutant 

variants that alter specific biological processes. While classical methods (e.g., 

EMS mutagenesis) are still used for generating random mutation, methods for 

mapping the mutant alleles have evolved greatly. From the previous century to 

today, researchers rely on genetic markers to perform 2-factor and 3-factor 

mapping. By crossing the strain carrying an identified allele with another strain 

carrying one or two markers on a chromosome, genetic intervals where the 

mutation is located can be defined by analyzing recombination rates between the 

allele and the known markers. After narrowing the genetic interval to a 

manageable range, phenotypic non-complementation and/or genetic rescue with 

genomic fragments can identify the gene where the mutation is located. By 
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sequencing through the region using traditional Sanger sequencing, the lesion is 

identified. This process is reliable, but can be labor intensive and slow depending 

on the phenotype of the isolated mutant. The advent of whole genome re-

sequencing can dramatically shorten this process particularly for organisms with 

compact genomes such as C. elegans and Drosophila (Sarin et al. 2008; 

Blumenstiel et al. 2009; Doitsidou et al. 2010).  

 In this chapter, I have described the implementation of data analysis 

methods for WGS of C. elegans. These methods depend on the generation of 

high-quality sequencing reads to prevent systematic error from influencing 

variant calling and sufficient depth of coverage on the genome to sample as 

much of the genome as possible. The MaqGene pipeline automates a large 

portion of the analysis from mapping to variant calling and, depending on the size 

of the data set and target genome, the analysis can be completed in a few hours 

(Bigelow et al. 2009). However, additional analysis is necessary to remove 

variants that existed in the parental strain. This filtering step reduces the number 

of candidate variants from thousands to <100, which can then be easily scanned 

for likely deleterious mutations (e.g., premature stop codons). While the focus of 

this chapter has been on data analysis of WGS, there are several interesting 

aspects of the candidate genes identified and how they can be involved in 

expression of the Unc-4 backward movement phenotype. The unc-4 mutation 

results in a strong backward movement defect due to de-repression of target 

genes that alter connectivity in the motor circuit. Thus, loss of function mutations 

in these downstream genes should at least partially restore backward locomotion 
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to an unc-4 mutant. Another student in the Miller lab, Rachel Skelton, has shown 

that one such gene, goa-1/Gαo) strongly suppresses Unc-4 movement. A 

candidate for each of the wd76 and wd77 alleles encodes a putative 7-TM 

GPCR. When GPCRs are activated, they function as guanine exchange factors 

for the activation of G-proteins. Based on these results, we can formulate the 

hypothesis that wd76 and wd77 are alleles of the GPCRs, srh-136 and srsx-14, 

respectively, and function to activate the Gαo, goa-1. Therefore, loss of function 

mutations in either the GPCR genes or in goa-1 should result in Unc-4 

suppression. Although additional experiments are required to test these 

predictions, the development of WGS methods for detecting genetic variants 

should provide a rapid and efficient strategy for the identification of authentic unc-

4 pathway genes.    

Development and application of RNA-Seq methods for cell-specific 
transcriptome profiling 
 
 The Miller laboratory has had a long-standing interest in utilizing global 

gene expression profiling for identifying candidate genes involved in specific 

cellular functions. The relative ease of creating transgenic animals and the 

implementation of advanced molecular genetic tools has provided the opportunity 

to study gene expression in specific cell-types from embryonic stages through 

adulthood (Fox et al. 2005; Fox et al. 2007; Stetina et al. 2007; Watson et al. 

2008; Smith et al. 2010; Spencer et al. 2011). These studies have relied on the 

Affymetrix microarray platform for measuring expression of annotated protein-

coding genes (Fox et al. 2005; Fox et al. 2007; Von Stetina et al. 2007; Watson 

et al. 2008; Smith et al. 2010) as well as for detecting transcription from non-
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coding sequence regions (Spencer et al. 2011). One of the major criticisms of 

microarrays is the potential for artifactual signals due to non-specific cross-

hybridization (Wu et al. 2005; Zhang et al. 2005). Additionally, the resolution of 

microarrays is limited to probe density and at present, stands at 25 nt for the 

Affymetrix C. elegans tiling array. The application of RNA-Seq for transcriptome 

profiling largely removes these limitations. To date, most RNA-Seq studies have 

focused on the mRNA fraction of the transcriptome by purifying poly(A)+ RNA 

(Mortazavi et al. 2008; Hillier et al. 2009; Gerstein et al. 2010; Graveley et al. 

