

Ligand Docking Benchmark in Rosetta using Explicitly Placed Atomic Orbitals

By

Thomas Willcock

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Chemistry

August, 2015

Nashville, Tennessee

Approved:

Jens Meiler, Ph.D.

Carmelo Rizzo, Ph.

ii

Table of Contents

 Page

LIST OF TABLES..……..iii

LIST OF FIGURES..……iv

Introduction…………………………………………………………………………………………………….………………………..………1

Results and Discussion………………………………………………………………………………….………………………………..…3

 Orbital Placement……………………………………………………………………….………………………………………..3
 Assign Orbital Code…….8
 Benchmarking Assign Orbitals……………………………………………………………………………………………..15

Conclusions and Future Directions……………………………………………………………….………………………………….23

Methods…….………………………………26

Appendix

A. Assign Orbital Code……..30

REFERENCES…….58

iii

LIST OF TABLES

Table Page

1. Important Functional Groups……4

2. Best RMSD among top 10 Models……………………………………………………………………………………………..…16

3. Funnel Analysis Results……..18

4. Geometric properties of ligands in Figure 12…………………………………………………………….…………………19

5. Geometries of ligands in Figure 13……………………………………………………………………………………………….20

iv

LIST OF FIGURES

Figure Page

1. A Quantum view of Sulfones.……6

2. A Quantum view of Sulfones with Interacting Partner…….………………………………………………………..…..7

3. AssignOrbitals placement of Atomic Orbitals……………………..………………………………………………………….9

4. Donor-Hydrogen-Orbital Angles for π- π interactions represented as a heatmap ………………………..10

5. Acceptor-Orbital-Hydrogen Angles for π - π interactions represented as a heatmap …………………..10

6. Donor-Hydrogen-Orbital Angles for π -hydrogen interactions represented as a heatmap……………11

7. Acceptor-Orbital-Hydrogen Angles for π -hydrogen interactions represented as a heatmap……….11

8. Donor-Hydrogen-Orbital Angles for lone pair-hydrogen interactions represented as a heatmap…12

9. Acceptor-Orbital-Hydrogen Angles for lone pair-hydrogen interactions represented as a
 heatmap……….12

10. The ligand that is in the binding pocket for model 1023…………………………………………………………….13

11: Flow Chart of AssignOrbitals Procedure……………………………………………………………………………………..14

12. The values that are used to capture Hydrogen Bonding interactions………………………………………….15

13. Ligand Binding site of Model 2110……………………………………………………………………………………………..19

14. Ligand Binding site of Model 2071……………………………………………………………………………………………..21

15. Model 1127 zoomed in on the ligand binding pocket…………………………………………………………………22

16. Model 2087 zoomed in on the ligand binding pocket…………………………………………………………………23

1

Introduction

 Computational small-molecule docking plays a critical role in structure-based and ligand-

based drug-design1. An example of successful drug design using small-molecule docking is the cancer

drug Imatinb (Gleevec) for blood cancer2. Mainly, computational docking is used in early stages of

drug discovery to scan millions of small molecules against target proteins as potential drug

candidates3. Further, computational docking helps in optimizing the lead compounds for their ADME

properties4.

 A variety of programs have been developed for small-molecule docking to biological

molecules throughout the last few decades including Dock5, AutoDock6, Flexx7, Gold8, and

RosettaLigand9. All these programs use a scoring potential that captures the chemical and physical

properties of the small-molecule as well as the biomolecule, including the chemical interactions.

Various algorithms that are used for docking in these programs include Monte Carlo minimization,

genetic algorithms, Pose Clustering, and other methods10,11,12,13. Docking programs attempt to find

the lowest energy structure of the ligand in the binding pocket.

Protein-ligand interactions are important for biological processes such as enzyme catalysis,

protein activation by both natural and synthetic ligands, and protein inhibition through the use of

synthetic drugs and drug-like molecules14,15. The ability to model these interactions at atomic level is

crucial to understand the biochemistry underlying these processes. The ROSETTA molecular

modelling suite16 uses a knowledge-based potential to score the various energy terms and Monte

Carlo algorithm with Metropolis criterion for minimization of ligand-protein docked complex.

 The Rosetta energy function is a linear combination of energy terms that model various

interactions between the atoms. The Score12 function contains a van der Waals interactions

(fa_atr), an inter side chain (fa_rep) and intra side chain repulsive term (fa_intra_rep), an implicit

solvation model (fa_sol), a hydrogen bond term for side chain – side chain (hbond_sc), backbone –

backbone (hbond_sr_bb, hbond_lr_bb) and backbone – side chain (hbond_bb_sc), a backbone –

2

dependent rotamer probability (fa_dun), the probability of an amino acid given phi and psi angles

(p_aa_pp), the probability of two polar residues being within a certain distance of each other

(fa_pair), and reference energies to resemble the quantity of residues seen in any given protein. The

total energy of any given conformation is the sum of each of the terms multiplied by the weight that

each term is given17.

 The newer Talaris score functions (Talaris2013 and Talaris2014) are an update to the

Score12 score function. They have not been fully released yet but are used as the current internal

standard. They contain a number of improvements to the Score12 system, including the corrected

internal coordinates of certain amino acid side chains and a better recovery of hydrogen bond

acceptor - hydrogen bond donor distances and angles. The Talaris score functions also smoothen

some of the statistical potentials and reweights them for use in protein folding and protein-protein

docking17,18,19.

Recent research shows that partial covalent interactions are important in ligand docking20,21.

Partial Covalent Interactions (PCIs) are formed between orbitals of high and low electron density,

and the lower free energy of the stable structures are a direct consequence of these interactions.

The existing method for capturing PCIs in Rosetta involves the Hydrogen Bonding potential

which is a simple, orientation-dependent statistical energy term. This term only captures some of

the PCIs, ignoring important classes such as π stacking interactions, T-stacked interactions, and

cation- π interactions. It also incompletely describes the angular dependence of the interaction as

the position of the orbital is not clearly defined, instead requiring the use of a torsion to attempt to

capture the dependence implicictly17,22.

The research described in this paper will use Rosetta as the framework from which to

describe PCIs. Major part of the research deals with developing an extension to Rosetta,

AssignOrbitals,that allows PCIs to be explicitly modelled and scored. Normally electron density

distributions are calculated using resource-intensive quantum mechanical (QM) calculations. A

method has been developed that can capture the location of electron pairs on atoms within a

3

molecule and the PCIs that they undergo without the need of computationally expensive QM

calculations and this method is useful for a number of programs within Rosetta suite.

 In the work described below, the existing Rosetta framework is updated in order to include

the explicit placement of atomic orbitals using hybridization rules that are consistent with a

quantum chemical picture of protein-ligand complexes. The top800023 dataset was used to create a

statistical potential across hydrogen bonding interactions, π- π interactions, and cation- π

interactions. This updates the existing score functions by replacing side chain – side chain

(hbond_sc), backbone – backbone (hbond_sr_bb, hbond_lr_bb), and backbone – side chain

(hbond_bb_sc) hydrogen bonding terms with terms for T-stacked cation-π, salt bridges, and

hydrogen bonds (orbitals_hpol), T-stacked and offset parallel π-π interactions (orbitals_haro), and

parallel π-π interactions and cation-π interactions (orbitals_orbitals). Terms in italics are the scoring

terms used by Rosetta for those interactions. The weights for the other energy terms have been

adjusted accordingly in order to capture the chemical properties properly. In this paper, we discuss

the addition of 3 different partial covalent interaction terms to score function and the results of a

ligand docking benchmark data set that compares the performance of the newly developed Orbital

Score function to capture the PCIs during ligand binding as compared to Talaris2013, Talaris2014

and the Score12 score function. Finally, we discuss about other possible areas for further

improvement in score function.

Results and discussion

 Orbital Placement

 Under consideration are two ways to place the orbitals on the atoms that will be used to

create scoring terms. The first is the placement of a static orbital or set of orbitals on each atom that

might be able to undergo PCIs. This would not change location or distance based on environment,

but would rather be placed on the atom according to a specific set of rules. The second way is to

place the orbitals while taking the environment into account, possibly even to allow the orbital

4

location to be able to move in space in order to better interact with another orbital or hydrogen in

order to make the PCI.

Table 1: Important Functional Groups.

In the first case, where environment does

not play any role in defining PCIs, the

orbital locations can be placed based only

on the properties that are explicitly known

about the atom in question. For example, a

hydrogen bond from an alcohol group will

not be different if it is formed in a ligand

binding site, inside a protein or in a

protein-protein interface. In order to

understand the changes that orbitals

undergo upon binding, a series of QM

calculations were performed on ligands

from the benchmark dataset in their free

and bound form. Based on these

calculations, rules were developed to place

orbitals on the atom for PCI term

calculation during ligand binding. More

information on how the calculations were

Functional groups common

to Drug-like molecules

found in the BCL

Image

Di-Nitrogen

Nitrile

Phosphoxide

(Phosphonic Acid)

Sulfamide

Sulfonamide

Sulfonate (Sulfonic Acid)

Sulfone

Sulfoxide

Ketene

5

carried out is included in the methods section.

 The benchmark set that is being used was originally used as a ligand set redesign

benchmark24. It was chosen because of the ligand diversity, the quality of the crystal structures, and

the size of the protein-ligand complexes.

 A search was done in the Biochemical Library (BCL) for drug-like targets to collect a set of

functional groups that are important in ligand-docking. Table 1 shows a partial list of functional

groups found in drug-like molecules in the BCL. Other well-known functional groups ,such as,

general double or triple bonds, alcohols, esters, ethers, carboxylic acid were also tested (not

shown).. Table 1 shows more complicated groups that require special attention. For example, the

oxygen-sulphur bond needs to be tested to show what the orbitals look like as it is not a usual

double bond, but has some single bond characteristics as well.

The quantum orbitals of each of the functional groups were calculated using a single point

energy calculation. Similar orbital calculations were performed for each of the ligands in the

benchmark set. The orbitals on the ligands and on the functional groups in question were compared.

Despite the differences in environment, the orbitals were unchanged. These orbitals were used to

identify single point locations that could represent the quantum orbitals. These points were always

within the quantum orbitals.

6

For reference, Figures 1 and 2 are provided over the next two pages. The red and blue lobes

are the positive and negative lobes on the orbitals that were calculated for the molecules in

question. Looking at the oxygen atoms in the sulfone, four different lobes can be seen. These four

lobes form a cross around the oxygen with no electron density extending from the end. There are

then two crosses, one on each oxygen atom, made up of four lobes each. Further, each cross is

Figure 1: A quantum view of Sulfones. From Top left to bottom right are the quantum mechanical results for one of the

gas-phase benchmark sets, in this case, sulfone. They form two different sets of perpendicular orbitals that form a cross.

The two crosses are parallel to each other across the O=S=O bond.

a b

b

c d

7

parallel to the cross on the other oxygen atom and in line with the Oxygen-Sulphur-Oxygen bonding

set.

This particular set up was the same for all sulfones. A variety were tested in the gas phase to make

sure that it was set up correctly and to see if the environment had an effect on the shape and

orientation of the orbitals. The environment had no effect on the number of lobes, or their

orientation, but it did have a small effect on the size of the lobes. The change in size of the lobes was

ultimately neglected because the variation was always between one and two Van Der Waals radii.

Figure 2: A quantum view of Sulfones with interacting partner. From top left to bottom right. The results of the

quantum mechanical calculations looking at the orbitals on the sulphur when the interacting residues are there. Each

sulphur has two sets of lobes that are perpendicular to each other.

a b

d c

8

Orbital size is dependent on electron density, and was attributed to the existence of an interaction

between the protein and the ligand.

