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CHAPTER 1 

1. INTRODUCTION 

1.1 Importance and overview of microparticles for drug delivery 

Particles for drug delivery are widely researched for use as drug delivery devices due to 

several advantages over conventional drug tablets. Figure 1 shows an example graph that illustrates 

two key advantages of drug loaded particles for the consumer. Each curve shown in Figure 1 

illustrates an example blood drug concentration profile for one administered dose for either a 

conventional drug tablet or the optimal drug loaded particles. As shown in the Figure the 

conventional drug tablet requires three times more doses to get approximately the same effect as a 

single dose of the optimal drug loaded particles. Additionally, it is important to notice that the 

profile for the conventional tablet spikes to the side effects region and immediately decreases. 

Whereas the drug loaded particles result in a sustained blood drug concentration within the 

therapeutic region for an extended period of time. In summary, for the consumer, conventional 

drug tablets require more doses and can have side effects, whereas the optimal drug loaded 

particles allow you to reduce the number of doses and eliminate potential side effects, increasing 

patient comfort and compliance. 

 



	 2	

 
Figure 1. Example graph illustrating two key advantages for the optimal drug loaded particles 
over conventional drug tablets; conventional drug tablet (blue dotted line) and optimal particles 
for drug delivery (green line).  
 
In additional to these consumer advantages, for the manufacturer, the development of drug delivery 

devices is 100 times cheaper and take half the time to develop than a new drug.1  

Particle sizes typically fabricated for drug delivery applications are either in the nano or 

micron size range. However, the micron size range has several advantages over the nano size range. 

In particular, local and inhalation delivery are not easily targetable for nanoparticle drug delivery. 

For local delivery nanoparticles do not stay at the site of injection due to their small size, whereas 

microparticles of a large enough size do, such as 55 to 60 micron size particles for sciatic nerve 

block.2 For inhalation delivery nanoparticles are inhaled then exhaled3, whereas microparticles 

that are 1 to 2 microns in aerodynamic diameter achieve efficient distribution in the deep lungs.4 

Lastly, there is one crucial, but simple advantage of microparticles over nanoparticles. This is the 

fact that microparticles will always have a longer extended release than their corresponding 

nanoparticles, due to an increased diffusion path length and degradation time.  
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Several researchers have capitalized on the advantages previously stated. Figures 2 and 3 

show the variety of publications on microparticles used for different applications and routes of 

administration respectively. As shown in Figure 2 the most common diseases targeted for 

microparticles in drug delivery are cancer and diabetes. Furthermore, Figure 3 shows that the 

routes of administration that are most frequently published on are oral and inhalation. 

 
Figure 2. Percentage of publications on different diseases treated using drug loaded 
microparticles. The figure summarizes data that was extracted by Michael Anthony Marin from 
100+ publications mostly from 2010 to 2018. See the Appendix for tables containing detailed data 
from the summarized articles. 
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Figure 3. Percentage of publications on different routes of administration for drug loaded 
microparticles. The figure summarizes data that was extracted by Michael Anthony Marin from 
100+ publications mostly from 2010 to 2018. See the Appendix for tables containing detailed data 
from the summarized articles. 
 
1.2 Microparticle networks for drug encapsulation and delivery 

A key part in designing microparticles for a specific drug delivery application is 

microparticle network selection. In general, microparticle networks are formed by 

precipitation/physical entanglement, polymerization/covalent crosslinking, or ionic crosslinking. 

Figure 4 shows the percentage of publications on the different type of microparticle networks. As 

shown in Figure 4 the highest frequency of publications are on the preparation of microparticles 

composed of precipitation/physical entanglement networks. 
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Figure 4. Percentage of publications on different microparticle networks for drug delivery. The 
figure summarizes data that was extracted by Michael Anthony Marin from 100+ publications 
mostly from 2010 to 2018. See the Appendix for tables containing detailed data from the 
summarized articles. 
 
One significant difference between these three categories of networks is that 

polymerization/covalent crosslinked networks have a high degree of tunability and allow for a 

controlled and extended release of drug.5 These features are highly desirable and the work 

presented here is focused on the development of covalently crosslinked microparticles. 

1.3 Precision of microparticle fabrication methods 

Methods commonly used to fabricate microparticles include emulsion, spray drying, 

supercritical fluid, and microfluidics. Figure 5 shows the percentage of publications on each of the 

different methods used to prepare microparticles for drug delivery. This figure shows that emulsion 

and spray drying methods are the most common. 
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Figure 5. Percentage of publications on microparticle fabrication methods. The figure summarizes 
data that was extracted by Michael Anthony Marin from 100+ publications mostly from 2010 to 
2018. See the Appendix for tables containing detailed data from the summarized articles. 
 
In general, each microparticle fabrication method shown in Figure 4 fabricates microparticles with 

a characteristic coefficient of variation (CV) defined as; 

 
coefficient	of	variation	(CV) = 12

32
          (1) 

 
where sd is the standard deviation for the microparticle diameter and ad is the average microparticle 

diameter. The CV value measures how well the method can prepare precisely sized microparticles. 

The higher the CV value, the less precise in size the fabricated microparticles are. A low CV value 

is very important to ensure consistent and predictable release kinetics. Low CV is also important 

for certain routes of administration such as inhalation, which require distinct particle sizes from 1 

to 15 microns to reach different locations within the lung.4 Table 1 shows a size range summary 

of microparticles fabricated utilizing each technique shown in Figure 5 and the typical coefficient 

of variation obtained.  

 
 



	 7	

Table 1. Size range and coefficient of variation of microparticles prepared utilizing different 
fabrication methods. The size range and coefficient of variation data was extracted by Michael 
Anthony Marin from 100+ publications mostly from 2010 to 2018. See the Appendix for tables 
containing detailed data from the summarized articles. 

Fabrication Method Size Range (µm) CV (%) 
Emulsion 1.0 to 95.0 42 ± 32 

Spray drying 1.7 to 10.0 59 ± 28 
Supercritical fluid 1.6 to 2.3 88 ± 13 

Microfluidics 2.0 to 142.1 10 ± 6 
 
As shown in Table 1 emulsion, spray drying, and supercritical fluid fabrication methods typically 

result in microparticles with high coefficient of variations averaging 42, 59, and 88% respectively. 

Whereas microfluidics fabricates microparticles with an average CV value of 10%, a much higher 

size precision. 

1.4 Drug loading and encapsulation efficiency obtained for microparticle fabrication 
methods 
 

Drug loading in microparticles is achieved by post soaking, covalent bonding of drug, or 

physical entrapment during network formation. In general, post soaking methods and covalent 

bonding of drug result in optimal encapsulation efficiency and high drug loading. However, post 

soaking methods are typically only used for biologicals and hydrophilic drugs. Post soaking 

methods are also limited to the use of polymers that swell in cold water and shrink above 37 °C. 

The swelling behavior of these polymers can result in unpredictable release profiles. Covalent 

bonding of drug is a specialized technique that requires complex chemistry and testing to ensure 

that the covalent bonds do not alter the activity of the therapeutic, and only release drug through 

degradation. The reasons mentioned here limit the drug loading tunability and the practicality of 

post soaking and covalent bonding drug loading. This work only focuses on methods that involve 

the physical entrapment of drugs, which is practical and results in a high level of tunability. 

The highest drug loading percentage and encapsulation efficiency for each method is 

shown in Tables 2, 3, and 4 for biologicals, synthetic hydrophilic drugs, and synthetic hydrophobic 
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drugs respectively. Table 2 shows that for biologicals the method that resulted in the highest 

loading was emulsion precipitation/physical entanglement, whereas a microfluidics method 

resulted in the highest encapsulation efficiency. Table 3 shows that for hydrophilic drug loading 

and encapsulation efficiency a spray drying precipitation method resulted in the highest values. 

Lastly, Table 4 shows that for hydrophobic drug loading a microfluidics precipitation method 

resulted in the highest encapsulation efficiency whereas a spray drying precipitation method 

resulted in the highest drug loading. In summary, there is not one method that is optimal for high 

drug loading and optimal encapsulation efficiency for synthetic hydrophilic, synthetic 

hydrophobic, and biological therapeutics. Additionally, there are only a few articles on dual 

loading as shown in Table A3 in the Appendix, and no articles on triple loading of drugs. 

Table 2. Drug loading and encapsulation efficiency for biologicals loaded by physical entrapment. 
The drug loading and encapsulation efficiency data was extracted by Michael Anthony Marin from 
100+ publications mostly from 2010 to 2018. See the Appendix for tables containing detailed data 
from the summarized articles. 

Fabrication Method Highest drug loading 
(%) R Highest encapsulation 

efficiency (%) R 

Emulsion Precipitation 22.1 6 90 6 
Emulsion Polymerization 1.9 7 36 8 

Spray Drying Precipitation 9.7 9 97 9 
Supercritical Precipitation 48 10 97 10 
Microfluidics Precipitation 5.9 11 99 11 

 
Table 3. Drug loading and encapsulation efficiency for hydrophilic loaded drugs by physical 
entrapment. The drug loading and encapsulation efficiency data was extracted by Michael Anthony 
Marin from 100+ publications mostly from 2010 to 2018. See the Appendix for tables containing 
detailed data from the summarized articles. 

Fabrication Method Highest drug loading 
(%) R Highest encapsulation 

efficiency (%) R 

Emulsion Ionic Crosslinking 13 12 66 12 
Emulsion Polymerization 0.4 8 7.6 8 

Spray Drying Precipitation 14 13 95 13 
Microfluidics Precipitation 1 14 30 14 
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Table 4. Drug loading and encapsulation efficiency for hydrophobic loaded drugs by physical 
entrapment. The drug loading and encapsulation efficiency data was extracted by Michael Anthony 
Marin from 100+ publications mostly from 2010 to 2018. See the Appendix for tables containing 
detailed data from the summarized articles. 

Fabrication Method Highest drug loading 
(%) R Highest encapsulation 

efficiency (%) R 

Emulsion Precipitation 20 15 93 16 
Spray Drying Precipitation 49 17 96 18 
Supercritical Precipitation 14 19 63 19 
Microfluidics Precipitation 30 20 97 21 

 
1.5 Development of a comprehensive technology to engineer tunable drug loaded 
microparticles 
 
 As summarized previously, a comprehensive method has not been invented that can easily 

fabricate tunable microparticles at a high rate with low CV, and have the ability to encapsulate 

synthetic hydrophilic, synthetic hydrophobic, and/or biologicals with a high drug loading and 

encapsulation efficiency. The goal of this work was to develop a comprehensive technology that 

can accomplish this. The approach to accomplish this goal was to first identify properties important 

in drug delivery such as release kinetics, route of administration, dose, type of drug loading 

(hydrophilic, hydrophobic, and/or biological), and microparticle circulation time. Microparticle 

properties were then identified that could tune these drug delivery properties. For example, the 

release kinetics can be tuned by the microparticle network density, the route of administration 

through the microparticle size, the type of drug loading (hydrophilic, hydrophobic, and/or 

biological) through the microparticle hydrophilic character, and the microparticle circulation time 

through the microparticle softness22. A goal was then set to tune the identified microparticle 

properties over a wide range thereby allowing us to engineer microparticles for a wide range of 

drug delivery applications. The strategy to accomplish this goal was to utilize piezoelectric ink jet 

printing, a method known to produce precisely sized droplets in the micron size range with tunable 

ejection volume, and development of a fundamental set of photoreactive monomer and copolymer 
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inks that allow us to tune the microparticle softness, hydrophilicity, and network density over a 

wide range. By innovatively selecting piezoelectric ink jet printing to fabricate microparticles we 

should be able to easily tune the microparticle size through the ejected droplet volume while 

maintaining high size precision, and also tune the drug loading while maintaining high 

encapsulation efficiency. The droplet volume can be tuned through the jetting waveform, nozzle 

temperature, and/or nozzle size while maintaining high size precision through properly tuned 

jetting. The drug loading can be tuned simply by changing the ink, and high encapsulation 

efficiency should be achieved because the droplets are rapidly crosslinked after printing 

encapsulating the drug within. Surprisingly, no one has published on the use piezoelectric ink jet 

printing to fabricate drug loaded microparticles. By printing photoreactive inks we can covalently 

crosslink the printed droplets after printing using UV or visible light, physically encapsulating the 

drug within the covalently crosslinked microparticle networks. The microparticles could then be 

collected by washing or by dissolving the substrate depending on the microparticle-substrate 

interaction. With the fabrication method now selected we just had to develop a small set of 

photoreactive inks that allow us to obtain microparticles with a wide range of softness, 

hydrophilicity, and network density. We hypothesized that by strategically incorporating ink 

network precursors composed of reactive copolymer and crosslinker combinations (different 

structure and molecular weight) or photoreactive crosslinking monomers, we could tune the 

softness, hydrophilicity, and network density over a wide range. To ensure that a minimum amount 

of inks were needed we exploited the structure-property relationship boundaries of these 

copolymer and monomer network precursors. This was done by synthesizing a functionalized 

hydrophilic semibranched copolymer and hydrophobic linear copolymer with varying amounts of 

functionality, and the utilization of a crosslinking monomer. The functionalized copolymers were 
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synthesized to contain allyl groups that can react with dithiol crosslinkers to form the microparticle 

network. By preparing mixtures of these two copolymers we sought to obtain a wide range of 

microparticle hydrophilicity. Tunable softness and network density was obtained by changing the 

dithiol crosslinker length or by changing the % of allyl group incorporation. The developed 

photoreactive copolymer inks allow for fabrication of microparticles with a wide range of 

properties. However, in case fully crosslinked microparticle networks are needed for extreme 

extended release applications, we developed an ink composed of 100% reactive precursor network 

components through the incorporation of a tri-functionalized crosslinking monomer. Through this 

fundamental set of copolymer and monomer network precursors and strategic selection of other 

ink components, we developed four photoreactive inks that can fabricate a wide range of 

microparticles for a wide range of drug delivery applications. 

1.6 Testing of the developed comprehensive technology 

Microparticles were fabricated using each of the four developed inks. To facilitate 

microparticle characterization, a dye was incorporated into each ink formulation to allow for 

microparticle visualization using fluorescent microscopy. Microparticle-laden substrates were 

characterized using wide field microscopy to investigate the droplet placement on the substrate. 

Whereas confocal microscopy was utilized to investigate the microparticle shape, dye 

distribution throughout the microparticle, and microparticle size precision. We then sought to 

verify our predicted structure-property relationships. This was accomplished by designing and 

implementing efficient experiments to test the softness through unconfined compression testing, 

hydrophilicity through swelling studies, and size tuning using confocal microscopy. After 

verification of tunable properties we utilized the developed technology to fabricate optimal 

microparticles for a high impact drug delivery application, malaria elimination.  
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Malaria is a disease most prominent in sub-Saharan Africa where 80% of the global 

burden is present. Without proper treatment severe complications and death is inevitable.23 In 

2016, 216 million cases of the disease were reported in 91 countries, an increase of 5 million 

cases since 2015. As mentioned in the World Health Organization (WHO) 2017 World Malaria 

Report, if new interventions are not developed for malaria treatment, then cases and death will 

almost certainly increase.24 

 Malaria elimination is a very challenging disease to eliminate since it is easily and rapidly 

transferred through mosquitos. Currently the primary malaria prevention is an insecticide-treated 

mosquito net which is implemented for over 54% of people at risk. Other strategies include 

employing rapid diagnostic tests (RDT) to determine if a patient is positive for the infection, then 

giving antimalarial drugs via oral administration for treatment. However, as indicated by the 

WHO report these therapeutic strategies are insignificant, and will likely not result in malaria 

elimination. A promising alternative strategy is mass drug administration (MDA). MDA 

eliminates the need for rapid diagnostic testing and mosquito nets and would ensure that the 

entire population is under treatment, proactively preventing infection from developing, 

eliminating malaria. 