2011). These studies obtain RNA samples from cell-lines or whole animals that 

provide relatively large quantities (> 1 µg) of total RNA for purification of the 

poly(A)+ fraction. Because much smaller quantities of total RNA can be feasibly 

isolated from specific C. elegans cell types (< 10 ng), it was necessary to develop 

alternative strategies for obtaining useful RNA-Seq results from these samples. 

In this chapter, I have described the empirical testing of several methods for 

depleting rRNA from total RNA samples. These techniques still routinely require 

quantities of input RNA that preclude the use of RNA from rare cell-types and 

currently only the Terminator exonuclease method has succeeded in efficiently 

reducing rRNA levels from C. elegans whole animal RNA (Figure 5.4, Table 5.7). 

Thus, additional effort will be required to deplete rRNA from individual cell-type 

samples while leaving all other RNAs intact.  

 The release of the Illumina HiSeq 2000 has partially obviated the need for 

rRNA-depletion strategies through brute-force sequencing of a complete total  
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Table 5.6 Real-time PCR analysis of RNAse H depletion of rRNA. 

 - RNAse H + RNAse H  

amplicon Ct Ct Fold change 

gpd-3   5’ end 28.3 27 +2.5 

gpd-3   3’ end 28.4 27.5 +1.9 

    

unc-54   5’ end 28.6 27.7 +1.9 

unc-54   3’ end 26.4 26.1 +1.2 

    

18S  5’ end 10.9 16.8 -60 

18S  3’ end 9.5 13.2 -13 

    

26S  5’ end 13 13.7 -1.6 

26S  3’ end 12.2 17.1 -30 
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Table 5.7 Summary of sequencing reads for rRNA depletion experiments and 
rRNA content. 
Sample # of reads % rRNA 
AVA neuron GAIIx 11.5M 84 
pan neural 8.1M 84 
reference 9.1M 76 
   
Total RNA 7.1M 97 
1-pass Ribominus 7.2M 85 
   
RNAse H 6.6M 99 
   
Terminator exonuclease 28M 22 
   
AVA neuron HiSeq 2000 80M 85 
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Figure 5.3. Quantitative PCR analysis of transcript levels in Terminator 
exonuclease-treated vs. mock-treated total RNA. 
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Figure 5.4. RNA-Seq analysis of rRNA-depleted whole animal total RNA.  
The non-muscle myosin gene nmy-1 shows robust coverage and a novel 
transcript is detected in the 5’ upstream region, which corresponds to a novel 
TAR detected from tiling array analysis of the embryonic AVA neuron (arrow). 
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Figure 5.5 Comparison of gene model coverage for an AVA-enriched gene  
(A) rig-3 and a hypodermal enriched gene (B) dpy-3. A novel transcript is 
detected in the first intron of rig-3 that was initially found in the AVA tiling array 
data. Note that the dpy-3 transcript is relatively more abundant in the total 
embryo poly(A)+ RNA-Seq data than in the AVA results that includes only two 
reads. 
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RNA sample. By sequencing a cDNA library generated from the AVA command 

interneuron that comprises 0.35% of all cells in the embryo (2 neurons/550 cells), 

I have provided evidence that RNA-Seq can accurately detect transcripts from a 

rare cell-type. Although a single method for expression quantification and 

differential expression analysis was presented (Cufflinks/CuffDiff), several 

alternatives exist that must be compared to determine the optimal statistical 

approach depending on the experiment being performed (Anders and Huber 

2010; Bohnert and Rätsch 2010; Gao et al. 2010; Wang et al. 2010). Approaches 

used for normalization of RNA-Seq data are also maturing. In this work, I used 

upper-quartile normalization on the AVA and embryonic RNA-Seq data. This 

method removes all transcripts with zero read counts, and the read counts for 

transcripts expressed in the highest quartile (75th percentile) are used to scale 

transcript expression values of all transcripts in each data set being normalized 

together. This allows comparison between data sets generated independently 

and with little to no bias (Bullard et al. 2010).  