 This pattern was seen through each of the ligand-protein complexes, where the sets of

orbitals that were important for PCIs was consistent in shape and orientation between when it was

in the presence of the interacting residues and when it wasn’t. The only difference was the size of

the orbitals in this case, and that was not too big of a difference.

 In light of this result, the orbital placement was set up without taking into account the

environment around the orbital, but only the properties of the atom in question. These properties

should also be consistent with an orbital view of the atom, and so the atoms were typed using

Gasteiger atom types instead of normal Rosetta atom types25. A second reason to use the Gasteiger

atom types is that the Rosetta atom types were originally created with proteins in mind and so

typing is based atoms that appear only in proteins. Many atom types that appear in ligands do not

appear in proteins, for example, the sulphur in the sulfone group does not appear and so have not

been typed in Rosetta.

 Assign Orbital Code

 Based on the above calculations, a program was written, AssignOrbitals, which places a

single point where each orbital lobe would exist. Each atom that contains π orbitals or lone pairs will

therefore have orbital points that could undergo a PCI. The code first parses the protein or protein-

ligand complex, and it assigns the Gasteiger atom types to each atom in the protein and ligand. This

means that the important information of hybridization and number of bonds and number of lone

pairs is captured for each atom.

9

AssignOrbitals cycles through each of the atoms to check how many bonds it has, consider

the hybridization of the atom looking at sp, sp2 and sp3 hybridized atoms, and finally determines the

number of lone pairs present. With this information, orbitals are placed where the middle of the

orbital lobe will be in Quantum Mechanical calculations. The orbitals are placed at a fixed distance

away from the atom based on the Bohr Radius of that atom26. There are a few cases that require

slightly different orbital placement from the normal. For example, the oxygen that is double bonded

to a sulphur in the sulfone group is an sp2 hybrid oxygen that has a single bond. But in order to be

consistent with the QM view of the system (seen in Figure 1 and 2), the program will place the

orbitals differently on this atom than on other sp2 hybridized oxygen with one bond.

 In general, however, the orbitals are placed in a way that is consistent with an organic

chemist’s view of hybridization and orbitals. Figure 3 shows an example where orbitals are placed on

sp3 oxygens in an alcohol functional group.

Figure 3: AssignOrbital Placement of Atomic Orbitals. On the left is a simple carbohydrate showing as

white crosses the orbitals that are placed on the ligand. Each sp3 oxygen gets two orbitals that

correspond to the two lone pairs that are present on the oxygen. On the right is the same carbohydrate

with the orbitals from the QM calculations shown on the oxygen in the foreground. As expected, the

orbitals are inside the lobes that are calculated. The placed orbitals are close to the edge, about 4/5 of

the full distance from the orbital, and close to the center. The angles are 107o as is consistent with VSEPR

theory.

10

 Once the orbitals are placed they are used to create statistics on how PCIs should look.

These statistics are used in the score function. The earlier mention of hydrogen- π, π - π, and cation-

π interactions refers to the statistics mentioned here.

For π - π interactions, one of the two atoms is considered to be the donor and the other is

the acceptor even though it is more strictly just an interaction. The interaction map shows that the

interactions happen most frequently at a distance of 2 to 2.1 angstroms and at around 1800.

Because there is no real difference from one end to the other, they look identical. π - π interactions

include parallel π-π interactions and cation-π interactions.

Figure 4: Donor-Hydrogen-Orbital Angles for π- π interactions represented as a heatmap.

Figure 5: Acceptor-Orbital-Hydrogen Angles for π - π interactions represented as a heatmap.

11

For π -hydrogen interactions, the donor and acceptor heatmaps are very different. The

acceptor-orbital-hydrogen distances are similar to the π - π interactions, with the density all being

taken up at around 2-2.1 angstroms and at very close to 1800. With the hydrogens, however, the

distance is maintained at about 2 angstroms with a large amount of deviation in the possible angles.

This is consistent with what we know about possible hydrogen bonding in these systems27. These

types of interactions are T-stacked cation-π, salt bridges, and hydrogen bonds.

Figure 6: Donor-Hydrogen-Orbital Angles for π -hydrogen interactions represented as a heatmap.

Figure 7: Acceptor-Orbital-Hydrogen Angles for π -hydrogen interactions represented as a heatmap.

12

For lone pair hydrogen interactions we see some variation between the Donor distances and

angles and the Acceptor distances and angles, but the variation is not as pronounced as it is between

hydrogens and π orbitals. As before the Donor angles are centred very close to 1800, but in this case

the distances are closer, around 1.25-1.35 angstroms. Acceptor angles are slightly broader, as they

were in the case of π orbitals, but the distances are close to 1.25 angstroms. These interactions

include T-stacked and offset parallel π-π interactions.

Figure 8: Donor-Hydrogen-Orbital Angles for lone pair-hydrogen interactions represented as a heatmap.

Figure 9: Acceptor-Orbital-Hydrogen Angles for lone pair-hydrogen interactions represented as a heatmap.

13

 As shown in Figure 11, placing explicit orbitals allows for accounting the π -stacking as well

as cation- π interactions and other PCI interactions that are not captured in a simple hydrogen

bonding statistical potential in score12 or talaris2013 or talaris2014.

 The other advantage that this method has over the hydrogen bonding potential is that

placement of an explicit orbital reduces the information needed to score the same interaction. For

example, as shown in Figure 11, the previous hydrogen bonding potential requires a distance, two

angles and a torsion to score a hydrogen bond. These attempt to capture the correct geometry.

Because there is no lone pair explicit, the geometry of the interaction is captured using the atoms

that are there. This takes a distance, two angles, and a torsion. By placing the orbitals, it is possible

to explicitly capture the geometry of PCIs. The previous hydrogen bonding potential had to attempt

to capture this explicitly through the use of a torsion, and because of that also required knowledge

of the location of a bonded atom.

Figure 10: The ligand that is in the binding pocket for model 1023. The picture is zoomed in on a

hydrogen bond between the ligand and the inside of the binding pocket.

14

 Figure 11: Flow Chart of AssignOrbitals Procedure

Assign Gasteiger atom types to each atom

Cycle through each atom in the Pose

Place Orbitals on each atom based on number

of bonds, number of lone pairs, and

hybridization

Interactions are scored based on statistics

generated from top 8000, taking into account

one distances and two angles.

Figure 12: The values that are used to capture Hydrogen Bonding interactions (Modelled on the left).

1) a distance (δHOrb) between the orbital and hydrogen, 2) the angle Ψ between the acceptor – orbital

– hydrogen (AOH), and Θ angle between the donor – hydrogen – orbital (DHO) angle. This is compared

to the previous method, using a distance, two angles, and a torsion χ (image on the right).

χ

Ψ Θ

δ
HA

 Θ Ψ

δ
HOrb

15

Benchmarking AssignOrbitals

 A benchmark study was carried out to access the AssignOrbital program for protein-ligand

docking. The benchmark study used a previously outlined set of protein ligand complexes. Each of

the protein-ligand complex was docked using Score12, Talaris2013, Talaris2014, and

OrbitalScorefunction using the standard docking procedure28 in Rosetta, generating 5000 models.

The score vs RMSD plots were compared29 for each of the four scoring functions. Results were

examined to find which score function could correctly identify the best structure by RMSD to native

structure within its top 10 ranking models by score as shown in Table 2. Both of these metrics are

used to show how well a score function can properly differentiate between good and bad models. If

the score vs RMSD plot is poor, the score function is not good at differentiating between good and

bad models. A poor score in the top few models suggests two possibilities. The first is that the mover

is not correctly sampling the entire space. The other possibility is that the score function is

identifying a particular geometry or interaction as repulsive or neutral when it should be attractive.

In either case it is important to correctly identify how the score function performs and what its

limitations are in order to make corrections and improvements.

16

Table 2: Best RMSD among top 10 models Best RMSD (in Å) among top 10 scoring models for each

of the four score functions. The left hand column is the numerical classification for each of the

protein-ligand complexes. Each other column is the highest RMSD to native among the top 10

models by score.

Model Talaris2014 Orbitals Talaris2013 Score12

1008 0.40 0.56 0.62 2.37
1042 0.32 0.33 0.36 0.35
1043 0.56 0.48 0.55 0.74
1078 0.53 0.55 0.51 0.49
1079 1.16 0.36 4.80 0.39
1093 0.20 0.19 0.14 0.18
1094 0.31 1.04 0.15 0.76
1097 0.22 1.26 2.41 0.94
1099 0.11 0.28 0.10 0.13
1100 0.28 0.29 0.25 0.27
1110 1.36 1.53 1.67 0.14
1123 0.26 0.29 0.31 0.36
1127 0.52 3.51 0.58 5.80
1144 0.35 0.40 0.36 0.47
1173 0.20 0.39 0.21 0.22
1194 0.16 0.13 0.19 0.11
2023 0.22 0.20 0.25 0.22
2062 0.66 0.54 0.37 0.25
2071 0.26 0.28 0.27 0.21
2087 4.93 3.11 3.79 0.34
2088 0.23 0.52 0.52 0.30
2089 2.56 2.15 3.57 0.43
2092 0.41 0.45 0.50 0.33
2104 0.38 0.24 0.22 0.18
2110 4.52 0.60 4.71 4.39
2129 0.17 0.16 0.21 0.16
2167 0.30 0.48 0.37 0.56
2202 4.55 2.96 3.01 0.80
2261 1.90 1.64 2.21 1.40
2266 0.35 0.33 0.33 4.79

Average 0.95(0.25) 0.84(0.17) 1.12(0.26) 0.93(0.27)

 Table 2 shows a comparison of the four score functions in achieving the best docked

structure. This shows that on average, Talaris2014 and Score12 perform reasonably similarly, with

both of them performing about 15% better than Talaris2013. The orbital score function performs the

best on average, performing about 12% better than Talaris2014 and 10% better than Score12.

Looking at the individual models, some interesting things can be noted. The first model, 1008, both

Talaris score functions and the orbital score functions give good scoring models that are reasonably

close to native (between .4 and .65 RMSD to native) but Score12 performs much worse than those

17

three. Score12 underperforms for models 1127 and 2266. On the other hand it overperforms for

models 1110, 2087, and 2202. Clear advantage defined when its best RMSD is 1Å better than the

next best score function’s best RMSD.

 Talaris2014 performs better than or equal to Talaris2013 in almost all cases. For this reason

and because they contain the same scoring terms with slight changes in weighting and the potentials

used, they will be considered together. The Talaris score functions are the clear losers for 1079,

2110, 2087, and 2202. It is only the clear winner for 1127, but is reasonably better in a few cases.

 The orbital score function clearly the best only in 2110, but is also never clearly

outperformed by all of the other score functions. This, combined with the fact that the orbital score

function performs better on average, suggests that the orbital score function is consistently a strong

option for ligand benchmarking. It performs poorly in a few cases, but in those cases one of the

three other score functions performed equally as bad or worse.

 As can be seen from table two, Score12 outperformed the other three score functions on

average. This suggests that it is still better at discriminating good models from bad models than the

other score functions. It did not outperform the orbital score function by a large portion, however,

and both the orbital score function and Score12 outperform both Talaris score functions by a

significant margin.

18

Table 3: Funnel Analysis Results. The funnel analysis20 results for the model with the best RMSD
among the top 10 models. Numbers between 0 and -1 suggest good discrimination between models
with low RMSD and those with high RMSD, with numbers closer to -1 suggesting better
discrimination. Numbers between 0 and 1 suggest that atoms with large RMSD to native score better
than those with lower RMSD to native.