 Mass drug administration is commonly executed using oral administration of 

therapeutics. However, the bioavailability of orally administered drugs is very low, due to the 

brief transit time in the gastric intestinal (GI) tract typically from 8 to 12 hours.25 A promising 

strategy to significantly improve the bioavailability of common orally administered therapeutics 

is to develop an extended release drug delivery device. One therapeutic that would be very 

effective when delivered using an extended release device is ivermectin. This drug can function 
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as a systematic insecticide which kills the mosquito after the mosquito sucks blood containing an 

ivermectin concentration of at least 8 ng/mL.26 

 The development of a drug delivery device for extended ivermectin delivery would make 

a significant step toward the elimination of malaria. In terms of feasible routes of administration 

for MDA therapeutics; oral, nasal, and inhalation are most attractive due to their non-invasive 

nature. Oral therapeutics however are exposed to a very acidic environment that can result in 

aggressive degradation of polymer drug delivery devices. Nasal administration has mucociliary 

clearance mechanisms that are hard to overcome. On the other hand, inhalation administration, 

with the properly engineered devices, can result in a successful extended release of drug via 

pulmonary drug delivery. Properties that would be essential to the success of these devices 

include 1) an aerodynamic diameter of 1 to 2 microns for efficient distribution in the deep lungs4, 

2) high drug loading of hydrophobic drug (ivermectin), and 3) a dense crosslinked network that 

results in an extended drug release. 

 Our fabrication strategy to engineer these microparticles for malaria elimination was to 

use our invented piezoelectric ink jet printing technology and the photoreactive monomer ink. 

Advantages of our technology include precise microparticle fabrication in the low micron size 

range which should result in microparticles with efficient lung distribution and consistent release 

kinetics. Furthermore, the photoreactive monomer ink was chosen since it is fundamentally 

composed of 100% of photoreactive hydrophobic monomers which should result in the highest 

density crosslinked network with the longest extended release of drug, and high drug loading due 

to the hydrophobic environment being very favorable for the hydrophobic drug ivermectin. 

 After fabrication the microparticles were evaluated solely using microparticle 

characterization and in vitro experiments that investigate the ivermectin loaded microparticle 
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transport steps from the time of inhalation, to the time of elimination. The transport steps 

encountered include; 1) the ivermectin loaded microparticle transport from the mouth to the deep 

lungs, 2) ivermectin transport from the microparticle to the lung epithelial layer, 3) ivermectin 

transport through the lung epithelial layer into the systematic circulation, 4a) ivermectin 

transport throughout the body and elimination from the body, and 4b) microparticle 

degradation/elimination from the body. Step 1 was not investigated via in vitro studies since it is 

well known to be governed by the aerodynamic particle size of 1 to 2 microns.4 Step 2 was first 

evaluated using in vitro release studies. Steps 2 and 3 were then simultaneously investigated 

utilizing an in vitro lung model and an in vitro-in vivo lung absorption correlation. Step 4a was 

not investigated since ivermectin is well known to have an elimination half-life of 18 hours once 

in the plasma.27 Lastly, step 4b was investigated using in vitro degradation studies at conditions 

relevant to those found in the deep lungs. 

 Microparticles were fabricated with 13 wt% of ivermectin with an aerodynamic diameter 

of 1.6 ± 0.7 microns, resulting in a high hydrophobic drug loading and the optimal size for efficient 

drug distribution in the deep lungs. In vitro release experiments show that the ivermectin release 

can be tuned through the monomer concentration. Through the in vitro lung permeability studies 

and an in vitro-in vivo drug absorption correlation we determined that ivermectin lung absorption 

should occur in vivo over approximately 21 days. Lastly, in vitro degradation studies showed that 

the degradation rate can be tuned by the monomer concentration. The results show promise that 

the fabricated microparticles will make a significant step towards malaria elimination via 

pulmonary drug delivery, but also demonstrate the potential of the developed comprehensive 

technology. 
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CHAPTER 2 

2. MATERIALS AND METHODS 

2.1 Materials 

All reaction solvents used were HPLC quality and purchased from Sigma Aldrich. All 

NMR solvents were purchased from Cambridge Isotope Laboratories, Inc. 2,2-

bis(hydroxymethyl) propionic acid (Bis-HPA), Amberlyst® 15 Hydrogen Form (A-15), allyl 

glycidyl ether (AGE), ³ 99%, sodium hydroxide, ³97%, anhydrous isoamyl alcohol (IAOH), 

3,6-Dioxa-1,8-octanedithiol, nile red, coumarin 30, and 2,2-dimethoxy-2-phenylacetophenone 

(DMPA) were purchased from Sigma Aldrich. A sulfo-cyanine3 carboxylic acid dye was 

purchased from Lumiprobe Corporation. Glycidol (GLY), 96% was purchased from Sigma 

Aldrich and vacuum distilled prior to use with a Kugelrohr short-path distillation device. 

Dulbecco’s Phosphate Buffered Saline (PBS), no calcium, no magnesium, was purchased from 

Life Technologies and the pH was optimized using either sodium hydroxide or hydrochloric acid 

prior to use. Poly(methyl methacrylate) and poly(ethylene glycol) calibration kits were purchased 

from Agilent Technologies. Thiol PEG dithiol (HS-PEG-SH) (1,500 g/mol) was purchased from 

Nanocs. 2,2'-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044) was purchased 

from Wako chemicals. Tin(II) trifuoromethane sulfonate, Sn(OTf)2 was purchased from Strem 

Chemicals Inc. Teflon sheets were obtained from ePlastics. Dialysis membranes (Spectra/Por® 

7, molecular weight cut-off (MSCO) : 1,000 Da) were obtained from Spectrum Laboratories, Inc. 

5-methyl-5-allyloxycarbonyl-1,3-dioxane-2-one (MAC), and 5-methyl-5-ethyloxycarbonyl-1,3-

dioxane-2-one (MEC) were synthesized according to the literature and recrystallized prior to 

use.28-29 All reaction solvents were HPLC quality and purchased from Sigma Aldrich. 

Triethylamine, eosin Y, ivermectin, dimethyl sulfoxide, ascorbic acid, and trimethylolpropane 
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triacrylate (technical grade, contains 600 ppm monomethyl ether hydroquinone as inhibitor), 

inhibitor remover (replacement packing for removing hydroquinone and monomethyl ether 

hydroquinone), cobalt chloride, hydrogen peroxide (50%), penicillin-streptomycin solution 

stabilized with 10,000 units penicillin and 10 mg streptomycin/mL (sterile-filtered, BioReagent, 

suitable for cell culture), hydrocortisone solution (50 µM, sterile-filtered, BioXtra, suitable for 

cell culture), sodium selenite (BioReagent, suitable for cell culture ³98%), transferrin human 

(powder, BioReagent, suitable for cell culture), retinoic acid (³98%, HPLC, powder), insulin 

human (recombinant, expressed in yeast (proprietary host)), dimethyl sulfoxide (for molecular 

biology), ethanolamine (liquid, BioReagent, suitable for cell culture, ³ 98%), TWEENÒ 80 

(viscous liquid), and ivermectin were purchased from Sigma Aldrich. Polyvinyl alcohol film was 

purchased from Tianjin Teda Ganghua Trade Co., LTD (China). Invitrogenä Molecular 

Probesä Vybrantä MTT cell proliferation assay kits, Corningä Transwellä multiple well plate 

with permeable polycarbonate membrane inserts, Gibcoä trypsin-EDTA (0.25%) phenol red, 

Gibcoä trypan blue solution (0.4%), Gibcoä Ham’s F-12K (Kaighn’s) medium, Gibcoä fetal 

bovine serum, Certified One Shotä, US origin, Gibcoä DMEM/F-12, o-phosphoethanolamine 

(MP Biomedicalsä), Forskolin from Coleus forskohlii (MP Biomedicalsä), bovine pituitary 

extract BT-215 Alfa Aesarä, and Gibcoä phosphate buffered saline solution pH 7.4 were 

purchased from Fischer Scientific. 

2.2 Synthesis of novel functionalized copolymers for microparticle fabrication 

2.2.1 Synthesis and characterization of hydrophobic linear poly(carbonate) copolymers 

Gel permeation chromatography (GPC) was carried out with a Waters chromatograph 

system equipped with a Waters 2414 refractive index detector, a Waters 2481 dual λ absorbance 

detector, a Waters 1525 binary HPLC pump, and four 5 mm Waters columns (300 mm x 7.7 
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mm) connected in series with increasing pore size (100, 1000, 100,000 and 1,000,000 Ǻ 

respectively). All runs were performed using dimethylformamide (DMF) with lithium bromide 

(LiBr) (1 mg/mL) and poly(styrene) standards. 

To prepare methyl ethyl carbonate/methyl allyl carbonate (MEC/MAC) copolymers a 25 

mL round bottom flask equipped with a stir bar was capped with a rubber septum then flame dried 

under nitrogen. Sn(OTf)2 (14mg; 33.6 µmol; 4 eq) was then added to the round bottom flask and 

the reaction vessel was immediately purged with nitrogen prior to the addition of isoamyl alcohol 

(IAOH) (37 mg; 2.42 mmol; 50 eq) via microsyringe. The initiator-catalyst mixture was then 

allowed to stir at room temperature for 30 minutes before the addition of the MEC and MAC 

monomers. The reaction flask was then submerged in an 80 °C oil bath and the reaction was 

allowed to proceed until stirring was impeded. The resulting polymer product was dialyzed against 

dichloromethane (DCM) in tubing with a molecular weight cut-off (MWCO) of 1 kDa for 3 days 

with 5 solvent changes. The pure MEC/MAC copolymer product was collected and dried using a 

rotovap then a high-pressure pump (80% yield). The PDI was determined as 1.1. 

2.2.2 Synthesis and characterization of hydrophilic semibranched poly(glycidol) copolymers 

Gel permeation chromatography (GPC) was carried out with a Waters chromatograph 

system equipped with a Waters 2414 refractive index detector, a Waters 2481 dual λ absorbance 

detector, a Waters 1525 binary HPLC pump, and four 5 mm Waters columns (300 mm x 7.7 

mm), connected in series with increasing pore size (100, 1000, 100,000 and 1,000,000 Ǻ 

respectively). All runs were performed using dimethylformamide (DMF) with LiBr (1 mg/mL) 

and polyethylene glycol standards. 

To prepare the metal catalyzed semibranched glycidol/allyl glycidyl ether (GLY/AGE) 

copolymers a 25 mL round bottom flask (RBF) equipped with stir bar was capped with a rubber 
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septum then flame dried under nitrogen. Sn(OTf)2 (5.2 mg; 12.48 µmol; 0.4 eq) was then added to 

the round bottom flask and the reaction vessel was then immediately purged with nitrogen prior to 

the addition of isoamyl alcohol (43.7 mg 495.6 µmol; 17.4 eq) via microsyringe. The initiator-

catalyst mixture was then allowed to stir at room temperature for 30 minutes before lowering the 

reaction vessel into an ice water bath. After the reaction vessel had been cooled for 5 minutes the 

AGE monomer (834 mg; 7.31 mmol; 250 eq) was added drop wise to the stirring reaction. The 

GLY monomer (2.17 g; 29.24 mmol; 1000 eq) was then added drop wise in 4 separate aliquots, 

allowing 5 minute breaks between each aliquot. This ensured the exothermic reaction did not 

overheat and decompose the components. After stirring was impeded (~14 hours) the crude 

reaction mixture was solubilized in a minimal amount of methanol and precipitated into vigorously 

stirring ethyl acetate. The precipitation solvent was then allowed to settle before carefully 

decanting the ethyl acetate. The resulting GLY/AGE copolymer was solubilized in methanol, 

removed to a weighed 6-dram vial, dried using a rotavap then a high vacuum pump to afford the 

translucent viscous product with a 75% yield. The PDI was determined as 1.6 with a Mw and Mn 

values of 7,480 g/mol and 4,622 g/mol respectively. The Sn(OTf)2 GLY homopolymers were 

synthesized by first flame drying and nitrogen purging a 25 mL round bottom flask (RBF) 

equipped with a stir bar and septum. The catalyst Sn(OTf)2 (5.4 mg, 0.013 mmol) was then added 

and the RBF was purged with nitrogen again. The initiator 3-methyl-1-butanol (54.48 µL, 0.5 

mmol) was added and the RBF was stirred for 30 minutes at room temperature then cooled to 0 

ºC. Glycidol (2.7 mL, 40.5 mmol) was added to the round bottom flask drop wise ¼ at a time in 5 

minute intervals. The reaction was then left to stir overnight at room temperature. For purification, 

the crude product was precipitated in room temperature ethyl acetate, then collected using 



	 19	

methanol and dried using a rotovap then a high-pressure pump to afford the purified product with 

94% yield. 

2.2.3 Green synthesis and characterization of hydrophilic semibranched poly(glycidol) 
copolymers 
 

1H and 13C NMR spectrum were obtained using a Bruker 600 spectrometer operating at 

600 and 150 MHz, respectively. The instrument was equipped with a 14.1 Tesla Bruker magnet, 

which was controlled by a Bruker AV-II console, and a 5mm Z-gradient TCI Cryo-probe. A 10 

second recycle delay was used to insure full relaxation between pulses, allowing for quantitative 

measurements. This data was then used to assign individual monomer peaks specific to the ring 

opening structure, thus allowing for the calculation of the polymer degree of branching and relative 

abundance of repeat units. 

Gel permeation chromatography (GPC, Agilent 1260 GPC/SEC system) was used to 

determine molecular weight and polydispersity (Mw/Mn, PDI) of the poly(glycidol) polymers. 

Dimethylformamide (DMF) containing 0.1% LiBr at 60 °C was used as the mobile phase 

through three serial Tosoh Biosciences TSKGel Alpha columns (Tokyo, Japan). A Shimadzu 

RID-10A refractive index detector and a Wyatt miniDAWN Treos multi-angle light scattering 

detector were used to calculate absolute molecular weight based on dh/dC values. The dh/dC 

values were experimentally determined by measuring the refractive index of serial dilutions of 

each polymer in the GPC mobile phase with an Abbemat 300 digital refractometer (Anton Paar). 

All GPC data was analyzed using ASTRA V software (Wyatt Technology). GPC derived 

polymer Mn values were calculated by comparison to poly(methyl methacrylate) (PMMA) 

standards (PMMA Calibration Kit, Agilent Technologies) and poly(ethylene glycol) standards 

(PEG Calibration Kit, Agilent Technologies). Briefly, a series of PMMA standards of known Mn 

were analyzed by GPC and quadratic regression analysis was performed to determine Mn as a 
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function of peak elution time. Mw and corresponding polydispersity (PDI) values were 

determined with Astra V software (Wyatt Technologies). 

Matrix assisted laser desorption/ionization-time of flight-mass spectroscopy (MALDI-

Tof-MS) measurements were performed using a Voyager DE-STR MS in reflector mode 

equipped with a nitrogen gas laser of wavelength 337 nm utilizing external calibration. The 

instrument parameters were set to 25,000 V, 90% grid, 600ns delay, and 1000 shots per 

spectrum. The poly(glycidol) based samples were formed using solutions of 10 mg polymer/mL 

water and saturated dithranol matrix solution in 2:1 water/acetonitrile. 

The green glycidol/allyl glycidyl ether (GLY/AGE) 70/30 copolymers were prepared by 

first adding glycidol monomer (17.5mmol, 2.3 eq) to a flame dried 25mL RBF equipped with a 

stir bar. The allyl glycidyl ether monomer (7.5mmol, 1.0 eq) was then added via syringe and the 

reaction vessel was lowered into an oil bath at 80 °C before the addition of Dulbecco’s Phosphate 

Buffer Saline (DPBS) (0.25mL; pH= 6.0). The reaction was then allowed to run for 72 hours before 

the crude product was removed from the oil bath, dissolved in a minimal amount of methanol, and 

precipitated into vigorously stirring ethyl acetate. After allowing the solution to settle, the 

supernatant was decanted and the resulting copolymer product was collected in methanol, 

transferred to a 6-dram vial, and dried using a rotovap then a high-pressure pump resulting in a 

yield of 40%.  