 A major advantage of RNA-Seq analysis is the ability to determine the 

actual transcript isoform being expressed along with splice site usage.  A specific 

isoform may be expressed and function in one cell-type, while an alternative 

isoform is expressed and functions in another cell-type. By performing RNA-Seq 

analysis on each cell-type, isoform expression can be determined. Then, 

additional experiments can be designed to test for function and determine the 

regulatory elements necessary for control of cell-specific expression and 

alternative splicing. As a first step towards this goal, I analyzed splice junctions in  
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Figure 5.6 Correlation of AVA RNA-Seq vs. microarray gene expression values. 
Many genes are not detected as expressed in the RNA-Seq data resulting in zero 
values that have a corresponding expression value > 6 in the microarray data 
set. 
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the AVA neuron data and whole embryo data. Many junctions are detected in 

each data set and typically correspond to known splice junctions (Figure 5.7). 

Additional analyses are necessary to determine whether the detected splice 

junctions validate known and predicted splice junctions and the transcript isoform 

associated with the junction. Also, the junctions detected in the AVA data can be 

compared to the whole embryo data to identify junctions that are uniquely 

detected in the AVA neuron. As additional RNA-Seq data for specific cell-types is 

generated, it will be interesting to transcript-level expression differences and 

alternative splicing patterns to provide further evidence for gene products that 

function in each cell-type.  

 Massively parallel sequencing has provided a tremendous opportunity to 

advance several aspects of biomedical research. Through whole-genome 

sequencing, unique genomic variations can be identified in isogenic strains of C. 

elegans as well as individual humans. These variations can be correlated with 

phenotypes and tested experimentally to delineate the molecular determinants of 

the phenotype. RNA-Seq allows researchers to sample the dynamics of gene 

expression, from the production of an unspliced transcript to an mRNA being 

actively translated, with unprecedented resolution. While sample preparation 

methods have matured, the subsequent data analysis continues to develop. As 

occurred with microarray technology, new algorithms will be developed that take 

advantage of the available data and will likely extract additional useful 

information. 
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Figure 5.7 Splice junction analysis of RNA-Seq accurately identifies known splice 
sites.  
The example shows the gene model of sng-1, the Synaptogyrin ortholog. All 
known splice junctions are detected in the AVA and whole embryo RNA-Seq 
data. 
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CHAPTER VI 

 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

 The goal of this dissertation project was to define and analyze gene 

expression profiles of single cell-types and to identify molecules that control 

synaptic specificity in the C. elegans motor circuit. My work presented here 

describes an enhancement of the MAPCeL method to facilitate isolation of single 

cells that cannot otherwise be marked by the use of a single promoter. This 

advance allowed the gene expression profiling of two interneurons, AVA and 

AVE that drive backward locomotion in C. elegans. These expression profiles 

revealed strong expression of a transcript encoding the RIG-3 adhesion molecule 

which I then demonstrated by genetic analysis is required for the creation of 

synapses between AVA and the A-class motor neurons in the backward 

movement circuit. To expand our knowledge of animal development and cellular 

function, the application of cell-specific expression profiling and advanced data 

analyses to over 30 cell-types provides a detailed view of transcriptional activity 

across the anatomy of C. elegans. The introduction of new technology allows 

finer grained analysis of cellular and molecular processes. The application of 

second generation sequencing methods enables gene expression profiling at 

single-nucleotide resolution. This discussion will highlight how applying advanced 

methods enhances our understanding of cellular function and identity. 
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Profiling the AVA and AVE command interneurons  

 The Miller laboratory previously implemented a method for cell-specific 

gene expression profiling of C. elegans embryonic cells that relied on expressing 

a fluorescent reporter in the cell of interest (Fox et al. 2005; Fox et al. 2007). 