Model Talaris2014 Orbitals Talaris2013 Score12

1008 -0.29 -0.24 -0.41 -0.17
1042 -0.20 -0.18 -0.16 -0.10
1043 -0.05 -0.05 -0.02 -0.05
1078 -0.18 -0.22 -0.32 -0.31
1079 -0.18 -0.26 -0.16 -0.29
1093 -0.15 -0.05 -0.14 -0.10

1094 -0.17 -0.10 -0.18 -0.16
1097 -0.14 -0.52 -0.26 -0.37
1099 -0.26 -0.40 -0.34 -0.38

1100 -0.39 -0.42 -0.37 -0.42
1110 -0.08 -0.04 -0.02 -0.32
1123 -0.14 -0.21 -0.17 -0.20
1127 -0.16 -0.06 -0.15 -0.17
1144 -0.12 -0.21 -0.14 -0.11
1173 -0.45 -0.39 -0.59 -0.46
1194 0.17 -0.19 0.11 -0.02
2023 -0.31 -0.31 -0.33 -0.41
2062 -0.28 -0.30 -0.22 -0.38
2071 -0.16 -0.13 -0.28 -0.32
2087 -0.37 -0.33 -0.41 -0.59
2088 -0.53 -0.49 -0.48 -0.80
2089 -0.38 -0.46 -0.38 -0.60
2092 -0.24 -0.14 -0.22 -0.21
2104 -0.12 -0.16 -0.11 -0.13
2110 -0.26 -0.22 -0.11 -0.15
2129 -0.28 -0.31 -0.36 -0.25
2167 -0.17 -0.22 -0.22 -0.35
2202 -0.02 -0.84 -0.09 -0.02
2261 0.09 0.02 0.02 0.06
2266 -0.28 -0.22 -0.27 -0.30

Average -0.20(0.03) -0.25(0.03) -0.23(0.03) -0.27(0.03)

 An important question relevant to this paper concerns how good are these different

score functions at producing the right geometry. The orbital score function is considered important

on the basis that PCIs are important and modelling them explicitly will aid in ligand binding. Table 2

19

and Table 3 suggest that it makes slight improvements in capturing the native pose on both Talaris

and Score12, while maintaining discriminatory power. However, it is important to determine if this is

due to improved capture of PCIs. It is also important to search for factors affecting the cases in

which it performs poorly. In order to do this the native structures have been compared to the model

with the best RMSD among the top 10 by score to see if the score function can recapitulate the PCIs

between the ligand and the protein.

Figure 13: Ligand Binding Site of model 2110. A: the ligand site of the crystal structure, B: the ligand

site of the orbital score function, C: the ligand site of Score12, D: the ligand site of Talaris2013, and

E: the ligand site of Talaris2014. These are all model 2110.

A

D

D

D C

B

20

Table 4: Geometric properties of ligands in Figure 12.

Table 4 and snapshots for model number 2110 in Figure 12 showcase the ligand for which the orbital

score function performs better by a significant margin than the other three score functions. As can

be seen from the ligand binding sites (Figure 12A), the orbital score function captures the ligand

binding pocket correctly, maintaining the PCIs that are important for determining the orientation of

the ligand in the binding pocket. These interactions are not captured by the other score functions, as

noted especially by the distances of over 4 Å between the oxygen and the hydrogen that it is

interacting with.

 Among the models where all of the score functions perform well, the orbital score function

continues to correctly capture the geometries of the PCIs. Model 2071 is shown Figure 13,

specifically zoomed into an interacting hydrogen bond. The images show that each of the four score

functions can properly capture the ligand in the ligand binding site. In both cases the orbital score

function has dihedral angles that are somewhat poor. In the second case, the other score functions

do a better job of finding the correct dihedral, with the exception of Talaris2014. Because the

hydrogen-bonding statistics in Talaris2013, score12 and Talarais2014 are generated using the

dihedral angle, and the orbital score function statistics are not, it is not surprising that they would

perform slightly better than the orbital score function in this case. Angles one and two, however, are

both used in the hydrogen bonding statistics that are used by the other three score functions.

Despite the input angles being different in the orbital score function from the rest, the orbital score

function performs very similarly to the others.

 Dihedral Distance Angle 1 Angle 2

Crystal
Structure (A) 143.58 2.07 141.27 148.72

Orbital (B) 127.73 1.68 163.36 149.54

Score12 (C) 56.6 4.4 100.76 105

Talaris2013(D) -50.58 5.04 120.72 134.31

Talaris2014
(E) 116.3 4.01 73.43 68.73

21

Table 5: Geometries of ligands in Figure 13.

 Dihedral Distance Angle 1 Angle 2

Crystal
Structure 162.84 2.13 161.27 115.26

Orbital 149.53 1.98 165.83 110.3

Score12 168.07 2.1 165.17 112.32

Talaris2013 178.03 1.91 166.72 116.15

Talaris2014 149.78 1.97 149.01 129.2

Figure 14: Ligand Binding site of Model 2071. A: the ligand site of the crystal structure, B: the ligand

site of the orbital score function, C: the ligand site of Score12, D: the ligand site of Talaris2013, and

E: the ligand site of Talaris2014. These are all model 2071.

 Although the orbital score function performs well in many cases, we are going to consider

two cases in which it did not. Models 1127 and 2087 are the cases in which the Orbital Score

A B

C

D

D

22

Function performed the most poorly so they will be considered along with possible reasons for the

poor performance.

Figure 15: Model 1127 zoomed in on the ligand binding pocket. On the left is the crystal structure,

the right is the result of the orbital score function.

 The first model to be considered is model 1127. In this case the orbital score function has

correctly identified the orientation and placement of the side chains around the binding pocket, but

has incorrectly determined the orientation of the ligand. In this case the ligand is 180o from what it is

in the crystal structure. The reason that it has done this is in order to connect some PCIs from the

amine group to side chains that are below. The ligand has very few opportunities for PCIs, as a large

portion of the ligand contains sp3 hybridized carbons which do not contain orbitals that can undergo

PCIs. The score function has identified possible interactions that do not exist in the crystal structure

and given them good scores.

 It is important to note that in this case the 180o flip is very similar to the first, and it is

possible that the ligand could fit in that orientation instead of the first inside the density map that is

used to determine the structure. That is not how it was reported, but it is possible that that is the

correct orientation. Also important to note is that there are models among the top 15 that have very

good RMSD to native, suggesting that it does also consider the native structure to be favourable.

23

 Figure 16: Model 2087 zoomed in on the ligand binding pocket. On the left is the crystal structure,

the right is the result of the orbital score function.

 The second model to consider is model 2087. In this case, many of the side chains are

packed poorly and both the orientation and the placement of the ligand in the binding pocket are

poor. Many of the PCIs that exist in the crystal structure still exist, but the side chains have moved in

order to compensate for the movement of the ligand. While this might initially suggest either a score

problem or potentially a sampling problem, the run in question did manage to produce sub

angstrom models that maintain both the correct PCIs and the orientation and placement of the

ligand in the binding pocket. This means that the correct conformation is being sampled, but the

score that is used is scoring the non-native poses higher than the native ones.

Conclusions and Future Directions

 A method to explicitly place orbitals and use them for scoring ligand docking has been

created and implemented. QM knowledge has been exploited to intelligently place the orbitals on

both the ligand and the protein. This method uses a combination of the hybridization state of the

atom and the number of bonds to place both π orbitals and lone pairs, taking into account the

environment to some extent. Each orbital consists of one point in space that is a distance away from

the atom equal to the Van der Waals radius of the atom.

 Statistics were generated for the types of interactions to develop a score term for Rosetta

scoring function. This score term directly replaces the hydrogen bonding statistical potentials that

24

are used in the existing score functions. The other energy terms have been re-optimized for use with

new score function AssignOrbitals.

 This new score function based off of orbital placement directly captures PCIs instead of

indirectly capturing hydrogen bonding interactions. Because PCIs are important in ligand docking it is

expected that this score function will capture the pose of a ligand in the binding pocket better than

the previous score functions. All three of the currently used score functions and the orbital score

function were tested using a benchmark ligand docking set.

 The orbital score function performed 10-15% better than the other score functions while

maintaining or improving on the discrimination as determined by the funnel. This increase initially

seems to be due to the high importance of PCIs in docking the ligand, and it recapitulates PCIs that

are present between the ligand and the binding pocket. In the cases that it performs less well there

are two general trends that are noticed. The first is that the protein has been folded properly and

the ligand binding pocket is correct, but the orientation of the ligand has been shifted in order to

produce PCIs that are not there in the crystal structure. In at least one case, it is even possible that

the generated structure is correct, as it also would fit into the density map used to determine the

crystal structure. The second trend that is seen is that the actual PCIs that exist are maintained

intact, but the overall shape of the binding pocket is not maintained. In these cases the issue does

not seem to be a sampling problem, but rather that the score function is correctly identifying the

PCIs that are important but is unable to identify the proper orientation of the surrounding atoms

correctly. It is possible that this is because some of the other terms are weighted poorly. In order to

test this it would be important to re-optimize the other scoring terms that are used to see if it is

possible to improve these cases while maintaining the other cases.

 It is clear that there are still situations where improvements can be made, and one possible

option would be to place multiple points for each orbital. This would create a larger set of statistics

for each interaction, and would also potentially provide flexibility when choosing which point to

interact with.

25

 Another approach that is currently being used to determine orbitals is the QM-MM

calculations on the whole protein-ligand complex. These calculations use Quantum Mechanics to

determine the orbitals on a small section of the protein that is of interest, in this case the binding

site, and Molecular mechanics on the rest of the system in order to take advantage of the

information that is there. Because the greater portion of the protein is dealt with using molecular

mechanics, the time constraint is not as big of an issue in these cases.

 A trajectory can be computed for the binding event using QMMM calculations to

examine the changes that the orbitals, on both the ligand and the protein in the binding pocket,

undergo during binding event as the ligand settles into the site. This would also allow the use of

other analysis tools, such as electron localization functions (ELFs)30,31,32.

ELFs are used to analyse the results of QM calculation trajectories to determine the

existence and location of interactions between ligand and the protein. They also determine electron

density the location of interest. This type of analysis might lead to non-intuitive orbital placement as

it gives locations where PCIs happen rather than areas of electron density.

 Another way to improve on this method is to widen the benchmark set used to collect

statics on PCIs. The benchmark set was chosen for the small size of the complexes, good resolution

structures, and diversity among ligands. Because of this large protein families were not included,

which is an area that Rosetta has sometimes struggled with. Examples include GPCR proteins, large

antibodies, and protein-protein complexes that include a ligand. GPCRs especially are known to

undergo large conformational changes between the bound and unbound state. In both cases, PCIs

are often considered to be highly important in determining both the structure and the motion of the

protein between both states. This score function seeks to take advantage of explicit orbitals and

should perform best when applied to systems where structure is considered to be driven by the

formation or breaking of PCIs. In order to test whether or not the current orbital implementation

properly captures the existing PCIs, a benchmark run including this type of protein-ligand complex

26

would be important. However, limitation to setting up such a benchmark set is the lower resolution

of such structures and the larger overall size of the complex.

Methods

 The Quantum Mechanics Calculations were carried out using the Jaguar program of the

Schrodinger Molecular Suite of Programs. Single Point energy calculations were carried out using

Density Functional Theory (DFT)33 with B3LYP functional34 and LAVP2** basis set, which was chosen

for its flexibility and accuracy. The other options considered for single point calculations include

restricted SCF, medium grid density, atomic overlap initial guess and 50 maximum iterations for

gradient minimization. Molecular orbitals upto HOMO-10 and LUMO+10 were calculated and

exported to isomesh. PYMOL software (ref) was used for orbital visualization using isomesh levels

+5 and -5.