The green GLY homopolymers were prepared by first adding glycidol monomer (33mmol, 

1.0eq) to a flame dried 25 mL round bottom flask (RBF). The reaction vessels were then lowered 

into oil baths of varying temperature (60°C, 80°C, or 100°C) to ensure consistent reaction 

temperatures, followed by the addition of DPBS (0.25mL; pH= 6.0) to reach a concentration of 

13.5 mM. After 72 hours, the crude viscous polymer product was dissolved in a minimal amount 
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of methanol and precipitated into vigorously stirring acetone. The resulting solution was decanted 

to afford the pure GLY product as a translucent viscous material. The product was collected in 

methanol, transferred to a massed 6-dram vial, and dried using a rotovap and a high-pressure pump 

resulting in a yield of 31.8% and a PDI of 1.1. Table 5 shows the Mn and Mw values as determined 

using poly(methyl methacrylate), poly(ethylene glycol), and poly(styrene) standards.  

Table 5. Mean and weight average molecular weights for semibranched poly(glycidol) 
homopolymers determined using gel permeation chromatography with poly(methyl 
methacrylate), poly(ethylene glycol), and poly(styrene) standards. 

Standards Mn (g/mol) Mw (g/mol) 
poly(methyl methacrylate) 1101 1156 

poly(ethylene glycol) 1253 1316 
poly(styrene) 10380 10800 

 
2.3 Microparticle fabrication using photoreactive copolymer inks and piezoelectric ink jet 
printing 
 

Three photoreactive copolymer inks were prepared to fabricate microparticles with a wide 

range of softness, hydrophilicity, and network density. In a general procedure for the 

poly(carbonate) ink (PC Ink) and the poly(carbonate)-poly(glycidol) ink (PC:PG - 70:30 Ink), the 

allyl functionalized copolymers, poly(MEC MAC) and poly(GLY AGE) were solubilized in 

dimethyl sulfoxide (DMSO) before the addition of the 2,2-Dimethyoxy-2-phenylacetophenone 

(DMPA) photoinitiator calculated for 0.2 eq per alkene. After manual mechanical mixing, the 

dithiol 3,6-Dioxa-1,8-octanedithiol (0.5 eq per alkene) was added via syringe to the solution and 

mixed to form a homogenous solution. The addition order for the various ink components was 

varied for the PG Ink. For this ink we first dissolved the poly(GLY AGE) and solid dithiol-PEG 

(1.5 kDa), 0.5 eq per alkene, in half of the desired amount of water until completely dissolved, 

followed by the second half of water containing the water soluble photoinitiator (VA-44). The 

exact percentile of allyl functionality incorporation was determined using 1H-NMR spectroscopy. 

If the molecular weight is unknown or cannot be exactly determined, the molecular weight of the 
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repetition unit containing the allyl functionality (AGE) or (MAC) can be used to determine the 

quantity of the allyl groups of the sample. This quantity can then be utilized to calculate the exact 

amount of the initiator and crosslinker needed in the stated equivalents. 

The PC Ink was used to fabricate poly(carbonate) microparticles. In a more exact procedure 

the PC Ink was prepared as follows. Considering poly(MEC MAC) copolymers with a R.U. = 

952.2 g/mol and a 20% MAC unit incorporation. First, 9.57 mg (8.55 µL) which equals 52.5 µmol 

of 3,6-Dioxa-1,8-octanedithiol (182.3 g/mol, 0.5 eq. per alkene) was added via micro syringe to a 

solution of 100 mg poly(MEC MAC), 2,2,-dimethoxy-2-phenylacetophenone (DMPA, 0.2 eq. per 

alkene, stock solution), and 1 mg of nile red in 200 µL DMSO. 

The PG Ink was used to fabricate poly(glycidol) microparticles which was prepared as 

follows. Considering poly(GLY AGE) copolymers with a R.U. 410.5 g/mol and 20% of AGE unit 

incorporation.  First, 182.7 mg = 121.8 µmol of HS-PEG-SH (1,500 g/mol, 0.5 eq. per alkene) was 

dissolved in 0.5 mL distilled water together with 100 mg poly(GLY AGE). A second solution of 

0.5 mL distilled water and 15.74 mg = 48.72 µmol 2,2’-Azobis[2-(2-imidazolin-2-yl)propane] 

dihydrochloride (VA-044, 0.2 eq. per alkene) and <1 mg water-soluble sulfo-cyanine carboxylic 

acid Cy3 dye was then added to the first solution and mixed. 

The PC:PG Ink was used to fabricate poly(carbonate)-poly(glycidol) microparticles. Since 

this ink was prepared with PC and PG at a weight ratio of 30:70 this ink will be abbreviated as 

PC:PG (70:30) Ink. The procedure is as follows when considering poly(MEC MAC) copolymers 

with a R.U. = 952.2 g/mol that have a 20% MAC unit incorporation and poly(AGE GLY) 

copolymers with a R.U. 410.5 g/mol with 20% AGE unit incorporation. First, 11.94 µL (13.36 mg, 

73.3 µmol) 3,6-Dioxa-1,8-octanedithiol (182.3 g/mol, 0.5 eq. per alkene) was added via micro 

syringe to a solution of 70 mg poly(MEC MAC), 2,2-dimethoxy-2-phenylacetophenone (DMPA, 
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0.2 eq. per alkene, stock solution), 30 mg poly(GLY AGE) copolymer. and 1 mg of coumarin 30 

in 400 µL DMSO. 

After the ink was prepared, it was injected into a printer cartridge (Dimatix Materials 

Cartridge Model # DMC-11601/PN 700-10701-01) using a glass pipet. Both ink compositions that 

used DMSO as the solvent and contained hydrophobic network precursors (PC Ink and PC:PG 

(70:30)) were printed on glass slides coated with a sacrificial water-soluble poly(glycidol) coating. 

The poly(glycidol) was prepared as previously reported.30 The glass slides were prepared by spin-

coating with a sacrificial poly(glycidol) solution utilizing a Laurell Technologies Corporation, 

Model WS-400A-6NPP/LITE spin-coater. Before spin coating, each glass slide was cleaned using 

compressed nitrogen. The glass slide was then placed onto the spin-coater platform and the spin-

coater was set to 3500 rpm with a spin time of 25 seconds. Immediately after the spinning was 

started 10 to 15 drops of a 1 g of poly(glycidol) in 1 g of methanol solution were added using a 

glass pipet. The coated slides were then allowed to air dry overnight. For the ink using water as a 

solvent and the hydrophilic network precursors (PG Ink) Teflon sheets were used as printing 

substrates.  

Once the printer cartridge and appropriate substrates were prepared, the cartridge was 

inserted into the printer and the substrates were loaded onto the printer platform. The printer 

cartridge was then set to 37 °C and the recommended manufacturer’s waveform was chosen and 

set to have a maximum voltage of 40 V as shown in Figure 6.  
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Figure 6. Multistep pulse waveform with a maximum voltage of 40 V used to eject one set of 
droplets from the printer cartridge nozzles. 
 
The spacing between the printed droplets was then set for placement 100 microns apart from center 

to center in rows and columns on the 12” x 8” platform. After printing, the microparticles were 

illuminated with long wave UV light to initiate the crosslinking.  

2.3.1 Characterization 

Gelation kinetic studies were performed to determine the effect of molecular weight and 

concentration on copolymer gelation at constant concentration and molecular weight respectively. 

The model copolymers investigated were poly(carbonate) copolymers with 20% of allyl 

incorporation. For the constant molecular weight experiments the concentration was kept at 17.9 

wt%. Whereas for the constant concentration experiments the molecular weight was kept at 6802 

± 35 g/mol. The solution was prepared in a glass vial using the same procedure as the PC Ink. 

Once prepared, the solutions were illuminated with long wave UV until gelation occurred. The 

gelation time was recorded as the time when the solution did not move upon vial inversion. 

Fluorescent microscopy was used to investigate the size of fabricated microparticles and 

the microparticle-laden substrate. A Nikon AZ 100M wide field microscope equipped with a 5x 
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Plan Fluor was used to image the microparticles printed on the substrates. Excitation wavelengths 

were varied based upon the dye encapsulated within each particle. Microparticles containing nile 

red were irradiated with 543 nm light, while 488 nm was utilized for the coumarin 30 encapsulated 

microparticles, and 633 nm for the Sulfo-Cy7 encapsulated microparticles. The substrates were 

then washed with water in order to transfer the microparticles into confocal dishes for imaging on 

a Zeiss LSM 510 inverted confocal microscope to investigate the microparticle size precision, dye 

distribution throughout the microparticle, and the microparticle shape. The same wavelengths were 

utilized for the confocal microscope but with a 10x Plan Neofluar lens for wide field imaging to 

determine microparticle uniformity and a 63x Plan-APOCHROMAT OIL lens was used for 

investigation of single microparticles. 

Mechanical testing was used on the hydrogel samples to investigate softness. The hydrogel 

samples were prepared using ink preparation procedures previously described. The resulting 

hydrogel products were tested in triplicate. For the mechanical testing a rate of 1 mm/min was 

utilized on an Instron 5944. The compressive modulus was determined using the initial linear 

region for each sample on the stress versus strain curves. 

The hydrophilicity of bulk hydrogels was investigated using swelling studies. Bulk 

hydrogels were prepared using the ink preparation procedures as stated previously. Once the 

respective hydrogel was formed, the gels were then rinsed sequentially with 3 mL aliquots of 

water, methanol, methylene chloride, methanol and water again to remove any unreacted starting 

materials. The hydrogels were then freeze dried and weighed before commencing the swelling 

studies. The gel swelling was investigated by first soaking the gels in deionized water for 24 hours. 

Swelling measurements were then taken by gently blotting the gels dry before recording the 



	 26	

swelled mass. The percent water content post-swelling was quantified using the following 

equation: 

	 4567489:

489:
×100%       (2) 

where Msw is the mass of the swelled hydrogel and Mdry is the weight of the dried gel. 

2.4 Microparticle fabrication using photoreactive monomer inks and piezoelectric ink jet 

printing 

Photoreactive monomer inks were developed to yield microparticles with low softness, 

high network density, and low hydrophilicity. The reactive monomer used for the ink was 

trimethylolpropane triacrylate, which polymerized via free radical polymerization to form 

crosslinked poly(acrylate) (PA) microparticles. Prior to ink preparation eosin Y (EY) stock 

solution was prepared in dimethyl sulfoxide (DMSO) (7.3 mg EY/mL DMSO). The 

trimethylolpropane triacrylate (TMPTA) monomer was purified by pipetting the pure monomer 

into the top of a 5 3/4" glass pipet filled with 80% inhibitor remover. Initially the liquid is 

allowed to flow from gravity, then it was slowly pressurized by hand utilizing a pipet bulb. The 

ink formulation was investigated by preparing three PA Inks, which will be denoted as PA Ink 1, 

2, and 3. PA Ink 1 was prepared by first dissolving 51.1 µL of EY stock, 307.5 µL DMSO, 13.1 

µL triethylamine (EtO3), and <0.01 mg nile red (NR) in a 1-dram vial. Next, 782 µL of purified 

TMPTA was added to the 1-dram vial and vortexed vigorously for a few minutes to obtain a 

homogenous solution. PA Ink 2 was prepared in a similar way as PA Ink 1; however, 1803 µL of 

DMSO was added instead of 307.5 µL of DMSO. PA Ink 1-AA was also prepared in a similar 

way as PA Ink 1; however, 14.3 mg of ascorbic acid (AA) was added instead of EtO3. After ink 

preparation, a small aliquot was syringed into a 1-dram vial and illuminated with blue light to 

ensure the solution gelled. After the gelation check test, the remaining solution was syringed into 
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a Dimatix Materials Cartridge Model # DMC-11610/PN 2100201146, and the printer head was 

snapped into place. The cartridge was then placed into the Dimatix 2831 inkjet printer and the 

polyvinyl alcohol film (PVA) was placed on the 12" x 8" platform. Utilizing the printer software 

the droplets were programed for placement 254 microns apart from center to center. The printer 

cartridge temperature was set to 37 °C. The printing height from the substrate was set to 2000 

microns with a substrate height of 1000 microns. The waveform used to eject droplets is shown 

in Figure 7.  

 
Figure 7. Multistep pulse waveform with a maximum voltage of 12 V used to eject one set of 
droplets from the printer cartridge nozzles.  
 
Next, the printing was started and a desk lamp containing a sunlite® (80145/3W/B 3WE261506 

120V 60Hz 46mA) blue light bulb was held approximately one cm above the substrate and 

moved behind the printer head. Figure 8 shows the strength of the light source with distance as 

determined utilizing a radiometer.  
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Figure 8. Radiant flux for the visible light source (desk lamp containing a sunlite® (80145/3W/B 
3WE261506 120V 60Hz 46mA) blue light bulb) as a function of the distance from the radiometer. 
 
Once the printing was completed the PVA film was placed in a container lined with aluminum foil 

where illumination with visible light was continued for at least five minutes. The printed film was 

kept covered until use.  

2.4.1 Ink optimization via gel yield studies 

Gelation kinetics of potential photoreactive ink components were investigated utilizing 

gel yield studies. These experiments were started by first pipetting 10 µL of the ink solution onto 

a Teflon substrate. The droplet was then illuminated with blue light for different periods of time 

depending on the rate of reaction. After each time point the droplet was moved into a 1-dram vial 

containing water. If the droplet dispersed in the water then it was noted that no gel was formed. 

However, if part of the droplet stayed intact in the water, then it was rinsed with three mL 

aliquots of methanol, dichloromethane, methanol, water, and then soaked in water for 24 hours.  

This ensured that any unreacted starting material was removed.  
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The gel was then freeze dried and the yield was determined utilizing the following 

equation; 

Gel yield (%)= Wdry

Wsolid
 x 100      (3) 

where Wdry is the weight of the freeze-dried gel and Wsolid is the theoretical weight of solid in the 

initial droplet. 

2.4.2 Drug loading and encapsulation efficiency of a model hydrophobic drug 

Quantitation of a model hydrophobic drug ivermectin (875.1 g/mol) was determined 

utilizing high performance liquid chromatography (HPLC). The HPLC instrument was equipped 

with a Waters 2487 Dual λ Absorbance Detector, Waters binary HPLC pump, Waters In-line 

Degasser AF, Waters 600 Controller, Waters 717 plus Autosampler, and a reverse phase column 

(100 x 4.6 mm i.d., pore size 5 µm, Thermo Scientific). The mobile phase was composed of 

acetonitrile:water (75:25) and was degassed and filtered before use. An isocratic flow rate of 1 

mm/min was used at 35 °C to elute the drug and the absorbance was taken at 243 nm. Serial 

dilutions of ivermectin in acetonitrile:water (ACN:H2O 75:25) were prepared from 0.3 to 400 

µg/mL for the calibration curve. The prepared calibration curve had an R-squared value of 

0.99993. The encapsulation efficiency was determined for ivermectin loaded bulk hydrogels. 

This was done by first submerging the freshly gelled material in 100 mL of ACN:H2O (75:25) 

for a few seconds to wash the gel of non-encapsulated ivermectin. Next, the ivermectin was 

quantitated in an aliquot from the 100 mL solution to determine the amount of ivermectin that 

was not encapsulated within the hydrogel.  
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The encapsulation efficiency was determined utilizing the following equation; 

4?,			(?)74?	(6)

4?,			(?)
x	100%         (4) 

 
where Mi, (i) is the initial mass of ivermectin added to the ink solution and Mi, (w) is the mass of the 

washed ivermectin as determined by HPLC. 