Because the command AVA command interneuron lacked a cell-specific 

promoter, I optimized the use of a unique combination of two fluorescent 

reporters to mark each one for isolation by FACS (Chapter II). To apply this 

approach to another neuron, I worked with Rebecca McWhirter to profile the AVE 

neuron. Both expression profiles show enrichment for neuronal transcripts and 

many of the known AVA and AVE expressed genes. Since AVA and AVE 

function as interneurons, they are expected to receive a synaptic input from a 

variety of sensory neurons and other interneurons. Indeed, AVA and AVE 

express a variety of neurotransmitter receptors including: glutamate, 

acetylcholine, GABA, dopamine, serotonin, and neuropeptide receptors. The 

evidence for how AVA and AVE communicate with postsynaptic neurons is less 

clear with the exception of peptide signaling. Both AVA and AVE express a 

number of neuropeptide and FMRFamide-like peptides that could activate 

peptide receptors on the A-class motor neurons. Neuropeptides have been 

shown to have effects on pharyngeal pumping in C. elegans and control feeding 

behavior in Aplysia (Sweedler et al. 2002; Papaioannou et al. 2005). Typically, 

neuropeptide receptors function as GPCRs to modulate the function of 

neurotransmitter receptors, thus it is possible that peptidergic signaling could 

regulate backward locomotion (Liu et al. 2003). 
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 A major motivation for profiling AVA and AVE was to identify molecules 

that could be involved in synaptic specificity. Previous efforts in the lab have 

focused on pathways functioning in the A-class motor neurons. To form synaptic 

connections between the A-type command interneurons (AVA, AVD, AVE) and 

the A-class motor neurons, the interneurons may secrete a signal or present an 

adhesion molecule which when bound by the corresponding receptor expressed 

in motor neurons would initiate synaptic formation. AVA and AVE express 

several adhesion molecules, which could play a role in axon guidance or synaptic 

connectivity. Both neurons express the zig-8, lad-2, and rig-3 IgCAMs. The zig-8 

gene encodes a secreted protein with two Ig domains (Benard et al. 2009). A zig-

8 mutant was tested for axon guidance defects in several classes of neurons, but 

did not have a significant effect. The command interneurons were not tested, so 

it would be interesting to ask if zig-8 is involved in AVA/AVE axon guidance or 

synaptic connectivity. lad-2 encodes the single L1CAM homolog in C. elegans 

and is required for normal axon guidance in the SMD, PLN, and SDQ neurons 

(Wang et al. 2008). Although AVA and AVE were not tested, lad-2 could have a 

similar role in the command interneurons. GFP reporter results initially suggested 

that rig-3 is expressed in AVA (WormBase). The expression profiles generated in 

this work confirmed expression of rig-3 in AVA and also showed expression in 

AVE.  The existing rig-3 GFP-reporter, however did not express in AVE which 

suggests that the promoter element used in the rig-3::reporter lacks regulatory 

elements necessary for AVE expression.  
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RIG-3 is required for synapse formation in the motor circuit 

 Roger Sperry proposed the chemoaffinity hypothesis to explain how 

neurons correctly identify their postsynaptic partners and form neural circuits 

(Sperry 1963). The hypothesis proposes that neurons express specific 

combinations of molecules on their surface that act as identifiers that effectively 

distinguish each neuron from every other neuron in the same region. The 

neurons that form synaptic connections become attached by affinity of the unique 

molecules expressed on their surface. Later, cell adhesion molecules were 

proposed to perform the role of the identifier molecules. Further experimental 

analysis has shown that some adhesion molecules, such as the sidekicks, 

SynCAM, and SYG-1/SYG-2, do function as synaptic specificity determinants 

(Biederer et al. 2002; Yamagata et al. 2002; Shen and Bargmann 2003; Shen et 

al. 2004). Given this evidence, RIG-3 could act as a unique determinant of 

connectivity between A-type command interneurons (AVA, AVE) and the A-class 

motor neurons (Chapter III). I showed that AVA synapses to A-Class motor 

neurons are disrupted in rig-3 mutants. Although AVA axonal morphology 

appears normal in the rig-3 mutant the placement of A-class neuron processes in 

the ventral cord has not been examined directly and therefore could potentially 

account for the disruption of AVA to A-class synaptogenesis. Other neuron-

specific synapses in the ventral nerve cord should also be tested to distinguish 

between the possibilities that RIG-3 is selectively required for synapses in the 

backward motor circuit vs having a more general role in synaptogenesis. In any 

case, the finding of a novel cell adhesion molecule that is required for 
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synaptogenesis is exciting and promises to reveal a potentially new mechanism 

for the creation of synapses in a specific neural circuit. 