 Modelling of the electron orbitals was done as a single point at a distance equal to the Bohr

radius, the most probable distance of an electron to the nucleus of an atom, with geometric

parameters defined by atomic hybridization. Exceptions to this are the cases of ketenes and oxygens

with a double bond to a sulphur or phosphorus. Atomic orbitals were defined as lone pair or bonding

π orbitals. Three types of interactions were defined, with statistics for both the acceptor and donor

ends of the interaction: bonding π - bonding π, bonding π - hydrogen, and lone pair - hydrogen.

 The orbital energy function was derived based on geometrical parameters seen in protein

crystal structures for partial covalent interactions. The geometric measurements used were a

distance between the orbital and the hydrogen (δHOrb), an angle between the acceptor – orbital –

hydrogen (AOH) (cos(Ψ)), and an angle between the donor – hydrogen – orbital (DHO)

(cos(Θ)). Inclusion of a direct measurement between the AHO and DHO angle results in a precise

definition of the chemical interaction seen in PCIs and removes the need to indirectly calculate the

relationship with torsion angles as seen with the hydrogen bond potential.7

27

 For derivation of the knowledge based potential, the Rosetta Features Reporter5 was

used to obtain distances and angles representative of PCIs in the top8000 dataset (see supplemental

for command lines). The inverse Boltzmann relation was used to convert the propensity of δHOrb,

cos(Ψ) and δHOrb, cos(Θ) into an energy.

E(X) = -RTln(Pobserved(X)/Pbackground(X))

where E(X) is the energy for X, the feature observed, R the gas constant, T the temperature

and Pobserved(X) the probability of the feature observed and Pbackground(X) is the probability of the given

observation seen by chance. The total energy for a given PCI is determined by the combination of

E(PCI|δHOrb, cos(Ψ)) + E(PCI | δHOrb, cos(Θ)) where PCI is the partial covalent interaction being modeled

and δHOrb, cos(Ψ) is the distance and acceptor – orbital – hydrogen (AOH) angle and δHOrb, cos(Θ)) is

the distance and donor – hydrogen - orbital (DHO) angle.

PCI distributions were determined by the shortest distance (δHOrb) between two participating

residues. Once the shortest distance was determined, the cosine of both Ψ and Θ were determined

to account for bias in observing a given angle by chance. Two-dimensional histograms were created

for both δHOrb, cos(Ψ) and δHOrb, cos(Θ) with bin fractions set to 0.1 Å for δHOrb and 0.1 for cos(Ψ) and

cos(Θ)). The expected background probabilities for δHOrb were determined by dividing each bin fraction

by the squared distance (r^2) for each observed bin fraction. Further, pseudo counts were added to

each bin fraction to ensure that favorable states received a negative energy.

Although the shortest distance for PCIs was used to determine bin fractions, a bicubic interpolation of

all distances for every PCI was used to determine the energy associated with a PCI between two

residues. This has two direct effects, i) the energy function becomes a continuous function and ii)

bicubic interpolation ensures that δHOrb, cos(Ψ) and δHOrb, cos(Θ) remain tightly coupled.

Calculation of free energy in Rosetta is done through a linear combination of weighted scoring

terms. The base score function in Rosetta is composed of van der Waals interactions (fa_atr), an inter

side chain (fa_rep) and intra side chain repulsive term (fa_intra_rep), an implicit solvation model

(fa_sol), a hydrogen bond term for side chain – side chain (hbond_sc), backbone – backbone

28

(hbond_sr_bb, hbond_lr_bb) and backbone – side chain (hbond_bb_sc), a backbone – dependent

rotamer probability (fa_dun), the probability of an amino acid given phi and psi angles (p_aa_pp), the

probability of two polar residues being within a certain distance of each other (fa_pair), and reference

energies to resemble the quantity of residues seen in any given protein (ref):

ΔG = WatrEatr + WrepErep + Wintra_repEintra_rep + WsolEsol + Whbond_scEhbond_sc + Whbond_sr_bbEhbond_sr_bb +

Whbond_lr_bbEhbond_lr_bb + Whbond_bb_scEhbond_bb_sc + WdunEdun + Wp_aa_ppEp_aa_pp + WpairEpair + WrefEref

The relative weights for all scoring terms were parameterized on a high resolution structure

dataset using a conjugate gradient method to maximize the probability of the native amino acid at

each position in the protein. Addition and removal of scoring terms to the free energy calculation

requires adjustment of the individual weights.

To account for all PCIs, the orbital score function was split into three distinct score terms for

weight optimization 1) orbitals_hpol which contained T-stacked cation-π, salt bridges, and hydrogen

bonds, 2) orbitals_haro which contained T-stacked and offset parallel π-π interactions, and 3)

orbitals_orbitals which contained parallel π-π interactions and cation-π interactions. A feature of

AssignOrbitals is the ability to implicitly capture interactions that are difficult to model; however, this

feature can result in a bias for certain interactions. Within the Rosetta score function, the pair

potential and the hydrogen bond potential both model separate interactions; however, the pair

potential also captures hydrogen bonds, which results in double counting. In an attempt to remove

double counting, both the sc_hbond, hbond_bb_sc, and fa_pair were removed. The new free energy

calculation resulted as:

ΔG = WatrEatr + WrepErep + Wintra_repEintra_rep + WsolEsol + Worbitals_hpolEorbitals_hpol + Whbond_sr_bbEhbond_sr_bb

+ Whbond_lr_bbEhbond_lr_bb + Worbitals_haroEorbitals_haro + WdunEdun + Wp_aa_ppEp_aa_pp + Worbitals_orbitalsEorbitals_orbitals +

WrefEref

29

Because PCIs are dependent upon the solvated environment, the solvation potential needed

to be adjusted. The particle swarm optimization algorithm, OptE, was used to optimize all orbital score

terms, the solvation term, and the reference energies. Initial weights for the all optimized terms were

then varied by 0.05 to 0.3 while the reference energies were allowed to be optimized by OptE. Each

resulted weight set was tested against a barrage of tests.

 Models were generated using RosttaScripts35. Each run was for 5000 models. Results are

given for the funnels produced and for the best RMSD among the top ten models by score. The low

resolution step was completed using translate, rotate, slide together.

30

Appendix

 Assign Orbital Code

// -*- mode:c++;tab-width:2;indent-tabs-mode:t;show-trailing-whitespace:t;rm-trailing-spaces:t -*-

// vi: set ts=2 noet:

//

// (c) Copyright Rosetta Commons Member Institutions.

// (c) This file is part of the Rosetta software suite and is made available under license.

// (c) The Rosetta software is developed by the contributing members of the Rosetta Commons.

// (c) For more information, see http://www.rosettacommons.org. Questions about this can be

// (c) addressed to University of Washington UW TechTransfer, email: license@u.washington.edu.

#include <core/chemical/Atom.hh>

#include <core/chemical/ResidueType.hh>

#include <core/chemical/orbitals/AssignOrbitals.hh>

#include <map>

#include <core/chemical/ChemicalManager.hh>

#include <core/chemical/AtomTypeSet.hh>

#include <core/chemical/AtomType.hh>

#include <utility/vector1.hh>

#include <utility/string_util.hh>

#include <numeric/xyz.functions.hh>

#include <ObjexxFCL/string.functions.hh>

#include <numeric/conversions.hh>

#include <numeric/constants.hh>

#include <numeric/NumericTraits.hh>

#include <core/chemical/ResidueTypeSet.hh>

#include <core/chemical/gasteiger/GasteigerAtomTyper.hh>

#include <core/chemical/modifications/ValenceHandler.hh>

#include <core/chemical/gasteiger/GasteigerAtomTypeSet.hh>

#include <core/chemical/gasteiger/GasteigerAtomTypeData.hh>

#include <core/chemical/orbitals/OrbitalTypeSet.hh>

#include <core/chemical/orbitals/OrbitalType.hh>

#include <core/types.hh>

#include <core/chemical/ResidueType.hh>

#include <core/chemical/ResidueTypeSet.hh>

#include <numeric/xyzVector.hh>

#include <core/chemical/Elements.hh>

#include <ObjexxFCL/format.hh>

#include <basic/Tracer.hh>

namespace ObjexxFCL { namespace format { } } using namespace ObjexxFCL::format; // AUTO USING

NS

namespace core{

namespace chemical{

namespace orbitals{

basic::Tracer TR("core::chemical::orbitals::AssignOrbitals");

31

std::string AssignOrbitals::strip_whitespace(std::string const & name)

{

 std::string trimmed_name(name);

 ObjexxFCL::left_justify(trimmed_name); ObjexxFCL::trim(trimmed_name); // simpler way

to do this?

 return trimmed_name;

}

//function helps place double/triple bonds orbitals perpendicular to the plane.

utility::vector1< numeric::xyzVector< core::Real > > AssignOrbitals::perpendicular_orbitals_helper

(

 core::Size const & atm_index1,

 core::Size const & atm_index2,

 core::Size const & atm_index3

)

{

 //define two vectors, both pointing back to the central atom with atm_index2

 numeric::xyzVector< core::Real > vector_d(restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index2).ideal_xyz());

 numeric::xyzVector< core::Real > vector_f(restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index3).ideal_xyz());

 //Create an object of Class utility::vector1 to hold the xyz coordinates of orbitals(e.g., cross

products)

 //Get two cross products of the two vectors, one is above, the other is below the plane

defined by the two vectors

 utility::vector1< numeric::xyzVector<core::Real> > pi_orbital_xyz_vector;

 numeric::xyzVector< core::Real > xyz_right = cross_product(vector_d, vector_f);

 numeric::xyzVector< core::Real > xyz_left = cross_product(-vector_d, vector_f);

 //Normalize the two new vectors, xyz_right and xyz_left to get a unit vector.

 //pi_orbital_xyz_vector now stores the new xyz coordinates of the pi orbitals.

 pi_orbital_xyz_vector.push_back((xyz_right.normalized() * atom_orbital_distance_) +

restype_->atom(atm_index1).ideal_xyz());

 pi_orbital_xyz_vector.push_back((xyz_left.normalized() * atom_orbital_distance_) +

restype_->atom(atm_index1).ideal_xyz());

 return pi_orbital_xyz_vector;

}

//function helps place double/triple bond orbitals parallel to the plane

utility::vector1< numeric::xyzVector < core::Real > > AssignOrbitals::parallel_orbitals_helper

(

 core::Size const & atm_index1,

 core::Size const & atm_index2,

32

 core::Size const & atm_index3

)

{

 //define two vectors, both pointing back to the central atom with atm_index2

 numeric::xyzVector< core::Real > vector_d(restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index2).ideal_xyz());

 numeric::xyzVector< core::Real > vector_f(restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index3).ideal_xyz());

 //Create an object of Class utility::vector1 to hold the xyz coordinates of orbitals(e.g., cross

products)

 //Get two cross products of the two vectors, one is above, the other is below the plane

defined by the two vectors

 utility::vector1< numeric::xyzVector<core::Real> > pi_orbital_xyz_vector;

 numeric::xyzVector< core::Real > xyz_right = cross_product(vector_d, vector_f);

 //Normalize the two new vectors, xyz_right and xyz_left to get a unit vector.