2.4.3 Characterization 

 Fluorescent microscopy was used to investigate the microparticles on the poly(vinyl 

alcohol) PVA film and while suspended in water. The microparticles were irradiated with 543 nm 

light to induce fluorescence of the encapsulated nile red. Wide field fluorescent microscopy (Nikon 

AZ 100M) was used to investigate the droplet placement on the PVA film. Confocal imaging 

(Zeiss LSM 510) was used to investigate the microparticle size, microparticle shape, and 

distribution of the hydrophobic dye. For confocal analysis a piece of microparticle-laden PVA film 

was cut out and dissolved in a confocal dish containing water. The microparticles prepared from 

PA Ink 1 were sized using the 40x Plan-APOCHROMAT OIL lens and the Zeiss LSM Image 

Browser. The microparticles prepared from PA Ink 2 were sized using the 100x Plan-

APOCHROMAT OIL lens. The z-stack for PA Ink 1 microparticles was taken using a 63x Plan-

APOCHROMAT OIL lens. The z-stack for PA Ink 2 was taken using a 100x Plan-

APOCHROMAT OIL lens. 

Unconfined compression testing (Instron 5944) was used to evaluate the softness of 

hydrogels prepared from PA Ink 1 and 2. The bulk hydrogels were synthesized utilizing a 

syringe mold. Briefly, the top of a 6 mL syringe was cut off. Next, 1 mL of the solution was 

pipetted into the top of the syringe containing a syringe plunger. The top of the liquid was then 

illuminated for 20 minutes. The formed hydrogel was then popped out of the syringe with the 

syringe plunger and rinsed with 5 mL aliquots of water, methanol, dichloromethane, methanol, 
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and water. The hydrogel was then soaked in 225 mL of water for 24 hours and freeze-dried.  

Prior to compression testing the freeze-dried gels were soaked in deionized water for 24 hours. 

The compression head rate was set to 1 mm/min during testing. From the compression testing the 

stress versus strain curves were determined, and the compressive modulus was determined using 

the initial linear region from 0 to 2% for each sample. 

Swelling studies were used to evaluate the hydrophilicity of the hydrogels. The studies 

were performed by measuring the weight change of freeze-dried gels after soaking in deionized 

water at 37 °C. The bulk gels for PA Ink 1 and 2 were fabricated in a syringe mold. Briefly, the 

top of a 1 mL syringe was cut off. Next, 150 µL of liquid was pipetted into the top of the syringe 

containing the syringe plunger. The top of the liquid was then illuminated for 10 minutes. The 

formed hydrogel was then popped out of the syringe with the syringe plunger and rinsed with 3 

mL aliquots of water, methanol, dichloromethane, methanol, and water. Lastly, the hydrogel was 

soaked in 100 mL of water for 24 hours and freeze-dried. During testing the weight change was 

determined utilizing the following equation; 

45748
48

	x	100       (5) 

where Ms is the mass of the swollen gel and Md is the mass of the dry gel. 

2.5 One-pot microparticles for controlled pulmonary drug delivery to eliminate malaria 

Two PA inks were formulated that would result in microparticles with extremely 

different network properties. This was done to efficiently determine the range of tunable 

degradation and release kinetics, and thereby allow us to efficiently determine the optimal ink 

formulation. Prior to ink preparation, eosin Y (EY) stock solution was prepared in dimethyl 

sulfoxide (DMSO) at 7.3 mg EY/mL DMSO and trimethylolpropane triacrylate (TMPTA) was 

purified by flowing monomer through a 5 ¾” glass pipet filled with 80% inhibitor remover. 
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Initially the TMPTA is allowed to flow from gravitational forces, then is slowly pressurized by 

hand utilizing a pipet bulb. Ivermectin was then weighed in an aluminum foil wrapped 1-dram 

vial after which the EY stock, triethylamine, TMPTA, and DMSO were added. The solution was 

then vortexed to ensure all components were completely dissolved. Next, the TMPTA was added 

and the solution was vortexed again to obtain a homogenous solution. Table 6 shows the 

composition of the formulated inks. 

Table 6. Formulated ink compositions for the fabrication of ivermectin loaded microparticles. 

Ink Eosin Y 
(mM) 

Triethylamine 
(mM) 

Trimethylpropyl 
triacrylate (mM) 

Ivermectin 
(mM) 

Ivermectin 
(wt%)* 

PA Ink 1-
IV13wt% 0.49 79.0 2445 126.7 13 

PA Ink 2-
IV13wt% 0.22 35.4 1096 57.2 13 

*wt% is based on final dry weight of microparticles. Abbreviation IV = ivermectin. 
 
2.5.1 In vitro release of ivermectin from bulk gels 

Ivermectin loaded bulk gels were prepared from PA Ink 1-IV13wt% and PA Ink 2-

IV13wt% ink compositions shown in Table 6. Gels were formed by pipetting 50 µL of ink 

solution into a cut-off 1 mL syringe. The blue light source, desk lamp containing a sunliteÒ 

(80145/3W/B 3WE261506 120V 60Hz 46mA), is rested on the syringe until complete gelation. 

The gels were then plunged from the syringe into a beaker containing 100 mL of ACN:H2O 

(75:25) for several seconds before being removed into an empty glass vial. 

The concentration of ivermectin was determined using high performance liquid 

chromatography (HPLC). The HPLC instrument utilized was an Agilent 1290 Infinity II LC 

System. The mobile phase was acetonitrile:water (75:25), and the method settings were set to 1 

mm/min eluent flow rate, 35 °C column temperature, and 243 nm absorbance measurements. The 

calibration curve was prepared using serial dilutions of ivermectin in acetonitrile:water (75:25) 

from 0.3 to 400 µg/mL. 
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 The in vitro ivermectin release from the bulk gels was performed in phosphate buffer 

saline (7.4 pH) containing 2 wt% tween 80 at 37 °C. Ivermectin solubility was determined as 

3000 mg/mL in the release media using HPLC. The ivermectin solubility results in a perfect sink 

concentration less than 300 µg/mL which is 10% of the maximum ivermectin solubility in the 

media. The release study was performed in a 50 mL centrifuge tube containing perfect sink 

media at 37 °C under gentle stirring at 100 rpm. Once the media was ready the gel was dropped 

into the release media and 550 µL aliquots of media were taken over time for HPLC analysis. 

The removed volume for each time point was then replaced with fresh media to maintain perfect 

sink conditions. 

2.5.2 In vitro degradation of bulk gels by reactive oxygen species 

In vitro degradation of bulk gels was investigated at conditions relevant to the deep lungs. 

The most likely mechanism of degradation for hydrophobic poly(acrylate) in the lungs is through 

oxidation by reactive oxygen species. Here the H2O2 concentration is expected to be in the 

micromolar to tens of micromolar range.31 The degradation study was performed at the higher 

end of this concentration range, 100 micromolar H2O2. Additionally, cobalt chloride was added 

in excess to generate free radical oxygen species that oxidize the esters in the poly(acrylate) 

backbone. The bulk gels for this experiment were prepared using PA Ink 1 and 2 in a similar way 

as the bulk gels for the release study. The degradation study was run in 45 mL of aqueous 100 

µM H2O2 1.53 µM CoCl2 that was gently stirring at 100 rpm. The degradation media was 

replaced twice weekly. For each measurement, the samples were removed from degradation 

media and soaked in 100 mL deionized water for three 30 minute periods, refreshing the 

deionized water each time. The gels were then freeze dried and weighed.  
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The gel weight loss over time was determined using the following equation; 

weight	loss	 % = GH
G?
	x	100     (8) 

 
where Wt is the dry weight after some period of time and Wi is the initial dry weight. 

2.5.3 Characterization 

Scanning electron microscopy (JEOL JSM 6400) was utilized to determine the 

microparticle size. The samples were first mounted on a metal stub containing double sided tape. 

They were then carbon coated with 400 nm layers using a Ladd Research Industries Vacuum 

Evaporator (Burlington, VT) before SEM imaging. The microparticle size was determined from 

the SEM images after which the aerodynamic diameter was calculated using the following 

equation; 

dJ = dK ρ        (9) 

where da is the aerodynamic diameter, dg is the geometric diameter, and r is the bulk density. 

Ink gelation kinetics were investigated using gel yield studies. First, 10 µL of ink solution 

was pipetted onto a Teflon substrate. Next, the droplet was illuminated with a blue light source 

(desk lamp containing a sunliteÒ 80145/3W/B 3WE261506 120V 60Hz 46mA) for different 

periods of time depending on the rate of reaction. After the specified time period the droplet was 

physically moved using a spatula into a 1-dram vial containing approximately 1 mL of water. If 

the droplet remained intact then it was considered that the gel was formed. If the gel fell apart 

and dispersed in the water then the gel was considered to not have formed. The water was then 

removed and the gels were washed with aliquots of methanol, dichloromethane, methanol, and 

water. The gels were then soaked in water for 24 hours and freeze-dried.  
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The gel yield was calculated using the following equation; 

Gel	yield = G89:

G5OP?8
x	100      (11) 

 
where Wdry is the weight of the freeze-dried gel and Wsolid is the theoretical weight of solid in the 

initial droplet. 

 Rheometry (TA Instruments) was used to determine the viscosity of inks. A 40 mm plate 

geometry was used with a gap of 500 nm. The test type was a steady state flow with a 5% 

tolerance and a 1 minute max point time at 30 ºC. The shear rate was ramped from 400 1/s to 600 

1/s linearly with 10 sample points each with a 5 second sample period. 

2.5.4 Microparticle fabrication using piezoelectric inkjet printing 

The microparticles were fabricated using a Dimatix materials printer (DMP-2850) with a 

Dimatix Materials Cartridge Model #DMC-11610/PN 2100201146. In a general procedure, the 

prepared ink was first injected into the cartridge using a glass pipet. The 16 nozzle printer head 

was then snapped to the cartridge and the assembled cartridge was inserted into the printer. The 

printer settings were then selected in the Dimatix software. The waveform selected was a 

multipulse waveform set to a maximum voltage of 12 V (see Figure 7). The nozzle temperature 

was set to 30 °C, the print speed to 1 kHz, the printed droplet spacing to 125 microns, the 

substrate height was set to 1000 microns, and the printing height above the substrate was set to 

2000 microns. A 220 mm x 160 mm polyvinyl alcohol film was then placed onto the printing 

area and the printing was commenced. During printing the printer head was followed with a desk 

lamp containing a sunlite (80145/3W/B 3WE261506 120V 60 Hz 46 mA) blue light bulb that 

was held approximately one cm above the substrate. See Figure 8 for the strength of the light 

source with distance. After printing was complete, the light was illuminated on the printed 

substrate for another five minutes. The microparticles were then removed from the PVA film by 
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dissolving the film at a PVA concentration of approximately 6.7 mg PVA/mL D.I water in a 50 

mL conical then spinning down at 7830 rpm for 5 minutes. The supernatant was then removed 

and the microparticles were spun down again, re-suspended with 1.5 mL of deionized water, and 

pipetted into a “stock conical”. Once all microparticles were removed from the PVA film, the 

stock conical was spun down at 7830 rpm for 20 minutes and freeze-dried. 

2.5.5 In vitro drug efficacy of ivermectin and ivermectin loaded microparticles 

Chinese hamster ovary cells (CHO-K1, ATCCÒ CCL-61ä) were purchased from 

American Type Culture Collection (ATCCÒ) and growth media was prepared by adding 10% FBS 

(Gibco, USA) and 5% penicillin/streptomycin to Kaighn’s modification of Ham’s F-12. Cells were 

grown in tissue culture flasks (75 cm2) and maintained under 5% CO2 atmosphere at 37 °C in 

complete growth media. After the cells reached approximately 80% confluency they were split and 

seeded at a 1:5 to 1:10 ratio.  

Standard MTT (Invitrogenä Molecular Probesä Vybrantä) assays were used to 

determine the cell cytotoxicity of poly(acrylate) microparticles, pure ivermectin, and ivermectin 

loaded poly(acrylate) microparticles. CHO cells were used as model mammalian cells as done 

previously for ivermectin.32 The MTT experiments were done as follows. The CHO cells were 

first harvested from confluent cultures by trypsinization. The concentration of cells in the 

suspension was then determined by counting the live cells in a 1:1 mixture of cell 

suspension:tryphan blue using a hemocytometer. The stock cell suspension was then adjusted to 

50,000 cells/mL with complete media. The suspension (200 µL) was then pipetted to wells in a 

96 well plate and incubated for 3 to 4 hours. After the cells were attached, the media was 

replaced with sample solutions suspended in complete media and incubated for 72 hours. The 

poly(acrylate) microparticles were prepared by fabricating bulk gels from PA Ink 1. The bulk 
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gels were then frozen using liquid nitrogen and crushed with a mortar and pestle. Suspensions of 

crushed microparticles were then prepared at 100, 10, 1, 0.1, and 0.01 µg/mL, and complete 

media was used as blanks for these samples. The pure ivermectin samples were prepared by 

preparing a stock solution of pure ivermectin in DMSO, then adding aliquots of this solution to 

complete media with 1 v/v% DMSO to obtain samples that had concentrations of 100, 10, 1, 0.1, 

and 0.01 µg/mL. Blanks composed of 1 v/v% DMSO were used for these samples. The 

ivermectin loaded poly(acrylate) microparticles were fabricated using the PA Ink 1-IV13wt% 

microparticle formulation. These samples were prepared by adding appropriate amounts of 

microparticles to complete media with 1 v/v% DMSO to obtain ivermectin concentrations of 

100, 10, 1, 0.1, and 0.01 µg/mL after complete drug release. After the 200 µL sample solutions 

were incubated with the cells for 72 hours the sample solution was removed and 200 µL of PBS 

was used to wash the wells. Next, 150 µL of MTT solution (500 µg/mL in complete media) was 

added, and the wells were incubated for 3 to 4 hours. A 125 µL portion of the MTT solution was 

then removed and 50 µL of DMSO was added to dissolve the formed formazan crystals. The 96 

well plate was then incubated at 37 °C for 10 minutes. After incubation, the sample absorbance 

at 540 nm was determined using a Tecan Infinite M200 PRO plate reader, and the cell viability 

was calculated using the following equation;  

Cell	viability	 % = 	 RH
RS
	x	100     (12) 

 
where At is the absorbance in A.U. for the test solution and Ac is the absorbance for the control 

solution. 
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2.5.6 In vitro transport of ivermectin from ivermectin loaded microparticles through a lung 
epithelial cell monolayer 
 

Rat epithelial lung cells (RL-65, ATCCÒ CRL-10354) were purchased from American 

Type Culture Collection (ATCCÒ). The cells were grown in tissue culture flasks (75 cm2) and 

maintained under 5% CO2 atmosphere at 37 °C in a serum free media, Gibcoä DMEM/F-12 

supplemented with 0.005 mg/mL insulin, 0.01 mg/mL human transferrin, 0.1 mM ethanolamine, 

0.1 mM phosphoethanolamine, 25 nM selenium, 500 nM hydrocortisone, 0.005 mM forskolin, and 

0.15 mg/mL bovine pituitary extract. The medium was exchanged three times weekly, and the cells 

were split 1:20 at 90% confluency. 