Global analysis of gene expression across the anatomy of C. elegans  

 Gene expression profiling has proven to be an invaluable method for 

building, refining, and testing experimental hypotheses. As shown in Chapter IV, 

we have defined gene expression patterns for all genes across many tissues and 

cell-types (Spencer et al. 2011). This information provided two surprising 

findings: about 75% of genes are differentially expressed and over 10 Mb of 

intergenic sequence in the genome is actively transcribed. The number of 

differentially expressed genes reveals the complexity of gene regulation and the 

need for such regulatory control for multicellular organism development. As more 

single cell expression profiles are obtained, the number of differentially 

expressed genes can only increase. For example, the BAG neurons are a left-

right pair of sensory neurons that respond to CO2 (Hallem and Sternberg 2008). 

We collaborated with the Sternberg lab to profile the BAG neurons to identify the 

receptor necessary for CO2 sensation. One of the most highly enriched 

transcripts in the BAG neuron profile encodes a receptor-type guanylate cyclase, 

GCY-9. The Sternberg lab used this clue to show that gcy-9 is required for CO2 

sensation and likely corresponds to the CO2 receptor (Hallem et al. 2011). This 

gene is uniquely enriched in the BAG neurons and demonstrates how specifically 

genes can be expressed (see Figure 6.1). 
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Figure 6.1 The BAG neurons uniquely express the receptor-type guanylate 
cyclase gene, gcy-9.  
The red line indicates normalized gene expression values for all microarray data 
sets analyzed in Chapter IV. Sample names are on the left. For most data sets, 
the expression value for gcy-9 is around the mean value of 1, except for the BAG 
neurons, where the expression value is 8.6.  
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rRNA-depletion strategies and RNA-Seq analysis of the AVA command 
interneuron 
 
 To further refine our gene expression profiling efforts, I evaluated several 

rRNA-depletion strategies for RNA-Seq (Chapter V). These methods proved 

difficult to scale to low amounts of input RNA and with the exception of 

Terminator exonuclease failed to efficiently deplete C. elegans rRNA from total 

RNA samples. With additional effort, it is possible the Terminator exonuclease 

reaction could be scaled down to use modest amounts of cell-specific RNA. 

Additional methods for rRNA depletion have been released by Illumina (DSN) 

and Epicentre (Ribo-Zero). The Illumina DSN method performs cDNA library 

normalization using a duplex-specific nuclease. Double-stranded nucleic acids 

will anneal in a concentration-dependent manner. The most abundant molecules 

will anneal first followed by less abundant molecules. Since rRNA will represent 

over 90% of the cDNA library, the rRNA ds cDNA is allowed to anneal, then the 

sample is treated with a duplex-specific nuclease to degrade the annealed cDNA. 

This method was tested by Valerie Reinke and Bob Waterston, our collaborators 

in the modENCODE project but only moderate depletion of rRNA was achieved. 

The Epicentre Ribo-Zero method adopts a similar strategy to the Invitrogen 

Ribominus approach. Ribo-Zero uses probes for rRNA attached to microbeads to 

extract rRNA from a solution of total RNA. At this point, it is not clear if this 

method would perform better than the Ribominus method, which in my hands 

was not very efficient for depleting C. elegans rRNAs.  

 By sequencing the AVA cDNA library using the Illumina HiSeq 2000, I 

showed that generating a high number of sequence reads (80 million) partially 
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negates the need to deplete rRNA. However, since most of the reads (~85%) 

generated by this approach are discarded, an effective method of rRNA depletion 

would certainly reduce costs by allowing the use of sample-specific barcodes to 

for multiplex sequencing. In addition, the number of non-rRNA reads generated 

(~8M) is likely not sufficient to accurately measure the transcriptome of a single 

cell. We have noted uneven coverage across gene models, but this may be due 

to bias by the NuGEN WT-Pico amplification. As seen in the examples for the 

whole embryo samples in Chapter V, the unamplified sample shows much more 

even coverage across gene models. Only 2 ng of ds cDNA library is necessary 

for RNA-Seq, so it may be possible to directly synthesize ds cDNA from our cell-

specific RNA samples and therefore avoid this potential artifact of RNA 

amplification.  