 //pi_orbital_xyz_vector now stores the new xyz coordinates of the pi orbitals.

 numeric::xyzVector< core::Real > xyz_up = cross_product(xyz_right,vector_d);

 numeric::xyzVector< core::Real > xyz_down = cross_product(-xyz_right,vector_d);

 pi_orbital_xyz_vector.push_back((xyz_up.normalized() * atom_orbital_distance_) +

restype_->atom(atm_index1).ideal_xyz());

 pi_orbital_xyz_vector.push_back((xyz_down.normalized() * atom_orbital_distance_) +

restype_->atom(atm_index1).ideal_xyz());

 return pi_orbital_xyz_vector;

}

//function for handling ketenes, similar to perpendicular and parallel helper functions but changes

the order of operations

numeric::xyzVector< core::Real > AssignOrbitals::ketene_orbitals_helper

(

 core::Size const & atm_index1,

 core::Size const & atm_index2,

 core::Size const & atm_index3

)

{

 //define two vectors, both pointing back to the central atom with atm_index2

 numeric::xyzVector< core::Real > vector_d(restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index2).ideal_xyz());

 numeric::xyzVector< core::Real > vector_f(restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index3).ideal_xyz());

 //Create an object of Class utility::vector1 to hold the xyz coordinates of orbitals(e.g., cross

products)

33

 //Get two cross products of the two vectors, one is above, the other is below the plane

defined by the two vectors

 numeric::xyzVector< core::Real > pi_orbital_xyz_vector;

 numeric::xyzVector< core::Real > xyz_right = cross_product(vector_d, vector_f);

 //Normalize the two new vectors, xyz_right and xyz_left to get a unit vector.

 //pi_orbital_xyz_vector now stores the new xyz coordinates of the pi orbitals.

 pi_orbital_xyz_vector = ((xyz_right.normalized() * atom_orbital_distance_) + restype_-

>atom(atm_index1).ideal_xyz());

 return pi_orbital_xyz_vector;

}

//Calls perpendicular orbital placer to place Pz orbitals when then exist.

void AssignOrbitals::Pz_orbitals_placer

(

 core::Size const & atm_index1,

 core::Size const & atm_index2,

 core::Size const & atm_index3

)

{

 utility::vector1< numeric::xyzVector< core::Real > > pi_xyz_coords(

 perpendicular_orbitals_helper(

 atm_index1,

 atm_index2,

 atm_index3

)

);

 for (core::Size orbitals=1; orbitals <=pi_xyz_coords.size(); ++orbitals){

 calculate_orbital_icoor(

 pi_xyz_coords[orbitals],

 atm_index1,

 atm_index2,

 atm_index3,

 core::chemical::orbitals::bonding_pi,

 false

);

 }

}

//Calls parallel orbital placer to place Px or Py orbitals when then exist.

void AssignOrbitals::Pxy_orbitals_placer

(

 core::Size const & atm_index1,

 core::Size const & atm_index2,

 core::Size const & atm_index3

34

)

{

 utility::vector1< numeric::xyzVector<core::Real> > pi_xyz_coords(

 parallel_orbitals_helper(

 atm_index1,

 atm_index2,

 atm_index3

)

);

 for (core::Size orbitals=1; orbitals <=pi_xyz_coords.size(); ++orbitals){

 calculate_orbital_icoor(

 pi_xyz_coords[orbitals],

 atm_index1,

 atm_index2,

 atm_index3,

 core::chemical::orbitals::bonding_pi,

 false

);

 }

}

//function that places lone pairs on trigonal pyramidal atoms (eg: nitrogen with three bonds and one

lone pair)

void AssignOrbitals::trigonal_pyramidal_orbitals_placer

(

 core::Size const & atm_index1,

 core::Size const & atm_index2,

 core::Size const & atm_index3,

 core::Size const & atm_index4

)

{

 //This function is for placing the lone pair in a trigonal pyramidal geometry. Example: a

nitrogen with three single bonds.

 //define three vectors starting from the neighbors_ and pointing back to the central atom

 numeric::xyzVector < core::Real > vector_a = (restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index2).ideal_xyz());

 numeric::xyzVector < core::Real > vector_b = (restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index3).ideal_xyz());

 numeric::xyzVector < core::Real > vector_c = (restype_->atom(atm_index1).ideal_xyz() -

restype_->atom(atm_index4).ideal_xyz());

 //add the three vectors together making a vector pointing up from the nitrogen and then

normalize and multiply by distance.

 numeric::xyzVector < core::Real > vector_d = (vector_a + vector_b + vector_c);

 utility::vector1 < numeric::xyzVector < core::Real > > lone_pair_coords;

35

 lone_pair_coords.push_back(vector_d.normalized() * atom_orbital_distance_ + restype_-

>atom(atm_index1).ideal_xyz());

 for (core::Size orbitals=1; orbitals <=lone_pair_coords.size(); ++orbitals){

 calculate_orbital_icoor(

 lone_pair_coords[orbitals],

 atm_index1,

 atm_index2,

 atm_index3,

 core::chemical::orbitals::lone_pair,

 false

);

 }

}

//Function that places orbitals for one bond sp instances.

void AssignOrbitals::nr_know_bonds_1_sp (core::Size const current_atom, core::Size const

secondary_atom, core::Size const tertiary_atom)

{

 if (non_bonding_lone_pair_orbitals_ == 0){ //Function that sets Pz, Py, Px normally.

 for(

 std::set<core::chemical::gasteiger::GasteigerAtomTypeData::AtomicOrbitalTypes>::const_ite

rator

 it = pi_orbitals_.begin(); it != pi_orbitals_.end(); ++it

){

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Pz){

 Pz_orbitals_placer(

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Py || *it ==

core::chemical::gasteiger::GasteigerAtomTypeData::Px){

 Pxy_orbitals_placer(

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 }

 } else if (non_bonding_lone_pair_orbitals_ == 1) {

 //Linear lone pair placer.

 calculate_orbital_icoor(

 core::chemical::modifications::linear_coordinates(restype_->atom(

current_atom).ideal_xyz(), restype_->atom(secondary_atom).ideal_xyz(), atom_orbital_distance_

),

 current_atom,

36

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::bonding_pi,

 false

);

 //Function that sets Pz, Py, Px normally.

 for(

 std::set<core::chemical::gasteiger::GasteigerAtomTypeData::AtomicOrbitalTypes>::const_ite

rator

 it = pi_orbitals_.begin(); it != pi_orbitals_.end(); ++it

){

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Pz){

 Pz_orbitals_placer(

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Py || *it ==

core::chemical::gasteiger::GasteigerAtomTypeData::Px){

 Pxy_orbitals_placer(

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 }

 } else if (non_bonding_lone_pair_orbitals_ == 2) {

 //This actually doesn't work/make sense; exit.

 utility_exit_with_message("What? you have two lone_pair orbitals on sp

hybridization!");//sp should not have two pairs. Wrong arrangement

 }

}

void AssignOrbitals::nr_known_bonds_1_sp2_P_S_elements_case(core::Size const current_atom,

core::Size const secondary_atom, core::Size const tertiary_atom){

 bool two_bonded_oxygens = false;

 for (core::Size j = 1; j <= restype_->bonded_neighbor(secondary_atom).size(); ++j)

 {

 if (restype_->atom(restype_->bonded_neighbor(secondary_atom)[j]

).element_type()->element() == core::chemical::element::O && restype_->bonded_neighbor(

secondary_atom)[j] != current_atom)

 {

 Pz_orbitals_placer

 (

 current_atom,

37

 secondary_atom,

 restype_->bonded_neighbor(secondary_atom)[j]

);

 Pxy_orbitals_placer

 (

 current_atom,

 secondary_atom,

 restype_->bonded_neighbor(secondary_atom)[j]

);

 calculate_orbital_icoor

 (

 core::chemical::modifications::linear_coordinates(restype_-

>atom(current_atom).ideal_xyz(), restype_->atom(secondary_atom).ideal_xyz(),

atom_orbital_distance_),

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::bonding_pi,

 true

);

 two_bonded_oxygens = true;

 }

 }

 if (!two_bonded_oxygens)

 {

 Pz_orbitals_placer

 (

 current_atom,

 secondary_atom,

 tertiary_atom

);

 Pxy_orbitals_placer

 (

 current_atom,

 secondary_atom,

 tertiary_atom

);

 calculate_orbital_icoor

 (

 core::chemical::modifications::linear_coordinates(restype_->atom(

current_atom).ideal_xyz(), restype_->atom(secondary_atom).ideal_xyz(), atom_orbital_distance_

),

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::bonding_pi,

 true

);

38

 }

}

//function that works on ketenes when there is only one known bond but is sp2 hybridized

void AssignOrbitals::nr_known_bonds_1_sp2_ketene_case(core::Size const current_atom, core::Size

const secondary_atom, core::Size const tertiary_atom){

 //This is the odd case of ketenes.

 //A ketene is a linear functional group that has a carbon double-bonded to a carbon that is

double bonded to an oxygen.

 //This linear set of double bonds works differently than normal ketones because the double

bonds sit in perpendicular planes.

 utility::vector1< core::Size > bonds_neighbor(restype_->bonded_neighbor(secondary_atom

));

 utility::vector1< numeric::xyzVector< core::Real > > neighboring_positions;

 for(core::Size i=1; i <= bonds_neighbor.size(); ++i){

 if((bonds_neighbor[i] != secondary_atom) || (bonds_neighbor[i] != current_atom

)){

 neighboring_positions.push_back(restype_->atom(bonds_neighbor[i]

).ideal_xyz());

 break;

 }

 }

 if(!neighboring_positions.empty()){

 calculate_orbital_icoor

 (

 core::chemical::modifications::angle_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 ketene_orbitals_helper(

 current_atom,

 secondary_atom,

 tertiary_atom

),

 atom_orbital_distance_,

 120.0 / 180.0 * numeric::constants::d::pi,

 180.0 / 180.0 * numeric::constants::d::pi,

 false,

 numeric::xyzVector<core::Real>(0.0)

),

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 true

);

 } else {

 calculate_orbital_icoor

 (

39

 core::chemical::modifications::angle_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 ketene_orbitals_helper(

 current_atom,

 secondary_atom,

 tertiary_atom

),

 atom_orbital_distance_,

 120.0 / 180.0 * numeric::constants::d::pi,

 180.0 / 180.0 * numeric::constants::d::pi,

 false,

 numeric::xyzVector<core::Real>(0.0)

),

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 true

);

 }

 calculate_orbital_icoor

 (

 core::chemical::modifications::triganol_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 restype_->atom(tertiary_atom).ideal_xyz(),

 atom_orbital_distance_

),

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 true

);

 for(

 std::set<core::chemical::gasteiger::GasteigerAtomTypeData::AtomicOrbitalTypes>::const_ite

rator

 it = pi_orbitals_.begin(); it != pi_orbitals_.end(); ++it

){

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Pz){

 utility::vector1< numeric::xyzVector< core::Real > > pi_xyz_coords =

parallel_orbitals_helper

 (

 current_atom,

 secondary_atom,

 tertiary_atom

40

);

 }

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Py || *it ==

core::chemical::gasteiger::GasteigerAtomTypeData::Px){

 utility::vector1< numeric::xyzVector< core::Real > > pi_xyz_coords =

perpendicular_orbitals_helper

 (

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 }

}

//Function that places orbitals for one bond sp2 instances. This function contains some of the more

complicated cases like ketenes and sulfur/phosphorus amines.

void AssignOrbitals::nr_know_bonds_1_sp2 (core::Size const current_atom, core::Size const

secondary_atom, core::Size const tertiary_atom){

 if (

 restype_->atom(secondary_atom).element_type()->element() ==

core::chemical::element::S ||

 restype_->atom(secondary_atom).element_type()->element() ==

core::chemical::element::P

) {

 nr_known_bonds_1_sp2_P_S_elements_case (current_atom, secondary_atom,

tertiary_atom); //solve for sulfur and phosphorus

 return;

 }

 if (restype_->bonded_neighbor(secondary_atom).size() == 2) {

 nr_known_bonds_1_sp2_ketene_case(current_atom, secondary_atom,

tertiary_atom); //look at ketenes

 return;

 }

 if (non_bonding_lone_pair_orbitals_ == 1) {

 //Function for linear lone pairs.