The apparent permeability of ivermectin through rat lung cell monolayers from 

ivermectin loaded microparticles was investigated using an in vitro lung model. The ivermectin 

loaded microparticles were fabricated using the PA Ink 1-IV13wt% formulation. TranswellÒ cell 

culture supports (1.13 cm2 polyester, 0.4 µm pore size) were seeded at a density of 1 x 105 

cells/cm2. The cells were allowed to attach for 24 hours before removing the media to develop 

cells at air-liquid (AL) interface conditions. The AL conditions were established by adding 0.5 

mL of media to the basolateral chamber only, which was replaced every other day. The media 

utilized for these studies was Gibcoä DMEM/F-12 supplemented with 10% v/v Gibcoä fetal 

bovine serum and 100 IU/mL penicillin and 100 ug/mL streptomycin antibiotic solution. Over 

time trans-epithelial electrical resistance (TEER) measurements were recorded using a MillicellÒ 

ERS-2 Volt-Ohm Meter with MERSSTX01 electrodes. Before taking resistance measurements 

0.5 and 1 mL of media were added to the apical and basolateral chambers respectively and 

allowed to equilibrate in the incubator for 20 minutes. The measured value was corrected for the 

resistance and surface area of the TranswellÒ filters. Additionally, before starting the transport 
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experiments the TEER value for the cell monolayers were taken and only cells with a monolayer 

resistance greater than 250 W cm2 were used as suggested by Hutter et al.33 

The transport experiment was performed by first equilibrating the cell monolayers with 

1.5 mL of PBS 2 wt% tween in the basolateral compartment and 0.51 mL of PBS 2 wt% tween 

in the apical chamber for one hour. The buffer solution in the basolateral chamber was then 

refreshed with 0.51 mL of sample solution. The same initial concentration was used for each 

sample solution which was chosen to ensure perfect sink conditions were maintained. After 

certain periods of time 550 µL samples were taken from the basolateral chamber for HPLC 

analysis. The removed media was replaced with fresh buffer to ensure perfect sink conditions 

were maintained. Using the transport profile the apparent permeability coefficients were 

determined as done by Lang et al.34 using the following equation 

PJUU =
V[X]
VZ [[

\
]^_

          (13) 

where Papp is the apparent permeability coefficient, (d[I]/dt)ss is the change of concentration with 

time across the transwell filter, A is the surface area of the transwell filter, C0 is the initial 

amount of drug in the apical compartment, and V is the volume of the receiver compartment. 
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CHAPTER 3 

3. RESULTS AND DISCUSSION 
 
3.1 Novel functionalized copolymers for microparticle fabrication 
 
3.1.1 Hydrophobic linear poly(carbonate) copolymers 
 

Hydrophobic functionalized linear poly(carbonate) copolymers were fabricated as one of 

the network precursor copolymer building blocks for microparticle fabrication. Poly(carbonate)s 

are advantageous over other copolymers due to their degradation products being less acidic than 

other copolymers used for drug delivery such as poly(ester)s. As done previously by our group the 

poly(carbonate) copolymers were synthesized through the copolymerization of methyl ethyl 

carbonate and methyl allyl carbonate using ring opening metathesis polymerization with Sn(OTf)2 

as the catalyst.35 In this work, the copolymers were synthesized to contain 20% of allyl 

incorporation which can react with dithiol crosslinkers through a thiolene “click” reaction. To 

ensure extended release of drug was achieved the copolymers were synthesized with a mean 

average molecular weight of 4,000 g/mol which should result in small mesh sizes. After synthesis, 

the mean average molecular weight was determined using 1H-NMR. Figure 9 shows a 

representative 1H-NMR spectrum for the poly(carbonate) copolymer. 
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Figure 9. 1H-NMR for the methyl ethyl carbonate:methyl allyl carbonate (MEC:MAC) copolymer 
in CDCl3 (* = protons from terminal unit on polymer). d: 5.91-5.85 (m, -OCH2CHCH2), 5.34-5.23 
(m, -OCH2CHCH2), 4.64-4.62 (m, -OCH2CHCH2), 4.0-4.15 (m, MAC and MEC, -OC(O)OCH2), 
1.30-1.22 (m, MAC and MEC, CH3; MEC, -OCH2CH3), 0.93-0.91 (d, 3-methyl-1-butanol, 
OCH2CH2CH(CH3)2). 
 
The mean average molecular weight was determined by first setting the doublet f at 0.9 ppm shown 

in Figure 9 to 2.0. Peaks i at 1.24 ppm and d at 6 ppm were then integrated. The mean average 

molecular weight was then calculated using the following equation; 

Ma =
(([i]7(b∗[d]))

d
∗ MEC	MG + d ∗ [MAC	MG]      (14) 

where MEC MW is the molecular weight of methyl ethyl carbonate (188.18 g/mol), MAC MW is 

the molecular weight of methyl allyl carbonate (200.19 g/mol), [i] is the integrated area for the i 

peak, and [f] is the integrated area for the f peak. The methyl ethyl carbonate percentage of 

incorporation was calculated using the following equation; 

MEC	 % =
(([i]h(i∗[d]))

j ∗ 4kl	4m

4n
	x	100	    (15) 

where Mn is the mean average molecular weight calculated from equation (14). 
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The methyl allyl carbonate % of incorporation was calculated using the following equation; 

MAC	 % = 	 [o]∗[4Rl	4m]
4n

x	100     (16) 

where Mn is the mean average molecular weight calculated from equation (14). Mn values ranged 

from 4,000 to 4,300 g/mol with 20% MAC incorporation. 

3.1.2 Hydrophilic semibranched poly(glycidol) copolymers 

The second copolymer synthesized was opposite of character to the hydrophobic linear 

poly(carbonate) copolymer. This copolymer was a hydrophilic semibranched poly(glycidol) that 

was also synthesized to contain 20% of pendant allyls that can react with dithiol crosslinkers. 

These copolymers were synthesized through the copolymerization of glycidol (GLY) and allyl 

glycidol ether (AGE) using cationic polymerization with Sn(OTf)2 as the catalyst. This synthesis 

strategy was done previously in our lab for a homopolymerization of poly(glycidol).30 This 

polymerization was invented in our lab and is more advantageous over traditional methods to 

fabricate branched poly(glycidol) since it doesn’t use protection of hydroxyl groups and it is much 

more controlled. Traditionally without the protection of glycidol monomers hyperbranched 

structures occur with no degree of control over the branching through anionic polymerization 

under stringent water free conditions.36 In general, hyperbranched poly(glycidol)s have a degree 

of branching of 0.56 to 0.63 where a 0.0 degree of branching would be a linear poly(glycidol).   

Additionally, these copolymers overcome the limitations of conventional PEG equivalents 

due to their increased tunability. For example, PEG copolymers are typically only commercially 

available in high molecular weights which result in large mesh sizes and fast release rates. Whereas 

our poly(glycidol) copolymers were synthesized at small molecular weight to target smaller mesh 

sizes and slow release rates. The low copolymer molecular weight is also advantageous for its 

faster elimination after the microparticle structure degrades. Additionally, commercially available 
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PEG copolymers are not branched like the synthesized poly(glycidol) in this work. The branched 

nature of the poly(glycidol) copolymers results in a large amount of hydrophilic end groups which 

results in the copolymer having a high hydrophilicity. These properties make the copolymer water 

soluble and give it an ability to protectively solubilize biologicals which improves their biological 

half-life and circulation time.37 Additionally, the hydroxyl groups open the doors to graft 

molecules for specialized applications in drug delivery.38  

Inverse gated 13C-NMR was utilized to determine the degree of branching. Figure 10 shows 

a comparison of the GLY/AGE (80:20) copolymer and GLY homopolymer catalyzed with 

Sn(OTf)2. 
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Figure 10. Inverse gated 13C-NMR spectra of the; Sn(OTf)2 catalyzed AGE:GLY copolymers (a. 
full spectra and b. zoomed in spectra), 13C-NMR (150MHz, MeOD) δ: 136.31, 117.39, 81.37, 
79.81, 75.12, 73.88, 72.01-72.94, 70.42-71.17, 64.41, 62.53, 62.06, 27.99, 27.60 and the Sn(OTf)2 
catalyzed GLY homopolymers (c. zoomed out spectra), 13C-NMR (150MHz, MeOD4) δ: 81.33, 
79.75 73.84, 72.36, 70.90, 70.62, 64.32, 62.71. 
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The degree of branching was calculated for the AGE:GLY copolymer using the following equation 

Degree	of	branching = q∗r
q∗rstu,vstu,istwxy

     (17) 

where D, L1,3, L1,4 and LAGE are the integrated peaks corresponding to each repeat unit. Whereas 

the degree for the GLY homopolymer was calculated using the following equation 

Degree	of	branching = 	 q∗r
(q∗rstu,vstu,i)

     (18) 

The degree of branching for the AGE/GLY copolymer and GLY homopolymer were 0.21 

and 0.39 respectively which indicate semibranched structures and that the GLY homopolymer had 

a higher degree of branching than the AGE/GLY copolymer. The allyl group incorporation for the 

green AGE/GLY copolymers was determined using 1H-NMR. Figure 11 shows a representative 

1H-NMR spectrum for the copolymer in MeOD4. 

 
Figure 11. 1H-NMR for the AGE/GLY copolymer in MeOD4, δ:6.0-5.90 (m, –OCH2CHCH2), 
5.37–5.17 (m, –OCH2CHCH2) 3.97-3.42 (6H). 
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The allyl group incorporation was determined as follows. First, the number of GLY monomers per 

repeat unit were calculated using the following equation 

GLY	R. U. (#) = � 	7	b
b

       (19) 
 
where [b] is the area of the peak integrated in Figure 11. The allyl group incorporation was then 

calculated using the following equation 

AGE	 % = [J]
[J]s�t�	�.�. #

	x	100	     (20) 
 
where [a] is the area of the peak integrated in Figure 11. The molecular weight of the repeat unit 

(R.U.) was then calculated using the following equation 

 
R. U. g/mol = AGE	MG + �t�	(%)

R�k	(%)
∗ GLY	MG     (21) 

 
where AGE Mw and GLY Mw are the molecular weights of the monomers which are 114 g/mol 

and 74 g/mol respectively. Incorporation of AGE was 20% as determined using 1H-NMR. 

 The poly(glycidol) was also synthesized using a “green synthesis”. The advantage of this 

synthesis is that it is run in water without the Sn(OTf)2 catalyst, and a higher degree of control is 

afforded. For example, the PDI for the Sn(OTf)2 poly(glycidol) was 1.6 whereas the green 

synthesis results in a PDI of 1.1. The temperature for the homo GLY polymerization was 

optimized to ensure the best yield and purity. We found that the polymerization at 60 °C resulted 

in a very low yield, 100 °C resulted in impurities present, and 80 °C to be the optimal reaction 

temperature in terms of yield and purity. In a similar way as reported for the Sn(OTf)2 

synthesized GLY/AGE and GLY copolymers, the degree of branching was also determined for 

the green synthesized GLY/AGE and GLY copolymers using inverse gated 13C NMR. Figure 12 

shows representative 13C-NMR spectra for the green synthesized GLY/AGE (70:30) copolymer 

and GLY homopolymer. 
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Figure 12. Inverse gated 13C-NMR spectra for the; green synthesized AGE:GLY copolymer (a. 
full spectra and b. zoomed in spectra), 13C-NMR (150MHz, MeOD4) δ: 136.31, 117.39, 81.37, 
79.81, 75.12, 73.88, 72.01-72.94, 70.42-71.17, 64.41, 62.53, 62.06, 27.99, 27.60; green 
synthesized GLY homopolymer (c. zoomed out spectra), 13C-NMR (150MHz, MeOD4) δ: 81.33, 
79.75 73.84, 72.36, 70.90, 70.62, 64.32, 62.71. 
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The degrees of branching were calculated using equations (17) and (18) for the green synthesized 

AGE/GLY copolymer and GLY homopolymer which were determined as 0.21 and 0.25 

respectively. These values indicate semibranched structures, with the GLY homopolymer having 

a higher degree of branching than the AGEGLY copolymer. MALDI was utilized to determine the 

Mn and Mw of the green synthesized homopolymer. In order to determine the molecular weight 

of the polymer species, direct integration of the obtained peaks was performed. This allowed for 

the calculation of Mn and Mw values, which also allowed for the determination of PDI. Shown in 

Figure 13 representative peaks are identified and assigned to a structural unit of the poly(glycidol). 

Mx* + M = 1 polymer chains were initiated by water and correspond to monomer units illustrated. 

 
Figure 13. MALDI spectra of the green synthesized poly(glycidol) homopolymer.  
 
The Mn was determined from the MALDI spectra as 925 g/mol and the Mw was determined as 

1041 g/mol which results in a PDI of 1.1. The allyl incorporation for the green synthesized 
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AGE/GLY copolymer was determined as 11% using the integrated 1H-NMR spectrum and 

equation (20). When we targeted for a higher incorporation of AGE into the copolymer using a 

50/50 feed ratio of the monomers, the polymerization achieved very low yield. 

3.2 Microparticle fabrication using photoreactive copolymer inks and piezoelectric ink jet 

printing 

 The goal for the photoreactive inks was to develop a minimal amount of inks that can be 

utilized to fabricate microparticles with a wide range of properties important in drug delivery. This 

results in one comprehensive technology to fabricate microparticles for a wide range of drug 

delivery applications. This goal was partly accomplished by developing a small set of diverse 

tunable copolymers and strategic selection of other ink components. The developed inks allow for 

tunability of properties important in drug delivery such as the release kinetics, type of drug loading 

(synthetic hydrophobic, synthetic hydrophilic, and/or biologicals), and microparticle circulation 

time. In general, the inks allowed for the preparation of microparticles with tunable release kinetics 

through tuning microparticle network density, the type of drug loading through the final 

microparticle hydrophilic character, and the circulation time through the microparticle softness. 

3.2.1 Poly(carbonate) microparticles 

 PC Ink 1 was utilized to fabricate poly(carbonate) microparticles. The target properties for 

these microparticles were high to medium network density, low hydrophilicity, and high to 

medium softness. Figure 14 shows a scheme that contains the chemical structures for the ink 

components and the proposed chemical structure for the crosslinked microparticles.  
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Figure 14. Chemical structures for the PC ink components and the crosslinked microparticle 
network. 
 
The high to medium network density comes from the incorporation of 10 to 40% of reactive 

monomers in the copolymer and the incorporation of a crosslinker that only has 2 repeat units. The 

low hydrophilicity comes from the fact that there are no hydrophilic functional groups in the 

copolymer. The high to medium softness comes from the 10 to 40% of reactive monomer 

incorporation and the crosslinker that only has 2 repeat units. The crosslinking for this ink occurs 

through a thiolene “click” reaction. The reason for this name is that it occurs rapidly, and is also 

very efficient.39 These fast gelation kinetics are important in printing applications for high-

throughput microparticle production. Furthermore, 2,2-Dimethoxy-2-phenylacetophenone 

(DMPA) is the initiator incorporated which is activated via UV light, and nile red is incorporated 

to enable visualization of the microparticles after printing. Dimethyl sulfoxide is used because it 

is able to dissolve chemically diverse species. Although this ink is optimal for fabrication of 

hydrophobic microparticles that are optimal for an extended release of hydrophobic drug, a 

hydrophilic drug could also be incorporated allowing for dual drug loading. 

  Confocal microscopy was utilized to image the distribution of the fluorescent molecule 

throughout the microparticle, as well as to investigate the shape and size precision of the fabricated 

microparticles. Figure 15a and 15b shows a still image and a z-stack of the microparticles floating 
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in water respectively. The z-stack is a collection of several images that start at the bottom of the 

microparticles and move to the top of the microparticles along the z axis at a constant x and y 

location. Utilizing the software for the microscope, the microparticle size was determined 

as 10.6 ± 0.5 µm, resulting in a low CV of 5%. Furthermore, as shown in Figures 15a and 

15b the nile red has good uniformity throughout the microparticles and the microparticles are 

spherical.  

  
Figure 15. PC Ink; a. confocal image of microparticles floating in water (scale bar = 10 µm) and 
b. confocal z-stack images of microparticles floating in water (scale bar = 10 µm). 
 
3.2.2 Poly(glycidol) microparticles 

PG Ink 2 was utilized to fabricate poly(glycidol) microparticles. The target properties for 

these microparticles were medium to low network density, high hydrophilicity, and high to 

medium softness. Figure 16 shows a scheme that contains the chemical structures and the proposed 

structure for the crosslinked microparticles. 
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Figure 16. Chemical structures for the PG ink components and the crosslinked microparticle 
network. 
 