 Despite the need for increased RNA-Seq coverage, the tiling array results 

are highly correlated with the AVA RNA-Seq data (Figure 5.6) which suggests 

that RNA-Seq is likely as sensitive as microarrays. Sequencing to a greater 

depth should increase the sensitivity for rare transcripts. For certain experiments, 

it is not necessary to detect ncRNAs (noncoding RNAs). For these circumstances 

purifying or selectively amplifying poly(A) RNAs would be sufficient. A method for 

amplifying mRNAs from single cells has been developed for the ABI SOLiD 

platform (Tang et al. 2010). We are collaborating with Kris Gunsalus and Paul 

Scheid at NYU to evaluate this method for our cell-specific samples. This 

protocol uses oligo(dT) primers and limited PCR amplification to produce a cDNA 

library. A similar method developed by Clontech and Illumina uses ligation-
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dependent PCR to amplify mRNA transcripts (http://www.clontech.com). Since 

both methods initially use oligo(dT) primers, it will likely be important to compare 

them to determine the most accurate and quantitative procedure. 

Future Directions 

 The identification of RIG-3 as a positive regulator of AVA to A-class 

synapse formation suggests the AVA/AVE expression profiles contain other 

molecules necessary for synapse formation and neuronal function. The 

expression profiles could be screened by RNAi for genes with defects in synapse 

formation. The A-class motor neuron expression profiles (Fox et al. 2005; Von 

Stetina et al. 2007) also identify candidate adhesion molecules that could interact 

with RIG-3 or the other adhesion molecules expressed in AVA and AVE. As 

mentioned in Chapter III, embryonic A-class neurons are enriched for rig-3. 

Although rig-3 is not enriched in the larval A-class neuron profile two other 

IgCAM genes, syg-1 and rig-6 are highly expressed (Von Stetina et al. 2007). 

syg-1 is the IgCAM expressed in the HSN motor neuron that innervates vulval 

muscle. syg-1 interacts with syg-2 expressed in surrounding epithelial cells to 

define the location of the HSN neuromuscular junction (Shen and Bargmann 

2003; Shen et al. 2004). rig-6 is the homolog of contactin and is required for 

septate junction formation in Drosophila and cerebellar development and neurite 

formation in mouse (Berglund et al. 1999; Falk et al. 2002; Hu et al. 2003; Faivre-

Sarrailh et al. 2004; Katidou et al. 2008). Since rig-3 is not expressed in larval A-

class motor neurons, it could be possible that RIG-3 is required in AVA and DA 

motor neurons for initiation of synaptic connectivity, but when VA motor neurons 
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are born in the second larval stage (L2), RIG-3 (or LAD-2) in AVA could interact 

with SYG-1 or RIG-6 in VAs to initiate AVA to VA synaptic connectivity.  

 The AVA and AVE command interneuron expression profiles will provide a 

foundation for future studies in the C. elegans motor circuit. To further our 

understanding of how the motor circuit forms, the remaining command 

interneurons could be profiled with a variety of methods. For example, I have 

generated a strain that uniquely marks the PVC forward movement command 

interneuron (see Figure 6.2). PVC innervates the B-class motor neurons to drive 

forward locomotion (White et al. 1986). Comparing differences between the A-

type and B-type command interneuron expression could reveal mutually 

exclusive molecules that control synaptic specificity. The AVD and AVB 

command interneurons are more difficult to mark using available reporters. 

Testing the combinations suggested in Chapter II could provide a useful strain for 

these purposes. Additionally, now it should be possible to isolate these neurons 

using FACS based on cell recently developing protocol for dissociating cells from 

C. elegans larvae (Zhang et al. 2011). Previously, the tough cuticle of larval 

stage animals prevented isolation of intact cells. With a combination of detergent 

and the protease Pronase, the cuticle is gently degraded and viable larval cells 

are released. We have begun to test this approach with larval muscle cells and 

the serotonergic neuron NSM (Rebecca McWhirter, Clay Spencer, David Miller). 

Our results have confirmed that body muscle cells can be easily isolated as 

previously reported. Although the NSM neuron is embedded in the muscular 

pharynx suggesting it might be difficult to extract, GFP-positive NSM neurons are 
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easily identifiable in our cultures. Due to the ease of this procedure, it will likely 

supplant mRNA-tagging for larval cell profiling in most experiments.  
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Figure 6.2 Pflp-11::GFP;Pglr-1::DsRed2 uniquely mark the PVC command 
interneuron.  
(top) PVC cell bodies are located in the tail and send processes in the ventral 
nerve cord to the nerve ring in the head. (bottom left) Whole animal view Pflp-
11::GFP;Pglr-1::DsRed2 expression pattern in a larval animal. (bottom right) 
Magnified view of PVC cell bodies in the tail showing co-expression of GFP and 
DsRed2. 
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