 calculate_orbital_icoor(

 core::chemical::modifications::linear_coordinates(restype_->atom(

current_atom).ideal_xyz(), restype_->atom(secondary_atom).ideal_xyz(), atom_orbital_distance_

),

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::bonding_pi,

 true

41

);

 //Py, Pz, Px orbitals normally.

 for(

 std::set <

core::chemical::gasteiger::GasteigerAtomTypeData::AtomicOrbitalTypes >::const_iterator

 it = pi_orbitals_.begin(); it != pi_orbitals_.end(); ++it

){

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Pz) {

 Pz_orbitals_placer (

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Py || *it ==

core::chemical::gasteiger::GasteigerAtomTypeData::Px) {

 Pxy_orbitals_placer (

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 }

 } else if (non_bonding_lone_pair_orbitals_ == 2) {

 utility::vector1< numeric::xyzVector<core::Real> > positions;

 positions.push_back(restype_->atom(current_atom).ideal_xyz() - (restype_-

>atom(tertiary_atom).ideal_xyz() - restype_->atom(secondary_atom).ideal_xyz()).normalize() * 1);

 positions.push_back(core::chemical::modifications::triganol_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 positions[1],

 1.0

)

);

 for(core::Size ii=1; ii<= positions.size(); ++ii){

 calculate_orbital_icoor(

 positions[ii],

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 true

);

 }

 } else if (non_bonding_lone_pair_orbitals_ == 3) {

42

 //This doesn't really make sense. Shouldn't exist. Exit.

 utility_exit_with_message("What? you have three lone_pair orbitals on sp2

hybridization!");//this should never happen

 }

}

//Function that places orbitals for one bond sp3 instances

void AssignOrbitals::nr_know_bonds_1_sp3 (core::Size const current_atom, core::Size const

secondary_atom, core::Size const tertiary_atom) {

 //One bond sp3 only has to place the three sets of lone pair orbitals. Function here to do

that.

 numeric::xyzVector<core::Real > ketene_xyz = ketene_orbitals_helper(current_atom,

secondary_atom, tertiary_atom);

 numeric::xyzVector<core::Real > first_orbital_position =

core::chemical::modifications::angle_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 ketene_xyz,

 atom_orbital_distance_,

 120.0 / 180.0 * numeric::constants::d::pi,

 180.0 / 180.0 * numeric::constants::d::pi,

 false,

 numeric::xyzVector<core::Real>(0.0)

);

 // coordinate 1

 calculate_orbital_icoor(

 first_orbital_position,

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 false

);

 // helper coordinates

 numeric::xyzVector< core::Real > foot_point(

 core::chemical::modifications::triganol_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 first_orbital_position,

 atom_orbital_distance_ * std::cos(54.75 / 180 *

numeric::constants::d::pi)

)

);

 numeric::xyzVector< core::Real > offset(

 atom_orbital_distance_ * std::sin(54.75 / 180 * numeric::constants::d::pi) *

 cross_product(

43

 restype_->atom(secondary_atom).ideal_xyz() - restype_-

>atom(current_atom).ideal_xyz(),

 first_orbital_position - restype_->atom(current_atom

).ideal_xyz()

).normalize()

);

 // coordinate 2

 calculate_orbital_icoor(

 foot_point + offset,

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 false

);

 // coordinate 3

 calculate_orbital_icoor(

 foot_point - offset,

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 false

);

}

//Function that places orbitals for two bonds sp instances

void AssignOrbitals::nr_know_bonds_2_sp (core::Size const current_atom, core::Size const

secondary_atom)

{

 if (non_bonding_lone_pair_orbitals_ == 0) {

 //Consider the case of =C= or -C#. We do not have orbitals to assign

 //but we do have p orbitals to assign.

 for(

 std::set<core::chemical::gasteiger::GasteigerAtomTypeData::AtomicOrbitalTypes>::const_ite

rator

 it = pi_orbitals_.begin(); it != pi_orbitals_.end(); ++it

){

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Pz) {

 Pz_orbitals_placer(

 current_atom,

 secondary_atom,

 neighbors_[2]

);

 }

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Py || *it ==

core::chemical::gasteiger::GasteigerAtomTypeData::Px) {

44

 Pxy_orbitals_placer(

 current_atom,

 secondary_atom,

 neighbors_[2]

);

 }

 }

 }else if (non_bonding_lone_pair_orbitals_ == 1) {

 //This really should be possible because it would require 10 electrons. Exit.

 utility_exit_with_message("What? You are trying to assign a lone pair to SP

hybridized atom with multiple bonds.");

 }

}

//Function that places orbitals for two bonds sp2

void AssignOrbitals::nr_know_bonds_2_sp2(core::Size const current_atom, core::Size const

secondary_atom, core::Size const tertiary_atom) {

 if (non_bonding_lone_pair_orbitals_ == 0 || non_bonding_lone_pair_orbitals_ == 1) {

 //Both of these cases add a set of bonding p orbitals. The second case also will add a

lone pair.

 for(

 std::set<core::chemical::gasteiger::GasteigerAtomTypeData::AtomicOrbitalTypes>::const_ite

rator

 it = pi_orbitals_.begin(); it != pi_orbitals_.end(); ++it

){

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Pz) {

 Pz_orbitals_placer(

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Py || *it ==

core::chemical::gasteiger::GasteigerAtomTypeData::Px) {

 Pxy_orbitals_placer(

 current_atom,

 secondary_atom,

 tertiary_atom

);

 }

 }

 if (non_bonding_lone_pair_orbitals_ == 1) {

 calculate_orbital_icoor(

 core::chemical::modifications::triganol_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom

).ideal_xyz(),

 restype_->atom(neighbors_[2]).ideal_xyz(),

45

 atom_orbital_distance_

),

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 true

);

 }

 } else if (non_bonding_lone_pair_orbitals_ == 2) {

 //This should never really happen or be possible. Exit.

 utility_exit_with_message("What? You are trying to place two lone pairs and two

sets of bonds on an SP2 hybridized atom.");

 }

}

//Function that places orbitals for two bonds sp3

void AssignOrbitals::nr_know_bonds_2_sp3(core::Size const current_atom, core::Size const

secondary_atom)

{

 if (non_bonding_lone_pair_orbitals_ == 1) {

 //Uncommon but possible in some cases. Place the one lone pair only in a trigonal

manner.

 calculate_orbital_icoor(

 core::chemical::modifications::triganol_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 restype_->atom(neighbors_[2]).ideal_xyz(),

 atom_orbital_distance_

),

 current_atom,

 secondary_atom,

 neighbors_[2],

 core::chemical::orbitals::lone_pair,

 true

);

 } else if (non_bonding_lone_pair_orbitals_ == 2) {

 //This is the most normal case. Place the two lone pair in a tetrahedral manner.

 // helper coordinates

 numeric::xyzVector<core::Real> foot_point(

 core::chemical::modifications::triganol_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 restype_->atom(neighbors_[2]).ideal_xyz(),

 atom_orbital_distance_ * std::cos(54.75 / 180 *

numeric::constants::d::pi)

)

46

);

 numeric::xyzVector < core::Real > offset(

 atom_orbital_distance_ * std::sin(54.75 / 180 *

numeric::constants::d::pi) * cross_product

 (

 restype_->atom(secondary_atom).ideal_xyz() -

restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(neighbors_[2]).ideal_xyz() -

restype_->atom(current_atom).ideal_xyz()

).normalize()

);

 // coordinate 1

 calculate_orbital_icoor (

 foot_point + offset,

 current_atom,

 secondary_atom,

 neighbors_[2],

 core::chemical::orbitals::lone_pair,

 true

);

 // coordinate 2

 calculate_orbital_icoor (

 foot_point - offset,

 current_atom,

 secondary_atom,

 neighbors_[2],

 core::chemical::orbitals::lone_pair,

 true

);

 } else if (non_bonding_lone_pair_orbitals_ == 3) {

 //Should not be possible or happen. Exit.

 utility_exit_with_message("What? You are trying to place three lone pairs on an

atom that already has at least 4 electrons");

 }

}

//Function that places orbitals for three bonds sp. This shouldn't be possible. Anything with this

many electrons should include d orbitals. Throws an error.

void AssignOrbitals::nr_know_bonds_3_sp(core::Size const current_atom) {

 //This really should not be possible. Exit.

 utility_exit_with_message("What? You are trying to place three bonding sets on an SP

hybridized atom.");

}

//Function that places orbitals for three bonds sp2

47

void AssignOrbitals::nr_know_bonds_3_sp2(core::Size const current_atom, core::Size const

secondary_atom)

{

 if (non_bonding_lone_pair_orbitals_ == 0) {

 //This is a case of an atom (carbon) with two single bonds and a double bond

 /*utility::vector1< numeric::xyzVector< core::Real > > pi_xyz_coords =

perpendicular_orbitals_helper (

 current_atom,

 secondary_atom,

 neighbors_[2]

);

 for(core::Size ii=1; ii<= pi_xyz_coords.size(); ++ii){

 calculate_orbital_icoor(

 pi_xyz_coords[ii],

 current_atom,

 secondary_atom,

 neighbors_[2],

 core::chemical::orbitals::bonding_pi,

 false

);

 }*/

 for(

 std::set<core::chemical::gasteiger::GasteigerAtomTypeData::AtomicOrbitalTypes>::const_ite

rator

 it = pi_orbitals_.begin(); it != pi_orbitals_.end(); ++it

){

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Pz){

 Pz_orbitals_placer

 (

 current_atom,

 secondary_atom,

 neighbors_[2]

);

 }

 if(*it == core::chemical::gasteiger::GasteigerAtomTypeData::Py || *it ==

core::chemical::gasteiger::GasteigerAtomTypeData::Px){

 Pxy_orbitals_placer

 (

 current_atom,

 secondary_atom,

 neighbors_[2]

);

 }

 }

 } else if (non_bonding_lone_pair_orbitals_ == 1) {

 //This really should be possible. Exit.

48

 utility_exit_with_message("What? You are trying to put ten atoms around a

molecule of SP2 hybridization!");

 }

}

//Funcion that places orbtials for three bonds sp3

void AssignOrbitals::nr_know_bonds_3_sp3(core::Size const current_atom) {

 if (non_bonding_lone_pair_orbitals_ == 0) {

 //No orbitals to place or lone pairs. May not need this line of code at all.

 } else if (non_bonding_lone_pair_orbitals_ == 1) {

 //There is only a lone pair to be placed here. Use a function to do that.

 trigonal_pyramidal_orbitals_placer(

 current_atom,

 neighbors_[1],

 neighbors_[2],

 neighbors_[3]

);

 } else if (non_bonding_lone_pair_orbitals_ == 2) {

 //This should not be possible. Exit.

 //utility_exit_with_message("What? You are trying make an SP3 hybridized atom

with two sets of lone pairs and three bonds!");

 }

}

//This function cycles through the atoms and places orbitals on them if they need to be placed.

//First it checks for the number of bonds the atom has. After that it checks hybridization on that

atom.

//Then it checks lone pairs. It places the lone pairs first and then hyrbidized orbitals based

//on normal rules for assigning chemical orbitals.

//Each time there is a utility exit with message it is because there are more than 8 electrons around

an atom center.