The medium to low network density comes from the incorporation of 10 to 40% of reactive 

monomers in the copolymer and the incorporation of a crosslinker that has 20 repeat units, 10 

times more repeat units than the poly(carbonate) ink crosslinker. The high hydrophilicity comes 

from the high number of hydrophilic end groups on the semibranched copolymer. The high to 

medium softness comes from the 10 to 40% of reactive monomer incorporation and the crosslinker 

that has 20 repeat units. The crosslinking for this ink also occurs through the thiolene “click” 

reaction. However, the solvent used in this ink is water. Additionally, the poly(glycidol) copolymer 

can be prepared through a green synthesis. Therefore, from copolymer preparation to the final 

formulation this ink has the ability to be completely green. This feature makes the ink attractive 

for the incorporation of biological therapeutics. However, due to the change in solvent, VA-044 

and Sulfo-Cy3 are incorporated as the initiator and the fluorescent dye respectively. 

As stated previously confocal imaging was utilized to investigate the distribution of the 

fluorescent molecule throughout the microparticle, as well as to investigate the shape and size 

precision of the fabricated microparticles. Figure 17a and 17b shows a still image and a z-stack of 

the microparticles floating in water respectively. Utilizing the software for the microscope, the 

microparticle size was determined as 2.4 ± 0.2 µm, resulting in a low CV of 8%. 
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Furthermore, as shown in Figure 17a and 17b the dye is homogenously distributed throughout the 

microparticles and the microparticles are spherical. 

  
Figure 17. PG Ink; a. confocal image of microparticles floating in water (scale bar = 2 µm) and b. 
confocal z-stack images of microparticles flowing in water. 
 
3.2.3 Poly(carbonate)-poly(glycidol) microparticles 

PC:PG (70:30) Ink was utilized to fabricate poly(carbonate)-poly(glycidol) microparticles. 

The target properties for these microparticles were high to low network density, intermediate 

hydrophilicity, and high to low softness. Figure 18 shows a scheme that contains the chemical 

structures and the proposed crosslinked structure. 

 
Figure 18. Chemical structures for the PC:PG (70:30) ink components and the crosslinked 
microparticle network. 
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The high to low network density comes from the incorporation of 10 to 40% of reactive monomers 

in the copolymer and the incorporation of a crosslinker that has 2 repeat units. However, a 

crosslinker of 20 repeat units could also be incorporated to expand the degree of tunability. The 

intermediate hydrophilicity comes from the incorporation of both hydrophilic and hydrophobic 

copolymers. The high to low softness comes from the 10 to 40% of reactive monomer 

incorporation and the utilization of a crosslinker that has 2 or 20 repeat units. The crosslinking for 

this ink also occurs through the thiolene “click” reaction. However, the solvent used in this ink is 

dimethyl sulfoxide. As stated previously dimethyl sulfoxide is important as the solvent for this ink 

because it can also dissolve diverse chemical species such as the incorporated hydrophilic and 

hydrophobic copolymers. Lastly, DMPA and coumarin-30 are incorporated as the initiator and dye 

respectively. 

As stated previously confocal imaging was utilized to investigate the distribution of the 

fluorescent molecule throughout the microparticle, as well as to investigate the shape and size 

precision of the fabricated microparticles. Figure 19a and 19b shows a still image and a z-stack of 

microparticles floating in water respectively. Utilizing the software for the microscope, the 

microparticle size was determined as 13.3 ± 1.2 µm, resulting in a low CV of 9%. 

Furthermore, as shown in Figure 19a and 19b the dye is homogenously distributed throughout the 

microparticles and the microparticles are spherical. 
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Figure 19. PC:PG (70:30) Ink; a. confocal image of microparticles floating in water (scale bar = 
10 µm), and b. confocal z-stack images of microparticles floating in water. 
 
3.2.4 Effect of copolymer molecular weight on gelation kinetics 

The effect of copolymer molecular weight on the gelation kinetics was investigated. The 

gelation kinetics are important in printing applications to increase high-throughput production 

through increasing gelation kinetics. Figure 20 shows the poly(carbonate) copolymer molecular 

weight versus the gelling time for PC Ink formulations with three different molecular weight 

copolymers. The results show that as the copolymer molecular weight increases the PC Ink 

gelation time also increases. This trend was also observed for a glutaraldehyde crosslinked 

chitosan gelation studies performed by other researchers.40 
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Figure 20. Effect of poly(carbonate) copolymer molecular weight on the PC Ink gelation kinetics; 
the molecular weight was varied and the copolymer concentration was kept constant. The 
poly(carbonate) copolymer contained 20% allyl incorporation. 
 
3.2.5 Effect of copolymer concentration on gelation kinetics 

 The effect of copolymer concentration on the gelation kinetics was investigated. The 

copolymer concentration on the gelation kinetics is also important to ensure fast gelation kinetics 

to maximize the high-throughput production microparticles via piezoelectric ink jet printing. 

Figure 21 shows the effect of poly(carbonate) copolymer concentration on the PC Ink gelation 

time. As shown in Figure 21 the gelation kinetics have an exponential decay relationship with 

increasing copolymer concentration. Given this trend the optimal copolymer concentration to 

obtain fast gelation kinetics and use the least amount of material would be at approximately 18 

wt% of copolymer.  
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Figure 21. Effect of poly(carbonate) copolymer concentration on the PC Ink gelation kinetics; the 
concentration was varied and the copolymer molecular weight was kept constant. The 
poly(carbonate) copolymer contained 20% allyl incorporation. 
 
3.2.6 Tuning microparticle size through the printing waveform and ink dilution 

The volume of droplets ejected from a piezoelectric inkjet printing nozzle can be tuned by 

manipulating the nozzle size, temperature, and jetting waveform. Therefore, by tuning the droplet 

ejection volume, the final microparticle size can be tuned. Figure 22 shows an example of how the 

final microparticle size was tuned through the jetting waveform driving the droplet ejection. Figure 

22a shows the two-step waveform recommended by the manufacturer (40 V max) which results in 

microparticles that are approximately 18 microns in size (Figure 22b). Whereas Figure 22c shows 

a push-pull waveform (12 V max) that results in microparticles that are approximately 16 microns 

in size as shown in Figure 22d. 
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Figure 22. Microparticle size tuning by manipulating the jetting waveform; a. multipulse 
waveform (40 V max), b. 18 micron sized particle fabricated from the multipulse wavefrom (40 V 
max), c. push-pull waveform (12 V max), and d. 16 micron sized particle fabricated from the push-
pull waveform. 
 

We also discovered a way to tune the microparticle size through the ink copolymer 

concentration. We hypothesized that with a decrease in weight percent of copolymer solution, the 

solid amount in each ink droplet should decrease, which should then lead to a decrease in the size 

of the final crosslinked printed droplets. This hypothesis was investigated by decreasing the mass 

percent of the copolymer solution by 20% while keeping the volume constant. Figure 23 shows 

confocal microscope images of microparticles where a 20% reduction in copolymer concentration 

resulted in a 20% reduction in the microparticle size.  
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Figure 23. Microparticle size tuning through the ink copolymer concentration. A 20% reduction 
in copolymer concentration results in a 20% reduction in the microparticle size. 
 
3.2.7 Mechanical Studies 

 Unconfined compression tests were utilized to verify the predicted structure-property 

relationships for the softness of bulk hydrogels prepared from the developed inks. The softness is 

important for modulating the circulation time of microparticles. As reported by Merkel et al. a 30x 

increase in microparticle softness results in an 8x increase in microparticle circulation time.41 

Figure 24 shows the stress versus strain curve for bulk hydrogels prepared from each copolymer 

ink. As predicted the hydrogels fabricated from the PG Ink (semibranched poly(glycidol), 20 R.U. 

cross-linker) were the softest, the PC Ink (linear poly(carbonate), 2 R.U. cross-linker) hydrogels 

were the least soft, and the hydrogels fabricated from PC:PG (70:30) Ink (linear poly(carbonate) 

and semibranched poly(glycidol), 2 R.U.) resulted in a hydrogel that had intermediate softness.  
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Figure 24. Stress versus strain curve as determined using unconfined compression tests on bulk 
hydrogels; PC Ink (red circles), PG Ink (green circles), and PC:PG (70:30) Ink (blue circles). All 
data represent the mean of triplicate samples ± 1 standard deviation. 
 
3.2.8 Swelling Studies 

 Swelling studies were utilized to verify the predicted hydrophilicity for bulk gels fabricated 

from each copolymer ink. The swelling was quantified using the equilibrium swelling weight 

change which was determined as the point at which water stopped being absorbed and the weight 

stopped changing. The hydrophilicity is important for drug delivery applications because it directly 

effects the drug loading type and release profile. For example, hydrophobic microparticles are 

optimal for a high loading and extended release of hydrophobic drugs. Whereas hydrophilic 

microparticles are optimal for a high loading and extended release of hydrophilic drugs and 

biologicals. Figure 25 shows the equilibrium swelling weight change for gels prepared from each 

copolymer ink. The poly(carbonate) gels increased in weight by 1 ± 1% and as predicted were the 

most hydrophobic. The poly(glycidol) gels showed an increase in weight of 1112 ± 236% and were 

the most hydrophilic as predicted. The poly(carbonate):poly(glycidol) (70:30) gels as predicted 
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showed an intermediate weight change between the poly(carbonate) and the poly(glycidol), and 

had intermediate hydrophilicity between the poly(glycidol) and the poly(carbonate) gels. 

 
Figure 25. Swelling studies in deionized water at 37 ºC. Equilibrium weight change for bulk gels 
prepared from; PC Ink (red), PC:PG (70:30) Ink (blue), and PG Ink (green). All data represent the 
mean of triplicate samples ± 1 standard deviation.  
 
3.3 Microparticle fabrication using photoreactive monomer inks and piezoelectric ink jet 
printing  
 
 The photoreactive copolymer inks allow for the fabrication of microparticles with a wide 

range of properties for a wide range of drug delivery applications, except for cases where an 

extreme extended release is needed. The goal for the development of this new extended release 

ink, was to prepare microparticles with the highest crosslinking density which should result in 

the longest extended release of all four inks. We sought to accomplish this goal by formulating 

this ink with 100% of photoreactive monomers as the precursory network components. In 

general, there are two significant differences with this monomer ink than the copolymer inks. 

First, the microparticle networks are prepared from readily available acrylate monomers, 

whereas for the copolymer inks, monomer and copolymer synthesis is required. This results in 

the new ink components being all commercially available and in a one-pot microparticle 
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fabrication method. Second, the light source was switched from a UV light to a low-cost visible 

light source, a simple desk lamp.  Visible light is advantageous over UV light because it is not 

absorbed by biologicals and has an inherent lower energy.42 Additionally, to increase the scalable 

potential of the process the substrate was switched from a lab-prepared sacrificial poly(glycidol) 

coated glass slide to a commercially purchased water soluble poly(vinyl alcohol) film. This 

substrate further increases the simplicity of the method and allows for applications in 

personalized medicine. 

	 The target properties for these microparticles were high network density, low 

hydrophilicity, and low softness. Figure 26 shows the chemical structures and the proposed 

structure for the crosslinked microparticles. 

 

Figure 26. Chemical structures for the PA ink components and the crosslinked microparticle 
network. 
 
The high network density and low softness was obtained from the 100% incorporation of 

photoreactive monomers, trimethylolpropane triacrylate (TMPTA). The monomer TMPTA is 

interesting because it has three vinyl groups that participate in the free radical polymerization.43-

44 The more reactive functional groups there are on the monomer, the higher the probability of 

the reaction, the faster the reaction kinetics. As mentioned previously the fast gelation kinetics 
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are important for high-throughput production of microparticles. The low hydrophilicity is 

obtained from the hydrophobic monomers which contain no hydrophilic functional groups. The 

incorporated initiator is Eosin y, which is activated by visible light. Due to the inherently lower 

energy of visible light, a co-initiator trimethylamine must be incorporated to lower the activation 

energy of initiation. However, a low-cost light source such as a simple desk lamp with a 2 W 

blue light bulb can be used. In a similar way as the PC Ink, the solvent dimethyl sulfoxide is 

utilized to allow for the dissolution of the ink’s diverse chemical components such as the 

hydrophobic monomer trimethylolpropyl triacrylate and the hydrophilic initiator eosin y. Lastly, 

nile red was incorporated as a fluorescent dye. 

3.3.1 Monomer ink optimization through gel yield studies 
 
 The monomer ink compositions were optimized through gel yield studies. Table 7 shows 

the compositions of each ink investigated. The first monomer ink denoted as PA Ink 1-AA was 

composed of eosin Y (initiator), ascorbic acid (co-initiator), trimethylolpropane triacrylate 

(monomer), dimethyl sulfoxide (solvent), and nile red (dye).  

Table 7. Photoreactive monomer ink compositions investigated via gel yield studies. 
Inks Initiator (EQ) Co-initiator (EQ) Monomer (EQ) Solvent (v%) Dye 

PA Ink 1-AA EY (0.02) AA (2.8) TMPTA (99) DMSO (33) NR 
PA Ink 1 EY (0.02) EtO3 (3.2) TMPTA (99) DMSO (33) NR 
PA Ink 2 EY (0.02) EtO3 (3.2) TMPTA (99) DMSO (70) NR 

a.Trimethylolpropane triacrylate (TMPTA), ascorbic acid (AA), nile red (NR), dimethyl 
sulfoxide (DMSO), eosin Y (EY), and trimethylamine (EtO3).  
	
The amount of DMSO added to PA Ink 1-AA was determined by finding the minimum amount 

needed to solubilize all components. This minimal amount of solvent maximizes the monomer 

concentration which should increase the rate of gelation. Ascorbic acid was initially chosen as 

the co-initiator since it was reported to help initiation under oxygen rich conditions.45 However, 

as shown in Figure 27 the gel yield for PA Ink 1-AA was only 4 ± 1% after 5 minutes. Due to 
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this low yield we sought a more efficient co-initiator that could increase the equilibrium gel 

conversion. Previous studies have shown that the stronger reducing agent trimethylamine can 

efficiently co-initiate a visible light type-2 initiator such as Eosin Y.46-47 Figure 27 shows that the 

gelation of PA Ink 1 co-initiated by trimethylamine resulted in a more significant gel yield of 52 

± 2% after 5 minutes. Next, we determined the most dilute ink that still resulted in a rapid 5 

minute gelation. We determined this maximum dilution since in our previous paper we found 

that we could tune the microparticle size by reducing the concentration of the network 

precursors.48 The most dilute ink that maintained gelation after 5 minutes is denoted as PA Ink 2 

in Table 7. Figure 27 shows that PA Ink 2 resulted in approximately half the gel yield at 

equilibrium than PA Ink 1. This indicates that microparticles prepared from PA Ink 2 should be 

approximately half the size of particles prepared from PA Ink 1.  

 
Figure 27. Gel yield over time for different ink compositions; PA Ink 1-AA (grey triangles), PA 
Ink 1 (blue squares), and PA Ink 2 (orange circles). All data represent the mean of triplicate 
samples ± 1 standard deviation. 
 
3.3.2 Mechanical studies 
 
	 The compressive modulus of bulk hydrogels fabricated used PA Ink 1 and 2 were 

determined utilizing unconfined compression testing. Mechanical properties are important for 
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modulating microparticle circulation time. As reported by Merkel et al. a 30x increase in 

microparticle softness results in an 8x increase in microparticle circulation time.41 Figure 28a 

displays stress versus strain curves for bulk hydrogels prepared from PA Ink 1 and 2. The 

compressive modulus was determined utilizing the linear region of Figure 28a from 0 to 2% 

strain. Figure 28b shows that the compressive modulus for PA Ink 1 hydrogels was 113 ± 64 

kPa, whereas the modulus for the PA Ink 2 hydrogels was 25 ± 9 kPa.  

 
Figure 28. Mechanical compression data for bulk hydrogels; A) stress versus strain curves, PA 
Ink 1 hydrogels (blue squares) and PA Ink 2 hydrogels (orange circles), B) compressive modulus 
values, PA Ink 1 hydrogels (blue) and PA Ink 2 hydrogels (orange). All data represent the mean 
of quadruplicate samples ± 1 standard deviation. 
 
Interestingly, the PA Ink 1 hydrogels were similar to that of white blood cells, and the PA 

Ink 2 hydrogels were similar to red bloods cells.22 Microparticles with these mechanical 

properties have potential for unique biomedical applications, and would be optimal as 

vascular-targeted drug carriers.22 

3.3.3 Swelling studies 

The weight change of bulk freeze-dried gels in deionized water at 37 °C was investigated 

using swelling studies. The rate and capacity of gel weight increase (water uptake) is an 

indication of gel hydrophilicity which has a significant impact on the drug loading and release 

kinetics. Figure 29 shows the weight change of gels prepared from PA Ink 1 and 2. As shown in 
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Figure 29 the gel prepared from PA Ink 1 rapidly reached equilibrium within one minute and 

increased in weight by 7.8 ± 1.7%. Whereas the PA Ink 2 gel reached equilibrium within 15 

minutes and increased in weight by 37.2 ± 1.2%. In general, the limited gel water uptake for both 

gels indicate that they are hydrophobic and would be optimal for hydrophobic drug loading. 

Additionally, PA Ink 2 gels should release drugs at a faster rate than PA Ink 1 gels. 

 
Figure 29. Weight change of bulk gels after soaking in deionized water at 37 °C; gels prepared 
from PA Ink 1 (blue squares) and PA Ink 2 (orange circles). All data represent the mean of 
triplicate ± 1 standard deviation. 
 
3.3.4 Fabrication of one-pot crosslinked microparticles using inkjet printing 

Figure 30 shows an overview of the printing process for microparticles fabricated 

using the monomer based inks. First, the network precursors are printed onto the 

poly(vinyl alcohol) (PVA) film using a 2831 Dimatix materials printer. After droplet 

ejection onto the substrates they are immediately illuminated with blue light to initiate 

network crosslinking.  
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Figure 30. Illustration of the microparticle fabrication process. The chemical structures for the 
network precursors are eosin Y (initiator), trimethylamine (co-initiator), and trimethylolpropane 
triacrylate (monomer). The confocal image was taken of a microparticle fabricated using PA Ink 
1 floating in water. 
 
Shown in Figure 31a is a fluorescent microscope image of printed PA Ink 1 droplets on 

the PVA film. This image shows that the droplets were accurately and precisely ejected 

onto the substrate based on the programmed printing array. Next, the crosslinked 

microparticles were removed from the PVA substrate by dissolving the film in water. 

Confocal microscopy was then used to image the microparticles. Utilizing the software 

for the microscope, the PA Ink 1 microparticles were determined to be 14.4 ± 0.6 µm, 

resulting in a low CV of 4%. Furthermore, a z-stack confocal image of one microparticle, 

displayed in Figure 31B, indicates that the microparticle is spherical and the dye 

homogenously distributed throughout.  
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Figure 31. Confocal images of microparticles fabricated from PA Ink 1; a. wide field 
microscope image of microparticles on the water soluble poly(vinyl alcohol) film (scale bar = 
500 µm) and b. confocal z-stack images of one microparticle suspended in water (scale bar = 20 
µm). 
 
We also demonstrated the technologies ability to tune the microparticle size through 

microparticle fabrication with the dilute PA Ink 2. Facile microparticle size tuning is important 

because it directly effects the type of administration that can be used for delivery and release 

kinetics. PA Ink 2 resulted in the fabrication of microparticles that were 7.1 ± 0.5 µm (CV=7%) 

in size as shown in Figure 32. An image of a microparticle fabricated from PA Ink 1 was 

included for comparison. By reducing the monomer concentration by 56%, the microparticle size 

was also reduced by 56%. 

 
Figure 32. Confocal images of microparticles floating in water fabricated with; a. PA Ink 1 and 
b. PA Ink 2. The size of the microparticles were reduced by 56% by reducing the monomer 
concentration by 56%. 
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The microparticle sizes obtained for Ink 1 and 2 have shown promise for intracellular49-50, 

injection51, parenteral52, oral8, and inhalation8-9, 53 for applications such as vaccinations, 

brucellosis, human papillomavirus, diabetes, inflammation, and asthma respectively.	

3.3.5 Drug loading and encapsulation efficiency of a model hydrophobic drug 

The drug loading and encapsulation efficiency of a model hydrophobic drug ivermectin 

(875.1 g/mol) was determined in bulk hydrogels fabricated from PA Inks 1 and 2. Here we 

determined that the order of component dissolution was important when preparing the ink. The 

drug was first dissolved in DMSO, eosin Y, and triethylamine by vortexing for a few minutes, 

then sonicating for 30 minutes at 37 °C. Once the drug was completely dissolved, 

trimethlyolpropane triacrylate was added and vortexed for a few minutes to obtain a homogenous 

solution. The drug loading was limited by its solubility in DMSO. After complete dissolution, 

the ink was gelled by illuminating the sample with blue light. Utilizing HPLC UV-VIS the drug 

loading and encapsulation efficiency was determined as 32.3 ± 2.0% and 98.1 ± 0.6% for PA Ink 

1 and 29.7 ± 0.8 and 90.0 ± 2.5% for PA Ink 2 respectively. 

3.4 One-pot microparticles for controlled pulmonary drug delivery to eliminate malaria 

3.4.1 Ink formulation 
 

The long-term goal of this project is to eliminate malaria. This work is focused on 

achieving a smaller goal towards this greater goal, the development of the optimal microparticles 

for malaria elimination. The goals to fabricate these microparticles were to 1) maximize network 

density, to minimize release rate and decrease doses needed, 2) maximize drug loading for a 

hydrophobic drug to decrease material needed for delivery, and 3) obtain an aerodynamic 

particle diameter of about 1 to 2 microns for efficient particle distribution in the deep lungs4. The 

strategy to accomplish goal 1) was to form the microparticle network from the monomer network 
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precursor, trimethylpropyl triacrylate. This should result in a very high network density 

microparticle which will minimize the release rate of drug. Additionally, to demonstrate the 

tunability of release the network density was tuned through the monomer concentration. From 

our previous work, we determined that a decrease in the monomer concentration resulted in 

decreased gel density, which should result in a faster release. The plan to achieve goal 2) was to 

use the hydrophobic network precursors trimethylolpropyl triacrylate to form the network, which 

should maximize hydrophobic drug loading. As previously mentioned we are able to incorporate 

up to 32 wt% in bulk gels. However, since the viscosity of the ink increases with increasing 

ivermectin concentration as shown in Figure 33, we were limited to a loading that results in a 

final dry weight of ivermectin in the microparticles of 13.1 wt%.  

 
Figure 33. Viscosity of PA Ink 1 solutions containing different concentrations of ivermectin as 
determined using steady state flow rheometry measurements at 30 °C. 
 
This ivermectin concentration results in an ink with a viscosity of 15 cP, the maximum reported 

viscosity that still obtains good printability as reported by the printer’s manufacturer, Fujifilm 

Holdings America Corporation. Goal 3) was sought after by maximizing the ink viscosity to 

decrease the fluid volume ejected. In our previous work48, we determined that 2 micron size 
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particles were the smallest that we could obtain. Therefore, in this work, the viscosity was 

increased as much as possible while still maintaining good printability (15 cP), to minimize the 

fluid volume ejected. 

The ink formulation was completed by careful selection of a solvent and initiator. Eosin 

Y was selected as the initiator since it is initiated by blue light, an inherently low energy source. 

Furthermore, the light source used is cost-efficient, a simple desk lamp quipped with a 2 W blue 

light bulb. However, due to the inherently lower energy source used, a co-initiator triethylamine 

was incorporated to lower the activation energy of the eosin Y initiation. Lastly, the solvent 

selected was dimethyl sulfoxide (DMSO) which is advantageous for its ability to dissolve 

chemically diverse species such as the water-soluble eosin y and the hydrophobic drug 

ivermectin. 

3.4.2 In vitro release of ivermectin from bulk gels 
 

The in vitro ivermectin release kinetics was investigated using bulk gels fabricated from 

PA Ink 1-IV13wt% and PA Ink 2-IV13wt%. The studies were performed in perfect sink media at 

37 °C to ensure the drug media concentration did not influence the release profile. Figure 34 

shows that the release profile for the bulk gel prepared from Ink 1-IV13wt% had a small burst 

release of approximately 5% of ivermectin, after which there is a slow linear release for at least 

21 days. On the other hand, the Ink 2-IV13wt% bulk gel profile had a larger burst release of 

approximately 10% of ivermectin, followed by a slower release rate that decreases nonlinearly 

over approximately two weeks. Given the release profiles shown in Figure 34 and the target 

extended release application, the PA Ink 1-IV13wt% formulation is optimal. 
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Figure 34. In vitro ivermectin release profiles from bulk gels; PA Ink 1-IV13wt% bulk gels 
(orange squares) and PA Ink 2-IV13wt% bulk gels (blue circles). All data represent the mean of 
triplicate ± 1 standard deviation. 
 
3.4.3 In vitro degradation of bulk gels by reactive oxygen species 

The in vitro degradation of bulk gels fabricated from PA Ink 1 and PA Ink 2 was 

investigated at conditions relevant in the lung alveoli. In this location within the lungs the likely 

mechanism for poly(acrylate) degradation is by reactive oxygen species. The hydrogen peroxide 

concentration found in this location is expected to be in the micromolar to tens of micromolar 

range.31 Therefore, the degradation study was run at the higher end of the range, 100 micromolar. 

Additionally, cobalt chloride was added as a reducing agent to produce oxygen free radicals 

responsible for the oxidation of the poly(acrylate). Figure 35 shows that bulk gels fabricated 

from PA Ink 1 have a weight loss of 6% after 11 days. Whereas the bulk gels fabricated from PA 

Ink 2 have a much faster weight loss of 52% after 11 days. Therefore, there is a significant 

degree of degradation tunability obtained through changing the monomer concentration. 
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Figure 35. In vitro degradation of bulk gels fabricated using PA Ink 1 (orange squares) and PA 
Ink 2 (blue circles). The degradation media was composed of deionized water with 100 µM 
H2O2, 1.53 µM CoCl2 at 37 °C. All data represent the mean of triplicate ± 1 standard deviation. 
 
3.4.4 Ivermectin loaded microparticle fabrication 
 

Ivermectin loaded microparticles were fabricated from PA Ink 1-IV13wt% and PA Ink 2-

IV13wt%. Using the microparticle sizes as determined from SEM, the aerodynamic diameters 

were calculated using equation (9) as 1.6 ± 0.7 and 0.8 ± 0.2 microns for PA Ink 1-13wt% and 

PA Ink 2-IV13wt% respectively. The microparticles obtained from PA Ink 1-IV13wt% are 

almost exactly in the size range to obtain efficient distribution in the lung alveoli, 1-2 microns.4 

Additionally, the in vitro release profile for this ink also yielded the longest extended release of 

ivermectin, and is most desirable for the target application. 

3.4.5 In vitro drug efficacy of ivermectin and ivermectin loaded microparticles 
 

The in vitro drug efficacy of pure ivermectin and ivermectin loaded microparticles 

fabricated from PA Ink 1-IV13wt% was determined using three-day cell viability studies. The 

drug efficacy of pure ivermectin and PA Ink 1-IV13wt% microparticles was quantitated by 

determining the half maximal inhibitory concentration (IC50), the concentration where only 50% 

of the cells remain alive after the time of the study. Regression analysis on the data showed that 
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pure ivermectin had an IC50 value of 33.2 ± 7.7 µg/mL whereas the PA Ink 1-IV13wt% 

microparticles had an IC50 value of 6.1 ± 0.9 µg/mL. The IC50 values indicate that the 

bioavailability of ivermectin is increased when releasing from the microparticles. This is likely 

due to the pure ivermectin samples degrading in solution before it is absorbed by the cells. 

Whereas for the PA Ink 1-IV13wt% microparticles, the ivermectin is protected within the 

microparticle until released, where the small released amount is immediately absorbed by the 

cells. The results indicate that less ivermectin will need to be delivered to achieve the same 

plasma concentrations as pure ivermectin delivery. In addition to drug efficacy, the effect of 

poly(acrylate) (PA) microparticles on cell viability was also determined to investigate 

poly(acrylate) cytocompatibility. As shown in Figure 36 the PA microparticles did not have a 

significant effect on the cell viability. 

 
Figure 36. In vitro cell viability after 3 days of exposure to; pure ivermectin (purple triangles), 
PA Ink 1-IV13wt% microparticles (orange squares), and PA microparticles (green diamonds). 
All data represent the mean of triplicate ± 1 standard deviation. 
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3.4.6 In vitro transport of ivermectin from ivermectin loaded microparticles through a lung 
epithelial cell monolayer 
 

An in vitro lung model illustrated in Figure 37 was utilized to investigate the in vivo 

ivermectin transport from the interior lung to the systematic circulation. This was done by 

determining the apparent permeability of ivermectin and utilization of an accurate in vitro-in vivo 

correlation54  developed by Mathias et al. to predict the in vivo lung absorption profile. Mathias 

et al. quantitated the correlation accuracy by plotting predicted absorption values versus actual 

absorption values, which resulted in a linear plot with an R2 value of 0.97.54 

 
Figure 37. Illustration of the in vitro lung model utilized to investigate the in vivo ivermectin 
transport from the interior lung to the systematic circulation. 
 
Figure 38 shows the ivermectin transport from the PA Ink 1-IV13wt% microparticles, the 

optimal microparticles for the target application. The apparent permeability coefficient for the 

ivermectin transport through the cell monolayer was determined as 1.3 x10-6 ± 1.1 x 10-7 cm/s 

using equation (13) and the initial steady state ivermectin transport. 
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Figure 38. Ivermectin transport from PA Ink 1-IV13wt% microparticles through a rat lung 
epithelial cell monolayer. All data represent the mean of triplicate ± 1 standard deviation. 
 
The predicted lung absorption was calculated by first determining the absorption constant using; 

 
log KJ = 0.811 log PR�� − 1.99     (22) 

 
where Ka is the absorption constant and PAPP is the apparent permeability. The predicted 

absorption was then determined using; 

 
%	Absorbed = 	A�J� 1 − e7���       (23) 

 
where Amax is the maximum % absorbed and t is the time. Figure 38 shows the predicted 

ivermectin absorption over time in vivo. Ivermectin should have a linear absorption for up to 

about 10 days after which the release rate decreases nonlinearly. Given the achievement of the 

long 21 day extended release of ivermetin.  Upon successful mass drug inhalation administration 

of PA Ink 1-IV13wt% microparticles, malaria would have a significantly higher chance of being 

eliminated over administration of conventional pure ivermectin tablets due to increased patient 

compliance. 
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Figure 39. Predicted ivermectin absorption in rat lungs as determined using an in vitro-in vivo 
correlation.54 The predicted profile was calculated using apparent permeability data determined 
in triplicate ± 1 standard deviation. 
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CHAPTER 4 

4. CONCLUSIONS 

 In this work, we developed a comprehensive technology that can easily fabricate tunable 

microparticles at a high rate with low CV; and have the ability to encapsulate synthetic 

hydrophilic, synthetic hydrophobic, and/or biological drugs with high drug loading and 

encapsulation efficiency. This was accomplished by development of a small set of photoreactive 

copolymer and monomer inks that were utilized to fabricate microparticles with a wide range of 

softness, hydrophilicity, and network density. The two copolymer building blocks synthesized 

were a functionalized hydrophobic linear poly(carbonate) and hydrophilic semibranched 

poly(glycidol). Additionally, the semibranched poly(glycidol) was synthesized using a green 

synthesis. This resulted in the development of an ink that is completely green. The copolymers 

were functionalized with allyl groups that crosslink with dithiol crosslinkers through a thiolene 

“click” reaction after initiation by UV light. The monomer inks were formulated using a tri-

functionalized monomer, trimethylolpropane triacrylate, that crosslinked via free radical 

polymerization after initiation by visible light. To ensure facile microparticle collection 

hydrophilic microparticles were fabricated using Teflon substrates whereas hydrophobic 

microparticles were fabricated using a water soluble poly(vinyl alcohol) film or sacrificial 

polymer coating. Fabricated dye loaded microparticles were then analyzed using confocal 

microscopy which confirmed the microparticle’s spherical shape, uniformity of the dye 

distribution throughout the microparticles, and the high microparticle size precision. 