//While this can sometimes happen for ligands (mostly for sulphur and phosphorus) these cases

don't have have orbtials

//that need placed. These cases are being looked at through QM calculations to make sure that the

orbitals don't need placed.

void AssignOrbitals::assign_orbitals() {

 core::chemical::ChemicalManager* chemical_manager =

core::chemical::ChemicalManager::get_instance();

 core::chemical::AtomTypeSetCAP atom_type_set = chemical_manager-

>atom_type_set("fa_standard");

 //this code relies heavily on gasteiger atom types. Make sure to assign them before trying to

go through other functions

 core::chemical::gasteiger::assign_gasteiger_atom_types(*restype_,

core::chemical::ChemicalManager::get_instance()->gasteiger_atom_type_set(), /*keep_existing=*/

false);

49

 //somewhat weird to finalize the restype, but this is needed because we are going to check

if the atom is a backbone atom. If it is

 //we dont want to add orbitals

 restype_->finalize();

 for(core::Size current_atom=1; current_atom <= restype_->natoms(); ++current_atom) {

 //why do we have to check for the name of a dummy atom???? This is only for

GB_AA_PLACEHOLDER. This atom should be typed as virtual!!!!!

 //for now, ignore backbone atoms...need to find a fix for this!

 if(restype_->is_virtual(current_atom) || restype_->atom_name(current_atom) ==

"DUMM" || restype_->atom_is_backbone(current_atom)){

 continue;

 }

 core::chemical::AtomType const & atmtype(restype_->atom_type(current_atom)

);

 if(atmtype.atom_has_orbital()) {

 //setup the distance for where the orbital will be placed. The distance is the

covalent radius for what atom we are on

 for(core::Size ii= 1; ii <= restype_->bonded_neighbor_types(

current_atom).size(); ++ii){

 if(restype_->bonded_neighbor_types(current_atom)[ii] ==

core::chemical::TripleBond){

 atom_orbital_distance_ = restype_->atom(

current_atom).gasteiger_atom_type()->get_atom_type_property(

gasteiger::GasteigerAtomTypeData::CovalentRadiusTripleBond);

 break;

 }

 else if(restype_->bonded_neighbor_types(current_atom)[ii] ==

core::chemical::DoubleBond){

 atom_orbital_distance_ = restype_->atom(

current_atom).gasteiger_atom_type()->get_atom_type_property(

gasteiger::GasteigerAtomTypeData::CovalentRadiusDoubleBond);

 break;

 }

 else if(restype_->bonded_neighbor_types(current_atom)[ii] ==

core::chemical::SingleBond){

 atom_orbital_distance_ = restype_->atom(

current_atom).gasteiger_atom_type()->get_atom_type_property(

gasteiger::GasteigerAtomTypeData::CovalentRadiusSingleBond);

 //dont break here, because we might have a double bond as

well, and thats what the orbital distance will be!

 }

 //this is rather annoying. Aromatic bonds are actual bond order

double or triple. For now, assume aromatic bond will

 //be bond order double and hope everything is all right

50

 else if(restype_->bonded_neighbor_types(current_atom)[ii] ==

core::chemical::AromaticBond){

 std::cout << "found aromatic bond: " << restype_->name()

<< std::endl;

 atom_orbital_distance_ = restype_->atom(

current_atom).gasteiger_atom_type()->get_atom_type_property(

gasteiger::GasteigerAtomTypeData::CovalentRadiusDoubleBond);

 //I am not sure what an aromatic bond is...is it double?

 } else {

 atom_orbital_distance_ = 1.0;

 }

 }\

 neighbors_ = restype_->bonded_neighbor(current_atom);

 core::Size secondary_atom = neighbors_[1];

 core::Size tertiary_atom = 0;

 for(core::Size i=1; i<= restype_->bonded_neighbor(secondary_atom).size();

++i) {

 if(restype_->bonded_neighbor(secondary_atom)[i] !=

current_atom){

 tertiary_atom = restype_->bonded_neighbor(

secondary_atom)[i];

 break;

 }

 }

 if(tertiary_atom == 0) {

 for(core::Size i=1; i<= restype_->bonded_neighbor(neighbors_[2]

).size(); ++i){

 if(restype_->bonded_neighbor(neighbors_[2])[i] !=

current_atom){

 tertiary_atom = restype_->bonded_neighbor(

neighbors_[2])[i];

 break;

 }

 }

 }

 nr_known_bonds_ = neighbors_.size();

 pi_orbitals_ = restype_->atom(current_atom).gasteiger_atom_type()-

>get_binding_pi_orbitals();

 non_bonding_lone_pair_orbitals_ = restype_->atom(current_atom

).gasteiger_atom_type()->get_number_hybrid_lone_pairs();

 core::chemical::gasteiger::GasteigerAtomTypeData::HybridOrbitalType

orbital_type(restype_->atom(current_atom).gasteiger_atom_type()->get_hybrid_orbital_type());

 if (nr_known_bonds_ == 1)

 {

51

 if (orbital_type == gasteiger::GasteigerAtomTypeData::SP)

 {

 nr_know_bonds_1_sp(current_atom, secondary_atom,

tertiary_atom);

 } else if (orbital_type == gasteiger::GasteigerAtomTypeData::SP2)

 {

 //test_sp2(current_atom, secondary_atom, tertiary_atom);

 nr_know_bonds_1_sp2(current_atom, secondary_atom,

tertiary_atom);

 } else if (orbital_type == gasteiger::GasteigerAtomTypeData::SP3)

 {

 nr_know_bonds_1_sp3(current_atom, secondary_atom,

tertiary_atom);

 }

 } else if (nr_known_bonds_ == 2)

 {

 if (orbital_type == gasteiger::GasteigerAtomTypeData::SP)

 {

 nr_know_bonds_2_sp(current_atom, secondary_atom);

 } else if (orbital_type == gasteiger::GasteigerAtomTypeData::SP2)

 {

 nr_know_bonds_2_sp2(current_atom, secondary_atom,

tertiary_atom);

 } else if (orbital_type == gasteiger::GasteigerAtomTypeData::SP3)

 {

 nr_know_bonds_2_sp3(current_atom, secondary_atom);

 }

 } else if (nr_known_bonds_ == 3)

 {

 if(orbital_type == gasteiger::GasteigerAtomTypeData::SP)

 {

 nr_know_bonds_3_sp(current_atom);

 } else if (orbital_type == gasteiger::GasteigerAtomTypeData::SP2)

 {

 nr_know_bonds_3_sp2(current_atom, secondary_atom);

 } else if (orbital_type == gasteiger::GasteigerAtomTypeData::SP3)

 {

 nr_know_bonds_3_sp3(current_atom);

 }

 }

 }

 }

 restype_->finalize();

}

void AssignOrbitals::test_sp2(core::Size current_atom, core::Size secondary_atom, core::Size

tertiary_atom) {

52

 utility::vector1< numeric::xyzVector<core::Real> > positions;

 positions.push_back(restype_->atom(current_atom).ideal_xyz() - (restype_-

>atom(tertiary_atom).ideal_xyz() - restype_->atom(secondary_atom).ideal_xyz()).normalize() * 1);

 positions.push_back(core::chemical::modifications::triganol_coordinates(

 restype_->atom(current_atom).ideal_xyz(),

 restype_->atom(secondary_atom).ideal_xyz(),

 positions[1],

 1.0

)

);

 for(core::Size ii=1; ii<= positions.size(); ++ii){

 calculate_orbital_icoor(

 positions[ii],

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::lone_pair,

 true

);

 }

 utility::vector1< numeric::xyzVector< core::Real > > pi_xyz_coords =

perpendicular_orbitals_helper

 (

 current_atom,

 secondary_atom,

 tertiary_atom

);

 for(core::Size ii=1; ii<= pi_xyz_coords.size(); ++ii){

 calculate_orbital_icoor(

 pi_xyz_coords[ii],

 current_atom,

 secondary_atom,

 tertiary_atom,

 core::chemical::orbitals::bonding_pi,

 false

);

 }

}

std::string AssignOrbitals::make_orbital_element_name()

{

 ++n_orbitals_;

 std::string orbital_name("X");

53

 std::string orb_index_string = utility::to_string < core::Size > (n_orbitals_) ;

 std::string orbital_element_name(orbital_name+orb_index_string);

 return orbital_element_name;

}

void AssignOrbitals::set_orbital_type_and_bond(

 core::Size atom_index,

 std::string orbital_element_name,

 orbitals::OrbitalTypeEnum orbital_enum

){

 // Orbital names are given by concatenate two strings:'LP" and the indices of the orbitals on

the residue(restype_);

 std::string atm_name(strip_whitespace(restype_->atom_name(atom_index)));

 restype_->add_orbital(orbital_element_name, orbital_enum);

 restype_->add_orbital_bond(atm_name, orbital_element_name);

}

//This function calculates the internal coordinates of the orbitals that have been placed and adds

them to the residue type for further use.

void AssignOrbitals::calculate_orbital_icoor(

 numeric::xyzVector < core::Real > const orbital_xyz,

 core::Size const atm_index1,

 core::Size const atm_index2,

 core::Size const atm_index3,

 core::chemical::orbitals::OrbitalTypeEnum orbital_type,

 //bool here because the angle needs to be divided by two for one bond sp2 and not

in other cases

 bool theta_over_2

)

{

 core::chemical::AtomType const & atmtype(restype_->atom_type(atm_index1));

 std::string orbital_element_name (make_orbital_element_name());

 set_orbital_type_and_bond(atm_index1, orbital_element_name, orbital_type);

 Vector const stub1_xyz = restype_->atom(atm_index1).ideal_xyz();

 Vector const stub2_xyz = restype_->atom(atm_index2).ideal_xyz();

 Vector const stub3_xyz = restype_->atom(atm_index3).ideal_xyz();

 core::Real theta(0.0);

 core::Real phi(0.0);

 if(atom_orbital_distance_ <1e-2)

 {

54

 TR << "WARNING: extremely small distance=" << atom_orbital_distance_ << " for "

<<

 orbital_element_name << " ,using 0.0 for theta and phi."<<

 " If you were not expecting this warning, something is very wrong"

<<std::endl;

 }else

 {

 theta = numeric::angle_radians<core::Real>(orbital_xyz,stub1_xyz,stub2_xyz);

 if((theta < 1e-2) || (theta > numeric::NumericTraits<Real>::pi()-1e-2))

 {

 phi = 0.0;

 }else

 {

 phi =

numeric::dihedral_radians<core::Real>(orbital_xyz,stub1_xyz,stub2_xyz,stub3_xyz);

 }

 }

 std::string const stub1(strip_whitespace(restype_->atom_name(atm_index1)));

 std::string const stub2(strip_whitespace(restype_->atom_name(atm_index2)));

 std::string const stub3(strip_whitespace(restype_->atom_name(atm_index3)));

 //tr << orbital << " " << stub_atom1 << " "<< stub_atom2 << " " <<stub_atom3 << " "

<<distance << " " << phi << " " << theta <<std::endl;

 if (!theta_over_2)

 {

 restype_->set_orbital_icoor_id(orbital_element_name, phi, theta,

atom_orbital_distance_, stub1, stub2, stub3);

 } else

 {

 restype_->set_orbital_icoor_id(orbital_element_name, phi, (theta/2),

atom_orbital_distance_, stub1, stub2, stub3);

 }

}

}//namespace

}//namespace

}//namespace

 Sample XML

<ROSETTASCRIPTS>

 <SCOREFXNS>

 <ligand_soft_rep weights="%%soft_rep%%"/>

 <hard_rep weights="%%hard_rep%%"/>

 </SCOREFXNS>

 <TASKOPERATIONS>

 <ExtraRotamersGeneric name=extra_chi ex1=1 ex2=1 extrachi_cutoff=0/>

 </TASKOPERATIONS>

 <LIGAND_AREAS>

55

 <docking_sidechain chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true

minimize_ligand=10/>

 <final_sidechain chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true/>

 <final_backbone chain=X cutoff=7.0 add_nbr_radius=false all_atom_mode=true

Calpha_restraints=0.3/>

 </LIGAND_AREAS>

 <INTERFACE_BUILDERS>

 <side_chain_for_docking ligand_areas=docking_sidechain/>

 <side_chain_for_final ligand_areas=final_sidechain/>

 <backbone ligand_areas=final_backbone extension_window=3/>

 </INTERFACE_BUILDERS>

 <MOVEMAP_BUILDERS>

 <docking sc_interface=side_chain_for_docking minimize_water=true/>

 <final sc_interface=side_chain_for_final bb_interface=backbone

minimize_water=true/>

 </MOVEMAP_BUILDERS>

 <MOVERS>

 <ddG name=calculateDDG jump=1 per_residue_ddg=1 repack=0

scorefxn=hard_rep/>

 <Translate name=translate chain=X distribution=uniform angstroms=2.5 cycles=50/>

 <Rotate name=rotate chain=X distribution=uniform degrees=360 cycles=1000/>

 <SlideTogether name=slide_together chains=X/>

 <HighResDocker name=high_res_docker cycles=6 repack_every_Nth=3

scorefxn=ligand_soft_rep movemap_builder=docking/>

 <FinalMinimizer name=final scorefxn=hard_rep movemap_builder=final/>

 <InterfaceScoreCalculator name=add_scores chains=X scorefxn=hard_rep/>

 <ParsedProtocol name=low_res_dock>

 <Add mover_name=translate/>

 <Add mover_name=rotate/>

 <Add mover_name=slide_together/>

 </ParsedProtocol>

 <ParsedProtocol name=high_res_dock>

 <Add mover_name=high_res_docker/>

 <Add mover_name=final/>

 </ParsedProtocol>

 </MOVERS>

 <PROTOCOLS>

 <Add mover_name=low_res_dock/>

 <Add mover_name=high_res_dock/>

 Add mover_name=calculateDDG/>

 <Add mover_name=add_scores/>

 </PROTOCOLS>

</ROSETTASCRIPTS>

 Sample PBS script

#!/bin/sh

#PBS -l nodes=1:ppn=1

56

#PBS -l pmem=5500mb

#PBS -l mem=5500mb

#PBS -l walltime=24:00:00

#PBS -o relax.log

#PBS -j oe

cd $DIR

/dors/meilerlab/home/willcotc/my_rosetta_stuff/ligand_docking/ligand/pbs/rosetta_scripts.static.li

nuxgccrelease -database /dors/meilerlab/home/willcotc/rosetta_database/

@/dors/meilerlab/home/willcotc/my_rosetta_stuff/ligand_docking/ligand/options/full_sample.txt -

s "'$STRUCTURE $LIGAND'" -ex1 -ex2 -ex1aro -ex2aro -linmem_ig 10 -extra_res_fa $PARAMS -

parser:script_vars hard_rep=$HARD soft_rep=$SOFT -add_orbitals -out:pdb_gz -nstruct 500 -

in:file:native $NATIVE

 Sample Submit Script

#! /bin/csh

Sends respective protein/ligand pairs to ACCRE

foreach file

(/dors/meilerlab/home/willcotc/my_rosetta_stuff/ligand_docking/ligand/input/brittany/pdb/*.pdb)

 set direct = `echo $file | awk '{print

"/dors/meilerlab/home/willcotc/my_rosetta_stuff/ligand_docking/ligand/output/ligand_full_sample

/" substr($1,89, length($1)-92) }'`

 set name = `echo $file | awk '{print "fs_" substr($1,89)}'`

 set ligand = `echo $file | awk '{print

"/dors/meilerlab/home/willcotc/my_rosetta_stuff/ligand_docking/ligand/input/brittany/ligand/"

substr($1,89)}'`

 set params = `echo $file | awk '{print

"/dors/meilerlab/home/willcotc/my_rosetta_stuff/ligand_docking/ligand/input/brittany/params/no

_conformers/" substr($1,89 , length($1)-92) ".params"}'`

 set hard_rep = `echo ligand`

 set soft_rep = `echo ligand_soft_rep`

 set native = `echo $file | awk '{print

"/dors/meilerlab/home/willcotc/my_rosetta_stuff/ligand_docking/ligand/input/brittany/pdb/hetat

m/" substr($1,89 , length($1)-92) ".pdb"}'`

echo $ligand

echo $name

 qsub -N ${name} -v

DIR=${direct},STRUCTURE=${file},LIGAND=${ligand},PARAMS=${params},SOFT=${soft_rep},HARD=${

hard_rep},NATIVE=${native} ../pbs/full_sample.pbs

end

 Sample options input

-options

 -user

57

#-ignore_unrecognized_res

-add_orbitals

-parser

 -protocol

/dors/meilerlab/home/willcotc/my_rosetta_stuff/ligand_docking/ligand/options/full_sample.xml

-mute protocols.jd2

-mute core.io.pdb.file_data

-mute core.scoring.etable

-mute core.io.database

-mute core.scoring.ScoreFunctionFactory

-mute core.pack.task

-mute protocols.ProteinInterfaceDesign.DockDesign

58

References

1. Hajduk, P., Greer, J., A decade of fragment-based drug design: strategic advances and lessons

learned. Nature Reviews. 6:211-219 (2007).

2: Druker, B., ST1571(Gleevec) as a paradigm for cancer therapy. Trends in Mol Med. Vol 8 (4): S14-

S18 (2002).

3. Dudek, A., Adroz, T., Galvez, J. Computational methods in developing quantitative structure-

activity relationships (QSAR): A review. Comb Chem High Throughput Screen. Vol 9(3):213-228

(2006).

4. Adcock, S., McCammon, J., Molecular Dynamics: A survey of methods for simulating the activity of

proteins. Chem Rev., 106:1589-1615 (2006).

5: Ewing, T.J., Makino, S., Skillman, A.G., Kuntz, I.D., DOCK 4.0: search strategies for automated

molecular docking of flexible molecule databases. J Comp Aided Mol Des 2001;15:411-428.

6: Osterberg, F., Morris, G.M., Sanner, M.F., Olson, A.J., Goodsell, D.S., Automated docking to

multiple target structures: incorporation of protein mobility and structural water heterogeneity in

Auto-Dock. Proteins. 2002; 46;34-40.

7: Rarey, M., Kramer, B., Lenguaer, T., Klebe, G., A fast flexible docking method using an incremental

construction algorithm. J Mol Biol 1996;261: 470-489.

8: Willet, P., Glen, R.C., Leach, A.R., Taylor, R., Jones, G., Development and validation of a genetic

algorithm for flexible docking. J Mol Biol. 1997;267:727-748.

9: Meiler, J., Baker, D., ROSETTALIGAND: Protien-Small molecule docking with full side-chain

flexibility. Proteins. 2006;65:538-548.

10: Rohl, C.A, Strauss, C.E.M., Misura, K.M.S & Baker, K. Protein structure prediction using Rosetta.

Methods Enzymol. 383, 66-93 (2004).

11: T. Olsson, S. Bowden. An overview of protein-ligand docking using GOLD. EMBO workshop 2014.

12: AutoDock wiki. Autodock.com.

13: The FlexX Method. www.uku.fi/~poso/index_files/OOHJE.pdf.

59

14. Williams, D., Stephens, E., O’Brien, D., Zhou, M. Understanding noncovalent interactions: Ligand

Binding Energy and Catalytic Efficiency from Ligand-Induced Reductions in Motion within Receptors

and Enzymes. Angew Chem Int Ed., 43: 6596-6616 (2004).

15. Lindhorst, T., Artificial Multivalent Sugar Ligands to Understand and Manipulate Carbohydrate-

Protein Interactions. Topics in Current Chemistry. 218:201-235 (2001).

16. Simons, K., Bonneau, R., Ruczinski, I., Baker, D. Ab initio structure prediction of CASP III targets

using ROSETTA. Proteins. 37: 171-176 (1999).

17: Leaver-Fay, A., O’Meara, M., et al. Scientific Benchmarks for Guiding Macromolecular Energy

Function Improvement. Methods Enxymol. 523 109-143 (2013).

18: Shapovalov, M.V., Dunbrack, R.L Jr., A smoothed backbone-dependent rotamer library for

proteins derived from adaptive kernel density estimates and regressions. Structure. 2011; 19(6):844-

858.

19: Song, Y., Tyka, M., Leaver-Fay, A., Thompson, J., Baker, D., Structure-guided forcefield

optimization. Proteins 2011; 79:1898-1909.

20. Hunter, C. The Role of Aromatic Interactings in Molecular Recognition. Medola Lecture. 1994

21. Pollino, J., Weck, M. Non-covalent side-chain polymers: design principles, functionalization

strategies, and perspectives. Chem Soc Rev. 34: 193-207 (2005).

22: Kortemme, T., A.V. Morozov and D. Baker. An orientation-dependent hydrogen bonding

potential improves prediction of specificity and structure for proteins and protein-protein

complexes. J Mol Biol 326(4): 1239-59 (2003).

23: Keedy, D.A., Arendall III, W.B., Chen, V.B., Williams, C.J., Headd, J.J., Echols, N., et al. 8000 filtered

structures, 2012 http://kinemage.biochem.duke.edu/databases/top8000.php.

24: Allison, B., Combs, S., DeLuca, S., Lemmon, G., Mizoue, L., Mieler, J., Computational Design of

protein-small molecule interfaces. Jou Struc Biol. 2014; 193-202.

25: Gasteiger, J., Marsili, M., Iterative partial equalization of orbital electronegativity – a rapid access

to atomic charges. Tetrahedron 1980; 3219-3288(36).

60

26: Griffiths, D., Introduction to Quantum Mechanics, Prentice-Hall 1995, p. 137. ISBN 0-13-124405-

1.

27: Singh, S., Thornton, J., Pi-Pi interactions: the Geometry and Energetics of Phenylalanine-

Phenylalanine Interactions in Proteins. J. Mol. Biol. 1991:837-846(218).

28. Combs, S., DeLuca, S., DeLuca, S., Lemmon, G., Nannemann, D., Nguyen, E., Willis, J., Sheehan, J.,

Meiler, J. Small-Molecule Ligand Docking into comparative models with Rosetta. Nature Protocols.

8:1277-1298 (2013).

29: Conway, P., Tyka, M., DiMaio, F., Konerding, D., Baker, D., Relaxation of backbone bond

geometry improves protein energy landscape modelling. Protein Sci. Vol 23:47-55 (2014).

30: Silvi, B., Savin, A., Classification of Chemical Bonds Based on Topological Analysis of Electron

Localization Functions. Nature. Vol 371:683-686 (1994).

31: Becke, A., Edgecombe, K., A Simple Measure of Electron Localization in Atomic and Molecular

Systems. J Chem Phys. 92, 5397 (1990).

32. Savin, A., Nesper, R., Wengert, S., Fassler, T., ELF: The Electron Localization Function.

Angewantdte Chemie. 36:1808-1832 (1997).

33. Pierre, H., Kohn, W. Inhomogeneous electron gas. Physical Review 136:867-871 (1964).

34: Kim, K., Jordan, K. Comparison of Density Functional and MP2 Calculations of the Water

Monomer and Dimer. J Phys Chem. 98:10089-10094 (1994).

35. Fleishman, S., Leaver-Fay, A., Corn, J., Strauch, E., Khare, S., Koga, N., Ashworth, J., Murphy, P.,

Richter, F., Lemmon, G., Meiler, J., Baker, D., RosettaScripts: A Scripting Language Interface to the

Rosetta Macromolecular Modelling Suite. Plos One. 6:1-10 (2011).

36. Huang, H., Lee, K., Yu, H., Chen, C., Hsu, C., Chen, H., Tsai, F., Chen, C. Structure-based and

Ligand-based drug design for HER 2 Receptor. Jou Bio Structure and Dynamics. Vol 28(1) (2010).