Additionally, we fabricated microparticles in a large size range from 1 to 18 microns at a high 

droplet production rate of 1 kHz. Furthermore, larger microparticle sizes would be easily 

obtainable with printer cartridges with larger nozzle diameters. The capability of the inks to 
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fabricate microparticles of a wide range of hydrophilicity and softness was verified using bulk 

swelling and unconfined compression tests respectively. The capability to tune the microparticle 

size traditionally through the jetting waveform was verified, and a new discovered method to 

tune the microparticle size through the network precursor concentration was presented. After 

property verification, the technology was utilized to engineer the optimal microparticles for a 

specific drug delivery application, malaria elimination. The prototype microparticles were then 

investigated using a series of in vitro tests to evaluate their success for malaria elimination via 

pulmonary drug delivery. The results from these experiments show promise that the 

microparticles should make a significant step towards malaria elimination, and also demonstrates 

the capability of the developed technology to fabricate the optimal microparticles for a target 

drug delivery application. 
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APPENDIX 

Tables summarizing the publications reviewed for Sections 1.1 through 1.4 
 
Table A1. Extracted data from 100+ publications mostly from 2010 to 2018 on microparticles 
prepared with single drug loading. Abbreviations; drug loading (DL), encapsulation efficiency 
(EE), average (A), standard deviation (SD), product yield (PY), reference (R), 
precipitation/physical entanglement (P), polymerization/covalent crosslinking (G), or ionic 
crosslinking (I). 

Method Matrix Drug Disease 
Treated 

Route of 
Admin. DL (%) EE 

(%) 
A ± SD 
(µm) R 

Emulsion-P PLGA Insulin Diabetes Inhalation 3±0.2 51±7 2.5±0.4 55 

Emulsion-
G PMAA 

Insulin 
(diffusion 
loading) 

Diabetes Oral  ~85 1 56 

Emulsion-
G 

poly(PEGDM
A:MMA) 

Insulin 
(diffusion 
loading) 

Diabetes Oral 1.87 82±6 25±3 57 

Spray 
drying-P Dextran-TMC Insulin Diabetes Inhalation 9 to 9.7 90 to 

97 10±4 9 

Supercritic
al fluid-P 

N-trimethyl 
chitosan 

microparticles 
Insulin Diabetes Inhalation 48 97 2±2 10 

Emulsion-P PLGA-
HPβCD/insulin Insulin Diabetes Inhalation 1.4±0.4 59±1

6 
26.2±1.

2 
58 

Inkjet-P PLGA Paclitaxel Cancer  10 100 NR 59 

Inkjet-G 
(poly(NIPAAm

-co-MAA)) 
and HDDA 

Fluorescein     23.42 ± 
1.07 

60 

Emulsion-
G 

(P(NIPAM-co-
AA)) Trypsin   49.3±2  7±~3 61 

Emulsion-
G p-NIPAM 

Horse radish 
peroxidase 
(diffusion 
loading) 

    1.762±.
046 

62 

Emulsion-
G 

poly(acrylic 
acid-co-

acrylamide) 

Peptide 
(diffusion 
loading) 

    70 to 90 
± NR 

63 

Emulsion-
G 

oligoLA-PEO-
PPO-PEO-
oliogoLA 

Bovine 
serum 

albumin, 
insulin, 

hemoglobin 

  9.7, 7, 8.7 NR NR 64 

Emulsion-P PLGA Bovine 
insulin Diabetes   84±2 

84±25 
and 

41±14 
65 

Emulsion-P PLGA 
Inactivated 

polio 
vaccination 

Vaccine Injection  ~70±
4 ~8±3 51 

Emulsion-
G PEGMA 

Lysozyme ( 
diffusion 
loading) 

  63 100  NR 66 

Emulsion-P polyester 
amide Celecoxib 

Knee 
osteoarthrit

is 

Intra-
articular NR NR 45±35 67 

Emulsion-P 
PEG-4-acr 
disulfydry 

peptide 

Nanoparticle
s   85.9  1.9±2.7 

to 
68 
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(enzymatically 
degrdable) 

9.6±3.1 
SW 

  AF 591 IgG   2    
Microfluidi

cs Phospholipid Doxorubicin Cancer  NR 94 50 - 
200 

69 

Emulsion-
I-P PLLA-alginate Metoclopra

mide Heartburn  13.2±0.5 66.54
±2.23 

~200-
300 

(NR) 
12 

Emulsion-
G 

Peptide 
functionalized 

PEG 

Dexamethas
one 

Inflammati
on Inhalation 0.38 7.6 7.2±4.3 8 

  Methylene 
blue   0.24 4.8 4.5±1.8  

  Horseradish 
peroxidase   1.87 37.4 7.5±3.9  

Spray 
drying-P 

Mannitol-
Lactose-

Trehalose 

siRNA 
loaded 

PLGA NP 
 Inhalation 0.0381±0.

007   70 

Spray 
drying-P Maltose 

Doxorubicin 
in 

nanoparticle
s 

Cancer Inhalation 3  3.45±1.
99 

71 

Spray 
drying-P 

PLGA-DPPC-
PVA-Gelatin-

cholesterol 
Paclitaxel Cancer Inhalation 1.76 84.1  72 

Spray 
drying-P 

Mannitol, 
trehalose, 

dextran, L-
leucine 

Bacteriopha
ge virus-like 

particle 

Human 
papillomavi

rus 

Oral and 
parenteral  64 4.6±1.7  52 

Spray 
drying-P  Lysozyme    

-25% 
activi

ty 
 73 

Spray 
drying-P 

PLGA-DPPC-
trimethylchitos

an 

Ropinirole 
hydrochlorid

e 

Parkinson's 
disease Nasal 1.90±0.03 95.20

±1.43 
2.09±1.

01 
74 

Film-G 
(prepared 
film and 
crushed 

and sieved) 

poly(itaconic 
acid-co-N-

vinyl-2-
pyrrolione) 

Salmon 
calcitonin  Oral 4.5±0.5 

Diffu
sion 
loadi

ng 

45-150 75 

  Urokinase   1.9±0.1    

  Rituxan B cell 
destruction  2.4±1.5    

Microfluidi
cs-I 

HE800 
exopolysacchar

ide 

Bovine 
serum 

albumin 
    102±5 76 

Microfluidi
cs-G 

PEG-
maleimide 
(protease 

degradable) 

Peptide 
conjugated 

VEGF 

Vasculariza
tion 

Subcutane
ous 

injection 
  50±5 77 

Emulsion-
G 

Chitosan-
Gelatin-

thermoresponsi
ve PEG 

Folic acid   NR NR 1±1 78 

Microfluidi
cs-G PEG 

Basic 
fibroblast 

growth 
factor 

  NR 80 

42.4±8.
6 to 

142.1±2
5.6 

79 

  
DNA 

nanoparticle
s 
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Microfluidi
c-G 

Hydrazide-
aldehyde-

functionalized 
carbohydrates 

Bupivacaine Anesthesia    49 to 92 
± 4 

80 

Emulsion-
G 

PMMA-
EGDMA 

Monosodiu
m phosphate   3.1 95 95 81 

Emulsion-P acetylated 
dextran HFG-f Myocardial 

infarction 
Intramyoc

ardial 1.1±0.2 86±9 28.3±1.
5 

82 

Emulsion-P Polyketal-Drug 
conjugate Estradiol Inflammati

on  11.1±0.4 96.0 10.3±3.
4 

83 

Emulsion-P 

Vanillyl 
alcohol-

containing 
copolyoxalate 

Dexamethas
one Asthma Inhalation 1 20 13±5 53 

Cyclodextri
n-CaO3-P 

Cyclodextrin-
CaO3 

5-
fluorouracil   NR  5±NR 84 

  Na-L-
thyroxine   NR  2±NR  

Emulsion-P PEG-PBT Anti-VEGF Neovascula
r-AMD IVT 22.1 90 64±32 6 

Emulsion-
G PEG Protein (post 

conjugation) Targeting    31±7 85 

Spray 
drying-P-I Alginate rhBMP-2 

Bone 
regeneratio

n 
Scaffold 0.045 

(NR) 45 5±5 86 

Mineralizat
ion 

CaCO3/rGO-
TEPA Doxorubicin Cancer  7.9 94.7 3±1 87 

Spray 
drying-P Chitosan 

β-
galactosidas

e 
GI disorder Oral   3.5±1.9 88 

Emulsion-P PLGA L7/L12 Brucellosis Intracellul
ar 0.25 55.6 6±NR 50 

Total 
Recirculati

on One 
Machine 

(Emulsion)
-P 

PLGA GDNF Parkinson's 
Unilateral 
injection 
to brain 

0.28 ± 
0.05 

70 ± 
12 28 ± 8 89 

Emulsion-I Alginate 

Hydrocortiso
ne 

hemisuccinat
e 

Colon-IBD Oral 11.1 22 89.6 ± 
1.0 

90 

Aerosolizat
ion-I Alginate 

Hydrocortiso
ne 

hemisuccinat
e 

Colon-IBD Oral 8.8 22 51.8 ± 
1.9 

90 

Microfluidi
cs-P PLLA Paclitaxel Cancer  4.6 97 31 ± 1 21 

Emulsion-P PLGA Paclitaxel Cancer  2.7 95 10 ± 
NR 

91 

Emulsion-P PLGA Paclitaxel Cancer  4.7 85 16 ± 
NR 

92 

Emulsion-I Alginate Paclitaxel Cancer  15.5 48 10 ± 3 93 
Electrohydr
odynamic 

atomization
-P 

PDLLA-PLLA Paclitaxel Cancer  1.6 45 14 ± 13 94 

Supercritic
al fluid 

technology
-P 

PEG-PLLA Paclitaxel Cancer IV 10.9±2.8 18.1 2.3 95 
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Supercritic
al fluid 

technology
-P 

PLLA Paclitaxel Cancer IV 14.3 62.7 1.6±1.2 19 

Microfluidi
cs-P PCL-PLA None N/A N/A N/A N/A 26.5 ± 

0.7 
96 

Microfluidi
cs-P PLGA-b-PEG Paclitaxel Cancer  9.25 92 ± 

2 

2.0 ± 
0.3 to 
4.5 ± 
0.3 

97 

Spray 
drying-P 

PLGA-L-
leucine or L-
aspartic acid 

Rifampicin Tuberculosi
s 

 
Inhalation 

19.2 ± 0.0 
to 12.3 ± 

0.0 

96.2 
± 0.6 

to 
70.5 
± 0.1 

5.9 ± 
3.8 to 
11.7 ± 

6.8 

18 

Spray 
drying-P Alginate VEGF N/A N/A 4.9 49 3.9 ± 

NR 
98 

 
Spray 

drying-P 

Hyaluronic 
acid Budesonide  

N/A Inhalation 21.0 ± 0.3 91.5 
± 1.5 

6.3 ± 
NR 

99 

Spray 
drying-P PLGA Methotrexat

e 

Cancer/aut
oimmune 
disease 

Inhalation 24.6 ± 0.4 91.3 
± 1.5 

5.6 ± 
0.7 

10

0 

Microfluidi
cs-P Phospholipids Doxorubicin Cancer N/A 30 93 ± 

2 100 20 

Microfludi
cs-P 

Polyacrylamide 
and polymethyl 

acrylate 

Sodium 
fluorescein Cancer N/A 1 30 

130 to 
155 

(<4.6% 
CV) 

14 

Spray 
drying - P 

N-
fumaroylated 

diketopiperazin
e 

azithromycin Pneumonia Inhalation 
23.9 ± 0.1, 

48.2 ± 
0.29 

NR NR 17 

 
 
Table A2. Compilation of different drugs encapsulated in microparticles with their 
corresponding chemical structure and size as determined through a literature search of 100+ 
publications mostly from 2010 to 2018. 

Drug Biological 
(Y/N) 

Hydrophobic 
or Hydrophilic 

Size 
(g/mol) 

Paclitaxel N Hydrophobic 854 
Azithromycin N Hydrophobic 749 

L7/L12 Y   
Hydrocortisone hemisuccinate N Hydrophilic 362 

Glial cell line-derived neurotrophic factor Y   
Insulin Y Hydrophilic 5,808 

Doxorubicin N Hydrophobic 544 
miR-34a Y   

Recombinant L7/L12 Y   
β-galactosidase Y  540,000 

rhBMP-2 Y  26,000 
Ovalbumin Y  45,000 

Bovine serum albumin Y  69,000 
Fluorescein N Hydrophilic 332 

Trypsin Y  23,300 
Horse radish peroxidase Y  44,000 
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Peptide Y   
Hemoglobin Y  16,000 

Inactivated polio vaccination    
Lysozyme Y  14,000 
Celecoxib N Hydrophobic 381 

AF 591 IgG Y  150,000 
Metoclopramide N Hydrophobic 300 
Methylene blue N Hydrophilic 320 

siRNA Y  13,000 
Bacteriophage virus-like particle    

Ropinirole hydrochloride N Hydrophilic 297 
Salmon calcitonin Y  3,454 

Urokinase Y  30,400 
Rituxan Y  35,000 

Basic fibroblast growth factor Y  18,000 
Vascular endothelial growth factor Y  38,000 

Bupivacaine N Hydrophilic 288 
Hepatocyte growth factor fragment Y   

Estradiol N Hydrophilic 272 
Dexamethasone N Hydrophobic 392 
5-fluorouracil N Hydrophilic 130 

Na-L-thyroxine N Hydrophilic 799 
Anti-vascular endothelial growth factor Y  150,000 

 
Table A3. Extracted data from 100+ publications mostly from 2010 to 2018 on microparticles 
prepared with dual drug loading. Abbreviations; drug loading (DL), encapsulation efficiency 
(EE), average (A), standard deviation (S), reference (R). 

Method Matrix Drug Disease 
Treated 

Route of 
Admin. DL (%) EE (%) AV ± S 

(µm) R 

Emulsion-P-
Por PLGA Doxorubicin Cancer Inhalation 0.773±0.03 77.2±0.9 46±21 101 

  miR-34a   0.013±0.001 33.5±1.0   
Emulsion-P-

Por PLGA-PLLA Paclitaxel Cancer Inhalation 0.9±0.06 90.1±6.3 35±9 102 

  Doxorubicin   9.1±0.7 45.3±3.3   
Emulsion-P-

Por PLGA Doxorubicin Cancer Inhalation 0.80±0.03 79.6±3.2 47±19 103 

 PLGA miR-519c   0.023±0.001 29.0±1.3   
Emulsion + 

Microfluidic-
G 

NiPAm Nile red     140±10 104 

  DAPI       

Microfluidic-
P 

Hypromellose 
acetate 

succinate 
5FU Cancer Oral 0.0109 ± 

0.00015  27 ± 
0.8 

105 

  Curcumin Cancer Oral 0.009 ± 
0.0013  27 ± 

0.8  

Microfluidic-
G PEGDA nanoparticles     2.8 ± 

0.2 to  
106 

  Acryloyl-
RhB     19.2 ± 

0.9  
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